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MINIMAX AND DUALITY FOR LINEAR AND NONLINEAR
MIXED-INTEGER PROGRAMAING

by Egon Balas

This paper discusses duality for linear and nonlinear programs

in which some of the variables are arbitrarily constrained. The most

important clags of such problems is that of mixed-integer (linear and
nonlinear) programs, Part I introduces the duality constructions;

part II discusses algorithms based on them,
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PART I, SYMMETRIC DUAL MIXED-INTEGER PROBLEMS
l. The Linear Cage

Consider the palr of dual linear programs

max cx min ub
(LP) Ax +y=b (L) VA ~v=cg
x,y20 u,v20

where A is an m X n matrix and {1,...,m} = M, {i,...,n} = N.

The main result of linear prograrming duality theory [1] is that
the primal problem has an optimal solution if and only if the dual has
one, in which cage, denoting the two optimal solutions by (X,y) and
(U,V) respectively, we have cx = ub, and Wy = VX = 0. These relations
play a central role in linear programming.

We wish to examine what happens to the above duality properties,
if we constrain some of *he primal and dual variables to belong to arbi-
trary sets--like, for instance, the set of integers, Suppose the first
n, components of x and the first m, components of u (0 < ny <n,

0 s_ml < m) are arbitrarily constrained, and the following notat.on is

1 1 1 2
introduced: (xl,...,xn ) =x", (ul,...,um ) =u, x= (x,x),

1 1
u= (ul,uz), {1,...,n1} =N, {1,...,m1] = M. Then the above pair of

problems becomes

max cx min ub
Ax +y =D VA - v=c
(LrI) X,y 20 (LDI) u,v>0
1.1 1.1

x eX ~u gl
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where Xl and U1 are arbitrary sets of vectors in the n. -dimensional and

1 '
m, -dimensional Euclidean space. ?E
i
Let us partition A,b,c,y and v in accordance with the partitioning .4
of x and u: ’E
11,12 1.2 2
A™" A \}Ml b= (b",b°) , c= (cl,c ) 7
(1.1) A=l g1 ) Mhu 12 12 1
ATT AT, Y=Ly ), v= (v ,v)

eyt

Nl Né

\ g

N

Unless the constraints xlex1 and UlgUl happen to be redundant, it
is clear that cx < ub for any pair x,u satisfying (together with some y,v)
the constraints of (LPI) and (LDI) respectively: a "gap" appears between
the two optimal objective function values,

Suppose now that we attempt to dispose of this gap by "relaxing"

P TRV PRI ATRELS - B T R R R LI L SR dN

each dual constraint associated with an arbitrarily constrained primal

~ —ve———

Harve

variable, and each primal constraint associated with an arbitrarily con-~ %
strained dual variable; in other words, by dropping the nonnegativity E

. . requirement for each dual slack vj, jeNl, and for each primal slack Yy ,g
ieMl. Suppose, further, that while thus permitting the primal and dual

to be violated, we want the extent of this viola~

1
tion, as measured by the weighted sums -lel and uly1 respectively, to

constraints jeNl, iegM

be as small as possible, This points towards replacing the initial primal *

E
and dual objective functions by |

| (1.2) miT max cx + u]'y1 = min max cx + ul(bl-Auxl-Alzxz)
' u

X u X

and
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(193) m:"-f xin ub - V"XI = ma}f min ub - (ulAnszZI_cl)
x .

3 X -

1
x

regspectively.,

However, it turns out that in order to obtain equality of the two
objective functions, the term -ulAllxl, occurring in both (1.2) and (1.3),
has to be done away with, Thus, finally we are led to consider the following

pair of problems:

min max cx + u1y1 + ulAux1
ut x
Ax +y=0b>
1
®) xtex’,ulev
2 2
X,y 20

1 :
y~ unconstrained

max min ub ~ le1 + ulAnx1
. X~ u
VA - v = ¢
o " ulgUl,x] exl
u2 ,vz 20

v1 unconstralned
1_ .M 1M
Here, ag before, X" @€ R " and U" CR * are arbitrary sets of vectors
in the respective spaces, with the only restriction that they are supposed
to be independent of each other and of the other variables, i.e., nona of
them 13 supposed to be defined in terms of other problem variables,
Since in the above pair of problems y is uniquely defined by x and

v 18 uniquely defined by u, a solution to P will be written ag (x,ul)

‘ 1
and o - L oti o0t D oas (v,vT),
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We define (D) to be the dual of (P). It is easy to see that the
duality defined in this way is involutory (symmetric): the dual of the
d;al 1s the primal. Also, it is easy to see that the mixed-integer linear
program is a special case (actually the most important special case) of (P),
namely the one in which X1 is the set of n, -vectors with nonnegative
integer components, and m1=0, i.e., M1=¢.

The main feature of the above pair of dual ?roblems +8 the special
relationship between each primal variable xj and the associated dual

glack vj’ and between each dual variable ug and the associated primal

glack Yi» namely:

xj arbitrarily constrained<§——_€>v5 uncongtrained
xj 20 (&—-—1)vj >0
y; unconstrained (u———f>ui arbitrarily constrained

(1.4)

We shall now state a lemma which will be used in the proof of the
next theorem,
Let sl,sz,...,sp be elements of arbitrary vector spaces, A vector

function G(sl,sz,...,sp) will be called geparable wwith respect to‘gl

1f there exist vector functions H(sl)(independent of 32,...,sp), and

K(az,eo.,sp)(independent of sl), such that

G(sl,sz,...,sp) = H(sl) + K(sz,...,sp) .

G(sl,sz,...,sp) will be called componentwise separable with respect

to 31, if each component 3; of G can be written either as gi(sl), or as

2
Si(s ,...,Sp).
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Note that none of these definitions implies separability im each
component cf sl. Obviously, the first of the above two definitions also
applies to scalar functions (i.e., one-component vector functioaa):

Let r,s,t be elements of arbitrary vector spaces, Let f(r,s,t)
be a scalar function and G(r,s,t) a vector function. We have,

lemna 1,1, If £(r,s,t) 1s separable and G(r,s,t) is componentwise

separable with respect to r or s, then

inf sup {f(r,s,t)iG(r,s,t) < 0} = sup inf jsup{f(r,s,t)|G(r,s,t) < 0}}
8 r,t r s t
Proof. Suppise f(r,s,t) = fl(r) + fz(s,t), and the constraint set can be
written as Gl(r) £0, Gz(s,t) < 0,
Then both sides of the equality in the Lemma become
. d \! t
agp {fl(r)]Gl\r) < OJ + igf s:p {fz(s’t)lG2<s’t) < 0}

Similarly, if f(x,s,t)

1

f](r,t) + fz(s) and the constralnt set can
be wrltten as G:(r,t} <0, Gb(s) < 0, then both sides of the equality can

be written as

sup {£.( ( L+ inf £ (s)]G. ¢ !
? £, r,t)[G1 rit) < 0; +inf | 2(3)] ,(s) < 0; .
8

T,t
Q.e.d,
To state our next theorem, let us recall that y2 and v2 are vector
functions of xl,xz and ul,u2 réspectively:
2 2 211 22 2 2 1,12 2,22 2

y =b" - A"TxT - ATTx LV o= uATT 4 WA -
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Theorem 1,1. Assume v2 (or yz) to be componeatwise separable with
regpect to u1 (to xl). Then, if (P) has an optimal golution (i;ﬁl), there

exists 32 such that (G}il), where u = (ﬁl,ﬁg), is an optimal solution to

(d), with

(i.5) min max ex + uly1 + ul'.Aux1 = max min ub - lel + ulAllxl,
uleU1 xeX xlex uel

(1.6) &P =0, P2 =0

and

a.n - ThHE - P’ - a2 - o

2
Proof. Suppose v° is componentwise separable with respect to ul.
(An analogous reasoning holds for the case when y2 is componentwise geparable
with raspect to xl).
(D) can be stated as the problem of finding
(1.8) w = max min {#@n {c1x1+u1b1+u2(b2-A21x1)|u2A22292-u1A12}}
1,1 1.1 u>0
x ¢X” uel
In view of the separability assumption, lemma 1.1 can be applied to

