
RADC-TR-69-313, Volume I
Final Technical Report
September 1969

A HANDBOOK ON FILE STRUCTURING

Applied Data Research, Incorporated

This document has been approved
for public release and sale; its
distribution is unlimited.

R epr o, c, d b, t.

CLEARINGHOUSE

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Bose, New York

A HANDBOOK ON FILE STRUCTURING

Robert M. Shapiro
Harry Saint

Roberk T. Millstein
Anatol W. Holt

Stephen Warshall
Louis Sempliner

Applied Data Research, Incorporated

This document has been approved
for public release and sale; its
distribution is unlimited.

FOREWORD

This final technical report was prepared by Messrs.

R. M. Shapiro, Harry Saint, R. E. Millstein, A. W. Holt,

S. Warshall and L. Sempliner of Applied Data Research, Inc.,

Corporate Research Center, 450 Seventh Avenue, New York,

N.Y. 10001, under Contract F30602-69-C-0034, Project 4594.

Contractor's report number is CA-6908-2331.

The Rome Air Development Center project engineer was

Miss Patricia Langendorf (EMIDD).

This report consists of two volumes:

Volume I: A Handbook on File Structuring

Volume II: The Represenzation of Algorithms

This technical report has been reviewed by the

Office of Information (EMLS) and is releasable to the

Clearinghouse for Federal Scientific and Technical

Information.

This technical report has been reviewed and is

approved:

Appreved: C

Project Lngineer

Approved:
i. -. STOLL, Colonel, L3,1 F

Caief, Intelligence and Recon jivision

FRTECOMMANDER./`\

iRVING2J GABELMAN

Chief, ns Office

If

ABSTRACT

This report makes an initial attempt at presenting a

coherent approach to the design and analysis of file

structures. The relative efficiency of different file

implementations is discussed as a function of usage

statistics. The fundamental differences between item

and descriptor-organized files are discussed in terms

of input-output requirements. The report concludes

with a discussion of batching, buffering and con-

currency.

Page

III. Part-Part Matching 9
IV. Fundamental Restrictions Implicit in

Conventional Representational Forms . 16

V. Partial Ordering 23

VI. Variable-Names and Data Dependency
Relations 31

VII. The Translation of Conventional Algorithms
into Cyclic Partial Orderings 47

VIII. An Example of the Translation Procedure 60

IX. Pipelining 66

X. Control and Merges 70

XI. Proposed Extensions of the Representational
Form 77

XII. Implications for Hardware Design 79

APPENDIX I. Petri Nets -

APPENDIX II. Warshall's Algorithm -

iv

TABLE OF CONTENTS

VOLUME I: A HANDBOOK ON FILE STRUCTURING

Page

Introduction 1

I. A Model of Cross-Indexing 7

II. Feature Cards 10

III. Edge-Notched Cards 13

IV. Indirect Coding 16

V. Superimposed Coding 24

VI. Combined Coding Techniques 29

VII. Is Retrieval Time a Linear Function of the
Size of the Data Base? 30

VIII. The Volume of Cross-Indexing
Information 32

IX. A Fundamental Difference between Item- and
Descriptor-Organized Files 34

X. A Second Fundamental Difference between Item-
and Descriptor-Organized Files 36

XI. Formulae for the Volume of Bits Transactedwith 38

XII. Some Comments on the Volumetric Formulae . . 40

XIII. Computer Implementation of the Cross-
Indexing Operation 41

XIV. Computer-Implemented Inverted File
Organization 42

XV. Computer-Implemented Item-Sequenced File
Organization 45

XVI. The Use of Indirect and :3uperimposed Coding
in Computer Implementations; 48

XVIT. PDQ (Program for Descriptor Query) 49

XVIII. Batching or Buffering 53

ii

Page

XIX. Batching Queries and Updates 54

XX. An Important Asymmetry from the User's
Point of View 56

XXI. An Alternative Method of Representing Lists
in Inverted File Organizations. 57

XXII. An Analogous Alternative for Item-Sequenced
File Organizations60

XXIII. A Comparison of Three Organizations for
Indexing 62

XXIV. A New Method for Performing List
Intersections 69

XXV. Data Compression -- Another Encodement for
Inverted Lists 76

XXVI. A Grammar for Defining Graph Representations

of File Structures 79

XXVII. A Critique of Balanced Trees 98

XXVTIII. Hashing and Secondary Storage 110

XXIX. Net Models -- Some Elementary Constructs . 133

XXX. A Model of Buffering 137

XXXI. A Model of Double Buffering 139

XXXII. Pipelined and Serial Phased Systems . . 142

XXXIII. A Model of a Hardware Device -- The NCR
CRAM Unit 148

XXXIV. A Highly Concurrent Net Model of the
Cross-Indexing Grid 153

APPENDIX I. Petri Nets I-1

BIBLIOGRAPHY B-

VOLUME II: THE REPRESENTATION OF ALGORITHMS
(separate book)

I. Introduction 1

II. Conventional Algorithmic Representations . . . 1

iii

.$N1 1.

INTRODUCTION

In this report we make an initial attempt at presenting

a coherent approach to the design and analysis of file

structures. The work incorporates concepts and techniques

developed under Contract AF30(602)-3324 and AF30(602)-4211

and previously described in:

(1) Information System Theory Project: Volume 1,
):-Theory. Anatol W. Holt, et al. November
1965. AD 626-819.

(2) Information System Theory Project, The Nature
of FFS: An Experiment in))-Theoretic Analysis.
The Staff of Project ISTP. March 1966.

(3, Information System Theory Project, Final Report.
Anatol W. Holt, et al. September 1968.
AD 676-972.

File design at present is a primitive art. Starting with

an inadequate definition of the problem, the designer

attempts to find an economical representation of the

problem on some computing complex, The relative efficiency

of different file implementatiorzs depends critically upon

usage statistics, so that in the course of mapping the

problem into the computing milieu, all the usage statistics

are in effect assigned values by virtue of the implementation.

These implicit and accidental assignments are rarely, if ever,

stated. The implemented system levies a cost penalty on all

deviations from the implicit statistics. The system rarely

2.

has any capability for collecting the actual statistics

in the course of being used; it generally has no facility

for adjusting itself to significant deviations.

In document retrieval systems the objective should be to

perform all of the functions required by the system,

including storage, update, and retrieval, with minimum

cost. No meaningful measure of cost can be generated

without taking into consideration the frequency of occurrence

of each of the functions and the way in which the computing

milieu performs these functions. A knowledge of which

statistics about the application are worth collecting, and

of •vhich characteristics of the representation on the

computing milieu are particularly critical or sensitive to

the statistics, makes it possible to design a 'system

generator' which produces an initial system tailored to

what is known ab initio and adaptive in respect to what

can be discovered ex post facto.

Consider a system, consisting of the following four sub-

systems•:

1. A file of documents with each document uniquely

named. The functions in this subsystem include:

- retrieval (input a document name; output a

copy of the document);

- add (input a document; output a document name);

F3.2

- delete (input a document name; optionally

output a copy of the document; and in any case

prevent the execution of any function which has

the document name as an input until the execution

of an add function with the document name as

output);

- update (input a document name and a set of

revisions; output a document name).

2. A file of descriptors. The functions in this

subsystem include:

- entry (input a descriptor; if not previously

encountered make up an internal representation;

output internal representation);

- query (input a descriptor; output internal

representation).

3. A file of descriptor-document relations. The

functions in this subsystem include:

- query (input a descriptor Tinternal representation];

output a set of document names [all of those

documents to which this descriptor applies]).

4. User/control subsystem. The functions in this

subsystem include:

- store (input a document with descriptors for

that document; output a completion signal);

- retrieve (input a list of descriptors combined

by and and or logic; output copies of those

-- --- -

4.

documents which satisfy the retrieval specification).

The focal point of our study will be the organization and

utilization of Subsystem 3, the file of Oescriptor-document

relations. We start with an abstract model :f cross-

indexinm (sometimes referred to as coordinate indexing).

Feature ard files and edge-notched card files are discussed

in relation to this abstraction. Indirect and superimposed

coding techniques are explained in this context, and their

efficiency is related to usage statistics and hardware

characteristics. We then evolve a theoretical measure of

the input-output requirements of Subsystem 3, V'1ich we

characterize as the volume of cross-indexing information.

The fundamental ditferences between item- and descriptor-

organized files are discussed in terms of this measure.

Formulae are derived for calculating the average volume

transacted with, as a function of usage statistics and

technique of file organization.

The rer'-:rt then translates the previously developed concepts

into the context of computer implementation. A concrete

example of the application of the volumetric formulae is

provided by a study of PDQ, an information retrieval system

operational on IBM System 360 hardware. The effects of

batching (a usage statistic) on the formulae are examined.

This leads to an important asymmetry from the user's point

5.

of view and suggests a particular design for cross-

indexing in an interactive hardware/software milieu. We

trien present some alternative representational techniques

applicable in the computer context. This permits us to

derive formula3 analogous to the volumetric formulae

presented previously and applicable to the three commonly

found organizations for cross-indexing files: item-

sequenced, inverted, and list-structured files.

We then discuss the problem of performing list intersection,

a calculation which is of critical importance in inverted-

list file organizations. A new technique for this operation

is developed and compared with several existing techniques.

Another adaptively applicable representation of inverted

lists is discussed. Next, a method for defining graph

representations of file structures is presented. The

methodology of the report is then applied in a critique

of 'balanced trees', a component of the Multilist system.

An alternative 'decoding' technique is presented, and use

of secondary storage is discussed.

We conclude with a discussion of batching, buffering, and

concurrency, exp31icated b2, the use of Petri Net models.

Both hardware and software models are constructed, including

the National Cash Register CPAM card random access memory

device and a :iighly concurrent version of the abstract

6.

cross-indexing model presented in the first section of

the report.

I
7.

I. A Model of Cross-Indexing

We will use as the basis for our discussion the model of

cross-indexing in Figure I-1. This model consists of a

grid representing a file of item-descriptor relations.

The horizontal lines (rows) are labelled Ill I2,...,m 1 ;

they correspond uniquely to the items (i.e., documents,

records, etc.) currently in the system. The vertical

lines (columns) are labelled dl, d2,...,dn ; they

correspond uniquely to the descriptors. Each descriptor

applies to some subset of the items in the file, and some

subset of the descriptors applies to each item. These

relations are represented in the model by circled inter-

sections: each intersection in the grid is either circled

or uncircled; a given intersection j,k is circled if and

only if descriptor d. applies to item Ik *
J

A query or retrieval request consists of a list of

descriptors: the response to such a query consists of a

list of all items to which all descriptors in the query

apply. Thus, in terms of the grid model, a query consists

in the selection of some subset Q of the set of all d's.

The response consists in a readout of the members of some

subset R of the set of all I's. Any given item ir is

a member of R if and only if, for all q such that d

is a member of Q , q,r is circled.

9o

8.

The operations in this system required for processing

queries and updating the file will include: descriptor

selection, response readout, circling of intersections,

uncircling of intersections, addition of (horizontal and/or

vertical) lines, and deletion of (horizontal and/or vertical)

lines. We will use this model as a frame of reference for

the examination and comparison of various extant indexing

techniques. We will begin by considering feature (peekaboo)

cards and edge-notched cards, which represent relatively

straightforward implementations of two basic types of

file organization.

Ii I Il

9.

Figure I-1

m
I I1 1 I l l l

m-1 '-I

- I l

2 3- - - n n
SII I----4-.

--- t1 --- ,

-------- --

3-------"-
2---- ,t_ --

1- - --- 1-

1 23 4 n-i n

f

10.

II. Feature Cards

A file of item-descriptor relations may be implemented as

a deck of feature cards. In the most straightforward

implementation, each card in the deck corresponds uniquely

to one descriptor. Each card contains a grid-like array

of card-positions, each of which is either punched out

or not. (Figure II-1 shows a feature card with 409

positions; they have been numbered from left to right and

from top to bottom so that each position is uniquely named.)

Each item in the file is assigned a unique card-position

-- the same one on every card in the deck. (Thus we could

assign item Ik card position k on each card in a dech.)

A given position on a given card is punched out if and

only if the descriptor represented by that card applies to

the item represented by that position. Thus the cards in

a deck correspond to the columns in our grid model; the

card-positions correspond to the rows; and punched out

card-positions correspond to circled intersections.

A query is performed by selecting a subset of the cards in

the deck: namely, those cards which represent the eescriptors

in the query. The selected cards are lined up on top of one

another and placed in front of a light source. The positions

through which light is visible -- i.e., those positions which

are punched out on every card in the query set -- identify

the items which satisfy the query.

?

Note that with feature cards it is relatively easy to add

another descriptor to the system -- by simply adding another

card to the deck. It is also easy to add another item to

the system -- until the number of items is equal to the

numbt er of positions on a card. At that point addition of

items to the file requires che creation of an additional

deck. New items may then be assigned card-positions in

the new deck. (If, as in Figure IT-1; there are 400

positions on a card and the positions on the first deck

have been named by numbering them 1 through 400, then the

card-positions of cards in the second deck would be

numbered 401 through 800, and so forth.) Thus the number

of feature card decks -- and therefore the number of

operations necessary to perform one query -- will be equal

to: (the number of items)/(the number of card-positions),

rounded up. Deletion of an item from the system is

relatively difficult since, although it is easy to punch

out a hole (i.e., circle an intersection), it is difficult

to fill in a hole (i.e., uncircle an intersection). Deletion

of an item might involve reproducing -- without the hole in

the position representing the item to be deleted -- the

feature card for each descriptor which applied to the item.

12.

Figure ll-i

ii

1 2 4 : ... 2 0-

414

4 z. i -

-l - --.-

I T-

381 I 4' ~ II
'- I

" j~ r __ *' I -1i-t I

-t - I - -- 4 4

*-> -. - ---- -- 4-- • -,--:

* -' -..

38 ":0"• . •400

13.

III. Edge-Notched Cards

A file of item-descriptor relations may also be implemented

as a deck of edge-notched cards. Each card in the deck

corresponds uniquely to one item in tre system. Each card

contains a set of card-positions: a row of holes along

its margin. Each hole may be notched out (i.e., the

material separating the hole from the edge of the card

is cut away) or not. (Figure III-1 shows an edge-notched

card with 37 positions, numbered from left to right.) In

the most straightforward implementation, each descriptor

in the system is assigned a unique card-position -- the

same one on every card in the deck. (Thus we could assign

descriptor dk card-position k on each card in a deck.)

A given position on a given card is notched out if and

only if the descriptor represented by that position applies

to the item represented by that card. Thus the cards in

a deck correspond to the rows in our grid model; the card-

positions correspond to the col ans; and notched out card-

positions correspond to circled intersections.

A query is ma&! ny selecting a subset of the card positions.

The deck is lined up and a sorting needJe is inserted

through each hole which represen-s a descriptor in the query.

The needles are then raised and jiggled so that those cards

which have every needled hole notched out drop from the

deck. The subset of cards which drop represents the subset

14.

of items to which all descriptors in the query apply.

Note that with edge-notched cards it is relatively easy to

add descriptors to the system until ,:he number of descriptors

is equal to the number of positions cn a card. At that

point it becomes difficult to add further descriptors.

Starting another deck will not entirely solve the problem

since coordinated searches may not be satisfied in either

deck by itself.' It is easy to add another item to the

system -- by simply adding another card to the deck.

However, once the number of cards (i.e., items) exceeds the

capacity of a sorting needle, the sort operatiorn can no

longer be performed in a single step. The numbe•r of

operations necessary to perform one query will be equal

to: (the number of items)/(the capacity -L a sorting

needle), rounded up. This is, of course, similar to the

formula for the number of operations necessary to perform

a query with feature cards -- the capacity of a sorting

needle corresponds to the number of positions on a feature

card. It is, of course, easy to delete an item from the

system, in contrast to feature cards. Finally, it is easy

to circle an intersection (i.e., notch out a hole) but

difficult to uncircle an intersection.

'An overflow technique is described in ISTP Edge-
"Notched Card System (A Manual for the Information System
Theory Project). Holt, Anatol W. Applied Data Research, Inc.
Srnceton, N.J. February 1964.

15.

FigUre Ill-I

1 2 4 .. . 19 0 Z 2 2 . . 37

16.

IV. Indirect Coding

The method of encodement described in the preceding section,

in which a card position uniquely represents a single

descriptor, is called direct coding. The mechanics of

edge-notched sorting and the physical properties of

materials for cards, needles, and so forth, set a practical

limit to the number cf hole positions that can be provided

on a margin. (There are a number of different edge-notched

card formats available, and the number of positions on a

card varies from several dozen to several hundred.) This

means that if direct coding is used, the capacity of the

card will quickly be exceeded (i.e., the number of des-

criptors will be gre~ater than the number of card-positions)

in all but the most primitive systems. We have already

noted that the cost penalty is considerable. Indirect

coding is a type of descriptor-encodement which avoids

this cost penalty by using a relatively small number of

card-positions to represent a relatively large number of

descriptors.

The fundamental statistical assumption which justifies

indirect coding is the following: although there may be a

very large number of different descriptors in a data base,

only a very small subset of these descriptors will apply

to any one item in the data base. In terms of our grid

model, ne number of circled intersections on any one

17.

horizontal line will be very small relative to the total

number of descriptors in the system.

