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ABSTRACT

The aim of~this article is to set out a bookkeeping procedure by

which a scientist (using the term flexibly) may compare the conclusions

of a theory with facts obtained by reduction of observational data with

the aim of assessing the hypothesis on which the theory is based. It is

argued that the appropriate formalism is probability theory, and that the

key process is the inductive process as represented by Bayes' theorem

which indicates how the degree of belief in a hypothesis should be ad-

justed in response to new information.

The following model of the inductive process in science is adopted.

Between observation and theory there is an "interface" which comprises

a set of independent items: each item comprises a complete set of mu-

tually exclusive statements. It must be possible to assign two prob-

abilities to each of these statements, one by "reduction" of observational

data, and the other by theoretical analysis of the considered hypothesis.

The "observational" probabilities must be free from theoretical bias and

vice versa. Formulas are derived which show (a) how the assumed proba-

bility of the hypothesis should be adjusted in response to information

concerning one item, and (b) how such estimates concerning more than one

item may be combin.d.

The model further requires that one should consider not one hypothe-

sis but a complete set of mutually exclusive hypotheses. It is necessary

to reconcile this requirement with the normal situation that a scientist

has one or two specific theories to evaluate, the hypotheses of which

do not form a complete set. A proceduce is proposed to overcome this

difficulty. One may compare a real analysis (or analyses) of a specified

hypothesis (or hypotheses) with a "null" analysis of the complement of

this hypothesis (or hypotheses). A "null" analysis is that which admits

complete ignorance about the conclusions to be drawn from a hypothesis:

the relevant probabilities may therefore be determined without specific

knowledge of the hypothesis. If a specified theory fares worse than a

"null" theory, it is a bad theory.

The method is illustrated by a "worksheec" indicating the way in

which a few observational facts about pulsars may be used to appraise

both the neutron-star lipothesis and the white-dwarf hypothesis.
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I. INTRODUCTION

This article Is concerned with the role of induction in scientific

research. However the principal aim is not to undertake a philosophical

inquiry per se, but rather to set up a bookkeeping procedure for organiz-

ing the judgments involved in comparing a scientific theory with scien-

tific data. For my own convenience, I shall draw examples from astro-

physics, but I hope and believe that the ideas and methods could be use-

ful in other fields also.
1

A monograph on quasars by Kahn and Palmer gives an example of the

type of judgment which scientists must attempt to make. What is unusual

about the example is that the authors have the candor to present their

judgment in numerical form. Table 3, on page li of that monograph, gives

the "estimated probability of correctness" of six hypotheses concerning

quasars. A similar appraisal was made by Professor L. Woltjer at the

Conference on Seyfert Galaxies held at Tucson, Arizona in February 1968.

Although judgments of the type quoted above provide an effective

means of communicating degrees of belief, they immediately raise a signi-

ficant question: "How were these estimates arrived at?" In the examples
2

quoted, there is no hint of the answer to this question. An estimate

of this type, without a description of the process by which it was made,

invites controversy. The principal aim of this article is to present a

procedure for arriving at estimates of this type. This does not guarantee

that there will be no controversy, but it should help to localize the

area of disagreement and so make tahe controversy more profitable.

The examples quoted have already established one relevant point:

The appropriate formalism to use in investigating this problem is prob-

ability theory. Our aim then is to set up a model for the reasoning

process involved in evaluating a scientific theory, and to analyze this

model by the theory of probability. As I. J. Good3 has remarked, "Prob-

ability is a part of reasoning and is therefore more fundamental than

most theories." It is in this sense that the present article may be re-

garded as a "theo y of theories."

Before proceeding, it is important to state that we rall not be

concerned with a possible comparison between "perfect data' (observational

or experimental) and a "perfect theory." Even if we knew whAt thefe



terms meant, their discussion would be irrelevant to everday life.

Our aim is to determine how one can make a Judgment about a theory which

is admittedly uncertain ana incomplete, in comparing it with data which

are uncertain and incomplete. We further recognize that such an evalua-

tion must be made not once, but progressively, as the data come in and
4

as the theory develops. The following remarks of Jeffreys are relevant

here: "Either we can learn from experience or we cannot. The ability

to learn from experience demands the concept of probability in relation

to varying data, and the recognition of the meanings of more probable

than and less probable than." I
2. INDUCTION AND BAYES' THEOREM

Although textbooks frequently represent a science, such as physics,

as being deductive, scientists are well aware that this is a characteris-

tic of textbooks, not of science. P. G. Bergman, speaking at the Fourth

Texas Conference on Relativistic Astrophysics in Dallas in 1968, stated

'"Let the facts lead you where they may' is a gross oversimplification of

how to proceed in science and not necessarily philosophically justified."

The difference between deduction and induction has been pointed out very

clearly by Polya 5 by means of the following examples.

The basic reasoning process of the deductive type is the syllogism:

A implies B.

B is false.

Therefore A is fi!se.

By contrast, the inductive process follows a pattern such as the

following:

A implies B.

B is true.

Therefore A is more credible.

The above example, although descriptive, does not lend itself to

numerical evaluation. The basic procedure for making quantitative esti-

mates of inductive arguments is proviled by Bayes' theorem. According

to Jeffreys, "This theorem is to the theory of probability what

Pythagoras's theorem is to geometry."

2



We introduce the notation (AIB) to denote the probability that

proposition A is true on the basis of the knowledge that proposition B

is true. We adopt the convention that the measure of probability extends

over the range 0 to 1: (AlB) = 0 if A is impossible given B; and

(AIB) = I if A is certain given B.

The notatlon AB stands for the "product" of the two propositions

A and B. Then AB is true if and only if both A and B are true. The

7
product rule" of probability theory then states that

(AB C) = (A!BC)(B[C) . (2.1)

However, since AB BA, this may alternatively be written as

(ABIC) = (B'AC)(AIC) . (2.2)

We now see from these two equations that

(BIAC)
(A! B ) =- (:11C (AIC) .(2.3)

This is Bayes' theorem.