(1.8), i.e., max and miT can be interchanged. Then we have
x u

(1.9) w = min max {clxl.{.ulbl_’.min{uz (bz-A?' 1X1) IU2A22 CZ_UIAIZ }f
1.1 1.1 >0 .
u gU X ex =

On the other hand, (P) can be written as the problem of finding
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a22,2 424211 }}

(1,10) z = min max {c1x1+u1b1+max {(c
1.1 1.1 %230

u el xR
For any given u1 and x1 the linear programs in the inner brackets of

(1.9) and (1.10) are dual to each other; and since for x1 = El and u1 = ﬁl i {

the vector Ez is suppos to be an optimal golution of the lirear program
in (2.10)--or otherwise x,ﬁl) could not be an optimal solution of (P)--

it follows that the linear program in (1.9) also has an optimal solution
ﬁ?, and that for (u,xl) = (E,El), where u = (El,ﬁz), the objective function
of (D) takes on the value of z., But then (ﬁ,il) must be an optimal solu-
tion to (D); for if it is not, i.e,, if there exists some ilexl such .nat

w > z, where

1) F=min {llbbmin [ @2-a2tEt [ 2a2RacRuta 2 1}

2
ulgul uc2(

then, following the above reasoning, there also exists a vector ﬁz such

that (ﬁ,ﬁl), where 61 is the value taken on by ! in (1.11), is a feasible

solution tc (P) with an objective function value equal to W--which contradicts

the optimality of (E;ﬁl) for (P). This proves that (1.5) holds, while (1.6)
follows from the fact that §2 and Gz are optimal solutions to the linear pro-
grams in the inner brackets of (1.10) and (1.9).

Op the other hand, from

(2,201 22,2

T ( ) = 0 E
] o
(CZ'HIAIZ—U‘A22)x2 =0 {




we have (1.7). ' Qe.d,

According to the above theorem, the main results of linear programming
duality theory carry over to the pair of dual problems (P) and (D), provided
v2 (or y2) is componentwise separable with respect to u1 (to xl). Denoting
by |Bi.! and lB.jI respectively the norm of the i-~th row and of the j-th
column of a matrix B, the above assumption can also be expressed as a

requirement that the matrix A satisfy the condition (see Figure 1):

(1.12) |Af§|-|Af§| =0, jel, or |Ai}|-|A§%| =0, a4
i N -
N
Q A22
Ail Aiz N -J ‘
T T I T TI7 7T ///uf//[]/i//f/fu/r! M,
— ~ )
)

ure

This assumption is obviously a genuine restriction., However, it does
not exclude from the class of problems to whic :he above results apply any
of the special cases of knowu interest, 1In particular, it does not exclude
the general all-integer and mixed-integer linear programs: since in these

cases M1 =, A12 is a zero matrix and the separability requirement {is

satisfied,

i
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The above duality construction is rooted in the ideas of Benders [2]
and Stoer [3]. It also bears some relation to the general minimax theorem
of Kakutani [4].

Additional properties of the pair of dual problems (P) and (D) are
discussed in [5]. They include conditions for the existence of feasible
and (finite) optimal solutions, uniqueness of the optimum, the relation-
ship between (D) and the dual of the linear program over the convex hull of
feasible points to a mixed-integer program. An economic interpretation
is also given in [5] in terms of a generalized shadow price system, in
which non-negative prices are associated with each constraint, and subsidies
or penalties with each integer-constrained variable of a mixed-integer
program., (For an alternative interpretation of pricing in integer pro-

gramming see [6].)

2.__The Nonlinear Case

We now discuss extensions of the above duality construction to the case
of a nonlinear objective function and constraints [7],(8],[9]. This time
our starting point is the pair of symmetric dual nonlinear programs studied
by Dantzig, Eisenberg and Cottle [10]. Let K(x,u) be a differentiable
function of xeRn and ueRm, and let v&K(x,u) and VhK(x,u) be the vectors

of partial derivatives cf K in the components of x and u respectively,

The nonlinear programs of [10] can then be stated as

max K(x,u) - thK(x,u)
(xP) v K(x,u) 20

x,u2>0
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and

min RK(x,u) - xv&K(x,u)
(ND) *K(x,u) < 0

x,u>20

The generality of this formulation consists in the fact that K czn
be chosen so (see [10]) that the above pair of probiems reduces to any of
the dual programs studied by Porn [11], or Cottle [12] or Wolfe [13],
Mangasarian [14] and Huard [15].

The main result of [10] is that, assuming K to be twice differentiable
in u, and concave in x for each u, convex in u for each x, if (NP) has an
optimal solution (X,u) such that the (Hessian) matrix viK(i;ﬁ) of second
partial derivatives of K in the components of u, evaluated at (%X,u), is

positive definite, then (X,U) is an optimal solution to (ND) and

Ty KT = TOKE,) = 0

i.e., the two objective functions are equal,

As in the linear case, we now generalize the above pair of dual
nonlinear programs by constraining some of the primal and dual variables
to belong to arbitrary sets. Partitioning x and u in the same way as

before and denoting again by X1 and U1 arbitrary sets of n1~vectors and

ml-vectors respectively, we are led to consider the pair of problems

min max_f = K(x,u) - uzv 2K(x,u)
ut x,u u

v 2K(x,u) >0
u

(®)
xlexl, uleU1

x2,u2 20




and
2
max min g = K(x,u) - x ¢ 2K(x,u)
xl x2,u b4
v R(x,u) < 0
() x
xlexl, u1€U1
xz,u2 20

where ¢ 2K(x,u) anc v 2K(x,u) stand for the vectors of partial derivatives
of K 1nxthe component: of x2 and u2 respectively,

We define (D) to be the dual of (P). Obviously, the duality defined
in this way is symmetric (involutory). It is easy to see that a mixed-

integer nonlinear program is a special case of (P), in which Xl is the

set of nl-vectors with nonnegative integer components, m, = 0, and

2.1) - K(x,u) = £(x) - uF(x)
with £(x)eR and F(x)eR".

In the following, we shall assume--as in the linear case--that the
3ets X1 CtRn1 and U1 CZle, while arbitrary, are independent of each other
and of the other variables of the problem, Also, the concept of separability
with respect to ul (or xl) will again be used in the gense defined in section
1, i.e., it will pot imply separability in each component of u1 (or xl).

When K(x,u) is twice differcentiable in the components of x2 and u2,
let v22K(§,U) and VZZK(i,ﬁ) be the (Hessian) matrices of second partial

x u

derivatives of K in the components of x2 ¢ 1 u2 respectively, evaluated

at (x,u). We then define the following gegularity condition for (P) and (D):

(a) If (x,u) solves (P), vzzK(ﬁ,ﬁ) is positive definite;
u

(b) If (%,8) solves (D), VZZK(Q,G) is negative definite,
X
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Denoting the constraint sets of (P) and (D) by Z and W respectively,

we have

Theorem 2,1. Assume that
1. K(x,u) is concave in x2 for each xl,u, and convex in u2 for each
x,u’,
2, K(x,u) is twice differentiable in x2 and u2; (P) and (D) meet
the regularity condition,
3. K(x,u) is separable with respect to ul or x'.
Given 1,2,3 if (X,U) solves (P), then it also solves (D) and
(2.2) min maxz{fl(x,u)ez} = max m%n {g] (x,u) W}
u* X,u X" X%,u
with

(2-3) T—‘e-v ZK@’E) = izuv ZKGE,E) =0
u X

Proof. Denote

z = min maxz{fl(x,u)ez}
ul x,u
2.4)

w = max min {g|(x,u)eW}
x! x2,u

Assume that K(x,u) is separable with respect to ul, i.e.,

Kl(ul) + Kz(x,uz)

(2.5) K(x,u)
(An analogous reasoning holds if K is separable with respect to xl.)

Then z can be written as

z = min  max {Kl(ul) + Kz(x,uz) - u2V 2K2(x,u2)|v zkz(x,uz)zp}
u u

-
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or

(2.6) z = max {k (u ) + £ (x )}
x1¢X1 uleUl

where

1 2 2 z 2
2.7) £,(x") = max Kz(x,u ) ~u'y Kz(x,u )lv Kz(x,u >0
2 x* ,uzzo { u2 I u2 }
and w can be written as

2.8) w = max min {k (u Y + g, (x )}
xlexl uleul 2
where

2.9 g6 xzuZO{KZ(XU)-xv x?(xunv K)o}

?

