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1. I TRODUCTION

1.1 In recent years techniques have been developed for dealing

with statistical data where the observations are directions, and where

the directione are assumed to be more or less concentrated around a

single mode. In three dimensions, the distribution used to describe

such directional data is Fisher' s (1953) distribution, and in two

dimensions it is the von Mises distribution. In this paper we extend

the techniques for th2se distributions to deal with axial data, i.e.

data consisting of vectors whose direction can be in either sense, and

also for use with directed data from populations with two modes, in

opposite directions. The techniques make use of tables already prepared

for the Fisher and von Mises distlributions. Examples of directed data

are, in three dimensioLa, directions of magnetization of roctks, or, in

two dimensions; directions of bird flights or of prevailing winds;

examples of axial data are normals to planes of cleavage of rocks, or

inclinations of the long axis of pebbles in till deposits.

The procedtLres will be given first for three dimensions, since

later on it is easy to adapt them for two d.rensions; the rest of the

introduction duals with notation to be used. The Fisher distribution is

described in section 2) its bimodal extension, assuming axial data or

directed data with equal modal strengths, is given in section 3, with



examples; tests of hypotheses for three-dimensional data are in section

4. For two dimensions, the von Mises distribution and its bimodal

extension are treated in section 5. 3
The adaptation of all the procedures for directed data but with

unequal modes in given in section 6. section 7 demonstrates the impor-

tance of knowing the type of data, and deals briefly with related topics. I
Examples are included throughout the paper.

1.2 Notation. Observations denoting directions are recorded by unit

vectorsi in three dimensions a typical vector is OF, starting at the

center 0 of a sphere of radius 1 and ending at P, a point on the J
surface of the sphere. Axial data could be best recorded by drawing

the entire diameter POQ say, though in three dimensions this is then

difficult, in practice, to show on the usual diagrams. Techniques for

axial data must not depend on whether P or 9 is used to represent

an observation; for all data, thus the vector used is called

2r. Let P be located by the usual spherical polar coordinates e,

0; we shall regard these also as coordinates of the line OP. For

simplicity, let e = 0° be thought of as pointing to the "north pole"

of the sphere, so that e = 900 is the equator and e = 180 is the

south pole".

1.3 Other Notation. In the northern hemisphere, e is then the

colatitude of P, and e = 90 - X, where X is northern latitudei

in the southern hemisphere, e = 90 + X, where X is southern latitude;

2
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i0 ____ is the lo0itude measured fr 0 to 3o eastward f 0 00.

1, is called also the orientation P is sometimes measured by orienta-

tion 0 and dip angle 6 below the equator; 5 corresponds to southern

latitude X, and e = 90° +. In practical work, 9 (or 6) and 0 are

often given in degrees, as has so far been assumed; in theoretical dis-

Ii cussion, we shall assume e, 0 are in radians. This will not affect

the practical techniques, which use the components of the given vectors.

Fur these, we must introduce a set of rectangular coordinates; a natural

"'I set has the z-axis along 9 = 0, the x-axis along e = 7/2, 0 = 0,

and the y-axis along 9 = n/2, 0 = a/2. The components of a vector

I. with coordinates e, 0 are then

x = sin 0 cos 0 , y = sin 0 sin , z = cos •

I For a given sample of size N, let 9i (i=l,2,...,N) be the

I i-th unit vector, and let x', Yi' zi be its components; define

X X = Ei, Y = Ey,' Z = Ez, • These are the components of the vector sum

or resultant B of the QF; if Z has length R, then

R2 = X2 + y2 + Z2 . When dealing with several samples, the subscript

r will give the value for the r-th sample, e.g. Nr is the sample

size of the r-th sample, with resultant br N will denote the total

sample size N1 + N2 +--'+ Ns, where s is the number of ramples.

1 2. THE FISHER DISTRIBUTION FOR DIRECTED VECTORS.

1 2.1 Suppose the vectors O (i=1,2,...,N) represent directed

data, with an arrowhead at P

1!
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The Fisher distribution describes a probability density at the

point e ID which is proportional to exp(K cOS 90): more precisely,

the density of e is

(1) 8.K Sin e exp(K cos ), 0 < 0 < nr

and 4$ is independently uniformly distributed between 0 and 2n.