In order to show the relationship of this theorem to the scientific

method, we consider the following "model" of the ecientific process. A

certain hypothesis H is to be evaluated by comparing the theoretical con-

sequences of this hypothesis with observation (either of the world as we

find it or of a contrived situation called an "experiment"). Note here

an important point: It must be possible to formulate a statement which

makes sense either when it is regarded as the consequence of a theoretical

analysis, or when it is regarded as the result of an observation. Since

this statement forms a crucial "link" between theory and observation, we

use for it the symbol L. We also intrGduce the symbol X to denote all

information available to the scientist in addition to (and, we assume,

preceding) his knowledge, derived from observation, that L is true. Then

Bayes' theorem may be rewritten as

3
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|I(LI HX)

(H! Lx) = (Li x) (2.4)
K! X) I X

The term (HIX) is the "prior probability" of the hypothesis H (prior,

that is, to knowledge of L). The term (H1LX) is the "post probability"

of H, based on knowledge of both X and L. Bayes' theorem then tells us

that the post probability equals the prior probability multiplied by a

certain factor (LI UX)/(LIX) which is someti.nes termed the "likelihood."

This is the ratio of the probability that L is true, given H and infor-

mation X, to the probability that : is true, given only the information

X.
Equation (2.4) gives us a procedure for adjusting our degree of be-

lief in a hypothesis on the basis of incoming observational evidence.

If H is irrelevant to L, then (I.HX) = (LIX) so that (H!LX) = (HIX):

the probability is, appropriately enough, not affected by knowledge that

L is true. If 1, seems quite likely on the basis of knowledge X, but very

unlikely on the basis of X and the hypothesis 11, then the probability

that H is true is greatly reduced by the knowledge that L is true. If,

on the other hand, L seems quite unlikely on the basis of information X

alone, but quite likely on the basis of information X and the hypothesis

H, then the fact that L is known (observationally) to be true greatly

increases the probability that H is true.

It is worth noting a few further aspects of this theorem.

1. If (LIX) = 0, there is something wrong with our information

X, since L is incompatiblc with X, yet L is observed to be true.

2. Assuming that (LIX) 0, (HILX) = 0 if (HIX) = 0. That is,
an impossible hypothesis remains impossible, no matter what
"n isottrle, wyotesee frm(2) thatossil, no 0ate if htthe evidence.

3. Denoting by H the negative of H, so that "H is true" means
"H is not true", we see from (2) that (HILX) =0 if (H IX) =0.

This may be stated alternatively as (HjLX) = 1 if (HIX) = 1,
since by the sum rule of probability theory,7

(MIX) + (HIX) = 1, etc. (2.5)

41
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In other words, if H is certain before we have knowledge of L,

it will be certain after we have knowledge of L, no matter what

L may be,

We see from the above paragraph that one should be very careful about

assigning probability zero or unity to any proposition, since this entails

that we can never change these estimates, no matter what subsequent In-

fromation may turn up. I. J. Good has some useful advice nn this point:

"Probability judgments can be sharpened by laying bets at suitable odds.

If people always felt obliged to back their opinions when challenged, we

would be spared a few of the 'certain' predictions that are so freely' i made." Whether or not we make wagers, we should, for the sake of future

credibility, be very cautious about making "certain" theoretical pradic-

tions or stating "certain" observational facts: Theorists sometimes find

a calculation to be wrong, and observers sometimes find that their re-

sults are not supported by subsequent observations by other groups.

3. MODEL OF THE INDUCTIVE PROCESS IN SCIENCE

Equation (2.4) of the preceding section, and the discussion which

followed it, give a -ough approximation to the inductive process in

science. The simple model given ii Section 2 would be adequate in a Sim

ple situation in which theory could predict the reading which one should

obtain from a particular measuring device such as a meter. This however

is not the usual situation in science. It may take a great deal of jug.

gling and maneuvering to find a quantity which can be both measured and

calculated.

Indeed, although one thinks of measurement es being the key process

in exact sciences, many of the comparisons made between theory and obser-

vation are not normally expressed in terms of measurable quantities. For

instance, one may require of a physical theory that it should be covariant

under some transformation (Galilean, Lorentz, etc.). In the early studies

of quasars, one of the most important questions was to determine whether

the objects are "intragalactic" or "extragalactic." Similarly, the nature

of pulsars for sometime hinged upon the question "Is a pulsar a white

dwarf or a neutron star?"

5
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Our first aim in this section is to set up a "model" for the induc-

tive process in science which is a closer approximation to the methods

actually used than the simple model presented in Section 2. The essential

requirement is to be able to make a comparison between theory and obser-

vation. Hence a key requirement is for an "interface" between theory

and observation. It s'eems that the basic requirement for such an inter-

face is that there should be a language which can be understood both by

theorists and by observers. More specifically, we adopt the following

definition of the interface for the purpose of constructing a model: The

interface comprises a number of statements, each of which is both (a)

a possible result of data reduction of ob.ervations, and (b) a possible

consequence of theoretical arilysis of a hypothesis under consideration.

It is convenient to make further assumptions about these statements.

We assume that they may be arranged into groups: Each group of statements

will be termed an "item." We assume that there is a finite set of items

1a  1, 2, . , A.

With uach item I Aethere is to be associated a group of statements

which, for present convenience, we assume to be finite in number. (This

assumption can be relaxed without difficulty and must be relaxed when

dealing with statements about continuous variables.) This set of state-

ments will be represented by SCa, n =1,2,.., N . For convenience,

we assume that the group of statements associated with any item are mutu-

ally exclusive and complete. That is, for any item such as I , one

ant only one of the statements S is tr e.

When a science is well established, one tends to forget that the

theory of that science is simply a construct, the validity of which is

to be established by comparison with observations. Indeed, one can easily

come to regard the abstract construct as having a "reality" of its own.

