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FOREWORD

This technical report wac prepared by Dr. Clifford D, Fawcett
of the Deputy for Development Planning, Aeranautical Systems Division,
Wright-Patterscn Air Force Base, Ghio, ana was presented to the Depart-
ment of Industrial Engineering of the Ohio State University in partial
fulfillment of the requirements for the degree of Doctor of Philosophy,

This work was directly motivated by experience obtalned while
employed as a member of the technical statf at Wright=Patterson Alr
Force Base., In performing effectiveness analyses of various Air Force
weapan systems, it has become increasingly apparent that the tactics
used in employing the system can be of overriding importance in de-
termining system effectiveness, It {8 also clear that uncertainty
is an unavoidable and cruclal factor in decisions relating to future
military systems. It is relatively easy to point out and discuas
these facts and few rational people will dispute their importance,
but it seems to be rare for a system evaluation to include explicit
consideration of tactica optimizailon and uncertainty. This is un=
doubtedly due to the conceptual and mathematical difficulties that are
encountered in so doing, coupled with the practical considerations of
limited resources and time available for most weapon system evaluae-
tions, With this situation In mind, the work that is described here=
in vas undertaken as a more extensive consideration of these problems

than is usually possible.
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ABSTRACT

This work applies dynamic programming and same notions from
decision theory. Basic recursive relations are developed for determins
istic ant Markovian decizion processes, Sufficlent conditiona are
stated that assure the optimality of results that these relationships
produce, The application deals with the problem of making a rational
selection of tactics for air-to=-ground attack when faced by uncertainty
as to the exact conditions that prevail.

A single alroraft attack on a target is referred to as a "duel.™
A duel is treated as a multistage decision process with successive
aircraft passes at the target corresponding to stages in the decision
process. The bagic factors to be considered at each stage of the duel
are the weapon effectiveness as a function of the number of weapons
deliverad, the alrcraft’s abllity to survive, and the aircraft's
abllity to acquire the target and deliver weapons. We seek to detere
mine an optimal policy that indicates the number of weapons to be
delivered and the mode of attack to be used at sach pase depending on

what state of affairs develops as the duel progresses.
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The selected policy maximizes the alrcraft's return subject to
constralnts on the number of passes that can be made, the number of
weapons avallable to the aircraft, and the probability of the aircraft
surviving the duel. Several different types of return to the attacker
are considered. These include the expected value of the number of hite
achleved, the probability of at least one hit, and the expected utility
of the duel to the attacker where the utility is an arbitrary function
of the number of hits achlieved.

A principle result from the duel models is an indication of the
maximun return as a function of the constraining probability of the
afrcraft not surviving the duel. This 1s referred to as a "return-
versus-attrition function” for the duel. Multiple aircraft raid models
are developed to determine which point on the return~versus-attrition
function is the best operating point for attacking the target, These
raid models assume that the aircraft in the raid make stochast:cally
independent, statisticaily identical attacks. By using the return-
versus-attrition functlon from a single aircruatt duel molel, and con-
sidering the probabilistic survival of area defensec, the optimum raid
size and the best policy for the duel ara determined. This determina-
tion minimises the expected value of the number of aircraft lost in
achieving a required level of return to the attackers.

A multiple aircraft raid on multiple targets 1s considered by
starting from the previously stated basic assumption. Here, the problem
is to allocate a given number of aircraft among targets and specify the
policy for each duel to maximire the total utility to the attackers

subject to congstraints on the number of aircraft available, the expected
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value of the numbar of aircraft lost, the number of passes an alrcraft
can make agalnst each target, and the number of weapons an aircraft can
carry to sach target,

The question of what tactic to choose In the face of uncertainty
as to the true parameter values is approached by assoclacting a range
of uncertainty with each of the input psrameters. We assume complete
ignorance of the value that the parameters might take within their
respective ranges of uncertainty. A systematic method 1s developed
that alds the decision maker in choosing a nominal set of input values
such that the solution that is optimum for those nominal input values
constitutes a rational tactic selection considering that the recalized
or actual {nput values might fall anywhere within their ranges of

uncertainty.
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GLOSSARY OF SYMBOLS

A - Used to symbolize that target acquisition has occurred, {
A% = Used to symbollze that target acquisition has not occurred.
A, - The event that target acquisition occurs on an initial i
pass. i
1
A; - The comrlement of A,. ?
AD - The event that acquisition and delivery occur on an
initial pass.
.'A(,D"r - The event rhat acquisition occurs and weapon delivery
does not occur on an {nitial pass.
Ay = The event that target acquisition occurs on a subsequent
pass,
AI* ~ The complement of Aj,
AyD - The event that acquisition and delivery occur on a i
subsequent pass. ;
AID* = The event that acquisition occurs and weapon delivery j
does not occur on a subsequent pass, i
]
a ~ A control variable associated with W, .
aj -~ A control variable associated with Wye
a - The control variable associated with W',
c -~ Aspiration level in a P duel; ‘
Saturation level in an Ep duel. .
Cr - Expected hits required per raid, i

CRQa;a‘) - Expected hits per rald versus a when using the tactic '
that is based on the input values associated with a'.

th(mt) - Expected hits per raid on target t under attack policy me.

D, = Decision vector at stage n.

—- e i e

et
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Dy

The declision vector (Ry, m¢).
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dn -
a” -
As -
ER(m) -
ERt: =
Err -
Fa;a*)
£a(X,) -
fnl(x!"l) -
£.(X.) -

A companent of D,; number of weapons allocated to pass n.
Best salvo size at pass n.

Increment of variation for s,

Expected losses per rald when the mth

used,

attack policy is
Constraint on the expected losses in attacking

targets l,-«=,t,

An arbitrary limiting value assoclated with the set Sg.
A measure of system performance versus a4 when using the
tactic that is based on the input values associated
with a'.

Maximum n stage return as a function of XN-

Maximum expected value of the n stage return as a
function of { and X'.

Maximum utillity achievable In attacks on targets 1l,=e«,t
as a function of b

gn[xn,Dn,fn_l(xn_l)] = n stage return function.

gnijtxﬁ’nn’fn-l,j(xnil)] - n stage return function associated with

h(id,) -
I -
i -
J -
Kp(m) -
KDt(mt) -
Kp -

Kp@asa') -

transition from state i to state j.

Probabilicty function of number of hits for a salvo of
size dp.

Maximum value of 1{.
Markov state index; i = l,--a T.
The number of comnonents of W.

Probability of achieving at least one hit per duel when
the mth attack policy is used.

Probability of at least one hit per duel with target t
under attack policy my.

Required probability of getting at least one hit per raid,
Probability of at least one hit per raid versus a when

using the tactic that is based on the input values
assoclated with a'.

lao s = 4 e
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Kkt(mt) « Probabllity of at least one hit per raid on target t
under attack policy mg.

Ky = A component of D,; mode of attack index at pass n.
k“* ~ Best mode of atrack at pass n.
LR = Expected losses per raid when the optimum attack

policy (m*) is used.

Lpaia®) -~ Fxpected losses per rald versus a when using the tactic
that is based on the input values associated with a'.

S)

Expected losses in killing a target with repeated ralds
when the optimum attack policy is used,

)‘t - The relative importance of target t.
m: - Optimal attack policy for target t.
n = Stage index; n = l,~-- )N,

Pij(Dn) - Markov state transition probabllity.
rrn(i;e) -~ The probability function of i with parameter 0.

P.1(x4,8,) ~ The actual probability of surviving passes n,---,1
versus {, x,, and s..

= a parameter of the example salvo effectiveness function
(see equation (II1-16)).

R = Number of alrcraft per raid.

R* =~ Best raid size ( = R(m*)).

R(m) - Raid size required to realize Cp or Ky as appropriate
when the mth attack policy {s used,

Re « Rald size for target t.

RE = Optimal raid size for target t.

Et - Constraint on the total aircraft allocated to

attacking targets l,e-a,t,
rg(d,) - Expected hits per salvo of size dp.
rx(dn) - Probability of at least ane hit in a salve of size d.

rn(X,,Dp) - Stage n return versus X, and Dy.
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Epe

s, (R
R, (Re)

S—
Re

0

Probabillity of the alrcraft surviving the area defenses
one way, elther from base to target or from target (¢ hase,

Probability of the aircraft surviving area defenses
enroute to or returning from ta.get t.

The actual probabllity of the aircraft surviving the
duel when the mth attack policy is used.

A set depending on X, where D, € sDn(xn).

Actual probability of the alrcraft surviving a duel with
target t under attack policy m..

A set where E - .
ERte SERt

Smt<ERt’Rt) - A set vhere mg € Smt(Eg\:'Rt)-

A set where R € SRt(Et).

A set where RtC Sit'

Frobability of alrcraft survival to the point of weapon
release on a nass.

Conditional probability that the alrcraft survives a pass
given that it survives to the point of weapon release.

An arbitrary set where X € an.

A set depending on x, where sns’ssn(xn).

An arbitrarv limiting value associated with Sg .
n

Constraining probabilitv of the alrcraft surviving
passes N,~==,l,

Index on target when multiple targets are considcred.
t = l,--- ,T.

t,(X,,D,) - State vector transformation.

~ A parameter of the example salvo effectiveness function

(see equation (111-18)),
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Udi) - Utility level or damage level associated with
Markov state f{,

Up -~ Utility of all raids on the target comnlex.

u.(2) -~ Utility of Z expected hits on target t,

U§ LP] - Utilitv associated with probability p of killing target t.

uD(m) - Expected hits per duel when the mth artack policy ls used,

th(mt) = Expected hits per duel with target v under attack

policy mg.

W - Vector of innuts to a ratd model.

W' - A vector of input wvalues.

W, = Vector of optimistic input values.

wp ~ Vector of pessimistic input values,

th

"j - The J component of W.

Weas ~ The jth component of W

oj ; o

ij = The Jth component of wp,
X4 - State vector at stage n.
XA = Residual state vector,
X, ~ The state vector (ﬁt, ERt)‘
XN - An arbitrary limiting value assoclated with S, .

n
Xn « A component of xn and Xg; number of weapons available for
passes n,--=,1,
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GCeneral Statgment:

This work deals with the prodieax of making a rationsl selectioo
of tactiss for air~to=groumx! attack vhan facad by mcerialnty ag to the
exact conditions that prevail. The intention 1s to provide & syste~
matic method for making the bestc use of availcble Informatian. The
result !s not an "szutomatic tactics salection® bLuat rather it is a
quantitative theoretical structure that caun serve as » frasswork within
which to e¢valuate the multitude cf tungible ond Intangible factors chat

must te considered fin planning an air strike.

ferninology &rd Gensral Concept

To begin the discussion we will establish some tarminology and
a general concept. A "raid”™ will denors a multirle aircraft attack
against » target. The rajd 1s composed of "sorties," where each sortie
iavolves one alrcraft which takes off, proceeds to the target, takes
part in the attaci on the target, returns to {ts base, and lands.

When an indlvidual alrcraft reaches the target avea, tts encounter with

e,
&

PPy

-~
‘.

=AW

Wed

T T

el

e S T A SRS O ™ 2 T

o W

mm ot R

e R e T L e NN T o 2 4 AR e T TR e RS N I

ol Pl B, bttt N A

i L




the target and target defenses will be referred to as a "duel."l A

! duel may involve multiple passes by the alrcraft. A duel might be fur-
| ther described as follows,

A military aircraft with a given number of bombs on board is to
attack a defended target. A maximum of N passes can be made subject to

fuel limitation or arbitrary policy. A given pass may include acquir-

fng the targoel, surviving to the point of weapon releasc, releasing
5 wveapons, surd surviving the pullout. Some Important considerations are
as fullows,

Wheri tine sircraft makes a pass, target acquisition is thought of
as an eveny tihwzt has occurred when the pilot has suffictient information
to ailow weapmns to be delivered. This could imply that he visually
gsees the target or a designated alm point. It could also imply that
some senssr such 8 a radar has produced » desired response, Once tar-
get asguisltion has occurred, the aircraft is maneuvered into position
ard allgned for weapon delivery., Because of constraints on the atrcraft
raneuver cajabilities and limications on pilot reaction time, it is
possible for target acquisition to occur too late to allow for a weapon

delivery on the same pass,

lThq word "duel" when used In this work has a slightly modified
meaning from the more conventional use of the word. In a classical
duel, as de¢seribed, for example, by Williams and Ancker (26) the two
duelists fire at each other until one is killed., In the duels
describasd herein, an alrcraft attacks a ground target while the target
deferses fire at the alrcraft. All of our duels end if the alrcraft is
killed. Some of our duels end if the alrcraft achleves a specified
ubjective and others of our duels proceed indepandent of the success
of the alrcraft’'s attack on the target.
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We will refer to the following two types of passes, An
"initial" pass is made when target acquisition has not occurred during
any previous pass of the same duel. A "subsequent" pass is made when
target acquisition has occurred on at lesast one previous pass of the
same duel, We distinguish between an initial pass and a subsequent
pass because target acquisition may be less difficult {f it has
occurred on a previous pass of the same duel.

The probabilfity that acquisition occurs on an initlial pass will
be symbolised P(Ao) and the probability that target acquisition occurs
on a subsequent pass will be symbolized P(A;). The symbols P(AD) and
P(Alu) will denote the probability that acquisition and delivery occurs
on an initial and subsequent pass, rospectlvely.2

The notion of alircraft survival and its relation to the capa-
bility of the aircraft to attack the target is complicated by the
variability in possible damage to the aircraft., ™Damage" may result
in anything from immediate disintegration of the alrcraft to a slight
degradation of performance or even to no effect on the aircraft capa-
bility., We will make an abstraction of the survival aspect of the
problem by defining the probability ST as the probablility of surviving
to the point of weapon release., We assume {f the ajrcraft survives,
its performance is completely unaffected and if {t does not surviva,
then the aircraft does not participata further in the attack and will
be considered as a loss, Also, we define Sy as the conditional proba-
bility of the alicraft surviving the pass given that it survives to

the point of weapon release.

2{¢ B denotaes an event, the notation P(B) will denote the
probabllity of occurrence of the event B,

.
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The third principal aspect of a pass concerns weapon effective-
ness. The group of bombs delivered on a glven pass will be referred
to as a "salvo." We can visualise the individual impact points of
bombs in a salvo as clustering around the effective alm point for that
salvo.3 The locatlion of the effective aim point varies with respect to
the target according to some probability distribution. The function
r(d) will represent the effectiveness of a salvo as a function of salvo
size, d, It is not the purpose of this work to derive the function
r(d), but it is important to note that r(d) is in general a monotoni-
cally nondecreasing, concave function of d. In other words, larger
salvos have greater effectiveness but there is a diminishing marginal
return as salvo size increases.

The term tactlics when used in this report inciwles the following.
The operational planner must specify the number of aircraft per raid
or "raid size.”" A policy must be established as to the maximum number
of passes per duel and the allocation of weapon load among those passes.
A policy must also be established to tell vhe pilot how to make each
pass, i.e., high level, low level, dive, etc. All these items must be
specified in a rational way in the face of uncertainty as to the exact

conditions that prevail.

31'he variation of individual impact points fram the aim point
may be unintentional as would be caused by factors such as balliscic dis-
persion, The variation of individual impact points from the alm point
may also be intentional as would be caused by introduction of a syste=
matic delay in the time of release for the various weapons. This lattrer
1s generally referred to as "stick bombing," however, we will refer to
any group of bambs released on a pass as a salvo,
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A rational selection of tactice must involve a criterion or
objective, The specific objective can vary from one problem to another.
The baslc approach adopted In this report is to plan the raid so as to
minimize the losses sustained in achieving a given level of effective=-
ness. A number of measures of effectiveness are considered. For same
targets, the level of damage is proportional to the number of hits
achiaved. Tihis might be true of a large area target. Another common
class of targets consists of those such as a revetted artillery site
for which a direct hit will deactivate the site and any miss will prob-
ably leave the site unharmed. PFor these targets, the level of effec-
tiveness is in terms of the probability of at least one hit, We can
conceive of another class of tarzets which in itself seems to be of
largely theoretical ir .erest but is worth including because !t makes a
convenient introduction to the most general case. For these targets
achieving C hits is adequate; there is no additional value in achieving
more than C hits, and achieving less than C hits is of no value, All
of the preceding measures of effectiveness are special cases of the
general case where the level of damage depends on the number of hir-
achleved according to some arbitrary utility function. The implica-
tions of these various measures of effectiveness are discussed in later

chaoters.

Motivation

User Oriented
The motivation for this work comes from twoc sources, The most
obvious is the user of tactical air-to-ground weapons systems, As a

highly technological nation, we tend to tnvent new hardware items to
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meet military problems. It seems clear that research should also be
devoted to learning how to more effectively use existing equipment.

This is one of the goals of this research.

Evaluating System Desigmns

A second and perhaps more notivation for this work comes
from the need to perform comparative uvaluation of new weapon system
designs, This i{s the aspect from which the weapon system designer
views the problem. In evaluating competing new designs or modifications
to existing systems, many factors must be cunsidered. These include
cost, operational effectiveness, maintenance implications, logistics
fmplications, training implications, and delivery schedule. This re-

port desls with operational effectiveness.

A Two Stage Decision Problem

(ne way to compare the operational effectiveness of alternative
system designs is to formulate a two stage decision problem. At the
first stage is the aggregation of decisions that determine the charac-
teristics of the weapon system. These decisions will be referred to
as design decisions. They are thought of as being made by a largely
fictitious individual to be referred to as the "designer.” At the
second stage, we consider the operational use of the system that is the
product of the first stage. The second Stage decisions are made by
the "user.,"

The designer's decision problem at the first stage can usefully
be abstracted in the terminology of Luce and Raiffa (19) as an indi.

vidual decision under uncertainty. The states of nature, Oj, where
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Jj 1s an integer such that 1 < j < J, are identified as an exhaustive

and mutually exclusive set of situations that represent the prospective

usage cf the system, Various designs a; where 1 < i < I constitute the
alternatives under consideration, A utility u‘j is associated with the
empleyent of design alternative 1 in situation j.

If a subjectivn probability distribution Py where 1 < § < J can
be defined over the ’;j, then the most desirable design alternative can
be chosen by maximizing the expected utility or by some other means
based on probabilities, {.e., by making a decision under risk. If the
designer is completely ignorant of the probabilities pj, or chooses to
ignore any such information that he may have, then the design declsion
ts made as a decision under uncertainty. Some principle, such as
maximin utility, minimax regret, the principle of insufficient reason
or the pessimismeoptimism index, might be applied. Whether or not the
subjective probability distribution can be defined, a key element of
the designer's decision is the set of utilities, uij'

To determine the “ij values for the first stage decision, the
second stage decision, i.e.,, the user's decision, must be considered.
The utility of a given system design in a particular situation depends
on the design of the system, the objectives toward which use of the
system is directed, the nature of the situation, and the manner in
which the system is used, The user's dacision problem is visualised
as a constrained optimization in which tactics are selected to maxie
mize the utility (“ij) within the constraints imposed by the system
design (aj) and the situation (ej)'. AS an exampla, the user might

wish to maximize the probability of kill. The type of aircraft and
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mode of usage dictate the fuel capacity and rate of fuel consumption.

The situation controls the basa to target distance. These factors :
cambine to provide a constraint on the number of pagsses that can be

Ef : made. Thus, the user must maximize the probability of kill subject to

a constraint on the number of passes.

e jcations of Tactics Selection
The operational affaectiveness of a weapon system in a particular
s{tuation can be greatly influenced by the choice of tactics. It is

therefore important when evaluating a weapon system to use the tactics

! that are best for that particular design and situation. For example,

b e

| consider a night attack. Suppose two design alternatives are being

compared and that they are identical with the following exceptions.

Suppose design A provides an additional special sensor that has a highly

accurate target locating capabllity but has a short range. Suppose the
altermnate design B simply provides one additional bomb and relies en-
tirely on tha alrcraft's radar for target acquisition. Much current
practice is to make only one pass at the tar.et per sortle, If the
comparison were made on this basis, the speclal sensor of design A may
be useless because its short range means ti:r- the Iinformation it pro- : ’
vides cames tuo late to be useful. Thus, since design B provides an

extra bomb and the designs are the same othervise, design B will look

et ke

better. If, on the other hand, each design 1s used with its own best
tactics, the tactic for design A might ba to us2 the special sensor to

locate the target on the first pass and then deliver weapons on the

second pass. Design B might still call for just ome pass. On this {
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basis, design A may or may not look better than dezign B but the com=

parison certainly seems more reasonable.

The principle that each design alternative should be evaluated

using its own bast tactic is not new., The difficulty is determining

what are the best tactics. Determining the best tactic for a given
syntem design in a particular situation can be a major constrained

optimisation problem. The objective function end the constraints must

be carefully formulated and a solution must be found.

When evaluating a system design, it ia sometimes tempting to by-
pass the tactics optimigation problem by having a "panel of experts"

choose the tactics appropriate for each situation in which the system

is to be evaluated, It might then be argued that if all designs are

evaluated using the same tactic in a given situation, the comparison

is "fair.” This {s simply not true as was qualitatively indicated in

the example. It might also be argued that the panel of experts can

assign each system its own best tactice. This approach has a number of

limitations., The designs baeing evaluated are generally different from

existing equipment and the situations of interest are usually beyond

the experience of any panel of exprvts. Further, even vhen applicable

experience is available, existing practice is not necessarily optimal.
Finally, the limitations of people in juiging the implications of

complex quantitative relationships are well known,

The tactics optimization problem seams to be inseparable from
the design evaluation problem wvhemever the user has some latitude of

cholce as to the manner of system employment. In a sense, we might

view the role of the designer as that of establishing constraints
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10
within which the user must operate. Thus, selecting a best system
design is in effaect a problem of deciding which set of alternative
modes of use should be provided to the user. The cost of the system
generally increases as the varlety of modes of use available to the

user s increased.

certaint

Whethar we are considering the user's problem or the design
evaluation problem which contains the user's problem, a considerable
complication 18 introduced by the user's uncertainty. The prospective
ugsage of the system is characterized by an array of situations., De-
termining the utility of a given system design in a particular situa-
tion can be treated as a conceptually simple constrained optimization
problem if the situation is exactly defined, Unfortunately, the situa-
tion is not exactly defined in actual practice. Such quantitles as
the probability of aircraft survival during a phase of the sortle are
generally matters of considerable uncertainty. Thus, the specification
of a situation must generally reflect the degree of uncertainty ine
volved when values are given for the characterizing parameters.

From the standpoint of the urer, a systematic method should be
avatlable for considering the implications of uncertainty and his
options to control the outcome by appropriate tactics selection. From
the standpoint of the designer, it is Important to understand the im=
plicationg of user uncertainty bacause it atfects the utiilty of a
system design in a particular situation. A general principle might be
that there 18 no point in providing the user with options that he can't

use effectively because he is uncertain of the situation,
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Research Philosophy

Concept of erations Research

One view is that operatlons research is basically a conjec
discipline which involves investigating the consequences of asaum -
Accordingly, three aspects of this discipline might be ldentified
First 1s the specification of assumptions, second is the developm
and employment of investigative techniques, and third is the appl

tion of theoretical results in making judgments about practical r

world problems, All or same combination of these aspects may be .

propriate to a given study,

Assumptions are invariably Involved in any operations rese:

investigation, These assumptions should be such that knowledge of

their consequences has same value. If they lead to a theoretical

structure that parallels some real world situation, then perhaps 1
ferences can be drawn about relationships and the consequences of

in the real world by studying the corresponding relationships in t

theoretical structure. The notlon is that studying the theoretica

structure ls more convenient and cheaper than studying the corresp

ing real vorld situa _ion. This is particularly true of military

problems.

The investigative techniques used in a study can range from

operational experiments to mathematical analysis. We might cthink ¢

an operational experiment as an attempt to establish a relationship

between the theoretical structure and the real world, i.e., hypothe :

or results deduced therefrom are tested. At the other extreme, mat

matical analysis deals entirely with logical relationships. Betwea
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these methodological extremes are investigative techniques such as
gazing and aimulation,

Using theoretical results to make juwigments about real world
problens {s the payoff and presumably the purpose of oparations research
activity, Whether this juigment i3 made by thae operations researcher
or by someons else is not a central issue. The important point is thst
some form of application should be made. In this regard the following
quotation from Flagel, Huggins, and Roy (6) is pertinent: “The charac-
teristic of & true operations research study is that it provide realis-
tic answers to an actual practical problem. In this context the tools
and rechniques used should never be limiting; the goal is to select
techniques that allow all significant foctors of the actual problem to

be considered.”™

The Nature of this Work

In this work, assumptions are set forth that lead to a struce-
ture resembling a particular real world rilitary situation. Recursive
analysis methods and some notions from decision theory a e used to
determine and express the consequences of these iy-.sumptions. “he pur-
pose is to explicitly define the methods that are used, show how they
apply in deducing the consequences of a particular set of assumptions,
and quantitatively 1llustrate the nature of the consequences by wvay of
numerical examples.

This is a theoretical study that points out how a given type of
structure can be usefully analysed. It therefore seams important that

ve sesk enerality and flexibility. The results should show how to
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approach a variety of related problems., We seek problem solving teche
niques more than specific analytical or numerical resulte,

It i not our purpose to make judgmenta about specific real
wvorld problems. This is properly the province of those who are dirsctly
involved in the activities that are being studied. This might be the
concermn of an uperations research activity that iz an integrsl part of
the militsry organitation that is conducting the activities of interest.
A certain amount of foundation can be laid in an isolated academic en-
vironment but if the model is to finally be truly effective, it aml
the research that goes along with it must become a part of the using
organization. In a sense, the one wno makes the application must also
be a researcher. He must modify and continually develop the theory.

Consider the notion of model '*validation™ in the light of the
preceding discussfon, The model would be accaptod as valid 1if its
structure parallels the real world situation of interest sufficlently
accurately to allow useful conclusiong to be drawn. The decision maker
nust decide whether or not this is true of a given model in & glven
decislon situation., Accordingly, the validity of an operations research
model is meaningful only when a specific decision is to be made; other-
vise, there 18 no basis for judging whether or not the model constie
tutes a satisfactory representation and the concept of validity has no
meaning. Since we are not making decisions, mode) "validity" will not
be of concern. We should, hcwever, be concerned with the logical cone-
sistency of the theoretical structure. We may also be concerned that
real world situations exist for which some decision maker might be

willing tc consider our structusrs ai a "valid" representation when
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14
making practical decisions, This last thought emphasiras the importe
ance of generality and flexibility in our methaods,

The approach that Is developed in this report i{s basicalily
numerical. Some analytical relationships are investigated but the
complexity of the problew along with the critical need for flexibility
of the model seem to dictate a largely numerical approach. 1t should
be noted, hLowever, that the recursive analysis techniques that are used
are subtile and powerful computational tools. The numerical character
of these techniques seems to pose no great practical problem since

computers are widely available to all potential users.