The distribution is symmetrical aroun4 A (along 0 = 0, pointing to

the north pole), and with . single mode at A j K is a parameter

(K > 0), which describes the concentration of the distribution. When

K is large the distribution is highly concentrated around A, end

when K = 0 the vectori (i.,. the points P) are uniformly distributed

over the surface of the sphe -e. This distribution was introduced by

Fisher (1953) to describe vec .crs denoting remanent magnetization of

rocks. Statiztical p.,t°edures were given by Fisher, and by Watson (1956),

Watson and Williams (1956). and Watson and Irving (1956)i this work has

been developec., and thE necessary i;ables produced, oy Stephens (1962b,

1967, .0$69a). The techniques have begun to be used in applied work,

particularly iV a geological context; see, for example, Andrews and

Shimizu ' 1966), and, for a wider discussion, with a long list of

references, Watson (1968). It will be convenient now to sumarize these

procedures; in the next section they will be adapted for use with

axial or bimodal three-dimensional data.

2.2 Estimation of modal vector and concentration parameter for

the Fisher distribution. In the distribution (1) above, the modal



I direction A was assumed along a = 0 in practice it will usually not

be known, and, with K, must be estimated. The maximum likelihood

equations for these estimators are based on the statistics B and X,

J from a sample of N unit vectors, already described in section 1.

(a) The estimate of A is the direction of R, i.e., a unit vector

a estimating A is a =WR

(b) To estimate K, solve

(2) cothc-1K=1FN

if A is known, replace R by X in this equation. A table for

solving (2) is in Stephens (1967).

j 3. BIMODAL EXTENSION OF THE FISHER DISTRIBUTION

3.1 The natural extension of the Fisher distribution to cover

bimodal data is obtained by superimposing two Fisher distributions with

opposite modal vectors. If the line along e = 0 and e = n, now

Jcalled the modal axis A, represents the direction of the two modes,

the density of e is then

(3) f(e) = 2 sin 0 (a exp(K cos 9)+(l-a)exp(-K cos e))

I and P has a umiform distribution between 0 and 2n as before.

The relative strength of the two modes is measured by the parameter

a, which lies between 0 and 1. When a = 0.5, (5) becomes

I
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(4) K(e) 2 sih K (cosh (K cos e)) _ < e < A

Distribution (3) will be used to describe directed data with unequal

modesi distribution (4) will be used in analyzing axial data, if both 3
ends are recorded. In general, the modal axis will not be known, and

must be estimated. When A is known, pointing, say, to the North pole, I
we could choose to record axial data by one point only, in the northern

hemisphere; the density of e is then

(5) f() sin K (cosh (K cos e)), 0 < 8 < it12• Ii

In practice, a given experimenter say collecting directions of

magnetization of rocks, will probably show a natural preference for

recording the data in one sense more often than the other, so that a

given sample of axial data, as recorded, may look like directed data

with two unequal modes or even only one mode; this can be very deceptive.

It is therefore important to know what type of data is in a given sample

in order to decide the analysis to be undertakeni one should not rely -

only on the appearance of the sample. We illustrate this point in

section 7.

We now discuss two estimation problems, for distribution (4); how --

to estimate the direction of the modal axis A, when this is not known

(so that it does not lie along e = 0); and how to estimate K. The

techniques to be given will not depend on which end of a diameter is

chosen to represent an observation with no preferred sense; thus for -

6
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I this type of data one follows the procedures using the observations

exactly as given. This is also the case for data representing directed

I vectors from a population with two opposite modes of equal amplitude.

Modes of unequal amplitude (a 0.5) are discussed in sectiov 6.

3 3.2 Estimation of the Modal Axis A. Suppose a plane M is chosen

through 0, characterized by its normal j , one end only of each3 recorded axial diameter is thei chosen to give a directed vector, such

that all the directed vectors lie on one side of M. The resultant R
is then calculated4 its value clearly depends on the choice of M, i.e.

of . When e is along the modal diameter A, so that the plane M

is at right angles to A, the expected length R of R is a maximum;

j and when A lies in plane M, so that n is at right angles to A,

the expected length F will be a minimum. This Etiggests that to

Iestimate A, we must find the plane M which gives a maximum R,

and this is done iteratively by the following method, which applies to

both axial and directed data.

(a) Directed data is recorded by the end P of the vector OP

for an axial observation choose either end of the diameter to be initially

Pi" In the steps which follow, the direction of a sample vector will

sometimes be reversed, and Pi always refers to the end of the vector

which is currently used to assign it a direction OP

(b) If a good estimate V, length V, of the modal vector exists,

let the components of the unit vector v= Y/V be l, m, n.

