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ABSTRACT

The aim of:this article is to set out a bookkeeping procedure by
which a scientist (using the term flexibly) may compaxe the conclusions
of a theory with facts obtained by reduction of observational data with
the aim of assessing the hypothesis on which the theory is based. It is
argued that the appropriate formalism is probability theory, and that the
key process is the inductive process as represented by Bayes' theorem
which indicates how the degree of belief in a hypothesis should be ad-
justed in response to new information,

The following model of the inductive process in science is adopted.
Between observation and theory there is an "interface" which comprises
a set of independent items: each itemn comprises a complete set of mu-
tually exclusive statements. It must be possible to assign two prob-
abilities toc each of these statements, one by "reduction' of observational
data, and the other by theoretical analysis of the considered hypothesis.
The "observational” probabilities must be free from theoretical bias and
vice versa. Formulas are derived which show (a) how the assumed proba-
bility of the hypothesis should be adjusted in response to information
concerning one item, and (b) how such estimates concerning more than one
item may be combined.

The model further requires that one should consider not one hypothe-
sis but a complete set of mutually exclusive hypotheses. It is necessary
to reconcile this requirement with the normal situation that a scientist
has one or two specific theories to evaluate, the hypotheses of which
do not form a complete set. A procedvre is proposed to overcome this
difficulty. One may compare a real analysis (or analyses) of a specified
hypothesis (or hypotheses} with a "null" analysis cf the complement of
this hypothesis (or hypotheses). A "null" analysis is that which admits
complete ignorance about the conclusions to be drawn from a hypothesis:
the relevant probabilities may therefore be determined without specific
knowledge of the hypothesis. If a opecified theory fares worse than a
"null" theory, it is a bad theory.

The method is illustrated by a "worksheec¢” indicating the way in
which a few observational facts about pulsars may be used to appraise

both the neutron-star 1 ypothesis and the white-dwarf hypothesis.
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I.  INTRODUCTION

This article is concerned with the role of induction in scientific
research. However the principal aim is not to undertake a philosophical
inquiry per se, but rather to set up a bookkeeping procedure for organiz-

ing the judgments involved in comparing a scientific theory with scien-

tific data, For my own convenience, I shall draw examples from astro-
physics, but I hope and believe that the ideas and methods could be use-
ful in other fields also,

# A monograph on quasarsl by Kahn and Palmer gives an example of the

type of judgment which scientists must attempt to make, What is unusual

about the example is that the authors have the candor to present their

L b

judgment in numerical form. Table 3, on page 1il of tha! monograph, gives

the "estimated probability of correctness" of six hypotheses concerning

) quasars., A similar appraisal was made by Professor L, Woltjer at the

Conference on Seyfert Galaxies held at Tucson, Arizona in Februarv 1968,
Although judgments of the type quoted above provide an effective '

means of communicating degrees of belief, they immediately raise a signi-

ficant question: "How were these estimates arrived at?" 1In the examples

quoted, there is no hint of the answer to this question.2 An egtimate

of this type, without a description of the process by which it was made,

invites controversy. The principal aim of this article is to present a

procedure for arriving at estimates of this type. This does not guarantece

that there will be no controversy, but it should help to localize the

area of disagreement and so make tlie controversy more profitable.

; The examples quoted have already established one relevant point:

The appropriate formalism to use in investigating this problem is prob-

; ability theory, Our aim then is to set up a model for the reasoning

) process involved in evaluating a scientific theory, and to analyze this

model by the theory of probability, As I. J. Good3 has razmarked, "Prob-

ability is a part of reasoning and is therefore more fundameutsl than

most theories,” It is in this senge that the present urticle may be re-

garded as a "theo y of theories.”
Before proceeding, it is important to state tiat we rrall not be

concerned with a possible comparison between "perfect data’ (ohservational

or experimental) and a “perfect theory.” Even if we knew what theae
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terms meant, their discussion would be irrelevant to everday 1life.
Our aim 1s to determine how one can make a judgment about a theory which
is admittedly uncertain ana incomplete, in comparing it with data which

are uncertain and incomplete. We further recognize that such an evalua-

ticen must be made not once, but progressively, as the data come in and
as the theory develops. The following remarks of Jeffreys4 are relevant
here: "Either we can learn from experience or we cannot, The abiiity
to learn from experience demands the coacept of probability in relation
to varying data, and the recognition of the meanings of more probable

than and less probable than,"

2. INDUCTION AND BAYES' THEOREM

Al though textbooks frequently represent & science, such as physics,
as being deductive, scientists are well aware that this is a characteris-
tic of textbooks, not of science. P, G, Bergman, speaking at the Fourth
Texas Conference on Relativistic Astrophysics in Dallas in 1968, stated
; "Let the facts lead you where they may' is a gross oversimplification of

L how to proceed in science and not necessarily philosophically justified."
The difference betweer deduction and induction has been pointed out very
clearly by Pnlya5 by means of the folliowing examples,

The basic reasoning process of the deductive type is the syllogism:

A implies B,

i

9 B is false,.

Therefore A is filse.

' By contrast, the inductive process follows a pattern such as the

following:

1 A implies B,
H B is true.

Therefore A is more credible,

! The above example, although descriptive, does not lend itself to
numerical evaluation. The basic procedure for making quantitative esti-

mates of inductive arguments is proviled by Bayes' theorem. According

to Jeffreys,G "This theorem is to the theory of probability what

Pythagoras's theorem is to geometry."

s
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We introduce the notation (A[B) to denote the probahility that
proposition A is true on the basis of the knowledge that proposition B
is true. We adopt the convention that the measure of probability extends
over the range O to 1: (A|B) = O 1if A is impossible given B; and
(A}B) =1 if A is certain given B.

