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TECHNIQUES FOR DIRECTIONAL DATA
by
M.A. Stephens
McGill University, Montreal and Stanford University
1. INTRODUCTION

1.1 In recent years techniques have been developed for dealing
with rtatistical data where the observations are directions, and where
the directions are assumed to be more or less concentrated arourd a
single mode. In three dimeusions, the distribution used to describe
such directional da%a is Fisher's {1953) distribution, and in two
dimension; it is the von Mises distribution. In this paper we extend
the techniques for these distributiors to deal with exial data, i.e.
data consisting of vectors whose direction can be in either sense, and
also for use with directed data from populations with two modes, in
opposite directions. The techniques make use of tables already prepared
for the Fisher and von Mises distributions. Examples of directed data
are; in three dimensions; directions of magnetizatioﬂ of rocks, or, in
two dimensions; directions of bird flights or of.prevailing'winds;
examples of axial data are normals to planes of cleavage of rocks, or
inclirations of <he long axis cof pebbles in till deposits.

The procedures will be given first for three dimensions, since
later on it is easy‘to adapt them for two dimensions; the rest of the
introduction deals wlth notatiorn to be used. The Fisher distribution is
described in sectior 2, its bimodal extension, assuming sxial data or

directed data with equal modal strergths; is given inr section 3; with




examples; tests of hypotheses for three-dimensional data are in section
L. For two dimensions, the von Mises distribution and its bimodal
extenslon are treated in section 5.

The adaptation of all the procedures for directed data but with
unequal modes in given in section 6. Section 7 demonstrates the impor-
tance of knowing the type of data, and deals briefly with related topics.

Examples are included throughout the paper.

1.2 "Notation. Observatiors denoting directions are recorded by unit
vectors; in three dimengions a typical vector is QFP, starting at the
center O of a sphere of radius 1 and ending at P, a point on the
surface of the sphere. Axial data could be best recorded by drawing
the entire diameter POQ say, though in three dimensions this is then
difficult, in practice, to show on the usual diagrams. Techniques for
axlal data must not depend on whether QP or 0@ 1is used to represent

an observation; . for all date, thus the vector used is called

_0_? . Let P Dbe located by the usval spherical polar coordinates 8,
[ ®; we shall regard these also as coordinates of the line OP. For

simplicity, let @ = O°

be thought of as pointing to the "north pole"
of the sphere, so that 6 = 90° 1is the equator and 6 = 180° 1is the

"south pole”.

1.3 Other Notation. In the northern hemisphere, 6 1s then the

colatitude of P, and @ = 900- A, vwhere XA 1s northern latitude,

in the southern hemisphere, 8 = 90°+ A, where XM\ 1is southern latitude;
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® 1is the longitude measured from O to 360° eastwards from ¢ = 0°.

¢ 1is called also the orientation; P is sometimes measured by orienta-
tion ¢ and dip angle ® below the equator; & corresponds to scuthern
latitude M, and @ = 9o°+x. In practical work, 6 (or &) and ¢ are
often given in degrees, as has g0 far been agsumed; in theoretical dis-
cussion, we shall assume 6, ¢ are in radians. This will not affect

the practical techniques, which use the components of the given vectors.
For these, we must introduce a set of rectangular coordinates; a natural
set has the z-axis along 6 = O, the x-axis along 6 = x/2, ¢ = O,

and the y-axis along 9 = 3/2, ® = n/2. The components of a vector

with coordinates 8, ¢ are then
x=5in6@ cos®, y=s6ln8ssind®, 2z =rcos o .

For a given sample of size N, let QP (1=1,2,...,N) %be the
i-th unit vector, and let Xy yi, zi be its components; define
X = 2x1, Y = Zyi, 2 = Ezi + These are the components of the vector sum
or resultant R of the in; it R has length R, then
R2 = X2 + Y2 + 22. When dealirg with several samples, the subscript
r will give the value for the r-th sample, e.g. Nr is the sample
size of the r-th sample, with resultant Br; N will dencte the total

sample size Nl + N2 +roct Ns’ where s 1is the number of samples.

2. [HE FISHER DISTRIBUTION FOR DIRECTED VECTORS.

2.1 Suppose the vectors oF, (1=1,2,...,N) represent directed

data, with an arrowhead at Pi'
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The Fisher distribution describes a probability density at the
point 8_, ©_  which is proportional to exp(x cos 90): mors precisely,

the density of & is

(1) £(8) = Eﬁgfﬁg—%-exp(x cog 8) , 0<@<~x,

and ¢ is independently uniformly distributed between O and 2rx.