For any given xl, (2.7) and (2.9) are a pair of symmetric dual nonlinear

programs of the type discussed in [10]. Hence, using the above mentioned

=1

results of [10], in view of assumptions 1 and 2 we have, for x1 =X,

@2.10) Ty, &D) = v ,KL&T) = 0
u X
and

@.11) G = g, &)

It remains to be shown that (X,u) is indeed optimal for (D), If this
is not the case, there exists ﬁlexl such that gz(ﬁl) > gz(fl). But then,

in view of the regularity condition for (D), we have

@12y g #&h = 5,&H > £, &Y

-,
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which contradicts the optimality of (X,¥) for (P).

This, together with (2.6),(2.8) and (2.11), proves (2.2), whereas

(2.3) follows from (2.5) and (2.10).
Q.e.d,

Assumptions 1 and 2 are the same as the ones required by Dantzig,
Eisenberg and Cottle [10] in the absence of arbitrary constraints, except
that the regularity condition is required in [10] only for the primal,
Asgumption 3 is an additional requirement, which represents a genuine restric-
tion. However, this restriction does not exclude from the class of problems
for which Theorem 2.1 holds the most important special case, namely,
mixed-integer nonlinear programs. Indeed, when m, = 0 then u1 disappears
from the problem, which means that the separabiiity requirenent is met,

The assumptions of Theorem 2.1 can be weakened for varinus specific

functions K(x,u)., Thus, for

(2.13) K(x,u) = ex 4+ ub - uAx + ulAux1

(P) and (D) become the pair of dual problems discussed in section 1. 1In

this case assumptions 1 and 2 can be dropped (1l is satisfied by definition,

2 is simply not required), wherc2s assumption 3 can be replaced by the weaker
separability requirement of Theorem 1.1 (weaker, since assumption 3 would
require A12 or A21 to be a zero matrix).

Further, for

(2.14) K(x,u) = cx + ub - ulx + %(xCx - uEu) + ulAux1

where




11 12 11 12

c c
and
(2-15) C= E =
CZI c22 EZl E22
. 22 22
are symmetric matrices of order n and m respectively, with C~ and E

negative seri-definite and of order n, ind m, respactively, our pair of

1 1
dual problems becomes
min max_ cx + % xCx + % uBu + uly1 + uLAllxl
ul x,u? “
Ax + Eu+y=0b
xlexl ’ uleU1
(21)
2 2 2
X ,u,y 29
yl unconatrained
max min ub -‘% uEu - % xCx = vle + ulAhx1

x+ xz,u
VA -~ xC - v=2¢

et , ol
(1)

uz,xz,v2 20

1
v unconstrained

This generalizes the symmetric dual quadratic programs of Cottle [12]
by letting some of the primal and dual variables to be arbitrarily con-
strained., 1In this case, the regularity condition is not required, and .h~

separability assumpticn can be weakened, viz., replaced by the require-

21 2
ment that E°" = 0 and v be componentwise separable with respect to u1

12 2
or C" =9 ard y be componentwise separable with respect to x1

b




The mixed-integer quadratic programming problem is a special case

of (P1), in which X1 is the set of n,~vectors with nonnegative integer

1
components, m1 = 0 and E is a2 null matrix, (For a detailed discussion
of the quadratic case, see [7].)

Finally, let us consider the case when K(x,u) = £(x) - uF(x),
where £(x) is a scalar function and F(x) an m-component vector function
of xeRp, and let F(x) = [Fl(x),Fz(x)], where Fl(x) and Fz(x) have m,
and m-m, components regpectively, Then our pair of dual problems

generalizes the dual nonlinear programs studied by Wolfe [13],

Mangasarian [14], and fuard [15]:
. 1.0
m1T max £(x) - u F (x)
ut X

¥ x) g0
(P2)

xlexl,uleul éj‘

x2 20

max min £(x) - uF(x) - x2v 2[f(x) uF (x) )
Xt x4,u X

v, [f(x) - WF(x)] <O
X .

(02) )
. x‘gxl,uleUl

xz,u2 =20

Agsumptions 1,2, and 3 of Theorem 1 are now to be maintained, but

the regularity condition for (P) and (D) can be weakened so as to read:
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’

(a) If (x,u) solves {F:}, the inequality set Fz(il,x?)s 0 satisfies
the Kuhn-Tucker constraint qualification [16] at x2 = E%

() If (X,4) sol es (P2), the matr’x V?Z[f(i) - 4F(X)] is nonsingular.

Theorem 2,1 then becomes *

Corollary 2,1. Given the assumptions 1,2,3 of Theorem 2.1, if (P2)
has an optimal solution (§,El), there exists I such that (%,T) = (i;ﬁl,ﬁg)
is an optimal solution to (D2), Conversely, if (D2) has an optimal solution
(%,3) then (ﬁ,ﬁl) is an optimal solution to (P2).

In both cases, (2.2) and (2.3) hold.

3. Linearization of the Dual

An undesirable characteristic of the dual problems (P) and (D)
discussed in the previous section is the presence of the arbitrarily
constrained primal variables x1 in the.dual inequality set., This was not
the case for the linear problem discussed in section 1,

Now congider again the nonlinear problem (P) of section 2, and let
K(x,u) be also differentiable in xl on the set {xleRnllxlzﬂ} for each xz,u.

Then consider the problem [9]:

max min g' = K(x,u) - xv,K(x,u) + sv ;K(x,v)
8 x,u x

v 2K(x,U) <0
X

(»") . sexl , uleU1

x,u2 20

vhere s is an nl-vector. Let W' be the constraint set of (D').
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The inequality set of (D'), unlike that of 0),is independent of the
arbitrarily constrained variables sexl; and the optimand of (D'), unlike
that of (D), is linear in these same variables sexl. We shall show,
however, that with two additional assumptions (D') is equivalent to (D).
In view of its linearity in the arbitrarily constrained variables s, (D')

will be called the linearized dual of (P).

Theorem 3,1. Assume 1,2,3 as in Theorem 2,1 (regularity also assumed
for (D')), and
1 1 2
4. K(x,u) is concave in x on the set {x eR ~|x~ > 0} for each x",u.

n
5. X' c {seR ‘|s > 0}

Then the follcwing statements hold:
a) If (%,%) solves (P), then (5,%,u), where s = :_c'l, solves (D').
b) 1If (;,tf) solves (D), then (X,u) solves (P) and (5,%,0), where
s = ;51, solves (D').
¢) If (8,%,3d) solves (D'), then § = :?1 and (X,3) solves (P) and (D).
d) 1In each of the cases a), b), ¢),

(3.1) min max {fl(x,u)ez} = max min {g'|(s,x,u)ew'} = max min [gl(x,u)eW}.
ul x,u2 8 X,u X* xX4,u

Proof. Consider the problem (P'), which clearly is just another way of

writ.:ing (P) under assumption 5 above (here s is an nl-vector):,

min max 2K(x,u) - uzv 2K(x,u)
ul s,x,u"- u

v 2K(x,u) >0
u

") xl-szo
~x1+320

sex! |, uloyl
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We now restate {P') in the form (P), Let

n m m-m_+2n
1 1 2 1 1 1
£7¢R 7,8 eR", TR 7, TFGR L

>

» €

i}

(s,x) , where gl =3 ,

g = (g),69)

M= (ﬂl:Tﬁ) (U,tl,tz) , where nl

U
"

H(E,T) = K(x,u) + (£5-t2) (xl-s)

Then (P') can be stated as the problem (P'"):

min max H(E,T) - TEV H(g, M
nl g, s

v, H(E,D 20
il

(e')
ot , et

&, 120

We now write the dual (D™ of (P"):

2
max min H(E,T) - £ v 13,
§1f EZH §2

v ZH(§:TD <0

§
(0")

&, f 20

which upon substitution becomes
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max min K(x,u) -~ xv K(x,u) - (tl-tz)s
1.2 b
8 x,u,t ,t

v 1K(x,u) + tl - t:2 <0
X

v ,K(x,0) <0
(3.2) x
Sexl s uleU
x,uz,tl,tz >0

Introducing the slack vector p > 0 in the first inequality set of (J.2)

. p . s s . 2
and substituting in the objective function for tlwt , we obtain

max min K(x,u) - xvxK(x,u) + 857 1K(x,u) + sp
8 X,u,p x

(3.3)

Since p is nonnegative, (3.3) is equivalent to (D') in the sense that

o) 1if (5,%,U,P) solves (3.3), then sy = 0 and (3,X,U) solves (D');

B) 1if (§,%,0) solves (D'), then (§,X,U,p), where § = 0, solves (3.3).