A remark by Eddin~ton9 is particularly appropriate here: "Physical science

may be defined as 'the systematization of knowledge obtained by measure-

ment.' It is a convention that this knowledge shall be formulated as a

description of a world--called the 'physical universe'." It is necessary

for us to distinguishi between observational data and theoretical data,

and to consider explicitly thq connection between them.

6
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We first consider what goes on on the observational side of the in-

terface. An astronomer obtains his information by means of photographs,

spectra, radio records, etc., whichever happens to be the output of the

observational instrument he is using. An experimenter collects similar

"raw data." However, neither observer nor experimenter transmits this

raw data to his scientific colleagues. The transaction between the ob-

server (this term being used to include "experimenter") and the theorist

is typically the publication of an article in which the observstional re-

sults are presented and analyzed. Sometimes the conclusions which the

observer draws from his data have almost the certainty of mathematical

deduction. Usually, however, there are a number of assumptions and pro-

visos which are explicitly or implicitly involved in going from the data

to the conclusions. Furthermore, this process of "data reduction" prob-

ably involves the use of theoretical knowledge. One must pay careful

attention to this aspect of data reduction, if one's aim is to compare

the results of the observation with one or more theories.

The basic rule of data reduction is that, if theoretical knowledge

is to be used, it should be carefully specified, and preferably should

comprise only theoretical knowledge which is beyond dispute. If the aim

of an observation is to obtain information with which to evaluate one or

more theoretical hypothesis, the data reduction must studiously avoid any

steps which explicitly or implicitly appeal to these hypotheses.

Data reduction can range from a very simple to a very sophisticated

operation. A new technique in data reduction may represent an important

step forward in a science. The construction of the Hertzsprung-Russell
10,11

diagram is a case in point. In looking at raw data, one may not be

able to see the wood for the trees. The aim of good data reduction is to

enable one to see the shape of the forest. A Hertzsprung-Russell diagram

might be prepared from many precise observations, yet the significant

information in the diagram may comprise the approximate clustering of

points to form a simple and not-to-well-defined curve.

In the present model, the result of data analysis is to provide

varying degrees of support for alternative statements S of each item

I , on the basis of observational knowledge which we denote by 0. In

this model, the sum total of observational knowledge, as it may be used

7



for comparison with theory, is prov1ded by the set of probabilities

(SOM ROX). R denotes the process of data reduction. This symbol should

be introduced since different reduction procedures may lead to different

estimates of the reduced data.

Since, for each c, the set of statements S are complete andCMn
7

mutually exclusive, we see from the sum rule of probability theory that

Na Na
(s IX) 1 1, (S IROX) = 1: etc. (3.1)

n=l n=l

In the present context, X denotes all information which is not in ques- j
tion, including theoretical knowledge used in the data reduction and,

conversely, whatever observational knowledge the theorist is to be per-

mitted to use in his analyses.

We now look at the other side of the fence, and inquire about opera-

tions on the theoretical side of the interface. The basic procedure has
12

been described by Jeffreys , in his discussion of 'theory": "The use of

the word 'theory' in several different senses is perhaps responsible for

a good deal of confusion. What I prefer to call an 'explanation' consists

of several parts: First, a statement of a hypothesis; secondly, the sys-

tematic development of its consequences; thirdly, the comparison of these

consequences with observation."

However, Jeffreys elsewhere 13 nake the following relevant and quali-

fying remarks: "We get no evidence for a hypothesis by merely working

out its consequences and showing that they agree with some observations,

because it may happen that a wide range of other hypotheses would agree

with those observations equally well. To get evidence for it we must

also examine its various contradictories and show that they do not fit

the observations. This elementary principle is often overlooked in al..

leged scientific work, which proceeds by stating a hypothesis, quoting

masses of results of observation that might be expected on the hypothesis

and possibly on several contradictory ones, ignoring all that would not

be expected on it, but might be expected on some alternative, and claiming

that the observations support the hypothesis. So long as

8



alternatives are not examined and compared with the whole of the relevant

data, a hypothesis can never be more than a considered one."

We see from the above that the principal job of a theorist is to

determine by theoretical analysis the consequences of one or more hypo-

theses. As Jeffreys points out, one obtains the strongest evidence for

a hypothesis when one analyzes, and compares with observations, this

hypothesis and also whatever additional hypotheses are necessary to form

a complete set. An important case for us to consider is, therefore,

that we are considering a set of hypotheses Hi, i = 1, ., I, which

are mutually exclusive and form a complete set. We assume that each of

these hypotheses is subjected in turn to an analysis A so that one

arrives at probabilities for the statements S , where these statements

are now regarded as consequences of each hypothesis considered in turn.
In this way we would arrive at the probabilities (S M AHIX). It may

well be that, if the problem is sufficiently well defined, each hypothesisI

Hi  implies a definite statement SCM of each item I , so that each of

the probabilities (S MAHX) would be either unity or zero. However,

there may be some uncertainty in the basic information X, and it is

normally the case that scientific analysis is incomplete and imperfect.

Hence we should expect that, in general, the probabilities (S IAH iX)

will have values between zero and unity.

Although it is most desirable to consider any hypothesis under con-

sideration as a member of a complete set, and to analyze all members of

that set, this will often be impractical in normal scientific theoretical

work. It may be that the hypotheses can be identified, but are too many

in number for each of them to be analyzed. Another possibility is that

it is very difficult, or practically impossible, to identify hypotheses

which build up a given hypothesis into a complete set. It is therefore

important "or us to have some way of proceeding which does not hinge upon

the explicit identification and analysis of a complete set of hypotheses.