The distribution is symmetrical around A (along 6 = O, pointing to

the north pole), and with . single mode at A; k 1is a parameter

(k > 0), which describes the concentration of the distribution. When

X 1s large the distribution is highly concentrated arocund A end
wher = O the vectors (i.:. the points P) are uniformly distributed
over the surface of the sphere. This distribution was introduced by
Fisher (1953) to describe vecicrs denoting remanent magnetization of
rocks. Statistical prmicedures were given by Fisher, and by Watson (1956),
Wateon and Willlams (1956). and Watson and Irving (1956); this work has
been developed, ana *the necessary v.ebles produced, by Stephens (1962b,
1967, 1¥69a). The techniques have begun to be used in applied work,
particularly in & geological contexh; see, for example, Andrews and
Shimizu {1966), and, for a wider discussion, with a long list of
references, Watson (1968). It will be convenient now to summarize these
procedures; in the next section they will be adapted for use with

axial or bimodal three-dimensional data.

2.2 Estimation of modal vector and concentration parameter for

the Fisher distribution. In the distribution (1) ebove, the modal
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direction A was assumed along 3 = 03 1in practice it will usually not
be known, and, with X, must be estimsted. The maximum likelihood
equations for these estvimators are based on the statistics R and X,

from & sample of N wuit vectors, already described in section 1.

(a) The estimate of A 1s the direction of R, i.e., a unit vector
a estimating A 1is a = B/R .

(b) To estimate k, solve
(2) coth ¥ - 1/k = R/N ;

if A 1is known, replace R by X 1in this equation. A table for

solving (2) is in Stephers (1967).

3.  BIMODAL BEXTENSION OF THE FISHER DISTRIBUTION

3.1 The natural extension of the Fisher distribution to cover
bimodal data is obtained by superimposing two Fisher distributions with
opposite modal vectors. If the line along ¢ = 0O and 8 = n, now
called the modal axis A, represents the direction of the two modes,

the density of 6 is then

(3) £(e) = g :iﬁhex (a exp(x cos 8)+(1-a)exp(-k cos 9)) ,

<o <

and ¢ has a uniform distribution between O and 2n as before.
The relative strength of the two modes is measured by the parameter

a, which lies between ¢ and 1. When a = 0.5, (3) becomes

g e AR T AR © e e o ot et e
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(%) £(8) = §-§T§%272~(cosh (k cos 8)), 0<B8<x.

Distribution (3) will be used to describe directed data with unequal
modes; Aistribution (4) will be used in analyzing axial data, if both
ends are recorded. In general, the modsl axis will not be known, and
must be estimated. When A 1s known, pointing, say, to the North pole,
we could choose to record axial data by one point only, in the northern

hemisphere; the density of 6 1is then

(5) £(6) = "Biig i (cosh (k cos 8)), 0<6 < /2.

In practice, a given experimenter, say collecting directions of
magnetization of rocks, will probably show a natural preference for
recording the data in one sense more often than the other, so that a

given sample of axial data, as recorded, may look like directed data

with two unequal modes or even only one mode; this can be very deceptive.

It is therefore important to know what type of data is in a given sample
in order to decide the analysis to be undertaken; one should not rely
only on the appearance of the sample. We illustrate this point in
section-T.

We now discuss two estimation problems, for distribution (4); how
t0o estimate the direction of the modal axis A, vwhen this is not known
(80 that it does not lie along 6 = 0); and how tc estimate k. The
techniques to be given will not depend on which end of a diameter is

chosen to represent an observation with no preferred sense; thus for

by GPouj ey Gumg SN IO EED N =B
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this type of data one follows the procedures using the observations
exactly as given. This is also the case for data representing directed
vectors from a population with two opposite modes of equal amplitude.

Modes of unequal amplitude (a # 0.5) are discussed in section 6.

3.2 Estimation of the Modal Axig A. Suppose a plane M 1is chosen

through 0O, characterized by its normal R » one end only of each

recorded axial diameter is theu chosen to give a directed vector, such

that all the directed vectors lie on one side of M. The resultant R
is then calculated, its value clearly depends on the choice of M f.e.
of n.- When p 1is along the modal diameter A, go that the plane M
is at right angles to A, the expected length R of R is & maximum;
and when A lies in plane M, so that n 1is at right angles to A,
the expected length R will be a minimum. This suggests that to
estimate A, we must find the plene M whkich gives a maximum R,

and this is done iteratively by the following method, which applies to

both axial and directed data.

e e emas wems wiis GIS G TR G By v e Dug w

(a) Directed data is recorded by the end P, of the vector P,
for an axial observation choose either end of the diameter to be initially
Pi' Ir the steps which follow, the direction of a sample vector will
sometimes be reversed, and P

1 always refers to the end of the vector

wnich 1s currently used to assign it a direction 9? .