7o
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(c) Suppose the sample ve'ctor OP has components x1 ' Yi' zi3

for each sample vector, calculate a = v OP,  i.e. a = lxi+myi+nzi;

if a is negative, change the signs of xi, yi and z,. This reverses I
the original direction of OF and ensures that it now makes an angle

less than ,/2 with V.

(d) For the final set of sample vectors, calculate the resultant I
(vector sum) R, lergth R.

(e) Let r = _WR be the new v. components 1, m, n, and repeat

from step (c). When two successive values of r are identical, stop

the procedure; let the final unit vector r be called ro; the line

along which r lies is the estimate of the modal axis A. T0 T

(f) If no good estimate V exists in (b) above, start as follows.

L'-,t (l,m,n) be (lO,C,) and proceed with steps (c) and (d). Repeat

with (i,m,n) = (0,1,0) and (l,m,n) = (0,0,1). Of the three values

of R so obtained, choose that with the largest length R as the

initial V , take v = R and continue from step (b) above.

350 Estimation of K. 1. Modal axis known. If the direction of the

modal axis A is known, and lies along 9 0; it is easy to derive

the maximum likelihood estimating equation for K. It is

(6) cosh K- - cose. ta (K cos e,

K i=l1

where cos i is the angle between OF an,.t the modal axis A, chosen -

to point in either direction.

2. Modal axis not known. When A is not known, we measure e

from the estimate of A, along r calculated in the previous section. F

Id 8 1
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This is analogous to replacing X by R when using equation (2) for

the Fisher distribution.

j For each sample vector, only cos ei is actually required, and if

the components of r are 1, io, m o and the final components of

OP are xi, Yip Zip cos e is given by cos ei = I1x + moy + noz

Every value of cos e will be positive. Equation (6) is then solved
i

iteratively by the following steps. Let R° be the final resultant,

length R° , of the sample vectors, i.e. r = B"/1, and let M(K)

be the right hand side of (6) for any K.

I (a) The quantity (Z cos e i)/N is R°/N, say Y0; solve

cosh K - 11K Y to give an initial estimate K 1 for K. This may

be done using e.g. Table 3 in Stephens (1967); if Y 0> 8, K1 is

3 /(l-Yo)"

(b) Solve cosh K - 1K = M(KI); call the solution K

3 (c) Solve cosh K - 1K = M(K2); call the solution K, etc.,

and repeat this procedure; the sequence for K converges, and the limit

is K. the estimate of K.

I The above procedure is proved convergent as follows. First suppose

K* is the solution of (6). Since tanh x < 1, M(KI) < Yo ; and since

I cosh K - 11K is monotonic in K, 12 < Kli But tanh x is monotonic

in x, so M(K2 ) < M(KI); so by repetition of the argument, K3 < K2 '

Similarly K4 < Kp etc. Also Y > M(K*), so K > K*; then

M(K) > M(K*), and so K2 > K* : similarly K, > K* for all i.

Thus the sequence of solutions Ki is decreasing, bounded below by

K*, and so converges. But cosh K n- 1Kn = M(K n_), and if we take the

limit, as n u , un both sides, we have the limiting value of K --

9
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As will be seen in the examples which now follow, the technique I

converges very rapidly for K-values of 5 or more.

) .4 Examples. The data are from measurements of inclination of

till deposits, kindly made available by Dr. C. King of the Department

of Geography, University of Nottingham, England; there are 4 samples each

of 2 observations, measured to the nearest 5 degrees. The effect of the

precision of measurement is not considered in this paper. Table 1 gives

the data and the steps in the estimation procedures, for Sample 1. The

table is divided into several parts:

(a) The 25 values of e, 0 are listed first, in degrees. The

degree symbol is omitted.

(b) Estimation of Ro. Unit vectors along the x, y, and z axes

are taken as starting values of v, assuming no initial approximation

known for the modal axis; the resultant length is given, together with

its coordinates e, 4, and in the last column are listed those vectors

which must be reversed from the original given direction to lie at an

angle less than 90 with tre current v.