Then statement a) of Theorem 3.1 follows from the application of
Theorem 2.1 to (P'). Here we need assumption 4, since x plays in (P') the
role of x2 in (P).

To obtain statement b), note that (§;§;Gbew', where s = 24. Also,

from Theorem 2,1 applied to (D), (X,0) solves (P), hence (5,%,0) solves eY.

|
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Since (P) is assumed to meet the regularity condition, so is (P'),
which implies that (s,X,u) solves (D'),
\
Statement c) follows from the application of Theorem 2.1 to (D').
The fact that (§,%,1) solves (P') implies that & = £1 and (%,0) solves (P).
Applying again Theorem 2.1 to (P), one sees that (%,4) solves (D).
In each of the cases a),b),c),statement d) follows directly from
the proofs given above,
Q.e.d,
Theorem 3,1 on the linearization of the dual constitutes the basis of

the method for solving mixed-integer nonlinear programs presented in

gection 5.




ART II, ALGORITHMS

The theory presented in Part I can be used for computa-
tional purposes. In the linear case, it leads to the same class
of algorithms to which Benders' partitioning procedure [2]
belongs. We shall describe a variant which differs from Benders'
procedure in that it requires the solution of a single pure inte-
ger program instead of a sequence of such programs, and which is
essentially the same as the one described bty Lemke and Spielberg
[17] (The differences will be mentioned later).

In the nonlinear case, the above theory leads to a new
algorithm for solving pure or mixed-integer nonlinear programs,
which can be regarded as a generalization of Benders' partition-

ing procedure (and its variations) to the nonlinear case.

4, Implicit Enumeration for Mixed-Integer Linear Programs

We shall consider the mixed-integer programming problem in
the special form where the integer variables are zero-one varia-

A
bles ([18] and [7]) describe techniques for bringing any integer or

mixed-integer linear program Eo this form):

min cly + c¢'x

Ay + A'x > b
(P)

L}
(=]
Q
o]
ot

(S
m
=

Y3

where cl € Rn, c2 € Rp, b e Rm, A1 2

(m x n)’ A(m xP) are given,

and {1,...,m} =M, {1,...,n} =N, {1,...,p} =1,

The dual of (P) is then the problem (see Section 1)
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min max ub + vly
y u
uA1 + v1 = c1
uA2 + v2 = c2
()
yj = 0orl, jeN

vi > 0, heH
uy > 0, ieM

or, after substitution of v1 (which is unconstrained)

min max g = ub + (c1 - uAl)y
y u
(D) < o
yj = Qorl, jeN
u, 2 0, ieM
Let
(4.1) Y = {ye R“[yj = 0orl, je¢N}

For each y €Y, (D) becomes a linear program L(y) in
One could therefore solve (D) by salving L(y) for each element
y of the finite set Y, and by choosing that y ¢ Y which
minimizes the optimal (maximal) solution of L(y). On the other
hand, one could u.e an implicit enumeration technique [19] if
one could generate constraints to be satisfied by any y ¢ Y
which is a candidate for optimality. The reason why this can
indeed be done, is that the inequalities of (D) are independent
of y.

Agsume we have solved L(y) for a sequence yl, y2, ..,yq
of vectors y ¢ Y. We shall ignore the trivial case when L(y),
and hence (D), has no feasible solution (then P has no finite

optinum).
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Let

(4.2) {1,..00q} = @ = U Q

where

(4.3) Q = (k e Q‘L(yk) has a finite optimum}

Q, {k ¢ O‘L(yk) has no finite optimum}

k
For k ¢ Ql’ let uk be an optimal solution of L(y ), and
k
let gk be the optimal value of the objective function of Ly ).
Further, let

(4.4) g = min gt
kte

For k ¢ Q,; L(yk) has a feasible solution of the form
(4.5) o+ ek, A >0

where uk is an extreme point and t:k a direction vector for
an extreme ray of the convex polytope of feasible solutions to
L(yk), tk being a solution of the homogeneous system tA2 < 0.
Since the constraints of L(y) are independent of 1y, any
optimal solution uk to a linear program L(yk), as well as any
feasible solution u* + At" of the type described above, is a feasitle
;olution to all other linear programs L(y). Hence, we have
Theorem 4.1. Any y ¢ Y (if onme exists) such that

' *
(4.6) max {u(b - Aly) + cly\qu < c2] < g
u>0

satisfies the constraints

4.7) (c1 - ukAl)y < g* - ukb, k ¢ Q

and
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(4.8) aly<- %, keg,

Proof. Suppose y violates (4.7) for peQ, fi.e.
Wb+ (! - uPalyy > "

Then, since u? is a feasible solution to L(y),

*
max {u(b - Aly) + clyiqu < c2} > uP(b - Aly) + cly > 8
u>0

which contradicts (4.6).

On the other hand, if y violates (4.8) for p ¢ Q,,

i.e., if tp(b - Aly) > 0, then the objective function of L(y)
can be increased indefinitely by setting u = o + ktp, A >0,
and by increasing X , which again contradicts (4.6).

We can aow systematically search the set Y by applying the
exclusion tests of implicit enumeration [18], [19] to the con-
straints (4.7), (4.8). Whenever a y ¢ Y is found that satisfies
the current constraints, it is introduced into the objective
function of the linear program L(y) which is then post~optimized.
This in turn yields a new constraint (4.7), and possibly (4.8),
which is not satisfied by the current y. It may also yield an
improved value of g*. A typical iteration of the algorithm
consists then of the following two phases:

I. (Steps 1-4 below). Using implicit enumeration techniques,
find a vector ys € Y satisfying ti:e current constraints (4.7) and
(4.8). Then go t; II.

IX., (Steps 5-6 below). Solve (post-optimize) L(ys), add a
new constraint to (4.7) and possibly to {(4.8), and (possibly)
update g*@ Then go to T.

Whenever a uew phase I 1s started, the implicit cnureratior
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over the set Y 1is continued from where it had been interrupted
at the end of the previous phase I: those elements of Y that
had been excluded as infeasible for the current constraint set,
do certainly not become feasible by the addition of new con-
straints. The procedure ends when there is no y ¢ Y satisfying
the current constraints (4.7) and (4.8)., Then, if Gy # @, the
vector y associated with the current g* yields an optimal
solution, or, if Q1 = @, (P) has no feasible solution at all.
To discuss the algorithm in detail, we shall change the
notation. Q and Q2 will now be considered disjoint ordered
sets (i.e., each inequality (4.8) will have a different index
from each inequality (4.7)), denoted by Q ard T respectively,
and the two sets of inequalities (4.7), (4.8) will be written as

a single set

(4.9) Ta.y. 2B, ieVv=QUT
jeN ij7j i
with
’uiAl - c1 for 1 ¢ Q
o, . = .
13 eial for i ¢ T
(4.10) *
uib -g + ei for 1 ¢ Q
By 3.1

tb for 1 ¢ T

i o .
where ¢ is a positive number sufficiently small to enable
us to replace the strict inequalities of (4.7) by ordinary
inequalities, without unduly excluding from consideration any

y ¢ Y. In other words, e1 can be any number satisfying

(4.11) 0« ¢h e a
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for all pairs of indices j,h such that o 4 # oy
We are inierested in generating vectors y ¢ Y satisfying
(4.9). Any y ¢ Y will be called a sclutiun, and a solution

sacisfying (4.9) will be called feasible. In the process, we

shall generate a sequence of pseudo-solutions wl,...,ws, a

pseudo-solution (or partial solution) Vi being defined as a

set of O-1 value-assignments to some components of y:

ek ko
(4.12) *k = {yi = 5J-9 J Jlﬁ-"-)jq} ! <9<

where each 6? represents one of the values 0 and 1.
Let Ji (and Jz respectively) be the set of those j e¢ N
such that the jth component of y 1is assigned by wk the value 1

