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AN AI.GORITkLl FOR NONCONVEX PROGRAMM4ING

G. Graves and A. Whinston

1. Introduction

This paper presents an algorithm to solve the most

general mathematical programming problem

s.t. g-(y) < 0 i =1,2,...,m

Min. g(y) Y= (Y1'''''Yn)

iThe only restriction required is that the functions g , g be

real valued. The general formulation allows for nonlinear

or linear integer programming, mixed integer programming and

general nonc'-nvex continuous variable programming. The

extant algorithms for this most general problem can usually

be viewed as local search procedures. They suffer from two

serious difficulties which can be characterized as the "dimen-

sionality problem" and the problem of "trapping at local

optima". These difficulties are illustrated by the "local

corner search" where each of the 2 n T
adjacent corners of a current point

are evaluated and the best of these is used as the next

current point. The number of function evaluations increase

exponentially with the number of variables and the procedure

is impossible except for problems with very few variables.

As is well known, this procedure stabilizes at local optima.

Traditionally, convexity is invoked by mathematicians to

eliminate this sort of unpleasantness. As a practical sntLter
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with real problems, convexity is never established. In fact,

the essence of location of facilities problems is precisely

the tradeoff between the economies of scale in production

and the transportation cost. (Edonomies of scale imply

minimization of concave functions.)

The classical approaches, then, have been essentially

"local" or "neighborhood" techniques dependent on derivatives

(or finite difference approximations to derivatives). Only

unrealistic assumptions such as "convexity" or vague arm

waving such as "try a representative sample of starting points"

have been advocated to deal with the global problem. (Obtain-

ing a "representative sample of starting points" is feasible

with small generally artificial examples.) We feel this

sweeps the very quintessence of many economic problems under

the rug. Our central aim here is to present a new framework

for reaching global optimum. The procedure involves two

interconnected mechanisms, a method for structuing the search

and a decision rule for selecting the course of the search.

2. Structuring the Search

Structuring the search consists of introducing a

framework for reducing the general problem to that of

"implicit enumeration" [il. In general, given a bounded

domain P, it can be symetrically partitioned into subdomains

piP2,....,P2 n. For example,
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Yi p

P3 4

Technically:

given b(i) • y(i) _ S(i)

define r(i) = (S(i) - b(i))/2

y(i) = b(i) + r(i)

and introduce the class C of finite maps

w: ([1,...,n) - (0,1].

Now a i-1 correspondence can be setup between the components

Pi of the partition of P and the class of maps C by defining

the upper and lower bounds of a component in terms of a map

Ws

L(i,w(i)) y y(i) - (I- w(i)-r (i)

U (i, w(i)) y(i) + w(i)- r (i)

To illustrate these formulas, we can apply them to the two

dimensional unit square. In this event,

0 < y(i) -< 1 i = 1,2

e.g. b(1) = 0 S(l) 1

b(2) = 0 S(2) = 1

and r(l) = 1/2 r(2) = 1/2

y(l) = 1/2 y(2) = 1/2
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Using these quantities:

L(1,w(l)) = 1/2 - (1-w(l))'/2

U(1,w(1)) = 1/2 + w(l)-1/2

and

L(2,w(2)) = 1/2 - (1-w(2))-1/2

U(2,w(2)) = 1/2 + w(2)'1/2.

The choice of any of the four different maps (w(l), w(2))

specifies a particular rectangle.

3 4
1/2

1 1 2

0 1/2 1

For example, consider the map (0,1), e.g.,

w(l) 0

,(2) = 1

This map specifies rectangle 3,

L(l,w(l)) = 0 U(l,w(l)) = 1/2

L(2,w(2)) = 1/2 U(2,w(2)) = 1.

The problem is now reduced to choosing a desirable

map w, and further refining the corresponding component until

a point is specified to any predetermined accuracy.

Technically this can be setup recursively by taking,

r 0 (i) = (S(i) - b(i))/2

y°(i) = b(i) + r°(i)
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and
r t~ M r (t-l) (i) /2

-t~i - (t- 1) _ - (t-1)i)rl ) + .(t-l)(i-t~i
Y U) Y (lwU) (i) r W) + W(i) r (W.

and again for any map w at the ith stage,

Lt ijw(i)) = yt(i) - (l-t(i)) t W

U t(i,w(i)) = yt (i) + w(i)r t(i).