(c) The largest R obtained from (b) is 20.20, with vector

No. 1 reversed4 this R. reduced to unit length. becomes the next v -

with direction cosines 1 = -0.329, m 0.9211. n -0.208. Now vector

No. 1 is returned to its original sense (thus all the vectors, as given, r

are within 90 of the current v) and the new R = 20.54; on using this

to make the new v. we get no charge in R, so that this is the final

resultant, R°; its direction cosines are - 0.418, 0.889, - 0.188,

and its c ~ordinates are 6 = lCQ.8, (D _-15. 2 . Since it is the °  for

sample 1, it is designated R1 •

10
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(d) Estimation of K. The first estimate Of K, derived from

R= 20.54, is = 5.61. The successive estimates converge rapidly
1

to K = 5.56.

ii  Table 2 gives the final results for Samples 2, 3 and 4, for Samples 1

and 2 taken together as one sample of 50 observations, and for Samples

i 3 and 4 taken together. X, Y, Z, are the components of e; e, 0 are

its coordinates in degrees. Thus X = R° sin e cos 0, Y = Rosin e sin 0,

Z - Rocos e. The techniques converge very rapidly for these values of

1 1! K. Even for Sample 5, only 3 iterations are needed to obtain = 5.92.

" 4. TESTS OF HYPOTHESES.

4.1 We now consider tests for bimodnl data. The tests to be

proposed are devised to make use of methods and tables already prepared

- for the Fisher distributions; these may be briefly sinrized as follows.

I ~ For theFisher distribution, one-sample tests of hypotheses concer-

I ning A or K are based on R and on X (Stephens, 1962, 1967). For

the important test that s different samples have the same modal vector

A, a test is based on the conditional distribution of RI+R2 I+- .+R,

given R; R is the length of R. the overall resultant of all the s

samples. The tables for this test are in Stephens (1969).

1 4.2 Possible test statistics for the Bimodal Distribution: R° and S.

For the bimodal distribution, when A is not known, it would be

3 natural to base tests on the distribution of H°, when A is known,

possible test statistics could be the component of R° on , or the

Ul!1
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sum C of the components on A of all the given vectors, each one 3
pointing so that its component is positive. (Note that these two

statistics are not necessarily the same.) Unfortunately, even the

distribution of R°  is not known; and we consider an alternative

statistic. Suppose, for a given sample of size N, we have found the
A A

estimates A and K by the above methods; we then ask for the resul-

tant vector P which would have given the same estimates, of modal

vector A and of K, on the ass,mpti'r. it is the resultant of a

Fisher-distributed sampl3 of the same size. Clearly Z will lie along

R and its length is easily found from the calculations leading to

A
K for the bimodal sample. Consider, for example, Sample 1. The final
A
Kis 5-56., obtainedby solving coth K - 11 = 0.820W. comparison with

equation (2) for the Fisher distribution shows that 0.8200 must be the

value of S/N; so that S = 0.8200 x 25 20.50. We call S the

tuted resultant of the bimodal sample. note that it might point along

either direction of the estimated modal axis, according to the final -

0 -
direction taken by R°

. in effect we have imagined constructing a

Fisher sample from the original data, with same N, K, and modal vector

(based on our estimates), and S would then be its resultant. The

values of S are included in Table 2. Since we hawe tests and tables --

available for the Fisher distribution, based on the Fisher resultant

R, we could now, as an approximate procedure for the bimodal distriba-

tion, use the same tests, with the aCj .d resultant Q replacing .

One sample tests. This procedure will first be illustrated

with one-sample tests on Sample 1. [
12
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I Test for the modal axis A Suppose the null hypothesis is Ho:

for Sample 1, is along 0 - 90, i.e. the y-axis. The appropriate

Fisher distribution test is based on the conditional distribution of

R given the component C or the hypothesized 'odal vector, if R is

* too large, H is rejected. Here, the value of S is 20.50; it0

I lies along the direction of R° , and its component C is then 18.22.

The test, for a = 0.05. uses Figure 2 of Stephens (1962), or approxima-

I tions which accompany t for the case when the component, called X in

the Figure, is beyond the range givpn. In this case, the approximation

in section 3.3 applies; the critical value of S, say SO, will be

So-C F2 48 (a)

calculated from ; F2 48 () is the usual F-distribution,

here with 2 and 48 degrees of freedom, at the level Q. For Oz = G.05,

we gt so = 19.016. Since S is greater tnan S o, Ho i rejected

at the 5% level.

Use of R . For reasonably larg. , RK very nearly equals Z, as

here, and the test could be made using R 0 the componurt C is now

18.26 (the Y component of RO . from Table 2) and the critical value

for R0 would thor. be 19.051. H would again bc rejected. IL the

next tes'.., for K, rT:placemert of S by le al-o does not change the

result of the Lest.

Test for K. Consider a 5% tes' of H : th- true " of Sample 1 is

4.5. The test for the Fisher distribution is given in Stephens (1969);

it uses the value of P/N, and a table of the critical values is given.