The notation AB stands tor the "product" of the two propositions
A and B. Then AB is true if and oniy if both A and B are true. The
"product rule" of probability theory7 then states that

(AB{c) = (a!BC)(B|O) . (2.1)
However, since AB = BA, this may alternatlively be written as

(AB|C) = (B'AC)(A]C) . (2.2)
We now see from these two equaticens that

i
ajBe) = LA ey | (2.3)

This is Bayes' theorem.

in order to show the relationship of this thecrem to the scientific
method, we consider the following '"model" of the =cientific process., A
certain hypothesis H is to be evaluated by comparing the theoretical con-
sequences of this hypothesis with observation (either of the world as we
find it or of a contrived situation called an "experiment'). Note here
an important point: It must be possible to formuiate a statement which
makes sense either when it is regarded as the consequence of a theoretical
analysis, or when it is regarded as the result of an observation., Since
this statement forms a cruclal “1link" between theory and observation, we
use for it the symbol L., We also intrcduce the symbol X to denote all
information available to the scientist in addition to (and, we asgsume,
preceding) his knowledge, derived from observation, that L is true, Then

Bayes' theorem may be rewritten as

SRR Yok it iy ol IR
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(LX) = (-(‘%*%)—’ alx) . (2.4)

The term (H/X) 1s the “prior probability" of the hypothesis H (prior,
that is, to knowledge of L). The term (HILX) is the 'post probability"
of H, based on knowledge of both X and L, Bayes' theorem then tells us
that the post probability equals the priovr probability multiplied by a
certain factor (L|HX)/(L|X) which is sometines termed the "likelihood.”
This is the ratio of the probability that I, is true, given H and infor-
mation X, to the probability that ., is true, given only the information
X,

Equation (2,4) gives us a procedurc for adjusting our degree of be-
ljef in a hypothesis on the basis of incoming observational evidence,
If H is irrelevant to L, then (LIHX) = (L{X) so that (HILX) = (H!X):
the probability is, appropriately enough, not affected by knowledge that
L 18 true., If L. seems quite likely on the basis of knowledge X, but very
unlikely on the basis of X and the hypothesis H, then the probability
that H is true is greatly reduced by the knowledge that L is true. If,
on the other hand, L seems quite unlikely on the basis of information X
alone, but quite likely on the basis of information X and the hypothesis
H, then the fact that L is known (observationally) to be true greatly
increases the probability that H is true,

It is worth noting a few further aspects of this theorem,

1. If (L|X) = 0, there is something wrong with our information
X, since L is incompatible with X, yet L is obgerved to be true,

2, Assuming that (L|X) #0, (H|ILX) =0 if (H|X) = O, That is,
an impossible hypothesis remains impossible, no matter what

the evidence.

3. Denoting by H the negative of H, so that "H 1is true" means
"H is not true", we see from (2) that (H|LX) =0 4{f (H|X)=0.
This may be stated alternatively as (H|LX) =1 if (H[¥) =1,
since by the sum rule of probability theory,

(HIX) + (H[X) =1, etc. (2.5)
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In other words, if H 1is certain before we have knowledge of 1.,

it will be certain after we have knowledge of L, no matter what
L may be.

We see from the sbove paragraph that one should be very careful about
assigning probability zero or unity to any proposition, since this entails

that we can never change these estimates, no matter what subsequent in-

fromation may turn up. 1I. J. Good has some useful advice on this point:8

"Probabhility judgments can be sharpened by laying bets at suitable odds.
1f people always felt obliged to back their opinions when challenged, we
would be spared a few of the 'certain' predictions that are so freely
made." Whether or not we make wagers, we should, for the sake of future
credibility, be very cautious about making '"certain™" theoretical predic-

tions or stating “certain" observational facts: Theorists sometimes find
a calculation to be wrong, and observers sometimes find that their re-

sults are not supported by subsequent obsgervations by other groups.

3. MODEL OF THE INDUCTIVE PROCESS IN SCIENCE

Equation (2.4) of the preceding section, and the discussion which

followed it, give a =ough approximation to the inductive process in

science. The simple model given in Section 2 would be adequate in a sim

ple situation in which theory could predict the reading which one should
obtain from a particular measuring device such as a meter, This however
is nct the usual situation in science. It may take a great deal of jug-
gling and maneuvering to find a quantity which can be both measured and

calculated.

Indeed, although one thinks of measurement as being the key process
in exact sciences, many of the comparisons made between theory and obser-
vation are not normally expressed in terms of measurable quantities. For
instance, one may require of a physical theory that it should be covariant

under some transformation (Galilean, Lorentz, etc.). In the early studies

of quasars, one of the most important questions was to determine whether

the objects are "intragalactic'" or "extragalactic."” Similarly, the nature

of pulsars for sometime hinged upon the question "Is a pulsar a white

dwarf{ or a neutron star?"
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r first aim in this section is to set up a '"model" for the induc-
tive process in science which is a closer approximation to the methods
actually used than the simple model presented in Section 2, The essential
requirement is to be able to make u comparison between theory and obser-
vation, Hence a key requirement is for an "interface" between theory
and observation. It szems that the basic requirement for such an inter-
face is that there should be a language which can be understood both by
theorists and by observers. More specifically, we adopt the following
definition of the interface for the purpose of constructing a model: The
interface comprises a number of statements, each of which is both (a)

a possible result of data reduction of observations, and (b) a possible
consequence of theoretical arilysis of a hypothesis under ccnsideration.

It is convenient to make further assumptions about thesge statements.
We assume that they may be arranged into groups: Each group of statements
will be termed an "item.” We assume that there is a finite set of items
Ia, ax=1,2, ..., A.

With each item 1 there is to be associated a group of statements
which, for preseat convenience, we assume to be finite in number. (This
assumption can be relaxed without difficulty and must be relaxed when
dealing with statements about coniinuous variables.) This set of state-
ments will be represented by Som' n=12, ..., Na. For convenience,
we assume that the group of statements associated with any item are mutu-
plly exclusive and complete. That is, for any item such as Ia, one
anc. only one of the statements San is tr e,

When a science is well established, one tends to forget that the
theory of that science is simply a construct, the validity of which is
to be establigshed by comparison with observations, Indeed, one can easily
come to regard the atstract construct as having a "reality" of its own.

A remark by Eddincton9 is particularly appropriate here: '"Physical science
may be defined as 'the systematization of knowledge obtained by measure-
ment.' It is a convention that this knowledge shall be formulated as a
description of a worid--called the 'physical universe'." It is necessary
for us to distinguisi hetween observational data and theoretical data,

and to consider explicitly the connection between them.