In order to consider the most straightforward type of

indirect coding, let us make a further assumption: the

set of descriptors in the system contains subsets of

mutually exclusive descriptors -- that is, no two members

of the same subset ever apply to the same item. (For

example, suppose that the system is a personnel file and

each item repiesents an individual. Since each human being

has exactly one birthdate, the age values would form a

subset of mutually exclusive descriptors.) Indirect

coding can then be utilized as follows: the card-positions

are partitioned into subsets. Each such subset of card-

positions is used to encode one set of mutually exclusive

descriptors.

Suppose, for example, that we wish to represent a set of

six mutually exclusive descriptors, which we can name

d1 , d 2 ... d , with four-hole positions, named hl, h 2 ,

h3 , and h4 . We might encode the descriptors as follows:

d 1: notch out hi and h2

d2 : notch out hi and h 3

d 3 : notch out h1 and h4

d4 : notch out h2 and h3

18.

d5 : notch out h2 and h4

d6 : notch out h 3 and h4

If d1 occurred in a query, holes h and h2 would be

needled; if d2 occurred h and h3 would be needled,

and so forth. The capacity C of a subset of card-

positions (i.e., the number of mutually exclusive descriptors

encodable in a subset of the holes) is determined by the

number of hole positions H in the subset and the number

of hole positions P used to encode each of the descriptors.

C = H (H-l) (H-2) . . . (H-P+l)/P! = (H)

C is a maximum for P = H/2, rounded up or down.

This corresponds to a statement in information theory: the

encodement which makes the most efficient use of a medium is

an encodement which results in a probability of .5 that

the value of any given bit will be 1. With edge-notched

cards the probability of any given hole being notched out

is optimally .5 .

Indirect coding greatly increases the total number of

descriptors which can be represented. For example, if we

were using an edge-notched card format with 100 holes,

direct coding would limit the system to 100 descriptors.

However, if we could group the descriptors into 10 subsets

19.

each of whose members were mutually exclusive, then we

might represent with the same card format

1OxC = 10x252 (for H=10 and P=5) = 2520 descriptors

in the system.

This type of indirect coding obviously depends upon the

possibility of grouping the descriptors into subsets

whose members are mutually exclusive. The effectiveness

of the grouping is a function of the number of descriptors

in each subset. In the worst case no two descriptors in

the data base would be mutually exclusive. Then we would

in effect be forced back on direct coding: since the

number of subsets would have to equal the number of des-

criptors, there would only be one descriptor in each group,

and consequently we would need one hole position for each

descriptor. In fact, in a typical data base some descriptors

can be usefully grouped into such subsets while others

cannot. In the next section we will discuss another type

of indirect ccding -- superimposed coding -- which is

useful in such situations but which introduces another

cost component.

Another difficulty frequently arises in the use of subsets

of mutually exclusive descriptors. We often do not have

F ' ! IBiu.. !... n...'

20.

enough information about the data base to group the

descriptors ab initio. Nevertheless, with edge-notched

cards we must allocate holes when the system is created,

and this cannot be done without deciding the number of

subsets and the capacity of each. Furthermore, regrouping

the descriptors ex post facto requires statistical

calculations, the notching out of additional holes, and,

worst of all, the filling in of notches. The only

alternative to filling in notches is to replace every

affected item card with a new, appropriately punched

card -- which, of course, will involve redundant notching.

Indirect coding can be employed in our grid model as

follows: vertical lines no longer correspond one-one to

descriptors; instead, the vertical lines are partitioned

into subsets, each of which corresponds to a set of

mutually exclusive descriptors, and so forth. This

immediately suggests that we can utilize indirect coding

with feature cards as well. Since vertical lines in the

grid model correspond to cards in a feature card deck, we

would proceed as follows: instead of representing each

descriptor with one card, we partition the deck into sub-

sets of cards, letting each such subset correspond to one

subset of mutually exclusive descriptors, and so forth.

In an edge-notched card system, indirect coding allows

21.

us to represent many more descriptors with a given number

of hole positions. Analogously, indirect coding allows us

to represent many more descriptors with a given number of

feature cards. In an edge-notched system we are in effect

forced to use indirect coding since it is impossible to

increase the number of hole positions; whereas in a

feature card system, indirect coding is used in order to

reduce the number of cards required. In both systems the

density of circled intersections (i.e., hole punching or

notching) is increased. This density approaches an

optimum at .5.

Indirect coding results in an increase in the number of

circled intersections (because each instance of a

descriptor applying to an item may now be represented by

several circled intersections instead of only one). Thus

in both edge-notched card and feature card systems we must

take into account the increased cost of punching or

notching each time a new item is added. Furthermore, when

a query is performed, many more vertical lines must :De

selected: in an edge-notched system more needles must be

inserted into the deck; in a feature card system a larger

number of cards must be selected and lined up in front of

the light source. In other words, indirect coding also

leads to certain cost increases for retrieval, and these

too must be taken into account. (Later, when we consider

22.

computerized implementations, relative costs will vary

significantly from both feature and edge-notched systems,

a fact which will help explain why techniques effective in

one hardware milieu are totally inappropriate in another

hardware milieu.)

The reduction in the number of vertical lines which is

made possible by indirect coding has further cost implications.

By reducing the number of cards in a feature card deck, we

reduce the time required to locate any cne card (for example,

when performing a query). Analogously, by reducing the

number of hole positions used in an edge-notched system, we

reduce the time necessary to locate any one particular hole.

This cost reduction will be even more pronounced in the

computer context. In general, any reduction in memory bulk

reduces the amount of time required to locate a particular

entry. Therefore, indirect coding will increase the number

of vertical lines to be selected (i.e., the number of cards

to be selected in a feature card system or the number of

holes to be needled in an edge-notched system) in performing

a query, but it will also reduce the cost of locating a

particular vertical line (feature card, hole) by reducing

the total number of vertical lines.

Feature cards are inherently more flexible than edge-

notched cards when indirect coding is introduced ex post facto.

23.

The operation is one of replacing a large number of

feature cards which are pairwise mutually exclusive (i.e.,

no two cards have any punched out card-position in common)

with a much smaller set of cards. (If n is the number

of cards required to represent the set of mutually exclusive

descriptors by direct coding, then n' , the number of

cards necessary with indirect coding, is the smallest

integer such that (n:) is larger than n .) Alln /2

feature cards not included in the subset are unaffected.

In an edge-notched system, however, item cards to be

replaced may have other descriptors associated with them,

and the notches for these descriptors must be replicated

on the replacement cards. In other words, the introduction

of indirect coding ex post facto will require more circling

and vncircling operations in an edge-notched system.

24.

V. Superimposed Coding

Superimposed coding is another type of indirect descriptor

encodement which allows the system to have many more

descriptors than there are vertical lines. Again it

should be true, that although there may be a very large

number of descriptors in the data base, only a relatively

very small number of the descriptors will apply to any

one item. In another respect, however, superimposed

coding differs radically from the indirect coding method

described in the preceding section: instead of working

most effectively when descriptors can be grouped into

subsets whose members are mutually exclusive, superimposed

coding is most effective when there is no correlation

whatever between descriptors -- that is, when probabilities

of co-occurrence are entirely random. Superimposed coding

is therefore advantageous when nothing is known about the

descriptor population ab initio and when the cost of

grouping descriptors ex post facto is high. Superimposed

coding is clearly advantageous when it is known of the

descriptor population that co-occurrence probabilities

are random.

Let us first apply superimposed coding to our grid model.

We will view all the vertical lines as a single field. Each

descriptor is encoded by a small number of vertical lines

chosen at random, but such that no two descriptors have the

25.

same code. Suppose, for example, that some descriptor
di is encoded by vertical lines j, k, and 1 . If di

applies to some item Ih , then intersections (j,1)

(k,h) , and (l,h) will be circled.

In an edge-notched implementation, then, all the holes on

a card are regarded as a single field. Each descriptor is

encoded by notching a small number of hole positions, chosen

at random but such that no two descriptors have the same

code. Note, however, that two different descriptor codes

may have one or more hole positions in common. Moreover,

since we have made no assumptions about exclusivity, two

descriptor codes may overlap on the same item card. Con-

sequently, superimposed coding creates the possibility of

false drops when queries are performed. Suppose, for

example, that descriptor d1 has been encoded by notches

at hole positions h1 and h1 0 , d2 by notches at h2

and h5 , and d 3 by notches at h5 and hl 0 . Suppose

further that d1 and d2 both apply to item 17 but that

d3 does not apply to 1 . Let us now perform a query

containing only the descriptor d3 . Needles will be

inserted through holes h5 and hl0 , and the card

representing item 17 will be among those cards which drop

from the deck, despite the fact that d3 does not apply

to 17

26.

False drops may be limited by controlling certain statistics

when an edge-notched sy3tem is designed. The critical

factors are: the anticipated maximum number of items in

the system, the anticipated number of descriptors applicable

to each item, the anticipated number of descriptors in each

query, and the cost of handling false drops. An optimal

design will guarantee that the average number of notched

hole positions per item is less than half the total number

of hole positions (again, the probability that a given

hole position is notched optimally approachies .5). To

satisfy this requirement the following should hold:

dx P is less than .69H,

where d, = the average number of descr-'ptors per item, and

P = the number of hole positions used -to encode a descriptor,

and H = the total number of hole postions. Where this is

satisfied, the false drop rate will be less than .51

where q = the number of hole positions specified by a query.'

Deviation from these statistics will of course degrade tile

performance of such a system. If the estimate of the number

of descriptors per item is too low, the false drop rate will

be higher. (An item card to which too many descriptors

1 See Calvin Mooers, "Zatocoding for Punched Cards",
Zator Technical 3ulletin 30, 1950. pp. 14-19.

27.

apply will become a "problem card" -- it will have so many

holes notched out that it will drop out for virtually every

query.) This situation can be dealt with by using over-

flow techniques. 2 If, on the other hand, the estimate is

too high, punching density will be low and space will have

been wasted. Tf the number of descriptors in a typical

request is lower ti.in estimated, the false drop rate will

increase. It will, of course, also increase if the co-

occurrence probabilities for descriptors are not random.

It is extremely important to assess correctly the cost of

handling false drops. In an edge-notched system each

item card will presumably contain a list of the descriptors

which apply to it. The human user can therefore easily

sort out the false drops at a cost which may be insignificant

relative to the total cost of performing a retrieval. False

drops in other systems, such as feature card or computerized

systems, may be much more expensive to handle. Let us

consider the problem in the context of feature card systems.

It is clear that we can translate a grid model system

implemented with superimposed coding into an equivalent

feature card system. Each descriptor then corresponds to

some small subset of feature cards in a deck; the subsets

are chosen randomly but in such a way that no two descriptors

2 Holt, op cit.

28.

are represented by the same subset, and so forth. The

same statistical criteria for optimal system design will

still apply, but the cost factors may be quite different.

For example, a "false drop" will mean tha4 when the set of

query cards is placed in front of the light source, light

shines through some card position representing an item which

in fact does not satisfy the query. With edge-notched cards

the descriptors could be listed on each item card, but with

feature cards the medium does not permit us to write a list

of applicable descriptors at each card position. As a

result, false drops cannot be detected without going to

some other file -- perhaps to the items themselves. (The

National Bureau of Standards' microcite system succeeds in

avoiding this problem.) This might mean that false drops

would not be detected until completion of some relatively

expensive operation whose cost is a linear function of the

total number of drops, including false drops. In some

systems this might be the predominant cost factor.

29.

VI. Combined Coding Techniques

In the preceding sections three coding methods have been

discussed: direct coding, indirect coding of sets of

mutually exclusive descriptors, and superimposed coding.

These three techniques are not mutually exclusive, and in

fact, systems have been designed which employ all three.'

Descriptors which apply to a large fraction of the data

base should be coded directly. (For example, if a system

included 50 descriptors each of which applied to approximately

half of the items, they would co-occur frequently, and on the

average 25 cf them would apply to each item; consequently any

multiple-circling encodement would be extremely inefficient

for these descriptors.) Sets of descriptors which are

mutually exclusive should be appropriately grouped and

coded indirectly. Descriptors which apply to only a small

fraction of the data base and whose co-occurrence probabilities

are random should be encoded with superimposed coding, pro-

vided that the cost of handling false drops is low enough.

'See, for example, Holt, op cit.

30.

VII. Is Retrieval Time a Linear Function
of the Size of the Data Base?

An error frequently encountered in discussions of cross-

indexed retrieval operations is the claim that the time

required to perform a search in a cross-indexed system

does not increase linearly with the number of items in the

data base -- whereas in systems which perform an item-

sequenced serial search, time is manifestly a linear

function of the number of items in the data base, so that:

T=Cx I,

where T = the total search time per query, C is some

constant, and I = the number of items in the system. In

fact, in both edge-notched and feature card systems, search

time is a step function of the number of items in the system.

We have already expressed this fact in the formulae for the

number of operations necessary to perform a query in the two

types of system. The critical factors were respectively the

capacity of a sorting needle and the number of positions on

a feature card. Thus search time in these systems is in

fact a step function approximation to T = C x I . Of

course, if the capacity of the system is restricted to lie

within the first step, it will appear that the time required

to perform a retrieval is independent of the number of items

in the data base. Naturally, the constant C and the number

31.

of items covered by a step may vary radically from system

to system.

An unlikely exception to the above remarks would be the

following: a continually growing data base in which the

rate of introduction of new descriptors remains constant.

Under such circumstances the average number of items to

which a descriptor applies would not grow proportionally

with the data base. An inverted (or list-structured) file

organization implemented on a computer might take advantage

of such a situation. Even then, eventually a step function

would emerge, but the number of items covered by the first

step might be enormous.

One can, of course, prevent retrieval time from increasing

proportionally with the size of the data base simply by

adding processing capability -- for instance, another

person or computer.

32.

VIII. The Volume of Cross-Indexing Information

A cross-indexing retrieval operation involves a number of

selections in a hierarchical structure and the sensing,

manipulation, and transmission of a volume of bits.

Regardless of the particular file-structuring employed,

this volume of bits remains constant for a given data base.

That is, the raw information content of the volume is

simply the total set of item-descriptor relations. There

are many ways in which this material may be organized with

consequent cost variations. Some methods of organization,

when combined with relevant usage statistics, permit

further interesting variations on the manner of storage of

this volume of bits -- which also result in cost variations.

Note that the amount of space used in the host system may

vary, but the volume of bits representing cross-indexing

information must remain constant.

With edge-notched card systems the volume of bits is

represented by the entire card deck. Since each retrieval

involves manipulation of the whole deck, edge-notched card

retrieval requires transmission of the total volume of

cross-indexing information. With feature cards the volume

of bits is once again represented by the entire card deck,

but each retrieval involves manipulation of only a subset

of the deck; namely, those feature cardq which formulate

the query. In another sense, however, the entire feature

33.

card deck is involved in retrieval: the selection of a

particular feature card requires choosing from the total

deck the desired card. If the feature cards were organized

randomly with no access method other than linear scan, we

would have to look at the labels on approximately half the

feature cards to locate any particular card. However, the

selection of a feature card is, as has been shown previously,

analogous to the selection of a hole position in an edge-

notched deck.

To compare usefully the volume of bits transacted with in

the two systems, we will therefore view the performance of

a query as a two-stage process: (1) the selection of the

subset of vertical lines (in the grid model) which represents

the query; (2) the selection of the subset of horizontal

lines which satisfy the query (i.e., those lines which are

circled at every intersection with a member of the query

set). With respect to the first stage -- selection of a

subset of the cards in the feature card system, or selection

of a subset of the hole positions in the edge-notched

system -- the two systems are equivalent. With respect to

the second stage, however, they are not: in the edge-

notched system we must still transact with the total

volume of bits (i.e., with the entire deck); in the feature

card system we need only deal with a subset of those bits

(i.e., with the query cards).

34.

IX. A Fundamental Difference between Item-
and Descriptor-Organized Files

Let us expand our comparison of edge-notched card systems

and feature card systems to a more general comparison of

two basic types of cross-indexed file organization. Those

files which, like edge-notched systems, are sequenced by

item we call. item-organized files; files which, like

feature ca.d systems, are sequenced by descriptor we call

descriptor-organized (or inverted) files.

In general, to perform a retrieval in an item-organized

file the entire volume of item-descriptor information must

be transacted with; whereas in a descriptor-organized file

only a subvolume of the item-descriptor information need

be tranqacted with. Needless to say, the cost significance

of this fact is highly dependent upon the interaction

between usage statistics, hardware characteristics, and

representational technique. For the sake of illustration,

consider the following possibilities:

(1) A retrieval request which includes a large proportion

of the descriptor population. In this situation the

volumetric reduction is negligible, Fortunately, for a

large spectrum of information retrieval problems, only a

tiny fraction of the descriptor set applies to any one item.

Hence a retrieval request which included a large number of

35.

descriptors would not be satisfied by any item in the

collection. Therefore, within this spectrum retrieval

requests will,on the average, include only a small fraction

of the descriptor population. However, when in the sequel

we discuss batching, this situation will once again be of

interest.

(2) A retrieval rPqu~-.st to which a large proportion of

the items aprl'. Ir 1-1c 31tuation the volumetric

reduction in th, co . rnq operation is significant,

but the size of *t, r Imrlips that at some stage

we will be dealin•i w i ct of the items anyway. Under

such circumstances that aspect of the indexing operation

which involveq the descrivtor-item pairs is likely to be

almost insigni!icant in terms of the total cost of the

operation, and other factors which may or may not depend

upon the inverted organization, may dominate the cost.