For N = 25, K 4.5, the upper 5% critical value is 0.854. If for

15
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Sample 1, we use R°  bs t, st statistic, the value of R°/N = 0.822;

this is not significart, so H is not rejected, for a one-tail

(or two-tail) test. Slmilar1 ;'N = 0.820 and use of S would give 3
the same result.

4.4 Tests for rz',eral samples. Notation.

tA the r-u~ sarn'le have Cize Ai~ ,  Lxd let R° be the resultant

as calculated above, and S the adjus' ed resultant, with length Rr ,

S r as before, N = I+ N2 -.. + N , where s is the number of samples.

We can combine the resulzutz RO or or the samples themselves, as i

in several ways:

(a) Firstly, iu'pos te rtsullants of the individual samples

J, m, say, are so aligne that they give the maximum length

00
to the xector sum 05 i t l + R° ; we shall describe them as well-

aligned. (Recall that any ca .ulated R0  is ambiguous in direction

and may be reversed as desired.) For well-aligned vectors, this vector

sum will be called R its leR °th is R.-jl itJeghi klm
(b) Secondly, samples J, k: 1, m, may all be pooled into one

sample. and the procedure above followed to calculate R° for the
C

overall sample; we shall use the notation Pjklm for the resultant

of pooled samples. It will not necessarily be the ease that R 0
~Jklm

will be equal to P a vector may point one way in sample J, say,
-_ klm.

0
in calculating R and be reversed in calculating the pooled sample

resultant.

io
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l This car easily be checked by reference to the individual components;

the final X component of the pooled sample will equal the sum of the

Iindividual X componerts .f the vector sum equals the pooled resultant,

and similarly for the Y and Z components. As an illustration,

consider Table 2. Samples 3 and 4; even when E4 is reversed, to make

the X values of 3 and 4 both positive, their sum is not the X value

of Samples 5 and 4 pooled together; we can see that the X of R

is 28.99 (16.74 f 12.25), while that of P is 28.16. in this case

there occ-urs one vector in Sample 3 which changes direction in the

Ioverall pooled sample- it is at approximately 89.3 degrees to R

and at i0 A degrees to P 0 . In sh circumstances P0  will always
Zb4 gnjk

be greater than .R 4 has 1. ngth R° 38= 58o20 and 134 has

j lengtr = 382. For more than two samples the disparity may be

greater- In a sl'i2ar way w. can define S = S + k + s l •

when the S vectors are well-aliged: i-,s length is S It will

not necessarily be "he same as the value of S for the pooled samples

k, 1, a-d uz we ,nall call this k length Q

4.r Test Statisti.cs. Tests for several samples might be based

on R or S staticst cs. 8lnd on vector sun- or pooled values. We

shall suggest jsi.,.Lg S-st-atistlos. s.i.e the appropria4e tables to be

used are based on F.E...r d.striburions,. ard pooled resultant S

values- (QJkLm rathz.r tn.:. S k) " since t+ne , are easily obtained

from the eompitatio-al procedure dascribed abov-, when the samples are

pooled into croe, Borderline decisions will in any =a3, pe treated

l = 15
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with reserve owing to the approximate nature of the tests. We now 3
illustrate several multi-sample test procedures.

Teat for a Common Modal Axis. A test for Ho: that s samples with

the same unknown K, have a co n modal axis, will be based on the

arithmetic sum SI+ S2 + .-. + Ss given Q2... s' Suppose we test this

hypothesis, at the 5% level for samples 1 and 2. S1 = 20.50, S2 = 20.78, 1
and Q12 = 40.47. The test follows the procedure in Stephens (1969).

The steps are as follows:

(a) Calculate W = Q12/ = 0.810.

(b) Calculate Z = (S 1 +S2 )/N = o.826.

(c) Use section 2 of Stephens (1969) to find the critical value

z for N = 50, W = 0.810, and a = 0.05 ; using the F-approximation

there given, we find z = 0.821. -

(d) Since Z exceeds z, reject H at the 5% level. Z is
0

in fact just significant at the 2.5% level (critical value z = 0.824).

The vector sum S12 S +P2 has length S12 = 40.49; obviously

replacement of Q1 by S1 gives the same result for the test.

If one uses the F statistics, the pooled resultant P = Rl The

steps (a) and (b) give W = 0.811 and Z = 0.827. Again Z is just

significant at the 2.5% level; the critical values go up very slightly

with the slight increase in W, but so also does Z. The example

illustrates again that for reasonably large K, the S and R statis-

tics will give the same results. This is especially so in the tits of

a conditional nature: those for the modal axis for one sample, and those

for a common -odal axis for several samples.