3
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We first consider what goes on on the observational side of the in-
terface. An astronomer obtains his information by means of photographs,
spectra, radio records, etc., whichever happens to be the output of the
observational instrument he is using. An experimenter collects similar
"raw data."” However, neither observer nor experimenter transmits this
raw data to his acientific colleagues, The transact‘on between the ob-

server (this term being used to include “experimenter”) and the theorist

is typically the publication of an article in which the observetional re
sults are presented and analyzed. Sometimes the conclusions which the
observer draws from his data have almost the certainty of mathematical
deduction, Usually, however, there are a number of assumptions and pro-
visos which are explicitly or implicitly involved in going from the data
to the conclusions, Furthermore, this process of "data reduction" prob-
ably involves the use of theoretical knowledge. One must pay careful
attention to this aspect of data reduction, if one's aim is to compare
the results of the observation with one or more theories,

The basic rule of data reduction is that, if theoretical knowledge
is to be used, it should be carefully specified, and preferably should
comprise only theoretical knowledge which is beyond dispute. If the aim
of an observation is to obtain information with which to evaluate one or
more theoretical hypothesis, the data reduction must studiously avoid any
steps which explicitly or implicitly appeal to these hypotheses.

Data reduction can range from a wvery simple to a very sophisticated
operation. A new technique in data reduction may represent an important
step forward in a science. The construction of the Hertzsprung-Russell

diagram1 is a case in point. In looking at raw data, one may not be
able to see the wood for the trees. The aim of good data reduction is to
enable one to see the shape of the forest. A Hertzsprung-Russell diagram
might be prepared from many precise observations, yet the significant
information in the diagram may comprise the approximate clustering of
points to form a simple and not-to-well~defined curve.
In the present modei, the result of data analysis is to provide

varying degrees of support for alternative statements Sam of each item
Ia, on the basis of observational knowledge which we denote by 0. In

this model, the sum total of observational knowledge, as it may be uscd




-4 for comparison with theory, is provided by the set of prokabilities

(SaanOX). R denotes the process of data reduction, This symbol should

be introduced since different reduction procedures may lead to different

estimates of the reduced data.

Since, for each «, the set of statements San are complete and

mutually exclusive, we see from the sum rule of probability theory7 that

No \Q

=1 = 1. . 3.1
Z CHREY 3 (s | ROX) . etc (3.1)
n=1 n=1

In the present context, X denotes all information which is not in ques-
tion, including theoretical knowledge used in the data reduction and,
conversely, whatever observational knowledge the theorist is to be per-
mitted to use in his analyses.

We now lock at the other side of the fence, and inquire about opera-
tions on the theoretical side of the interface. The basic procedure has
been described by Jeffreyslz, in his discussion of 'theory": 'The use of
the word 'theory®’ in several different senses is perhaps responsible for
a good deal of confusion. What I prefer to call an 'explanation' consists
of several parts: First, a statement of a hypothesis; secondly, the sys-
tematlic development of its consequences; thirdly, the comparison of these
consequences with observation."

However, Jeffreys elsewhere13 mekes the following relevant and quali~
fying remarks: '"We get no evidence for a hypothesis by merely working
out its consequences and showing that they agree with some observations,

because it may happen that a wide range of other hypotheses would agree

with those observations equally well. To get evidence for it we must

also examine its various contradictories and show that they do not fit

the observations. This elementary principle is often overlooked in al-
leged scientific work, which proceeds by stating a hypothesis, quoting
masses of results of observation that might be expected on the hypothesis
and possibly on several contradictory ones, ignoring all that would not

be expected on it, but might be expected on some alternative, and claiming

that the observations support the hypothesis. . . . 5o long as
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alternatives are not examined and compared with the whole of the relevant
data, a hypothesis can never be more than a considered one."

¥e see from the above that the principal job of a theorist is to
determine by theoretical analysis the consequences of one or more hypo-
theses. As Jeffreys points out, one obtains the strongest evidence for
a hypothesis when one analyzes, and compares with observations, this
kypothesis and also whatever additional hypotheses are necessary to form
a complete set. An important case for us to consider is, therefore,
that we are considering a set of hypotheses Hi’ i=1, ..., I, which
are mutually exclusive and form & complete set. We assume that each of
these hypotheses is suhjected in turn to an analysis A so that one
arrives at probabilities for the statements San' where these statements
are now regarded as consequences of each hypothesis considered in turn,
In this way we would arrive at the probabilities (SanlAHIX)' 1t may
well be that, if the problem is sufficiently well defined, each hypothesis
Hi implies a.definite statement Scm of each item Ia, so that each of
the probabilities (Sam'AHiX) would be either unity or zero. HKowever,
there may be some uncertainty in the basic information X, and it is
normally the case that scientific analysis is incomplete and imperfect.
Hence we should expect that, in general, the probabilities (Scm}AHiX)
will have values between zero and unity.

Although it is most desirable to consider any hypothesis under con-
sideration as a member of a complete set, and to analyze all members of
that set, this will often be impractical in normal scientific theoretical
work. It may be that the hypotheses can be identified, but are too many
in number for each of them to be analyzed. Another possibility 1s that
it is very difficult, or practically impossible, to identify hypotheses
which build up a given hypothesis into a complete set. It is therzfore
important for us to have some way of proceeding which does not hinge upon
the explicit identification and analysis of & complete set of hypotheses.