Once again, for a large spectrum of information retrieval

problems (but not quite so large as that cited in the

previous paragraph) the number of items satisfying a

request will, on the average, be quite small relative to

the total item population. However, when in the sequel we

discuss batching, this situation too will once again be

of interest.

S. " : '• • • r -• ! -- "F • ' -" • •'•' • '•'- ~--~ .-... - - , ' . .•

36.

X. A Second Fundamental Difference between
Item- and Dqstriptor-Organized Files

Given the symmetry between items and descriptors suggested

by our grid nodel, the fact that the inverted file

organization facilitates retrieval would imply that some

other operation should be facilitated in an item-organized

file. Queries are stated in terms of descriptors and

partition the indexing information by descriptor. Loosely

speaking, that is why the inverted organization is potentially

advantageous in performing retrievals. Additions and

deletions of items, on the other h.5nd, group the indexing

information by item; here we can expect some advantage from

an item-organized file.

What is at issue is the volume of bits that must be

transacted with. In an item-organized file, to add or

delete an item (i.e., to perform an update) we must

manipulate a volume which is 1/I of the total volume

(where I = the total number of items in the system). In

an inverted organization, we must in some sense manipulate

d/D of the total volume (where d = the number of des-

criptors that apply to the item, and D = the total number

of descriptors in the system). Since for a wide spectrum of

systems the number of items is much larger than the number

of descriptors, and d is greater than or equal to one, an

update in this spectrum involves a smaller subvolume of

37.

the item-descriptor information if the file organization

is by item rather than by descriptor.

Therefore, in the absence of batching (which we will discuss

in the sequel), and without introducing the critical

effects of usage statistics and hardware characteristics

(except on a very general level),we can make some

comparative remarks about the volume of cross-indexing

information which must be handled to perform retrievals

and updates in the two types of file organization.

38.

XI. Formulae for the Volume of Bits Transacted with

(a) V= I x D

where V is the total volume in bits

I is the number of items

D is the number of descriptors

(b) VrD = r = (xr/D)V

where VrD is the average subvolume for retrieval in

a descriptor-organized file

d is the average number of descriptors in

a retrieval request

(c) Vri = V

where Vri is the average subvolume for retrieval in

an item-organized file

(d) V = (d /D)V

where V is the average subvolume for update inaD

a descriptor-organized file

d, is the average number of descriptors for1

an item

(e) Vui = (1/I)V = D

where VuI is the average subvolume for update in

an item-organized file

39.

(f) VD = PVrD + (I-p)VuD = 1r

where V is the average subvolume for a negotiation
D

in a descriptor-organized file

p is the fraction of negotiations that are

retrievals

(g) V = pVri + (l-p)Vui = V(p(l-1/I) + 1/I)

where VI is the average subvolume for a negotiation

in an item-organized file

I[
I7

40.

XII. Some.Comments on the Volumetric Formulae

These results must be interpreted with care, since hardware

costs have not been introduced. For instance, when updating

a feature card it is perfectly true that a large number of

bits are being dealt with (the set of positions on a

feature card) hut the cheapness and density of the medium

may make this operation inexpensive. The relative volumes

are not real cost factors, but only a theoretical measure

of the amount of information to be transacted with. These

reFults become more interesting when we move from edge-

notched card systems and feature card systems (two

different hardware milieus, with different costs for

transacting with the same volume of information) to a

digital computer capable of employing either file

organization and using the same hardware to transact with

the bit volume, so that the theoretical measure is converted

into a useful comparison.

41.

XIII. Computer Implementations of
the Cross-Indexing Operation

At this point it should be intuitively clear that the

grid model provides a general framework for discussing

cross-indexing. We have so far discussed two general

classes of extant systems, based on feature cards and

edge-notched cards. Both of these use cross-indexing,

and we have established the relationship between each of

them and the grid model. We will now do the same for a

third class of systems, based on the use of digital

computers. Because the characteristics of stored-program

digital computers permit flexible utilization of hardware

resources, the number of significantly different and

interesting representational techniques for cross-indexing

is far greater than in either edge-notched card or ieature

card systems, where a combination of direct, indirect, and

superimposed coding techniques virtually exhausts the

possibilities. Hence our discussion of computer-based

techniques is of necessity incomplete; we will concentrate

on highlighting the similarities and differences between

a few computer techniques and the systems already discussed.

42.

XIV. Computer-Implemented Inverted
File Organization

A straightforward computer implementation of an inverted

file would consist of a set of lists, one for each

descriptor in the system. There are a number of possible

organizational schemes for the lists themselves, the

following being the simplest: the bits in each list are

numbered sequentially; bit j in any given list refers

to item I.. Hence each list is exactly I bits longJ

(where I = the number of items in the system). Each bit

has a value of either 0 or 1 . A given bit in a

given list is a 1 if and only if the descriptor associated

with that list applies to the item associated with that

bit position in the list. The lists, then, correspond to

the vertical lInes in our grid model; bit positions in the

lists correspond to horizontal lines; and bits with value

1 correspond to circled intersections.

A retrieval request is made by selecting a subset of the

lists and intersecting them. Specifically, the lists which

correspond to the descriptors in the query are selected

and from these a response list is calculated as follows:

a given bit j in the response list has value 1 if and

only if bit j of every query list has value 1 . The

bits with value 1 in the response list identify the

items which satisfy the query. Addition of a descriptor

43.

to the system is accomplished by creating a new list.

The addition of an item requires lengthening every list

by one bit. An intersection is circled by setting a bit

to 1 ; an intersection is uncircled by setting a bit to

0 . The cost of performing these operations may vary

enormously as a function of characteristics of the memory

medium. If the lists are stored in a bit-addressable

ferrite core memory, the cost of changing the value of a

bit will be trivial. If the lists are stored on magnetik,

tape, it may be necessary to read and write all the lists

in order to change the value of a single bit.

Such a computer-implemented inverted file is of course

similar to a feature card system employing direct coding.

Indexing information is grouped by descriptor and not by

item. Position within a group (i.e., card-position on a

feature card or bit position in a list) identifies the

item to which a descriptor applies. Consequently, most

of our conclusions about the comparative ease or difficulty

of various operations in feature card systems are valid for

computer-implemented inverted file systems as well. However,

the relative costs may be quite different and will vary

enormously according to the details of a computer

implementation of the inverted organization. An interesti•'q

difference between the two systems appears in the addition

of items. With feature cards items can be added to the

44.

system relatively easily until the number of items equals

the number of positions on a card. As we have seen, this

leads to a step function for the evaluation of retrieval

cost relative to the size of the data base. This function

will apparently be linear in a computer-implemented

inverted file system, but limitations on the amount which

can be read in a single transmission can reintroduce a

step function.

45.

XV. Computer-Implemented Item-Sequenced
File Organization

A straightforward computer implementation of an item-

sequenced file would consist of a set of item keys, one

for each item in the system. Each item key consists of

a set of bits, numbered sequentially; bit position j in

any given item key refers to descriptor dj . Hence each

item key is D bits long (where D = the number of

descriptors in the system). Each bit has a value of

either 0 or 1 . A given bit position in a given item

key is a 1 if and only if the descriptor associated with

that bit position applies to the item associated with that

item key. The item keys, then, correspond to the

horizontal lines in our grid model; bit positions in the

item keys correspond to vertical lines; and bits with

value 1 correspond to circled intersections.

A retrieval request is made by selecting a subset of the

bit positions and passing through the entire file, testing

each item key for bit inclusion. Specifically, a query

key word is ccnstructed: it consists also of D bits

numbered sequentiallyf d glv,2n bit position j is a 1

if and only if descriptor d. is in the query. The

query key word is then used to evaluate each item key in

the file. If a given item key has a 1 at every bit

position at w' ich the query key has a 1 , then the

46.

corresponding item satisfies the query. Addition of

an item to the system is accomplished by creating a new

item key. The addition of a descriptor requires

lengthening every item key by one bit. Circling and

uncircling of intersections is accomplished by setting

bits to 1 or 0 . As with inverted file systems, the

cost of performing these operations will vary enormously

depending on characteristics of the memory medium.

Such a computer-implemented item-sequenced file is, of

course, similar to an edge-notched card system employing

direct coding. Indexing information is grouped by item

and not by descriptor. Position within a group (hole-

position on an edge-notched card or bit position in an

item key) identifies a descriptor which applies to an

item. Consequent?_- most of our conclusions about the

comparative ease or difficulty of various operations in

edge-notched systems are valid for computer-implemented

item-sequenced file systems as well, although relative

costs may be quite different and will vary enormously,

according to details of a computer implementation of the

item-sequenced organization. Again, an interesting

difference appears in the addition of items. In edge-

notched systems adding an item has no effect on retrieval

cost until the number of items exceeds the capacity of

a sorting ne, -1e, which leads to a step function for the

47.

evaluation of retrieval cost relative to the size of

the data base. This function will apparently be linear

in a computer-implemented item-sequenced file system,

but limitations on the amount which can be read in a

single transmission can reintroduce a step function.

48.

XVI. The Use of Indirect and Superimposed
Coding in Computer Implementations

Having maintained the analogy between our grid model and

the computer-implemented file organizations, we can simply

state without further elaboration that both indirect and

superimposed coding techniques are applicable to computer

implementations of both the inverted file organization and

the item-sequenced file organization. Clearly, the same

statistical conditions required for the use of these

techniques in edge-notched and feature card systems will

have to hold in order to justify their use in computer-

implemented systems. If these conditions hold, then

fewer lists will be required in the inverted file

organization and fewer bits per item key in the item-

sequenced organization.

49.

XVII. PDQ (Program for Descriptor Query)

PDQ is a program implemented on IBM System 360 equipment

(with disk packs as the secondary storage medium) which

provides an information retrieval capability to the

system user. Cross-indexing is provided by an item-

organized file of key words. The design principles for

the coding scheme are virtually identical to the design

principles in edge-notched card systems, and, in fact,

PDQ is virtually a computerized version of Anatol Holt's

Information System Theory Project edge-notched card

design, with some added capability and adaptive features

provided by the computer.

The key words are a composite of direct, indirect, and

superimposed codes. There is one key word per item. A

search is performed by constructing a query key word

and performing a bit inclusion test of the query key

against every item key. Query and update cost functions

are analogous to those for an edge-notched card system

-- with the difference being that in edge-notched card systems

the cost of retrieval, relative to the number of items, is

a step function, whereas in PDQ it is linear.

As we have seen already from our grid model and numerous

examples, the coding technique is not determined by the

50.

file organization. The same coding technique could be

employed in a PDQ which used an inverted file organization.

In both systems, the volume of cross-indexing information

is identical. The only difference is in how the bits are

grouped together from the point of view of accessing.

Referring back to our abstract grid model, it is a

question of whether the intersections are stored row-wise

(item-oriented) or column-wise (descriptor-oriented).

Even if they are pseudo-random access, most computer

memories and secondary storage devices require a one-

dimensional addressing scheme; the cost of accessing

material along another axis is much greater. Hence we

must choose either a column or a row grouping. The

voluntetric formulae presented in Section XI provide

criteria for making this decision. The calculations

below are based on PDQ figures and compare the two

organizations as a function of the ratio of retrievals to

updates.

(a) Vr = I(p(d -d.) + dl [from Section XI,r i formula (f)]

(b) VI = V(p(i-i/I) + l/I) [from Section XI,
formula (g)]

when VD/VI = 1 the volumetric efficiencies are

identical

51.

I Assuming the coding technique is effective, the density

of 1 bits will be 1 and d. = D/2 . Substituting

and solving for P yields

D(I-2)
) =3DI-2Id -2D

r

since 0 <d < =D/2
r-

1-2 1-2
(d) -- < p < -

31-2 21-2

and since I > > 2

(e) 1%'U P < 13<p 2

which shows that if update transactions comprise mere than

2 of the transactions, the item-sequenced organization is
3

superior; if retrieval transactions comprise more than 1

of the transactions, the inverted organization is superior.

These calculations are meaningful but do not tell the

whole story, since volumetric considerations are not the

only factor. In particular, the following major consideration

has been overlooked:

i

Choosing a feature card is like choosing a hole position.

Analogous operations exist in PDQ and the hypothetical PDQ.

52.

Both involve some dictionary which converts a descriptor

into a bit pattern for inclusion testing or into the

address of an inverted list. The difference lies in

the fact that the cost of actually obtaining the

appropriate inverted lists involves more than simply

bit transmission (i.e., of the bit volume already dis-

cussed). We must locate the lists in a pseudo-random

access memory. Because the set of lists for each

retrieval request is different, there can be no way of

avoiding an additional cost factor: seek time for each

inverted list. As the number of items in the system

increases, the number of inverted lists involved in a

query or an update clearly does not increase at the same

rate as does the volume of cross-indexing bits. Therefore,

as the number of items in the data base becomes large,

the volumetric considerations will dominate. PDQ is

oriented toward a small data base with frequent updates.

PD would be more suitable for a larger data base with

infrequent updates.

i i
53.

XVIII. Batching or Buffering

Thus far we have restricted our attention to retrieval

situations which do not permit batching. By batching

we mean for instance: the accumulation of a number of

queries (or updates) which are then all processed

together -- or the concurrent processing of a number of

queries. From one perspective, there is no need to

distinguish between batching and buffering. Later we

will clarify this statement and give formal content to

these terms with the help of Petri net models. In the

meantime, we will use them interchangeably.

54.

XIX. Batching Queries and Updates

Some item-organized files can overcome their volumetric

inefficiency at retrieval time by batching retrieval

requests. The total volume of cross-indexing information

will be transacted with for each request, but the trans-

mission of the volume need occur only once for the set of

batched requests. Edge-notched card systems have only

a very limited batching capability because of the hardware

characteristics of the medium. Computerized item-sequenced

retrieval systems, on the other hand, have a considerably

greater batching capability, determined by three principal

factors: high speed memory capacity, high speed memory

access time, and secondary storage to high speed storage

transmission time. The discrepancy between input/output

transmission speed and internal processing speed -- the

second being usually much greater than the first per

query per item -- creates unused processing capability

which can be exploited by batching.

We can view this phenomenon from the other side, by

considering the subvolume of cross-indexing bits transacted

with in an inverted file when requests are batched. The

more requests we handle concurrently, the more inverted

lists we will have to fetch. In the limit the subvolume

becomes equal to the total volume. Hence the batching of

requests reduces the volumetric differences between item-

and descriptor-organized files in retrieval. Similarly,

the batching of updates reduces the volumetric differences

between item- and descriptor-organized files in update

processing. Even though relative volumes are only a i

theoretical measure of the amount of information to be

transacted with, we can expect pragmatic verification for

this measure. In fact, computer-based item-organized

information retrieval systems generally batch requests

and computer-based descriptor-organized information

retrieval systems generally batch updates.

56.

XX. An Important Asymmetry from
the User's Point of View

The batching of requests in item-organized systems and

the batching of updates in descriptor-organized systents

have similar effects in terms of system through-put

capability -- i.e., more efficient utilization of the

hardware. However, they differ radically from the point

of view of the system user. This is best seen in an

interactive context. Under such circumstances, the user

makes a request and expects an answer to his request.

He may not be willing or able to generate a batch of

requests before receiving any answers. In such a situation

if there are multiple users of the same data base, the

system may be able to batch requests across users; but

this is not a certainty, and in many situations is not

possible. On the other hand, when the user performs an

update he does not expect an answer back in the same sense.

All he demands is that subsequent requests do n.t re3ult

in incorrect answers. Hence, even though the user may not

be willing or able to batch updates, the system can -- with

internal buffering -- batch the update processing. This

asymmetry is of critical importance in system design, and

suggests that an interactive information retrieval system

with a large data-base should almost certainly be implemented

using the inverted file organization and employing internal

batching of updates.

57.

XXI. An Alternative Method of Representing Lists
in Inverted File organizations

Tl'- use of indirect and superimposed coding techniques

allows us to increase the density of circled intersections

in our grid model and to decrease the number of vertical

lines. Hence in computer-implemented inverted file

systems these techniques provide a method for increasing

the density of bits with value 1 and decreasing the

number of lists in the system. The computer also permits

an entirely different method of increasing the density of

1-bits -- without decreasing the number of lists. This

is accomplished by abandoning the exact correlation

between bit position in the list and item number. Instead,

each list will consist of the item numbers themselves, for

exactly those items to which the descriptor applies. Since

different descriptors apply to different numbers of items,

the lists will vary in length. The process for inter-

section of lists is now computationally more complex, and

in the sequel we will discuss some factors which affect

the cost of this process. If the cimputational speed is

much faster %!an input/output transmission time between

high speed storage and secondary storage, then the increase

in bit density and the consequent reduction in total bit

volume to be negotiated with may easily outweigh the

additional computational complexity of the intersection

process.

58.

Using the -ame notation as in Section XI, the space in

bits to represent the cross-indexing information is

given by

V1 = I x D

where I is the number of items in the system and D is

the number of descriptors (lists) in the system. If we

represent each list by the method suggested above, the

space in bits is given by

V2 = x I x log2 (I)

where di is the average number of descriptors that

apply to an item and log2 (I) is the number of bits

necessary to represent an item number. Hence

V =iv2i (log2 (1))

In other words, the alternative method uses less space when

the number of descriptors in the data base is greater than

the product of the average number of descriptors per item

and the number of bits to represent an item number. This

is true of a wide spectrumu of information retrieval

situations. The fundamental statistical assumption that

makes indirect or superimposed coding useful -- i.e., the

59.

notion that, while there may be many thousands of

different descriptors in a data base, only a very small

number of descriptors will apply to any single item in

the data base -- also guarantees that D is greater than

dx log 2 (1)

60.