() If a good estimate V, length V, of the modal vector exists,

let the components of the unit vector ¥ = !/V be 1, m, n.

s
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(¢) Suppose the sample vestor in bas components x40 ¥yr 245
for each sample vector, calculate a =y * 9?1, i.e. a= 1xi+mwi+nz1;

if a 1is negative, change the signs of Xg0 ¥y and 2y This reverses

SR Pt n AT . 1 T -
"

the original direction of Q?i and ensures that it now makes an angle

less than n/2 with V.

1P AT ey

(d) For the final set of sample vectors, calculate the resultant

™Y Wirrme—.r

(vector sum) R, length R.

- ' (e) Let r =R/R be the new v, components 1, m, n, and repeat
from step (¢). When two successive values of r are identical, stop

the procedure; let the final unit vector x be called I the line

Bicid Qg Quagd PSuiyd Y A N G

along which r = lies is the estimate of the modal axis A.

(f) If no good estimate V exists in (b) above, start as follows.

o ,L‘

Lot (1,myn) be (1,0,C) and proceed with steps (c) and (d). Repeat

- with (i,myn) = (0,1,0) and (1,m,n) = (0,0,1). OFf the three values

[ m.n‘,gs

of R 80 obtained, choose that with the largest length R as the

TS

initial V , take v = B/R and continue from step (b) above.

[ R |

3.3 Estimation of K. 1. Modal axis known. If the direction of the

' modal axis A 1s known, and lies along 8 = 0, 1t is easy to derive

1 9

! the maxipum likelihood estimating equation for «. It is

)

N
(6) cosh K - = = = Y cos 0, tanh (k cos @,) ,
Kk N 4=1 i i

’ iy

!*n&-“

where c¢os 91 is the angle between 9?1 an. the modal axis A, chosen

‘to point in either direction.

ey

2. Modal axis not known. When A 1is not known, we measure 0

R R b o T e RN

-

from the estimate of A, along go calculated in the previous seztion.
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This is analogous to replacing X by R when using equation (2) for
the Fisher distribution.

For each sample vector, only c¢os 91 is actually required, and ir
the components of r

I, are lo, mo, no, and the final components of
= +

QPi are Xy, ¥y 245 COB 91 is given by cos 91 loxi my,

Every value of cos 61

+nz,.
will be positive.

ol
Equation (6) is then solved
iteratively by the following steps. Leb Bo be the final resultant,

~0

length R°, of the sample vectors, 1l.e. r = EO/RO, and let M(k)
be the right hand side of (6) for any K.

(a) The quantity (I cos 61)/N is R°/N, say Y solve
cosh ¥k - Lk = Y to give an initial estimate «; for K. This may
be done using e.g. Table 3 in Stephens (1967); if Y 2 8, «

Y (1-Y ).

(b) Solve

1 is
cosh K - /K

M(Kl); call the solution «,-
(c) Solve cosh k - 1/k

2

M(Ke); call the solution K3 etc.,
and repeat this procedure; the sequence for K converges, and the limit
is l?, the estimate of K.

The above procedure is proved convergent as follows.

First suppose
k* 1is the solution of (6). Since tamh x < 1, M(Kl) <Y, ; and since
cosh K - 1/k 1is monotonic in «,

Ky < Ky - But tanh x 1is monotonic
in x, so M(Ke) < M(Kl); 80 by repetition of the argument, Ky < Ky
Similarly K, < Ky etc. Also Y > M(k*), so0 Ky > k%, then
M(;cl) > M(k¥), and so Ky > K*

¢ similarly «
Thus the sequence of solutions K

1 > x* for all 1.
i

is decreasing, bounded below by
k*, and so converges. But cosh Kn'-l/Kn = M(Kn l)’ and if we take the
limit, as

n » o, on both sides, we have the limiting value of «

:K*.
9
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As will be seen in the examples which now follow, the technlque

converges very rapidly for x-values of 5 or more.

3.4 Examples. The data are from measurements of inclination of
t111 deposits, kindly made available by Dr. C. King of the Department
of Geography, University of Nottingham, England; there are 4 samples each
of 2 observations, measured to the nearest 5 degrees. The effect of the
precision of measurement is not considered in this paper. Table 1 gives
the data and the steps in the estimation procedures, for Sample 1. The
table is divided into several parts:

(a) The 25 values of 6, ® are listed first, in degrees. The
degree symbol is omitted.

(b) Estimation of R°. Unit vectors along the x, y, and z axes

are taken as starting values of v, assuming no initial approximation
known for the modal axis; the resultant, length is given, together with
its coordinates 6, ¢, and in the last column are listed those vectors
which must be reversed from the original given direction to lie at an
angle less than 90 with the current v.

(c) The largest R obtaised from (b) is 20.20, with vector
No. 1 reversed, this R. reduced to unit length, becomes the next ¥y
with direction cosines 1 = -0.329, m = 0.9211, r = =-0.208. Now vector
No. 1 is returned to its original sense (thus all the vectors, as given,
are within 9C of the current 1) and the new R = 20.54; or using this
to make the new Y. we get no charge in R, s¢ that this is the final
resultant, Bo; its direction cosines are - 0.418, 0.889, - 0.188,

o

and its coordinates are 6 = 100.8, ¢ = 115.2. Since it is the R for

sample 1, 1t is designatved Ri .