16
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1 5. THE VON MISES DISTRIBUTION AND BIMODAL EXTENSION.

5 .1 The distribution analogous to Fisher' s, for use in two dimen-

I sions, is the von Mises distribution; if 6 is the polar coordinate of

P, or equivalently of OP, the density is

£ f(e) = 2i1 exp(K cos e) -A < 0 <i

with modal direction A along e = 0 and K measuring concentration

I as before. Treatment of this distribution is in Gumbel, Greenwood and

I Durand (195;) and Watson and Williams (1956); tests are in Stephens

(1962a, 1969b); Batschelet (1965) gives a good account of the statistical

procedures and a bibliography of applications, and May (1967) shows

how the procedures may be applied to practical situations. Again

-I estimation and testing procedu.'es are based on the sample resultant R

and on X, its component along A, known or hypothesized. The direc-

tion of k estimates A when this is not known; K is estimated from

SI(K)11o(K) = /N ; when A is known, X replaces R. Io(K), II(K)

are the usual imaginary Bessel functions of order zero and one.

5.2 The Bimodal Extension. The extension of the Von Mises distri-

bution for bimodal data gives density

(7) f(e) = (K) (a exp(K cos 9)+(l-a)exp(.K cose)) , -E1<9 < I

when a = 0.5, this becomes

17
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(8) ( 1 o(coS 9) , - < <

with a modal diameter 6 along e = 0 or ,. If lies along 3
S- G0 or 00 + x , cos 9 is replaced by cos(0-o ) in (7) or (8).

For distribution (8), used for axial data or directed data with

opposite modes of equal amplitude, the technique for estimating A

from a sample of size N is similar to that in section 3 for three

dimensions. A suitable set of rectangular coordinates puts the x-axis

along 9 = 0 (now no longer known to be the modal diameter A), so

that x =cos 8, y= sin '* I

5.3 Estimation of R. Then, with suitable initial unit vector v,

components 1, m, A is estimated iteratively by following steps (c)

to (e) of section 3.2 with the obvious change to two dimensions. If

no good estimate of A exists, we follow (f), starting now with

(1,m) , (1,0) and then (0,I).

5.4 Estimation of K. The equation for estimating K is now

N
(9) 1 (K)/Io(K) cos 0 tanh(K coS e:

i=l

and this is solved iteratively exactly as in section 3 .3, steps (a)

to (c); the initial right hand side is R°/N, where R°  is the length

of the vector estimating A. The successive K values must be found

by interpolation in a table giving values of II(K)/Io(K) for given Ki

a table is in Gumbel, Greenwood and Durand (1953) or Batschelet (1965).

18
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5.5 Examples. Some axial data, supplied by Dr. A. Rees of the Depart-

Sment of Oceanography, University of Southhampton, are in Table 3,,

Samples 5 and 6. The data represents axi of maximum susceptibility in

magnetization of rocks, and comes from the Franciscan rocks in Diablo

IRange in California, (Rees and Hamilton, 1965). Table 3 gives the

I estimates of the parameters (e, the polar coordinate of B, gives

the estimated inclination of A), for the samples taken separately

I and also pooled into one sample. The modified statistic A is calculated

as for three dimensions; the final right-hand side of (9) g:ves S/N,

I and S lies along R° . Tests are conducted as for three dimensions;

those for the modal vector and for K are in Stephens (19 6 2a, 1962b);

multi-sample tests are in Stephens (1969c). We willustrate only a

two-sample test with Samples 5 and 6.

Tent for a Common Modal Axis. For a test of H : the two samples have

I a common modal axis we have Z = (SI+ S2 )/N = 0.973 ; W = Q2N = 0.959.

The critical value z of Z is given in Stephens (1969c); this is a

Eligh _-nprovenent. or. &-i F-test introduced by Watson and Williams

(1956), and giv'es z = C,986 at the 5% level. Thus we reject the null

- hypothesis H at. this level.

C. OFFOSITE MODES CF UNEQUAL AMPLITUDE.

6.1 Data., with direction, from populations with modes which arp

opposiie b'it of unequal amplitude, will be treated using distributions

( :) lr (7) The vectors now have a definite sense. The estimation
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of A follows the steps as before, in sections 3 and 5; then a may be I
estimated by a , the proportion of vectors which is not reversed when

estimating A. The equations for estimating K become 3
(i N I COB a exy(K cosei)-(l-a)exp(-K cosei)( 10 ) coth -- Co s 0o e ) ( - - , i
KC N - I a e(K cose I )+-(a)exp(-K cosO )

for three dimensions; for two dimensions the left hand side of (lQ).is !
A

replaced by Il(K)/lo(K). In the right hand side one inserts a , and

follows the same iteration procedure as in section 3; the sequence for

K converges to the estimate K

Example. We illustrate this technique with some interesting data given

several years ago by Dr. E. Gould of the Johns Hopkins School of Hygiene.