Related Lfterature

The ajir-to-ground attack problem as treated in thls wvork does
not seem to be a very popular subject in the open literature., There
are, however, articles which relate to various aspects of our problem,
The most applicable of these will be cited and categorized with some

indicaticn of how they relate to our subject,

Stochastic Duels
Williams and Ancker (26) have developed a theory of '"stochastic

duels” wvhich they describe as follows:

In the "fundamental? duel, two duelists, A and B, fire at each
other until one is killed, A's firing time (that is, the time
between rounds) {s a random variable with a knoun probability den-
sity function, f£,(f). Successive firing times are selected from
£,(t), independently and at random. The sttuation is the same for
B except that his firing time has a differant density function,
fa(t). Each time A fires, he has a fixed probabllity, P,, of
killing B. Similarly, B's kill probabllity is Pp. After the
starting signal, each contestant’ loads, aims, and fires the first
round, That is, in the "fundamental” duel, they start with
wnlosded wespons. Both A and B have unlimited supplies of
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ammunition that, among other things, makes a kill a certainty.
A wins if he is the one to score a kill, The probablility of
this will be called P(A) and F(A) ¢ P(B) = 1.

In reference 26, P(A) is determined for the case where f,(%)
and fB(t) are negative exponential distributions. The effect of giviny
one contegtait a random ir.itial time advantage is also investigated.

In referance 3, Ancker extends the model to the cuse where both cone
testants have limited wmmmunition supplies. He determines P(A), P(B),
and the probabdility that they both run out of ammunition, Both of
these papers approach the problem by computing the distribution of time
to kil}l for the two contestants and then determining the probability

that one gets a kill before the other does.

In reference 4, Ancker and Williams consider the fundamental
duel with discrete firing tines where A and B fire at fixed but possibly

different intervals and the amnunition supply is unlimited. They also

consider a case vhere the contestants fire simultaneously, a near aiss

by one causes the other to lose one firing turn, and ammunition is

unlimited. Finaily, this paper considers duels that are not one~on-

one.

Our ajir-to~ground attack problem might be considered &8s a type

of duel where thc contestants fire at each other simultancously each

tire the alrcraft makes a pass. If the alircraft Is contestant A and

the target with its defenses is contestant B, we are interested in P(A),

the probabiiity that the alrcrafr kills the target before the aircraft

is killed. In cur duel, however, contestant A has g linjted amaunition

supply which he can fire In salvos with arbitrary salvo ef{ectiveness
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versus salvo size, We are interested in maximising P(A) and determin-~
ing the best allocation of weapons among passes on the part of
contestant A. This type of duel is developed in Chapter V. Our
generalization of the above type of duel, which 1s also daveloped in
Chapter V, excends the aircraft's options to include multiple modes of
vwzapon delivery and it considers the aircraft’s target acquisition
problem, A further complication of our duel is that simply maximising
the aircraft's probability of kill without regard for 1ts probability
of survival is not appropriate. Because of this, we maximize the air-
craft’s probability of kill subject to a constraint on its probability
of survival.

Some further papers on stochastic duels that appear in the
literature involve the distribution of the number of rounds fired,

reference 1, and the distribution of the time duration, reference 2.

Tactical Air Games
Fulkerson and Johnson (16) formulate the following tactical air
gaze in which each side must continually allocate available aircraft

between counter air and ground support missions. They describe the

formulation as

. » » a multi-move game in which both sides, at each period
of the campaign, simultaneously deploy their forces between the
two missions. Each force suffers a fixed rate of attrition per
period due to accidents, etc., and in addition loses planes pro-
portionally to the size of the enemy’'s attack on his air flelds,
Replacements for each side are received periodwise, and these
may be functions of timua. The payoff is assumed to be the
difference bastween the total number of ground support sortles

flown by the two sides during the campalgn, discounted for future
time periods.

The symmetric case in which the attrition rates are the same for both

sides is solved for both finite and infinite campaigns.
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Beliman and Dreyfus (7) show how to treat the same problem by
using dynamic programming. The model ia further discussed and developed
by Welss (25) and by Berkovitz and Dresher (8,9).

Two esgantial inputs for this model are the red and blue kill
potential per plane sent against the opyonent's air flelds. For the
symmetric case, these are equal., Our model, particularly the duel of
Chapters JII and IV (called herefin the Ey duel) should be helpful in
evaluating these quantities, Furthermore, once the number of ground
support sorties to be flown has been determined at a given stage of
the game, it is necessary to allocate those asorties among the prospece
tive targets and determine the best tactics for each raid. This problem

i{s treated in Chapter VII of this report.

Allocation of weagonsa

Marne (20) discusses the problem of allocating a number of

weapons to a complex of targets, He reduces this problem to the form

n yj
Minimize Z ay (1-0py) 1)
J=1
n
subject to z yy=m (2)
=
vy 2 ] J= l,eea,n (3)

where j = l,e==,n = the index on targets

ay = the unit worth of target j

aThe notation used in this section s in keeping with the
weapon allocation literature and i8 generally different from that in
the rest of the paper which is based on dynamic programming literature,
i.e., Ref. 17 and Ref. 22.
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Py = the probability of kill for any weapon versus

target J
Yy = the number of weapons assigned to target j.

He then shows how to formulate the above as a transportation problem

which results in an Integer solution.

G. G. den Broeder, Ellison, and Emerling (10) also cansider the
weapon allocation problem and prove some applicable theorems., Using
the above notation where it is applicable, they first assume that

Py = P = === p, ® p and consider the form

n
max Ve T V a (yp,===,¥,) )
kel
n
subject to I yy=m (5)
1=1
y4 20 J = lye=eyn (6)
where V = expected value of the targets destroyed

Vi = the value of destroying exactly k targets
A (y1s===5syy) = the probability of destroying exactly
k targets as a function of the allocation

(vgso=ms¥p)-

For this problem, they prove the following theorems 1 and II.
"Theorem I. If the Vi are nondecreaging functioms of k, then
the maximum V is attained when the yj's differ by at most one,”

"Theorem II. The probability, P,, of destroying k or more

targets is, for each k, a maximum when the yj's differ by at
moat one."”
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They also consider the problem defined by equations (1), (2) and (3).
For that problem, they prove that the following theoram III holds

for all pj.

“Theorem III. Glven that { ?5} minimizes

n
a(m) « I ay (1 - pj)yj 7)
i=1
subject to §3 >0 (8)
n
and z ;i am (9)
j=1
then {GJ} minimizes
n
a@el) = I a; (1~ pj)yj (10)
j=1
subject to §‘j >0 1)
n
and I /y\j ema+ 1 (12)
J=1

if ?j - ;j for j# kand %) =y ¢ 1, where k satisfies
Vi y
a (1. ) { - J "
kR UoP) " B =) max 4 &y (-py)" by (13
According to the authors, If one interpretz a, (1 - pk)yk as a revised
estimate of the value of the kth target based upon an optimum assigne

ment of m weapons, the procedure implicit in theorem III merely states

that an added weapon should be assigned to that target for which the
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expectation of (revised) value destroyed is Iargest. Thus, by starting
with m = 0, weapons can be added one at a time in such a way that the
ailocation at each stage is optimal.

Lemns and David (18) extend the solution to the case where there
{8 more than one type of weapon avatlable. Again, using the foregoing

notation where it is applicable, their problem takes the form

n - m Ylj
Maximize I a;{l« m (1« p,,) ] (14)
b i
=1 im]
n
subject to I Yig = my i @l,ceam (15)
j=1
Y3 20 1= lyeca,m (16)

§ = lyemeyn

where pij = probability of kill for weapon type 1
versus target }
Yij = number of weapons of type i allozated
to target f

my = number of type 1 weapons that are available.

Their approach 1s to determine values Li which represent the number of
type 1 weapons required to be the equivalent of one type i weapon. By
using this device, the problem reduces to the form of equations (1),
(2) and (3) that was considered by the previous two references. Lemms
and David indicate the possibllity of solving the problem by the two
previous methods which both produce integer results, They also offer

a solution that they indicate was obtained by the method of Lagrange

A
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multipliers. This method treats the weapons being allocated, i.e.,
the equivalent number of type 1 weapons, as a continuously variable
quantity, The answer may involve fractional numbers of weapons,
Because of round-off error, this approach would be most applicabl it
the number of weapons being allocated vas large compared to the number
of targets,

The weapon allocation papsrs that have been discussed can be
re.ated to the atr to ground attack problem as follows. Suppose we
wish to maximise the expected value of the number of hits., We might

do this if the attacker's utility is a linear function o the number of

hits., Thus, we have the problem:

n
Maximise Ee L sJ ry(yy) (17)
j=1
n
subject to & yy= m (18)
=1
32 0 J = 1lyemeyn (19)

where j = l,-e=,n = index on air to ground pass
S = probability of the afrcraft
surviving a pass

vy - the number of weapons delivered

on the j':h pass

rj(Yj) » the expected value of the number
of hits on pass j as a function of
the number of weapons delivered on

pass j.
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m = the total number of weapons
carried by the aircraft,
Assuming stochastically independent delivery errors for the weapons

that are delivered on pass j, we have the special case where

r_,(yj) ©w]=(1l- Pj)yj (20)
and equation (17) becomes

n
Maxtmise E 83 [1- (1= pp”d ] 1)
§=1

which has the same solution as

n
Minimige £ s (1 - py)
§=1

Y3 (22)
vhich  the same as (1) If a, is Interpreted as s'.

The problem stated in equations (17), (18) and {19) is essen-
tially the same ax the simple EH duel of Chapter I1I. The recursive
analysis technique that is used in this work offers a practical way
of obtaining the solution with no specizl restrictions on the form of
the function rj(yj) alchough a form similar to that given by equation
(20) is used for the m‘ncrlcal examples. In addition, the use of
recursive analysis makes it practical to consider probabilistic target
acquisition, multiple modes of attack, and a constraint on the proba-
bility of the aircraft surviving the duel. Finally, the recursive
techniques allow solution of the problems that are discussed in

Chapters V and VI which are not treated in the foregoing articles.
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Sequential Decision Processes

The basic purpose of this investigation is to show how to us -
fully analyze problems related to the selection of tactics for air- o-
ground attack. Dynamic programming is an extremely useful techniqu
for obtaining solutions to these problems. The dynamic programming
theory that is discussed and used herein was adapted or developed o iy
as needed to solve the specific problems at hand. These problems 1 -
volve sequential decision processes with a relatively small number (=
stages.

The "principle of optimality" as introduced by Bellman (5) i
the starting point for developing all of the recursive relationshlps
that are discussed herein. The technique for applying the principle of
optinality to solve deterministic sequential decision problems is di -
cussed by many authors inclwiing Bellman (5) and Nemhauser (22),
Chapter II. Howard (17) extends the application of this principla t
the solution of sequential decision probless involving Markov proces: as.
He provides for selecting, at each stage, the best act from an array
of alternative actions. Nemhauser (22), Chapter Vv, discusses a stil)
more general form of multistage decision model which applles to wha*
he calls a "stochastic optimization problem" or a 'multisctage optimi.
zation under risk.” He introduces a random variable, kn' at stage n
wvhose value determines the stage return and the state variable trans-

formation.5 He formulates the case where the k, are stochastically

5To illustrate the meaning of these
ally correspond to passes in our problems; the "stags retum" is the
urility derived from the weapons delivered on the corresponding pass;

the "state variable” is a vector that characterires the state affairs
when the aircraft 1s preparing to make a nass,

terms, the "'stages’ gener-
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independent from stage to stage. Ye also peints out that if the dis-
tribution function of kn depends on km-l' the value at the previous
stage, the process is Markovian. The probability distribution of ko
may also depend on the values taken by k at &ll previous stages in
which case the process ia not Markovian.

The "monotonicity assunption” is basic to establishing the
optimality of the dynamic programming results. This asaumption was
introduced by Mitten (21) and is further discussed by Denardo and
Mitten (12) and by Nsmhauser (22), The exact statement of thea mono=
tonicity assumption varies samewhat with each author making the state-
ment that best serves his own purposes.

Charnes and Schroeder (11} discuss sequentiai decision processes
from the stardpoint of multistage games or stochastic games. Thelr
paper relias hoavily on the work of Shapely (23), A stochastic game
consistc of a series of stages where the states occupled by two com~
peting players are subject to probabliistic transition from stage to
stage according to transition probabilities controlled jointly by the
tvo players. Asscclated with each transition is a payoff from player
two to player one, 1.e,, the game 1s zero sum. A terminating stochase
tic game 18 one in which at each stage there is a nonerzero probabllity
of the play ending. Charnes and Schyioeder, following Shapely's develop-
ment, show how such a game can be solved by iterative application of
linear programming. They also glve a stopping criterion for the
{terative process.

Of particular interest here is the demonstration by Charnes ad

Schroeder that vhen player one knows player two's strategy at each
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stage, the stochastic game reduces to the discounted Markovian deci-
sion process that is discussed by Howard (17), If the process is
truncated 8o there 1s a finite number of stages, Howard's value {tera-
tion applies. 1f the process 18 not truncated 50 there is an infinite
number of stages, Howard's "policy iteration" algorithm appltes,
Furthermore, Chemes and Schroeder show how iinear programming can be
used to determine the optimum stationary policy for the infinite stage
Markovian decision process.

The technique for applying the principle of optimality teo our
problems is discussed in Chapter II., The basic philosophy for dealing
with multistage decision prodblems is similar to that of Nemhauser,
however, the subject is developed in such a way as to considerably
simplify the development o appropriate recursive relationships and

hopefully maka them highly intuitive. Ihis simplification is important

when applying dynamic¢ programming to complex problems. The monotonicity

assumption 18 stated here in such a way as to minimize the difficulties
wrcomtered in deciding whether or not it applies in a given situarion.
The treatment of Markovian declislon processes is developed in
Chapter II to the exient of separating the state vector into two parts,
one of which 18 subject to probabilistic transformation while the other

i1s subject to a deterministic transformation that may depend on the
outcome of the probabilistic transformation. This {mnovation resuits

in lmproved computational efficiency and a reduction in computer
nemory requirements. It also conslderably simplifies the mechanics
of applylng the resulting recursive relationshlp to the problem. This

technique does not appear in the litarature that has been reviewed.
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There alsc appesars in Chapter II of this work an "equivalence”
assumptiori, This assumption accompanies the monotonicity assumption
in establishing the optimality of the dynamic programming results ob-
tained for Markovian decision problems. This assumption is not made
explicit in the literature that has been reviewed, although it is in-
variably satisfied by the recursive relationzships that appear, A
probable reason why the equivalence assumption does not appear in the
1icerature is that most discussion of Markovian decision processes is
in terms of additive present and future returns (see references 22, 17
and 11). In that case, the equivalence assumption is satisfied. In
this work, we treat the general case where present and future returns

are not necessarily additive (see Chapter V) so the equivalence assump-

tion becomes important,
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CHAPTER 11
GENERAL RECURSIVE RELATIONSHIPS

Analysis of Multistage Systoms

The purpose of this chaptaer is to develop and discuss some
generalized recursive relationships that will be used in later chapters.
This discussion will introduce some terminology and notation., It will
also make explicit the requirements that must be met If these recursive
relationships are to serve our purposes.

We are Interested in making decisions relating to the perfor-
mance of serial multistage systems, Nemhauser (22) defines such a
system as "a set of stages jolned together in series so that the out=
put of one stage becomes the input to the next.' Our problems involve
a finite, relatively small number of stages, i.e., an infinite stage
approximation as introduced by Bellman (5, p. 11) is not generally
applicable.

Consider a system of stages Indexed n e 1, 2,eee, N where each
stage in the system is characterized as follows. The state of the
system at stage n is completely described by the state vector X,-

The declsion made at that stage is designated by the decision vector
Dn' The roturn realized depends on the state and the decision and {s
denotad by the function rn(xn’ Dn). The output of stage n, which bea
comes the input =.ate for stage n-1, depends on the state and decisimn

at stage n and !s indicated by the following "transformution" relation=-

ship.
27
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Xne1 ™ tn (Xps Dyl (1)

We will assume that t {(**) is single valued, A system composed of a
serlies of N stages might be illustrated by Figure 1 which is similar
to the corresponding dlagrans used by Nemhauser (22).

The basic analysis approach to be followed involves composing
or "putting together' the system by starting at stage one and adding
one stage at a time to the already existing structure, The stages will
be numbered according to the order In which they are added in the come-
position process. The central idea of the composition process can be
described as follows,

Suppose we have an existing structure of n-1 stages. Since the
state of the system at stage n-1 is completely described by the state
vector xn-l‘ then for a given system structure, no other input informa-
tion is required to determine the maximum return that is realizable
from the existing n-1 stages. Let us designate this maximm return
from the n-1 stages as £ _; (X ).

We now wish to expand the existing nel stage structure to include
stage n. The situation might be !llustrated by the diagram in Figure 2.

The function
8; Lt KpsDp)s fn-l(xn-l)] ® B [xn’Dn’ fn-l(xn-l)]
= 8, [XpsDps fnoy (XD )] (@)

characterizes the composition of the stage n return with the maximum
return available from the remaining n-l stages. This will be referred

to as the "return function.”
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The maximum compogsite n stage return is now determined, subject

to appropriate conditions, by choosing the value of D“ that maximizes
the n stage return function.

EnXn) = Max g, (XnsDns £ao1(Xna1)] (3)
n

Bellman and NDreyfus (6) indicate that the basic functional equation of

dynamic programming has the form of equation (3).

A Deterministic Decision Process

A determinigtic decision process will be defined as one in which
the transformation relationship of equation (1) is such that xn-l is
deterministically known if X, and D, are known. We are interested in
specifying and justifying sufficlent conditions such that if they are
met, recursive application of equation (3) to a deterministic decision
process will yield the maximum n stage return and the optimal decision
rule at each stage.

Suppose transformation relationships of the form of equation (1)
are given. Let an and son(xn) be sets of all allowabie values of X,
and D, respectively, at stage n where sDn(xn) depends on Xn. Note
that these sets must have the property that 1f x.nesxn and D ¢ sDn(x.n),

then t,(X,,0,) € an 1 for all 2 < n < N.

Define the one stage return as 31(‘(1-91)' a function that is

defined for all X;€ le and Dy € SDI(XI)' Then the function

£4(X,) = Max g, (X,,D.) (&)

e defined for all xlesx 3 it is the maximum one stage return.
)4
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Now let £ (X, 1) be the maximum n-1 stage return as a func-
tion of X, , and let it be a function that is defined for all
Xn.1 esxn-l' 2 < ng<N. Note that £, (X, 1) can be visualired as the
result of having maximized some objective function relating to the n~1
stage structure subject to the comdition that the state of the system
at stage n=1 {s completely described by the state vector Xnel-

The return function g L-xn’Dn'fn-l(xn-l)J characterizes the
compogsition of the return from stage n with the maximum return from the
remaining n-1 stages, Suppose the function 8n [] has the following
property:

Monotonleity: If £, 1(X,.1) is replaced by an independent
variable, say y, &n [xn'Dn’ y] is defined and it is a
monotonically nondecreasing function of y for all Xn € an,

DL€ SDn(x'n)' and 2 < n <N,

Then it follows from the definitions of monotonicity and £, (X _4) that

the function g [xn.Dn,fn_l(tn(xn,Dn))] represents the maximum return

that is obtainable from the n stage system for given ) & and Dn.l
Accordingly, the basic functional equation
£(X)e Max 8n [XnsDnsEno1{tn(XnDp) )] (5)

Dh € SDn(Xn)

represents the maximum n stage return subject only to the value of xn;

the function £ (X,) is defined for all X, € an, 2<n<N.

1A proof of this statement appears in Appendix B.
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Thus fy(X;) is the maximum one stage return and we have shown
that under suitable conditions, 1f £ _,(X ;) is the maximum n-1 stage
return, then fn(xn) is the maximum n stage return, So by mathematical
! induction, £, (X;) is the maximum n stage return for all X, € an and
i 1 <n<N.
i We will nowv swmarise the sufficlent conditions for the optie
mallity of fn(xn) in a deterministic decision process, For compieteness,

let

8 [X-4Dy, £, (X)) = 8y (X4,Dy) (6)

for all X;€ 5y and 1€ Sp (Xy).

If the following transformation relationships are given,

s s e

%al® m (b 5 2<mEA

*here must exist sets an and sDn(xr.) such that if X € sxn and D € Son(!r_)

then t (X,,0,)€ an 1 for all 2 < n < N. Also, the function

81 [X140),€5(Xy)] must be defined for all X, € Sx, and D1€ Sp (X)),

Furthermore, the function &n [X.,‘,Dn,in(xn_l)] must possess the mono-

tanicity property that was defined previously in this section for all ’
X, € Sx'l, D € SDn(Xn), ard 2 < n < N. If the foregoing conditions are

met, then recursive application of equation (3) will yield the maximum

n stage return for all 1 < n < N.

A Generalized Markovian Decision Process

In the deterministic decision process, the transformation re-

lationship, equation (2), relates the s*ate of the system at stage n-l
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deterministically to the state of the system, Xn» and the decision, Dn'
at stage n. We will now consider the situation where the state of the
system at stage n-1 1s a random varfable with a probability function
that depends on x“ and Dy This conditional probability function will

be denoted p(X,_y | XniD,). This 1s a Markov process since

PRnop | Xpibp) = PRy | XysXyoys===sXniDysDy_10===sDy)
1<n<N (7)

with this process in mind, suppose that we have an existing n-1
stage _tructure. Since the process of Interest is now a stochastic
process, the ne~l stage return for a given value of xn-l is a random
variable. let f _,(X _,) denote the maximum expected value of the n-1
stage return. We wish to expand the structure to include stage n. In
general, the composite return of stage n and the remaining n-1 acages
depends on X, Dn‘ and xn-l' Danote this composite return by the re-
turn function g, [X,,04iK . ysfn1 Xp.g)]- Then the maximm expected
value of the n stage return, subject tc suitable conditions, is given
by

£ (X) = Max £ P(X, . D)
DA€ Sp_ Xn) ¥n-1€ Sx_ Fnet [ Fnily

8n (XneDpsXno 12 f0ey Knep)) (8)

For our purposes, equation (8) is the basic functional equation that

applies to Markovian decislon processes.
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A _Special Markovian Decision Process

We will now discuss a special case of the Markovian decision
process that i1s of particular interest in the applications that are to
ba considered.

} Suppose the components of the state vector can be divided into
‘ two sets as follows, Suppose the first set consists of one component,
the value of which can be designated by the Integer variable {,

1 <1i< 1. The variable 1 will be sald to designate the Markov state

of tha system (for reasons that will become clear). The remaining com-

ponents of the state vector completely describe the state of the system

in all respects other than the Markov state. The vector composed of

these remaining components will be referred to as the "residual state

vector" and will be designaced “n !

oo v -

Now suppose that transitions arong the Markov states are probae
billstic and are governzd by a stochastic matrix of transition proba-
oilities having clements designated pij(Dn)’ l.e., p”(Dn) is the

conditional probatility of being In Markov state j at stage n-1 given

e ey 4 —

that the system is in Markov state { at stage n when decision D, is y
made. Let the transformatlion of the residuai state of the system be
i deterministic for given n, i, j. The residual state of the system at

stage n-1 is determined by the transformation relation

Xn-1 = thi} (x;v D,) (C))

Thus, we have probabllistic transition among the Markov states

which cantrols the transformation of the residual state vector.
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The foregoing can be related to the basic functional equati -
(8) az follows. Recalling the notation that was described in the Irst
paragraph of the previous section, the conditional probability fun tion

that appears in equation (8) can be expressed “2
PXpay | Xniln) = PXpo10d | X5a13D,)
~ P1Gnai | $5Xne1i00) PaQ | Xpa1iDy) (-0)
Now constdering equation (9),
Py (X1 | 35X »15D) = 1.0 11y

if Xp_) 18 the value given by equation (9) and py (%} | §.Xn.150,] ts

zero otherwvise. Thus, equation (10} can ba written as

Now assuming that the value taken by j is stochastically independer
of X,',, i.e., the Markov state at stage n~l1 is Independent of the re

sidual state at stage n, equation (12) becomes

s | BB = 22 | 10,0 = 1y o

z‘rhe quantity p(xn.i,j | x,',,t;nn) i3 a zonditional joint pr.
bility function in the random variables xn-i ard j. The second
equality in equation (10) follows froe a relatlon in baslc probabil
theory. If u and v are random variables with the joint prebabili
function h(u,v), then h(u,v) = hj(u | v) hy (v) where by(u | v, *
the conditional probability funetion of u for given v and hy(r) 18 e

marginal probability function of v,

PEETTTICrT N

RUCTTLIY SR L ST TY: R R e

At * 1t DI AP b 1 Gibumes 0
.

oM




U I PRI

Liala

et o e s 4

+ e i o= 2

36

Here we have Introaduced a conventlion that Markov etate variables and
stage indices will appear as subscripts whlle residual state variables

and decision variables will appear as arguments. This convention will

be followed henceforth.

Since the Markov state variables are to appear as subscripts,

the factor gr" [] that appears in equation (8) becomes

g;l [--'-] - gn;j [)(;‘,Dn,xnllgfn_l'j(x.nzl)] (lb)

and 1€ X /) 18 replaced by its equivalent from equation (9),

g [+o+] = guyy [XnoPnstaat, 3 gy KnsDp))] (15)

Finally, for this speclal case, equation (8) becomes

Eni " - g:x j%l Pij(Dn) &nij Exx:’bn'fn-l.j(tnlj (xl'an))]}' (16)
Note that the prime on the gn;j [] in equation (14) does not
appear in 2quations (15) and (16) because the ®nij [:] that appears
in equations (15) and (16) represents a functional form that is differ-
ent from the functional fcrm represented by the gn;j [-—--] that appears
in equation (14).

We will now proceed to spacify and justify sufficient conditions

suchk that i{f they are met, recursive application of equation (16) will

roesult in values of fnl(xr'\) that represent the maximum expected valus

of the n stage return.

Suppose transformation relationships of the form of equation (9)

are given, Let Sx‘.‘ and Sp Og'l) be sets of all allowable values of x:‘
n

and D, respectively at stage n, where SDn()g") depends on X,,. Thess
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sets muast have the property that {f )(:\é.‘sx‘.1 and D € S, (X:‘), then
n

tnu(x:vpn)es)q‘_l forall 1<1<1,1<§<I, 2<n<N.