Jeffreys recognizes that a well established hypothesis will be ac-
cepted simply on the basis of the agreement between ccnsequences of that
hypotheeis and observation, He states14 "The chief advances in modern
physics . . . were achieved by the method of Euclid and Newton: to state

a set of hypotheses, work out their consequences, and assert them if they
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accounted for most of the uwutstanding variation.," 1t is therefore neces-
sary for us to specify a procedure which involves the detailed specifica-
tion and analysis of one or more hypotheses H. . . ., HI, in the case
that this set of hypotheses does not form a complete set. We assume,
however, that the hypotheses are chosuvn to be mutually exclusive,

We assume that it is possible to expand this set of hypotheses to

form a complete set by aedding @ hypothesis Ho which excludes and is

excluded by any one of the hypothesis Hi' i=1, .. ., I. (If the
set were to be specified explicitly, it might be more convenient to ex-

press HO as the disjunction of a large number of hypotheses, but for

present purposes this consideration is irrelevant,) Thus the sct of

H

hypotheses H . HI are mutually exclusive and form a complete

01 1)

set.,

We now ask what information we can obtain about the hypothesis HO
without specifying the hypothesis or carrying out an analysis of the
hypothesis. The answer is, of course, that in this circumstance we must

remain ignorant about H However, this does not mean that we cannot

o
fit HO inte our model of the inductive process in science., We have

recognized that theoretical analysis is in practice imperfect. We can

introduce, as an extreme case, a "null" analysis AO which gives no

information whatever about the consequences of the hypothesis to which
it is applied. It is then possible to maintein the formalism which is
based on the assumption that we are analyzing the consequences of a com-
plete set of hypotheses, by adopting the following strategem: (first, we
assume that the known hypotheses Hl""'Hl’ are supplemented by a hypo-

thesis H0 to form a complete set; second, we assume that, whereas each

hypothesis Hl,...,HI is subjected to a proper analysis A, the hy-

pothesis HO (which is not to be specified =2xplicitly) is assumed to

be subjected to the "null" analysis AO. We shall, for simplicity of
notation, suppress the symbols A and AO in the remainder of this

section,
Now suppose tna. we chose to identify (san' HOX) with (San'x)'

'RARRE) HI form a complete set, we know that

H0 + H1 + ... + HI is true, where the summation sign here indicates a

"logical sum,” i.e., "and/or.” Hence

Since the hypotheses Ho, H

10
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I
(scm Z Hilx) = (s %) . (3.2) -

1=0

On noting that the hypothiases H H,...,H

o' 1 1
see from the sum rule of probability theory7 that

are mutually exclusive, we !

. I 1
! _ o
a (Som Z Hi[X> = 2 (s o H, %) . (3.3)

i=0 i=0 _ ]

We may now use the produce rule7 to write
5 s = .4 : %
i ( Cmnilx) (somlﬂix)(ﬂilx) , 3.4) ,_

so that

I
‘ (8 %) = Z CNIE R STCHE IS (3.5)
pr

If we now make the choice

H X) = ’ 3.
(soml 5X) (somlx) (3.6)
‘ we see that
¢
aF 1 I
' s _|H = - (H X1 H X) . .7
i (8 B = (1 - (Hy[®)] z CIERSTCHER (3.7) |
§ i=1 '
i It follows from this equation that if a particular statement sa'n' is
; impossible on the basis of hypotheses Hl""’ HI’ then it must be con-
sidered to be impossible on the basis of hypothesis HO also, This re-
presents a defect of the convention for (SaanOX) specified by Equation
(3.6). We would like the probabilities (Sanlﬂox) to be "maximally y

noncommittal" about the statements Son’ subject only to restrictions

11
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im osed by the information X. The manner in which one may ascribe

“mr.xliaally norcommittal” values to a set of statements, taking account

of possible informaticn about the statements, has been discussed by
Juynes.lb We will not pursue this point here, For our purpose, it is
imyoxrtant onlr ¢. note that it is necessary to specify the probabilities
(Sanlﬂu'f in a8 noacommittal a manner as possible, and that it is hot
desirable to adert the convention (3.6),

Althovgt we have recognized two very different theoretical situations,

it hus now been possible to set up a formalism which covers both cases.

L ek o)
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b The formulas which +¢ shall derive in the next two sections may be apnlied

. to either case. The difference between the two cases will become signi-
ficant only when wue consider the information which is to be fed into the

{ { rmula~. or tr. interpretation to he placed upon estimates made byv means

LER T e

J1 tae fowmules. We shall discuss this further in the final section.
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4. INDVCT ON USING ONE FACT

We aouw ¢iuproree that, by data reduction, the observer has assigned

various prc sbilities to the statements which constitute ti.» interface,

fi S R

The the .rist has assigned probabilities to the same statements based on
‘np.lvsis of each considered hypothesis, and also possibly based on a null
analysis of a supplemental hypothesis. This information, and knowledge

ot the prior probability of each hypothesis, should enable us to assign

a post probability to each hypothesis. That is, given the information

specified in the preceding section, and given the values of (Hi|x), we

should be able to calculate (Hi|0x). Here and in subsequent sections
it is convenient to suppress the symbols R, A and AO' These are im-
plicitly present: the ohservations have been reduced by a specified

H have been reduced by analysis A and

yroeeer By
hypothesis H0 (if it must be introduced) has been reduced by the null

procedure; hypotheses H

analysis AO. In line with this change of notation, we shall refer to

HO as the "ignorance hypothesis . "

In this section, we make the simplifying assumption that there is
k only one item to be considered, If we regard the observational knowledge
pertaining to an item as a "fact, this means that we have only one fact

to consider. 1In this section, therefore, we may drop the suffix .

12
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As an aside, we may nota that this can be regarded as & formal change
rather than a substantive change, since it is always possible to combine

iiems. Specifically, we could introduce the notation

S =8 S S

nn'n".,. in “2n “3n" *°° “.1

The set of statements S n'n" again are mutually exclusive and form a
complete set, and they comprise all the information represented by the
separate groups of statements., However, our intention is to constider
one item in this section, and to consider in tiie next section how one
should combine information derived from several separate items.