(the value 0), i.e.,

. 1 k o : k
(4.13) I = {je N]éj =1}, Je = {je N‘éj = 0}
and let
(4.14) N, =N-Jya°

¢ k k k

We shall say that, at the stage characterized by the pseudo-

solution Wk’ yj is fixed at 1 if j ¢ Ji, fixed at 0 if j ¢ JE, '

and free if j ¢ Nk’

The solution yk defined by

k 1 0
(4.15) 5J. for j e Jy U T !

will be called the solution associated with Ve
In order to keep track of the sequeﬁce of pseudo-solutions

that will be generated,we shall associate with this sequence an
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arborescence (rooted tree) (1;. Each node h of (l,corresponds
to a pseudo~-solution ¢h, to a solution yh associated with

*h via (4.15), and to a linear program L(yh). Each arc (h,k)
of (1.corresponds to a pair of pseudo-solutions wh’ vk such
that *k has been generated from vh' Since the generating pro-

cedure is such that

(4.16) J111 c Jllc, ch J:':, ‘Jllc|°‘3t11] =1

i.e., *k is generated from wh by fixing at 1 a free component
of y, an arc (h,k) will also be associated with the (unique)

variable yj which is .ree at node h and fixed at 1 at node k.

For the same reason, any pseudo-solution vt such that Ji = Jz

o
h

generated, and a potential descendant otherwise.

and J CZJ:, will be called a descendant of Vh’ if actually
The implicit enumeration procedure that we are going to apply

to the elements of Y 1is based on the use of tests of the type
introduced in [19]. We shall assume that c1 > 0, which is not a
restriction, since c}, if negative, can always be made positive
by a substitution of the form y3 =1 - Yy Further, in order to
be able to use in this context tests which place bounds on the
value of the objective function, we compute a lower bound ¥y on
czx (the existence of which follows from that of a finite optimum

for (P)):

(4.17) Y = min {czxiAIy + A2x >b, 0<y, <1, jeN}
20 ]

We start with V = ¢ which admits an arbitrary y ¢ Y. We
. . *
choose as a starting solution (root of CLJ y = 0, and set g = 4,
In order to describe a typical iteration, let us suppose

that the last pseudo-solution generated was with the

k,
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associated solution yk satisfying (4.9), and that by solving
L(yk) the system (4.9) has been augmented and updated so that
it is not satisfied any more by yk (we shall see that this is
the sicuation at the beginning of each new iteration).

Let Ji, J: and Nk be the index sets defined by (4.13),

(4.14) associated with ¢k’ and let

i+ i- _
(4.18) N = {ie Nklaij >0}, N ={je Nk\aij <0}, ieV
(4.19) B, = B "2y 1eV
k
(4.20) vi o= {iev|n >0

We then proceed as follows:

Step 1. Compute

~

= +
je,

If Bi >0 for some 1i ¢ V+, backtrack (go to Step 4).

If Ei <0, 1f ie V+, go to Step 2.

Step 2. Let
(4.22) Bi = gax Bi
o ieV
. . i+
Order the indices j ¢ Nko so that
c1 c1 c1
j1 j2 jt
(4.23) / < / < ... < /
di . - Q'i j - b o. .
071 0”2 tole

and find an index 1€ {jl,...,jt} such that




* 1 r-1 1 cj ~ r-1
(4.25) Ag=g -Yy-32 16" z ¢y - X (ﬂ1 - a j )
jeJ h=1 “h ¢« o h=1 “o°h
k 1°jr

where Y is defined by (4.17).

1f Ag <0, backtrack (go to Step 4).

If Ag > 0, go to Step 3.

Steps 1 and 2 are exclusion tests meant to identify such nodes
ofCZthat cannot have among their potential descendants nodes assoc-
iated with feasible solutions y e¢ Y '"better" than the currently
best one. Thus, in the first test, if éi >0 for some i ¢ V+,
then the ith constraint cannot be satisfied by assigning whatever
values (0 or 1) to the free variables. Hence, one can backtrack,
i.e., abandon the current node of Cza(i.e., the current vy) with
all its potential descendants.

The second test consists in choosing the "most violated” con-
straint, and computing a lower bound on the "cost" of satisfying it
by assigning values 1 to some of the free variables. Ag 1is the
difference between g* and this lower bound, the latter being ex-
pressed as a sum of ¥ (a lower bound on c2x) and the rest of
the expression on the right-hand side of (4.25) (a lower bound on
cly). Hence, if_ Ag € 0, no descendant of the current node can
yleld a lower value of g than g*, and again we can backtrack,
i.e., abandon the current node with all its potential descendants.

Other tests used in [18, 19] or suggested elsewhere in a

similar context can also be introduced at this point.
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Step 3. Generate the pseudo-solution ¢k+1 (and the assc..-

jated node of Cl,), defined by

1 1 o _ 10
(4.26) Jen = RV O 3y = %

where 3 is given by (4.23), and update Bi’ ieV, f.e., set

(4.27) Bi = ﬁi- EJI aij R 1eV
3 kt+l

If éi >0 for some i ¢V, set k+1=%k andgo to
Step 1.

If éi <0, 1i ¢V, introduce ys = yk + 1, the solution
associated with ¥4 into the objective function of L(y), and
go to Step 5.

Step 4. Backtrack to the predecessor h of the current
node k in (l, . Let yj be the variable associated with the
backtracking arc. Update the sets Nh and Jg by replacing
them through N, - {j} and Jg U {j}, respectively, i.e.,
remove j from the set of free indices by fixing yj at 0,
Go to Step 1. 1If backtracking is not possible (if we are at
the root of (land instructed to backtrack), terminate:
if g* < o, the solution associated with g* is optimaij;
if g* = o, P has no feasible solution,

Step 3 generates a new solution by fixing a hitherto free
variable at 1, If the solution
associated with the new pseudo-solution obtained in this way is
not feasible, the tests are repeated. If it is, one introduces
the new vector ys into the objective function of L(y) and

one goes to the step dealing with L(ys).

In Ctep 4 we backtrack to the predecessor of the current




node, and by fixing at 0 1
‘the variable associated with the backtracking arc we make sure
that the abandoned node and its potential descendants will if ~
never be visited inm any future step.

Step 5. Solve (post-optimize) L(ya).

AR e L.

If L(ys) has an optimal solution us)

S e

add to (4.9) the constraint

,,._.__<

*
(4.28) (usA1 - cl)y > u’b - g + ¢ .

Then, if gs < g*, update g* in all constraints of type (4.7) by

getting g* = gs. If L(ys) has no finite optimum, let u® + At®

be a feasible solution for any A > 0. Add to (4.9) the constraint

(4.28), and the constraint

o e ot AN @i & 0

LX<

1

(4.29) e’y > t%h

PR T

In all cases, if |V|< 2n, where |V| stands for the current
number of constraints (4.9), go to Step 1. Otherwise go to
Step 6.

Step 6. If at Step 5 we have generated one constraint, drop

from (4.9) the constraint i

« defined by

( B 8
4,30) :) = min B
1y ieV i

- -

If at Step 5 two constraints have been generated, drop from
(4.9) the constraints i,, defined by (4.30), and 1,4 defined

by !

) A

(4.31) 8, = min Bi
*%  ieV-{i,]




Go to Step 1.

'
(%)
w
)
R R TS 1% o7 ]

In Step S the solution (post-optimization) of L(ys) is

used to generate one or two new constraints for (4.9). If the

it B

objective function of L(ys) at the optimum is smaller than g¥, |
the latter is replaced by the new value in all constraints of s
type (4.7).

Step 6 is meant to keep the number of constraints constant
after a certain level has been reached, by eliminating the
"loosest" constraint (or pair of constraints). The level chosen
here, 2n, 1is arbitrary, and can of course be changed (the
more constraints are retained, the more efficient the tests tend
to be, but the more time it takes to apply them).