Jeffreys recognizes that a well established hypothesis will be ac-

cepted simply on the basis of the agreement between consequences of that
14

hypothesis and observation. He states "The chief advances in modern

physics . . . were achieved by the method of Euclid and Newton: to state

a set of hypotheses, work out their consequences, and assert them if they

a t~ m~~u , mm e m ..... _R __ -
-

- - ' -9
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accounted for most of the outstanding variation." It is therefore neces-

sary for us to specify a procedure which involves the detailed specifica-

tion and analysis of one or more hypotheses H ... , Hi, in the case

that this set of hypotheses does not Corm a complete set. We assume,

however, that the hypotheses are chosun to be mutually exclusive.

We assume that it is possible to expand this set of hypotheses to

form a complete set by adding e hypothesis H which excludes and is
0

excluded by any one of the hypothesis Hi, i = 1, 1....I. (If the

set were to be specified explicitly, it might be more convenient to ex-

press H0 as the disjunction of a large number of hypotheses, but for

present purposes this consideration is irrelevant.) Thus the sot of

hypotheses HO , H, . HI are mutually exclusive and form a complete
set.

We now ask what information we can obtain about the hypothesis H0

without specifying the hypothesis or carrying out an analysis of the

hypothesis. The answer is, of course, that in this circumstance we must

remain ignorant about H However, this does not mean that we cannot
0'

fit H into our model of the inductive process in science. We have
0

recognized that theoretical analysis is in practice imperfect. We can

introduce, as an extreme case, a "null" analysis A0 which gives no

information whatever about the consequences of the hypothesis to which

it is applied. It is then possible to maintain the formalism which is

based on the assumption that we are analyzing the consequences of a com-

plete set of hypotheses, by adopting the following strategem: first, we

assume that the known hypotheses Hl, ... ,Hl, are supplemented by a hypo-

thesis H to form a complete set; second, we assume that, whereas each
0

hypothesis Hl, ... .,HI is subjected to a proper analysis A, the hy-

pothesis H0  (which is not to be specified explicitly) is assumed to

be subjected to the "null" analysis AO . We shall, for simplicity of

notation, suppress the symbols A and A in the remainder of this
0

section.

Now suppo'e 
t
ra. we chose to identify (SCa, H X) with (S ccX).

Since the hypotheses Ho, H3,...P H I form a complete set, we know that

H0 + H + ... + H I is true, where the summation sign here indicates a

"logical sum," i.e., "and/or." Hence

101 __ ___ __ 1



i=i

On noting that the hypoth.3ses Ho, Hi,..H T are mutually exclusive, we

see from the sum rule of probability theory7 that

$m H = (SH 1 x) . (3.3)

i--O i---0

7
We may now use the produce rule to write

(SHlIX) = (SoIHiX)(HiIX) , (3.4)

so that

I

(S(X) = 'S, (SConIHiX)(H IX) (3.5)

i=O

If we now make the choice I

(S 0 H0 X) = S IX) , (3.6)

we see that

(SaH 0 X) =[ - (Holy)] 1  (S m IHiX)(HiIX) (3.7)

It follows from this equation that if a particular statement S isa= n1
impossible on the basis of hypotheses H1 ,.. ., Hip then it must be con-

sidered to be impossible on the basis of hypothesis H0 also. This re-

presents a defect of the convention for (S0CM[HoX) specified by Equation

(3.6). We would like the probabilities (S CMHOX) to be "maximally

noncommittal" about the statements Sn, subject only to restrictions

1L



lm osed by the information X. The manner in which one may ascribe

"M.xI.,ially norcommittal" values to a set of statements, taking account

of possiblc information about the statements, has been discussed by

Jaynes. We will not pursue this point here. For our purpose, it is

,,iortant o-1, t. note that it is necessary to specify the probabilities

(SI mif " in as noncommittal a manner as possible, and that it is not
0M U

desirable to adort the convention (3.6).

Althovgl we hve recognized two very different theoretical situations,

it has now been possible to set up a formalism which covers both cases.

The forwulas which ie shall derive in the next two sections may be apnlied

to either case. The difference between the two cases will become signi-

ficant only when we consider the information which is to be fed into the

iformula- . or tY>. interpretation to be placed upon estimates made by means

j' t.e formula. We shall discuss this further in the final section.

4. INDCTON USIN. ONE FACT

WI no, E;iproe that, by data reduction, the observer has assigned

various prc %bi!ities to the statements which constitute ti.., interface.

The the ,rist has assigned probabilities to the same statements based on

nP.Jvsis of each considered hypothesis, and also possibly based on a null

analysis of a supplemental hypothesis. This information, and knowledge

of the prior probability of each hypothesis, should enable us to assign

a post probability to each hypothesis. That is, given the information

specified in the preceding section, and given the values of (Hix), we

should be able to calculate (HilOx). Here and in subsequent sections

it is convenient to suppress the symbols R, A and A These are im-

plicitly present: the observations have been reduced by a specified

procedure; hypotheses H1 , ..., H I have been reduced by analysis A and

hypothesis H (if it must be introduced) has been reduced by the null

analysis AO . In line with this change of notation, we shall refer to

H as the "ignorance hypothesis."
0

In this section, we make the simplifying assumption that there is

only one item to be considered. If we regard the observational knowledge

pertaining to an item as a "fact," this means that we have only one fact

to consider. In this section, therefore, we may drop the suffix a.

12



As an aside, we may note that this can be regarded as a formal change

rather than a substantive change, since it is always possible to combine

items. Specifically, we could introduce the notation

Snnn"... - in S2n S3n" ... (4.1)

The set of statements S n again are mutually exclusive and form ann n

complete set, and they comprise all the information represented by the

separate groups of statements. However, our intention is to consider

one item in this section, and to consider in 
t ile next section how one

should combine information derived from several separate items.