10
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(d) Estimation of x. The first estimate of «x, derived from

Ri = 20.54, 1s Ky = 5.61. The successive estimates converge rapidly

to & =5.56.

Table 2 gives the final results for Samples 2, 3 and 4, for Samples 1

and 2 taken together as one sample of 50 observations, and for Samples

3 and 4 taken together. X, Y, Z, are the components of Bo; 6, ¢ are
its coordinates in degrees. Thus X = R° sin 6 cos ¢, Y = Rosin 8 sin @,
Z = Rocos ©. The techniques converge very rapidly for these values of

X. Even for Sample 3, only 3 iterations are needed to obtain ; = 3.92.

L. TESTS OF HYPOTHESES.

k.1 We now consider tests for bimodnl data. The tests to be
propoged are devised to make use of methods and ts=bles already prepared
for the Fisher distributions; these may be briefly sumarized as follows.

For theFisher distribution, one-sample tests of hypotheses concer-
ning A or Kk are based on R and on X (Stephens, 1962, 1967). For
the important test that s different samples have the same modal vector
A, a test is based on the conditional distribution of RI+RE+---+Rs 3
given R; R 1is the length of R. the overall resultant of all the s

samples. The tables for this test are in Stephens (1969).

k.2 Possible test statistics for the Bimodal Distribution: R0 and S.

For the bimodal distribution, when A 1is not known, it would be
natural to base tests on the distribution of Ro; when A 1is known,

possible test statistics could be the component of 50 on A, or the

11

oo




sun C of the components on A of all the given vectors, each one

pointing so that its component is positive. (Note that these two
statistics are not necessarily the same.) Unfortunately, even the
distribution of Ro is not known: and we consider an alternative
ptatistic. Suppose, for a given sample of size N, we have found the
estimates 2 and E by the above methods; we then ask for the resul-
tant vector g which would have given the same estimates, of modal

vector A and of K, on tke assumptiri it is the resultant of a

Figher-distributed sampl: of the sawc size. Clearly § will lie along
o

s and its length is easily found from the calculations leading to

for the bimodal sample. Congider, for example, Sample 1. Tke final

A» Xy o

is 5.56, obtained by solving coth k - 1l/k = 0.8200; comparison with
equation (2) for the Fisher distributlion shows that 0.8200 must be the
value of S/N; so that S = 0.8200 x 25 = 20.50. We call S the
adjusted resulitant of the bimodal sample; note that it might poirt along
elther direction of the estimated modal axis; according to the final
direction taken by °. 1n effect we have imagined constructing a
Fisher sample from the original data, with same N, K, and modal vector
(based or our estimates), and § would then be its resultaat. The
values of S are included in Tablz 2. £inc= we have tests and tables
available for tkhea Fisher distribution, based or tke Fisher resultant

R, we could now, as aa approximate procedure for the timodal distribu-

tion, use the same tests, with the &l Jjuws' 2@ resultent § replacing R.

4.2 One sarple tests. This procedure will first be fllustrated

with one-sample tests on Sample 1.

ey
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Test, for the modal axis A  Suppose the null hypothesis is Ho: A

for Sample 1, is along A, & =90, 1.e. the y-axis. The appropriate

Fisher distribution test is based on the condiiional distribution of

R given the component C or the hypothesized modal vector; if R 1is

too large; HO is rejecced. Here, the value of S§ 1s 20.50; it

lies along the direction of Bo, and its component C is then 18.22.
The test, for @ = 0.05, uses Figure 2 of Stephens (1962), or approxima-
tions which accompany .t for tke case when the component, called X in
the Figure, is beyord the range given. In this case, the approximation

ir section 3.5 applies; the critical value of 35, say So’ will be

5,°C F h8(a)
NS = S ; szka(a) 15 the usual F-distribution,

calculated from

kere with 2 ard U8 degress of frzedom, at the level . For & = C.CS,
we get S = 19.016. Since S is greater than Sy H, 1is rejected

at tke 5% level.

o C s o -
Use of R . For reasonabiy large Kk, R very nearly equals g, as

Lere, and thke test could be made using §° ; the componert C is now
18.2€ (the Y compcrent of 50, from Table 2) and the critical value
for R° would tker be 19.051. E, would again bc rejected. Ir the

next test, for «k, 7replacemert of S by Ro al:zo doec not change the

sesult of the test.

Test, for k. Consider a 5% test of H: the true « of Sample 1 is

4.5. The test for the Fisher distribution is given in Stephens {1969);

it uses the value of R/N, and a table of the critical values is given.