From the above comments it should be clear that the algorithm
ends in a finite number of iterations. The solution associated
with the last value g* is optimal; if g* = + o, P has no
feasible solution.

Indeed, Y is a8 finite set, and in the process of enumerating
its elements we abandon a subset of elements (associated with a
node of Cz’and its potential descendants) only when we can con-
clude from the tests that there is no element of the Subsgt
which satisfies the current constraints and is "better" than the
currently "best" element. On the other hand, Theorem 4.] shows

that a vector y ¢ Y can possibly be "better" than the current

"best"one only if it satisflies the current constraints (4.7),(4.8).

Finally, the implicit enumeration technique is such that no
abandoned node can ever be visited again -~ nor can any of the
potential descendants of such a node be generated.

The above algorithm is closely related to the partitioning

procedure of Benders [2]. The Benders procedure, however, pre-
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scribes for phase I the finding of an "optimal" y ¢ Y, i.e.,

one that maximizes 3;0, which implies the solution of an integer
programming problem each time we get into phase I. Our pro-
cedure avoids this, and requires only the finding of a feasible

y ¢ Y in each phase I, so that the complete seqi ance of phages I
amounts to solving one simple integer program. This procedure

is essentially identical with the one described by Lemke and
Spielberg [17], with the following minor differences:

(a) we work with L(y) rather than its dual, which permits the
use of a primal algorithm for the post-optimization required in
each phase II; (b) we generate the lower bounds (4.17) and (4.25)
and use them in what seems to be a strong exclusion test; (c)

we work with a fixed number of constraints (4.9).

TG R A T TORS A YT gAY W P e Y

S e T
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2. An Algorithm for Integer and Mixed-Integer
Noplinear Programming

Bsesre

»

We shall now discuss a generalization of the procedure described in
section 4 to the nonlinear case [7,9].

Consider the mixed-integer nonlinear program

max f(Yax)
(P) F(y,x) <0

YCY’XZO

where £(y,x) is a scalar function and F(y,x) an m-component vector function
of ngn, xeRp, and Y c K" is the set of n-vectors with nonnegative integer
components., This is a special case of problem (P2) of section 2, in which
m, = 0.

Let ueRm and let the function

(5.1) K(y,x,u) = £(y,x) = uF(y,x)

be differentiable in y and twice differentiable in x.

The dual of (P), as defined in section 2, is then

m?" %1’-{} g = K(y,x,u) - xVxK(y,x:U)

() v K(y,x,u) <0
yeY 5 x,u 20
Problem (D) does not seem to be of any use in solving (P), since

its inequality set contains the integer-constrained primal variables y,

and its objective function is nonlinear in the latter, However, in
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seétion 3 we have introduced a linearized (in yeY) dual (D') of (P). We
shall use a slightly different notation here, in that we shall continue
to denote by y the integer-constrained variable of the dual, and shall

let the newly introduced variable seRn to be continuous?

L - -
max nin 8 K(s,x,u) (s.x)vs’xK (8,x,u) + yv.K(s,x,v)

(") v,K(s,x,u) < 0

yeY ; 8,x,u>0

Here v;’xK = (vsK,vxK), VQK being the vector of partial derivatives
of K in the components of s,
The inequality set of (D') is independent of the integer-constrained
variables y; moreover, the objective function g' is linear in y. Iu view’
of the results of section 3, this opens the way to the approach of solving
(P) by solving (D'). 1o restate those results relating (D') to(P for the
special case under consideration, we recall from section 2 that the regularity
condition for the above problems (P), (D') is as follows:
(a) 1If (P) has an optimal solution (¥,X), che inequality set F(¥,x) < 0
satisfies the Kuhn-Tucker [16] constraint qualification at x = X,
(b) If (D') has an optimal solution (¥,8,%X,d), the matrix
vﬁK(ﬁ,ﬁ,ﬁ) is nonsingular.
Denoting by Z and W' the constraint sets of (P) and (D') respectively,
the relevant parts of Theorem 3.1 become for this case
Theorem 5,1. Let £(y,x) and each component of -F(y,x) be differen-

tiable and concave in y,x on the set {(y,x)anxRPIy,x > 0}, and assume
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that (P) and (D') meet the regularity condition., Then
a) If (y,x) solves (P), there exists TeR™ such that G,8,%,u0),
where 3 = ¥, solves (D').
b) If (¥,8,%,3) solves (D'), then § = § and (§,%) solves (P).
¢) In both cases a) and b),

(5.2) max {f(y,x)|(y,x)eZ} = max min {g'|(y,s,x,u)eW'}
y 8,X,u

The proof of this theorem is along the same lines as that of Theorem 3,1,
with the following observations:
@) The linearity of K(y,x,u) in u, along with the assumptions on
£(y,») and F(y,x) and the regularity condition, make up for
assumptions 1,2, and 4 of Theorem 3,1, As to assumption 3 of that
theorem, it is taken care of.by the fact that m, = 0. Assumption 5
holds by the definition of Y,
B) The regularity condition required for Theorem 3.1 can be replaced
by the weaker regularity condition stated above, because the
" duality theorems of Wolfe [13] and Huard [15] can now replace
the one by Danczig, Eisenberg and Cottle [10] in the proof of the
above theorem,
Remark 1, In the regularity condition stated above, the Kuhn-Tucker
constraint qualification can of course be replaced by that of Slater [20]
or Arrow-Hurwicz-Uzawa [21], or any other constraint qualification under
which the duality theorem of [13] holds., On the other hand, if the regularity
condition for (D;) is replaced by the weaker "low-value property" requirement

introduced by Mangasarian and Ponstein [22], then the "strict" converse
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duality statement b), based on [15], has to be replaced by a weaker converse
d\\sality statement of the type [22], 1In all these cases, the theorem can
still serveﬂ as a basis for the algorithm to be described below.

Remark 2. If Ranp reduces to Rn, i.e., (P) is a pure integer
nonlinear program in y, its linearized dual (D') becomes a mixed-integer
max~min problem (Do) in nonnegative variables, otherwise unconstrained,

»

and linear in the integer-constrained variables:

(Do) max min K(s,u) + (y-8)v K(s,u)
ye¥ 8,u 2 0 8

Before discussing the algorithm, let us consider the case when

y
(5.3) K(y,x,u) = cly + czx + ub - u(Aly + Azx) + ‘%(y,x)c (x)

where b,c = (cl,cz), A= (A]',Az) and C are of appropriate dimensions,

C being symmetric., (P) is then the mixed-integer quadratic program

y
max cly + czx + ‘2]"(y,x)c (x\
) Aly + A% < b

yeY ; x20

whose dual is
1 y 1
max min ub - 2(y,x)C x) ~vy
y 'x,u
(D) WA - (y,x)C-v=c

yeY x,u,v2 =20 v1 unconstrained




and whose linearized dual (D') is

1 i I |
max min ub - 2(s,x)C x| -vy i
y t,x,u . ‘ .'

(»*) WA - (8,x)C-v=c

v
Ao Cugre s MY

yeY ; s,:»:,u,v2 20 v1 unconstrained

—atdrse

.

No regularity condition is required for this case, and Theorem 5.1
becomes
Theorem 5,2, Let C be negative semi-da2finite, Then !

a) If (§,%) solves (P), there exists GeR" such that (§,5,%,T),

oo LN N el ke

where 5 = y, solves (D').

b) If (§,8,%,8) solves (D'), there exists x¢R® such that (§,5,%,4),

where 5 = ¥, also solves (D'), while (§,%) solves ®).

A L ety iy S P e
N

The proof is along the same lines as for Theorem 3,1 with the use

PR

of the quadratic duality theorem of Cottle [12] in place of the strict non- '

Al s, el

linear duality theorem of [10].

We shall now discuss a method for solving integer or mixed-integer
nonlinear programs, based on the above results, The basic idea of the '

method is to solve (D') instead of (P).