Define the one stage retummn as 5lij(xi'D1)' a functio- that is
defined for all xies,(i,nle leoc;), 1<1<1,1<§<i. Then the

function

1
£y4(X;) = Max L p,, (D) 8y4,(X;,04) a7
111 1 171
Dy €Sy, Xp) ge1 s
is the maximum expected value of the uone stage return; it is defined

for all x'les,(i, lgi<I,

Now let fn-l,j (xnjl) be the maximrum expacted value of the n~i

eoorendle! SR I IO IOt o 1

stage return and let it be a function that is defined for all

v

Xpl1€5x: » LS IST, 2<n <N Note that £y (X)) can be

it

visualized as the result of having maximized some objective function
relating to the n-1 stage structure subject to the condition that the
: ‘ Markov state variable takes the value j and the residual state wvector

takes the value X;\_I at stage n-l.

The return function 8nt} [x;ninn’fn-l,j(xn:l)] characterizes the
composition of the return from stage n with the maximum expected value

of the return from the remaining n-1 stages. Suppose that for all

gesq,l)nesnn(x,',). 1<1<1,1<§<1,2<n<N, the return
: funceion g, [-+++] has the following two properties:

1. monctonicity: 1If fn,m(x“_',,) is replaced by an independent

variable, say y, g, [x"‘,nn,y] s defined and it is a mono-

tonically nondecreasing function of y.
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2. equivalance: If Z is a random variable and E(Z) repre-

aents the expected value of Z, then :
’
E Egnlj(xn’bn'z)] “ &nyj [#\'Dn’E(Z)]

Given these properties, the function Bnij Lx;‘,on.:n,l’j(x,;_l)] repre=-
sente the maximum expected value of return that Is obtainable from che
n stage system for glven values cof )t;\.D“,i.j.3 It follows that the

functional equation

R 1 ' '
(X)) = El pij(Dn) 8nij l._.xn")n’fn-].,j(tnij(xn'un)):l

Max
Dy €5p_(Xy) 3
(18)
represents the maximum expected value of the n stage return subject to
the condition that the residual state vector takes the value X, ami the

Markov state variable takes the value | at stage n. The function

A . R
£ (X)) is defined for all xnesx;, 1<1<€1,2<n<N,

Thus, fu(xi) is the maximum expected value of the one stage
return and we have shown that if fn-l,j(xn-'-l) is the maximum expected
value of the n-l stage return, then fni(x;\) is {(he maximum expected
value of the n stage return subject to suitable conditlions. So by !
mathematical induction, fm(x.;‘) is the maximum expected value of the

r
n stage return for all X, €Sy., 1 <1 <I,1<n<N,
n

The sufficient conditions for the optimality of fni()(;‘) will now
be summarized for the special Markovian declsion process. For complete-
ness, let ' Y= '

, 811y [(X1oDgofo (XD = 8y44(X;,Dy) (19)

for all xi.Dl,i,j in their respective sets.

3a proof of this statement appears in Appendix B.
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If we are given the transformation relstionshlps
! 3
Xhe1 ™ EapyXnoBy) 5 2<ngN (€4
1<1 ¢l
1<sy<1

there must exist sets of allowable values of x;l and D, S)q\ and

!’ . r
Sp, (g)s such that if x,'lesxr.\ and Dn€Sp (Xp), then “nij(xn-“n)‘sx;\_l
for all 1< 1 <1, 1<)< 1. Also, the function gpy; [X},D1,f,(Xg)]
must be defined for all x;ein.olele(xi), l<i<Iand1<j<I,

\] v

Furthermore, the function &niy [xh’Dn'fn-l,j(xn-l)] must possess the
monotonicity and equivalence properties that were defined previously

in this section for all )g"esx;l, DES; OG), 11T, 18 )<,
n
2<ns N
If the foregoing conditions are met, then recursive application

of equaticu~ (18) will yield the maximum expected value of the n stage

return forallx;lesx., 1<1<I,1<n<N.
n

A Markov Decision Process with Unobservable
Markov State Transitions

The discussion so far has presupposed a knowledge of the state
of the system at all stages., It will be useful for later reference to
indicate a functional equation for a case wvhere the Markov state
transitions are not observable, hence the Markov state of the system i3
only probabilistically known for n < N.

Let WN(l) be the probability function of the Markov state at

stage N. Let m (i; my, Dy, DN—l""'Dml) be the probabdility function

T T e e R L iy

TR

1 RSN

A AL s

V3

T

ke




I ———————SE AR S o, S LIRSS

- —

,_‘,.,_.WWWT“WW"PWWWWWN@‘!'!""" T W D

e LAY, At B ey e LW #3101 (G I D et MY {1 U 1 ARNTEA R w6

40

of 1 at stage n. The function nn(l; "N’DN’ DN-I""’Dnﬂ) can be
evaluated by multiplication of nN(i) and the 3ucceeding matrices of
transition probabilities,

The functional equation for this situation can be developed by
starting from equatfon (18). since the Markov state, i, is only known
probabilistically at each stage, the maximum n stage return will be
taken as the maximum expected value of the return taken over the random
variable i{. This maximum n stage return depends on the initial proba-
bility function Ty and it depends on the decisions made at stages N,
Nel,==e,nel; it will bhe denoted fn(xz'\' Ny DN,---D:“,I). The return
function may depend on the stage and the Markov states involved; hence,
the return function is definod as g, (X0, ,€, ;X ) ,my.Dys===,D ) ].

The quantity ‘{ } in equation (18) thus becomes

I iy , 1
{jEI plj(Dn) Zniy L’S\’Dn'fn-l(xn-l'“N'DN""’Dn)] f

Since this quantity is the maximum expected value of the n stage return
for given n, x.'\,Dn, and § and since § 1s a random variable, the maxi-

mum expected value of the n stage return for given n, )g:l, and Dn is

given by

I
L 1y (15 My, Dy Dyops=e=iDpyy) { ’ }
is]
Taking the maximum over Dn glves
1

fn(x;u Tns Dys Dyoge=~=3sDper) = Max . z "n“;nN'DN'DN-l"“DMI)
Dn€5Dn(xn) j=1

1
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The high dimensionality of equation (21) will probably render it im-
practical to implemeni for most cases, but it is useful to have an
indication of the type of relationship that is involved,
If an implementation of equation (21) were undertaken, {t would
involve determining m (13 m, DN"“'DMI) for all feaslble s¢quences

of D, ard for all n. The results could then be used in equation (21)

L ARSI A S LA, KA LM s PR o 0 Nt it o

* [
to determine the optimum decision &t stage n, Dn (xn, Mys Dy Dyt
: ""Dml)' The residual state variable transformation relations could
then be used to determire the optimm sequence (D;.---Dl*).
i
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CHAPTER III

THE SIMPLE E, DUEL'

Recursive Relationships

Having developed some basic functional equations, we will now
consider how they might be usefully applied to the aireto-ground
attack problem. The number of hits achieved by the aircraft is a
random variable. This chapter considers situations where the return
of interest is the expected value of the number of hits. The cost is
in terms of the number of ailrcraft lost,

The first problem will be a very simple duel in which we seek
to maximize the expected value of the number of hits (hereafter re-
ferred to as "expected hits") achieveble by a single aircraft attacking
a defended ground target. This will be referred to as the "simple Ey
duel."

Suppose an alrcraft with XN bambs on board 1s to make not more
than N weapon delivery passes. A salvo of dn bumte 4o to be delivered

on the pass n subject to the restrictions that

N

z dnst 1)
ml

., 20 1<ng<N Q@)

lrhroughout this wvork, a duel involving allocation of weapons
among passes and not including probabilistic target acquisition or
multiple modes of attack is referred to as a “"simple"” duel.

42
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Throughout this work, Xn anrd dn are assumed to bde discrete
variablce. The unit of weapons will normally be referred to as a bomb;
however, it cculd represent a cluster of bombs or a salvo of rockets,

Let ST represent the probability that on a Jiven pass, the air-
craft survives long enough to deliver weapons. Let Su represent the
conditiona. probability that the aircraft survives the pass given that
it survives long enough to deliver weapons on that pass. In this con=
text, we will interpret "not surviving" as the nccurrence of an enemy
action that pravents the aircraft from participating further in the
attack, This could mean anything from {imediate kill of the alrcraft
to relatively minor damage.

To apply recursive analvsis to this problem, a pass will be
fdentified as one atage. It is not necessary, but it will be convenient
to number the passes In reverse order so that the chronologically last
pass is pass number one. The state of the system when preparing for
pass n, l.e., at stages n, can be comrletely defined by specifying the
number of weapons remaining, denoted x .. Thus X0 will be th: -tate
variable playing the role that the state vector, Xn, played in the
general formulation of Chapter I, Let the nuaber of weapons delivered
on pass n, d,, be the decision varlable analogous to D,.

If dn weapons are delivered on pass n, then
Xpal ® X = 4 3 1<ng<N 3)

Thus, since the state variabdle is subject to deterministic transforma-
tion, we have a deterministic decision process. In studying this pro-

cess, the stage return, rH(dn). wvill be the expected hits per salvo

AR08 (I M1
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as a function of salvo size. The function tn(xn) will represent the
maximum expected hits achlievable on the remaining n passes i{f there are
X, weapons remaining.

To satisfy the sufficlent conrditions for optimality, we must
show the existence of sets an and sdn("n) such that anan and
dnESdn for all 1 < n < N. [t can be seen by inspection of the trans-
formation relationship, squation (1), and considering the non-negativity

of d,,, that the sets

S = {:S\: xne{o,x.---.iN}}

)

e
ﬁ
2
A
z

and

1<n<N )

we

Sa, ) = {dn:dne*{o,l,---,xn}}

satisfy the requirement. The quantity Xy > 0 is the largest number of
wespons that might be of interest at pass N.2

The return function must be formulated next. If one pass re-
mains and <ll weapons are to be delivered, then the expected hits is
the probability of surviving to the point of weapon delivery times

ry(dy); leftover weapons have no value. Thus,
gy [xps dps £o(x)] @ Sy rp@)) 5 n=1 (6)

where the functions in equation (6) must be defined for all "1€le

20nce a value of Xy 1s established, the actual number of weapons
available at stage N, xy, can take any value such that Xy < Xy The

value of ;N only establishes the range of values of xy for which solu-
tions will be obtained.
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Wwhen more than one pasrs remaina, the composition of the maximum
n~1 stage return, tn—l(xn-l)' with the stage n return, r"(dn). can be
accomplished as follows. The oxpected hits for pass n is the proba-
bility of surviving to the point of weapon release times the expected
hits obtained on the salvo that is delivered. The mavimum oxpiCted
hits for the remaining n-l passes is the probablility of surviving pass

r times £ _3(x,.1). Thus,

8n [xn. dos fn-l(xn-l)] = Sp rud,) * S; S, fhe1(Xpo1) 3 2€nEN
)
By examining equation (6), we see that {f rH(dl) is defined for
all x, € le and d, € Sdl(xl). then the return function for n = 1 is de-

fined for all xlesxl and dl€Sd1(x1).

Furtharmore, when 2 < n < N, we see from equation (7) thau if
rH(dn) 15 defined for all x, ¢ an and d,. € Sdn(xn), then the retum
finction meets the monotonicity requirement that 18 defined in Chapter
11 for a deterministic decision p.ocess. The previous statement is
true because Sy > 0 and 5, 2> 0.

Note that the function g [ ‘] is indexed by stage so its form
and its assoclated coefficlents can therefore be made stage depercient.
Accordingly, the function ry and the quantities Sy and S, could carry
the subscript n., This will be understood to be true throughout this
work but the subscript is not carried explicitly because it would make

the notation more awkward without adding significantly to the content

of the work.
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We have now deflned sets and return functions so that the suf-
ficlent conditions for optimality are satisfled. Recursive applica-
tion of equation (I1-5) will yleld the desired f“(x“).3 Substituting
equetions (5) and (6) into (II-S) and considering equation (4) glves

£,(x;) = Max [Sy ry(dy))] 5 0<x, <X <}
I % g Aty ST RS 1 S Xy

Since rH(d) fs assumed t2 be a nondecreasing function of d,

Substitution of equations (3), (5), and (7) into (I1-5) and considering

equation (4) gives

£.(xp) = Max [ST ru(dy) ¢ S¢S, £ (x, - dn)] 3 0< xy < xy
0<d,<xp
2<n<N
(10)
Equations (9) and (10) constitute the recursive relationships

that apply to the simple duel,

Concavity of fn(xp)

It is generallv a supportable azsumption that rH(dn) is a concave
function of ¢,. It can be shown that when this is true, the f_ (x,) de-

termined from equations (9) and (10) are concave functions of X, for all

3‘rhe equation numbers start from (1) in each chapter. When re-
ferring to an equation of the current chapter, its arabic number will
be used. When referring to an equation of a previous chapter, its
arablc numbder will be preceded by the appropriate Roman numeral chapter
number.

e e bt e bt btk i Al e sk




o e A1 4R

-

A

47

1< n< N, This can be proved as follows. First, if n = 1, equation
(9) shows that since Sr 2 0 and rH(dl) is concave in d;, then l'l(xl)

is concave in Xy-

Now if 2 < n < N, consider equation (10). Note that {f ry(d )
ts concave and if f _;(x, - d;) is a concave function of x, - d,, then

since ST > 0am 542 0, the expression

g' (xpy dp) = S [ry(dp) & Sy fao 10, = d5)] (11)

is a concave functlion of x  and d,. To show thils for a given n let uy

ard u; be arbitrary values of x, and let vy and v; be arbitrary values

of dy, where uj, u2 € Sx, and vy, V2€5dn("n)- For 0 <A <1,

8'(xnsdy) = Sp [rH().vlo(l-k) va) ¢ S,f_ 1 Quye(led) “2"*"1‘(1')')"2)]
= St { fH(/\V1¢(l“X) V2) + S, f1 [k(ul'vl) * (l-k)(uz-vz):'}

> ST{ Arg(vy) ¢ (1-1) ru(va) o Sikfn-l(“l""l) » (I-A)fn_l(uzvvz)]}’

- 5-1- {A.[rﬂ(vl) L Su fn_l(uluvl)J L 3 (l-k)[fH(VZ) L Sufn.l(UZ.Vz)]}

= Ag' (up,vy) ¢ (1=1) g'(up,vy) 12)

A proof given by Bellman (5, p. 21) can now be used to show

that the following 1s & concave function of p S

£(x)e Max g' (xn,dpn) (13)

0<dn< xp

a‘l‘his proof by Bellman is §ncluded here rather than simply
referencing it because it is vital ro include some such proof in the
demonetration of concavity. The reader may not have ready access to
Ref, 5 and furthermore, some smali notational adjustments have been
made in adapting the proof for cur purpose,
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For a given n and using the previous definitions of Uy W, Vi, Va2, A,

x g (Auge (1=A)uy,d,)

£,(xy) = £ ,(Auy ¢ (1=)) up) = Ma
n E kulv(l-)\)uz

0<d
(14)

The quantity d,, can be replaced by d, = Avy ¢ (1-A)v, where v; and v;
range independently over the intervals 0 < vy < uj, 0 < vy € u;. Now

for given A, we seek optimizing values of v, and vj.

f Aype(l-dw) = Max g'[Auge (1-0)up Avy+(1=A)v, ] (15)
Osvisy
0< vy S vy
Since g'{x,, d,) is concave in x., dg,

g'[Auye(l-d)u,, Av +(1-A)vy] 2 Ag' (u,v)) ¢ (1-R) g (up,v;) (16)

Hence,

£,QAupe(l=Aduy) 2 Max  [Ar' Cup,vy) o (123 8 (up,vy))

> A Max g'(ug,vy) ¢ (1-2) Max ' 8' (uy,v,)
0< vy <y O<vy sy
2 A (u)) ¢ (1) £ (uy) (17)

The foregoing shows that if rH(dn) is concave in dn' then tl(xl)

is concave in x;. It further shows that if in addition £ _,(x, - d,)

is concave in x, - d,,» then fn(xn) is concave in x,. Thus, by
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mathematical induction, fn(xn) as defined by equations (9) and (10) is

concave In x, for all 1 < n < N,

This concavity Is a usaful property because it simplifies the
determination of the optimum salve size, dn*(xn) when applying equation
(10). This simplification comes about in finding the maximum because,

given concavity, any local maximum is also a global maximum,

Numerical Example

As a numerical example to i{llustrate the application of equations
(9) and (10), let
N = 6 passes
Xy = 8 weapons
S, = 1.0
S, = 0.38

and suppose rH(dn) has the form
(18)

1A
<
IN
=
[«

ryldy) = W (0’ 0

ror this example, let

¥ = 1.0

6 =» 0,84

Throughout this work, considerable use will be made of this
form, i.e., equacion (18), for the salvo effectiveness function. Note
that in equation (18), ry(d,) 1s a monotonically nondecreasing concave
function of dn' This functional form provides a two parameter family
of functlons that can be used to approximate a considerable variety of

possible salvo effectiveness functions. The form is appropriate
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bacause salvo effectiveness functions are monotonically noudecreasing
functions and they tend to be concave, l.e., salvo effectiveness ine
creases monotonically with salvo size, but there tends to be a
diminishing return with increased salvo size., Furthermore, this form
will accoomodate the case where we seek to kill the target and indi-
viduai members of the sulvo are assumed to be delivered Independently.
For this latter case, 6 is interpreted as the probability that the
target survives a single weapon and Y - 1.0,

Figure 3 1llustrates the rH(dn) function and Table 1 shows the
results of carrying out the calculatifons, From this table, we can
read the optimum allocation of weapons among the passes and the maxie-
mum expected hits for any initial bomb load up to eight and for any
iimiting number of passes up to six. Given eight bombs (xy = 8) and a
maximum of six passes (N = 6), then the expected hits, f6(8). is 1,179,
The optimum allocation of weapons is (d6*, ds*, da*, d3*, dz*, dl*) -
2,2,1,1,1,1). 1t is satisfying to note that for any given n, fn("n)
is an Increasing function of x, and for any given Xne fn(x“) is an
increasing function of n as would be expected.

It 1s interesting to note that fifty=three seconds were required
for a Fortran IV program on an IBM 7094 to generate 120 such tables
with N = 10 and X « 12, The concavity property was not used in this
program, i.e., complete enumeration was carried out, Accordingly, the

running time could probably be reduced by using the concavity property,
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Non_Recursive Form

Insight can be gained by stating the problem in non recursive
form. Let R,(dp, dpe1s===,d3) denote the expected hits obtainable on
passes n,=--,1 for a given allocation. The constraints stated in

equations (1), (2), and (3) must be met. With one pass remaining, we

have
Ry(d)) = Sqp ryddy) (19)
With two passes remaining,
Ry(dp, dy) = Syry(dy) ¢ S Sy Ry(dy)
= Spry@;) + sp? S ry(dy) (20)
With three passes remaining,
R3(d3, dz, dy) = Sp ry(dy) + S7 5, Rp(dy, dy)
= Sp ry(da) + So? 5, ry(dy) + 543 5.2 rpa@)) 1)
With N passes remalning,
N N-n

Ry{dy,===,d1) = St 21 (S7 Sy) ry(dy) (22)
ne=

Thus, the original optimization problem might be stated as

4 follows:
; ;
falxy) = Max Sp £ (SpS,) ry(d,) (23)
l dN’--.'dl nw=l
s 500, 340 . . SO e -
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subject to

N

L a4 <x 24)
nel M~ N
day20 3 1<ng<N (25)

This problem has the same form as a problem of sequential allocation
with discounting., The product ST Su might be Interpreted as a discount

factor as used, for example, by Howard (17).

A Parametric Investigation

We have seen an example of the type of solution that is obtained
for given values of the input psrameters. It is of interest to see how
the optimal allocation, (dN*, dN-l*""'dl*)’ and the maximum expected
hits, fN(xN), vary for a range of input parameter values, This inves-
tigation can be facilitsted by making use of the non racursive state-
ment of the problem, equations (23), (24), and (25),.

Assume that ry{d,) can be expressed by equation (18). Then
equation (23) becomes

N

Ne
fxN) = STW [  Max L (87 Sy
dy,===,dy n=l

d
" e ™) (26)

With the problem exprassed iu this form, it is clear that the optimal
allocation for given R and Xy depends only on the two quantities (S'rsu)
and @ &and not on W .

Table 2 shows the variation of (dN*, dN_l*,---,dl*) versus
(Sp S,) and 8 when xy = 8 and N = 8, The appropriate salvo effective-

ness functions are shown in Flgure 3. Note that because of the
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discounting structure, if n; > ny, then dn: > dn;. Thus with Xy = 8,
there will never be any reason to make more than eight passes so all
the (dy",===,d}*) in Tadle 2 are optimum.

As might be expected for given 8, higher survival probability,
i.e,, larger (ST Su), leads to more passes, Also, for glven (ST Su)'
smalier values of 8 lead to more passes., This is reasonable if wve
view @ as controlling the rate at which rH(dn) approaches 1ts asymptotic
level ‘¥ ; see equation (18) and Figure 3. If 9 is small, it means that
the marginal value of increasing d, decreases rapildly as d, increases,
This makes small salvo size and a corresponding larger number of passes
more advantageous at a fixed survival level.

It is often true that the probability of survival per pass,
(ST Su), is greater than 0,98, 17 i¢ were not, a sustained air-to-
ground effort would probably be impractizal. This beilng the case, unless
8 is close to 1,0, Table 2 inuicates that the optimal alloc.tion tends
te be an even distribution of weapons among passes, The case where
both (ST S,) and 8 approach 1.0 enters a reglon where the optimal allo-
cation is quite sensitive to both (Sy S,) and € as i{s 1llustrated by
Tabie Z but is rether uninteresting otherwise as is borne out by
Figure &4,

Figure 4 shows the variation of fs(B) versus S and 6 vhen
ST = ¢ « 1,0, This figure glves the impression thksr as the value of
8 decreases, fg(8) becomes more sensitive tc the value of 54+ This is
reasonable because as € decreases, the tendency is to moke more passes,
thus making survival more important. Based on vhe sanie tvpe of reasona

ing, it is reasonable for f8(8) to be more sensitlve to S, ac the valuve

of Su approaches 1.0,
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Return Versus Attrition

A very important concept will now be introduced. The discussion
so tar has considered maximizing the expected hits per duel. This has
been referred to as the return, The example of Table 1 shows that the
return is appreciably higher for six passes than it is for only one
pass.

The forsgoing tells only part of the story. In addition to the
return, the cost must be considered. Cost will be measured in terms
of alrcraft lost c¢:> "attrition." When only one aircraft is involved
as in the present ciscussion, expected attritlon will indicate the
probability of the aircraft not surviving.

Note thet for a complete model, the cost sliould also include
other factors such as the cost of weapons and the cost of fuel. These
will be exciuled here since they are often negligih'> compared to the
cost of replacing aircraft and pilots. Further, including such other
costs is generally a stralghtforward procedure. For the simple duel,

the maximum expected attrition is given by

Ly=1- (5p 5" 28)

Note that the actual expected attrition may be different from the maxi=-

mum expected attrition since the optimum solution may call fo:* less

than N passes.

Flgure 5 shows a returneversus-attrition function for the exe
ample of Table 1. This figure applies to the case¢ where :1x veapons

are available at stage N, i.e., Xy = 6, and N {3 varisd from 1 tro 6.
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This figure shows the return as a function of the actual expected
attrition because in the example, it is cptimal to make N passes If
N< 6.

The expected atrrition entries fram left to right on the abs-
cissa scale in Figure 5 are the values obtained from equatton (28)
when ST Sy = 0.98 and N = 1,2,3,46,5,6, respectively, At each level of
expected attrition, the return is the maximum expected hits assuming
that an optimum weapon allocation is used. For example, the attrition
level of 0,06 results when N = 3, We see from Table 1 that when N = 3
and x, = 6, the maximum expected hits, f3(6) is 0.866, Thus, the
ordinate value is 0.8606 corresponding to an expected attrition of 0,06
in Figure 5. The optimum weapon allocation when N = 3 and X3 = 6 can
also be read from Table 1 as (d3*, dp*, d41™) = (2,2,2).

We have now developed a model for optimizing the simple EH duel

and shown how its results can be used to determine the return-versuse

attrition function. We will proceed to complicate and modify our no-
tion of a duel, but the return-versus-attrition function will be a
basic characterizing feature of all the duels that will be studied.

In addition to studying other duels, determining which of the
points on tha return~versus-attrition function correspornds to the most
desirable weapon allocation will also be the subject of congiderable

subsequent discussion.
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CHAPTER IV
GENERALIZING THE E, DUEL!

Incorporating Probabilistic Target Acquisition

We continue considering a multiple pass air-to-ground attack
where the return is in terms of expected hits ard the cost is in terms
of the number of aircraft lest, All the features of the simple EH duel
are still present and some additional factors will be Included.

The simple Ey duel assumes the weapons allocated to 2 pass are
sure to be delivered if the afircraft survives long enough. In present
close support operations, the presence of a forward air controller who
directs the attack generally makes this a valid assumption. Likewise,
the assumption is reasanable for many interdiction attacks on easily
acquired targets such as bridzes or harbor facilitles.

There are also interesting situations, however, vhere the target
is not easily acquired and there is no forward ailr controller. This
occurs under conditions which may include night, bad wvather, amd
obscu.2 targets. The ability of the alrcraft to acquire vargets is
related to its sensor capability and its navigation system. Conslidera-
tionr of this sort are becoming increasingly important in the analysis

of weapon systems that are technologically advanced.

lIt: may be useful to the reader to refer to Appendix A efther
in conjunction with or after reading Chapter IV. That appendix indi-
cates how the problem of Chapter IV can be approached by flrst making
& non recursive statement of the problem and then developing the re-
cursive relationships in a manner similar to that of Nemhavser (22).
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Consider the following abstraction of the target acquisition
aspect of the problem. This discussion extends the general discussion
that appeared in the second section of Chapter I. An "initial® pass
{s made when the target has not been acquired previously on the same
sortie. Once target acquisition has occurred, additional passes on
the same sortie will be raferred to as ''subsequent' passes. This dis.
tinction allows for Improved target acquisition capability once the
target has been seen.

When an initial pass is made, one of the following three events
will occur:

A, ¢ the target is not acquired

AD": che target is acquired but weapon delivery is

not possible
AgD: the target is acquired and weapon delivery
is possible.
The corresponding events tor a subsequent pass are symbolized Al.*'
AID*, and AjD. Since weapon delivery may or may not be possible on
pass n, transformation of the state variable x, 1s probabilistic and
we have a Markovian decision process.