For N =25, k = 4.5, +the upper 5% critical value is 0.854. If for




s

Sample 1, we use R & tcst statistic, the value of RO/N = 0.822;

this is not sigr.ificavt,. 80 H0 is not rejected, for a one-tall

(or two-tail) test. Simtlarly} C'N = 0.820 and use of S would give

the same resuls.

.4 Tests for rzveral samples. Notation.
{ ’ !

T.2t the r-u» sa;nple have clze ilr, uwed let B:_ be the resultant
as calculated above, and '§r. theAa.dJus‘ ed resultant, with length R‘:_,

sr'. ag before, N = Nl+ l‘l2 el 'N_ , where s is the number of samples.

L

. . o
We can combine the resultants Br or -§r’ or the samples themselves,

»
i i

in several ways:

(a) Firstly, guppose .be resnltants of the individual samples

3, K, 1, m, say, are so aligne: that they give the maximum length

O 0
s

a
to the vector sum R, ' R+ B, * K ; we shall describe them as vell-

aligned. (Recall that any cal .ulated ,13,2 is ambiguous in direction

and may be reversed as desired.) For well-aligned vectors, this vector

Q . 0
sum will be called Bjkl.m ; 1ts length is Rjklm .

(v) Secondly, samples J, k. 1, m, may all be pooled into one

sample, and the procedure above follewed 1o calculate FtO for the

overall sample; we shall use the notation Bjklm fcr the resultant

of pooled samples. It will not necessarily be the vage that ngm

will be equal to P y a vector may poiat one way in sample Jj, say,

Jklm

in calculating 53, and be reversed in calculating the pooled sample

resultant.

1k




This car easily be checked by reference to the individual cohponenté;
the final X component of +he pooled sample will equal the sum of the .
individual X compornerts if the vector sum equals the pooled resuitant,
and similarly for the Y and Z componeats. .As an illustration; -
consider Table 2. Samples 3 and U4; even whan EZ is reversed, to make
tne X values of 3 and 4 toth positive, their sum is not tke X value

o
of Samples 3 ard 4 poolsd *ogether; we can see that the X of 55u

1s 28.99 (16.74 + 12.25), wnile that of 2;& 15 28.16. 1n this case

there occurs one vector in Sample 3 which changes direction in the

overall poolad sample: 14 Is at approximately 89.3 degrees to 5;

o
and al 103.4 degrees to Ez)- 1n swch clrcumstances ng will always

o

o .0 o o _ ) .
be greater than Rjk . B}u has lzngih R}h = 38.20 ard kjh kas

lengtt P:h = 38 2. For more tlLan two samples the disparity may be

greatver. In a similar way w>» can define §Jklm = §J-+§k1-§lf-§m
vhen the 8§ vectors are well-aligred: {7s length is § It will

jklm®

rot, necessarily be the same as the value of S for the pooled samples

:: Ky 1, and m; we ghall call ihis > lengtk @

8:kin klm

L.& Test Statistics. Tests for several samples might be based

on R or 8 sta*fstics- and or vector sums or pooled values. We
cehall suggest ucing S-staglistics. since the appropriate rables to be
used are based on Fisler dis*tributiorns, ard pooled resultant §
valuas: . rath-r tra:: 3, . ince thess e :

alu (QJklm hjklm)_ s = are easily obtained
from the computatioral prozedure dascribed gbov=. when the samples are

paoled iwte cre. Berderline decisions will in any cass te treated

T ey
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with reserve owing to the approximate nature of the tests. We now

1llustrate several multi-sample test procedures.

Test for a Common Modal Axis. A test for Ho: that s samples with
the same unknown &, have a common modal axis, will be »ased on the
+ sen . :
arithmetic sum Sl+ 82 + Ss glven le. ..s Suppose we test this
hypothesis, at the 5% level for samples 1 and 2. S, = 20.50, §

2
and Q, = Lo.47. The test follows the procedure in Stephens (1969).

= 20.78,

The steps are as follows:

(a) Calculate W le/N=0.810.

(b) Calculate 2 (Sl+82)/N=0.826.

(¢) Use section 2 of Stephens (1969) to f ind the critical value
z for N =50, W=0.810, and @ = 0.05 ; using the F-approximation
there given, we find =z = 0.821.

(a) Since 2 exceeds 2, reject H &t the 5% level. 2 1is

in fact just significant at the 2.9 level (critical value z = 0.824).

The vector sum §,, = §, +§, has length S , = 40.49; cbviously
replacement of Ql2 by S12 gives the same result for the test.
If one uses the R statistics, the pooled resultant P12 = RJ.2’ The
steps (a) and (b) give W = 0.811 and 2= 0.827. Again 2 1is just
significant at the 2.% level; the critical values g0 up very slightly
with the slight increase in W, but s0 also does Z. The example
illustrates again that for reasonably large x, the S and R statis-
tics will give the same results. This is especially so in the tcats of

& conditional nature: these for the modal axls for one sample, and those

for a common wodal axis for several samples.
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5. THE VON MISES DISTRIBUTION AND BIMODAL EXTENSION.