XXII. An Analogous Alternative for Item-
Sequenced File Organizations

There is, of course, an analogous technique for increasing

the density of 1-bits in item key words. The exact

correlation between bit position and descriptor is

abandoned. Instead, each item key consists of the

descriptor numbers themselves, for exactly those des-

criptors which apply to the item represented by the item

key. The item keys will now vary in length. The process

for testing inclusion of the query descriptors in the

item key is now computationally more complex, but once

again, if there is a discrepan:y between computational

speed and transmission speed, the reduction in bit volume

to be negotiated with may outweigh the additional com-

putational complexity.

The space in bits required by this method is

V3 = d.i log 2 (D)

Hence

VlV3 = D/di log2 (D)

This technique is likely to save space in all systems

that satisfy the fundamental statistical assumption

61.

mentioned above. In fact, for a wide spectrum of systems

the number of descriptors is considerably smaller than Che

number of items, and comparison of the formulae for V2

and V3 shows that in such cases more space %,ill .e

saved in the item-sequenced organization than in the

inverted file organization.

62.

XXIII. A Comparison of Three Organizations
for Indexing

We have now come far enough in our study to examine three

commonly used file structures for indexing -- the item-

sequenced file, the inverted file, and the list-.structured

file -- with realistic assumptions about hardware

characteristics, details of representation, and usage

statistics.

In an item-sequenced file each document is represented by

an entry which consists of a variable number of descriptors.

A query is performed by reading the whole file, determining

for each entry whether the query is satisfied or not, and,

if satisfied, adding the document number to a list of

'bits'. An update is performed by adding an entry to the

file.

In an inverted file each descriptor is represented by a

list of document numbers (for those documents to which

the descriptor applies). A query is performed by reading

the appropriate list for each descriptor, intersecting

the lists, and ending up with a final list of 'hits'.

An update is performed by adding a document number to

the lists for those descriptors which dpply to the

document.

63.

In a list-structured file each document is represented

by an entry which consists of a document name plus a

variable number of descriptor-pointer pairs. The pointer

associated with a descriptor points to the next entry to

which that descriptor is applicable. We assume we have

identified which descriptor in the query applies to the

smallest number of documents. A query is performed by

reading in the first entry to which the identified

descriptor applies; for the entry determining if the

whole query is satisfied or not; if satisfied, adding

the document number to a list of 'hits'; and in any case

reading in the next entry to which the identified des-

criptor applies, as indicated by the pointer associated

with the descriptor in the current entry. This process

continues until a null pointer is encountered. An update

is performed by adding an entry to the file and linking

each descriptor-pointer in the entry to its appropriate

deszriptor-pointer chain.

Basic Formulae for the Three Design Types: Average Volume
dealt with in a Transaction

(1) Item-Sequenced File:

Vri Idl log2 Di

64.

V d. log2 D

VI = PVri + (l-p)VuI = (Id. log2 D) (p(1-i/I) + l/I)

(Compare this formula with Section XI, formula (g) and

Sec•bi XVII, formula (b).)

(2) Inverted File:

V =]

D

VrD •rI F(j)P(j) log2I
rD r j=l2

VUD = dI F(j)P(j) log 2I

D
VD = PVrD + (l-p)VuD = 1F(j)P(j) log2 I(P(dr-di) + di)

where F(j) is the number of items to which the jth

descriptor applies and P(j) is the probability distribution

function of the space of all descriptor occurrences (i.e.,

if we observe the requests over a period of time and create

a string of all requests, then P(j) is the probability

that at any point on that string the jth descriptor

occurs). (Compare this formula for VD with Section XI,

formula (f) and Section XVII, formula (a).)

65.

¶ If F(j) and P(j) are both unifonn distributions, then:

F(j) = diI/D

P(j) = 1/,

and

IdL

VD lg (j d . 'di + i

(3) List-Structured File:

VrL =(di(log2 D + log2 I) + l0g 2) PF(j)P (j)

VuL =(d. + 1) d (log 2D + log 2I) + log21

V = P3Vr + (l-p)VLL rLvL

=(Ui(log 2L + log2 1) + log2 p F j) + (l-p)d +I

where P (j) is the probability that, when the number ofn

descriptors in a request is n , the jth description will

(i) be in a request and (ii) be the lowest indexed descriptor

66.

in the request. P (j) is defined inductively as follows:n

P (j) = P(j)

1-

P(j) + I P (k)
k=n-2

Pn(j) = D k-1

I P(k) + PnI(k)1
A=n L k=n-2

N•ote that the descriptors are indexed in descending order

of list length. Because of this Pn-l(k) = 0 fox l<k<n-2.

In an item-sequenced file, since the whole file is always

read when performing a retrieval, we can assume That the

only seek required (in pseudo-random access secondary

store, for instance) is the location of the first entry,

and that the file can be read serially and hence at

transmission speed. (This may require double buffering,

and/or overlapped computation and I/O, and/or a fast

enough computation ri.te to permit continuous I/O trans-

mission, and/or very short start-stop time on the I/O

gear, etc.). In other words, we assume that the time

required to process the query is simply a function of one

seek, serial transmission rate, and file length. We

assume the time required to process an update is

determined by one seek, serial transmission rate, and

entry length.

67.

In an inverted file, the set of lists to be read will

in general vary from query to query. We as- me that each

list will require a minimum of 1 seek, followed by serial

transmission of the entries on the list. The time re-

quired to process the query will be a function of the

seek time, the number of descriptors in the query (i.e.,

the number of lists to be read), the serial transmission

rate, and the individual list length. We assume the time

required to process an update is determined by the number

of descriptors in an item, the seek time, serial trans-

mission rate, and individual list length.

In a list-structured file each entry read will require a

seek, followed by serial transmission of the entry. The

time required to perform a query will be a function of

the seek time, the number of items for the most specific

descriptor in the query, the serial transmission rate,

and the individual entry length. We assume the time

required to process an update is determined by the size

of an entry, the number of descriptor-pointer pairs, seek

time, and serial transmission time.

Average Transaction Time for the Three Design Types

TI ra rtVI

= a + rt (Idilog2 D) (p(1-l/I) + 1/I)

68.

TD= ra(P •r-ai) + 'i)+ rtVD

(p(6r -3i) +) (ra + rt [F(j)P(]log 2 1)

D

[ra + r t[ili(log2 D + log2 I) + log2 I1

where T is the average time of transaction in an item-

sequenced file

T Dis the average time of transaction in a descriptor-

organized file

T is the average time of transaction in a list-
L

structured file

r is the average seek time
a
rtis the serial transmission rate

69.

XXIV. A New Method for Performing List Intersections

Our discussion thus far has concerned itself primarily

with questions about the volume of information to be

located and transacted with. There has been no con-

sideration of internal computation beyond the assumption

that computational speeds are always sufficient to permit

continuous I/O operation. In inverted file systems,

however, computation of the intersection of lists may

prove sufficiently expensive to invalidate this assumption.

E. Wong derives formulae for estimating the average number

of comparisons necessary to calculate the intersection of

two lists.' We repeat his derivation here:

First, let A and B be unordered lists. Then, assuming

uniform distribution f.-r the location of ai in list B,

it takes an average of n B/2 comparisons to find ai

if a. is in B. If a. is not in B, it takes nBi 1

comparisons to ascertain this fact. The average number

of comparisons is then

nT, n nB• + (nA - nAB)nB

T (nA - nAB)nB

A 2 B

1E Wong, Time Estimation in Boolean Index Searchinq
(December 1961, in High Speed Document Perusal, AD 285 255).

73.

where n is the number of elements in the intersectionAB

of A and S.

When A and B are ordered lists, a logarithmic search

procedure can be adopted (i.e., successively dividing B

into equi-probable subsets). Again assuming a uniform

distribution, the number of comparisons needed for each

ai is approximately log 2nB if aieB and log2 nB + I

if aiXB . The average number of comparisons is then

T2 = nABlog 2 nB + (nA - nAB)(log 2 nB + 1)

= n Alog2B + (nA - nAB)

In order to calculate an intersection it is necessary to

determine of an element, a , of list A whether or not

a is a member of B. This is a familiar problem and

immediately suggests the use of hash (or scatter storage)

tables. We propose the following procedure:

Suppose nB < nA . Create a hash table containing all

members of B. For each element, a , of A use the

hashing procedure to decide whether a is a mei•ber of B.

ARB contains all elements of A for which this decision

is yes.

71.

¶ We observe that the average cost has three components.

T = cost of creating hash table for B31

T = cost of deciding for elements of A which are

in B

T = cost of deciding for elements of A which are

not in B

To obtain an explicit formula for this cost it is necessary

to choose a particular hash technique. For this application

the following technique is adequate: 2

(1) Generate a hash address from an entry by squaring

the entry and choosing some bits from the center of

the square.

(2) Resolve collisions by random probing.

We can now exhibit explicit formulae of cost:

T31 = nB(ch + (E - l)cr)

where

"2See Morris, R., "Scatter Storage Techniques",
Communications of the ACM, January 1968,

72.

"Ch = cost of generating a hash address

"c = cost of random prober

E = average number of probes necessary to hash

an entry of B

= - (!)log(1 - a)

a = load factor of the hash table

= n B/N

N = size of hash table

(See Morris for the derivation of E and of A below.)

If an element of A is also in B then the cost of the

decision is the same as the average cost of hashing an

element of B. Hence

T =n + (E -l)c)

If an element of A is not in B then the cost of the

decision is the same as the cost of adding a new element

to the hash table containing all of B. Hence

T33 = (nA - nAB) (ch + (A - 1)cr)

where A = 1
l -c

now T =T + T +T3 31 32 33

"73.

= nB(ch + (E-l)cr) + nAB(Ch + (E-l)cr)

+ (nA-nAB) (Ch + (A-l)Cr)

= (nA+nB) (Ch-c r) + Cr (nB+nAB) + A(nAr-nAB))

For example, suppose we allocate space for a hash table

one third larger than list B. Then

n
= B .75

N
E = 1.83

A= 4

Let us assume that

c11 4 comparisons

Cr 2 comparisonsr

Then

T lOn + 5.6Cn - 4.34n comparisons
3 A B AB

Let us now compare T3 with T1 and T . For purposes of

comparison let nA =

74.

nAB AB=2A AB A

T n xn 3 nx () x n
1- A A A 4A) A

T log2 (2n) x n log2(/2nA) x n log (n) x n
22 A A 2 A A 2 A A

T3 15.66 x nA 13./1 x nA 11.32 x nA

From this we can observe that if n A>23 , then T 3>T1

irrespective cf the number of elements in the intersection.
n

T lI/T 3=A under the most favorable circumstances for
1'T - 22.64

T in the comparison. As n increases, T1 becomes
1 A

proportionately larger than T . Similarly, if

A<211.32 then T 2>T3 irrespective of the number of

elements in the intersection.

For a wide spectrum of information retrieval systems,

list length will be less than 211 for most lists;

hence if maintaining the inverted lists in sorted order

incurred no additional cost, method 2 would be preferable.

in systems which permit deletes, it may be extremely

expensive to do this, and it would be necessary to judge

this expense against the possibility --f using method 3

(which improves relative to method 2 as the data base grows).

Method 3 is almost always preferable to method 1, and

systel, design evaluations based on method 1 are grossly

75.

unfair to inverted files. Note that it will not do to

sort the lists immediately prior to intersection. This

added cost would make T2 worse than T3 for virtually all

cases.

3M. Kochen, Preliminary Operational Analysis of
a Comouter-Based, On-Demand Document Retrieval System
Using Coordinate Indexing.

76.

XXV. Data Compression -- Another Encodement
for Inverted Lists

In Section XXI we discussed a method for increasing the

density of i-bits in each inverted list which abandoned

the exact correlation between bit position and item

number. Each list consisted of the item numbers themselves,

for exactly those items to which the descriptor represented

by the list applied. The volumetric effects of this

technique were discussed in Sections XXI and XXIII. It

is possible to compress lists even further, by taking

advantage of 'burst' characteristics within a list.'

In our previous calculations we have assumed that the

number of bits needed to represent an item in an inverted

list is log 2I , where I is the total number of items

in the system. Instead, we can use the following encoding

procedure for an inverted list:

(1) Record the first item number as a (log2 I) bit

quantity.

(2) Take the difference between adjacent item numbers

in the list.

(3) If there is one or more consecutive differences

'See Computer Programming Techniques for Intelligence
Analyst Application. AD 608 727, October 1964.

77.

of 1 (i.e., two or more consecutive item numbers),

record a 6 -bit code (SCI) , followed by the

number (+1) of consecutive numbers (less than 61).

(4) If step 3 does not apply but the difference is

less than 61, record the difference as a 6-bit

quantity.

(5) If the difference is greater than 61 but less than

or equal to 4095, record a 6-bit code (SC2)

followed by the difference as a 12-bit quantity.

(6) If the difference is greater than 4095, record a

6-bit code (SC3) followed by the difference as

a (log 2I) bit quantity.

The authors of Computer Programming Techniques fcr

Intelligence Analyst Application show a slightly more

than twofold reduction in their example as a result of

this technique.

This technique could be applied selectively. In particular,

certain inverted lists will tend to grow large (some

authors suggest a Zipf distribution of inverted list

lengths.) The compression would tend to be most

effective for such lists in which the density of applicable

items is highest. Furthermore, for a wide spectrum of

information retrieval systems in which item numbers are

assigred sequentially on input, there is reason to expect

78.

bursts to occur as a result of additions to the system

of groups of items related to the same subject or subjects.

In any case, by reserving one bit at the beginning of each

inverted list, the system can adaptively decide for each

list whether the compression technique should be employed.

The bit informs the system -- at retrieval or update

time -- how to interpret the list. This may involve

more computation time and this must be weighed against

the reduction in the number of bits transmitted.

79.

XXVI. A Grantmar for Defining Graph
Representations of File Structures

In this section we present a formal apparatus for defining

models of file structures. We do not pretend to have

mathematical techniques which permit a formal analysis

of models defined in this way. At this point in time,

the formal apparatus serves only as a definitional vehicle

-- ruestions of cost and efficiency of utilization under

varying usage statistics and hardware milieus must be

answered by performing a mathematical analysis based on

formulae such as those derived in earlier sections of

this report. Nevertheless, a formal apparatus for

defining models of file structures is of value, because

such definitions can provide significant insights and

facilitate the comparison of diffeient structures meant

to accomplish the same task.

The state of a system is formalized as a finite undirected

graph with labeled nodes; every node has a label, ralled

the node type, and several nodes may have the same label.

ouch a graph, when intended to represent a system state,

.s called a configuration. The nodes are interpreted as

system parts; an arc is interpreted as a relation between

two parts. The labels correspond to classes of parts

which have identical possible contexts. Thus the nodes

corresponding to the cells of a memory might have identical

80.

labels, for each cell has the same contextual possibilities:

each stands in relation to exactly one value and exactly

one of the cells stands in relation to a memory exchange

register. It will be observed that "part" means logical

part, not physical part; a part is anything which can

participate in an observable relation. Parts may be

things, values, states, etc.

The appearance of an arc between two nodes asserts the

possibility of conditioning some occurrence, internal or

environmental, upon a relation between the two corresponding

parts.

The formal apparatus of n-grammar is built around the

site-spec, which -- like the configuration -- is a finite

undirected graph with labeled nodes.

A))-grammar defines a class (perhaps infinite) of

configurations. Members of this class are said to satisfy

the grammar or be grammatical. The set of configurations

which satisfy a grammar corresponds to the class of

possible system states for the family of discrete

information systems described by the grammar.

A)-grammar sets forth the local laws which constrain

relation among parts; for example:

81.

- Every row, column pair has exactly one

value holder.

Every bit position holds either zero or

one, exclusively.

- Every integer has a unique successor or

is marked with a "last" marker, exclusively.

- Every control counter holds exactly one

address.

- Every binary tree element has at most two

successors.

- Every value may be held by an arbitrary

number of value holders.

Formally, a D-grammar is a finite list of grammar rules.

There are two types of grammar rules:

Type A rule: a site-spec which properly

contains a single circled

site-spec.

N -. R F

Type B rule: a site-spec containing no

circled site-spec.

N,

82.

We call the circled site-spec in type A rule the subject

of the rule. A rule of which s is a subject will be

referred to as an s-rule.

Site-Spec Satisfaction

We say that a site-spec S is satisfied in a configuration

C , or S has a satisfaction in C , if there exists a

1-1 map M from the nodes of S into the nodes of C

such that the type of every S-node is the same as that

of its image under M , and for every arc between nodes of

S there is an arc between the corresponding inage points

in C . The map M is called a satisfaction mtap or

satisfaction of S in C . Any arbitrary collection of

nodes in a configuration is called a pjace, and the image

of S under M is in particular called a i4e2of

satisfaction.

A place p in a configuration obe2 s a rule r if (11 it

satisfies the subject of the rule, and (2) is contained

in a place p' which satisfies the rule, with the two

maps agreeing on the subject; D' is then referred to as

a place where p obeys r

Gcfarxnatical it

A configuration is said t- L,• ýrammatical if and only if:

83.