To apply the recursive relationship that was developed in
Chapter II for a Markovian decision process, equation (I11-18), three
levels for the Markov state varlable 1 are defined as follows:

i=1: acquisition has not yet occurred
{ =2 acquisition hes occurred and nn yeapons were
delivered on the most recenc ‘ass

{ = 3¢ acquisition has occurred and weapons were

delivered on the most recent pass.

b
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In the present case, the transition probability 1s independent of the
stage n decision, d,, so we shail simply denote the transition proba-
bility as Pyge The matrix of transition probabilities is given in

Figure 6 for the system that has been described.

je1 1=2 yj=3

A* AD* AD
1= 1:a% | pyy=1eP@A) | pyy = P(ADY Pya = P(AD)
1= 2:0%| pyy =0 Py = 1 = P(AD) Py = P(AD)

Fig. 6.=-<Markov state transiticn probabilities,

Transformation of the state variable Xn depends on the transi-
tion that occurs in the Markov state (analogous to equation (II=9)).
If transition is to Markov state 1 or 2, no weapons are delivered. 1If

transition is to Markov state 3, d, weapons are delivered, hence for

all 1<n<Nanmd 1< <3,

Xpa1 = X > J=12

(1)
Xpel = Xp=dp 3 j=3

It can be seen by Inspection of the transformation relation equa-

tion (1) and considering the non negativity of d,, that the following
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sets have the required property that x,¢ an and dnGSdn(xn) for all

1<n< N, 1<1<3,1<3<3.

S“ - {xn: Xn e{o,---,;n}} )
Sdn(xn) - {dn: dn 6{0"" ’xn}} (3)

Return functions that have the required monotonicity amd equi«
valence as defined in Chapter II will now be developed., Weapon delivery
occurs only when transition is to Markov state 3 and the aircraft sure
vives to the point of weapon release. Thus, if n « 1 and for all

1<1<3,

§=1,2

s

8114 [xg» 4y, foj(xo)] -
- ST l‘H(dl) H j - 3 (4)

when transition is to Markov states 1 or 2, no weapons are
delivered. If f.;(x,) represents the maximum expected hits achievable
{n n passes with X, weapons aid in Markov state i, then the return
associated with transition to Markov states 1 or 2 is the probability
of surviving pass n times fn—l,j (xn.1)- The return s.sociated with
transition to Markov state 3 is the probability of surviving to the
point of weapon delivery times the expected hits achievable by the

salvo that is delivered on pass n plus the probability of surviving

pass n times fn-l,S("n-I)' Thus, if n> 1 and for all 1 < 1 < 3

gnij[xn’ dni fn.]_'_’(xn“l)] - ST S‘“l fn-l,j (xn_l) 3 J=1,2
(5)
- ST rH(dn) + ST S“ fn-l,3(xn~1) 3 j -3
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By examining equations (4) and (5) it is clear that sinca Sy
and S, are non negative constants, the return functions have the re-
quired monotonicity and equivalence properties. The sufficient cone
dittons for optimality in a Markovian decision process have been met.
Recursive application of equation (II-18) will yleld fnl(xn) that are
optimum,

Replacing the various parts of equation (11-~18) by their equi-
valent expressions from equations (1), (3), and (4) and conszldering
equation (2) gives the following. If n=1 amd for all 1 < 1 < 3,
"1€5x1'

£11(xq) = Max [p' Sy ry(d )] 6)
LA | 05415’!1 13 °T *H\"1

Asswaing that rH(dn) is non decreasing in d,, this becomes

If we replace the various factors of equation (I1-18) by their
equivalent expressions from equations (1), (3), and (5), and consider
equation (2), the following is obtained. If 2 <n < N and for all
1 s l 5 3’ xnesx ?

n
2

fh1(xpy) = Max L pyy St Sy fha1, 3 (xn)
0<dySx, =1

* Py3 [ST ty(dp) « S Sy fn-l,J("n - dn)J (8)
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which can be written as

2
fa1 (%) = ST Sy j’:l Pij fna1,yCn)

* Sp Py3 Max [rH(dn) + S, fn-l,B(xn - dn)] ")
0<d, <x,
Equations (7) amd (9) constitute the recursive relationships
that will yield maximum expected hits and the corresponding optimum
weapon allocation for the duel where target acquisition is considered.
The optimum salvo size is a function of weapons available, the Markav
state of the system, and the number of passes remaining. It will be

k1
denoted d_ (xn).

A Simplifying Feature

when making calculations using equations (7) and (9), the
following observation is helpful, These equations depend on i only
because of pu. From the Markov state transition matrix, Figure 6,
P2j = P3j for all 1 < § £ 3. Thus, equations (7) and (9) have the

following properties:
fn2(Xp) = fn3(xy) (10)
dn; (xp) = dn; (x) (11)

This fact allows considerable reduction in the amount of computation
required to evaluate equations (7) and (9). It also eliminates one-
third of the items of data that would otherwise have to be included

when tabulating the resulrts,
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Note that while the forcgoing observation is a convenience, 1t

does not allow reduction in the number of Markov states. States 2 and
3 must both be included because transition to state 2 involves no
weapon delivery while weapon delivery does accampany transition to

state 3,

Concavity

The concavity property that wus proved in Chapter III for
equation (I11-10) also holds for equation (9). In chapter III we
showed that if r(d, ) 1s concave in dy and £ _,(x,_1) 18 concave in
Xno1s then the expression

Max (ry@) o s, € _;(x, -4a)]
0<4d, <%,

Is concave in x,. Thus, 1f r (d ) and fre1,j®n.1) are concave in
d, and Xn-1 respectively, since Sy>0,5,2>0, and Pij > 0 for all {,4,
fn1(x,) as determined by equation (9) is concave in Xp for 1 <1 <3,
2 <n < N. Further, it is clear fram equation (7) that {f ry(x,) is
concave in x;, then f,,(x;) is concave in x, for all xX1€ le. 1<1<2.

Thus, by mathematical induction, fnl("n) is concave in X, for all

1<n<g<N,1<1<3, X, € an. This property can be used to reduce the

amount of calculation that is required because it means that any local

maximum that is found for equation (9) is also a global maximum.

Incomoratlgg Multiple Modes of Attack

We will now introduce into the model the notion that the pilot

need not make every pass in exactly the same way. In addition to

memmm5,;?:45;;,41}“",,@%
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selecting the optimum salvo size, he must specify other quantities
such as direction of approach, speed, dive angle, and pullout altitude,
The aggregation of values taken by these other quantities on a given
pass will be referred to az the "mode of attack."

Let the discrete variable, k,, be the mode of attack index at
pass n and let Sk“ indicate the set of all values that k, can take.
Thus at each pass, values for the two decision variables d, ard kg,
must be chosen. These decision variables are the elemsnts of the de-
cision vector D, = (4, k).

For the most part, the modifications required to accommodate
mode of attack are minor. A number of the quantities in the model de-
pend on the value of k,. The survival probabilities become S;(k,) and
Sy(Kp). The Markov state transition probabilities become Pij (k).

The salvo effectiveness function becomes ry(d, k,) = ry(D,), the
expected hits per salvo versus salvo size and mode of attack.

Oone nontrivial modification of the model is required, In the
duel with probabilistic acquisition, we dealt at each stage with a
functional equation of the form

3
fni(xg) = Max L Pij 813 L¥n» dpe fn-l,j(xn-l):]} (12)
4n€ Sa, O) | 31

The expression { '} in equation (12) represents the expected hits
for given n, i, x,, and d,. Since this expression represents the
axpected hits for a given value of n, and since Sy and S, arc con-

stants, the probability of surviving the remaining n passes is at least

— s -
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2
(sp S)" tor all 4 €53 (x;)."  In effect, the d 7 (x,) that satisfy

equation (12) maximice the expected hits subject to the constraint that

the expected attrition on the remaining n passes does not exceed

1 - (ST Su)n, i.e., not more than n passes are to be wade and the prob-

v e e s

ability of surviving each pass is (ST Sy)+
When multiple modey of attavk are available at each pass, we

must deal with a funcrional equation of the more general fomm

[

3
£ (X' ) = Max L pyy(kn) Sniq LX%s Dos €oo ',)]}(13)
ntn anspn(x,'\) =1 13n) 8pij LXps Bys Cnoy, §nan

Equation (13) is the same as the corresponding equation (II-18) except
for having recognired chat the Markov state transition probabilities
depend only on the kp, component of D,. Note that the residual state

; vector )(I'l now appears in place of the variable X which appeared in

equation (12).

The expression { . } in equation (13) represents the expected
hits for glven n, i, x;‘, and Dn' The approach at each stage will be to
select D:l (X;,) S0 as to maximize the expected hits subject to a con-
straint on the expected attrition. Let s, denote the constraining
probability of surviving the remaining n passes. A camplete descrip-

tion of the state of the system at pass n now requires knowledge of the

vy R SSRGS e Fihe -“inmmmW. AR S AN o Y

2Nc::t:e that ST and S, could depend on n and these comments would

still apply. The constraining value of the expected attrition for the
remaining n passes would then be

n
) bl St(n') sy(n') , where n' is a dummy variable,
fis]
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value of the Markov state variable, i, the number of weapons remaining,
Xns and the constraining probability of surviving the remaining n passes,

sn.3 The residua)l state vector is

x;l - (xn) sn) (1‘0)

Now consider the verious parts of equation (13) as they apply to
this model. The definitions of the Markov states are unchanged. The
Markov gtate transition probabilitlies are given by Figure 6 except
that all of the acquisition probabilities now depend on kn.

The transition equations for the state variables are as follows,

For all 1<n<N, 1<1<3

xn-l * xﬂ H j - 1'2 x
(15) i
Xnel ™ Xp = dp ; -3
Sy = B ;3 1<€3<3 (16)
Sp(ky) S,0k) K, 6 Sy ()

where 8, = 1.0, Equations (15) are the same as equation (1).
Equation (16) can be rationalized as follat-r:*:.6 Let s, be the actual
probability of surviving the remaining n passes. Thus, we require that

nZ % i 1<ngN an

3Note that in equation (12), s, has a single value for given n,
l.e., it takes the value 1 = (Sp S, )". Thus in equation (12), it is
not necessary to explicitly state the value of 8, when defining the
sctate of the system for given n.

“Equation (16) also follows from the expression of the proba-
bility of svrvival canatraint, equation (A-7), that 1s given in
Appendix A,
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Now i{f s, = 1,0 and n' is a dummy variable,

n
5, - " Spknt) Sylkne) = Splky) Sulkn) Bpay 3 1Sn <N (18)
n's=

So using equation (17),

~ A
8n S 8y = Splky) Syky) B (19)
oy
Val sn pu—
S 342 T———0—— = 8__ 20)
n-1=g (k) S,(k,) n-1

By inspection of equations (15) and (16) and considering the

non negativity of dn’ we can define the following sets which have the
property that x, €S, , dnesdn(xn), 8,€S55 , and Kk, €S, (5,) for all
n n n

1<n<N.
an - {xn: x € {0,1,---,)("}} (21)

Sg - {sn: sy <5, <1 } 2)
n

Sdn(xn) -~ {dn: dn E{oolo""‘o"n}} (23)

skn('n) - { kpt ST(kn) Sylky) 2 8ns knesk} (24)

vhere xy > 0 and 0 < sy < 1.0, The quantity sy is the smallest value

of the canstraining survival probability that is of interest. It

establishes the range of values of 5y over which solutions will be

obtained.
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The return functions are entirely analogous to those for the
duel with probabilistic acquisition, equations (4) and (5). If n=1

and for all 1 <1< 3,

|

]

P

!

: 811y [X{s Dy» £ 5 (X)) = 0 P12
» = Splk)) Tp(dyk) 3 §=3 (25)
|

. If2<n<Nand forall1<1<3,

i

L 8n1; [X3s Dps fret, K1)

, = Sp(ky) Su(ky) fn-l,j(’%n-!'sn-l) 33 = 1,2

= Sp(ky) ry(dp k)  Spliy) Sy(ky) £r0g 3 (a1s8n.1)
3 J=3 (26)

el o LAl

{

Now replacing the various parts of equation (I11-18), or
equation (13), by thelr equivalents from equatimms (15), (16), (23),
26), (25), (26), and considering equations (21) and (22) gives the
functional equations for the duel with acquisition and multiple attack
modes, If ne= 1, 1<1<3,

£11(x1+87) = Max I py3(ky) Splky) rp(dy, k)
kleskl(sl)

d;€ Sdl(xl)

- Max [P’i3(k1) Splky) rglxy, kl)] 7
“1€Sk1(’1)

since tn(dl, “1) is assumed to be a monotonically non decreasing

function of dl'
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L IfE2<n<N 1<1<3, :
zi z |
§ £ . (x ,5 ) Max = . W i
] ) e ] o CREN ST CINT S (’"’Sr<kn)5u<kn>) E
n
k
i’ dnesdn(’%)
§ (28)
% » Pyat) [sr00)m@nikn) + Sp0Su0I 1,3 (rprtyz—i) | i
E i3 T%*n’*H " n T " 'n‘“uvy'n -1.3 nh ST(kn)s (k'n)
E Since the first term of { °} in equation (28) is indeperdent of d,,
we can write
| 2
H £.,(% ,5 ) w Max Sk IS, (k) & pya(kIE T
E ni*n»Sp knfskn(sn) T {Kn)Syky P 13%n nl,j(nsr(kn)s (k ))
b
£ (29)
s
s M d_,k )+S £ ~d n
+ Sp(kg)Py3(ey) 0< d:xﬁ x“["H( nokn)*Sy k)t y 3 (xn n9m-&n—y}
The optimal values of the decision variables will be denoted d T(x ,s.) .
: and K, ¥(x,,80). !
For the same reasons that were mentioned with respect to equae
o tions (7) and (9), equations (27) and (29) have the following pro-
i perties:
£ (psB) = £130%,5,) (30) !
* *
G2 (Rposp) = dn3(xns8y) v ,
H
* *
kn2 (Xno8n) = K3 (nssy) (32)
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Using a Discrete Attrition Constralnt

Before considering an example of the application of equations
(27) and (29), a practical difficulty must be faced. The quantity Sh
has been treated as a continuous variable. Also, ST(kn) and Su(kn)
can take any value from O to 1.0. Under these assumptions, the de=-
velopment is rigorous,

In making numerical calculations, however, S, cannot be treated
as a continuous variable when f,4(x,,8,) is tabulated. Accordingly,
the interval [:;N’ 1.0] will be divided into a discrete number, M, of
increments of size A s. At each stage, Sp is treated as a discrete
variable taking only the values Sy ¢+ mAs where m = 0,1,2,-2a M,

This constitutes a modification of the definition of Ssn, equation (22).

The set 53n will now be def ned as

Ss

a - {sn: s, € EN’ ;N + 4s, ;N * 2As,--—,§N * MAS}}; l<n<N

(33)
We must also modify the transformation equacion (16) because the
quotient sn/ST(kn)Su(kn) will not in genieral produce a value of Sn.1
such that s, ; €5, as deflned by equation (33)., «Cur approach is
N~
to select the next larger acceptable value for Sh-1 Or symbolically,

S

) [ | W
Stk
Spay = 1 - < 1(kn)Sy(kn) As 351<3<3 (36)
As k € Skn(sn)
where the symbol (x) means the largest integer value no greater

than X. The definition of Skn(sn), equation (24), still applies,
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To demonstrate that equation 34) will satisfy the survival
constraint, write equation (34) as
_fn
- Spky)S (k) . 1-s8,, (353
As Aas

Removing the largest integer value restriction, equation (35) becomes

5n
Stlkn)Sulkn) , 1 -85 (36)
As bs
which hecames
Sp S Splkp)S,tky) sy G7)
or
s - Sn (38)
n-1 =
Splk, S, (k)
Thus,

the s that is produced by equation (34) will always be at
least as great as the s _, that is produced by equation (16).

It is well to note that by admitting only certain values of

Sn» We have a more restrictive optimization than woula result if s,

could be continuous., Thus, the maximum expected hits sotained from

the discrete case cannot be greater than the maximum expected hits

obtainable if Sy could be treated as continuous. The amount of dise~

crepancy depernds on the value of As. For a glven problem, a
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sensitivity analysis would be desirable to determine the extent to

5
which the solutlion depends on the value of A s,

Numerical Example
To illustrate the application of equations (27) and (29),
suppose an aircraft has eight bombs and can make a maximum of three
passas at the target.

N = 3 passes

XN 8 bombs

Suppose further that acquisition is probabilistic on each pass with
probabilities as shown in Table 3 and the corresponding matrix of
Markov state transition probabilities as showm in Figure 7 for all Ky
This transition matrix can be computed from the values In Table 3 and

by use of the Markov state transition probabilities in Figure 6.

SIl: is also possible to use an additive transformation relaticne
ship for the atrrition constraint if s, Sy(k,), and S,(k,) are close

to 1.0. Suppose A(kp) = 1.0 = Sp(k,) Sy(kp). Then equation (16) can
be written

sy © 1
Spel = s, T
1 T oA Sn Zo [A(kn)] ™ Spn ¢ Sp Alkp)

if A(kyp) is small. Further, if s, is close to 1.0,

Spe1 ¢ 8n + A(kp)

which might be used in place of equation (34). Now if Sy(ky) and Sy(kp)
are allowed only to take values such that A(kp) = nas where n is a
positive integer amd A s is as used in equation (33), then use of the
above additive survival constraint transformation avoids the truncation
error that is introduced by equation (34). Where it is applicable,
this procedure may be preferable to the use of equation (34) because
the implications of restricting the values that the input parameters
can take are perhaps easfer to understand than the implications of the
truncation that occurs in equation (34). This is especially true be-
cause the truncation error tends to be cumulative as successive trans-
formations are performed.

R e

P S - SRy e




g ST A AT
nl

i

77
E
i TABLE 3 ?
3
; EXAMPLE ACQUISITION PROBABILITIES %
1 i
_{, (A1l k) 3
P (Ag) - .725
3
P (AD) - .340 f,‘
P (A) - .915
1
ok P (AD) - .775
s
Lo
[
. -1 32 3=3
ot A* AD* AD
»
o {w 1:A® 0.275 0.385 0. 340
PoE
o
L = 2: AD* 0 0.225 0.775
g
Lo ;
| | 1«3: AD 0 0.225 0.775 4
E § Fig. 7.--Example values of Markov state
b transition probabilities,
I 1 Let there be four modes of attack available on each pass where 3.
I B variation in mode of attack does not affect tha acquisition probabili- :

ties but does have effect on both survival probabilities and salvo
¥ effectiveness. Suppose Sp(k,) = S,(k,) for all modes and for all

1 <n <N. The values of the survival probabilities are given in
Figure 8. It is also convenlent to note the attrition per pass that

is defined in the insert on Figure 8,

3

|
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Salvo effectiveness versus salvo size and mode of attack is
given in Figure 9. These curves were generated by use of equation
(111-18), The paramecers ¥ and 9 have the same meaning they did in
Chapter III. Note that in Figure 9, W is held constant and different
salvo effectiveness functions are obtained by using different valuas
of 9.

As the mode of attack index (k,) increases from 1 to 4, the
survival probabilities get progressively higher while the salvo effece
tiveness gets progressively lower. This type of situation might arise
if increasing values cf k,, correspond to Iincreasing aircraft apeed.

Calculations for this example were made with Xy « 8 and 5 _
0.976., Weapons are assumed to be allocated in groups of one. The
survival constraint was varied in increments of As = 0,002,

The principal results are tables of f ,(x..5,), dn:(xn.sn), and
kn:(xn,sn). The tables that were generated for this example provide
the foregoing information for any number of weapons remaining up to
eight, for any aterition constraint up to ,024 and for any number of
passes remaining up to five. Tables 4, 5, and 6 are extracts taken
fram these tables at n = 3. The complete tables are contained in an
unpubl ished computer printout that is currentiy in the possession of
the author.

For a given n, each of these tables has three variables. The
survival constraint is stated in terms of attrition (l - s,). There

are two entries in each block of each table. The first entry applies
to Markov state 1 (target not yet acquired) and the second entry

applies to Markov states 2 and 3 (target acquisition has occurred).
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Nunber of Weapons Remaining (x3) E
4 6 8
&
4 . 906 .226 L2764 .30
] .515 .624 .687
b
g’;\
o% .o12 .562 .709 . 850
g ' .69 . 908 1.066
-%
&
o
b .018 724 .929 1,093
< .888 1.124 1.301
L0264 .873 1.089 1.246
1.014 1.278 1,509
TABLE 5

g %}ﬁlmm L
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_k .
BEST SALVO SIZE: d3i(x3,53) ,‘
3 § g j
Number of Weapons Remaining (x3) :
*- 4 6 8
3 u 006 4 6 8 |
- 4 6 8 |
ﬂ
° ~~
g o .012 2 3 5
' 2 3 4
§ -
wd S
s
[ . 018 2 2 3 E
: g 2 3 3 %
‘f g
' 026 1 2 3 3
2 3 3
!
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TABLE 6

BEST MODE OF ATTACK: kj)(X3,83)

P e = —
e e e e

Number of Weapons Remaining (x3)

4 6 8
& . G606 3 3 3
- 3 3 3
a
i
&
g™
g e 012 4 4 4
1 3 3 3
5 ~
- N
=
E .U18 4 g g
£ 1
.04 4 4 3
1 1 2

Examination of Table 4 shows that the maximum expected hits
increase with number of weapons available at a fixed attrition con-
straint and it increases as the attrition constraint is relaxed with
a fived number of weapons avallable., Also, the maximum expected hits
i3 groater when target acquisition has occurred (Markov states 2 and 3)
than when target acquisition has not yet occurred (Markov state 1).

All these trends agree with intuition.

Table 5 indicates the best salvo size as a function of the state
of the system. Note that these results indicate the number of weapons
to deliver if target acqulsition and weapon delivery occura, If tar-
get acquisition ard weapon delive does not octcur, no weapons are to
be delivered. From Table 5, the best salvo size increases as the

number of avallable weapons increeses with a fixed constraint on th.
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expected attrition and decreases as the constraint on the expected
attrition becomes less restrictive with a fixed number »f weapons
available, These trends agree with intuition.

By using the series of tables from which Tables 5 and 6 were
extracted, a complete policy for the duel can be construcied. Such a
policy is shown in Figure 10 for the example of Tables &, 5, and 6.

Figure 10 shows three columns of blocks. The left hand ¢slumn
applies when N = 3 passes remain, the second column of blocks applies
when n = 2 passes remaln and the third column of blocks applies when
n = 1 pass ramains, Each block contains three entries on the left
which define a state of the system. The entries on the right {n each
block indlicate the best action corresponding to the state that 1s indi-
cated by the entries on the left i{n the mame block. The appearance of
the symbol A indicates that target acquisition has occurred and the
symbol A* indicates that target acquisition has not occurred. The
arrovs comnecting the blocks show the possible transitions from state
to stare.

/ Figure 10 shows the policy for the case where the constraining
value of expected attrition ac the beginning of the duel s}l « 83 =
0.u12. when the first pass is made, acquisition has not yet occurred
and eight weapons are available, The policy is to make the first pass
in mode 4 and deliver five weapons ${f target acquisition and weapon
delivery occurs., If target acquisition falls to occur on the first
pass, then the system is in state A*, Xy = 8, and 1 - 8; = .LU8 with
Z passes remalning; the best action is to use mode 4 with the intention

of delivering five weapons. If targoet acquisition occcurs but no wearons
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are delivered on the first pass, the system is in state A, x; = 8, and
) Sy = .008 with two pasaes temaining; the hest action is to use
mode 4 with the intention of delivering five weapons. If target ace
quisition and weapon delivery occurs on the firsr pass, then the system
{s in state A, X =« 3, and 1 - 3y = .008 with two passes remaining; the
best action is to use mode 2 with the intention of delivering three
weapons,

The following are some further cumments about the reisnlts of the
foregoing example, The dec.ease in best salvo size with less restric-
tive attrition constraint for fixed number of weapons available is an
interesting phenomenon. We might think of the less restrictive attri-
tion constraint as representing a less conservative attitude, i.e.,
more willing to tske a chance. Now as our attitude becomes less cone
3ervatlye. we are less concerned about survival and more c¢oncerned about
max imun effectiveness. The most conservative thing to do is to deliver
all weapons on the first pass. As our attitude becomes less conserva-
tive, we depart further and further from this policy, i.e., the salvo
sizes at a given pass become smaller thus leaving more weapons for
future passes. As the attitude becomes less and less conservative,
there comes a polnt where we, in effect, ignore survival altogether
and simply maximize effectiveness. Relaxing the attrition constralnt
beyond this point would have no further effect on tha policy relating
to salvo size. Note that the d3:(x3,s3) values in Table 5 are begin-
ning to reflect this phenomenon since the optimum salvo size is nearly

the same at 1 - 85y = 018 and 1 = sq = 024,
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As a further comment, we note in Table 6 what seems to be a
geral outcome that is {llustrated by this example. The best mode of
attack is more conservative when acquisition has not yet occurred, i.e.,
the first entry in each block in Table 6 not less than the second entry
in the block. This reflects the fact that the acquisition probabilities
do not depend on mode of attack in this example while the survival probe
ability and weapon effectiveness do depend on mode of attack. When
acquisition has not yet occurred, the tendency seems to be to use &
"safer” mode of attack and locate the target in order to save the air-
cratt for a less conservative attack on a subsequent pass when the
target has already been acquired. Once acquisition has occurred, we
tend to use the more effective mode of attack.

Having developed a generalized EH duel and discussed some
example results, we will cloge this chapter by neting that as with
other dueis the return-versus-attrition function is an important
characterizing feature cf.the duel. Figure 11 shows this function for
the foregoing example. The data for this figure were taken from the
same table that the data tor Table & were taken from. Figure 11 ase
sumes that acquisition has not yet occurred (Markov state { »~ 1),
eight weapons are available, and threc passes can be made. A particular

selected policy like that of Figure 10 applies tc each of the points on

the return-versus-attrition function.




e 2 TR 2 s, N s PR ATSAR T I " 2 oot e T A AN A 4 QT LA Py el

5 ‘1enp Hy pazjjedeuss ayj Joj uoyIdouny UOFIFAIIB-SNSIAA-UINIBY=="TT °Bid _
(]s—1) NOILIBLIY G3423dX3 4D 3NIVA ONINIVHLSNOD |
20" 220° 020° €I0° 9I0° HI0° 2O 0100 300 900 $0O° 200 © | “
, » o !
| j | |
i _ | |
. . m w 9 20 =
' >
. _ “ \\ > u
! L £ _ . quh -
< ! ._
| m _ !
. — L 90 X |
o |
m
ol 5 ,_
] BC m w
_ _ \\ J 2 w
{ K
] i _ = : _
\\ oL 2 ﬁ
v \\_\ .rw\..ly w
7 }
! ! o W
. ; SNOJVIM 82X Ly~ |
i W _. $3SSyd  €=N "
L e L | 1 9'l i
;]
i
|
. :

T s AW




- ———

pees

P RpU S -

CHAPTER V

A DUEL WITH A DIFFERENT OBJECTIVE

The PK Duel

Now consider an alr-to-ground duel in which the objective is to
hit the target at least once. This type of situation might arise in
an attack on a small well fortified position requiring a direct hir,

A near miss is assumed to do no damage and one hit is assumed to be
adequate. In this discussion, the return will be referred to as
‘'probability of kill" and the cost is in terms of the number of air-
craft lost. This will be referred to as the "Py duel.” The model to
be developed is quite similar to the model that was developed In
Chapters IIl and 1V,

Let us first study a simple duel analogous to that of Chapter
11I. 1In a simple Py duel where probabllity of kill is the objective,
the stage return, rx(dn), i1s the probability of kill versus salvo size.
The quantity fn(xn) becomes the maximum probability of kill achievable
with n passes and X, weapons remaining.