We shall consider the mixed-integer nonlinear program (P) introduced
at the beginning of this section, and assume that £(y,x) and each component
of -F(y,x) 1s concave and differentiable in y and x on {(}’,x)anxRply,x > 0}.
Further, we shall assume that the integer-constrained variables are

bounded, i.e., Y is finite,
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Now consider the linearized dual (D') of (P), vhich is a mixed-
integer nonlinear problem in (y,s,x,u), with an objective function linear
in y, and a constraint set independent of y. For any given yg¢¥, (D')
becomes a (continuous) nonlinear program in (s,x,u), which we shall denote
by D'(y).

Let g'(y) be the objective function and W" the constraint set of

D'(Y)o i.e.,
(5.3) W' = {(s,x,u)]g&K(s,x,u) <0, (s,x,u) >0}

We assume that W" # ¢ (this is always the case when (P) has an optimal
solution and meets the regularity condition).

The method we are going to discuss involves, as in the linear case,
the golution of a sequence of problems D'(y) defined by a sequence of vectors
Yel.

Since each problem D'(yY) is the dual of the concave program P(y) obtained
from (P) by setting y = ¥ (see the proof of Theorem 3.1), one can solve
D(y) by solving P(y) whenever the latter satisfies (or can be perturbed
go as to satisfy) the required constraint qualification. By "solving" a
problem D'(y) we mean finding an optimal solution or an ¢-solution (in the
sense defined, for instance, in [23]), or establishing the fact that D'(y)
has no finite optimum, Further, we shall have to assume that at the end of
the whole procedure, when an optimal solution (or ¢-solution) to (D') has
been found, the regularity condition required in Theorem 5.1 holds (or
can be made to hold by some perturbation), However, this assumption {is
not needed in the case of a mixed-integer quadratic program, as it was

menticned above,
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Now suppose we solve D'(y) for y = yl,...,yq, {1,...,9} = qQ,
(yng,ng). For each ke¢Q, exactly one of the following two situations holds:
a) D'(yk) has an optimal solution (or an g-solution) (sk,xk,uk).

b) g'(yk) i1s unbounded from below on W',

Yor case ) we have

Theorem 5,3. If g'(yk) is unbounded from below on W", there exist vectors

akgkn, xkng, ukel{'n and tkng, such that

(5.4) (5,25, , >0

(5.5) vxt:kF(sk,xk) >0

and

(5.6) -th(sk,xk) + (sk,xk)v'5 xt:kF(sk,xk) - ykvstkb‘(sk,xk) <0
H]

Proof. Let e = (1,...,1)¢=;RIn and let geRp, € 2 0 be such that
K(yk,g,e) s f(yk,g) - eF(yk,g) is finite, The existence of such a
vector § follows from the assumption that f£(y,x) and F(y,x) are differen-

tiable (hence continuous)., Then for any (s,x,u)cW"
') 2 K(s,x,u) + [(yk,g) - (s,x)]vs,xK(s,x,u)
[since £y K(s,x,u) < 0]
> KG",E,u) [by the concavity of K(s,x,u)].

Since K(yk,g,e) 1s finite, it follc s that for any finite ung,
K(yk,g,u) is also finite, and g'(yk) is bounded from below, Hence a

necessary condition for g'(yk) to have no lower bound on W" is the existence

d A PN s
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of sk,xk,uk and tk such that, 1f ) is a scalar,

a) (sk,xk,uk + xtk)ew" for arbitrary A > 0, which implies (5.4) and (5.5)

b) for (s,x,u) = (sk,xk,uk + xtk) and A 2 0, g'(yk) is a decreasing

function of A, which implies (5.6) Q.e,d,
Having solved D'(y) for y = ykeY, keQ = {1,...,9}, let Q = QILJ Q> with

Q1 = {kteD'(yk) has an optimal solution (sk,xk,uk )}

(5.7) 8'(yk) is unbounded from below on W" and

Q, =<keQ

2 kK k k k

8 ,x ,u ,t satisfy (5.4),(5.5) and (5.6)
For each ke¢Q, let gk stand for the value of g'(yk) for (s,x,u) = (sk,xk,uk),
i,e., let
k k k k k k k k k
(5.8) g =K(s ,x,u) - (s ,x )Vs xK(s $X ,u ) + kasx(sk3xk:uk)
]

Further, let

. ko

g = :aeac gk 1£Q, # ¢
(5.9) g ﬂ !

- o 1fQ1¥¢.

.

Theorem 5,4. Any yeY (Lf one exists) such that

(5.10) min {g'(y)l(s,x,u)gW"} > g¥
8,X,u

satisfies the constraints




-
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k k k k k k k
(5.11) yvsK(sk,x su)>g¥-g +y véK(s sX 53U ), keQ

1,

(5.12) -yvsth(sk,xk) > th(sk,xk) - (sk,xk)vs’xth(sk,xk), keQ2

‘where sk,xk,uk,tk and gk are defined by (5.7) and (5.8).

Proof. B3uppose ye¢Y does not satisfy (5.11) for peQ. Since

(s®,xP,uP)gW", this implies

inf {g' ()| G,x,0ei"} < K(eP o) - (P, KesP,xP,uP) + yo k(PP u)
8,X,U

< g*

which contradicts (5.10).
Now suppose y¢Y violates (5.12) for peQ2- Then, since

(sp,prup + ktp)eW" for any A 2 0, we have

inf {g'(y)l(s,x,u)ew"} < K(sp,xp,up+1tp)-(sp,xp)vs’xK(sp,xp,up+ktp)+yv§K(sp,xp,up+xt%
8,X,1

= K(sp,xp,up)-(sp,xp)vé xK(sp,xp,up)+yvhx(sp,xp,up) '
’ “

+ A[-th(sp,xp)+(3p,xp)vs xth(sp,xp)-yvsth(sp,xp)]
]
Rut then in view of (5.7) and Theorem 5,3 the right-hand side,
and hence also the left-hand side of .he obove expression can be decreased

aibitrarily by increasing A, which contradicts ¢5.10). Q.¢.d.




~bly~ ' f

lary 5.4. If there is no yeY satisfying the system (5.11),(5.12),

then either
a) Q1 = @ and (P) has no feasible solution, or |

b) \q ¥ ¢ and the vector y*¢Y associated with the last g* defines

an optimal solution to (P).

Proof. If Q1 = @, g'(y) has no lower bound on W" for any ye¢Y. Hence
(Thearem 1, [13]) the dual of the convex program D'(y) has no feasible
gsolution for any ye¢Y, and so (P) itself has no feasible solution.

1f Q1 ¥ @, denote by (s*,x*,u*) the optimal solution to D'(y*), Then,
if (D') meets the regularity condition, (y*,x*) is an optimal solution to (P)
(Theorem 5.1), If not, and if the regularity condition is not required
(like in the quadratic case), then the optimal solution to the concave
(quadratic) program P(y*) obtained from (P) by setting y = y* is also an
optimal solution to (P)(Theorem 5.2), Q.e,d,

Based on the above results, we can now formulate a procedure for
solving integer or mixed-integer nonlinear programs with the required
propercies (shown in Theorems 5,1 and 5.2), which generalizes to these
cases the algorithm discussed in section &,

Phase I. Find yseY satisfying the linear inequalities (5.11),(5.12),
(At the start this constraint set is vacuous; tlus yleY is arbitrary,)

Go to Phase II,

Phase II. Solve D'(ys). If it has an optimal solution (g-sclutionm),

generate a constraint (5.11) and, if gs > g%, update g* (i.e.,, set g* = gs).

If g‘(ys) has no lower bound on W', generate a constraint {3.11) and 4
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constraint (5.12), Then go to phase I,

rem 5,5, In a finite number of iterations, the algorithm consisting
of phases I and II ends with the set (5.12),(5.13) having no feasible

solution ycY.

BXoof. - When a new conmstraint (5.12) or (5.13) is generated in phase II, it
1s violated by the last ye¢Y found in phase I. Hence no constraint is gene-
rated twice (a new constraint, violated by y, cannot be identical with any
of the old ones, satisfied by y); and no y.Y is generated twice (a new yveY,
satisfying all current constraints, cannot be identical with any of the old
ones, each of which violates at least one of the current constraints). Since
Y is assuned to be finite, the theorem follows.