(1) If a place p satisfies a subject

s in the grammar, then p obeys at

least one s-rule in the grammar.

(2) For every arc (p,q) in the con-

figuration, there must exist a rule

r satisfied in a place including p

and q , such that the inverse images

p' and q' under the satisfaction

map are connected by an arc in r .

(3) There are no satisfactions of type B

rules in the configuration.

The way in which the definition works might best be

clarified by example.

In the absence of other rules

with the same subject, this rule
A -. .-. B asserts that every A has at least

one B.

A B
-I

B Every A has exactly one B.

"B

84.

Every A has at least one B or

0 at least one C or at least one

A B and one C.

A-B Every A has exactly one B or

A -exactly one C, but not both.

"-C

"B
A,

A.

c

A Simple File Structure

Consider the following (info'rmally characterized) file

structure:

1. A file consists of named records and

85.

named properties.

2. No two records (or properties) of

the same file may have the same

name.

3. Each record has one data position

for each property of the file.

4. Each property specifies a domain

of possible values.

5. Each data position always contains

some one value belonging to the

value domain specified by the

property corresponding to that

data position.

Cl* is a configuration which represents an instance of

such a file structure.

* To facilitate the illustration of configurations a
convention has been adopted to reduce the number of arcs
in the drawing. According to this convention, two nodes
are connected (they "associate") if it is possible to
reach one directly from the other without turning sharp
corners. Hence in Cl all records are connected to the
file, but riot to each other.

86.

Cl: N N

Mnemonic Aid

d 'v data position

r F ' filer r

N N % name

vv V V P % property

r • record
N -. . P• X

,- X • v value

d •d v Y X • value domain

in this instance the file consists of two records and two

properties. One property specifies a value domain

consisting of four values; the other specifies a value

domain of two values.

The following grammar suffices for defining the class of

configuration informally characterized above:

1: r F .. -P

A fil1 ha, at least one record and property.

2:
N rF r ' r

N F

A record belongs to exactly one file and

has exactly one name.

87.

N
3: N-- P - F P

F ' X

S P p *,
"" X

A property belongs to exactly one file,

has exactly one name, and specifies

exactly one value domain.
r

Z r/

P v

r F d d

N\p "' v

A data position is coordinated by

exactly one (record, property) pair of

a file and contains exactly one value

from the value domain specified by

the property.

5: (r~--F -P r -F-- P

A (record, property) pair of a file

coordinates exactly one data position.

88.

6 P
N N r

N "_N_ F
r P

A name associates with at least one

record or at least one property or

both. No two records (properties)

within the same file may have the

same name.

v- x
7:

A value associates with at least one

value domain.

8 : v x _ _8:XP

A value domain associates with at least

one value and at least one property.

It is interesting to consider briefly some interpretations

of the class of configurations defined by the abovy

grammar.

Suupose that a list of event types is defined such thlit

tie only changc possible -• a confijuration i , t,,

89.

reassociation of data positions with values. In other

words, given a starting configuration, the number of

records and properties in a file would remain constant,

the relations between properties, value domains, and

values would remain fixed, but the particular value

associated with each data-position could change.

A conventional fixed length, fixed format table behaves

in such a nanner. The lines in the table correspond to

records. The fields in the table correspond to

properties and the fields specify a value domain by virtue

of the number of bits allotted per field. The only

variable aspect of such a table is the set of values

contained in the field positions on each line.

An Interpzetation of Configuration Cl as an instance of

a Fixed-Length Fixed-Format table:

Gene Tom

Linel1 2 0
Line 2 0 1

2 bits 1 bit

Gene is the name of a property which

specifies a 2-bit domain.

Tom is the name of a property which

specifies a 1-bit value domain.

90.

Line 1 is the name of a record.

Line 2 is the name of a record.

Suppose now that the list of event types is extended to

permit addition and deletion of records to the file.

A conventional, simply-formatted tape file behaves in

such a manner. Every record in the file has the same

format: each record consists of a set of values, one

per property as specified by the format. The only

variation from zecord to record is the particular value

set. However, the number of records in the file is

permitted to vary.

Suppose the list of event types is further extended to

permit addition and deletion of properties and value

domains. A system with dynamically definable variable

length tables would behave in such a manner. A data-base

with dynamic restructuring capabilities might also be

characterized in this way.

File Hierarchies

The grammar presented above provides a basis for con-

structing more sophisticated systems. As an example, the

following grammar defines a class of configurations

91.

suggestive of the data-base structures obtainable in ADAM.-

1: F r (From rule 1 of previous

grammar)

2 zN F

N FNF

(From rule 2)

3: -r
N rN

r

(From rule 6)

C2 is a configuration from the class defined

by the above rules.

N N

C2: N Mnemonic Aid

F- F " file

N name

r r r " record

We will call Lhis class of configurations

a File Unit.

'ADAM - A Generalized Data Management System. Paper
presented at SJCC 1966, by T.L. Conners, The Mitre Corporation.

92.

4: P

A format has at least one property.

5:

N -, N

(From rule 3, previous grammar)

6: p

N~P

(From rule 6)

7: 5 x

(From rule 7)

8: v ,P

(From rule 8)

C3 is a configuration from the class defined

by rules 4 through 8:

93.

C3:

N - - P X

I V V V V

\P X

V V

We will call this class of configurations a

Format Unit.

9: F r

In combination with rule 1, this guarantees

that every file will have exactly one format.

v- --- X r P

10: d d

r P d ~r I-'v

v

(From rule 4, previous grammar)

Ii:p -- ý-- r

P-(-F r)
I-

d "'

(From rule 5)

94.

Rules 9 through 11 may be thought of as

defining the way in which File Units and

Format Units connect. C4 is a configuration

from the class defined by rules 1 through 11.

Refer back to configuration Cl for comparison.

C4:
N N

---P X

We now extend the grammar rules to permit

file hierarchies.

5a: ' \ 1// /
N P ,-

Y

95.

Previously, a property specified exactly

one value domain. The addition of the rules

in 5a permits a property to specify either

exactly one value domain or exactly one

format domain (Y) .
F

l~a: Y/ d

d P /F
F

r

dv

Previously, a data position contained
C

exactly one value from the value domain

specified by the associated property. The
I,

addition of the rules in 10a permits an
I

alternative: a data position may specify

exactly one file; the format of that file

relates to the property associated with the

data position, via the unique intermediary

format domain Y
4

12:

A format domain associates with a unique format.

Rules 5a and 12 may be thought of as defining the way in

which Format Units connect tc each other. Rule 10a

extends the way of.connecting Fiie Units to Format Units

and allows files to have sub-files.

Rules 1 through 12 define a class of configurations of

which C4 is surely a trivial instance. A more interesting

example is configuration C5.

N N

C5:

Mnemonic Aid r r

d " data position N- P (, X
Cd i d -v vv v

F " file

N , name N I P X x
Ad

P % property

r record N/--d ----

v ' value /

X value domain 7 N N N N

Y " format domain I

Sformat
r r r

N- - P N

N __ -

d , V

97.

Sub-files as represented here are analogous to ADAM

repeating groups. 2

In configuration C5 we have represented a file with two

records. The format of that file requires that each

record of the file have two data holders that contain

unique values and one data holder that specifies a

unique sub-file. The values must be chosen from the

appropriate value domain, as specified by the properties

of the format. All sub-files must have the same sub-

format as specified by the single P----Y in the format.

Hence, the two sub-files exhibited are forced to associate

with the appropriate sub-format, and this in turn guarantees

that their records (one sub-file has a single record, the

other has two records) all have two data holders containing

unique values from the appropriate domains.

Once the Format Units have been chosen, tne grammar allows

(1) the number of records in any file to be variable, and

(2) the free choice of which value (in the appropriate

domain) a data holder associat~e with; but the grammar

fixes all other aspects of the structure.

2 Conners, o2 cit.

Q .

XXVII. A Criti Tue of Balanced Trees

in preceding sections we have discussed cross-indexi.ng

in considerable detail, but without ever directly

considering the problem of converting a descriptor into

a code or list address. All of the computer-hased

indexing systems which we have dealt with require some

oiort of dictionary to perform this conversion. Tn thig

section we will examine the use of balanced trees -- the

technique employed to accomplish this conversion in

1ULTI-LIST. As is often the case with information

retrieval systems, the justification for this technique

is based on a number of questionable assumptions about

usage statistics and costs, and we shall, want to challenge

these assumptions or at least make explicit their

implications. We shall then show that, even granting these.

assumptions, there are other, more efficient techniques.

Finally, we will proposc an alternative technique.

Tha following quote will give some idea of the relative

importance of Landauer's work in the MULTI-LIST system:

The topic of this dissertation evolved from
the research on new methods of computer memory
organization that potentially lend themselves
to efficient information storage and retrieval.
An important place in this area is held by the
MULTI-LIST organization of the memory, which
is an extension of the list-type associative
memory conceived originally by Newell, Shaw, and
Simon for the simulation of human thought processes
in learning and problem solving. The tree, which
is a basic building block of the MULTI-LIST system,

99.

constitutes the central notion of this
dissertation. '

Let us, then, briefly outline the use of trees in MULTI-

LIST. M1ULTI-LIST grows a tree for the set of descriptors

in the system. All nodes of the tree will have some

fixed number m of branches. The tree is grown (i.e.,

descriptors are added) in such a way that the tree is

always balanced -- that is, each level is completely

filled before the next level is begun. Thus every path

through the tree visits either n or n-l (the lowest

level may be incomplete) nodes, where n = the number of

levels in the tree. Each node consists of m (m = the

number of branches at each node) catenae. Each catena

consists of a key and a pointer to some node in the next

level; the pointers of emerging branches point to lists.

When the system must locate the list for some descriptor

(i.e., in processing a query), the tree is used as

follows: The descriptor is compared arithmetically with

the key of the first catena of the root node; if it is

less than or eQual to the key, the pointer in that catena

is follo'wed to a node in the next level. If the descriptor

is greater than the hey in the first cat(na, it is

compared to the koy in the secnnd c-atena of the node; if

":altcr i. Landauer, The Tree as a Stratagem for
,'utomc'-tic Information Handling, Ph.D. TVesis, Univnrsity
ot P'nnsv',Ivan a, 190 2. Page xii.

100.

it is less than or equal to that: key, the associated

pointer is tollowed; if not, the descriptor is compared

to the key in the next catena; and so forth. The tree is

constructed in such a way that the descriptor must be

less than or equal to at least the last key. The same

procedure is followed at the next node encounterId, and

so forth. The pointer taken at the lowest level (ice.,

upon emerging from the tree) will lead to the list for

the descriptor. Suppose, for example, that the possible

descriptor names are the integers, and that we have a

system which thus far contains the following descriptors:

4, 5, 13, 17, 19, 23, 32, 34, 37, 41, 42, 43, 44, 45,

52, 56, 59, 61, 62, 73, 75, 76, 77, 79, 83, 91, 98.

Figure XXVII-I shows a tree for this example, with m

(i.e., the number of branches at a node) = 3. n (= the

number of levels) = 3, and F (=the number of emerging

branches) = 27.

Landauer derives cost measures for such tree ,tructures --

primarily in order to determine the optimum value for m

He begins by asserting that retrieval is the only operation

which need be considered in evaluating system costs:

The management of an information handling system
nvolves three basic operations: filing, retrieval

and deletion of an item. Whereas filing and
deletion are operations that keep the file up-
dated, and are therefore inherently "one shot"
onperations,, retrieval will in all probability
ht, a r,-currorin operation, i.e., a qingle item

101.

7 co-

o jC4

0

0K

1 4

H r-4 C1

004

Cz-AMP.

'lop

- - --- - -- N

- -- - -- - -

C- -- -- -- l p

102.

may be retrieved many times within its life-
time in the file. Consequently the pre-
ponderance of the retrieval operation with
respect to speed and efficiency is obvious.
Hence the conditions for optimum efficiency
will be obtained from the task of information
retrieval, specifically from a single search
of the file.1

Landauer then defines the cost of a search as the product

of the time per search (which in turn is defined solely

by the number of comoarisons made during the search) and

the system cost. System cost is assumed proportional to

memory size alone.

The average search time T (i.e., the average number of

comparisons per tree-traversal) is given as:

m log F m+l
T = n Z e

i=lm logem 2

The cost of the tree in catena units is:

F F F m(F-l)
C = F + - + 2 + ... + ni_=

m m m m-i

The product of C and T is the inverse of the efficiency

m(F-l1 m+l loge F
I=CxT= -

m-1 2 logem

2Landauer, op cit. Page 13.

103.

dI
T yields a minimum at m = 5.25 approximately.

This value of m is the branching factor corresponding

to an optimum in retrieval efficiency."' 3 On the other

hand, "the differentiation of the traversal-time, T

with respect to m yields a minimum at m = 3.5

approximately. However, a plot of the corresponding

curve shows that the minimum is rather broad and m = 5.25

that was obtained above to minimize the product of cost

and time lies well within the range of the broad traversal-

time minimum. "4

We would like to raise three fundamental objections to

Landauer's arguments. Let us first deal with his assertion

that only retrieval is significant in evaluating system

efficiency. To begin with, the characterization of

filing and deletion as "inherently 'one-shot' operations"

cannot possibly be a universal property of all information-

handling systems. On-line command and control or intelligence

systems require continuous "real-time"updating facilities,

and the filing and deleting of information which is never

actually "retrieved" can be a common phenomenon. Promoters

of MULTI-LIST have in fact argued for its use over other

systems in such contexts just because of the "relative

3Ibid, page 15.

'Ibid, page 16.

104.

ease of update" in MULTI-LIST. By leaving out the cost

of filing and deletion in what follows, Landauer, in

effect, restricts the validity of his work to situations

in which (presumably after some initial phase of system

creation) there are no updates. (The reader is referred

to the formulae in Section XXVII, in which the role of

the retrieval/update ratio is explicitly expressed.)

Suppose we accept this assumption. If filing and deletion

are not cost factors, we may structure the information in

any way we choose, without having to account for the cost

of the structuring procedure. We might then, for example,

consider the following structure: a single sorted list

of associative catenae, ordered by key magnitude, just as

Landauer suggests, but searched by binary search technique

instead of serial comparison. In this case the space

required for associative catenae is clearly a minimum

(equal to F , the number of lists that emerge from the

tree). This arrangement can be viewed as identical to

Landauer's prescription, but with m set equal to F

so that we have a one-level tree. The number of com-

parisons in a traversal using binary search technique will

of course be log2 F , rounded up which is a significant

improvement over Landauer's (F+1)/2 . In fact -- if we

correct Landauer's formula for the number of comparisons

per search (see below) -- log 2 F will correspond roughly

to the cost of a MULTI-LIST search through a tree with

105.

m = 2 (i.e., a binary treel, which is a minimum for the

number of comparisons. Hence the single sorted list of

associative catenae, ordered by key magnitude and searched

by utilizing binary search technique, requires no more

space than the most space-conservative balanced tree and

no more comparison time than the most comparison-con-

servative balanced tree. In short, if we accept Landauer's

assumptions and cost-criteria, it is superior to the

balanced tree scheme regardless of the value of -i

-- whether it be 2, 5.25, 3.5, or any other number.

It may be expensive to generate or maintain a fully sorted

list of this size, but Landauer's formulation of the

problem precludes considering generation or maintenance

as cost factors. Again, there may be difficulties

associated with the fact that a single sorted list cannot

fit into main memory, but Landauer assumes that the

memory is a one-level, truly random access device. If

there is a set of assumptions about usage statistics and

hardware which justify Landauer's conclusions, they are

certainly not the assumptions which he makes. In fact

there may be no assumptions which lead to his conclusions.

Our second fundamental objection is to Landauer's definition

of the cost of a search as the product of the number of

comparisons and 'he "system cost", where the latter is

106.

proportional to the amount of memory required. Clearly no

computer installation operating in batched sequential

mode would ever charge rates based on such a formulation.

One cannot in general assume that there will be a

reduction in real cost when less than the available

memory is used. Even a time-shared facility could not

charge rates on such a basis. For example, in any real

computing milieu, main memory is limited; if it is

overflowed, input/output delays may cause enormous in-

creases in time when secondary storage is utilized.

Landauer's formulation, of course, does not evaluate such

possibilities. In general, the relative cost of memory

space and computational time will vary enormously from

one computing milieu to another, so that Landauer's

product -- although mathematically very convenient --

will not be very useful as a measure of efficiency.

Before leaving MULTI-LIST we must raise one further

objection to Landauer's formulations. Based on the

assumption that the keys of a node have equal chances of

being selected, Landauer asserts that the average number

of comparisons at a node will be m+l However, there2 "

is no need to compare a descriptor against the mth

catena of a node (except, possibly, at the lowest tree

level): if the first (m-l) comparisons fail, merely

follow the mth pointer. In other words, the average

107.

number of comparisons is (m+l)/2 - 1/m (except, possibly,

for lowest level nodes), and the computation time involved

must lie between (m+l)/2 and (m+l)/2 - 1/m . The

corrected probability estimate yields (for trees with

large F , at least) a comparison time minimum at m = 2

i.e., a binary tree -- and not at m = 3.5 . This ad-

justment also has repercussions for the evaluation of the

minimum for Landauer's product-formulation of efficiency,

of course.