The state variable transformation is given by equation (IIl=3),.
The sets an and Sdn(xn) are defined by equations (II{=-4) and (I1l1=5).

The return functions for this case are somewhat different from
those of the model for dealing with expected hits, When one pass re-
mains &id d; weapons are to be delivered, the prodability of kill is

the probablility of reaching the point of delivery times the probability

88
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that the salvo scores at least one hit. Left over weapons have no
value. Thus, if n a1,

81["1: dl' fO(XO)J Ld ST rK(dl) (D

When n pasgses are yet to be made, the composition of the maximum n-l
stage return, f__,(x, ), with the stage n return, ry(d,), can be
accomplished as follows.

Suppose dn weapons are to be delivered on pass n and the re-

mai.ing X, - d, veapons are to be delivered on the remaining n-l passes.

Target Kill can cccur only once and it can occur In one of two mutually
exclusive wvays. The target can be killed on pass n, or target kill can
occur on one of the remaining n-l passes, Since pass n chronologically

precedes the remaining n-1 passes, If the tarzet is killed on pass n,

it cannot be killed on one of the n-1 remaining passes. The probability

of target kill occurring on pass n is STrK(dn). The probability rhat
the target is not killed on pass n and that it is killed on one of the
remaining n-1 passes is Sg Sl[l-rx(dn)] fn-1(Xp-1). Since these two

modes of target kill are mutually exclusive, we get the n stage probae

bility of ki1l by adding the two terms, Thus for all 2 <n <N,

8n [xn» dps fn--l(xn-l)]

o Sy tgdp) # Sp S, [1 - rg(d)] £y (xpayp) )

By examining equation (1), we see that if ry(d;) is defined for
all ;€ le and dlesdl(xl), then the return function for n=l i3 de-
fined for all x¢ le and dlesdl(xl). Furthermore, when 2 < n < N,

ve see from equation (2) that if rK(dn) is defined for all Xn €Sy
n

A TR M 000 R 4y Wt e 00
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and dn€sdn(xn), then the return function meets the monotonicity re-
quirement that is dafined in Chapter 11 for a deterministic decision
process. The previous statement is true because STy Sy 2 0 and since
rK(dn) is a probabllity, then 1 - rp(d.) > O, Thus, application of
the bastic functional equation for a deterministic decision process,
equation (II-3), will yield optimum values of f,(x,) for all 1 < n < N.

Substituting equations (1) and (2) above along with the appro-
priate transformations and set definitions, equations (IIT-3), (III-4)
and (I11-5) into equation (I1-5) we get the following recursive rela-
tions for the simple duel with probability of kill as an objective.

Ifnel, xlesxl,

£1(xq) = Max [sp rg(dy)] = sp re(xp) 3)
02dy<xy

since rK(dn) is assumed to be monotonically nondecreasing.

If2<n<N, Xn€ Sy »

fn(xn) = Sy Max rK(dn)QSJ:l-rK(dn)]fn_l(xn-dn)}(Io)
0<a, <x

Nonrecursive Form

Let R,(d;.d_y,-=-,d;) denote the probability of kill obtainable
on passes n,-=-,1 for the allocation (dn,dn_l,---,dl). With one pass

remaining, we have

Rl(dl) - ST rx(dl) (5)
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With two passes remaining, we have

Ry(dyydy) = Sp rgddy) + Sq 8, [1 = rg(dp)] Ry(dy)
= S 1 (dy) # 52 S, (1 - rg(dy)] me(ap)  (6)
With three passes remaining, we have
R3(d3,dp,d;) = Sy 1 (d3) @ Sy S, [1 - rg(dq)] Ry(dz,d))
= Sp rg(d3) » Sp2 S, [1 = rg(da)] s (d)

e Sp3 5,2 (1= r@3)] [T = rg(da)] re@@y)
(7)

We can now construct the expression for the N stage return for a given

allocation, (dy,dy_pr===sdy).

N N
i-1 ,
Ry(dysdnogs===5d]) = S T (S7 Sy) m o [1-rgidy) rxldyogey)
i1 neNe {42

(8)

wvhere for an arbitrary function of n, say g(n),

N —
m g{n) = 1.0 (9)
neNe 1

Considering the constraints, equations (I11-1) and (IT11.2), we can

state the optimization problem as follows,

N N
I, _
fn(xy) = Max St 2. (SpSy) Yoo [1erk(dp)] mx(pogen)
dN,.‘.gdl i=1 neN-1¢2

(10)
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(11)

(12)

Wt :ing the problem in the form of equations (10), (11), and

(12) is perhaps helpful in understanding the origin of the recursive

equations., It also promotes an appreclation of the simpliclty of the

recursive solution method. The development of nonrecursive problem

statements and the derivation of recursive relationships therefrom

are shown in Appendix A for some of the more general problems that are

treated herein.

The Special Case where ¥ = 1.0

Equations (10), (11), and (12) are not very encouragin~ from

the stardpoint of classical optimization techniques, however, we can

gain one useful bit of insight by studying the recursive relations,

equations (3) and (4). We will show that if V¥ = 1,0 and other con-

ditions are appropriate, all weapons should be delivered on the first

pass,

amata i

e s UM A4 L e A C a1

-
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Suppose the stage return can be expressed as
rg(d,) = 1 - o0 ; 0cocl (13)

This is the same as equation (I11-18) with \} = 1,0. Then from

equation (3), when n = 1,

£10x)) = Sp (1 =@ D) (14)

S o o BRI s = - - . -
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We will now hypothesize that

Xp=d
f2e1Ctnar) = Sp (1 - 871 050 (1 - g%, 15)

Then from equation (4)

d d ~d
£,00) © Sy Max { 16 o 5, 07" 5_(16™" ")} (16)
0sdysx

or

d 3
nGtn) = Sp  Max { 1-0°™ (1a535,) - Sq8, e‘“} (17)
0<d, < *n

Let t '} = Q(xy,d,). Then ve note that
d
Qs # 1) = Qlxgd,) & = (1 - 8.5,)(8 = 1)°P (18)

Since S1S, < 1.0 and 8 < 1.0, the above difference is non negative.
It follows that d“"r = Xp and therefore substituting in equation (17)

glves

£, (%) = Sy Qlxp,x,) = Sy (1-8™M) (19)

Thus, when rg(d,) is given by equacion {13), we have shown that £y(xy)
has the form of equation (19) and if frn=1{xn 1) has the form of equa=
ticn (19), then so does £.(x,); so by mathematical induction, for all

l<ngN, dn* = X and f,(X;,) has the form of equation (19),

The conclusion 1is that in the Py duel, if r(d,) has the form
of equation (13), then all weapons should be delivered on the first

*
pass, i.e., take dy (xy) « xy.
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Parametric Investigation

The parametric investigation is not as convenient for the PK
duel as it was for the Ey duel of Chapter IIT. If we assume ryp(d,)
can be expressed by the analytic form, equation (1!1~-18), the Py duel

objective function, equation (10) becomes

N
fN()\.) - w ST Max { ) (STSU)’.-I
d ymemyd A el

N d
n [1- Y-8 “)](1-9"""*‘)}
NaNe {42

(20)

From equation (20), the optimal allocation depends on the three quan-
tities ¥ , 6, and (ST:;u) for given values of xy and N. 1In the para-
metric investigation of the Ey duel, the optimal allocation depended
enly on 8 and (SpS,) for given xy and N and was independent of the
value of Y .

Figure 3 illustrates the rK(dn) function for Y = 1.0 and fer
the varlous values of 8 that are used here. Since W is a multipli-
cative constant, the curves of Figure 3 can be made to apply for any
hd by simply changirg the ordirit: scale,

Tatles 7 through 10 show the optimal allocation versus (51Sy)
and € for various values of W . Table 10 reflects the result for
the speclal case where W «~ 1.0. The entry in each block in these

tables is the vector (dg,---,d;) where zeros are omitted, It is clear

“«

n

in the Py duel as it was in the Ey duel that {f n; > ny, then dn: >d
because of the discounting structure and the fact that the functional

form of rK(dn) is the same for all n,
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We see that with other factors held constant, increasing sur-

it

vival probability calls for more uniform distribution of weapons among

. Jlﬂm-ﬂ"“f\?‘ LRI Y w (T )

H the passes, The same type of trend occurs when O or W decreases in g
% value with other factors held constant, 2
% The difference between the Ey duel results and the Py duel %
;2_ results can be appreciated by comparing Table 10 with Tabdle 2. Ignore ,:%
E? for the moment the different interpretation of r(dn) in the two models. %
g The numerical inputs are the same for both of these sets of results, %
t With the same numerical input values, the Ey duel and the Pl( duel can §
§ have quite different optimal allocations. z
i T
% Generalizing the PK Duel i
g A model for the Py duel with probabilistic acquisition and mule g
:F tiple modes of attack will now be developed. This model is similar to §
; the model for the analogous Ef duel that was discussed in Chapter IV, ‘—'%

The salvo effectiveness functlion will be rK(Dn) = rg(d k)i é

i1t will represent the probability of at least one hit as a function of

salvo size and mode of attack. The max!mum n stage return will be

£
3
H

4
3

fn,(xn) - fn‘(xn,sn); it will represent the maximum probability of at

e B DO e

least one hit when the system is In Markov state i, n passes remain,
X weapons remain, and the probability of surviving the rematning n

passes must be at least 8-

I P ERTEOMOT S e Y gyt

The following aspects of this model are identical to the cor-

respond ing aspects of the model for the Ey duel with probablilistic

R

acquisition and multiple mcdes of atrtack that was developed in Chapter
1v. The Markov state definitions are the same as those given in

Chapter IV. The Markov state transition probabilities are glven in
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Fisure 6. The basic transformation equations for the residual state
variables are given by equations (IV-15) and (IV-16). The basic sets
an, Ssn’ Sdn(xn) and Skn(sn) are defined by equations (IV-21) through
(IV=24). The required modification of the transformation equations and
the set definitions to account for the discrete nature of numerical
calculation related to s are given by equations (Iv=34) and (IV=33),
respectively.

The return functions for this model have the same form as those
for the simple Py duel but they must be modified to account for the
presence of multiple acquisition states and multiple modes of attack.

When one pass remains, weapon delivery is assoclated with tran-
sition to Markov state 3 and weapons are not delivered when transition
is to Markov states 1, or 2. The probability of surviving to the point

of weapon release and the salvo effectiveness depend on the mode of

attack. Thus, if ne 1 and 1 < i < 3,

g114 (X1 D1» fo,5(Xg)] @1
e« 0 H j = 1,2

When more than one pass remains, the foregoing statements scill
apply. Furthermore, we can use the same argument that we used In re-
lation to the simple PK duel to justify an expression for the compo-
sition of the stage n return with the maximum return for the remaining
n-! stages.

If transition is to Markov state 3, weapon delivery is Implied

and for given x; and D, the probability of target kill occurring on
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: pass n is ST(kn) r(dn,kn). The probability that the alrcraft survives
pass n, fails to kill the target on pass n, and then kilis the target

on one of the n-1 remalning passes is given by

Splky) Sy(ky) [t- rl((‘:ln'kn)J f1-1,3ne12571)

If transition is to Markov states ! or 2, no weapons are delivered on

LA LR A U s W 2 ol S TSR ey B

pass n and the probability that target kill occurs on pass n is zero.
The probability that the aircraft survives pass n and kills the target
on one of the remaining n-1 passes is ST(kn) Sulky) fn-l,j("n-lvsn-l)
vhere x;_ q and sp_y are given by the appropriate transformation equa=-

tions, We can summarize the foregoing as follows. If 2 < n <N and

for all 1 < 1 < 3,

#ni3 [)S"’Dn'f“'lvj(xn'l)] = Splk)Sylky) iy, §Gnayo8pay) 3 1 = 102

o Splk)rg (dnky) + Splin)Sy (k) [1-rg(dnakd] £y 30 1a8pa1) 5 3=3

(22)

Ry PSTY YO

If rK(dn,kn) Is defined for ail x, € an, d, € Sdn(x“).

R A TT R

; 1< n <N, then these return functions satisfy the sufficient condi~
tions for optimality as defined in Chapter 1l. This is trivially true
for equation (21). Equation (22) has the monotonicity property for

all n, §, 1, X,". and D; in their respective sets because under all

conditions
| | Spik) s,(k) [T = reda, k)] >0 (23)

't Likewise, the equivalence condition is satisfied because 8nij (-] 1s

a linear function of fn-l,j(xn-l’sn-l)'

b o S e o et

i
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The various parts are now available so the By duel with proba-
bilistic acquisition and multiple modes of attack can be optimized by
using the functional equation for a Markovian decision process, equa-
tien (I1-18). Substituting values gives the following. In stating
these equations, we will ignore the practical problem that s, cannot
be treated as a contintous variable when making numerical calculations.
It will be understood that the appropriate modifications are used when
calculations are made.

If n= 1 and for all 1 <1< 3,

oo Al b

3
fli(XI,Sl) - Max z Pij (kl) ST(kl) rK(dl.kll
0<dySx) 3=l
= Max  [py3(ky) Sp(ky) 1y (xq,ky)] (26)

k1€ Skl(sl)

if we assume that rK(dl,kl) is a monotonically non decreasing function

ofdl.
If2<n<Nam for all 1 < i <3,
2 S
£ ,(x 45 )=  Max L pyylky)Sp(k,)S, (K IE I
L P AT = B At “1'1(“'sf<lc.,)su(kn))

kn€ Skn(xn)

. py3(k,) [ST(kn)rK(dn,kn) ¢ Syl IS (k) [1-rpd )1

£ % _~d -———f—“——)] (25)
ne1,3 ( *n""'n? ST(kn)Su(kn)

i

o108 109 bl e w1,
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Equation (25) can be simplified to

2 8
f 4(X,,S.)»  Max Sq(k IS (k.) T p,, (k. ) _ X, n
ni FnsSn kn€5kn(3n) Tkp)S,(ky ju1 1j*n l,j( n ST(ansu(an)

+ Splk)pys(ky)  Max [k )es, (k)] 1org (4 k)]
0<dsxy

d D
fn1,3 (*n "n’sr(kn)su<k,.)) ] 6

Numerical Example

The application of equations (24) and (26) will be {llustrated
by using a problem that is very nearly the same as the example problem
of Chapter IV. In this example, N = 3 and Xy = 8. Acquisition is
probabilistic and is characterized by the values given in Table 3 and
Pigure 7. The survival probabilities are given in Figure 8.

The salvo effectiveness function, rK(Dn), used for this problem
differs from the one used in the example of Chapter IV. First, its
interpretation is different since rK(Dn) is the probability of target

kill versus salvo size and mode of attack., Second, the functional form
of ry(D,) is the same as before, i.e., equation (I11-18) and the values
of © for the four modes of attack are unchanged, but we now have

Y = 0.25. The values of \¥ and @ and the resulting ry(d,,k,) func-

tions for the four modes of attack are shown In Figure 12.

Calculations were made with X, = 8 and ;N = 0,976, Weapons are

assumed to be allocated in groups of one. The survival constraint was

e o T S, e e
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varied in increments of A g = 0,002, These values are the same as

they were in the sxample of Chapter 1V,

Tables 11, 12, and 13 show extraccs from the principal tables

of results. These tables respectively show maximum probability of

kill, beast salvo size, and best mode of attack versus number of

veapons remaining, attrition constraint, and Markov stats, Note that

here as before, the first entry in each block i{n Tadbles 11, 12, and 13

applies when the system Is in Markov state 1 (target acquisition has

not yet occurred). The second entry in each block applies when che

8ystem 1ls in Markov state 2 or 3 (target acquisition has occurred).

Figure 13 shows an illustrative optimum attack policy corres-

ponding to 1 - s, = 0.012. This figure was conatructed from data in

che sories of tables of results that Tables 11, 12, and 13 were ex~

tracted from, The optimum attack policy of Figure 13 happens to e

identical to the optimum attack policy of Figure 10 which applies to

the example of Chapter IV. Note, however, that not all the results

are the same for the two examples as can be seen by comparing Tables
11, 12, and 13 of this chapter wvith Tables 4, 5, and 6 of Chapter IV.
The return-versus-attrition function for this example can be
read from the tables of results at n « 3, Xy = 8, and assuming the
system is in Markov state 1 (the target has rot yet been acquired).
Some of these values appear in the sppropriate pogitions iIn Table 11.

Figure 14 shows the resulting return=versus-attrition function ‘or

this example problem.

e AR I e AR,

v

VX R T P TR I

e e 1




s ST

pmrmi s

e L L ——

TABLE 11

MAXIMUM PROBABILITY OF KILL: t31(x3,33)

Number of Weapons Remaining: (x3)

Attrition Constraint

(1= 83)

. 012

.018

. 024

4 6 8

u .087 . 068 .075

g .00 .129 .156 172

£ 138 172 202
.0 . . U2

5 T - .168 .216 .251

gc .176 .219 .253

g -0 211 261 268

-t . . .

™

1o

e .207 .252 284

< - .238 .29 .33

TABLE 12

BEST SALVO SIZE: dg; (x3,53)

:=================================:============================1

Number of Weapons Remaining: (xj)

4 6 8
4 6 8
4 6 8
2 3 S
3 4 5
1 3 3
3 3 5
0 1 3
2 3 3
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(x4)

*
k31 (x3,83)

g -

TABLE 13
Number of Weapon” Remaining:

BEST MDE OF ATTACK:

3 -

g 2

(¢s - 1)

.018

3
g
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Numerical Example: Reduced Salvo Effectiveness

Por another example of the application of the Py duel model,
equations (24) and (26}, an interesting outcome results iIf the salve
effectiveness is made small while the acquisition and survival inputs
ave majintained the same as they were in the previous example, l.e., as
in Figures 7 and 8. If the salvo effectiveness functions are as shown
in Figure 15, the optimum policy at N = 3 is {llustrated by the ex=
tracts shown *a Tables 14 and 15,

The Interesting frature is that for all values of attrition
constraint greater than or equal to (.012, zero weapons are delivered
on the first pass. Note also that the "safest" mode of attack is
emploved, i.e., ky* = 4.

The complete attack policy for 1l « Sy = 0,018 is diagrammed in
Flgure 16, Thies policy says to make the {lrst pass using the "safest"
mode with no intention of delivering weapons. The purpose of the first
pass 1s to acquire the target. Once target acquisition has occurred,
the least conservatlve mode of attack, i.e., the most effective, is
employed and all weapons are delivered. If the target is not acquired

on the flrst pass, the process is repeated on the second pass,

[ S N VIRV TN
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TABLE 14

BEST SALVO SIZE WITH REDUCED SALVO EFFECTIVENESS: d3i(x3,s3)

Number of Weapons Remaining: (x3)
4 6 8
4 6 8
b - 006 4 6 8
-d
E 0 0 0
B -0 4 6 8
© []
§ 0 0 0
EV . 018 4 6 8
8
0 0 0
<
. 024 4 6 8
TABLE 15
BEST MODE OF ATTACK WITH REDUCED SALVO EFPECTIVENESS:
k3,(x3.53)
e ¢
Number of Weapons Remaining: (x,)
4 6 8
3 3 3
.0
05 3 3 3
&
&
g .on 4 4 4
- 1 1 1
g Pt
[
© ¢ 4 4 4
.018
§C 1 1 1
&
-t
}J 4 4 4
&
< 0% 1 1 1

T i ettt Bt e
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CHAPTER VI

GENERALIZING THE ATTACKER'S OBJECTIVE

An Aspiration Level Duel: The Simple "Pe Duel"

The Py duel that was discussed in Chapter V is a speclal case
of the duel that will be discussed next. It is possible that the
attacking alrcraft would wish to maximize the proba%ility of obtaining
at least C hits. This will be referred to as the "PC duel.”" The ase
piration level 1s C hits. The Py duel is a special case of the F. duel
where the aspiraticn level 35 ono hit,

First, consider a simple PC duel which does not include proba-
bilistic acquisition or multiple modes of attack. Let h(Q; dn) be

the probability function of the number of hits, £ , per salvo of size

d,, where X is an integer such that 0 < § < d,.

The state of the system when preparing to make pass n can be
described by specifving values for two state variables. The number of
weapons remaining is X, and since we are not for the moment including
probabilistic target acquisition, dn weapons are assumed to be de=
livered on pass n. The transformation of x, is gliven by equation (1).

For all 1 < n <N,

Xp-1 = Xp = 9y (1)
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Let 1 be the other state variable where 1 < { € I. Let the number of

hits already achieved be !-l.l Since the number of hits achleved on
pass n 15 a random variable with a probability function that depends

onlv on d,, the transformation of i fs probabilistic and we have a

Markovian decision process. The iarkov state transition probabilities

can be stated as follows. Reference to Figure 17 will be helpful in

following these relations.
b
function of i, sav g(1), £ g(i) = 0, if b < a.
! {=a
1

Note that I = C ¢« 1 and for an arbitrary

The transformation relationsiip equation (1) and the non

p”(dn) = h(j=1; d) H t<ti<I;1<j<1
dn
= ) h(f3dg) 53 1< 1 <I; 3=
I‘ QmC-tel (2 3dn == .
‘ - 1.0 i tefel
\ -0 5 1<i<I31<3<1 (2)
)

nega=
tivity of dn lead to the familiar sets

e Sk, ™ {xn: xng{o,l,---,:?,,}} (3)
i
Sq_ () = {dn: dnE'{O,l,---,xn}} (4)

The return functions are rather simple. 1If one pass remains to

: be made, the probabllity of achlieving at least C hits in the duel is
$

i We have set the state variable | equal to the number of hits

i plus one because we wish to allow for zero hits without destroying the

) E convention that all iIndex values start at one. This convention makes

‘ ; computer programming somewhat easier and lends consistency to the model.
!

R g
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0.0 If transitlon 1s not to state 1, i3 1.0 if the system Is already

in state I, and is equal to the probability of surviving to the point

i

of weapon dellivery, ST' if the transition §Is to state 1 from some

other atate, To summarize, {f n = 1,

811y (X140, 4 (x0)] = 0.0 1<1<I; 1€3<1
« 1,0 H {«1
- ST ; 1<1<1; §=1 ()

When more than one pass remains to be made and transition i{s to

some state other than I, the probabilitv of achleving at least C hits

W et

in the duel is the probability of surviving pass n and achieving the
remaining hits in the remalning n-1 passes, If the system is already
in state I, the probability of achieving at least C hits in rthe duel
s 1.0, 1If transition is to state 1 from some other state, the proba=

bility of achieving at least C hits in the duel is St. To summarlze,

if 2 <n<N,

Zni § l:"‘n’dn’f‘r'a-l,j("n-l)]

* StSufn.1,§*n-1)

[
AA
—

ve we
bt
INIA

= 1.0

.

[
»

Yy

.ST

we ws
ke
A
A
—

6)

We have now defined all of the parts of the basic functional
equation for the Markovian decision process, equation (I1I-18).

Substituting the expressions from equation (2) for the plj(dn) term,

4

=

£
3




substituting the expressions from equations (5) and (6) for the
&nij [::I term and using the sets defined by equations (3) and (4)

gives the following. If { » I and for all 1 < n< N
fnl(xn) = 1,0
Ifn=e land 1<i<1,

d
1
0<dy <%y A =Ceisl

If2<n<Nand1<i<I,

c d,
fni(xn) = Max T h(j=13d)SpS,fry 4(xp y)eSp & h(L3dy)
e Osdns’(rli-i R A=C-1s1

9)

Since the return functions, equations (5) and (6) clearly
satisfy the monotoniclty and equivalence conditions of Chapter II,
recursive application of equations (7), (8), and (9) will visld the
maximum n stage return and the optimum weapon deliverv policv for the
simple Pc duel.

Note that the optimum policy indicates the best act as a func-
tion of n, i, and x,. To implement this policy, the pilot must know
the number of hits already achieved. The implications of this will be

discussed later.

A Generallzed PC Duel

In generalizing the model for the P, duel to include probabilis-

tic acquisition and multiple modes of attack, let h(XhD,) = h(fid,,ky)

Oy amt———— =t -
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be the probability function of the number of hits, X, achieved on

pass n when d is the salvo size and mode of attack k, is selected.

The maximum n stage return, fni(xﬁ) - fnl(xn’sn) is the maximum proba=-

bility of achieving at least C hits in the duel when n passes are vet

to be made, X, weapons remain, the praobability of surviving the remain~

ing n passes must be at least £y and the system is in Markov state i.

The Markov state must now reflect both the number of hits that

have already been achieved and the acquisition status of the svstem.

One possible approach would be the definition of a two dimensional

vector to characterize the Markov state of e system. We will take

the approach, however, of defining Markov states in such a way that a
single dimension Markovestate variable can reflect both the numher of
hits already achieved and the acquisition status of the system. The

functional equation (Il-18) can then be used directly to optimize the

return. To accomplish this, the Markov states are as defined iIn

Table 16.