5.1 The distribution analogous to Fisher's, for use in two dimen-
sions, is the von Miges distribution; if 6 1s the polar cocrdinate of

P, or equivalently of OF, ‘the density is

1
f£(6 = eprCOBe <0< 1xn
( ) enl z‘(; ( ) -

with modal direction A along 6 = O and & measuring concentration

as before. Treatment of this distribution is in Gumbel, Greenwood and

Durand (195%) and Watson and Williams (1956); tests are in Stephens

(1962a, 1969b); Batschelet (1965) gives a good account of the statistical

procedures and a bibliography of applications, and May (1967) shows

how the procedures may be applied to practical situations. Again
estimation and testing procedures are based on the sample resultant R
i and on X, ts component along A, known or hypothesized. The direc-

tion of R estimates A when this is not known; K 1is estimated from

~

Il(K)/Io(K) = R/N; when A is known, X replaces R. IO(K), I,(x)

are the usual ilmaginary Bessel functions of order zero and one.

5.2 The Bimodal Extension. The extension of the von Mises distri-

bution for bimodal data gives density

(

-
Ly

1
= +]1- - .
£(8) —mo 7 (s exp(k cos 8)+{1-a)exp(«x cos8)) , 1<8< 7,

when a = 0.9, this becomes

TR
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(8) | r(8) = -2-&—(3 cosh(x cos @) ,

(o)

|
with & modal diameter A along 6 =0 or =x. l
9 =6 or 6°+ ® , cos 6 ir replaced by cos(e-eo) in (7) or (8).

For distribution (8), used for axial data or directed data with '
opposite modes of equal amplitude, the technique for estimating A I
from a sample of size N 1ig similar to that in section 3 for three
dimengions. A sultable set of rectangular coordinates puts the x-axis

along 8 = 0 (now no longer known to be the modal diameter ﬁ), 80

that x = cog 8, y=s8in 6 .

5.3 Estimation of R. Then, with suitable initial unit vector v,

components 1, m, A

~

to (e) of section 3.2 with the obvious change to two dimensions. 1If

no good estimate of A exists, we follaw (f), starting now with .-

(1,m) = (1,0) and then (0,1).

5.4 Egtimation of k. The equation for estimating k is now

is estimated iteratively by following steps (c)

it I

<8<,

If A lies along

N
(9) Il(K)/Io(K) = % iZlcc:ts eitanh(K cos ei)

and this is solved iteratively exactly as in section 3.3, steps (a)

to (c); the initial right hand side is /N, where R° 1is the length

of the vector estimating A. The successive Kk values must be found
by interpolation in a table glving values of Il(x)/ I O(K) for given «; e

a table 1s in Gumbel, Greenwood and Durand (1953) or Batschelet (1965). v
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5.5 Examples. Some axial data, supplied by Dr. A. Rees of the Depart-
ment of Oceanography, University of Southhampton, arein Table 3,
Samples 5 and 6. The date represents axis of maximum susceptibility in
magnetization of rccks, and comes from the Franciscan rocks in Diablo
Range in California, (Rees and Hamilton, 1965). Table 3 gives the
estimates of the parameters (6, the polar coordinate of [, gives
the estimated inclination of g), for the samples taken geparately
and also pooled into one sample. The modified statistic § 1s calculated
as for three dimensions; the final right-hand side of (9) gives s/ N,
and S lies along Ro. Tests are conducted as for three dimensions;
those for the modal vector and for k are in Stephens (1962a, 1962b);
multi-sample tests are in Stephens (1969c). We willustrate only a

two-sample test with Samples 5 and 6.

Tent for a Common Modal Axis. For a test of Ho: the two sampies have

a common modal axis we have Z = (S;+8,)/N = 0.973 ; W = Q, /N = 0.959.
The critical value 2z of 2 1is given in Stephens (1959c); this is a
plighs rmprovement on an F-test introduced by Watson and Williams
(1956}; and gives z = C.986 at the 5% level. Thus we reject the null

rypothesis HO a*. thisg level.

€. COFPGSITE MCDES ©F UNEQUAL AMPLITUDE.

f.1 Data, with directicn, from populations with modes which are
opposite but of unequal amplittide, will be treated using distributions

(3) »r (7). The vectors now have a definite sense. The estimation
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of A follows the steps as before, in sections 3 and 5; then. a may be

. estimated by a , the proportion of vectors which is not reversed when

estimating A. The equations for estimating & become

. a exp(K coaei)-(l-a)exp(-K °°§€1)
=X Z cos 8

(10) coth k- £ 1 a exp(K coséz)+(i;§7€xp('x cosé, )

B

for three dimensions; for two dimensions the left hand side of (10). ie
vreplaced by Il(K)/IO(K). In the right hand side one inserts a , and
follows the same iteration procedure as in section 3; the sequence for

K converges to the estimate K .