Now specifying a sequence of maps

o 1 2
W ., W*, .-.

specifies a sequence of nested intervals for each i
[Lt (i , t (i)]

such that

Lt (i,w•(i))•-• (monotonically increases with t)

t t
U (i, w* (i))M(monotonically decreases with t)t .t Lt t

and [U (lW,(i)) - Lt(i,,.(i))] = (S(i) - b(i))/2t+l

-,0 as t - m.

Therefore a sequence of maps o defines

an n-tuple of real numbers or a point in Rn. (Recall the

WeirstraussHeine development of the real numbers. Their

definition is: "A real number is a nest of intervals (xnYn)

such that (x n is monotonic increasing, [yn] is monotonic

decreasing, and d. = (yn - )cn) . 0 as n . .. See Knopp

[3], Chapter 1.) Now with any stipulated accuracy for the solution

y*(i) 4 c take the first positive integer T such that (S(i) - b(i))/2T"-

_< E for all i or 2T _> (s(i) -b(i))/.
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* Introduce thc class C of meta-maps

§: (1,2,...,nxT) - (0,1].

The choice of a 0 determines a "quantitized" point in the

domain of interest. The problem is reduced to choosing the

optimal meta-map *. The algorithm we propose is to implicitly

enumerate the class C of meta-maps. There are of course many

Dther ways of "quantitizing" the domain suitable for implicit

.enumeration. The employment of the present structure and,
12 T

in particular, the T sub-maps (w, w ,2...,w T) to specify ý is

to isolate for easy exploitation the nested components of

tthe successive partitions identified by the w It is these

nested components that allow us to introduce set functionals

for decision making and a global approach to calculating

the optimum independent of such restrictions as convexity

on the original functions.

3. Decision Rules for Directing the Search.

-. The most common set functional in mathematics is the

ordinary integral. It is our contention that use of this

functional instead of resorting to the derivative or its

finite difference counterpart of the "local" procedures

should enable us to utilize global information. Liberating

our decision ,process from the myopic local neighborhood

processes should render us insensitive to trapping at local

optima and enable us to dispense with inapplicable mathemati-

cal assumptions such as "convexity". The most elementary
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use of the integral would be to simply calculate for each

component (defined by an element w of the me ta-map) the

following quantities:

AV(Wtg) =rr(i) f (l, (l) U(n,w (n) ) dyl''dYn
i

1 W t(l,w(1)) L t(n,w(n)

i

SGM(q,,,g) = [ (SS (Wt, g) - AV2 (Wt g)] 1/2

d(w ,g) = AV(w,g) - v'SGM(w,g)

tThe component of the meta-map w chosen would be such

that d( ,tg) = min d(w t,g).
weC

tThe decision functional d(wt, g) is a simple estimator of the

minimum value of the function g(y) on the associated com-

ponent of the partition. If no knowledge of the underlying

distribution is available, the parameter v in the definition

of d(w ,g) would have to be determined empirically or several

runs made using various values.

This simple procedure suffers from the same "dimen-

sionality problem" as the local search procedures. The

evaluation of the decision functional d(w ,g) for all possible
2n maps Wt would impose an intolerable computational burden

(except for artificial mathematical examples). This

"dimensionality problem" can be eliminated, however, by
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r••;orting to •an n-stage sequential decision process. The

t
total map w would be constructed in n-steps by sequentially

fixing elements of the map. Suppose an arbitrary set of k

out of the possible n elements of the domain are fixed. At

the (k+l)st step an additional element of the domain, say

tk+l is choosen and

"k+I - 0 or -+l - 1.

Now if the order of fixing elements of the domain is com-

pletely arbitrary, there would be 2 (n-k) possible choices

of a couple (k+l,0) or (U+l,1 ) at each stage. The total

number of functional evaluations would reduce to

n-i n
X 2(n-k) = 2 2 k = n(n+l).

k=0 k=l

(This reduction is insignificant for 3 or 4 variables, but

with as few as 20 variables we would achieve a reduction

from

220 = 1,048,576

to

20-21 = 420.)