Figure 18 shows the transition probabilities for the case where

C = 3. Using this figure as a guldé, we can construct the transition

probabilities for the general case. If { = 1,

Pyjln) = 1 - P(Ay) 3 1 =1
= P(a,) - P(A,D) 3 J=2
-0

3 3 <5 <Cel

P(AD) h(j=C2; Dp)

Ce2 < § < 2041

dn
P(AD) 2 h(f;D,)
2=c

we

J =1 = 2Ce2 {10)

t — —_—— e

st 0

WA e e

R st s 1

| ——

g ——— A1 ST P
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TABLE 16
DEFINITIONS OF MARKOV STATES IN THE GENERALIZED PC DUEL

State Variable Definition
{=1 A* w Acquisition has not occurred
w2 AD*:0 hits = Acquisition has occurred,

delivery did not occur on the
most recent pass, and no hits

have been scored

=3 AD*3;1 hit = same as above with 1 hit scored
{=d AD*;2 hits = same as above with 2 hits scored
f=C4<+1 AD*;C-1 hits = same as above with C-1 hits scored
{eC+2 AD;O hits = Acquisition has occurred, delivery

occurred on the most recent pass,

and no hits have been achieved

1=eC+3 AD;1 hit = same as above with 1 hit scored
{feC+4 AD;?2 hits = same as above with 2 hits scored
1=o22C 1 AD;C~1 hits = same as above with C~1 hits scored
I =] =»2C ¢ 2 At least C hits have been achieved
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E 1f 2 < 1 < Cel, ;
Pyj(Dy) = O 5 1< 1< 4< )< Cel :
= 1 - P(aD) RN :
= P(A)D) h(j=C-1, D) 3 Cel 2§ < 2Cel ;
dn

= P(AyD) T h{ ;D) 3 =1 = 2Ce2 (11)
! I =C-ie2 *n :
If Ce2 < 1 < 2Cel,
|
PU(Dn) - pl-C,j(Dn) M 1 S j .<_ 2Cel {(12) f
If {1 = I = 2Ce2, ?

Pyj(0y) = O ; 1< 3§ < 2cel
- 1.0 s =1 @ 2Ce2 (13)

The residual state variable transformation relations are as

PRI TR

follows. For all 1 <n<Nand I <1 < 2Cs+2,

Xp-1 = ¥,

-xn-dn

1< j < Cel

Ce2 < § < 2C42 (14)

Sn

$hel = TTe T 11 15
nel = 5 G s (k) all j (15)

we

ik o ] e

In the transformation equation (15) we are ignoring the problem that
in making computations, s, must take discrete values. The above

transformation equations lead to the sets defined by equations (Iv-21),

(1v-22), (IV-23), and (Iv-24).
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In defining the return functions, we get some compensation for
the complexity of the transition probabilitles. The return functions
are identical to equations (5) and (6) for the simple P, duel except
that x, is replaced by X = (xp,s.), d  is replaced bv D, = (dpskp),
St and S, are now Sy(kp) and S,(k,), and 1 = 2Ce2.

All the parts of the basic functional equation ([I-18) have now

been defined for the P, duel with acquisition and multiple modes of

attack,

The Simple Expected Damage Duel:

The Simple "Ey Duel"

The aspiration level objective of the P~ duel allows no utilicy
for any mmber of hits less than C and no marginal utility for addi-
tional hits once C hits have been obtained. This is a tenable abs:crac-
tion for some situations vwhere C = 1, i{,e., the Py duel. when C > 1,
not very many applications come to mind. Almost any situatfion reguiring
three hLits offers some value for two hits. The PC duel is included
because it 7fits logically into the pattern of duels that are considered
and it makes a convenient way of introducing the duel that is to be
considered next.

This leads to the final generalization of the duel objective.
The Ey duel, the Py duel, and the Pc duel are all speclal cases.
Suppose a utility or damage level is associated wirh the number of hits
scored, If the Markov state variable | reflects the number of hits

achieved, then a function U(i) can assocliate the damage level achieved

with the Markov state of the system. The damage level achieved on a
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sortie is a random variable. Maximizing its expected value is a reason-
able objective. This will be referred to as maximizing expected damage.
The present case will be called the Ep duel.

The functional equations for optimizing the simple Ej duel can
be obtained by simple modif{ications of the equations for the simple
Pc duel that was discussed in the first part of this chapter.

In this development, fni(xn) is the maximum expected vaiie of the
marginal (or additional) damage achievable in the remaining n jasses
when X, weapons remain and the system is in Markov state i. The quan-
tity h(2;d,) is sriil the probatility function of the number of hits,
2, per salvo of size d, where 0 < 2 < dy.

The transformarion relation for x, is given by equation (1).

The Markov state variable 1 has the same definition it did in the simple
P- duel (number of hits achieved = i = 1). The Markov state transition
probabilities are given by equation (2) and Figure 17. The quantity C
is reinterpreted as the number of hits associated with the maximum
damage level, 1.e., additional hits are of no furcher velue. The sets
an and Sdn(xn) are defined by equations (3) and (4).

In general terms, the composition of the stage n return with
the maximum return obtalnable from the remaining nel stages {s the
discounted sum of the marginal damage achievable on pass n and the
additional damage ach evable on the remaining n-1 passes starting from
the state that results from pass n., More specifically, if n = I and

1 <1< I (reference to Figure 17 may be helpful),

B1ij Lxps 9, fo,j(xo)]
= Sp (U(j) - u)] 3 1

A
[
IA

b

(16)

o

1 Moot b
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Ifn=]and { = I,

Buay [xpe dpo £o, 302 ] = 0 JE I (7

since damage level saturation has already been reached before making

th.: pass.

If2<n<Nad1<1<1,

8nlj Exn' dn fn-l,j(xn-l)]
e sy [U@g) - ud)] « SpSufnel,j®net) 5 1S3 <1

I=1 (18)

ws

= Sp LU(D - w()]

If2<n<Nand { = I,

&ni} (Xn» dps fn-l.j(xn-l)] -0 )=l (19)

Note that in equations (16), (17), (18), and (19), the return functions
are not defined for the cases where 3 <2 1., This is justified because

All of the required parts of equation (11-18) have now beer

defined so the solution for the simple Ej duel can be obtained.

The General Ey Duel

To include acquisition and multiple modes of sttack in tha
Ep duel, h(f; d,) becomes h({; D,) and f.;(x,) becomes £ (X8
U(i) is the damage level associated with Markov state i{. The Markov
states are defined in Table 16. The Markov state transitlon proba-
bilities are given by equations (10), (11), (12) and (13). The re~

sidual stat: variable transformatlions are given by equations (14) and

Tl ;
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(15). Appropriate sets are defined in equations (IV-21), (IV-22),
{Iv-23) and (IV=24).

The return functions for thils case can be constructed as
follows., The quantity C must be interpreted as the number of hits
associated with the damage saturation level, 1l.e,, achleving more than
C hits is no better than achleving C hits.

If one pass remains, the expected return for given Xi, Dl’ i,
ard j 18 simply the probability of surviving to the polnt of weapon
delivery times the difference in damage level assoclated with the

Markov states | and j. Thus, If n = 1 and for all 1 < 1 < 2C+2,

811y [X{s Dy £ 8] = Spkp) [U(D) = V(1)) 5 151 < 2002

(20)

Wwhen more than one pass remains, the expected return for given
Xns Dpn» 1 and § is the probability of surviving to the point of weapon
release on pass n times the difference in damage level associated with
the Markov states { and j plus the probablility of surviving pass n
times the additinna) damage achievable on the remaining n - 1 passes.

Symbolically, {f 2 < n < N and for all 1 < { < 2Ce2,

i) [x1» Dgs fn-l,j(xn-'-l):' -

Splky) [U-U(] # sp(k)IS, G IE (R [g) 3

u" n’ne=

1<§<2ce2 (21)

*he case where U(j) < U(1) will occur among the array of com-

binations of 1 and j that are covered by equations (Z0) and (21).
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This case does not create a problem because the transition probabili-
ties, pU(kn), assoclated with all such cases are gero. This can be
verified by oxamining Figure 18,

All of the parts of equation (T1=18) have now been defined so
the maximum expected damage and the optimum policy can be determined
for the general Ep duel. The optimal policy tells the pilot how many
weapons to deliver and what mode of attack to adopt depending on the
number of passes remaining, the number of weapons remaining, the
acquisition status, and the number of hits that have been achieved.

The existence of real situstions In wvhich the pilot knows
exactly how many hits have been scored is debatable. Conversations
with experienced pilots Indicate that the pllot generally does not
know how many hits have been scored but he i{s not completely ignorant
of the effectiveness of his passes. He may be able to watch the effect
during pullout or a feilow p!iot way make observations, Further,
whether or not the target can be observed, the pilot has some fdea of
vhether he has made a good delivery. The ability of the plliot to esti-
mate salvo effectiveness Is highly variable depending on the comditious
of the attack and the nature of the target.

In some cases it may be appropriate to act as if the number of
hits scored or current damage level at each stage 1s known. In such

cases, the previously discussed methods will yleld optimal tactics,

Implications of Unobservable

Markov State Transitions

It 1is interesting to see what is Involved under the assumption

that the pilot has no information at all about the effectiveness of his
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previous passes., The simple P, duel will seirve as a vehicle for ex-
amining this matter,

' when the Markov state transitions are unobservable, tlre simple
PC duel becomes a Markov decision process with unobservable transi-
tions. Such a process was di{scussed i{n Chapter [I. The probabllity
function for the Markov state of the system, nn(l; ™o dN,---,dml),
can be determined by recursive application of the relation

; 1
‘ ‘ Tl‘n(J ;n"'dﬂi-"ﬁdn,l) - ixl nntl(l;nN’dN'."’dn-tz)pij(dn) (22)

! where the Pij (d,) are given by equation (2).
The functional equation for this duel can be developed from equations
: (8) and (9) for the simple P, duel by the same argument that was used
} to develop equation (II-21) by starting with equation (II-18), We can
- . apply this argument as follows., Since the Markov state, i, of the
* system {s only known probabilistically at each stage, the maximum n
stage return is the maximum expected value where the expectation is
taken over the random variable i. Since this maximum n stage return
depends on the initial probability function, e and it depends on the
decisions Dys===3D; 1 it is denoted fn()qv U DN,---,Dml). The
return function is indicated by g,y [X4s Dps Ena1Xno1s MysDys===20p)]
and ln the precent application to the simple PC duel, the return funce

tions are similar to equntionz (5) and (6). If n e 1,

8143 E)Zpdlgfo(xoaffNodNa'--,dl)] «00; 1<1<I;1<3<1
=103 (=1

=Sp 3 1<€1<71;)=1(23)
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Ift2<n<N,

fni an’dﬂ sfne1(Xpe 10Tysd s 'dn)]

= S5y f a1 (Ko sMsdys===1d,) 3 1€1<I31<§<1
- 1,0 HEE I ¢
- Sp 3 1<t <1;§Je1I (26)

Now, substituting the Markov state probability functions from equa~
tion (22), the Maricov state transition probabilities from equation (2),
and the return functions from equations (23) and (24) intc equation

(I1-21) gives the following functional equations for the P duel with
unobservable Markov state transitions.

Ifnm= 1,

fl(xl ,nNng,---dz) L]

1 d1
Max S m(1;my,dy,e==,d,)S PN h(4;d,)
0<dy €xp i=l 1NN T L=C-1e1 !
25)

I£2<ng<N

£n (K >TNsdys===dnyy) =

1
Max Z

T (15T dyy=m=ydpey)
0O<d, <x, tal ntirUNEN """ sV nel

re
z h(j'i;dn)STsufn.]_(xn.l’TTN;dN"")dn)
s=t
dn
*S;p 3 h(Jl;dn)] (26)
) BN IS ]
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o)

As indicated in Chapter I, the high dimensionality seems to make

equations (25) and (26) impractical to implement.

"

The prosnective difficulty of implementing equations (25) and
(26) tllustrates a far reaching difficulty in the study of military

duels and in stwulies of many other areas. The solution methods for

Markovian decision processes that are discussed in this work and by

e

Howard (17), the solution methods for stochastic games discussed by
Charnes and Schroeder (11) and by Shapley (23), and other related

solutions all provide an optimal policy or strategy that Indicates how

i to act as a function of the state of the system. This always pre-

A et i

supposes a perfect knowledge of the state of the system on the part
of the actor. The complications that we have faced in this section
are indicative of the problems that arise when perfect knowledge of

the state of the system can not be assumed.
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CHAPTER VII

MULTIPLE AIRCRAFT RAIDS

General Considerations

Discussion in previous chapters has involved the duel between
a single aircraft and a defended target. This duel has been charac-
terized by the return-versus-attrition function. Such functions were
computed in previous chapters for examples of the simple Eg duel
(Figure 5), the general Ey duel (Figure 11) and the general Pk duel
(Figure 14), A returneversus-attrition function along with the state-
ment of optimal att::k policy at each attrition level is informative,
but s generally not adequate for decision making. It offers no indica-
tion of which attrition level should be adopted. The purpase of this
chapter is to shed some light on the selection of an attrition level
for the duel, i.e., selection of the aircraft's attack policy.

The return-varsuse-attrition function represents a tradeoff
between effectiveness and cost. Our approach will be to minimize the
cost of achleving a given level of effectiveness. In this report,
cost is in terms of expected aircraft losses. The units of return
depend on the situation.

A raid is visualized as follows. A group of R aircraft departs
from tts base and penetrates cnemy area defenses to the vicinity of
the target. CEach aircraft attacks the targe* according to a prede-

termined policy. When the attack is completed, the aircraft penetrate
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enemy area defenses and return to their base, The t -~ . problems in-

clude specifying the raid size R and the attack p ... . that each air-

craft witl follow.

Using the Ey Duel as a Basis

Objective

A rald mcdel based on the expected value maximizattion of
Chapters IIl and IV would minimize the expected losses to achieve a

given expected value of the number of hits. This type of model would

be useful if the damage level or utility is a linear function of the

number of hits obtalned.

Note that not all hits need be on the same object. An exampie

target where hits are not all on the same object is a dispersed supply
depot consisting of many small supply caches defended by a common
defense system. If the aircraft were to attack a different supply
cache on each pass and If rH(dn) is interpre-ed as the expected hits
per salvo, then fN(xN) would be the maximum expected hits per duel.
Note that rH(dn) might also be interpreted as the probability of kille

Ing a supply cache versus salvo size In which case fN(XN) would be the

max imum expected caches killed per duel,

The Return-Versus«Attricion Function

In considering the return=versus-attrition function that is
produced by the models of the previous chapters, the choice is among
a mmber of differeat attack policies which will be indexed 1 < m < M.
Each attack policy corresponds to one of the values of the constraine-

ing probablility of the alrcraft surviving che duel, sy, where SNE Sg

atsil
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The return for the generalized E, duel, fn1(XNs8y)s 18 the maximum
expected hits if we assume that at the beginning of the duel, target
acquisition has not yet occurred, f.e., | = 1, For notational cone
venience, we will denote this return as uD(m). The attrition factor
will be symbolized in terms of the probability of surviving the duel.
Let SD(m) be the probability of the aircraft surviving the duel when
policy m is seclected.

Note that SD(m) ifs the actual probablility of surviving the

duel under the mth

attack policy. This may differ from the corres~
ponding constraining value Sy- Accordingly, the fipst task is to
modify the return-versus-attrition function to reflect actual proba-
bility of survival rather than constraining values. To accomplish

this, each of the M attack policies is evaluated to determine the re-
sulting value of SD(m). It is convenient to perform this evaluation
by ucsing recursive techniques.

For the generalized EH duel, the optimal policy is given by
dn:(xn,sn) and knT(xn’sn)’ to be abbreviated d, and k,, respectively.
Let P, (x,,s,) be the actual probability of survival when n passes
remain, the system is in Markov state I, X, weapons remain, the con-

straining probability of survival is s;, and the corresponding optimal

policy is followed. The actual probability of survival can be evaluated

r.cursively by using the following relationships.
Ifne1,
* *
P1q(xyy87) = Sp(ky) S,(ky) (1)

IfZSnsN,

3
BoyCarsn) = ) Pij(n) STq) SO0 Pooy jGpagasay) ()
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where x,_) is glven by transformation Juations (IV-15) and s, | 1s
given by the discrete version of the survival constraint transformation
equation (IV-34),

If the appropriate m is associated with each SN» then for given
N and x, ﬁnl(xu,su) - SD(m). Note that at pass N, i.e,, the first

pass, the system is always assumed to be in Markov state 1.

A Model for Minimiring Expected Losses

Suppose that the aircraft in the raid make stochastically inde=-
pendent, statistically identical attacks against the target. Let SA
be the probability that a given alrcraft survives the area defenses
from 1ts base to the target and suppose that the probability of sure
viving area defenses is the same on the return from the tarzet to the

base. The raid size required to realize CR expected hits is given by

Cr
R(m) = (3)
up(m) Sy

where Cp expresses the desired level of accomplishment.l The proba-

o

bility that a given aircraft does not survive the raid is given by

1 - SA2 Sp (m)

Thus, the expected value of the number of alrcraft lost per raid is

given by

Egim) = (- 5,2 sp(m)) @)

uD(m) SA

1In making numerical calculations, R(m) should take thke smallest
integer value no smaller than the value Jf the right side of equation
(3). This is important when that value is small, especiallv If it is ;
less than 1.0, We have ignored this here, !
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The minimum expected value of the number of aircraft lost per raid is

given by
2
T R . ) )
S5A | tgm<H up (@)

The minimizing value of m will be m* and R* = R(m*) will be the opti-

mum raid size.

Key assumptions of this raid umodel are as follows:
a. The same probability of surviving the area defenses applies

enroute from the base to the target and returning from the target to

the base.

b, The alrcraft in the raid fly stochastically independent,

statistically identical sorties.
c. At least R* aircraft are available.
Assumption a. could easily be relaxed but doing so would only

add to the complexity of this work without adding substantlally to its

content. To relax assumption a., we would simply distinguish between

the probablility of surviving from the base to the target and the proba-

bility of surviving the return flight. The effect on the equations in

the model would be minor and they could easily be - ~ified to reflect

the change.

Assumption b. is the most important one sinze it ifs a principle

basis of the raid model. That assumption implies that all sircraft

duels are characterized by the same functions ST(kn), S“(kn), r(dn,kn),
and Pij (kn). As was pointed out in the first sectlon of Chapter III,

the return functions are indexed according to stage, n, which means
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that the foregolng functions could be stage dependent without violat-
ing assumprion b, as long as each alrcraft's duel is characterized by
the same set of functions. This is important because the survival
probability functions,Sp(k,) and Sy(kp)s generally do depend on n.
Conversations with combat pilots indicate that attrition on the first
pass is generally much lower than attrition on later passes because of
the surprise element. This dependence can be reflected by making the
functions St(k,) and S,(k,) depend on n in the recursive calculations,
It is userul to be able to reflect this dependance without invalidating
the ralid model.

The notion that all alrcraft might make statistically identical
attacks is reinforced by the tollowing. Wwhen a group of aircraft
attack a target, the attack is often arranged so all the aircraft make
their first pass within a short period of time, i.e¢., each aircraft
gets the advantage of surprise on 1ts first pass, If a second pass is
{ntended, then {t seems reasonable tc assume that the surprise element
is no longer present for any of the alrcrafc,

A sltuation In which the aircraft attacks can he assumed to be
stochastically independent and statistically identical arises in the
alleweather operation of newer weapon systems. Since these aircraft
are designed to make attacks under bad weather conditions, coordina=-
tion of the attack is difficult and therefore in designing wsapon
systems and planning attacks, it might be assumed that when multiple
ailrcraft are involved in a raild, they operate independently.

Assumption ¢. is implied by the fact that raid size is selected

and the policy for the duel is determined without regard for the number

-
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of alrcraft avallable. 1f the selected raid size, R*, exceeds the
number of alreraft available, the objective of the rald must be relaxed,
In & raid based on the Ey duel, this can be accomplished by reducing

the value of Cg-

Numerical Example

The example of Chapter IV illustrates the application of the
model for the Ey duel. Tables 5 and 6 1llustrate the dn:(x“.s“) and
kn:(xn,sn), respectively, that resulted in that example and Figure 11
shows the return-versus-attrition function with the attrition in terms
of attrition constraint. Figure 19 shows a duplicate of the retum-
versus-attrition function from Figure 11 along with the modified fime-
tion that results when equations (1) and (2) are used to determine the
actual attrition associated with each point.

Suppose a rald is to be planned so as to minimize the exnected
losses incurred in realizing an expected value of the number of hits,
CRs» €qual to 10.0. Suppose S, = 0,995. Applying the raild model of
equation (5) to the uy(m) versus [1 - S;(m)] function shown in Figure
19, the expected value of the number of aircraft lost is minimized by
choosing the minimum point on the Ep(m) function shown in Figure 20,
The minimum point occurs at the expacted attrition level 1 =« SD(m) -
.0083, This corresponds to a constraining expected attrition value
of 1 - sy = 0,012, The optimum attack policy for this expected ateri-
tion lavel is diagrammed in Figure 10 and was discussed in Chapter 1V.

The optimal raid size given by equation (3) for this attrition level

1s 11.8 aircraft. The expected losses per raid is Lp = 0,215 aircrafe.
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Using the Py Duel as a Basis

The Return-Versus-Attrition Function

A raid model based on the Py duel can also be developed. In
the Fy duel the quantity le(xN'SN) represents the maximum probability
of achleving at least one hit glven that the atreraft survives the
area defenses from the base to the target. That probability will be
represented here by KD(m). The modified return-verisus-attrition func=-
tion for this situation relates Ky(m) to the probabilicy of not sur-

viving the duel, 1 « S,(m).

A Model for Minimizing Expected Losses

Supposc rald size, R*, and attack policy, m¥*, are tc be
selected so0 as to minimize the expected losses incurred in achleving
a probability Kp of getting at least one hit during the raid,

If R(m) aircraft make stochastically Independent, stacistically
identical attacks using policy m, the probabllity that none of the

aircraft goets a hit {s

(1 - s, kp@)*™ Lyl k 6)

2
The raid size required to realize Kp Is therefore

In(l - KR)
R(m) = N
In(l = S, Ky(m))

215 making numerical calculations, R(m) should take the small-
est integer value 1.0 smaller than the value of the right side of
equation (7). This is important when that value is small, especially
if it 18 less than 1.0. We have ignored this here,
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Since the probability of a given aircraft not surviving is given by

1l - SA2 SD(m)
the expected value of the number of alrcraft lost per raid is

Eg(m = [1 - 5,% spm)] rR(m)

ln(l - KR)
Tn(l - 5, K@) ®

« 15,2 gpm)]

Thus, the minimum expected )osses per raid is

-

1 - 5,2 Sp(m)
L, = In(1 = K;) M1 —A D (9
R R 1gmngn[1'5;\xo(“’)]

It might be assumed that if the kill is not achieved on one
raid, another raid will have to be undertaken and that raids will be
repeated until the jobt is finally done. Suppose all the raids are to
be stochastically identical and let target kill occur on the i{th ralid,

Then the expected value of the number of aircraft lost in killing the

target is
Ep(m) P 1 =1
(@) = = Eg(m) 1 Kp(1 - Kp)
o0 Ep(m)
- Eg(m Ky T (leD)(l-Kp)' = B (10)

{=0 KR

Thus, the minimum expected losses to kill the target is

N

--1_. Min E(m) -.I_’_B (ll
Kp | 1<m<H R Kp )

-~
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So, under these assumptions, the raild size and attack policy that
minimizes expected losses per rald also minimizes expected losses in-
curred in finally killing the target.

Key assumptions for this raid can be summarized as follows:

a. The same probability of surviving the area defenses ap-
plies enroute fram the base to the target and returning from the
target to the base.

b. The aircraft in the rald make stochastically independent,’
statistically identical attacks.

¢. At least R* aircraft are available.

. Statistically identical ralds are repeated until the tar-
get 13 killed at which time the raids cease. This assumption only
applies when computing Lr.

Assumptions 3. and b, are the same as the flirst two as.smptlcns
ligted in the previous sectlion and the same comments apply. Regarding
assumption c¢., if the selected rald size exceeds the number of sir-

craft availadble, the value of Kp must be reduced.

Numerical Example

The example of Chapter V {llustrates the application of the
recursive equations for the PK dudal and results in the returneversus=-
attrition function that is given in Flgure 14, Filgure 21 shows that
same return=-versus-attrition function alang with the corresponding
modified function thar is obtained by using equations (1) and (2).
This modified return-versus-attrition function indicates the max imum

probability ¢f killing the target versus the actual precbability of
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the aircraft surviving the duel, Recall from Chapter V that this
function applies when three passes and eight weapons are available
and target acquisition has not yet occurred. !

Suppose a raid i{s to be planned so as to minimize the expected
losses incurred in realizing a probability of KR a 0,9 of getting at
least one hit. Suppose SA = 0,995, Application of the raid model of
equation (9) to the Kp(m) versus [1 = Sp(m)] function plotted in
Figure 21 3s jllustrated in Figure 22. The minimum loss point occurs
at the attrition level ! = Sp(m) = 0,0083 which corresponds to an
attrition constraint value of 1 - sy » 0,012, The optimal raid size i
given by equation (7) for this attrition level is 10.3 aircraft., The
minimum expected losses per raid is LR = 0,187, The optimum attack

policy for this attrition level is diagrammed in Figure 13,

Multiple Target Raids

The raid model to be developed next visualizes an operational
planner who has a given number of identical aircraft available to be
dispatched simultaneously on alr-to-ground attack sorties. He has
avallable an array of targets that are of varying difficulty and value.
The planner must decide how many sorties to allocate to each target,
and he must designate an attack policy to be used for each of the
raids., He must deal with a tradeoff between total utility achieved
and expected losses. It is our intention here to use the individual
duel results as a basis for studying this problem.

First, consider a generalized raid model that is based on the

Ey duel. Suppose there are T targets avallable indexed t w 1,-=n T,
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To a large extent, the symbols used here are simply the symbols used
for the single target raid model with the subscript t added, Thus,
upe(m,) and Sp.(m.), respectively, are the expected hits and the
probability of aircraft survival per duel with target t when the air-
craft uses attack policy my; Syt 1s the probability of surviving the
area defenses one way enroute to or returning from target t; Rt is
the size of the raid on target t (number of alrcraft); ERt(-t) ts the
expected losses per raid on target t wvhen pollcy m, is used,

The expected hits on tsrget t when the aircraft use attack

policy z, is

Cre(mp) = Ry Spe upp(my) (12}

Let U [z] be an arbitrary function
0< U, [2]<1.0 (13)

which represents the utility of Z expected hits on target t. Assume
the urtilicies of hits on various targets are additive, and let )‘t be
the relative importance of the targets where )‘t > 0 and 51 )\t - 1,
Then for a given allocation (Rl""'RT) and set of policles (ml,---,m.r).

the utility of all raids is

_ T T
Up= £ Ap Uy [Cpetmp)] = Z A Ve (ReSaevpe (@,)] (14)

tel
We will suppose that the plarmner decides to select (ml,---,mT) and
(Rl.---,RT) 80 as to maximize the total utility subject to constraints

on the total expected losses, ERT' and the total number of ajrcraft, i‘,




o
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This can be stated symbolically as

B
T 2
- kS
Maximize PN At UC LRC SAt th(mt)] (15) }
tel E
subject to §
T - 3
& RS R (16) 3
twl =z
§
T T - 2 -
L Epe(m) = & R, [1 -85, Spemd] < Epp (17)
te=l twl
Re 2 0 ; 1gesT (18)
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The solution to this problem might be used to present the operational
planner with a plot of ﬁ‘[‘ versus ERT’ Corresponding to each point on 5‘;
this curve is an optimal set of attack policies, (ml*,---,mT*) and an

optimal aircraft allocation (Rl*,-—-,RT*). I+ would be up to the

operational planner to decide which polnt on the curve constitutes the

e+ e AT o € s A

most desirable operating point.