Our aim is to calculate (HI lOX), the "post probabilities" of the

various hypotheses as determined by the prior information X and the

observations 0. Since the statements S are mutually exclusive and

form a complete set, this probability may be written as

(H i ox) = H Sn 1 O) (4.2)

n

where the summation sign indicates a "logical summation." By the sum

rule of probability theory,
7 this equation may be expressed as

(HIlOX) = > (HiS n[O:) , (4.3)

n

and use of the product rule
7 enables us to put this equation in the fol-

lowing form:

(Hilox) = (HSnOX)(Snlox) (4.4)

n

According to the rules of our model, the connection between the hy-

potheses and the observations occurs only via the statements Sn -  it

13
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is asserted that Sn  is true, all other knowledge about the observations

is irrelevant, as far as the hypotheses are concerned. This property of

our model therefore implies that

(H IS OX) = (H, InX) , (4.5)

i n i n

in consequence of which Equation (4.4) becomes

(HilOX) = (H iISnX)(SnlOX) (4.6)

At this stage we use the following form of Bayes' theorem [Equation

(2.3)];

(SnH HX)

(H Is X) = (S n X) (H IX) (4.7)
i nI (S nIX) i

This introduces the probabilities (S nIX), which do not appear among our

initial data. It is at this point that we profit from the assumption

that the set of hypotheses Hi  are mutually exclusive and form a complete

set. We saw in Section 3 that these assumptions lead to Equation (3.5),

which is now written as

(SnX) n k (SnIHjX)(HjIX) (4.8)

leaving the range of summation (0, ,..., N or 1,2,..., N), unspecified.

Then Equation (4.7) becomes

(Sn IHiX)
(H ISnX) (SIHX)(H IX) (Hi x) (4.9)

14



On combining Equations (4.4) and (4.9), we finally arrive at

(H, IOX) F(S n H IX)IS nlox 1,1 (4.10)

n I

This equation is the principal result of this section. The above formula

for the post probabilities (HItOX) Involves only the prior probabilities

(H IX) and the probabilities of statements S as determined on the one
I n

hand by reduction of the observations 0 and on the other hand by analysis

of the hypotheses Hi . We may note the following desirable property of

this equation

(Hi OX) 1 . (4.11)

1

This shows that the formula (4.10) wil] never yield a probability of a

hypothesis greater than unity, and that it will show the probability of

one hypothesis to be equal to unity only if it shows the probabilities

of all other hypotheses to be zero.

5. INDUCTION USING MANY FACTS

In the preceding section we obtained a formula to describe the prob-

abilities to be assigned to a set of hypotheses on the basis of the prior

probabilities and of observational and theoretical knowledge concerning

one item of the interface. We now consider how we may take account of

knowledge concerning several such items. We assume that these items

are "independent" in a sense to be specified later.

It is convenient to introduce F as the "fact" associated with

the item I . According to our model, the fact F comprises the set

of probabilities (S OX), n = 1 a.... N

We now suppose that a group of hypothoses Hi have been evaluated

in terms of two facts F and F2 , considered separately and indepen-

dently. In this way we have arrived at probabilities which may be written

15
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as (HIFIX), (H IF.X). The problem which we now consider is thtt of

determining the probabilities (H1 IFIF 2 X). The sense in which F and

F2 are considered to be independent is the following: knowledge of F1

will influence our interpretation of F2 only through the effect which

F has on our eva~uation of the hypotheses Hi  and the influence of

knowledge of hypotheses Hi  on our interpretation of F We assume of

course that the converse also is true.

We first note that (HiIF1F2X) may be expressed as follows:

(i IF FX) iF
(H1F1 1F 2X)(IIiIF1FX=F2 X) .X (5.1)

By an argument parallel to that leading to Equation (4.4), we see that

(H iFIF = F (HiFIHjF2X)(HjIF2X) (5.2)

and

(FlIF2 X) = (Fl 1 -F2) (H IF2X) (5.3)

We now note that the first term on the right-hand side of (5.2) may be

expressed as
7

(Hi FIH F2X) (HiIFIHF 2 X)(FI}HJF 2 X) (5.4)

However, since the set of hypotheses is assumed to be mutually exclusive

and complete,

(H iF H jF 2X) = .
(5.5)

Furthermore, our specification of the sense in which F1 and F2 are

taken to be independent implies that

16
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(F H1 jF 2 X) = (Fl H X) (5.6)

If we now note from Bayes' theorem that

(F Ili X) (Hj IF 2X) ( 57
(H F2X) 2 X)

we find from Equations (5.2) through (5.7) that Equation (5.1) may be

expressed as

(H, I FIX) (HI[ F2X [kHilX) ] -

(HiF2 = , (HX)FIX)(HIF 2 X)[(H 1 IX)]_ . (5.8)

It is a straightforward matter to prove (by induction:) that the general

formula is

(H I (HiIF X)... (FAX) [(NIX) (5.9)

(H(IFF...FX) = (I ... (HJFAX[H )AI (5.9)

We note from this equation that

(HIF,.F (5.10)

6. WORK-SHEET CONCERNING THE THEORY OF PULSARS

Since the principal aim of this article is a bookkeeping procedure

rather than a philosophical inquiry, it seems expedient to pre3ent a

simple example of the use of the formulas which we have derived, before

indulging Jn a philosophical discussion of the their significance.

The example to be discussed concerns the current astrophysical prob-

lem of the nature of pulsars.
16  Although it is now generally agreed that
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P pulsar is to be identified with a rotating neutron star, less than a

year ago there was 9 lively controversy concerning two possibilities:

the rotating neutron star model and the pulsating white dwarf model. In

January 1969 the evidence had become strongly favorable to the neutron

star hypothesis, and I was interested to try to assess the strength of

the case by using the techniques presented in this article. The following

material is therefore to be regarded as a personal worksheet (which is

now several months out of date), not a valid description of the present

state of knowledge concerning pulsars.

The "work-sheet" is presented in Table 1. Four items are here con-

sidered.

1. The range of period.

2. The change of period.

3. Connection with supernovae.

4. Absence of photospheric radiation.

These items will be discussed in turn. In addition to the hypotheses

that the object is a neutron star (H ) and that the object is a white-
1

dwarf (H2 ), we consider the 'ignorance" hypothesis (H ), allowing

for the possibility that there may be some other hitherto unsuspected

explunation.