This critique would be incomplete if we did not suggest

some alternative to the balanced tree as a decoding

technique for descriptors. We have already suggested a

formulation involving binary search techniques applied to

a single sorted list, which, given Landauer's assumptions,

is superior to his solution. However, the critical factors

of generation and update, ignored by Landauer, are known

to be expensive functions when working with a single

sorted list. The following technique is sup- ror both for

Landauer's rather narrow assumptions and for more general

assumptions.

Reference keys (i.e., descriptors) are decoded by using

hash techniques. Costs here depend upon calculation time

for the hash function, search time in the hash table, and

storage space required by the table. Extra space is

198.

required in the table in order to maintain low search

times, but it has been shown that the use of a good

hash function (such as radix conversion) permits 80%

utilization of the hash table, with searches requiring on

the average less than two comparisons in the hash table.

Entries in the table will contain the key and a pointer

to the appropriate list. Hence the table will require

only slightly more space than the fully sorted list

(Landauer's m = F case). Time will be approximately

two comparisons + hash function evaluation. The larger

F is, the more favorably this technique compares with

binary search and balanced tree search. There is no need

for sorting. Hash table expansion and contraction are the

only updating functions that have a cost significantly

greater than decoding. (Addition or deletion of a single

key involves only slightly more cost than decoding a key.

Repeated addition or deletion, analogous to generation and

update, involve table expansion and contraction.) Table

expansion is handled by recognizing when the hash table is

80% full, then requesting that the hash function increase

the modulus it is using (i.e., increase hash table size),

rehashing the current entries in the table, a!,d continuing

from there. Contraction is handled by the same urocedure,

except that the i-odulus is decreased when the table i -

sparse. The whole hash table need not fit in core: high

or-Jer bits of the ovaluated hash uncti on determine the

109.

appropriate segment of the hash table. A simple

mechanism prevents oscillation between two adjacent

hash table sizes. In the next section we will discuss

this technique in more detail.

110.

XXVIII. Hashing and Secondary Storage

This section is concerned with the use of scatter storage,

or hash techniques to retrieve information from large

data bases. We will draw a distinction between scatter

index tables, where each entry contains a pointer to the

desired item, and scatter storage tables, where each

entrý is the desired item. We are particularly interested

in the case where both the data base and a scatter index

table giving access to the data base are so large that

they cannot be contained in core. This situation commonly

occurs in the environment of a time sharing system on a

paged machine with a disc or drum secondary store. In

6uch an environment the entire data base would reside in

secondary; a scatter index table would primarily reside

in secondary but it would be possible, in general, to

lock a few pages in core. We will be concerned with two

formats for the data base: fixed length and variable,

unbounded length. Since disc access times and transfer

times are typically 4 to 5 orders of magnitude greater

than memory cycle times we are primarily concerned with

minimizing the number of disc accesses so as to both

increase throughput rate of the information retrieval

sy':te- and decrease response times of individual requests.

First, let us assume that the entries of the data base

are of fix,•d length. Two widely divergent methods of

iii.

access are applicable here. One is to construct a scatter

index to secondary storage; the other is to organize the

data base as a scatter storage table and access the data

base directly.

Let us first consider the use of a scatter index table.

Since accesses --e made randomly there is no special

advantage in locking any particular page in core; hence

we suppose that the entire table is in secondary storage.

If we use either random probing or chaining as a collision-

resolving discipline then we can expect the (i+l)st

probe to be in the same page as the ith probe with

probability where 2m is the number of pages that

the table occupies. We must also allow one probe to get

the item from the data base after its index is learned.

The expected number of disc accesses for each discipline

is therefore:

random probing

E =2 21lnv--
rp in(l-o) -

chaining

E ch = 2+t/m 1(L
wi 2th t

where -4 is the table dersity.

112.

If we use the next empty place method of resolving

collisions we only access additional pages when the first

probe lies near the end of a page. (Since even for a

table density of .99 the expected number of probes is

50.5 and since a typical page size is 512 words we need

not consider the possibility of accessing more than two

index pages in order to calculate the expected number of

accesses.)

next empty place

E e = 2 + ao[½ I--}- . i

where 2 n is the page size.

Assuming an index of 256 pageýs of 512 words each we get

the following table:

Table 1

S.5 .6 .7 .8 .9

random probing 2.39 2.53 2.72 3.01 3.56

chaining 2.25 2.30 2.35 2.40 2.45

next entry place 2.00 2.00 2.00 2.01 2.01

From the table we can observe that even though the next

113.

empty place method is computationally the least efficient

it is nevertheless the most suitable as far as disc

accesses are concerned.

We now propose a variation of the scatter index table

which is computationally efficient and which requires no

more disc accesses than the next empty place method.

This method uses a computed hash code of m+n bits.

The first m bits are used to index a locked-in table

of 2m entries, each of which is a page address. The

addressed page is brought into core, and the low order

n bits are used as a key to locate the entry in this

page. Any one of the three collision-resolving methods

may be used. We emphasize that, whichever method is

chosen, it is only applied within the one page (e.g.,

the pseudo-random number generator used in the random

probing method generates integers between 1 and 2n

Obviously, this method will not work if more than 2n

entries map into the same page. We now show that for

acceptable table densities this overflow condition is so

improbable that it may be safely ignored. Later we will

present a method of avoiding overflow entirely.

Since hash addresses are assumed to be computed randomly,

the probability of an entry being mapped into a given
1

page is - . We have, in fact, a binomial distribution.2 M

114.

Writing Pk for the probability of k entries mapping

into the same page, we have

(1 (L)k (1 1J oN-kPk k 2-

where N = 2m+n is the number of places in the table

a , as usual, is the table density

Now

(1) Pr [overflow] = 1-Pr [no overflow]

2n
=- 1 Pk

k=0

1 2We note that (aN-m) /2aN is large in general, so that
2

the Poisson approximation is not applicable. However,
1 1aN,-(l--) is of reasonable magnitude (e.g., for the

case of 256 512-word pages and a = 2 , it is 255), and
2

so we may employ the normal approximation. We then have'

(2) Pr [overflow] r 1- #(x n. - x 1)I 2 T 2- 1

IW. Feller, kn Int-oduction to Probabllity Theor_•
and its Applications, Vol. 1, page 172.

115.

where xt = (t-a2n)h

I ~1 -1
h = [(x2' (1 - -) -7

We present a table of these probabilities for the case

of 256 512-word pages with various values of a

Table 2

- .5 .6 .7 .8 .9

Pr[overflow] <8x10- 2 4 <8xlO-24 l.8xlO- 1 6 1.6x1(j- 7 .008

We observe that for a<.7 , it is so improbable that

overflow occurs that the possibility may safely be ignored.

Note that with this method exactly two accesses are

required, one to retrieve a page of index table and one

to retrieve a page from the data base.

We now discuss a method which eliminates the possibility

of overflow. Even in cases of high table density, over-

flow is so improbable that relatively few pages are

involved. We can eliminate overflow by splitting any

page with 2 n entries into two parts and writing one

part on a new nage. An obvious way to do this would be

to compute originally a hash code of n+m+r bits, saving

the r extra bits with each entry. Then, Then a page

116.

is split into two pages the low order bit is examined

to determine in which of the two pages the entry is to

go. Thereafter m+l bits are necessary to determine

which index page should be brought in from disc. Since

m bits are used ordinarily the problem is to determine

when m bits are insufficient. This is a table look-

up problem amenable to scatter storage techniques. We

create a small locked-in hash table (e.g., 64 entries

for a table of 256 pages) using some of the m bits

used to identify a page as a key. (Notation: we call

this table a cluster-buster table.) Entries are made

in the table whenever a page is split, each entr, •eing

the address of the new page which now contains part of

the old page. When adding a new item or looking up an

old one, reference is first made to the cluster-buster

table. If no entry is found, then the page has never

been split and its address can be found in the locked-in

index table. If an entry is fc nd, then the (m+l)s t

bit of the key is examined. If the bit is 0 then the

first m bits of theý key are an index to locate the Page

address in the locked-in index table. If the bit is 1,

then the small hash table entry contains the page address.

'Note that this procedure is reversible. That is, if

sufficiently many deletions are made in the tw.%o halves of

a spiit page, then the twe halves may be recombined into

117.

one page and the entry deleted from the cluster-buster

table. Note also that this procedure, with some

modification, may be applied to previously split pages

which have again filled up. Hence it is possible to have

pages in the index which have split severa times, whereas

other pages are only partially full. (In order to im-

plement multiple splitting the following change must be

made: the entry in the cluster-buster table contains

(1) the number of additional bits needed to identify all

the pages into which the original page was split; e.g.,

if a page is split into four pages then two additional

bits, m+2 bits in all, are needed, and (2) the address

of a locked-in auxiliary table, indexed by the additional

bits, which contains the disc addresses of each page.)

These two features (i.e., recombination and multiple

splitting) aliow a single index table to accomodate a

varying skewed data base. In the event that additional

locked-in space in core is available and that it is not

expected that a page will ever have to be split more than

once, the cluster-buster hash table can be replaced by an

indexed table; this would use space inefficiently, but the

time advantage of indexing as opposed to probing a hash

table might justify the waste. For a data base of in-

determinate size the cluster-buster technique can be used

to trigger an overall system expansion. When the cluster-

buster table has more than a certain percentage of entries

118.

the entire system can be doubled. Those pages which have

already split will not be split again and all entries for

pages which have split exactly once can be deleted from

the cluster-buster table.

Note that use of the cluster-buster table, just as

ignoring improbable overflow, guarantees that precisely

two disc accesses are required. We now investigate the

disc access efficiency of each method. Since the collision

resolving method within each page of index table does not

affect the probability of overflowing that table, there

is no reason not to use the most efficient method --

chaining. Similarly there is no reason not to use

chaining within the cluster-buster table. Disc access

cost is a function of the number of probes required to

access an item. If k items are mapped into a page,

then the expected number of probes to access an item on

that page is 1 + k . We have previously calculated

that pk 1 the probability that k items are mapped into

a page, obeys the binomial distribution. Hence, ignoring

overflow

2 nk k
E prb I Pk (l +nEprobe k=O

aN k
< p(1+

k=O k 2n+1)

119.

aN 1 aN- pk

k=0 2n +--- k=0k

+1 1= 1 +--N--

2 n+l 2 m

2

The analysis of the cluster-buster case is somewhat more

complicated. We will not consider the case where it is

necessary to split a page more than once. The probability

of such an event is so remote that, should it occur, it

can be argued that the hash function is not acting randomly,

in which event none of this analysis is valid anyway. We

write p' for the probability that when a page is split

into pages x and y , then page x has exactly k

elements. We have

101 = I2ný(• 2n

Pk =k ck

since entries from the split page go into page x with

probability 1 . The expected number of probes in a page2

with k elements is 1 + k .

Hence

2 +1 k 2n-k++1
1~ 2T (1+2

120.

is the expected number of probes to access an element

which maps into a split page. Therefore the total

contribution from all split pages is

E = Pr[overflow] 2 (1 + -) + (1 + 2-)
1 k0 2L n+l 2n+lj

2n

Pr[overflow]- I kk=0

5
= - Pr[overflow]4

The contribution from the unsplit pages (i.e., the pages

where overflow has not occurred) is calculated as above.

2n
E= kE2 = (1 - Pr[overflow]) I0 + n-+

cN k oaN k=/
(1- Pr[overfw]) k(l + Pk - n(flw +%k=0 2n+l k=2n+lpk

caN 1 oN 3 aN
(1 - Pr[overflow]) k + 2 n+l k k k=2n+l Pk)

N_ 2 kpk A- +

(1 - Pr[overflow])(i + - 3 Pr[overflow])
2 2

Hence

Eprobe ; E1 + E2

_ 5 3
< 1 + a - Pr[overflow](2• + - - Pr[overflowl)

- 2 2 4 2

121.

Figure XXVIII-1 is a graph of the term in parentheses

as a function of a (using the normal approximation to

calculate Pr[overflow] and assuming a table of 256

512-word pages). Note that this term is always positive.

We see that if we either ignore improbable overflow or

use a cluster-buster table, we require fewer probes than

the most efficient collision-resolving method. To offset

this saving we have for one method the possibility

(admittedly improbable) of system blow-up because of

overflow and for the other the expense of using the

cluste~r-buster table. In either case we have the expense

of accessing an indexed table.

122.

Figure XXVIII-1

1.7

1.6

1.5

1.4

1.3

1,2

1.1

1.0

.9

.8

.7

.5 .6 .7 .8 .9 1.0 a

122.

Figure XXVIII-1

1.7

1.6

1.5

1.4

1.3

1L2

1.1

1.0

.9

.8

.7

.5 .6 .7 .8 .9 1.0 a

[0

4 123.

In order to more readily compare all these methods we

shall calculate computational costs (as opposed to costs

of disc access which have already been presented). We

define primitive costs as follows:

c = cost of compare

ch = cost of computing a hash address " 4c

cx= cost of accessing a table through an

index register % c

c r = cost of pseudo-random number generator

" 2c

cch = cost of following a chain ' 3c
ch c

c = cost of incrementing an address \, -
1 =2

Each of the following costs falls naturally into two

parts: (1) the cost of choosing a disc page to bring

into core; (2) the cost of locating an item within that

page. The second of these costs is enclosed within D1 in

the following formulae.

c 1= cost of random probe scatter index

= ch + {cx+C+(Cr+cx+c)(-! ln(l-a)-l)}

""2c - 4c(-) ln(l-a)

k=

124.

c 2 = cost of chained scatter index

= ch + {Cx+C+(CchC 2(a) H

S6c + 2cm

c3 = cost of next empty place scatter index

= ch + {c +c+(C +C)I(-1-)}
h 1 21-Ca

=4 f-a

C4 = cost of paged scatter index ignoring

overflow

= ch + c + {cx+C+(ch+C)(2)}

S7c + 2ca

c 5 = cost of paged scatter index using hashed

cluster-buster filled to density1

< ch + C + c + Pr[overflow] [(c+c).! + c +21

+ (l-Pr[overflow]) (Cch+C)2 +

5 o3
X 2- Pr[overflowl 2+i-f-r~overflow)])j

125.

S9c + 3cc +c Pr[overflow](9Pr[overflow]-3c--)
4

c = cost of paged scatter index using indexed

cluster-buster

< + c + c + Pr[overflow](c+21cx)

+ (1-Pr[overflow])cx + {cx+C+(Cch+C)

× - Pr[overflow](12 4-!Prfoverflow])l

S9c + 2cc + c Pr[overflow] (6Pr[overflow]-2a--)
2

These formulae are, of course, only approximations and can

easily be obtained by considering the operations that are

necessary to access an entry by each method. Note that

they compute the cost of accessing an entry which is in

the table. The cost of trying to access an item not in

the table is higher. The following table gives these

costs as a function of a for the case of a table of

256 512-word pages.

126.

Table 3

a = .5 .6 .7 .8 .9

cl/C 7.54 8.11 8.88 10.05 12.23

c 2 /c 7.00 7.20 7.40 7.60 7.80

c 3 /c 6.75 7.13 7.75 9.00 12.75

c4 /c 8.00 8.20 8.40 8.60 8.80

c 5 /c 10.50 10.80 11.10 11.40 11.62

c6 /c 10.00 10.20 10.40 10.60 10.75

In most systems, however, disc access time is of greater

concern than computational cost. In that case, ignoring

overflow or using a cluster-buster is the best method,

with the next empty place method close behind. We now

consider the costs involved in organizing the data base

as a hash table and accessing items directly. Items in

the data base are assumed to occupy 2 r words, 0<r<n

We require 2 m+r pages to store es many items in a

scatter storage table as could be accessed by 2m pages

of a scatter index table of the same density. We note

immediately that only values of a close to i can be

considered, unless we are willing to waste huge amounts

of secondary storage (e.g., for r = 4 , m = 8 , n = 9

and a = .8 , we waste approximately 51.2 pages (27K words)

using a scatter index table and 819.2 pages (410K words)

using a scatter storage table. If items are larger, and

127.

in real use (e.g., inverted lists in an information

retr.ieval system) they often will be, the waste in a

scatter storage table at any density not close to 1

becomes intolerable.) If we use either random probing

or chaining, the probabaility of the (i+l)st probe being

in the same page as the ith probe is 1 Hence
2

the expected number of accesses required is:

random probing

E + m+r -(_ n(l-a)-l)
rp 2 m+r a

chaining

2 m+r-l aEch 2 m+r 2

if the next empty place method is used we must use a

more careful analysis. Let E = _ . Then n-_1 is
2 I-O 12"

the minimum number of disc accesses required. Now (E-1)

- LE-1 2n-r is the remainrar of E-1 divided by 2 n-r12n-!l

(E-l) -2 E-I 1 2 n-r

and hence [2J is the probability that

2 n-r

this remainder will overflow a page boundary, i.e., the

probability that 1 more than the minimum number of disc

accesses will be required. Hence

128.

P'ýxt empty place
E-1 E +1 2n-rE=•E~~ + _L-_ _

ne 1 n-r]

2 n-r

r : E -I E-1

E-1
2 n-r

=1 + (1)(a
2 n-r+l1-a~2lc

Note that this is precisely the same formula as derived

above where we discounted the possibility of a search

going over more than one page boundary.