The data represent directions taken by turtles after treatment; it is

thought that the turtles have a preferred direction, but some are .

confusing forwards with backwards. Thus the distribution is (7); the

actual values and the analysis are in Table 3. May (1967) has varied

the parameters to attempt to find a best fit; his best fit values are

9 = 61.5, K = 3.167, and a = 0.803. The results in Table 3 are in -

excellent agreement.

Tests and Confidence Intervals. These would follow the procedures

already described, using again the right hand side of (10) to give an

adjusted resultant S. In this example it would have length 61.83, and,

as before, lies along 0 = 63.08, the direction of B. Suppose one wished

to find a 10% confidence interval for the modal axis of (7), using
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IFigure 1 of Stephens (1962a) is used, or the approxImtions given when

Ithe data is beyond the range of the figure) here, the approxzition in

section 3-.4 applies, and gives a band for 9 with a half-width equal

1 to 7.4 degrees. The confidence interval is 55-7 < 0 < 70.5

. 7-. rFdM R§4S.

7-1 Importance of knowledge of type of data. We illustrate

this point, mentioned in section 3.1, with another two-dimensional

I sample of Bees and Hamilton (1965); the data, iO values of 0, is

from their site San Jose 9. The values are 2, 13, l4, 141, 152, 156, 166

1 356,357,358. A rough glance might suggest a von Mises samplei if so

f analyzed, the modal direction would be along 0 = 41.13; the resultant

is 3.18; K is 0.672, indicating, of course, wide dispersion. In

fact the data is axial; if diameters are drawn through the data points,

we see one end of each diameter makes a set concentrated between 260

I and 2, if the analysis of this paper is used, the modal axis is

1 3 = 551.6, A' is 9.59, S = 9.59, K = 32.10. There is a big

difference in the estimates of modal direction. A knowledgeable ex-

perimenter may of course present the data so that either analysis would

give the same result for modal directions this has happ.,iied in our data

I in Sample 1, where at the end we see that R° is found with none of the

original vectors, as given, needing to be reversed. Thus straight

Fisher-distribution techniques would have given the same resultant.

But it would have been easy to reverse a selection of the given vectors
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to produce an entirely different Fisher resultant. On the sphere,

especially, it is not easy to see, especially with widespread data,

which end should be chosen so that a Fisher analysis gives the same

resultant as the techniques of section 2; the point of these techniques

is to render such a choice unnecessary. Note that in any case, even

with the same resultant, one would obtain a different K for Fisher- J
distribution and for bi-modal analysis.

7.2 Alternate distributions. Another distribution for bimodal

or axial data has been proposed by Watson (1966); the density for e

2
is proportional to exp(X cos 0) (if the modal axis A is along

e - 0), and D is uniform as before. Use of this distribution, with

estimation as described in Watson (1966) gives the following modal axis estimates

| I. for Samples I to 4 in Table 1; Sample 1, 6 = 102.6, o = 113.6 .

Sample 2, 0 = 78.2, 0 = 111.7 ; Sample 3, e = 98.2, o = 148.4 ; Sample

4, e = 106.2, 0 = 127.9. The results are in good agreement with those

given in Table 1. Testing procedures are not yet as well developed

for this distribution as for the Fisher distribution.

In two dimensions, the corresponding density is equivalent to a

density proportional to exp(% cos 2e); thus the doubled angles have a

von Mises distribution, and analysis proceeds by doubling the angles

given, estimating the modal vector, and halving its angle. Thus for

the doubled-angle vectors, for Sample 5, R = 7.40, along e = 183.6,

so that the modal axis estimate is A , along e = 91.8 ; for Sample
A

6, R is 8.76, along 8 = 222.5, giving modal axis A along6 = 111.25.
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Direct application of voL Mises techniques rejects the hypothesis, at

the 5% level, that the samples have a common modal vector; details are

I in Stephens (1969c). These results compare well with those in Table 3.

Neither of the above distributions in two or three dimensions, is

strictly applicable to directed data with unequal modes, except that tbh

4same techniques, to estimate the modal axis, can still be employed. If

this is done with the turtle data of Sample 7, i.e. the angles are

doubled and the direction of the resultant then found ana halved, we

have the estimate of A along e 62.57.