Before discussing the above items, we should recognize that one item

is conspicuous by its absence: namely, radio emission. The reason this

was not considered is that very little persuasive information was avail-

able concerning radio emission from a neutron-star model or from a white-

dwarf model. Hence, in this respect, each model would fare no better

and no worse than the ignorance hypothesis. Such an item need not be

considered explicitly - it is "ignorable." Similarly, if there is no ob-

servational information about an item, it is ignorable.

There is another interesting aspect to the (absent) item concerned

with radio emission. It is concerned not with a possible property of

pulsars, but with a necessary property. In order for an object to be

accepted as a pulsar, it must have certain properties. In the early

days of a phenomenon, such properties will typically be observational.

In order to clarify this point, we introduce for this purpose only a

Itzeroth" item:

18



Table 1. PULSAR WORK-SHEET

Based on prior probabilities (HoIX) (H1 )X) = (;!21X) 1 /3

a s

C

5 0

a a

Item 1. Range of Period

SII: Periods extend over range -.03 sec 1 .5 1 .01
to 3 sec

S12 : 11 not true 0 .5 0 .99

Post probabilities .331 .662 .007

Item 2: Change of Period

S21: All pulsars slow down .97 .33 1 .09

S Neither S nor S true .03 .33 0 .01
22: 21 23

S23: All pulsars speed up 0 .34 0 .9

Post probabilities .256 .681 .063

Item 3. Association with Supernovae
531: All pulsars related to supernovae .9 .03 .99 0

S3 2 : Some pulsars related to supernovae .1 .01 .01 .01

S No pulsars related to supernovae 0 .96 0 .99
33:
Post probabilities .060 .507 .033

Item 4. Photospheric Radiation

$4: No pulsatrs heve detectable photo- .99 .33 1 .01

spheric radiation

$42; Some pulsars have detectable photo- .01 .33 0 .09

spheric radiation

S 43: All pulsars have detectable photo- 0 .34 0 .9

spheric radiation

Post probabilities .257 .257 .010

Post probabilities based on all facts .012 .988 1.37 xl08

19
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Item 0. Periodic Pulsed Radio Emission.

The statements might be chosen as follows:

S0 1  The object emits detectable periodic pulsed radio emis-

sion.

S0 2 : The object does not emit detectable periodic pulsed radio

emission.

Then a pulsar is "defined" by the statement S Hence it becomes a
01"

convention, associated with the name "pulsar," that (SoIjOX) = 1. Note

that the strict separation between observational facts and theoretical

conclusions applies here also: the convention that (S 1 OX) = I should

not prejudice the evaluation of (SoI HX) for any hypothesis.

We may also note that the definition of a phenomenon may at one time

be observational in nature and at another time theoretical in nature.

It may be, for instance, that when pulsars are "fully" understood, they

17
will be defined by a hypothetical model

We now return to a discussion of Items 1 - 4.

Item 1. The Range of Periods.

We adopt the following statements for this item.

S1 The periods of pulsars extend over a range extending from

.03 sec or below to 3 sec or above.
S : The range of periods does not extend as low as .03 sec
12 and/or does not extend as high as 3 sec.

We know from observational evidence that statement S is correct.

Hence we set (S1 1 10X) = 1 and (SI210X) = 0.

Here and in Items 2 and 4, we assign equal probabilities to possible

statements of an item, when regarded as consequences of the ignorance

theory. Hence we assign (SIJHoX) = .5, (SI HoX) = .5.

The neutron star hypothesis is compatible with any periods down to

a minimum value of about I m sec. Hence we set (S111HIX) = 1,

(S12 1HIX) = 0.

If the pulses were produced by pulsation of a white dwarf, one would

expect th6 periods to extend over a range from about one second to several

seconds. However, one cannot be completely confident that shorter periods

20
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are quite impossible. Therefore, to be conservative, we say (Sll H2 X) = .01,

(SI2 H2 X) = .99.

We may now use Equation (4.10) tc evaluate the post-probabilities

of the three alternative hypotheses, using the information of Item 1.

On denoting by F1  the observational data relevant to Item 1, we find

that (if0IF X) = .331, (HIIFIX) = .662 ana (H.JFIX) = .007.

Item 2. Rate of Change of Period.

The statements are as shown in the table. Five pulsars are known

to be slowing down. No observable change has been detected for other

pulsars, which we interpret to mean that the rate of change is too small

for its sign to be determined. If we assign equal prior probabilities

to the three possible statements, the fact that five pulsars are known

to be slowing down leads to the observational probabilities shown in the i

table.

If pulsars are rotating neutron stars, we expect pulsars to slow

down.

If pulsars are pulsating white dwarfs, we expect them to speed up,

since the white dwarf should become smaller and denser as it ages. How-

ever, without specifying what kind of pulsation we are considering, we

should assign a small probability to the possiblity that the pulsations

will speed up. To be cautious, we should &lso make somE allowance for

the possibility that some pulsars slow down and some pulsars speed up.

These considerations lead to the probabilities shown.

The post-probabilities based on data for this item are also shown.

Item 3. Relationship of Pulsars to Supernovae.

It is known that two pulsars are located in the same positions as

supernova remnants. This suggests that all pulsars are related to super-

novae (Statement S 31). However, one should allow for the possibility

that only some pulsars are related to supernovae (Statement S ). We
32

can rule out the possibility that no pulsars are related to supernovae

(Statement S3 )

The only idea which has been advanced concerning the creation of

a neutron star is that it is formed during a supernova explosion. The

21
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neutron-star hypothesis therofore leads us to expect that all pulsars

should be related to supernovae. However, to be cautious, we might allow

for the possibility that there is some other way in which neutron stars

can be formed, and therefore assign a small probability, on the basis of

H1 , to S32.