We now present a table of these expected numbers of

accesses for the case of m = 8 , n = 9 , a = .9 , and

r= 4 ,5,6 , 7

Table 4

r = 5 6 7

Erp 2.56 2.56 2.56 2.56

ECh 1.45 1.45 1.45 1.45

E 1.14 1.28 1.56 2.13
ne

From Tables 2 and 4 we observe that if entries in the

data base are of a fixed length of 32 words or less, and

129.

if it is possible to waste a substantial piece of

secondary storage (for the case r = 4 , 205K words are

wasted), organizing the data base as a scatter storage

table using the next empty place method of collision-

resolution is most efficient with respect to number of

disc accesses required. If it is not possible to waste

as much space, or if entries are larger than 32 words,

then organizing the data base as a scatter storage table

using chaining is most efficient. (If a = .99 the

wasted space drops to 20K words while E = 1.50 .)

We must note that organizing the data base as a scatter

storage table is possible only if entries are of fixed

length. In general, unfortunately, entries are of

variable unbounded length, e.g., text, inverted lists,

item-sequenced lists, etc. In that case, of the methods

discussed so far, ignoring overflow or using a cluster-

buster table are most efficient with respect to number of

disc accesses, each method requiring exactly 2.

We now discuss a method which combines features of both

scatter storage and index tables and which reduces the

number of disc accesses. We retain a scatter index table,

but instead of using the entire page for hash table, we

devote a portion to entries from the data base. Since

the hash segments are small, we can expect overflow to

be fairly probable, so it cannot be ignored; therefore

130.

we use a cluster-buster table to prevent overflow. It

is possible to describe an organization where the pro-

portion of each page devoted to da;a base items varies

from page to page. However, in this discussion we shall

only consider the case where this proportion is fixed.

A hash table entry will either point to an entry in the

page or will be the disc address of the entry (again,

other organizations are possible, but this is the only

one we discuss here).

The proportion of each page devoted to data base entries

and the density of the scatter index table depend on

several conflicting criteria. One, it is desirable that

as little data base storage space as possible be wasted.

Hence it is desirable that there be sufficiently many

entries in the hash table in each page so that the

remainder of the page be filled: i.e., either a should

be large, or the hash table section large, or both. Two,

since disc accesses are expensive, as many items as

possible should be in the page: i.e., the hash table

section should be small. Three, core space is expensive

and the cluster-buster resides in core. Hence, as few

segments as possible of hash table should overflow: i.e.,

either a should be small, or the hash table section

large, or both.

131.

I We now present formulae for these criteria.

S = size of cluster-buster table.

S2Pr[overflow]-
T

where Pr[overflowj is given exactly by (1) ond

approximately by (2) above

N = number of places in scatter index table

T = number of places in each segment of table

W = space wasted in mixed pages

S[(2n-T) - aTL']a
T

2 n-T
where R' = I ipi.< = expected length of each

i=O
data base entry

Pi = probability that a data base entry is i

words long

E = expected number of disc accesses required

= 1 + [i (I)(n__)

2n-T

= 2 - < 2
aTZ'

In sum, we have discussed various solutions to the

problem of accessing a data file too large to fit into

132.

core. If the file consists of fixed size items, then

organizing the data as a hash storage table and

addressing it directly is most economical with regard

to disc accesses. If the file consists of variable

length items, then use of a mixed scatter index table

with an auxiliary cluster-buster table is most economical.

133.

XXIX. Net Models -- Some
Elementary Constructs

In previous sections we have been satisfied with an

informal definition of batching and buffering, and we

have ignored the general question of concurrency --

despite the fact that many of the systems examined have

involved concurrent operation. For example, when a

subdeck of feature cards is placed in front of a light

source, the "hits" are available concurrently; the

intersection operation occurs concurrently for all card-

positions. We will introduce Petri nets as a repre-

sentational medium for exhibiting concurrency. A brief

description of Petri nets and occurrence systems is

provided in Appendix I.

Let us begin our discussion by considering a simple

system consisting of four operations. When the first

operation is completed, the second operation begins;

when the second is completed, the third begins; when the

third is completed, *e fourth begins. These four

operations, thus constrained, are repeated cyclically.

We represent this system with the net ;n Figure XXIX-l.

The sequencing constraints seem to preclude performing

any of the operations concurrently. If this were the

case, the time required for each iteration of the cycle

woui!d be equal to the sum of the durations of the four

operations.

134.

Figure XXIX-1

0 O : operation I in progress

902 : operation 2 in progress

0 : operation 3 in progress
0 : operation 4 in progress

02

0 : operation 4 not in progress

4 (i.e., completed; not yet rebegun)
nO' : operation 2 not in progress

o 3 11

S3i operation 3 not in progress

0': operation 4 not in progress

However, Figure XXIX-2, which is a repetition stretch repre-

senting four iterations of the system's behavior-cycle, exhibits

the fact that all four operations may be performed concurrently.

Figure XXIX-2

0 0

0' 3 0 3'4 3~~Q~ -.- - ~ 9

WO 100 soa- 1> 0 100 sl
04 o 004 0 4

/"°3'•_ .7./ 0. a -°

04 04' Q 04' 04 04' 04 04' 04 04'

135.

The net, which represents explicitly both the sequencing

constraints and the cyclic behavior of the system, ex-

hibits concurrencies among operations from (what we think

of as) different iterations of its behavior-cycle. The

dotted line in Figure XXIX-2 indicates a time slice in

which the nth iteration of operation 1, the n-lst

iteration of operation 2, the n-2nd" iteration of

operation 3, and the n- 3 rd iteration of operation 4

are concurrent.

We shall call the net structure in Figure XXIX-l a

pipeline. The pipeline in Figure XXIX-I has four stages;

accordingly, we would describe it as a pipeline with

capacity 4. We can view a pipeline variously as a set of

ordered operations (as in the example above) or as a

buffer or stack into which values can be placed. In the

latter interpretation each "stage" or "pair of places"

might be viewed as a storage cell capable of storing one

value. We may think of values as being "dropped in at

the top" and transmitted "down" the pipeline. A pipeline

of capacity n will be capable of holding n values

concurrently. Suppose we were dealing with two different

types of value and we wished to distinguish between them.

We could construct a bi-valued pipeline, or bit channel,

as in Figure XXIX-3.

136.

Figure XXIX-3

O-bit 1-bit

//

o 50

Each stage now has three possible (mutually exclusive)

states: "empty", "l", or "0". Note that with such a

structure we can transmit a sequence of bits, maintaining

the order of the values.

137.

XXX. A Model of Buffering

1 2

4 3

transition 1 : initiation of the process

transition 2 : temination of the process

transition 3 : initiation of buffered I/O

transition 4 : termination of buffered I/O

place a : process in progress

place b : process not in progress

place c : I/O in progress

place d : I/O not in progress

place e : input for process available

place f : output of process available for I/O

The occurrence graph below is based on an initial case in

which both the process and the I/O are idle and the

138.

"input-buffer" of the process is full. Note that in

this system the process and the I/O will never be

concurrent. Thus, if a and c are the only places

of significant duration, the minimum time for a cycle

in this system is equal to a+c -- i.e., processing

time + I/O time.

ef
e

d -

139.

XXXI. A Model of Double Buffering

1 2

The labels correspond to those used in the model of single

buffering, with primes added to show how the double buffer

model is composed of two single buffers. Note that places

b and b' and places d and d' guarantee alternation

of transitions 1 and 1' and of transitions 3 and 3'.

140.

f'e es

f f

d . d_ c d c

This occurrence graph is based on an initial stage in

wh-ch both the process and I/O are idle and both "input"

buffers are loaded. In this occurrence graph the process

and I/O are concurrent. Hence, if a (and a') and c

(and c') are the only places of significant duration,

the minimum time for a cycle in this system is

max (proessing time, 1/O time).

The buffering model is generalizcable to any number of

buffers. This becomes especially interes,-ing when IO

time is greater than processing time and it is possible

to perform several I/O operations concurrently. Consider

the case of n concurrently operable I/O devices. Then

minimum cycle time would be % max (processing time,

141.

x 1/0 time). The dual also holds: if processingn

time is greater than I/O time and ani execution of the

process is not dependent on previous executions, the

availability of m concurrently operable processors

permits minimum cycle time to be max (I x processing
m

time, I/O time).

142.

XXXII. Pipelined and Serial
Phased Systems

In this section we will illustrate the distinction

between pipelined phased systems and conventional serial

phased systems, by comparing two systems which perform

the same task.

Both systems perform as follows:

previous response is accepted event 1 (and event
next query is generated

1' for pipelined

system)

query is input : event 2 initiates input;

event 3 completes input

query is decoded : event 4 initiates

decoding;

event 5 completes

decoding

cross-indexing accomplished : event 6 initiates

cross-indexing

event 7 completes

cross-indexing

file access performed for hits : event 8 initiates file

access

event 9 completes file

access

response records output event 10 initiates output;

event 11 completes output

143.

Serial Phased

Q : query available
I : input channel

Q\QR\ \ 1 available
\ A : input in progress

_Q' : internal query
available

2- (SQ @R - 11 DI : dictionary available
-TADI : decoding in progress

SQ" : query decoded
X : cross-index available

i0 &0 A Y,:X indexing in progress
A : accession numbers of

hits available
3 I1DF : document file

3SQ' available
LDF : documents being

retrieved
/ R : result available for

7 / input
0 : output channel

available
4/ AO : output in progress

R1i : result outputted

I

AD:) DI) \R

SQ : space for query,
external

S SQ' : space for query,
'SQ7 SR internal

I SQ" : space for query,
/1 decoded

/ SA : space for 'hits'
SR : space for documents

retrieved
SR' : external space for

6 - documents

AX) x (SA ýD F ýýDF

7 8

A)

144.

Pipeline Phased

1;.

2 SQ (SR') -1

0)AO

3- SQ' -

;Q)

Uy SR

7
~ ~ A

t 145.

U4)I9 /

'44

,"-4

I U
I4J

4=4 (n

0 .,.J

UlJ t-t

0 cfl +

c- 0

E.n +

H - H I 4.) ,-

c>1

>1 :n

7 0 .4.

0) a) 9 -4
in 4 "-H x

44 rr

ns U +d

I0 4J 4J.

44-

II5 "4 a)

"-4 0

a-)
Sa 0)

ol 4.1

0w

N44-

'--4 0

H0)n0U

146.

- 10\

r34.

4\ 41
4i 0 %

'-4 41 r

a a

44 0

u 0)

I-

147.

Notice that a cycle relates to throughput capacity:

in both systems the time to process one query is the

same. The serial system requires receiving the response

to the first query before submitting the next. The

pipeline phased system can process a number of queries

concurrently. The processing stages are staggered in

the pipeline. The cycle time is thus a measure of the

maximum rate at which queries can be processed.

148.

XXXIII. A Model of a Hardware Device
-- The NCR CRAM Unit'

In this section we illustrate the use of Petri nets in

modelling the synchrony and concurrency characteristics

of pseudo-random access mass storage devices. The NCR

CRAM Unit is a pseudo-random access mass memory device.

The storage medium is 256 oxide-coated cards. Each card

has a set of notches at one end, which permits the

selection, at random, of any one of the cards from the

CRAM magazine. When loaded into a CRAM unit, the cards

hang from eight rods which may be turned in such a way

as to release exactly one card. When the card is re-

leased, it falls freely until it reaches a rotating drum

to which it is pulled by means of a vacuum, and the card

is accelerated to the surface speed of the drum. Shortly

after attaining this speed, the leading edge of the card

reaches the read-write heads. After reading or writing,

the card may remain on the drum, to be recirculated past

the heads on the next revolution, or it may be released

and returned to the magazine.

Three photocells provide the prime source of control of

the mechanism. PE 1 is located between the return chute

and the magazine and controls the operation of the loader

'See National Cash Register Company publi•:ation
MD 315-101 10-62 for a description of the equipment.

149.

mechanism for the magazine. PE 2 signals the arrival

of a card, either one which has just been dropped, or

one which is recirculated on the drum. Reading or

writing must be done before the leading edge of the

card arrives at PE 3. Here we focus on certain character-

istics of the CRAM unit: we have modelled the elements

in CRAM that relate to the seek time, and have not

modelled the details of writing or reading, nor the

reject mechanism which automatically rejects a card from

the drum after 750ms. of total inactivity. We also have

not modelled those phenomena associated with individual

card identity (for instance, if you happen to select a

card that was just ejected from the drum, there may be

an additional time delay -- the length of time needed for

the card to return to the magazine).

150.

3

4 1

156

9 10

11 -.

151.

1. Decision to select a card
2. Decision not to select a card. (When a card is on

the drum, reject is triggered by the next card selection.
Being passive, i.e., not issuing a select, means deciding
not to select a card for each drum revolution that occurs
with a card on the drum)

3. Beginning of select
4. End select, begin card drop

f5. End (gate-PE 2), begin (PE 2-PE 3)
*6. End card drop, begin (PE 2-PE 3) (E-ents 5 and 6 re-

present the two alternate routes by which a card passes
the read-write station: Event 5 represents recirculation,
Event 6 represents new arrival from magazine

7. End (PE 2-PE 3), begin (PE 3-gate) (recirculate)
"8. End (PE 2-PE 3), begin (PE 3-gate) (eject)
9. End (PE 3-gate), begin (gate-PE 2) (recirculate)

ýi0. End (PE 3-gate), begin (gate-PE 1) (eject)
11. End (gate-PE 1), begin (PE 1-magazine)
12. End (PE 1-magazine)

a decision made to select, select not yet begun
b no decision yet for this drum revolution
c decision made to select, card has not yet falLen
d decision made not to select
e no card on. drum
f selection occurring
g card droppinc
h leading edge between PE 2 and PE 3
i leading edge between PE 3 and gate
j card being recirculated
k leading edge between PE 3 and gate
m leading edge between gate and PE I
n card entering magazine
p no card in return chute

152.

44 V
1 10 0

W V

W=4 0 4 4 S-e4

00~ ~ .4J 4J

4J 0 0-4~41 .0 o

m 14

.p 0 oJ .04 r. X

Is0 04u~

f :Q Id 0 0 $
0 44 UqE$4

oI 0 0 r. t
4 .4.0 > 0 a 41

0 0 $
-A 0 0 0 9aý

0) - .4 t r 0 44

4) 0 :j 4.) q3l 0r1 4 $4 rI$

40 4) 0)j a

EU
N4

0 ' 041

4)4.) IV

$4 U 0

* H N U

0 0

U)

2n .0

153.

XXXIV. A Highly Concurrent Net Model
of the Cross-Indexing Grid

In Section I we presented a model of cross-indexing

information. The model consisted in a grid: horizontal

lines represented items, and vertical lines represented

descriptors; a given intersection j,k was circled if

and only if descriptor j applied to item k . Note,

however, that this representation is static -- it

represents the cross-indexing information (i.e., the

set of descriptor-item relations) used in performing a

query (or update), but it does not represent the actual

process' of perf-rming a query (or update). In this section,

then, we will develop a Petri net grid model of cross-

indexing which represents the process of query performance.

(It will become clear that the model can be expanded to

represent the performance of updates.) This model will

exhibit possioilities for concurrency which may be exploited

by batching, buffering, or pipelining.

In Section XXIX we introduced a net mc ?I of a bit channel.

Roughly speaking, the net model of the cross-indexing grid

is constructed by replacing each horizontal and each

vertical line in the grid with such a bit channel. We

may think of the vertical channels as transmitting upward

and of the horizontal channels as trans•iitting from right

to left. A query is made by selecting a subset of the

descriptors. Tn the net model, then, a query will he made

154.

by supplying a value to each of the vertical channels as

follows: a "I" is supplied if the corresponding ties-

criptor is in the query set; a "3" is supplied if it is

not. As a value is transmitted up a vertical channel, a

"copy" of it is "deposited" at each intersection. Further-

more, at each intersection j,k a value is already stored

as follows: a "1" if descriptor j applied to item k

(i.e., if the intersection is circled); a "0" if not.

Each of the horizontal channels generates "l's" con-

tinuously from its right end and transmits them left-

ward; as a "1" is transmitted leftward it may be trans-

formed into a "0" as a function of the state of one of the

intersections it encounters. If the value which reaches

the left end of a given horizontal channel is a "1", then

the correspondinj item satisfies the query: if it is a

"0", the item does not satisfy the query. Let us call

the bit stored at a given intersection the "cross-indexing

bit", the bit received from the vertical channel the "query

bit", the bit received from the horizontal channel the

"incoming response bit", and the bit transmitted leftward

(to the next intersection) the "outgoing response bit".

We can then describe the logic at an intersection j,k

as follows: if the incoming response bit is a "0", then

the outgoing response bit will be a "0" (i.e., it has

already been determined that item k does not satisfy

I 155.

the query); if the incoming response bit is a "I" and the

query bit is a "0", the outgoing response bit is a "1"

(i.e., descriptor j is not in the query set); if the

incoming response bit is a "1" and the query bit is a "I"

and the cross-indexing bit is a "0", then the outgoing

response bit is a "0" (i.e., j is in the query set and

it does not apply to k); if the incoming response bit,

the query bit, and the cross-indexing bit are all "l's",

then the outgoing response bit is a "l" (j is in the

query set and applies to k). An additional vertical

channel is provided at the left edge of the yrid model

for "reading out" the results of a query.

Because the various elements of the net model intersect

each other, we will not try to represent an entire net

grid pictorially. Instead we present the elements

individually below:

156.