In the n-stage sequential process, it is necessary

to use a slightly more sophisticated decision functional.

Each choice is now determined by expected values over all

completions of the k-partial map. Given a k-partial map,

for example,
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ii X.I'd freoe

i . . . 1 0 . . . 1

there are 2n-k possible completions. We then employ the

following expected values over the completion class Ck

t UtE (AV(wt, g)) = - f Ltl'() ... t (~~)

2n-r (j) L (1, W(i) L (k-l,w(k))

Ut (k+l,1) Ut (n, l)

.... ft ft(n, g(y)dy ...dynL (k+1,0) L 0n,) dI""

ut
= 1 u t (l,W(1)) U•t (k,w(k))

E (SS(w ,g)) = n-k ft..t
(!k 2t 2n-r (j) L (1, w ()) L (k, w (k)

Ut (k+1l,1) Ut (n,l)... ft ... ft g2 (y)dyl ... dyn.
L (k+1, 0) L (n,0)

These results, of course, rely on the "additivity" of the

limits of integration.

Using these more sophisticated quantities we proceed as before

by calculating (ktt2 t /
SGM(k) (tg) = [E (SS(wt, g)) - E (AV(wt g))]

Ck C

that is, the standard deviation of g(y) on the components

and

d(k) (W tg) = E (AV(wtg)) - v-SGM(k) (w,g).

The decision functional d (k) (tg) is evaluated for the 2(n-k)

possible couples, say (k+,) -1 or (z+i,01 and ik+l any

L .
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"free" element of the k-partial map. The minimum value of

d(k) (wt, g) determines the next couple to be fixed.

This whole n-stage sequential decision process is then

carried out T times as indicated -in Section 1 to yield a

"point" in Rn which is hopefully very close to the global

minimum of g (y). In any event, by continuing and employing

a "confidence level implicit enumeration" (see [ 1] and [ 2])

of the whole class C of meta-maps, we should achieve a highly

sophisticated search of the whole domain. The only point to

note in employing the mechanism of the "confidence level

enumeration" is that the recursive definition of the com-

ponents would require w1 to be entirely fixed before any

i+l
element of w

.4. Additional Observations

(A) Limiting Value

When the function g(y) is continuous, it might be

worth noting that

d(n) (Wt g) - g(y*) as t -.

where y* eRE

is the point defined by the sequence of maps (w,,w,.

This follows immediately from the Mean Value Theorem for

Integrals which says:

I f gdA = g(y)
AREA D

where y c D.

-1I I-I----------------. . . . ....
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Applying this result to the terms of d(n) (Wt g) yields

tE (AV(W ,g))- g(y*) as t -.
Ch

SGM(n) (wt g) - 0 as t -

and hence

d(n) (Wtg) - g(y*) for any v as t

(B) Indefinite Integral

The evaluation of the integrals employed in the

definition of the decision functional d(k) (wt g) can be

carried out in various ways. With continuous functions, the

simplest procedure is to employ the closed form given by the

indefinite integral; for example,

1 (U - L2).(U 2 - L2 ) (U1 + LI) (U2 + L2 )
ARA yDy2 dy 1 dy2  4(U1 - L Q)'(U2 - Y 4

(C) Stratified Sampling

When the function is not known in closed form or the

indefinite integral is not available, it may become necessary

to resort to stratified sampling of the various components

of the domain defined by the limits of integration in the

decision functional; for example,

Y2 D

S1  (Insure uniform distribution

$ of points over component.)

s3

S. Yl
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We could determine an appropriate sample size k. for each

strata S. and on the basis of this sample calculate estimates

t A (k) t1 (AV (wt,g)) and SGM (wtg)
Ck

(k) tand from these calculate d) (w ,g). At any decision point,

we are stratifying a domain of the form:

L t(1, W (l) Yl Utl(1, W(1))

t t
L (k: w(k)) k' • Ut (k; w(k))

L (-I-,O)•J k+1~ U(k~,1
L (n, 0) Yn U t(n~l)"

(D) Discrete Variables

It is, of course, not necessary that the variables

be continuous. The Rieman-Stieltzes Integral is available

to deal with discrete variables. Recall the usual Unit.