The current view about white dwarfs is that they represent a state

of senility reached by low-mass stars in a non-catastrophic evolution.

However, the idea has been suggested that a supernova explosion may leave

a white dwarf as end product. We therefore choose the probabilities shown.

In assigning probabilities to the statements of Item 3 for the igno-

rance hypothesis, the simplest procedure of assigning equal weight to the

alternatives seems unacceptable, since a supernova remnant is an unusual

object. The key question is: "What ii. the probability that objects

which are (or appear to be) supernova remnants are associated with some

unspecified object which is neither a neutron star nor a white dwarf?"

Most astronomers would regard the probability as small, but we are ,lert

to the fact that we must not set the probability as zero. Taking this

question in isolation (i.e., neglecting all other evidence related to

pulsars), I should regard .1 as too high and .01 as too low; accordingly,

I choose (S31 JHoX) = .03- assign a somewhat lower probability to the

possibility that, if pulsars are neither neutron stars nor white dwarfs,

some of them happen to be related to supernova remnants or objects which

look like supernova remnants, setting (S32 IH0 X) = .01. Hence

(S 3 31H0 X) = .96.

Item 4. Photospheric Radiation.

In only one case has a star-like optical object been identified with

a pulsar: this is the south-preceding star of the Crab Nebula, identified

with the Crab pulsar. However, it has been shown that the radiation of

this "star" consists of pulses similar to the radio pulses, so that it

cannot be interpreted as photospheric radiation. There is one nornal

star near the location of the pulsar CP 1919, but this is generally I
thought not to be the optical counterpart of the pulsar. To avoid being

dogmatic, we choose the probabilities listed in the table.

22



A neutron star is too small for its photospheric radiation to oe

optically detectable. On the other hand, a white dwarf should be clearly

visible at the typical distance estimated for a pulsar. However, the

luminosity of a white dwarf decreases steadily as it gets older, so that

it is possible that some white dwarfs of a sample would be invisible, and

we cannot rule out the possibility that all white dwarfs of a given class

may be invisible. These considerations are reflected in the probabilities

listed in item 4.

We see from the Table that each fact counts against the white-dwarf

hypothesis. However, none could be considered to be conclusive. In

Items 1, 2 and 3, the neutron star hypothesis fares better than the igno-

rance hypothesis, but not much better. This is due simply to the fact

that each item has been divided into only a small number of possible

statements. In order to get strong evidence for a hypothesis in compar-

ison with the ignorance hypothesis, it is necessary to consider an item

divided intoa large number of statements, or to have some reason for assigning

very nonuniform weighting to the possible statements on the basis of the

ignorance hypothesis, as in the case of Item 3.

The post-probabilities calculated from each of the four facts may

be combined by means of Equation (5.9). When this is done, we arrive at

the result

(H0IOX) = .012

(H lox) = .988 1i

t-6
(H2 1OX) = 1.37 X 10

We see that the combined facts give very strong evidence against the

white-dwarf hypothesis. If one were to consider the white dwarf hypo-

thesis and the neutron star hypothesis as being the only possibilities,

then the considerations listed above would show conclusively that pulsars

are to be interpreted as neutron stars. If, however, we give equal prior-

probability to the hypothesis that there is some other explanation, then

we find that the evidence for the neutron-star hypothesis is good, but

not overwhelming.

23
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When probabilities become very close to unity or very close to zero,

it is convonient to introduce a change of notation which gives a better

feeling for the magnitude of the effect. The change of notation fits

most easily with the "odds" notation where the odds on a proposition is

defined as P/(1-P), that is, the ratio of the probability that the pro-

position is true to the probability that it is not true. The odds on a

proposition can clearly vary from zero to infinity, so that it is con-

venient to use logarithmic notation. Good 1 8 recommends that one use

19the decibel notation. McCamy , in a recent article, recommends the use

of "brigg" (decibrigg, etc.) as a general term, in place of bel. How-

ever, the symbol "db" may be used for either "decibel" or "decibrigg,"

according to taste.

Using the symbol H to denote the proposition "H Is not trtie," we

may now express the above rdsult as follows.

(H1jOx)/(jo0x) = .012

(H1Iox)/(' 1 lOX) = 83

(H21OX)/(T2IOX) m 1.37 
X 10-6

These results may be expressed in db-notation as follows:

Odds on H0 = -19.2 db,

Odds on H1 = 19.2 db,

Odds on H2 = -58.6 db.

We see that, if the only admitted possibilities were the neutron-star

hypothesis and the white-dwarf hypothesis, the odds on the neutron-star

hypothesis would be about 87 db. However, if one admits the ignorance

hypothesis, and gives it equal prior probability with the other two hy-

potheses, then the odds on the neutron-star nypothesis is only 15 db.

This demonstrates a view of scientific theories which sometimes finds

expression: it is easier to prove a theory wrong than to prove it right20

The high value of the odds on H,, when H0  is ignored, is really due

to the high odds against H2 .
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I
The above example shows that a combination of three or four quite

cautious statements can lead to a strong result. We note also that, with

one exception, the statements do not involve numbers. Hence the applica-

tion of this type of formalism is not restricted to problems involving

numerical data. It could be applied equally well to biology, criminology

or social science.

We may also point out two defects of the above worksheet. A large

value (.9) was assigned to (S3 11OX). This was due to the fact that

both the Crab pulsar and the Vela pulsar are associated with supernova

remnants. However, this represents only two pulsars out of about twent5-

six. If all pulsars should be equally likely to show this association,

then the evidence is not too impressive. However, observable supernova

remnants are only a few hundred or a few thousands years old so that this

association should be observable only for young pulsars. If one adopts

the neutron-star hypothesis, then one would expect to observe an associa-

-ion with supernova remnants only for short-period pulsars. This is

what is found to be the case. Hence, in assigning a large value to

(S 311X), I was in fact making use of the hypothesis H . This means

that I broke one of the basic rules of the game. The interface should

therefore be adjusted accordingly, for instance by taking S3 1 to be the

statement "short period pulsars are related to young supernova remnants."