Qur aim is to calculate (HiIOx), the “"post probabilities" of the
various hypotheses as determined by the prior information X and the
ohservations 0. Since the stalements Sn are mutually exclusive and

form a complete set, this probability may be written as

—
n

= |
1 fox) = (Hi S sn,ox> , (4.2)

where the summation sign indicates a "logical summation.” By the sum

7

rule of probability theory,' this equation may be expressed as

| 0x) = Z (s o) (4.3)
n

and use of the product rule7 enables us to put this equation in the fol-

lowing form:

@, [0x) = Z (H,|s 00 (s _[ox) . 4.9
n

According to the rules of our model, the connection between the hy-

potheses and the observations occurs only via the statements Sn. If it

13
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is asserted that Sn is true, all other knowledge about the observations
1s irrelevant, as far as the hypotheses are concerned. This property of

our model therefore implies that

(H1|Sn0x) = (Hilsnx) , 14.5)

in consequence of which Equation (4.4) becomes

(Hi|OX) = :21 <Hi|S“X)(SnIOX) . (4.6)

n

At this stage we use the following form of Bayes' theorem [Equation

2.3)];

(San1X)

(Hi|SnX) = 'TE;TKT_ (Hilx) . 4.7

This introduces the probabilities (Snlx), which do not appear among our
initial data. It is at this point that we profit from the assumption

that the set of hypotheses Hi are mutually exclusive and form a complete
set. We saw in Section 3 that these assumptions lead to Equation (3.5),

which is now written as

(s |X) = ZE (SnIHJX)(HJIX) ) (4.8)
J
leaving the range of summation (0,1,..., N or 1,2,..., N), unspecified.

Then Equation (4.7) becomes

(Sn|H1X)
(Hilsnx) =< (SnTESX)(H;1X) (Hilx) . 4.9)
Kl
14
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On comblning Rquations (4.4) and (4.9), we finally arrive at

(s _|H x){s_|0X)
n' i n

y H X) (H

\ (SJ'J)(JTX)

_—

J

(H |ox) = Zi X . (4.10)
n

This equation is the principal result of this section, The above formula

for the post probabilities (Hi]DX) involves only the prior probabilities
(Hilx) and the probabilities of statements Sn as determined on the one
hand by reduction of the observations O and on the other hand by analysis
of the hypotheses Hi' We may note the following desirahle property of
this equation

2 5_ (R oK) =1 . (4.11)

1

This shows that the formula (4.10) will never yield a probability of u
hypothesis greater than unity, and that it will show the probability of
one hypothesis to be equal to unity only if it shows the probabilities

of nll other hypotheses to be zero.

5. INDUCTION USING MANY FACTS

In the preceding section we obtained a formula to describe the prob-
; abilities to be assigned to a set of hypotheses on the basis of the prior
probabilities and of observational and theoretical knowledge concerning
one item of the interface. We now consider how we may take account of
knowledge concerning several such items. We assume that these items
are "independent" in a sense to be specified later.

It is convenient to introduce Fa as the '"fact" associated with
the item Ia. According to our model, the fact F& comprises the set

of probabilities (san]ox), n=1,..., N.

; We now suppose that a group of hypotheses Hi have been evaluated

in terms of two facts F1 and F2, considered separately and indepen-

dently. In this way we have arrived at probabilities which may be written

15
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as (HilFIX)' (H1|F2X). The problem which we now consider is thst of
determining the probabilities (H1|F1F2X). The sense in which F, and

1

Pé are considered to be independent is the following: knowledge of F

will influence our interpretation of F2 only through the effect which

F has on our evaluation of the hypotheses H1 and the influence of

1

1

knowledge of hypotheses Hi on our interpretation of Fz. We assume of
course that the converse also is true.

We first note that (HilF1F2X) may be expressed as follows:

(HiFllex)
(uilFlex) = —T?ZT?Z§7— . (5.1)

By an argument parallel to that leading to Equation (4.4), we see that

(H F, [ F,0) 21 CH,F) [ HU X0 (H | %) (5.2)
3

and

(¥ [F,X) = :1 (F1|wJF2x)(HJ|F2x) . (5.3)
J

We now hote that the first term on the right-hand side of (5.2) may be

expressed as

(HiFlngsz) = (HilF H_ F_X)(F

1% IIHJFZX) . (5.4)

However, since the set of hypotheses is assumed to be mutually exclusive

and complete,

| P XY =
(H [F HFX =8

195%, 5 (5.5)

Furthermore, our specification of the sense in which F and F are

taken to be independent implies that

16




(F1|HJF2X) = (FIIHJX) . (5.6)

If we now note from Bayes' theorem that

(HJIsz) '
(Fé|HJX) = _7§;T§7— (F, 10, (5.7)

we find from Equations (5.2) through (5,7) that Equation (5.1) may be

expressed as

-1
(H |F X)(H |F X)[{H [X)]
(H |F FX) = N t 1 L2 1 - - (5.8)
b (HJ|F1X)(HJIF2X)[(HJ|X)]

J

It is a straightforward matter to prove (by induction!) that the general

formula is

-(a-1)
(H1|F1X)...(HilFAX)[(Hi|X)]

(H|F_...F,X) = . (5.9
1171 A ZE -(A-1)
HIF.X)...(HIF X)[(H [X)]
([ F). . (B TR TR,
J
We note from this equation that
2: H[F L FX) =1 . (5.10)

J

6. WORK~-SHEET CONCERNING THE THEORY OF PULSARS

Since the principal aim of this article is a bookkeeping procedure
rather than a philosophical inquiry, it seems expedient to present a
simple example of the use of the formulas which we have derived, before
indulging 37 a philosophical discussion of the their significance,

The example t¢ be discussed concerns the current astrophysical prob-

16

lem of the nature of pulsars. Although it is now generally agreed that
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¢ pulsar is to be identified with a rotating neutron star, less thuan a
year ago there was s lively controversy concerning two possibilities:

the rotating neutron star model and the pulsating white dwarf model. 1In
January 1969 the evidence had become strongly favorable to the neutron
star hypothesis, and I was interested to try to assess the strength of

the case by using the techniques presented in this article. The following
material is therefore to be regarded as a personal worksheet (which is

now several months out of date), not a valid description of the present
state of knowledge concerning pulsars.

The “work-sheet" is presented in Table 1, Four items are here con-

sidered.
1. The range cof period.
2. The change of period.
3. Connection with supernovae,
4, Absence of photospheric radiation.

These items will be discussed in turn. In addition to the hypotheses
that the object is a neutron star (Hl) and that the object is a white-
dwarf (Hz), we consider the "ignorance" hypothesis (HO), allowing
for the possibiiity that there may be some other hitherito unsuspected
explenation.