Note that there is an alternative to the foregoing procedure.

It might also seem reasonable to minimize the total expected losses,

ERT’ subject to a comstraint on the number of aircraft available, ET,

and a requirement on the total utilicy,

This procedure would not

necessarily utilize i‘l‘ afrcraft {f the required total utility {s set

"low" and there may be no feasible solution if the required total

utility is set "high."

selected for development.
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For these reasons, the previous procedure is
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The problem stated in equations (15) through (18) can be solved

by recursive analysis, It will be treated as a T stage prcblem wlth
stages 1 < ¢t < T. The symbol Et will represent the numbe: of aircraft

| allotted to targets l,-~~,t. The symbol ERt will represent t e ex-

pected losses in attacking targets 1l,---,t. The s’ vector will be
X, = (Et’ ERt) and the decision vector will be D, 1t). The
function ft(xt) will be the maximum utility achieval. 1 attacks on

targets l,---,t when X, is the state of the system at stage t.

The transformation equations are

Reop = Re = Re (19)

Gt e

ER,te1 = Epe = Epe (20)

Appropriate sets can be deflined

i ! .

j S_ { Rt 0 SR, < RT} 21) i

: Re

!

th(Rt) = { Re: OS R < Rt} 22)

§ -

i S_ = {ERt: 0 < Epe € Egp (23)

; Ege '

SmeEResRe) = {‘“c‘ Re [1 = Ske Spe@p)] < ERt} (24)

where Re¢, Ry, amd m. are integers, ER: takes only selected discrete
values, and ERT i1s an arbitrary limiting value. Note that SR (Et)
t

depends on Rt and Smt(ERT,Rt) cdepends on Epe and R.. Equation (24)

[
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says that a mode of atrack for target t is chosen from among all modes
for which the expectad losses in attacking target t is not greater

than the expected losses allowed for attacking all of the targets

lye==,t.

The return functions are

sl(xl.Dl) - l\l Ul ERI SAl uDl(ml)] H t= 1 (25)

and

8¢ [XpsDpafra1Xpap)] = Ay Uy [ReSppupem)] ¢ £ X, )

2¢tsT (26)

So the functional equations can now be written

fl(xl) - Max _ {)\1 Ul ERI SAl llnl(ml)] } ; tel
Ry € SRI(RI)

E 27
my € Sy, BypoRy) )

If we make the assumption that U, [2] is a non decreasing function of

2, then

£1(X1) = Ay Max {Ul (F1 sa1 "m(ﬂu)]} i te=l
my € S (Eg »Rp)

(28)
and
£ .(X,) = Max _ { Ae U [Re S,e “Dt:(ml:)J . ft-l(xt-l)}
Ry € th(Rt)
me€ Sy, (EpesRe) i 2ge<T (29

Equations (28) and (29) can be applied recursively to solve the probe

lem stated in equations (15) through (18).
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A multiple target model based on the Py duel can be developed
in a manner similar to the foregoing except that where the foregoelng
deals with expected hits, we now are interested in probablility of
kill. Thus, analogous to equation (12), we now express the proba-

bility of killing target t with a rald of R, aircraft each using

policy m,.

R
Kpe(®me) = [1 = Spe Kpe(me)] (39

The quantity KDt(mt) is the probablility of killing target t per duel
when policy m_ is used. Where the utility function U, [CRt(mt)] or
U, ERc Sat th(mt)] appear in equations (14), (15), and (25) through

(29), 1t is replaced by Uf (K, (m.)].

It would be a simple extension of these models to develop a
mixed generalited rald model where some of the target attacks wauld
be describable as EH duels while other target attacks would be
describable as Pk duels, It would be necessary only to use the
appropriate U, [ . ] or Uf [ . ] for each target In equitions (28)
and (29),

Special constraints such as minimum required R, ov sDt(mt) for
various targets can easily be included by simply revislig the sets

appropriately.

Multiple Aircraft Raid Model Based on the Ep Duel

A reasonable extension of the work that is discussed in this
chapter would invelve using the Ep duel that was developed in Chapter

Y1 as a basis for a multiple aircraft, single target raid model,
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Such a model is concelvable but it would be considerably more complex

than the raid models that are discussed in this chapter.

In the Ey duel, the return is in terms of the expected value of
the number of hits which implies that the ajrcraft's utility for the

duel is linearly proportional to the number of hits. Accordingly, the

optimum policy for a given duel is that policy which maximizes the

expected hits subject to suitable constraints, Once having determined

the optimum policy for a single duel, we can make the assumption that

all aircraft make stochastically independent, statistically identical

attacks so that the return from the raild is directly proportloned to

the raid stize, Thus, we have a simple way of determining the raid

size required for a given level of return. The foregoing is the basis

of the EH duel raid model.

In the Py duel, the return ls the probability of at least one

hit. The optimum policy for each aircraft in a raid is the policy

that maximizes the alrcraft's probablility of getting at least one hit

subject to suitable constraints. Once this policy is determined, we

can find a simple relationship between return and raid size, R. If

ail of the aircraft make stochastically independent, statisticaily

identical attacks, then the probability of the targer not being hit at
least once is the quantity one minus the probability of at least one

hit per aircraft raised to the power R. This provides a simple means

of determining the number of afircraft required to achieve a gliven re-
turn and thus we have the basis of the Pg duel raid model.

No such simple relationships as those discussed above seem to

exist for the E; duel. Since the return may be a nonlinear function
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of the number of hits, 1t is not generally appropriate to maximize
the expected value of the numler of hits for an Ep duel, The opti=-
mum policy must reflect the nonlinear character of the utility as a
function of the number of hits. Because of the nonllnearity of the
utility function, the return associated with hits made by a given
alrcraft depends on the number of hits made by the other aircraft in
the raid,

To see this, suppose two aircraft are to make successive at-
tacks on a target such that the first aircraft completes all of its
passes before the second alrcraft begins its attack. The character

of the utility function that governs the second atrcraft's attack

depends on the outcome of the {irst aircraft's attack, i.e., the point

at which the second alrcraft "enters" the overall utilitv function

depends on the number of hits achieved by the first aircraft. This

i oot BHEL) - mt i et IR At A o
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effect !s still present but in a more complex way when the two aircraft
alrernate in making their passes and also when there are more than two
alrcraft. Because of this inherent interaction among the Ep duels,

there is apparently no rigorous way to develop the optimum policv for

p——.

a single >} duel and then use this policy in dealing with multiple

alrcraft raids,

b o -




e ————

— ——

ey T

T

.

PPN Mol | I Rt el

-

o PO AL

Y

oy

B

CHAPTER VIII
USER UNCERTAINTY

General

The discussion in previous chapters and in much of operatfons

research centers s on finding the optimum. Since we have now de=

veloped maximizing techniques for at least some air-to-ground attack
situations, some degree of satisfaction should have been attained,
There 1is, indeed, some satisfaction in contemplating a maximizing

solution but as is often the case, overcoming cne obstacle only re-

veals the greater challenges that lie beyond.

The techniques that have been discussed lead to solutions that

are valld for s specific set of input values. Flgure 23 summarizes

these Inputs as they apply to the single target raid models and indi-

cates the outputs that result.

In making actual decisions, there is invariably some degree of

uncertalnty associated with the values of input parameters. A solu-

tion that applies for only one set of input values mav be useful as a
reference for judging the effect of other input values or might be

applied directly if one is willing to ignore uncertainty., In general,

however, a systematic, quantitative approach is desirable to make the

most rational decision based on the best available information.
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The Effects c¢f Uncertainty

The approach to be followed In dealing with uncercainty is de-
signed to answer the question: What will happen {f the input param-
eters take values other than the ones upon which the optimizastion is
based?

To answer this questlon it is first necessary %o characterize

the available information about the values that the input parameters

might take. The specification of intervals of possible parameter
variation is one means of reflecting the available information about
these parameters. No indication is to be included as to how the input
parameter values might varv within their respective intervals. Accord-
inglv, this will be referred to as constrained uncertainty.

Let W be a vector whose components consist of the svstem inputs.
Let the most optimistic values and the most pessimistic values of the
input parameters be represented by the vectors W, and wp, respectivelv.

Now define a such that
w-(l-a)wpvauo ; 0<a <! (1)

Thus, ¥ 1s a convex combination of the vectors wp and W,. As the value
of @ varles from O to i, all of the input parameters varv in unison
from their most pessimistic value to their most optimistic value,

It is also possible to apply the foregoing technique to Indie
vidual input parameters. Suppcse the components of W, Wo Hp are

Vie Yogs Ypys respectively, where 1 < j < J, Then a set of a, values

might be defined such that
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When @y = a; = ~-- = Qy, then equation (2) 1s equivalent to equation
(1). As the individual aj's are varied independently over their pos-
sible combinations of values, the corresponding input parameters varv
over their posslble combinations of values.

This method offers the following features which combine to pro-
vide a systematic practical wav of studving the implications of un=-
certainty:

1. It tends to place all input variables on a common scale
with respect to their range of uncertainty,

2. It polarizes the inputs with respect to their optimistic
and pessimistic directions of variaticn, l.e,, for anv input parameter,

increasing the corresponding uj results in the parameter takine a more

optimistic value.

3. It allows expression of basic inputs in non probabilistic
terms.

If the method is to be practical, the results must be compre-
hendable to the dectision maker. This consideration provides a strong
argument for emphaslizing the use of equation (1), i.e., varving the !
input parameter values in unison. By doing this, the extremes of
system performance are included, some indication of performance at
non-g¢xtreme input values is obtained, and the results can be expressed

in relatively simple form. Accordingly, the balance of the discussion

is concerned with the use of equation (1).
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A Basis for Tactlics Selection

Suppose that having specified w, and Vs the tactic that
optimizes system performarce is chosen based on the iInput parameter

values

Wee (1Lea') W, ea’ W, 3)

1t would be possible to determine a liniting envelope of system per-
formance by letting a' vary from 0 to 1.0 and optimizing system per-
formance for each different value of a‘. As the value of a' varies,
the optimizing tactic changes, Unfortunately, only one tactic can be
used in a given situation. Of all the tactics that are forthcoming,
as a' varles from 0 to 1.0, there is presumablv one that is at least
as desirable as any other, Corresponding to this tactic¢ is at least
one value of a*. Actuallv, there is generally a range of values of
a' corresponding to each tactic because a' is a continuous variable
and changes of optimum tactics occur in a discrete manner provided
ocnly pure tactics are allowed.1

To judge the desirabilitv of the tactic corresponding fro a
given value of o', we will examine what would happen {f the input
parameter values that are actuallv realized differ from the values
W' corresponding toa'. The mechanism for accomplishing this 1is to
associate the realized values of input parameters with the control

parameter a according to equation (1).

—

lMixed tactics are concelvable here in the same sense that
mixed strategles occur in game theory. Only pure tactics are
considered.
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let F{o;a') represent a measure of system performance as a
function of the realized input values a when tactics optimization is
based on the nominal input values corresponding toa'. A plot of
Fla;a') versus a for given q' might be considered as a profile of the
performance that results from adopting the tactlic corresponding to a'.

To illustrate the application of the foregoing technique,
suppose F(a;a') represents the cost of doing a fixed job ir a given
situation. The analysis might result in the performance profiles that
appear in Figure 24 for three different values of a'. If a' = G,1,
curve a represents the profile of system performance as the input
parameters vary in unison through their range. Curves b and ¢ give
similar information for a' = 0.5 and a' = (.9, respectively. This
display presents to the decision maker a highly digested summary of
the implications of uncertainty and his options to control the outcome.

We can analyze Figure 24 in terms of the principles of choice
under uncertaincy (19). The minimax principle leads to selecting the
a' that minimizes the cost when a = 0, Assuming that all of the a
values are equally likely and selecting the a' that gives minimum
expected cost is an application of the principle of insufficient
reason., Minimizing the maximum difference between the selected curve
and the limiting performance envelope, F(aja) is an application of
Savage's principle of minimax regret. Finally, the display itself is
in keeping with the Hurwicz pessimisme-optimism principle.

In the alr-to-ground attack problem and undoubtedly in many
other problems, the system performance, F(@;a') is not & scalar quan-

tity but must be considered as a vector. For a given a', botn return
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arnd cost vary as a varies. This is unfortunate because it complicates
the task of the decision maker tn assimilating the results, but it in

no way changes the basic idea. Techniques for displaying and inter-

preting results when F(ax;a') is two dimensional will be discussed in

relation to the numerjcal examples,

CCSsT

0 ol 05 0.9 1.0

Fig. 24.~=Illustrative System Performance Profiles.
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Treating Uncertainty in the Ey Duel Raid Model

Consider now the EH duel of Chapter IV and the corresponding

- ,ulwv,m'm’mpﬂmuw B U LN

raid model of Chapter VII. The systemn performance which has been

represented by F(a;a') is characterized by two output quantities,

Let Lkou;a') be the expected losses per raid and let CRGa;a') be the

expected hits per raid. These two functions must be evaluated for

NIRRT TN T TTRTTT s [Ng] ALY RSNV A NI P

various values of a'. In this discussion q is assocliated with realized

fnput values and o' is associated with nominal input values where the

tactics optimization is based on the nominal input values.

sl s il

The number of alrcraft per raid 1s given by equation (V[I-3)

which becomes

R@') = ———& . ) ;
uD(a sat') SA(a )

where uDGJ;a') is expected hits per duel as a function of o for glven

a's SAﬁz) is the probability of surviving area defenses one way as a

v e

function of a. Equation (4) simply makes explicit the fact that the

BT

raid size is determined entirely from nominal values and is indepen-

dent of a.

The expected losses realized per raid is given by

Lp@sa’) = R@') [ 1 - sAz(a) sp@sa’)] (5) -

e 12— AT

where Sp(asa’) is the probability of the aircraft surviving the duel

as a function of g for given a'. The expected hits realized per raid ;

é
i
5
3
2
=3

is given by
Crlasa’) = R@') Spa) wplasar) (6)

LR P
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In evaluating equations (5) and (6) as a function of q, the

quantity SA(o.) is an independent input parameter whose value ranges
from a pessimistic limit to an optimistic limlt in accordance with

the value of a. All other input parameter values are also controlled

by @ and thelr effect is reflected by the values of uD(a.;a.‘) and

SD((I;G.'), the expected hits per duel and the alrcraft survival proba-

bility per duel, respectively.

The functional equations (IVe27) and (IV-29) for the Ey duel
can be adapted to evaluate up(aia'). Let d,'u(xn,sn;a') and
k,.'u(xn,sn;a') be the maximlzing attack policy assoclated with a'. In
the following equations, these will be abbreviated d; and k;1 respec-

tivelv. From equation (IV-27), {f ne 1l and 1 < { < 3,
£14(X1s87,@5a") = pyalky, @) Splky, @) rylxy,ky, a) (¢)]
and from equation (1V-29), iIf 2 <n< Nand 1 <1< 3,

2
P o Ss03a*) = Splkd,a) S, (k1,a) Z Py (kg @)
j=1
© L1, noSpayr @507) @ Splkp, @) pralkp, a) (8)
- )
o Lrgdhs kpy @) & Sy(khy @) T g 3(kn=dfys, psasa’)]

where p”(k,".a), Sp(kp, a), ry(x sk, a), and Sy(kp, @) correspond to

Pij(kn)’ Sp(kg)s ry(xnskg), and S, (k,) except that they depend on a.2

1The "A" 1s used to distinguish the function /f\n (XpsSnsa3a’)
from the function f,i(xp,sn) that has appeared previously. Note that
these functlons are identical only ifa = a’'.
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Since the duel starts with n= N, I = 1, Xp = XNy and 3, = sy,

the expected hits per duel as a function of a for given a' is glven

by
up(aa’) = ?m(xu. sNs Q30') &)

In all calculations, s;_y s related to s, by the transforma-
tion relation (IV-34) which accounts for the discrete nature of the
calculations. Note that the survival probabilities to be used in
equation (IV-34) are Sq(ky, a') and S;,(k}, @'). This 1s because when
the pilot carries out a policy, his actions are based on his nominal
survival preobabilities, not on the actual survival probabilities since
he doesn't know the actual values.

To evaluate SD(a;a') we use the same method that was used in
Chapter VII to evaluate the actual survival probability. From equa-

tions (VII-1) and (VI1-2), ifne 1,
pl!(xlg 31' G;G.') o ST(ki' a) su(ki’ 0-) (10)

and {If 2 <n <N

pnl(xn’ L) a;a’) = (11)

3

x pij (d;\ﬂ) ST(k"‘,a) Su(k:‘,a) pn_l’jocn_l,sn_l,a;a')
i=1

Finally,

Sp@sa’) = le(xN’ Sy aa') 12)
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Treating Uncertainty in the P Duel Raid Model

Turning now to the Fy duel of Chapter V, the svstem performance
can be characterized by the expected losses per raid and the proba=-
bility of killing the target per raid, These quantities will be repre-
sented by Lplasa') and Kg(a;a'), respectively.

The optime® r.id size based on the nominal input values is given

by che following al-otion of equation (V°7=7)

In(1-Kg)

R (@') =
In [1-5,@') Kpla'sa')]

(13)

where KD(a;a') is the probability of kill per duel as a function of a,

for given a'. The probability of killing the target per rald as a func-

tion of a for given a' is given by

R(a')

Ka@ia') = 1 - [1 - 5,@) Ky@sa)R®" (14)
and the expected losses per rald as a function of ¢¢ for given a' is
gliven by

Lpia’) = [1 - 5,26 sp@;a*)] R@*) (15)

vhere Sp(asa') is the prolability of the aircraft surviving the duel

as a function of a for given a'.

An adaption of tha functional equations for the Pl( duel will

serve to evaluate Kp(aja'). From equatlon (V-24), if n = 1 and for

1<1<3,

/t\u(xl, Sl, (I;G.') . pij(ki’ a) ST(ki’ a) I'K(xlg ki, a) (16)
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and from equation (V-26) 1f 2 ¢ n< N and for all 1 <1 <3,
A 2
fnl(]'(n’ Spo aa') = ST(kr'l’ a) Su(kr'l’ ® jEI P”(k!" » @)
€3 (X.y S asa') + S.(k', a) (k', )
* "n=ly,i*'n® “n-l1* T ™ n? Pi3Kpy
o [re@ay, k2, a) + 5 (!, a) (1 = r(d, kpy ad)
S .
e Foe1, %0 = 4R Spops aza')] an
Finally,
1 ] ~ ary ¥
KD(a;a ) Ld le(xN’ SN’ [0 2461 ) (18)
The survival probability SD(a;a') can be evaluated by using equations

(10), (11), and (12). Equation (IV-34) relates s _ ) to sp.

Numerical Example: Tactics Selection

Using the EH Duel Raid Model

The implications of user uncertainty with respect to the Ey

duel raid model will now be illustrated by using the example problem

that was introduced in Chapter IV and further discussed in Chapter VII.

The nominal input values relating to acquisition, alrcraft survival,
and weapon effectiveness are unchanged from the previous example, but

a range of uncertainty will now be assoclated with each of the input

quantities. The optimistic and pessimistic value of each parameter is

chosen so that the parameter values used in the example from Chapters

IV and VII correspond to o' = 0.5.

e —— s
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Figure 25 shows the acquisition prcbabilities and thelr range
of uncertainty, Figure 26 shows the survival probabilities and their
range of uncertainty. Figure 27 shows the salvo effectiveness func-
tions with the range of uncertaintv {llustrated for mode of attack
number four, The optimistic and pessimistic limits for the salvo
effectiveness functions were generated by respectively increasing and
decreasing the value of the multiplier %% by ten per cent of the
nominal value.

The modes of attack might be visualized as representing dif-
ferent aircraft attack speeds, Mode one has a higher salvo effective~
ness and a lower survival probability which might result from lower
speed. lode four has a lower salvo effectiveness and higher survivel
probability which might result from higher speed of attack. 1t appears
reasonable to assume that the acquisition probabilities do not devend
on the atrack speed (13,14,24).

Evaluation of equations (5) and (6) for the values a' = 0.0,

a' = 0.5 and a' = 1.0 produces the profiles of svstem performance that
are shown in Figure 28.

With these profiles before him, the operational planner migzht
first observe that of the three values of ', the moderate philosophy
represented by a' = 0.5 shows lower expected losses, L(a;a'), for all
values of q than does either of the other values of ', Looking fure
ther, he notes that a' = 0.5 has higher expected hits, CRGa;a'). for
all values of a than does g’ = 1.0, soa’' = 1,0 is clearly dominated
by a' = 0.5, On the other hand, a' = 0,0 gives higher losses but it

also gives more hits so the choice between a' = 0,0 and a' = 0.5 is

C e Sl il .
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not so clear. Since the goal of the rald is to make ten hits, then
the cost of adopting a' = 0.0 may not be justified since that philoso-
phy gives ten or more expected hits for all values of a. It might be
appropriate to plot profiles for some other values of @ to further
flluminate the decision.

It is interesting in general and might be of particular interest
to the operational planner to examine the attack policies that are
represented by the three values of a'. Figures 29, 30, and 31 are
diagrams of the attack policies for q* » 0.5, a' = 0.0, and a* = 1,0,
respectively. In this problem the operational planner would be
particularly interested in comparing Figures 29 and 30, Note that for
a* » 0,5 (Figure 29) the minimum number of passes is three, the maxi-
mum number of passes is four, ard dg = 3, Fora' = 0.0 (Figurs 30)
the maximum number of passes is four and d; = 4, Thus, 0.' = 0,0 leads
to a more conservative policy than does a' = 0.5 as would be expected,
When ' = 1.0, on the other hand, the minimum number of passes is five,
thus a' = 1.0 is the least conservative policy as would be expected.
Also, a' = 1.0 gives k: « 1 for all cases since this 1s the most effece
tive mode and there is assumed to be no assoclated attrition penalty.

By reflecting on these results, we can perhaps get some idea of
vhy they occur. Taking a' = 0.5 as a base case, lowering a‘ to 0.0
results in higher d; because of the decreased survival probabilities
at @' = 0,0. If rhe probability of survival is less, anv weapons not
delivered on a given pass are less likely to be delivered, thus the
tendency is to deliver the weapons earlier in the duel. 5till taking

a' = 0.5 as a baso case, the values of d, are generally lower when
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a* = 1.0 as shown in Figure 31. This {s because the survival proba-
bilittes are all equal to 1.0 when @' = 1.0 which mears that weapons

not delivered on the current pass have just as much chance of being

delivered on a future pass. There is no discounting since (STSu) -

1.0. 1In all states of Figure 31, the remaining weapons are¢ allocated
so they are, as nearly as pogsible, evenly distributed among the re-

maining passes., Note in Flgure 31 that iy « 1 for all n. This is

because mode 1 gives the highest salvo effectiveness and there 1s no

attrizion penalty.

Numerical Example: Tactics Selection

Using the Py Duel Raid Model

To illustrate the implications of user uncertainty with respect
to the Fy duel rald model, we will use the example that was first in-
troduced in Chapter V amd was further discussed in Chapter VII. The
acquisfition probabilities are given in Figure 25, and the survival

probabilities are given in Figure 26. The salvo effectiveness func-

tions are simflar to those given in Figure 27 except that the optimis-
tic and pegsimistic limits for the multiplier \{V are now 0.275 and
0.225, respectively. The values of @ are unchanged. The salvo effece
tiveness function is Interpreted here as the probability of kill
versus salvo slize.

Evaluation of equations (14) and (15) for the values ¢' =« 0,0,
a' = 0.5, and @' = 1,0 produces the profiles of system performance
that are shown in Figure 32, These curves are very similar to those

given in Figure 28 for the Ey duel raid model and the same sort of

commants apply.

Wit 970
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Numerical Example: Revised Survival Probabilities

The system performance profiles in Figures 28 and 32 have the
feature that when a = 1.0, LR(a;a') = 0, This is because all survival
probabilities were set equal to 1.0 at their optimistic limic. It is
interesting to see what happens when this is not the case. Suppose
that in the Ey duel example, all the inputs are unchanged excert that
the optimistic limit for Sy and 5, is lowered from 1.0 to 0,9975.

This results in the modified probability of survival inputs that are
shown in Figure 33. The resulting svstem performance profiles are
shown in Figure 34.

Comparing Figure 34 with Figure 28, the first observation is
that losses no longer go ro zero wvhen a = 1.0. This reflects the re-
duced optimistic values of ST ard S ;. The values taken atqa = 0.0 in
Figures 34 and 28 are essentially the same but the values taken at
a = 1.0 have changed from 0.0 in such a way that the expected loss
curves now cross. In Figure 28, the tactic for a* = 1.0 is clearly
dominated by the tactic for a' = 0.5, while ir Figure 34, there is a
part of the range of a values where the expected losses are lower when
a' » 1.0, Note, however, that for all values of g, the expected hits
are much lower for a' = 1,0 than for a' = 0.5 in both figures. 1t is
not clear which of the three tactics a given decision maker might
choose and it is possible that he would like to see results for more
values of a'. Nevertheless, the result: that have been presented have

shed some light on the implications of uicectainty.
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Numerical Example: A Designer's Decision g

The previous examples have dealt with the user's decision,

i.e., cholce of the best tactic for a glven system in a given situa-

tion. We can begin to consider the designer's decision bv way of an

example, Suppose the system of the preceding example is taken as a

ke il a0

standard system which is to be modified to provide improved perfor-

mance in that particnular situation. Suppose the following alternative

b Wi

designs are avallable where A represents the standard system while B,
C, and D represent equally costly modifications,
A: standard system
. B: provide a new sensor: set P(Ao) - P(Al) =1.0
)

and P(A D) = P(A;D) = the standard svstem values

for P(AID) (see Figure 25)

e, A DU GG LTI i, 1

C: 1increased weapon load: XN = 12 (xN = 8 in the

i

]

1

!

!

4

! standard system)

|

‘ ' D: 1improved first pass survival probability:

set Sp(kp) = s, (k) = 1.0 on the first pass for

TN R B S L

st et
PO —

all kp- %
. i When comparing alternatives, we should in principle examine all %
' I i
& :
E § combinations of alternative and value of a'. The result would be the -
o
E % most desirable combination of alternative and tactic. Since the cone
: i N
i § siderations that are involved are largely subjective, it is difficult :
! % to give general rules that would lead to the best decision in a particu-
_ E lar situation, Accordingly, it seems reasonable for this example, and
i_ E perhaps as a starting point for manv actual evaluations, to compare
.t alternatives with a' set at a nominal value, say a' « 0.5.
i ;
3
|
i_
J
|
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Thus, each alternative 1s evaluated using 1ts own best tactic for the
nominal value of input parameters.