Example. We illustrate this technique with some interesting data given
several years ago by Dr. E. Gould of the Johns Hopkins School of Hygiene.
The data represent directions taken by turtles after treatment; it is
thought that the turtles have a preferresd direction, but some are
confusing forwards with Lackwards. Thus the distribution 1is (7); the
actual values and the analysis are in Table 3. May (1967) has varied
the parameters to attempt to find a best fit; his best fit valﬁes are

9 = 61.5, Kk = 3.167, and a = 0.805. The results in Table 3 are in

excellent agreement.

Tests and Confidence Intervals. These would follow the procedures

already described, using again the right hand side of (10) to give an
adjusted resultant §S. In this example it would have length 61.83, and,
as before, lies along 6 = 53.08, the direction of R- Suppose one wished

to find a 10% confidence interval for the modal axis of (7), using S
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Figure 1 of Stephens (1962a) 1s used, or the approximations given vhen
the data is beyond the range of the figure; here, the approximation in
section 3.4 applies, and gives a band for 8 witp a half-width equal

to 7.-’0 degrees. The confidence interval is 55.7 <8 < T0.5 .

7. FURTHER REMARKS.

7.1 Importance of kmowledge of type of data. We i_llustrate

this point, mentioned in sectiom 3.1, with another two-dimensional

sample of Rees and Hamilton (1965); the data, 10 values of 8, 1is

from their site San Jose 9. The values are 2, 13, 1k, 141, 152, 156, 166

256,357,358. A rough glance might suggest a ;ron_ Mises sample; if so
analyzed, the modal direction would be along ¢ = 41.13; the resultant
is 3.18; x 1s 0.672, indicating, of course, wide dispersion. In
fact the data is axial; if diameters are drawn through the data points,
we see one end of each diameter makes a set concentrated between 260
and 20, if the analysis of this paper ic used, the modal axis is
3=7351.6, B is 6.59, S =9.59, & = 12.10. There is & big
difference in the estimates of modal direction. A knowledgeable ex-
perimenter may of course present the data so that either analysis would

give the same result for modal direction; this has happuned in our data

in Sample 1, where at the end we see that Ro is found with none of the

original vectors, as given, needing to be reversed. Thus straight
Fisher-distribution techniques would have given the same resultant.

But it would have been easy to reverse a selection of the given vectors
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to produce an entirely different Fisher resultant. On the sphere,
especially, it is not easy to see, especlally with widespread data,
which end should be chosen so that a Fisher analysis glves the same
resultant as the techniques of section 2; the point of these techniques
is to render such a choice unnecessary. Note that in any case, even
with the same resultant, one would obtain a different « for Fisher-

distribution and for bi-modal analysis.

7.2 Alternate distributions. Another distribution for bimodal
or axial data has been proposed by Watson (1966); the density for 6
is proportional to exp(X coaze) (if the modal axis A 1is along
9 =0), and ¢ 1is uniform as before. Use of this distribution, with.

estimation as Gescribed in Watson (1966) gives the following modal axis estimates

for Samples 1 to 4 in Table 1; Sample 1, 6 102.6, ¢ = 113.6;

98.2, ¢ = 148.4 ; Sample

Sample 2, 6 = 78.2, ® = 111.7 ; Sample 3, 6
4, § = 106.2, © = 127.9. The results are in good agreement with those
given in Table 1. Testing procedures are not yet as well developed
for this distribution as for the Fisher distribution.

In two dimensions, the corresponding density is equivalent to a
density proportional to exp(: cos 26); thus the doubled angles have &a
von Mises distribution, and analysis proceeds by doubling the angles
given, estimating the modal vector, and halving its angle. Thus for
the doubled-angle vectors, for Sample 5, R = 7.40, along @ = 183.6,
g0 that the modal axis estimate is A , along 6 = 91.8 ; for Sample

~

o
6, R is 8.76, along 6 = 222.5, giving modal axis A along & = 111.25.
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Direct application of vor. Mises techniques rejects the hypothesis, at
the 5% level, that the samples have a common modal vector; details are
ir Stephens (1969c). These results compare well with those in Table 3.
Neither of the above distributions in two or three dimens.ons, is
strictly applicable to directed data with unequal modes, except that tbe
same techniques, to estimate the modal axis, canstill be employed. If
this is done with tke turtle data of Sample 7, i.e. the angles are
doubled and the direction of the resultant then found ana healved, we

have tre estimate of A along 6 = 62.57.