Step Function r: Ky 0)
I (Y) = (y >0)J

and Standard Counting Measure

at (yi) = (Yi) + l(Yi -i

that would be employed with zero-one discrete variables.

(A slight generalization would eliminate the reduction to

zero-one discrete variables.) In this formulation,

"AI~ = l+c l+c
" fE +e ... f dal...dan - 2n

0 0
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and for illustrative purposes, consider the simple linear case
n

g(y) = Z aiy..

Take S(i) = l+c and b(i) = 0

Y2

P2 "Mass Points"

(0,0), (0,1), (1,0), (1,1)

0 1/2 1 1

P E (AV(wt, g)) = f2 (alYl + a2 y 2 )doida 2

1 1+c a2S"fo a2Y2d 2= -

P E (AV(tg)) = 1 f f (alyl + a2 Y2 )daldC2

1 l+C a2
m2f (a + a 2 Y2 )d2a2 + -

0

Hence, as expected, the decision of whether yl 0 or Y 1

is determined by whether a1 < 0 or a1 > 0. This general

approach reduces to techniques expounded in great detail in

[ 1). It should be stressed that the Riemmn-Stieltzes Integral Approack

developed in this section is perfectly capable of handling pure con-

tinuous variables, mixed continuous and integer variabJes, or pure

integer variables.
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(E) Constraints

The ideas developed in this paper can be extended to

treat constraints of the form

g1 (y) K 0 i =

by introducing conditional expected values. The simplest way

to achieve this is through the use of a Regression Equation.

instead of using AV(w tg), this would require employment of:
CO~t gil

A wt , (g Ig ')) = AV (w t ) CO .Wt ( g191_ Av (w t g i ,
Var (gi)

the conditional expected value of the function g given a value

i
of function g . In this procedure, it would be necessary to

estimate the maximum or minimum of (g - AV( tP9 g)) depending

on the sign of the covariance on the components specified by
tthe current k-partial map w . This could be done in turn

in terms of the variance of gi and its mean. It would also

be necessary to establish an appropriate confidence level

that gi (y) _ 0 on the component. When the confidence drops

too low it is necessary to "backtrack" in the construction

of the meta-map. It should be observed that "normality"

assumptions are not required for this procedure, but in the

event of non-normality, the linear regression equation re-

duces to a first order approximation. Again, these ideas

are developed at greater length in [ 11.



15.

5. Implementation of the Algorithm

The algorithm has been programmed in FORTRAN IV and several

example problems have been run on the C.D.C. 6500. Numerous approaches

to implementing the ideas described above are possible. The present

program determines indefinite integral and successively reevaluates at

the upper and lower bounds for the appropriate domains as specified in

the search procedure. This approach limits the size of the problems

that can be handled since the storage requirements for the mean and

variance are considerable. For large scale problem use of the ideas

discussed under stratified sampling or numerical approximations may

prove more effective. It should be noted that the decision process

is generally insensitive to the errors resulting from an approximate

determination of the values of the decision variables.

Several problems obtained from the literature were used to

test the algorithm. Each problem was run for a succession of values

of v for v = .5, .15, 1 and 1.5. Below we list some results obtained

using a C.D.C. 6500. Since the code was experimental a considerable

amount of time was taken in calculation not directly used, including

the determination of higher moments. A rough estimate would be that

the problems could be solved in one half of the stated time. Further

precision could be obtained in the ansver by using a gradient method

in the vicinity of the solution obtained by this algorithm.
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Problem 1 min ½ X 2 --½" 2 + ½•

s.t. + x2f 6

-X1 + 4x2 6

x 1 0 1 = 1,2

The optimal solution is (3, 0) and a value of -3 for the criterion

function. We obtained (2.929, .07812) and -2.8627 with v 1.5 in

5 seconds of computer time.

Problem 2 Max x1 x2 x3

x, + 2x2 + 2x3S 72

0 !9 x 1 42 1 = 1,2,3

The answer is (24, 12, 12) with a value of 3, 456 and we obtained

(25.02) 9.844, 13.617) with a value of 3, 354. The value of v was

15 and the computations took about 5 seconds.

If
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