Filgure 35 shows the profiles of system performance that result
for the various alternatives in this example when a' e 0.5. These
profiles display the effects of uncertainty and the decision maker's
options in controlling the outcome. We cannot say how a decislon maker
would react when confronted by these results, but we can point out some

relevant considerations.

First, it is interesting to study the seemingly trivial question
of whether or not each alternative actually provides an improvement
over the standard system, First, observe that B, C, and D all show
lowver expected losses than does A for all ¢. Next, note that C's
profile of expected hits {is essentially the same as that of A so we
might conclude that C's performance is clearly better than A's., 1If
small vartation of expented hits is a geal, then B's expected hits
profile shows less variation than that of A, therefore, B would be pre-
ferred o A. On the other hand, I} shows more varlation of expected
hits than does A and {t is concelvable that D would not be preferred
to A. This is & very interesting possibillity since if uncertainty is
entirely suppressed and we compare alrernatives on the basis that
a=a' = 0,5, D would ¢clearly be preferred over A, B, and C. Thic
suggests that if variatlion of expected hits is of primary importance,
then the tactics optimization has been based on an irconsistent cri-
terion. If so, then the problem must be refcrmulated.

Assume that varfaiion of expected hits 1s not so important as

to force a reformuiation of the problem, i.e., alternative D is
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Fig. 35.--Profiles of system performance: alternate system designs.
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preferred to alternative A. Even with this assumption, variation of
expected hits may be important enough to influence the cholce among

alternatives B, C, and D. The chuice in this example might in fact

be viewed as a tradeoff betweer. minimizing expected losses and mini-
mizing the variation of expected hits. To minimize expected losses,
alternative D would be selected; alternative B minimizes the varia-

tion of cxpected hits. iIn this particular case, alternative ¢ might
represent a reasonable compromise.

The main point of the foregoing discussion is that if uncer-
tainty had been completely suppressed, alternative D would have been
chosen without hesitation, When uncertainty was considered, a new
realm of considerations was revealed. Alternative D may no longer be

selected. It may even be decided to reformulate the problem. This mav

or mav not be reason to want to quantitatively display the effects of
uncertainty, depending on one's point of view, It does, however,
filustrate the importance of uncertainty and it shows how the effects
of uncertainty can be displaved.

Another interesting point can be made by qualitatively compar-
ing Figure 35 with Figure 34. Alternative A of Figure 35 corresponds
toa' « 0.5 in Figure 34. As a genera. observation from comparing
these figures, the choice of a' seems to be of comparable importance
with the choice of system design. Among the designs and values of a'
that were considered, the variation in outcomes caused by changing
the design with fixed a' as in Figure 35 seems to be no greater tharn
the varlation of outcomes that is caused by changing the value of a*

while keeping the same design as in Figure 34,
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The importance of tactics can be further emphasized by the
following extension of the example. Much current policv for afir-to-
grounc¢ attack establishes a limit of one pass per sortie. This policy
would be justified if area defenses were negligible and first pass
attrition was small, i.e., the desired level of effectiveness could be
achieved by simply Increasing the raid size and the losses would be
small 1f only one pass is made per aircraft. Let us see what would
happen if a limit cf cne pass per sortie (N=1) is Imposed in the
present example where area attrition is not negligible and the enemy
has sufficient warning so that first pass attrition is the same as the
attrition on later pasces. The resulting .rofiles of system peiioe-
mance are shown in Figure 36 for alternatives A, B, and C. For the
standard svstem, alternative A, the expected losses have roughly
doubled and the varliation of expected hits has greatlv Increased,

Suppose as a further extension of the example, svystem dasign
alternatives B and C are to be compared under the restriction of cne
pass per sortie. The curves for B and C in Figure 36 are applicable
for this comparison. On this basis, B shows considerably lower losses
and less variation of expected hits than does C. In Figure 35 where

N = 5, the choice between B and C is not so clesr,
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CHAPTER IX

SUMMARY REMARKS

What Has Been Accomplished?

According to the general problem statement given at the be«
ginning of Chapter I, we set out to "provide a systematic method for
making the best use of available information'" relating to "a ratfonal ?-
selection of tactics for alr-to-ground attack when faced by uncer~
tainty." The result was to be a "quantitative theoretical structure.”

The effort to achieve these goals led first to the discussion

of baslic recursive analvsis techniques. Some general recursive rela-

tionships were developed in Chapter 11.
It was then shown in subsequent chapters how these recursive

relatlionships can be appiiea to solve progressively more complex

1 1 ot AR 5 ma s dre

duels. Discussion of these duels started in Chapter III with the sim-
plest case where we sought the allocation of weapons among passes SO
as to maximize the expected value of the number of hits, Probabilis-
tic target acquisition and multiple modes of attack were added in
Chapter IV, In Chapter V the recursive relationships wers applied to
a duel where the objective was to maximize the probability of at least
one hit subject to suitable constraints, In Chapter VI we discussed
the more general case where an aspiration level of C hits was estabe

lished and finally the most general duel was solved in which the
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damage level or utility achleved is an arbitrary functlion of the
number of hlits.

1t was observed that in all of these duels, simply maximizing
the return is not sufficlient. The cost must be considered, Accord-
fngly, the maximized return for a duel was expressed as a function of
the constraining probability of alrcraft survival. For convenience,
we generally expressed this relationship in terms of attrition rate
rather than survival probability and the result was a ''returnsversuse
attrition function" that characterizes the duel. To decide which
point on the return-versus-attrition function is the best operating
point, multiple aircraft raid moduls were developed in Chapter VII for
both single and multiple target raids.

Finaily, in Chapter VIII the effects of user uncertainty were
considered and a method was discussed for presenting to the decision
maker a displav of highly digested information as to the effects of
uncertalnty and his options to control the outcome,

It is a matter of qualitative judgment as to whether the probe
lem objectives have been achieved, but it certainly seems that progress
has been made. A theoretical structure has been developed which pro-
vides a systematic way of using available information., Uncertainty
has been treated and practical optimizing methods have been developed.

Throughout this discussion, the aim has bcen to develop methods
that can actually be used to analyze real problems, ‘e have attempted
notr to lose sight of practical application for the sake of mathematical
convenience, There are essentially no results that depend on a pecu=

liarity of 2 functional form. For the most part, the methods used will
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accommod~te arbitrary fuactional torms, e.g., salve eficctjveness can

take any value within the Jimits of its definitior. The nethod for

dealing with user uncertaintv involves only elementary mathumatics,

but it seems to be practical. It mives vzeful resulis without making
burdensome demands tor input data, i.e., no knowledge uf probabilitv
theorv is required to bound the values of input variables, Consider- .

: able thought has been devoted to the selectior. of e¢riteria. The o
emphasis has been on {inding adequate solution meLhods lLzsed on real-
istic criteria. Th}- emphasis has led tv» the considesration of a
variety of duels, multir'e alrcraft ralds, mulvip)- targes ralds, and
ro user uncertainty, whereas we might have dwelt on firding increas-
inglv elegant solution methods for some problem such as maximizing the
expected value of the numbier of hits In a particular alrcraft versus
target duel.

In discussing the motivation for tis studv, we identified a

"user's decision problem” and a "designer's decision problem.” The

results that have been obtained seem to show considerable promise for

stulying users' decisions, These rcsults should also be useful In

e

studying the designer's decision but we are left with the dilemma

that is discussed in the following section,

-t -

A Perplexing Problem

A major unsolved problem relates to the effect of user uncers-

tainty on desim selection. For a given situation which involves user

AL e e
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uncertainty tl.c methods that have been presented in this report can be

emploved. They serve to determine and portrav to the decision maker




AR A e L

-

e TAEL 1y B TR g Y it

- e . - s P A

A ————— e

186

the effects of uncertajinty and his options to control system per-
formance in that situation. Both tactics selection and design selece
tion can be studied by using these methods,

Unfortunately, in comparing system designs, we must generally
consider not just one situation, but an array of situations. In
accordance with the introductory discussion, the application of de=-
cision theory requires numerical values that represent the utilityv of
each desfgn in each of the situations. The best we have been able to
do is to quantitatively display the effects of uncertaintv. This pro=
vides & basis for the decision maker to choose among alternativaes in
a given situation but it does not provide the desired utility measure,

How then is the decision maker to make his cholce when many
sftuations are involved? One course of action is to limit the number
of blocks in the decision matrix and present a complete analysis in-
cluding the effects of user uncertainty for each block. If the de-
cision matrix is sufficiertly small, perhaps the decisicn maker can
comprehend the meaning of such results and make a rational decision
accordingly. This approach may at leas: prevent him from makirg a
completely irrational decision.

An alternative is to entirely suppress the user's uncertainty
when making design comparisons (this is what is usually done}. The
techniques discussed in this report allow us to optimize tactics in
each block if user's uncertainty is ignored. This accomplishment is
well worthwhile, It reduces our vulnerability to the possibility that
tactics are at least as important as system design. Non optimal tac=

tics can be useless or even misleading as a basis for comparing desiyg .s.




APPENDIX A

DEVELOPING RECURSIVE RELATIONSHIPS FROM

A NON RECURSIVE PROBLEM STATEMENT

In this appendix we will develop a non recursive statement of
the most general probiem that is treated in Chapter IV, i.e., the EH
duel., The recursive relationships, equations 1V-27 and IV-28, which
are the principal results of Chapter IV, will then be developed from

the non recursive statement of the problem by using a method similar

to that of Neuhauser (22), It will also be indicated how the approach

that 1s followed in this appendix can be applied to the most general
problem that is treated in Chapter V, i.e., the PK duel.
In the general E, duel, we seek to maximize the expected value

- of the number of hits achlieved in a duel that includes probabilistic
i target acquisition and multiple modes of attack subject to constraints
on the number of passes, N, the nuLber of weapons avallable, Xye and
the probability of the aircraft surviving the duel, sy
( The notation used in this appendix is the same az that used in
the main body of this work with the following modifications. Let jn
denote the Markov state of the system at stage n - 1., Thus the vector

(INs» 3IN-1s ===» J1) denotes one of the possible sequences of Markov

state transitions and cthe probability of that sequence occurring is

N

mop
nel jnol’n
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where pjnoljn(kn) is the probavilicy that the system will be in state
Jn at stage ne=l given that the system is in state Jpey St stage n.

This transition probability depends on kn' the mode of attack at
stage n.

Let PN denote a policy for a duel in which the number of passes
is not to exceed N. The policy is a set of Instructionsg that Indicates
the course of action for the pilot to follow at every stage for every
state that the system might be in, i.e., the policy tells the pilot
what mode of attack to use and the number of weapans he should seek to
deliver on the next pass as a function of the number of passes remain-
Ing, the current Markov state, the number of weapons remaining, and the
current constraining attrition. wWe will denote by P& that part of the
policy that specifies kNjN¢1(x“' sy) and dNJN¢l(xN' sy) at the first
pass. Let PN-I denote that part of the policy that specifies
k

(xys s,) and dnj ' (X sn) for all combinations of n, j . ¢1»

“jnol n+
Xn» and s such that 1 <n<N- 1, 1 <31 STy x € an, ad s € S’n'
(Ses Footnotes 1’2) Let Sp, denote the set of all possible policies

N
at pass N and let SPN ) denote the ser of all possible policies for the

remaining N-1 passes.

1Note that since some of the transition probabilities are zero
(see Figure 6), some of the above states may not be reachable, so it is
theoretically not necesssry for the policy to cover all of them. 1t
is, however, quite complex to determine which of the above states can
be reached and which ones cannot and for our purposes, this considera-
tion will be ignored.

zAs in the main body of this work, the functions knj (xn, dp)
and dnjn,l(xn'dn) are abbreviated k  and d, when they nel

appear in the argument of other functlons.
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The payoff at stage n depends on whether or not weapons are

delivered so we will replace the salvo effectiveness function by
rjn(dn.kn), l.e., If j, =1 or 2, rj“(dn,kn) = 0 and i€ §, = 3,
Ty, rH(dn,kn) where ry(d;,k,,) has the same meaning that it did in
Chapters III &nd 1IV.

For a given sequence of Markov state transitions, Une ey i1)s

AL T RN M W N P

and, for a given policy, the expected value of the number of hits is
given by the following expression (2). This expression is rationalized
by the same type of reasoning that led to equations (Il11-19) through

(111-22) in Chapter III.

N
¢ =-= ¢ S_.(k ) n Sk ) S (k. ) r «d k )
TUN=Rol? o ge2 TR TutTnt Tiy ghy Neds12 Nedel
N
* mem 4 Sp(ly) moSplk) S (k) 1y (dyLkg) (2)
n=2 1

The quantity 2 is a dummy index to be used later. Taking the expecta-

AT e e s

tion of the above expression over all sequences of Markov state tran-
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sitions and maximizing over all possible policies, the objective

function becomes expression (3) as shown on the following page.
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N
oy (Xy) = Max {: & ~ == L n p (k)
i
NN PLESL, over over nml Jastdn
" N 1

Py.1 €5
n-1€5p,

[s2000 75 @t » 52040 54090 20000 75 Gpoky)

N

M L S St(kn) SuCkn) ry o) Onegerskn-pe1)
N
n=2

where { = J, and X, = (xN,sN). The variable 1 has the same meaning
here with respect to stage N that it did in the main body of rhis work.
The variable 1 indicates the Markov state of the system at stage N.

This expression can be made more compact by using the index {

to give

N
£ (XN) - Max L e e = z n (k )]
Ni P
Py € SP& {wer over n=1 Jnlrl-jn n
In 3
Pno1 € Sp
n ©)

N

N
o5 [ Splknager) ™ Sqplky) S (k) 'JN,J.l(d"“f’l'kN'l*l)]}

n=N-2+2

where for an arbitrary function g(n) we define

N

m g(n) =1 ()
neN+ 1
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The above maximization must be carried out subject to two cone
straints, First, the nuaber of weapons svailable for n-1 passes, Xnel?
is the number of weapons available for n passes, X, less the number
that is delivered on pass n. Recalling that weapon delivery only
occurs at pass n when j, = 3, we have the following relationship for

alll1 < nZN,

()

We also require that the probability of the alrcraft surviving the duel

be at least Sy Or symbolically

N
] ST(kn) Su(kn) 2 sy )
n=1
Thus, in the most general problem of Chapter IV, we seek to per-
form the maximization indicated by equation (4) subject to the cone

straints indjcated by equations (6) and (7).

Isolating the term corresponding to & = 1 in equation (4) gives

N
Eni ) = Max { & === Z Py 4y (k)
P&s Spe over over nel -nel’n
In B
P € S
N-1 PN-l

[ ST(kN) er(dN'kN)

N

N
+ T Spk ) n Sp(k.) S (k) r (d sk )}
g TN T 1) Sulnd £y o ON-ge1 N-.hl]

(8)
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Cosidering the Markov state transitions, note that the first term of
{+ + ] in equation (3) depends only on jy and the second term depends

mly o (jN-l’-.-’jl)‘ Thus, we can write

. - k

P;‘ € spv
g€y
Nel PN-I
N~1
¢ T ~-. ¢ T op (k)
over over n-l jnvljn n (9)
IN-1 4

N N
= sm(k - ) m
A2 T*"N !’l n.N.l’z ST(kn) su(kn) th,_"..l(dN'bl‘kN'A*l)]}

Now by faztoring the quantity S‘r(kN) Su(kN) out of the sccond term in

equation (9) and by replacing the . by R 1, equation (9) becomes

P&esP}'] over
In
Splky) Sulky) 3 £ g o ey M
* N S kN ' - - = n P K z S (k )
! ! over over n=l Inerdn™"0 Lap 7 N-l-lel
Ine1 N

N-1
So{k ) s (k) r C} ok ) 10
netetgez 10 Sulkn) Ty gy NelatelNe1-001 }]} 10

Since ST(kN) Su(kN) > 0, the outside quantity { } in equation (10)

is a monotonically nondecreasing function of Inside quantlty{ } .
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thus, we have satisfied the monotonicity requirement of Nemhauser (22),

B

Note also that the inside quantity {} in equation (10) depends
only on the decision variables of Py_,. Thus, In accordance with

Nemha.ser's proof, equation (10) {s equivalent to

s s A i

£ (X)) = Max z p (k)[s(k) (dy,k.)
NIV PLE Spy U over InetIn N TN Ty ONEN
N In
.{ Nel
Sk L == g nmT p (k)
+ Splky) S, () P:‘?Z Sp over over nel Jnetdn T
N- IN-1 3y

N-1 N-1

L Sp(ky_1ote1) n Se(k ) S (k) r « .
) TN-1-1el e 1002 TR Juttnt Mgl Nei=fe1

KNe1aRe1) H } (1)

By examining the constraints, equations (6) and (7), it is clear

v o s e P 04 1, A1 s Rl At 2 2

that for given k,“N 1(xN,dN) and dNJN,I(xN'dN)’ the remaining decision
“ne

variables nust satisfy the constraints

e R s 1ot

XNa1 ® XN i Ine= 1,2 !
(12)
=xy=~dy 3 Iye=3
and
N-1 s
N oSp(k ) S, (k) > N = 4
ne. Tt futnl o= Sy(ky) Sy(ky) — “N-1 (13)

so the second maximization itn equation (11) is subject to these con-

stralints.,
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By replacing N by N-1 in equation (4), we recognise that the

quantity Max { . } that appears in equation (11) is the
P, ,€ S
N-1 Py

same as fN—l,.j“(xN-l) so equation (11) can be written as:

lemn) - . Max z ij’le(k ) [sT(kN) er(dN’kN)
PR € Spe ~ In
N
L4 ST(kN) su(kN) fN'l,SN(xN-l)]} (14)

where Xy ¢ = (Xy_1+85.1)-

To see that equation (14) is the same as equation (IV-28) for

n=N, we use the fact that r;(dy,ky) = rpldy,ky) = 0, wnile ry(dy,ky) =
rH(dN.kN). Substituting these into equation (l4) and using equatlions

{12) ard (13) and noting the definitions of Py and Spe gives
N
1

2
o (Xye8y) = Max {.‘: Pyg,. (ky) Spky) S, (kpdfy g 5 (xN»
Nt CnoSy o0 € 5 o0\ syt 1y W) Sp(kn) Sy(hydtyay 4§

dN € st(Xn)

8
N
S (k)5 (k) ) e pyylk) [ Splky) ry(dy,ky)

Sp(ky) s (k) ¢ ¢ -d._ﬁ‘___ }
* Spliky) Sy(ky) £y, 3(xy N SI(“N)Su(L‘n))] (15)

The trivial generalization of replacing N by n shows that equation (15)

holds for all 2 < n £ N. FPurthermore, if for al? 1< j,; <3,

-
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Then equation (15) becomes ;
fll(xlnsl) -« Max {P13(k1) ST(kl) 'H(dl'kl)} an ?

k€ Skl(sl)

dl€ Sdl(xl)

o ot m—

which ts the same as equation (IV-27).

Now consider how the approach that has been followed in this i

appendix can be applied to the most general problem that is treated in

Chapter V, i.e., the Py duel. The major change from the previous dis-
cussion in this appendix is that we must replece expression (2) with

the following expression (18) which represents the probability of at
least one hit for a glven sequence of Markov state transitions,

(Jn» ===»31) and for a given policy. Note that for the Py duel, if

Jy = 3, then ra(d,, k) = rp(d ,k,). This expression can be rationalised
by using the same type of reasoning that led to equations (5) through

(8) of Chapter V.
ST(kN)tJN(dN.kN)¢ST(kN)Su(kN)ST(kN_l) [l-rJN(dN.kN)] er‘l(dﬂ_I,kN_l)
*5 (k)8 (k)S (k1 )S (ke 43S Cy o) [l-rJN(dN,kN)J

[l-er_l(dN-l'kN'l)] er_z(dN-zka-z)

e

*

. N i
* ST(kN-,(’l) n'N’:x’z ST(kﬂ)Su(kn) [l'rjn(dn.kn)] rjn.)’l(dN'a(’l'kN"’l) %
. N

*

=
Splkp) M Splieg)Sy (k) [1-ry (dpkp)] rs (dy,ky) (18) -
n=2 n i
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The details of the development will not be gtven but the argu-
ment is ldenticai to that given for the EH duel. The changes that must
be made to apply the argument of this appendix to the PK duel follow in

a straightforward manner from the use of expression (18) in place of

expression (2).
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APPENDIX B

SOME PROOFS RELATED TO THI: MATERIAL

IN CHAPTER II

This appendix contains a proof of the comment that immediately

follows the statement of the equivalence condition for the deterministic

decision process in Chapter 11, page 31. This appendix also contains
a proof of the comment that immediately follows the statement of the
monotonlicity and equivalence conditions for the Markovian decision pro-
cess In Chapter II, page 3b.

First, relating to the deterministic decision process, we will
prove that "it follows from the definitions of monotonicity and
fh.1(Xp.1) that the function g [xn, Dpys fn-l(xn-l)J represents the
max imum return that is obtalinable from the n stage system for given X,
and D."

Let P, denote a sequence of decisions, (D,,~~- D), or "policy"
for stages n,=--,1. Let Spn(xn) denote the set of all feasible policies
for stages n,~--,1 where spn(x,,) depends on X,. Let fr'\(Pn) denote the
n stage return that is realizable by using policy P, and let Pn*(Xn)

be the optimum n stage policy as a function of X (to be abbreviated
) Bap!

n J 80 that considering the definition of f,(X,),

*
TGRSR MPYCNIDIE I Y ¢ SRS (1)

for all P _, € Spn_l(%_l).
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Now, considering the definition of monutonicity, it follows

that
8% Do £ra1(aa1)] < 83 Xns Dps o1 o) @)

for all Py_q € Sp,.¥n-1) and for every X, € Sy and D, € Sp (Xn).
This completes the proof.

Next, relating to the Markovian declsion process, we will prove
that given monoronlcity and equivalence, "the function
&nij [X;. Dpn, rn_l,j(xn,,)] represents the meximum expected value of
return that is obtainable frem the n stage system for given values of
X,» Ds i, and j."

Let Pn denote a policy for stages n,---,1., Since the sequence
atactes that the system will occupy at stages n~-1l,--=,1 {8 not known,
the policy must completely define the value that the decision vector
is to take as a function of the state of the system at all stages,
f.e., P, must define (on(xn), Dn-l(xn-l)""' Dj(X;}) for all feasible
sequences (xn,---,xl) where X, 13 the state vector which includes the
Markov state. Let sfh(x“) denote the set of all feasible policies for
stages n,---,1 vhere Spn(x“) depends on X,. let f; (P,, X;) denote
the expectod value of the n stage return that 1s realizable {f the
system is in state X, at stage n and policy P, 1s used, Let Pn*(xn)
be the optimum n stage policy as a function of xn (to be abbreviated

Pn*), so consi’~ring the definition of £,_;(X,.1),
L L] *
fre1(Pnals Xno1) € Ena1€Prons Xpo) = fro1(Xpay)

for all Pn_l€ Spn-l(xn_l)’ xn—lesxf[-l.
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Now if j designates the Markov state of the system at stage n-1,

the foregoing can be written

RN i S

p—

fre1,1Pnals Xn=1) € a1, 5 Prags Xn 1) = fhog, § Rnol) (3)

for all P s . : . 1< <1,
or all Py 1€5p  ®ner)s X1 €5x. 12 9S

1t follows from the above and from the definition of monotonicity that

8nhij Ex:m’ Dpe fr':-l,j(p -l’xn-'l)] < %4y [x:\’ Dpn» fn-l,j%.i)J )

for all i, j, x;\, Dnhs Pn.1 in their respective sets. Fram the fore-
going and the equivalence property, it follows that
Eni g [)q‘, D, fnal,j(’h-i)] {s the maximum expected valus of the

n stage return for given x;, s+ Dy &, §J. This completes the proof.
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APPENDIX C

ANQTHER SOLUTION METHGD FOR MARKOVIAN
DECISION PROCESSES
It may have occurred to the reader that the general Ey duel,
equations {(IV-27) and (IV-29) and the general Py duel, equations

(V-24) and (V=-26) can also in principle be solved by Howard's value

ftevation method (17). It is interesting to see what is involved if

tnat method i1s applied directly to the examples that have been dis-
cus.ed herein. Howard's notation will be used in this discussion.
To apply value iteration to a discounted Markovian declsion

problem, the following recursive relation is used (17, p. 80).

-k N k
vi(n + 1) = Max [q; ¢ B T pyy Vj(n)] (1
K jml
where
N k k
QT = & p r
i jml i3 i

n = stage index

i = Markov state; { = l,=-=«,N

k = f{rdex on decision alternatives )

B = discount factor; analogous to aircraft survival :
probablility

p,? = § to j transition probability under decision k i

r1§ = revard associated with the { to j transition

under decision k. ,
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To solve the Ey duel example of Chapter IV by use of equation
(1), the value of the Markov state variable { must completely charac-
terize the state of the system, In the example of interest, the
state of the system is characterized by

a, Xn = The number of bombs remaining: B8 levels.

b. Sh = The constraining survival probability: 12 levels.

c. The acquisltion status: 2 levels.l
Since these variable values can occur in all combinations, the number
of levels required for the Markov state variable is N« 8 x 12 x 2 =
192. Thus, to solve the example problem by value lteration, each of
the transition and reward matrices has 192 x 192 « 36,864 elements
that must somehow be evaluated and accounted for in the calculations.

Solving the Chapter V example of the PK duel involves even
larger size matrices. The state of the system at any stage is charac-

terized by all of the previous factors in addiction to which the status

of the target must be specified, t.e., it is either dead or allve.

This is required because the pilot does not know when target kill is
achieved and therefore the duel may continue after the target has been
killed but with a different reward per stage. The result is that for
the Py duel example, N~ 8 x 12 x 2 x 2 » 384 levels are required for
the Markov state variable, The transition and reward matrices each

have 384 x 384 = 147,456 elements to somehow account for,

lNote that for this formulation the acquisition status can be

characterized by two levels, i.e., the target has either been acquired
or it has not been acquired, In the example of Chapter IV, the acqui-
sition status required three characterizing levels because of the
relationship between acquisition status and weapon delivery.
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In solving the preceding examplies by the methods presented
herelin, the Markov state varlable has t! -ce levels and the matrix of
transition probabilities has nine elements. The extent of the compu-

tatlion seems to be roughly comparable otherwise. In effect, our

method is equivalent to equation (1). The two methods perform the
same operations and arrive at the same result, but the former is con-
siderably more efficlient and easter to apply to the problems that are

of interest here.
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