Remark. This proof is valid as long as all the constraints generated
under the procedure are kept and used in each phase I. If they are not,
convergence will depend on the non-redundancy (convergence) of the proce-~
dure for generating the elements of the finite set Y, as in the case of the
algorithm of section 4, On the other hand, it is easy to see that the above
convergence proof is not affected if in phase II, whenever g'(y) has no
lower bound on W", we generate only a constraint (5.12), instead of also
generating a constraint (5.11). This may sometimes be preferable [7], as a
direction vector t° may be easier to obtain than the associated feasible
solution (ss,xs,us) to D'(ys).

The procedure outlined above can be implemented in several ways.

Fhase I i{s a search for a solution y to the constraints (5.11),(5.12)

over the set Y, As shown in section 4, this search is not to be restarted
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from the beginning for each phase I; rather the successive applications of

pbase I should constitute successive stages of a single search process over Y. If
Y= {O,I}n, the implicit enumeration techniques known for linear programs

in 0-1 variables, with their various exclusion tests, can be used here as

in section 4., If Y is the set of nonnegative integers, then a technique

of the type discussed in [16], p. 942-943, or in [7], can be used to trans-

form the problem in integer variables into one in 0-1 variables at a rela-

tively modest price in terms of problem size, and the implicit enumeration
techniques are again applicable.

As to phase II, from a computational standpoint it seems preferable,
whenever it is possible (see Theorems 5.1,5.2), to find an optimal solution
to D'(ys) by solving the problem P(ys) obtained from (P) by setting y = ys.
If, for some ste, P(ys) does not satisfy the constraint qualification at
the optimum, the optimal solution of P(ys) may still yield an e-solution
to D'(ys). Should this not be the case, the current ys can simply be
dropped and another ygY generated. This will not affect the convergence
of the procedure, provided one makes sure that ys 1is not repeated,

This procedure is perfectly valid (in fact, considerably simplified)
in the special case when all the variables of (P) are integer-constrained.
The inequality set of (D') is then vacuous, and”(D') becomes the problem
(0°) shown in Remark 2 to Theorem 5.1, Since the concavity of K{gc,u) in s

implies the relation
(5.13) K(s,u) + (y'S)vsK(s,u) > K{y,u)

which holds as an eguality for s = y, phase II reduces to solving the




prcblem Do(yk) in u:

3
k k k
fd% min K(y ,u) =min {£(y ) - uF(y )|u> 0}
. w20 u
k k 0, k
Whenever F(y ) £ 0, u~ = 0 solves D (y ), and a constraint (5.11) which

now becomes
k
(5.14) yvsf(yk) >gk - f(y) + y‘fvsf(yk)

is generated for phase I, Whenever Fi(}() > 0 for ieﬂ+, K(yk,u) has no

lower bound on {ueRplu > 0}. Then the vector tk such that t: = 1 for ieM+

and tf = 0 for ieH+ defines a constraint of type (5.12) for phase I.
A detalled discussion of the above algorithm as specialized to integer

and mixed-integer quadratic programming, along with numerical examples,

is given in [7].

We shall now briefly explore the relationship of the vrocedure des-
cribed in this section to gsome other methods,

As mentioned above, our method can be viewed as a generalization for
the nonlinear case of the ideas underlying the partitioning procedure of
Benders [2] or the closely related technique of Lemke and Spielberg [17].

While Benders' partitioning procedure i3 generally used for solving
mixed-integer linear programs, it is in fact slightly more general than
that., Benders partitions a mixed-variables program intoﬂtwo subproblems:
a linear program (say, Pl) and a more general problem (say, 92, which
may be, for instance, an integer program--whether linear cv not); then
he solves the original problem by solving a sejuence of subproblems Pl,

2 foe
P”. But this partitioning method is subject to the follewing limitations

(also valid for the Lemke-Spielberg algorithm):

Y o bl
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1. The objective function and each constraint has to be separable
with respect to the continuous variables, i.e., no term containing both
integer and continuous variables is allowed.

2, The objective function and the constraints have to be linear in
the continuous variables,

3, If the objective function and/or the constraints are not linear in
the integer variables, then the subproblem P2w111 be a pure integer nonlinear
program for which a solution method has yet to be found.

The algorithm described in the present phper does not have any of these
limitations: 1 and 2 are not required, and 3 does not apply: our corres-
vondent of Benders' subproblem P2 is a pure integer linear program.

Furthermore, while Benders' partitioning method becomes meaningless
when applied to a pure integer linear program (it replaces the integer
program with itself), the algorithm discussed in the previous section
replaces an integer nonlinear program by an integer linear program,

We shall now discuss the velationship between our method and the cutting
plane method of KRelley [24] for nonlinear programming, which, as Kelley
has shown, can be combined with Gomory's [25] cutting plane method for integer
programming, The constraints (5.11),(5.12) generated in our procedure
are hyperplanes that cut off portions of the set Y containing the current yeY,
hence they can also be regarded as "cutting planes", But there are some
basic differences:

1, Kelley's method generates a sequence of points outside the
feasible set, which converges on a feasible point., The first point which
is feasible, is also optimal, but no feasible point is available before

the end of the procedure, In this sense it is a "dual" wmethod, The same

., *
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is true when Kelley's method is combined with Gomory's one to solve
an integer nonlinear program (in this case of course "feasible'" means
a solution which is also integer in the required components).
On the other hand, the method described in this paper generates
a finite sequence of feasible and (occasionally) infeasible (but integer
in the required components) points, with a subsequence of feasible points such
that each point in the subsequence is strictly "better" than the previous
one., At each stage, a currently '"best" feasible solution is available,
In this sense this is a "primal" method.
2. Kelley's cutting hyperplanes define a convex set S' containing

the original constraint set S. The role of each newly generated hyperplane

i{s to cut off a portion of the set S'-S containing the current (infeasible)

solution. Similarly, Gomory's hyparplanes are meant to cut off a portion

of the set 5'-8", where S" is the convex hull of the feasible integer points.
Thus, both types of hyperplanes cut off sets of points lying outside the
feasible (integer-feasible) set.

In our procedure, two types of hyperplanes are generuted, Both of
them are hyperplanes in n-space, rather than (nip)-space, i.e., in the '
space of the integer-constrained variables rather than the space of all
varlables, and they are used as constraints on the (and only on the) integer-
constrained variables y¢¥., The main role belongs to the hyperplanes of type
(5.11), which are meant to cut off as large a portion of Y (whether feasible
or not) as a hyperpléne containing the current polnt ¥ can possibly cut off
without cutting off any v¢Y which could yield, in conjunction with an
appropriate x, a '"better" integer-feasible spolution than the current '"best"

one, When hyperplanes of the type {(5.12) are generated, they are meant
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to cut off portions of Y containing points which cannot yield, in
conjunction with any x, a feasible solution.

| 3. In Kelley's procedure, a cutting plane is generated by replacing
a constraint function by its first order Taylor seties approximation in

the neighborhood of the current solution. In the notation of this section,

this wquld be
Fi(—’-i) + [(}'ax) = G’E)]Wi@»i) £0

The dual problem does not play any role in the derivation of this
constraint,

To give a comparable interpretation to the cutting planes generated
in our procedure, consider the Lagrangian expression associated with the

primal ; »blem
K(Y:x’u) = f(Yax) = uF(y,x) .

1f the current integer point y (in n-space) is such that the function
K(y,x,u) in (x,u) has a saddle-point at (X,0), we generate a cutting
plane by requiring the first order Tayi;r series approximation of K(y,X,u)
(considered as a function in y defined on {yly > 0}) in the neighborhood
of y=§ =t to satisfy

(5.15) K(E,%,0) + (y-y) I KGE,E,W) > g*

where g* is defined by (5.9). It is easy to see that (5.15) is the same as (5.11).
If K(¥,x,u) has no saddle-point and X,U and t are such that
KG,%X,T + A\t) = - ® when A — + ®, then two cutting planes are generated,

one of the type (5.11) and a second one of the type (5.12). TIn each case
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‘the dual vector u (or E) Plays a key role in generating the constraints.
Rence, while our method also generates a certain type of cutting

planes, it differs substantially from Kelley's.
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