At this date (June 1969), one would face a further difficulty in

drawing up the above worksheet. It has been observed2 1 that the Vela

pulsar speeded up between 24 February and 3 March 1969, and then slowed

down again. Should one therefore assert that (S2110X) = 0 and

($220X) = 1? Strictly speaking, one should. But this would be mis-

leading, in the sense that it would not represent the way science is done.

At this stage, the scientist would begin to modify what he regards

as the "pulsar problem. He would say that the "basic" problem, repre-

senting the "normal behavior" of pulsars, is such that all pulsars slow

down. He would regard the behavior of the Vela pulsar as an anomaly,

representing a minor secondary phenomenon, which he will probably not

bother about until he has arrived at an adequate understanding of the

"normal behavior." With this modification in the definition of the prob-

lem, one could still assert in June 1969 that ($211OX) .97, (S22 OX)

.03, (S 230X) 0.
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7. DISCUSSION

It is hoped that the theory wnich has been developed in the preced-

ing sections will be interesting for two reasons: first, because it

provides a way to combine observational and theoretical evidence to assess

how well a theory explains an observational phenomenon; and, second,

because one can learn some useful lessons from the exercise of trying to

ostablish a procedure for making this assessment.

We saw in the previous section how the formalism may be used in prac-

tice, However, the formulas which we have derived and the example which

we gave are such that each item is divided up into a finite number of

alternative statements. In some cases, for instance when considering

continuous measurable quantities, it will be necessary to consider a

continuous sequence of statements. The required modification of Equation

(4.10) is straightforward.

We now suppose that the statements are enumerated by a continuous

variable v rather than the discrete variable n. For instance, the

statement SV may be the statement that the measurable quantity ' has

the value F(v). If we now denote by "S to S " the logical sumv v-idy

of all statements enumerated by v as it runs from v to v+dv, we

can introduce the notation

(S to S H dvlHX) = (S vlHIX) dv, etc. (7ol)

Using this notation, Wnd replacing the summation sign in Equatioi (' 10)

by an integration sign, we obcain the formula

(S lH X) (S ox) 1
(H110X) f Jdv >(SIH'.X) v (HIX) . (7.2)

We now turn to some of the implications of the model. The first is

that it is essential to set up an appropriate and meaningful interface

between observational data and theoretical calculation. Getting to the

interface from observations needs data reduction. An excellent example
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of data reduction, in which an observer goes more than half way to meet

the theorist, is given in an article by Ellison. 
23

We may note, as an aside, that reduction is only one link in the

chain, and the absence of agreement between observation and theory may

on occasion be traced to faulty reducion. This point also was made by
24

Sherlock Holmes: "I ought to know by this tlme that when a fact appears

to be opposed to a Icng train of deductions, it invariably proves to be

capable of some other interpretation."

The question of bias is very interesting. It is generally recognized

that theorists' conclusions are likely to be biased by knowledge of the

observations. The reason that great weight is attached to predictions is

that these are manifestly free from such bias. It is equally important

of theory, but theorists are not so concerned about this possibility that

they demand observers to make observations before a theory has been pro-

posed. There is therefore a double standard applied to theorists and

observers. However, it would clearly not be possible to require both

prediction by the theorists and "pre-observation" Ly the observers.

It is useful to introduce the term "hard fact" for the case that-

observations lead "to a high probability for one statement of an item and

very smail probabilities for all alternative statements. The other type

of fact may be called a "soft fact." Similarly, we may talk about a

"firm conclusion" and a "weak conclusion." We now note that, to get a

good test of a theory, we should be able to compare one or more hard

facts with one or more firm conclusions. In the case that we are matching

a hard fact with a weak conclusion, or a soft fact with a firm conclusion,

we are no better off than if we were comparing a soft fact with a weak

conclusion. In this case we could say that the strength of the inference

is "theory limited' or "observation limited," respectively. The econom-

ical use of observational effort and theoretical effort requires a sort

of "impedance matching" at the interface!

Sometimes a theory will have one or more adjustable parameters.

This possibility may be included in the present formalism by supposing

that we are dealing with a continuous sequence of hypotheses HA, where

is a continuous variable. With the notation

27
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(H to H dX) = (H. X) dA, etc. (7.3)A A+d\ A7.

Equation (4.10) becomes

(S 1HAX)(Slx
(H lox) ~ n ~n (HAI X)A (7.4)

n dp(Sn H PX)(H kIX)

and Equation (5.9) becomes

(H- I FX)x . (HA F AX) x \((Ha A X) }- (A-1)

dHAF " kIFAX> = z.d.(H (FHX ... H FAX) [(H IX) k)

This method of determining optimum values of parameters of the theory
is very closely related to the "maximum likelihood" method of statistics. 25

The principal concern of this article has been the problem of estab-

lishing a theory as a correct interpretation of a physical phenomenon.

When alternative theories can be clearly enumerated, there is the possi-

bility of establishing one of them as correct by proving that the others

are incorrect. When alternative theories cannot be clearly enumerated

(and this is generally the case), the evidence may point strongly to one

of the specified theories, but one must always bear in mind the possibility

that further information will come along which will disprove that theory.

In this sense, the general situation is that, at any time, there is no

"correct" theory of a physical phenomenon--there is only a "front runner."

Although it is instructive, and may sometimes be helpful, to try to

specify rules for consistent thinking about scientific theories, any

scientist is aware that there are psychological factors as well as ra-

tional factors involved in securing acceptance of a theory. It is no

doubt the psychological factors which led to the following highly pes-

simistic observation, attributed to Max Plank: "A new scientific truth

does not triumph by convincing the opposition and making them see the

light, but rather by the opponents dying off and a new generation growing

up to accept it as the truth."
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