7.3 Goodness-of-fit. One might wigh to test the data to see if

they are well-fitted by the distributions considered. Tris is an
important subject and for the present only a few comments are offered
here. For bothk sphere and circle, a distinction must be made between
axial and timodal directed data. When the axis A hLas been estimated,
it, should be taken as origin for 6 and all coordinates traasformed.
Axial data sho.ld te 50 record=d that all vectors are within 90 degrees
of _5, i.e. trelr O-values are less than % radians. For tke sphere,
tke test is then made for a fi* to distribution (5).  For bimodal
directed deta. (4) is used. or, with unequal modes, (3) The tects can
te made separately for 6 and for ¢, using say the X test. A
rough measure of goodness of fi: can be found by use of the U2 aad V
goodness-of -f1t statistics,; but no precise tests can be madey as their

istrivut.ions depend or the fact that parameters have teen estimated.

S.milar remarks apply to the bimodal distributions on the circle. Wren
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~
the coordinates heve been transformed to make 6 = O 1lie along 4,

distributions (7) or (8) are used for bimodal directed data. For axial
data, distribution (8) is used, with twice the f{6) shown and range

-xf2 <6< xf2 .
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TABLE 1

Tkree-dimensional axial data: estimation procedures for Sample 1

K]
Sample 1: Coordinates 6. & of 25 vectors: 1 1is the vector number.
, i 8 o 1 6 ) i 9 o i 6 ¢
Y
- 1 80 190 1 116 95 13 115 130 19 70 70
, 2 110 70 8 110 20 4+ 100 140 20 8 90
; 3 115 70 9 1i0 120 15 115 140 21 6% Lo
4y 120 80 1c 0% 2120 1£ 128 140 22 75 1w
5 100 9o 11106 135 17 120 1i%0 2 75 110
6 105 90 12 105 125 i8 110 115 24 B0 115
3 25 50 150

Estimatior of modal axis A; firal estimatc urderlined.

.
y direction cosines R coordinates of R| Vector numbkers of
1 m n e [+ vectors reversed
i 1 0 o) 1r.2 84.3 322.3 1; 7to 18 ; 21 to 25.
o] i 9] 0.0 c2.0  109.7 1
i 0 0 Al il.h8 k.5 29€.9 2 o 18.
" -0.329 0.321 -0.208 | 2.5k | 100.8 11%.2 rone
3 -0.418 ©.889 -0.i38 | 20.54 | 108 1i5.0 pone
Esi.imation of < -
R® = 20.5k R .O/N = 08218 Ky o= 5ot
prew R.H.S. M(<1) = 0,8201 K,y = .56
rew R.H.S. M(x, ) = 0.8200 = 5.56 : £ =5.56
vrae firal resulvart R? = 20.54; adrusted Fisher resultant 8. = 20.50

l
l
|
i
{




Three-dimensional axial data: results for 4 samples, and pooled samples.

!
i
|
I

Sample Resultant Size | Adjusted
X v 2 8 o R° s P
1 - 8.59 18.26 -3.86 100.8 115.2 | 20.54 | 20.50 |5.56 >
2 -17.29 19.05 4.0 78.6 110.9 | 20.81 | 20.79 |5.95 -
3 6.7 -8.11 2.95 99.0 154.2 | 18.84 18.64 3.92 -

L -12.25 15.09 -6.03 107.2 129.1 | 20.35 | 20.26 |5.28 i

l1&2 -15.88 37.31 0.24 89.7 113.1 4o .55 LO .47 5.25
3 &4 28.16 -24.98 8.65 77.1 318.4 | 38.62 | 38.15 b.21 ..
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Two-dimensional axial and directional data:

TABLE

L ranealli il

Sample 5: | Sample 6: [ Sample T: %
XN = N =10 N=76 ;
] ] 8 2] ] ] e é
247 90 124 830 | 4858 | 65 83 95 138 | 237 285
267 93 323 934 | 4B 58| 68 88 96 153 | 238 319
268 104 13 38 | W8 61| 70 88 98 153 | 243 3453
271 105 13 38 | 48 63| 73 88 | 100 155 | 24k 350
272 109 14 40 | 50 64| 78 %0 | 103 204 | 250
280 111 18 4k | 5364 7892 ] 106 215 | 251
282 116 22 45 1 56 64| T892 | 11y 223 | 257
286 121 27 47 | 5765 83 93 | 118 226 | 268
Results:
S;g?le Resultant Size Adjusted
X Y 8 r° K
5 -0.2% | 7.84 91.7 7.85 7.85 |25.87
5 -3.55 9.00 | 111.52 9.68 9.68 |15.38
5 & 6 -3.78 | 16.84 | 102.65 17.26 17.26 | 12.19
7 28.39 | 55.91 | 63.08 | 62.J1| 61.83 | 3.05
a=0.803
27
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