Before discussing the abnve items, we should recognize that one item
ig conspicuous by its absence: namely, radio emission. The reasor this
was not considered is that very little persuasive information was avail-
able concerning radio emission from a neutron-star model or from a white-
dwarf model, Hence, in this respect, each model would fare no better
and no worse than the igporance hypothesis, Such an item need not be
considered explicitly - it is "ignorable." Similarly, if there is no ob-
servational information about an item, it is ignorable.

There is another interesting aspect to the (absent) item concerned
with radio emission., It is concerned not with a possible property of
pulsars, but with a necessary property. In order for an object to be
accepted as 2 pulsar, it must have certain properties. In the early
days of a phenomenon, such properties will typically be observational.

In order to clarify this point, we introduce for this purpose only a

"zeroth" item:

18
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: Table 1. PUUSAR WORK-SHEET
Based on prior probabilities (HOIX) = (Hl_lx) = (L[%) = 1/3
f ®
: - ]
: -4 -t
: @ g )
i 0 - 2
| g 8 s
i - >
‘ o = >
a . x
, s £ & -
| R g
: [ e = S
' » < ] ]
& & [ [
[ Q - -
o g 3 -
| 8 - = 3
Item 1. Range of Period
: Sllt Periods extend over range -.03 sec 1 .5 1 .01
i to 3 sec
1 -
i 812. S11 not true 0 .5 0 .99
: z Post probabilities .331 .662 .007
Item 2: Change of Period
821: All pulsars slow down .97 .33 1 .09
522: Neither S21 nor 823 true .03 .33 0 .01
523: All pulsars speed up Y] .34 0 .9
Post probabilities .256 .681 .063
Item 3. Association with Supernovae
831: All pulsars related to supernovae .9 .03 .99 0
o
o 532: Some pulsars related to supernovae .1 .01 .01 .01
:{ 533: No pulsars related to supernovae o .96 0 .99
N
;‘ Post probabilities . 060 .¢07 .033
:' Item 4. Photospheric Radiation
l{ 841: No pulsars heve detectable photo- .99 .33 1 .01
;. spheric radiation
: 842: Some pulsars have detectable photo- .01 .33 v} .09
spheric radiation
543: All pulsars have detectable photo- o] .34 0 .9
spheric radiation
Post probabilities .257 .257 .010
~8
Post probabilities based on all facts .012 .988 1.37 x10
19
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! Item 0. Periodic Pulsed Radio Emission,

b The statements might be chosen as follows:

SOI: The object emits detectable periodic pulsed radio emis-

sion,

802: The object does not emit detectable periodic pulsed radio

emission.

Then a pulsar is "defined" by the statement 501. Hence it becomes a

convention, associated with the name "pulsar,” that (SOllox) = 1. Note

ORI it asiond

that the strict separation between observational facts and theoretical
conciusions applies here also: the convention that (501!OX) = 1 should
; not prejudice the evaluation of (SOllﬂx) for any hypothesis.

We may also note that the definition of a phenomenon may at one time
4 be observational in nature and at another time theoretical in nature,.

; It may be, for instance, that when pulsars are "fully" understood, they

i will be defined by a hypothetical mode117.

We now return to a discussion of Items 1 - 4,

] Item 1. The Range of Periods.

We adopt the following statements for this item.

Sllz The periods of pulsars extend over a range extending from

‘ .03 sec or below to 3 sec or above.
i 812: The range of periods does not extend as low as .03 sec
F and/or does not extend as high as 3 sec,

| We know from observational evidence that statement S11 is correct.
| Hence we set (S,,[0X) =1 and (s,,lox) = 0.
Here and in Items 2 and 4, we assign equal probabilities to possible
B statements of an item, when regarded as consequences of the ignorance
&
g theory. Hence we assign (Slllﬂox) = .5, (812|H0X) = .5.
“ The neutron star hypothesis is compatible with any periods down to
!
{ a minimum value of about 1 m sec, Hence we set (511|H1X) =1,
4 (5,,/H,%) = 0.
If the pulses were produced by pulsation of a white dwarf, cne would
i expect the periods to extend over a range from about one second to several

seconds. However, one cannot be completely confident that shorter periods

20
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are quite impossible. Therefore, to be conservative, we say (S11 [Hzx) =.01,
(512|HZX) = .99,

We may now use Equation (4.10) tc evaluate the post-probabilities
of the three alternative hypotheses, using the information of Item 1.
On denoting by F1 the observational data relevant to Item 1, we find

that ("0|F1X) = ,331, (Hllle) = .662 ana (H,|F,X) = .007.

Item 2. Rate of Change of Period.

The statements are as shown in the table. Five pulsars are known

to be slowing down., No observable change has been detected for other

pulsars, which we interpret to mean that the rate of change is too small

for its sign to be determined., If we assign equal prior probabilities

to the three possible statements, the fact that five pulsars are known

to be slowing down leads to the observational probabilities shown in the
table,

£ pulsars are rotating neutron stars, we expect pulsars to slow

down.

If pulsars are pulsating white dwarfs, we expect them to speed up,
since the white dwarf should become smaller and denser as it ages. How-
ever, without specifying what kind of pulsation we are considering, we
should assign a small probability to the possiblity that the pulsations
will speed up. To be cauticus, we should also make some allowance for
the possibility that some pulsars slow down and some pulsars speed up.
These considerations lead to the probabilities shown,

The post-probabilities based on data for this item are elso shown,

Item 3. Relationship of Pulsars to Supernovgg.

It is known that two pulsars are located in the same positions as
supernova remnants. This suggests that all pulsars are related to super-
novae (Statement 531). However, one should allow for the pnssibility
that only some pulsars are related to supernovae (Statement 832). We
can rule out the possibility that no pulsars are related to supernovae

(Statement 533).

The only idea which has been advanced concerning the creation of

a neutron star is that it is formed during a supernova explnsion. The

21
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neutron-star hypothesis therefore leads us to expect that all pulsars
should be related to supernovae., However, to be cautious, we might allow
for the possibility that there is some other way in which neutron stars
can be formed, and therefore assign a small probability, on the basis of
Hl, to 832.