1 7.3 Goodness-of-fit. One might wish to test the data to see if

they are well-fitted by the distributions considered. Tris is an

I important subject. and for the present only a few comments are offered

here. For both sphere and circle, a distinction must be made between

axial and bimodal directed data. When the axis A has been estimated,

it should be taken as origin for e and all coordinates traisformed.

Axial data shold be so recorded that all vectors are within 90 degrees

of A, ie. their 0-values are less than 1 radians- For the sphere,o1 2
the test is then made for a fit to distribution (5). For bimodal

directed data. (4) is used. or, with unequal modes, (5) The tects car

f be made separately for 6 and for P, using say the X2 test. A

rough measure of goodness of fi- can be found by use of the L2  and V

j goodness-of-fit statistics, but no precise tests can be madei as their

distributions depend on the fact that parameters have been estimzted.

SI milar remarks apply to the bimodal distributions on the circle. When

I 23
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the coordinates have been transformed to make = 0 lie along A,

distributions (7) or (8) are used for bimodal directed data. For axial

data, distribution (8) is used, with twice the f(e) shown and range 3
-X/2 < & < x/12.
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TABLE 1

Three-dimensional axial data: estimation procedures for Sample I

Sample 1: Coordinates e. 4 of 25 vectors: i is the vector number.

i e 0 i e 0 J. e t

-- 1 80 190 7 110 95 13 115 130 19 70 70
2 110 70 8 110 o20 14 100 140 20 80 90

3 115 70 9 i10 120 15 115 i40 2i 65 LOcX

4 i.o 8o iC 15 120 16 125 140 22 75 110

5 10 90 ! OC1 125 17 120 10 2375 110
6 105 90 12 105 i25 18 lO ii5r 24 8o 115

2 25 50 150

Estimation of modal axis Ai f'rai e3t1lmatf. urderlined.

v d::ection cosiLes R .oordinates of R Vector numbers of

1 m n e D vectors reversed

1 1 0 0 12.21 84.3 32.3 1 ; 7 to 18 :21 to 25.

0 1 0 cO 20 102.0 109.7 1

1 0 0 - i.68 4,.E -9(.9 2 to 18.

-0.329 0.92i -0.208 2, .54 i0.8 i' .2 noneI
-0.418 0.889 -o. i88 2O.r,4 ioo. 8 15.L' none

Estimationi of K.

R = 20.r54 u Yo. R 8N  -o8a%18 i 1 5.6

new R.H.S. M 1 ) 0.8201 K2 = 55

new R.H.S. M = o.8200 <3 .56 : 5.56

Ir a 1 rfa. n- ' = 54: adiisted Fishter resultant S, " 'C.50

I
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TABLE 23

Three-dimensional axial data: results for 4 samples, and pooled samples. J
Sample Resultant Size AcLustedI°" x z a 0 R°  S K

- 8.59 18.26 -3.86 100.8 115.2 20.54 20.50 5.56

2 7.29 19.05 4.o 78.6 110.9 20.81 20.79 5.95

3 16.4 - 8.11 2.95 99.0 154.2 18.84 18.64 3.92

4 -12.25 15.09 -6.03 107.2 129.1 20.35 20.26 5-28

1 & 2 -15.88 37.31 0.24 89.7 113.1 40.55 40.47 5.25

3 & 4 28.16 -24.98 8.63 77.1 518.4 58.62 38.15 4.21

26
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Two-dimensional axial and directional data:

Sample 5: Sample 6: Sample 7:

= 8 N =10 N = 76

I e e e e o e

247 90 124 8 30 48 58 65 83 95 138 257 285

267 93 323 9 34 48 58 68 88 96 153 238 319

268 104 13 38 48 61 70 88 98 153 243 545

i 271 105 15 38 48 63 73 88 100 155 244 350

272 109 14 40 50 64 7890 o103 20o4 2501 280 111 18 44 53 64 78 92 lO6 215 251

282 116 22 45 56 64 78 92 li,, 223 257

286 121 27 47 57 65 83 93 118 226 268

3 Results:

Sample Resultant Size AdjustedNo.

X Y R K

1 5 -0.23 7.84 91.7 7.85 7.85 25.87
5 -3.55 9.00 111.52 9.68 9.68 15.38

5 & 6 -3.78 16.84 102.65 17.26 17.26 12.19

7 28.39 55.91 63.o8 6 ,. 61.83 3.05

I 1&=0 .803

I

4
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