The current view about white dwarfs is that they represent a state
of senility reached by low-mass stars in a non-catastrophic evolution,
However, the idea has been suggested that a supernova explosion may leave
a white dwarf as end product. We therefore choose the probabilities shown,

In assigning probabilities to the statements of Item 3 for the igno-
rance hypothesis, the simplest procedure of assigning equal weight to the
alternatives seems unacceptable, since a supernova remnant is an unusual
object. The key question is: 'What i: the probability that objects
which are (or appear to be) supernova remnants are associated with some
unspecified object which is neither a neutron star nor a white dwarf?"
Most astronomers would regard the probability as small, but we are alert
to the fact that we must not set the probability as zero. Taking this
question in isolation (i.e., neglecting all other evidence related to
pulsars), I should regard .1 as too high and .0l as too low; accordingly,
1 choose (S3llHOX) = .03.  assign a somewhat lower probability to the
possibility that, if pulsars are neither neutron stars nor white dwarfs,
some of them happen to be related to supernova remnants or objects which
look like supernova remnants, setting (832]HOX) = .01. Hence
(S54[HX) = .96.

Item 4. Photospheric Radiation.

In only one case has a star-like optical object been identified with
a pulsar: this is the south-preceding star of the Crab Nebula, identified
with the Crab pulsar. However, it has been shown that the radiation of
this "star" éonsisfs of pulses similar to the radic pulses, so that it
cannot be interpreted as photospheric radiation., There is one nomnal
star near the location of the pulsar CP 1919, but this is generally
thought not to be the optical counterpart of the pulsar. To avoid being

dogmatic, we choose the probabilities listed in the table.
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A neutron star is too small for its photospheric radiation to ope
optically detectable. On the other hand, a white dwarf should bde clearly
visible at the typical distance estimated for a pulsar. However, the

luminosity of a white dwarf decreases steadily as it gets older, so that

it is possible that some white dwarfs of a sample would be invisible, and
we cannot rule out the possibillity that all white dwarfs of a given class
may be invisivle. These considerations are reflected in the probabilities
0 listed in item 4.

We see from the Teble that each fact counts against the white-dwarf
hypothesis. However, none could be considered to be conclusive. In
Items 1, 2 and 3, the neutron star hypothesis fares better than the igno-
rance hypothesis, but not much better. This is due simply to the fact
that each item has been divided into only a small number of possible
statements. In order to get strong evidence for a hypothesis in compar-
; ison with the ignorance hypothesis, it 1s necessary to consider an item
T divided into a large number of statements, or to have some reason for assigning
very nonuniform weighting to the possible statements on the basis of the
ignorance hypothesis, as in the case of Item 3.

The post-probabilities calculated from each of the four facts may
be combined by means of Equatior (5.9). When this is done, we arrive at

the result

I\l

(HOIOX) .012

.988

(H, |0X)

(H, [0X) = 1.37 x 107°

We see that the combined facts give very strong evidence against the
white-dwarf hypothesis. If one were to consider the white dwarf hypo-
thesis and the neutron star hypothesis as being the only possibilities,

then the considerations listed above would show conclusively that pulsars

are to be interpreted as neutron stars. If, however, we give equal prior-

probability to the hypothesis that there is some other explanation, then

we find that the evidence for the neutron-star hypothesis is good, but

not overwhelming.
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When probabilities become very close to unity or very close to zero,
it i1s convenient to introduce a change of notation which gives a better
feeling for the magnitude of the effect. The change of notation fits
most easily with the "odds" notation where the odds on a proposition is
defined as P/(1-P), that is, the ratio of the probability that the pro-
poaition is true to the probability that it is not true. The odds on &
proposition can clearly vary from zero to infinity, so that it is con-
venient tc use logarithmic notation. Good18 recommends that one use
the decibel notation, McCamylg, in a recent article, recommends the use
of "brigg" (decibrigg, etc.) as a general term, in place of bel., How-
ever, the symbol "db" may be used for either "decibel" or "decibrigg, "
according to taste,.

Using the symbol H to denote the proposition "H 1is not true,” we
may now express the above result as follows,

(H,| 0X) /(K| 0X) .012

i

83

[}

(H1|0x)/(H1|ox)

(H,| 0X)/ (H, | 0X) = 1.37 x 107°

These results may be expressed in db-notation as follows:

0Odds on H0 = -19.2 db,
Odds on Hl = 19.2 db,
Odds on H2 = -58.6 db.

We see that, 1f the only admitted possibilities were the neutrcn-star
hypothesis and the white-dwarf hypothesis, the odds on the neutron-~star
hypothesis would be about 87 db. However, if one admits the ignorance
hypothesis, and gives it equal prior prcbability with the other two hy-

potheses, then the odds on the neutron-star nypothesis is only 15 db.
This demonstrates a view of scientific theories which sometimes finds
expression: 1t is easier to prove a theory wrong than to prove it rlght20
The high value of the odds on Hl’ when Ho is ignored, is really due
to the high odds against H2.

24

T f—




SEFSsNsAE s asEs ey it AR TS R TR EE I 5  agee e T

The above example shows that a combination of three or four quite

cautious statements can lead to a strong result, We note also that, with

one exception, the statements do not involve numbers. Hence the applica-
tion of this type of formalism is not restricted to problems involving
numerical data. It could be applied equally well to biology, criminology
or social sclence.

We may also point out two defects of the above worksheet, A large
value (,9) was assigned to (SSIIOX). This was due to the fact that
both the Crab pulsar and the Vela pulsar are associated with supernova
remnants. However, this represents only two pulsars out of about twenty -
six. If all pulsars should be equally likely to show this association,
then the evidence is not too impressive. However, observable supernova
remnants are only a few hundred or a few thousands years old so that this

{ association should be observable only for young pulsars. If one adopts

o} the neutron-star hypothesis, then one would expect to observe an associa-

*ion with supernova remnants only for short-period pulsars. This is
what is found to be the case. Hence, in assigning a large value to

(531|0X), I was in fact making use of the hypothesis H This means

1
that I broke one of the basic rules of the game, The interface should
therefore be adjusted accordingly, for instance by taking S31 to be the

statement "short period pulsars are related to young supernova remnants,”

At this date (June 1969), one would face a further difficulty in
21
drawing up the above worksheet. It has been observed that the Vela

pulsar speeded up between 24 February and 3 March 1969, and then slowed

down again, Should one therefore assert that (521|0x) =90 and

e e e S W————e—

O e memree

(SZZIOX) = 1? Strictly speaking, one should. But this would be mis-
leading, in the sense that it would not represent the way science is done.

At this stage, the scientist would begin to modify what he regards

~ agmu,

as the "pulsar problem,  He would say that the "basic" problem, repre-
senting the 'normal behavior" of pulsars, is such that all pulsars slow

down.22 He would regard the behavior of the Vela pulsar as an anomaly,

representing a minor secondary pheromenon, which he will probably not

bothesr about until he has arrived at an adequate understanding of the

"normal behavior.” With this modification in the definition of the prob-
lem, one could still assert in June 1969 that (821|0X) = .97, (szzioX) =

.03, (s23[0x) = 0,
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7. DISCUSSION

It is hoped that the theory wnich has been developed in the preced-
ing sections will be interesting for two reasons: first, because it
provides a way to combhine observational and theoretical evidence to assess
how well a theory explains an observational phenomenon; and, second,
because one can learn some useful lessons from the exercise of trying to
astablish a procedure for making this assessment.

We saw 1in the previous section how the formalism may be used in prac-
tice. However, the formulas which we have derived and the example which
we gave are such that each item is divided up into a finite number of
alternative statements, 1In some cases, for instance when considering
continuous measurable quentities, it will be necessary to consider a
continuous sequence of statements. The required modificatien of Equation
(4.10) is straightforward.

We now suppose that the statements are enumerated by a continuous
variable Vv rather than the discrete variable n. For instance, the

statement Sv may be the statement that the measurable quantity < has
v+dv
of all statements enumerated by v as it runs from v to v+dv, we

the value F(v). If we now denote by "Sv to S the logical sum

can introduce the notation

(8, to |H,X) = (s _|H X) dv, etc. (7.1)
v i 1% 1 v

Sv+dv

Using this notation, gpd replacing the summation sign in Equatio:r /' 10)

by an integration sign, we obcain the formula
S |0x
(SvlﬁiX)v ( »| N

H
2 s, jx)v (Hjlx)
J

i |0x) = dv H %) . (7.2)

We now turn to some of the implications of the model, The firgt is
that it is essential to set up an appropriate and meaningful interface
between observational data and theoretical calculation. Getting to the

interface from observations needs data reduction. An excellent example
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of data reduction, in which an observer goes more than half way to meet
the theorist, is given in an article by Elllson.23

We may note, as an aside, that reduction is only one 1link in the
chain, and the absence of agreement between observation and theory may
on occasion be traced to faulty reduc:ion, This point also was made by
Sherlock Holmes:24 "1 ought to know by this time that when a fact appears
to be opposed to a lcng train of dediuctions, it invariably proves to be
capable of some other interpretation,”

The question of bias 1s very interesting, 1t 1s generally recognized
that theorists' conclusions are likely to be biased by knowledge of the
observations. The reason that great weight is attached to predictions is
that these are manifestly free from such bias, It is equally important
that facts stated by an observer should be free from bias due to knowledge
of theory, but theorists are not so concerned about this possibility that
they demand observers to make observations before a theory has been pro-
posed. There is therefore a double standard applied to theorists and
observers, However, it would clearly not be possible to require both
prediction by the theorists and "pre-observation" Ly the observers.

It is useful to introduce the term "hard fact" for the case that
observations lead to a high probability for one statement of an item and
very smail probabilities for all alternative statements. The other type
of fact may be called a "soft fact.” Similarly, we may talk about a
“firm conclusion" and a "weak conclusion,’ We now rote that, to get a
good test of a theory, we should be able to compare one or more hard
facts with one or more firm conclusions. In the case that we arc matching
a hard fact with a weak conclusion, or a soft fact with a firm conclusion,
we are no better off than if we were comparing a soft fact with a weak
conclusjon., In this case we could say that the strength of the inference
is "theory limited"” or "observation limited, respectiveiy. The econom-
ical use of observational effort and theoretical effort requires a sort
of "impedance matching" at the interface,

Sometimes a theory will have one or more adjustable parameters.

This possibility may be included in the present formalism by supposing
that we are dealing with a continuous sequence of hyputheses HA' where

s 1is a continuous variable. With the notation
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(H, to

N HA+d}\|X) = (H7\|x>)\ dA, etc. (7.3)

Equation (4.10) becomes

(s, 1H,x)(s |0X)

po(snl pr) (HP| x)_M

(H, |ox), = (u)\|x)x (7.4)

:[\qﬂ

and Equation (5.9) becomes

-(A-1)
(Hx| FiX), ... (H7\| FAX)}\( (HA| x), ]

(H,|F ...F,X). = (7.5)
AT AT A /’ y - (A-1)
du(H [F.X) ...(H |F
u( “! RO JRERY ul Ax)“{(Hu|X)p}

This method of determining optimum values of parameters of the theory
is very closely related to the "maximum likelihood" method of statistics.25
The principal concern of this article has been the problem of estab-
lishing a theory as a correct interpretation of a physical phenomenon.
When alternative theories can be clearly enumerated, there is the possi-
bility of establishing one of them as correct by proving that the others
are incorrect. When alternative theories cannot be clearly enumerated
(and this is generally the case), the evidence may point strongly to one
of the specified theories, but one must always bear in mind the possibility
that iurther information will come along which will disprove that theory.
In this sense, the general situation is that, at any time, there is no
"correct” theory of a physical phenomenon--there is only a “front runner.”
Although it is instructive, and may sometimes be helpful, to try to
specify rules for consistent thinking about scientific theories, any
scientist is aware that there are psychological factors as well as ra-
tional factors involved in securing acceptance of a theory. It is no
doubt the psychological factors which led to the following highly pes-
simistic observation, attributed to Max Plank: "A new scientific truth
does not triumph by convincing the opposition and making them see the
light, but rather by the opponents dying off and a new generation growing
up to accept it as the truth.”
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Evaluation of
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