Figure XXXIV-1

Vertical Channel for Descriptor j. The value of des-

criptor k for each query is "tapped off" at each inter-

section.

intersection j,m

* ~ j,* ,,c•--

:~ : descipto ,. ,•.•

tI

a *

qur

-----I 1 /,•0

intersection j •l

in thers uetio jset "•7"

is i thequeq sery

Th initiation

157.

I0

1 0
w .11 .S4

$04

1' 0

>1 4J10

1 0

NN 4'
1 0~ 0 4Ju4.

> 44 -,1 0
H 44 (

x r-I *d
X 4J 0

(d 0f
ý4 4' 0

N..4

ýL4 t

M 0 L' En N

N~~~P -4* NV '

10~14.,0

0-
-- N.

158.

Figure XXXIV-3

Intersection j,k

R jk=O : it is already known that item k does not
satisfy the query

Rik=l : thus far item k satisfies the query

Q ,k00 : descriptor j is not in the query set

Qj,k=1 : descriptor j is in the query set
j,k=0 : descriptor j does not apply to item k

j,k=l : descriptor j applies to item k

l dscipo pl

0/0

jm k

159.

Uote that the elements of our net model of the cross-

indexing grid are pipelines so that it is capable of

highly concurrent operation. The number of queries

which can be evaluated concurrently is equal to I+D

where I = the number of items in the system and

D = the number of descriptors in the system. The processing

time for one query -- i.e., the time between initiation of

a given query and completion (i.e., response read-out) of

that query -- will be equal to C(I+D) , where C is a

constant. However, the throughput rate will be equal to

C . That is, if queries can be input at a sufficient

rate (i.e., approaching C), the time between successive

outputs will approach C

1-1

APPENDIX I

Petri Nets'

Formally, a Petri net is a directed graph with two kinds

of nodes: places, represented as circles; and transitions,

represented as line segments. Each directed arc, represented

as an arrow, connects one place with one transition. An

arrow from a place to a transition means that the place is

an input to the transition; an arrow from a transition to

a place means that the place is an output of the transition.

Every place in a net is an output of at least one transition

and an input to at least one transition. No place may be

both an Tnput to and an output of the same transition.

A place is capable of two states: full or empty. The

state of a net is given by a list of all its full places.

A transition may fire if and only if all of its inputs are

full. When a transition fires, all of its inputs are

emptied and all of its outputs are filled. If some place

is input to two or more transitions, all of whose inputs

are full, these transitions are in conflict. Only one of

the transitions -- any one -- may fire in such a situation.

(See Figures A, B, and C for examples of net diagrams.

Figure B shows a net with conflict.)

'For a comprehensive account of Petri nets we
refe the reader to the "Final Report for the Information
System Theory Project", RADC Contract # AF 30(602)-4211,
by Dr. Anatol W. Holt et al.

1-2

Figure A

ILL
I , /

, l I A*

C D \ I I

A net and an occurrence-graph representing its behavior.
The shaded places are full. The broken lines represent
time slices of the o-graph.

FigureB

A D F A

A

C . E F B

A net with conflict and the o-cycles which constitute its
basis. When A, B, and C are full, either transition 1 fires
or transition 2 fires, but not botn.

1-3

Figure C

I(--- : Ball 1 is moving
iLj 2R counter-clockwise.

1R 1R : Ball 1 is moving
clockwise.

2L : Ball 2 is moving
counter-clockwise.

4L 3R) etc.

4R 3L

In using Petri nets to describe a system, each place is

associated with a proposition about the system. By

interpretation, when a place is full, the proposition

associated with it is true. In other words, the condition

described by a proposition holds in the system when the

associated place is full. The state of a system described

by a given state of its net is the conjunction of the

propositions associated with the full places. 2 Thus a

net diagram together with a suitable initial assignment

2 It is perhaps misleading to speak of "system states"
here since a net does not necessarily define a totally
ordered sequence of states. (Formally, this is because
some transitions may fire concurrently - that is, their
firings are not temporally ordered.) In this respect,
nets differ fundamentally from state machines.

1-4

of place states (corresponding to the conditions which

hold in the system initially) makes possible a formal

simulation of the behavior of the corresponding system.

Note that it is the occupancy of places which is viewed

as having duration. Transitions merely bound places;

the firing of a transition is not viewed as time-consuming

-- rather, it is a separation of distinct place occupancies.

Hence, the propositions associated with places describe

conditions involving time-consuming operations or states.

Figure C, for example, is a net representation of four

balls moving and colliding on a single-lane circular track.

The propositions describing the system are all of the

form: "ball n is moving clockwise (or counter-clockwise)".

We may view an occurrence-graph, or o-graph, as a directed

graph which represents a simulation history of some net.

Formally, an o-graph consists of vertices, arcs, and

labels associated with the arcs. Each label corresponds

to some condition of the system being represented. (The

words label and condition are therefore used interchangeably

in this context.) Each arc represents an interval of

place occupancy (or condition holding); the place (and

hence the condition) is designated by the label associated

with the arc. An inner vertex represents a transition

firing and hence an occurrence in the system being represented.

(The terms inner vertex and occurrence are accordingly

1-5

used interchangeably.) Thus an occurrence may be described

as follows: the conditions of the input arcs cease to

hold (the input places become empty); the conditions of

the output arcs begin to hold (the output places become

full). (See Figures A, B, and D for examples of o-graphs.)

Two occurrences are said to be temporally ordered if and

only if there is a path from one to the other; the former

precedes the latter. Note that some occurrence pairs in

an o-graph are temporally ordered while others are not.

Occurrences which are not ordered are said to be con-

current. Similarly, two arcs are temporally ordered if

and only if there is a path from one to the other; arcs

which are not temporally ordered are concurrent. A

time-slice is a maximal set of pairwise concurrent arcs.

A time-slice represents a possible state of the net (and

hence of the system) during the history which the o-graph

describes. (See Figure A.)

1-6

Figvre D

2R R 4L

2L

I:;
4L 4R N

2L

3R__ 3L -a 03g

(two balls moving7 clockwise andi two counter-clockwise)

1R IL 1R

44L4

4L 2L i

;R ITL

3R 3R___ _ U__ _ _ _ _ _ _ _ _ _

(three balls moving cutrclockwise and one coutrcockwise)

1-7

An o-graph may be decomposed at a time-slice. Two o-graphs

may be composed if the terminal conditions of one are

identical to the initial conditions of the other. An

o-graph whose initial and terminal conditions are

identical is termed an o-cycle. An o-graph formed by

composing some number of copies of an o-cycle is termed

a repetition stretch of the o-cycle. :n o-cycle which

cannot be decomposed into further o-cycles is termed an

irreducible o-cycle. (The o-graphs shown in Figures A,

B, and D are all irreducible o-cycles.) For every net

together with a suitable assignment of place states,

there is at least one basis, consisting of a finite set

of irreducible o-cycles from which every possible

simulation history may be generated by composition and

decomposition. If the net contains no conflict, its basis

consists of one irreducible o-cycle. Note that a given

net diagram may be capable of several different disjoint

behaviors given different initial place assignments.

Figure D, for example, shows the bases for the three

different behaviors of which the net in Figure C is

capable.

B-I

BIBLIOGRAPHY

Armed Forces Technical Information Agency. "Automation
of ASTIA 1960". December 1960, Reprinted
February 1962, AD 247 000.

Auerbach Corporation. "Data Manager-l. Data Management
System for a Time-Sharing Environment". Auerbach
Corporation, Philadelphia, Pa. Research Report
7030, December 1967.

Buck, R. Creighton. "Studies in Information Storage and
Retrieval on the Use of G8del indices in Coding".
American Documentation, Vol. 12, No. 3, July 1961.
pp. 165-171.

Burnaugh, H.P. "Data Base for the BOLD System". System
Development Corporation, Santa Monica, California.
TM-2306/001/02, August 1966.

Casey, Perry, et al. "Punched Cards. Their Applications
to Science and Industry". Second edition. New
York: Reinhold, 1958.

Conners, T.L. "ADAM - A Generalized Data Management System".
The Mitre Corporation, Bedford, Mass. Proceedings
of the AFIPS 1966 Spring Joint Computer Conference,
Boston, Mass., April 1966. Washington, D.C.:
Spartan, 1966.

Craig, J. and Goodroe, J. "General Design Specifications
for a Random Access Storage Management System".
Massachusetts Computer Associates, Wakefield,
Mass. CA-6704-0422, April 1967.

"Data Management: File Organization". EDP Analyzer,
December 1957.

Defense Documentation Center. "Evolution of the ASTIA
Automated Search and Retrieval System". DDC,
Washington, D.C. September 1963. AD 252 000.

Doudnikoff, Basil and Conner, A., Jr. "Statistical
Vocabulary Construction and Vocabulary Control
with Optical Coincidence". Jonknr Business
Machines, Inc., Washington, D.C. Statistical
Association of Methods for Mechanized Documents,
Symposium Proceedings. U.S. Dept. of Commerce,
NLS, December 1961. pp. 177-180.

B-2

Drew, D.L. et al. "An On-Line Technical Library Reference
Retrieval System". American Documentation,
Vol. 17, No. 1, January 1966. pp. 1 - 7 .

Fossum, Earl G. et al. "Optimization and Standardization
of Information Retrieval Language and Systems".
Univac, Division of Sperry Rand, Blue Bell, Pa.
July 1962.

Fossum, Earl G. and Kaskey, Gilbert. "Optimization and
Standardization oi Information Retrieval Language
and Systems". Univac, Division of Sperry Rand,
Blue Bell, Pa. January 1966. AD 630 797.

Franks, E.W. "The MADAM System: Data Management with a
Small Computer". System Development Corporation,
Santa Monica, California. September 1967.

General Electric Company. "Integrated Data Store. A New
Concept in Data Management". Application Manual,
General Electric Company, Information Systems
Division, Bethesda, Md. July 1967.

General Electric Company. "Introduction to Integrated
Data Store". General Electric Company, Computer
Department, Phoenix, Arizona. April 1965.

Goldberg, J. et al. "Multiple Instantaneous Response
File". Stanford Research Institute, Menlo Park,
California. August 1961.

Holt, Anatol W. et al. "Information System Theory Project,
The Nature of FFS: An Experiment in 33 -Theoretic
Analysis". Applied Data Research, Inc., Princeton,
N.J. March 1966.

Holt, Anatol W. at al. "Information System Theory Project:
Vol. 1, r-Theory". Applied Data Research, Inc.,
Princeton, N.J. November 1965. AD 626 819.

Holt, Anatol W. et al. "Information System Theory Proje:t,
Final Report". Applied Data Research, Inc.,
Princeton, N.J. September 1968. AD 676 972.

Holt, Anatol W. "ISTP Edge-Notched Card System. (A
Manual for the Information System Theory Project)".
Applied Data Research, Inc., Princeton, N.J.
February 1964.

Hubbell, Paul. "A Search for Improved Coding Methods for
a Large-Scale Information Retrieval System".
University of Pennsylvania, Moore School of
Engineering. A Thesis. May 1964.

B-3

Jaster, J.J. et al. "The State of the Art of Coordlnate
Indexing". Defense Documentation Center,
Washington, D.C. February 1962. AD 275 393.

Jonker, Frederick. "Indexing Theory, Indexing Methods,
and Search Devices". New York: The Scarecrow
Press, 1964.

Jonker, Frederick. "Design Considerations of Information
Storage and Retrieval Machines". Documentation, Inc.,
Washington, D.C. April 1958.

Kennedy, F.L. and Brown, M.E. "The Applications of
Computers to the APL Storage and Retrieval System".
Johns Hopkins University, Applied Physics Laboratory,
Bethesda, Md. TG-669. March 1965.

Kent, Allen. "Textbook on Mechanized Information Retrieval".
Second edition. New York: Interscience, 1966.

Kochen, Manfred. "Toward Document Retrieval Theory --
Techniques for Document Retrieval Research,
State of the Art -- On Natural Information Systems:
Pragmatic Aspects of Information Retrieval".
Aerospace Intelligence Data Systems, Appendices
1, 2, and 3. International Business Machines
Corporation. 1963.

Kochen, Manfred et al. "High-Speed Document Perusal".
International Business Machines Corporation.
May 1962.

Kochen, Manfred. "Some Problems in Information Science".
New York: The Scarecrow Press, 1965.

Koriagin, G.W. and Bunnow, L.R. "Mechinized Information
Retrieval System for Douglas Aircraft Company, Inc.".
Status Report, SM-39167. January 1962.

Landauer, Walter. "The Tree as a Stratagem for Automatic
Information Handling". Graduate School of Arts
and Sciences, University of Pennsylvania. A
Thesis. 1962.

Lefkowitz, D. "Automatic Stratification of Descriptors".
Moore School of Engineering, University of
Pennsylvania. Report No. 64-03. September 1963.

Lefkowitz, D. and Prywes, N. "Automatic Stratification
of Information". Proceedings of the AFIPS 1963
Spring Joint Computer Conference, Detroit, Michigan.
May 1963. Baltimore, Md.: Spartan, 1963.

B-4

Lefkowitz, D. and Powers, R.V. "A List-Structured
Chemical Information Retrieval System". In:
Schecter, George (ed.). "Information Retrieval.
A Critical View". Washington, D.C.: Thompson,
1967.

Leveille, Gilbert, et al. "A Simple and Versatile Punch
Card System for Bibliographic Use". December
1963. AD 601 914.

Lin, Andrew D. "Key Addressing of Random Access Memories
by Radix Transformation". Proceedings of the
AFIPS 1963 Spring Joint Computer Conference,
Detroit, Michigan. May 1963. Baltimore, Md.:
Spartan, 1963.

Lowe, Thomas C. "Design Principles for an On-Line
Information Retrieval System". Moore School of
Engineering, University of Pennsylvania.
December 1966.

Mathews, William D. "The TIP Retrieval System at M.I.T.".
In: Schecter, George (ed.). "Information Retrieval.
A Critical View". Washington, D.C.: Thompson,
1967.

Mooers, Calvin N. "The Application of Simple Pattern
Inclusion Selection to Large-Scale Information
Retrieval Systems". April 1959. AD 215 434.

Mooers, Calvin N. "Choice and Coding in Information
Retrieval Systems". Zator Company. (No date
given.)

Mooers, Calvin N. "Zatocoding for Punched Cards". Zator
Company, Technical Bulletin #30.

Mooers, Calvin N. "Extensions of Pattern Inclusion
Selection". 2TB-133. August 1959.

National Cash Register Company. "NCR 315 Electronic Data
Processing System". MD 315-101 10-62. National
Cash Register Company, Dayton, Ohio.

Olle, T.W. "INFOL: A Generalized Language for Information
Storage and Retrieval Applications". In: Schecter,
George (ed.). "Information Retrieval. A Critical
View". Washington, D.C.: Thompson, 1967.

B-5

Orosz, G. and Takacs, L. "Some Probability Problems
Concerning the Marking of Codes into the
Suparimposition Field". The Journal of
Documentation, Vol. 12, No. 4, December 1956.

Pepinsky, Ray and Vand, Vladimir. "New Methods for
Mega-Item Information Retrieval Using Small-
Scale Machines". Report No. 48, The Groth
Institute, 1960.

Peterson, W.W. "Addressing for Random Access Storage".
IBM Journal of Research and Development, Vol. 1,
No. 2, April 1957. pp.130-146.

Prywes, N. et al. "MULTILIST Organization of Storage
and its Optimization -- Construction and Expansion
of a Balanced Coding Tree -- Automatic Stratification
of Information -- The Memory Synchronizer". Moore
School of Engineering, University of Pennsylvania.
"The MULTI-LIST System: Technical Report No. 1".
Part 1, Volume 1. November 1961

Prywes, N.S. "Man-Computer Problem Solving with MULTI-
LIST". IEEE Proceedings, December 1966.

Prywes, N.S. "The Organization of Files for Command and
Control". University of Pennsylvania, Philadelphia,
Pa. March 1964.

Savitt, Donald A. et al. "Association Storing Processor
(ASP). The ASP Language - Formal Definition".

Rome Air Development Center, Griffiss Air Force
Base, New York. March 1967.

Schay, Geza, Jr., and Dauer, Francis W. "A Probabilistic
Model of a Self-Organizing File System". SIAM
Journal on Applied Mathematics, Vol 15, No. ,
July 1967. pp.874-888.

Schecter, George (ed.). "Information Retrieval. A
Critical View". New York: Thompson, 1967.

Seidel, Mark. "Threaded Term Association Files".
Statistical Association Methods for Mechanized
Documents, Symposium Proceedings. U.S. Dept. of
Commerce, NBS, December 15, 1965. pp.173-6.

Stiassny, S. "Mathematical Analysis of Various Super-
imposed coding Methods". American Documentation,
Vol. 11, No. 2, February 1960.

B-6

Taube, Mortimer. "Experiments with the IBM-9900 and a
Discussion of an Improved COMAC as Suggested by
these Discussions". April 1961.

Taube, Mortimer. "The Mechanization of Data Retrieval".
In: "Studies in Coordinate Indexing". Volume 4.
Washington, D.C. Documentation Inc., 1957.

Thomas J. Watson Research Center. "Computer Programming
Techniques for Intelligence Analyst Application".
Thomas J. Watson Research Center, Yorktown Heights,
N.Y. Quarterly Report No. 2. October 1964.

Wong, E. "Time Estimation in Boolean Index Searching".
International Business Machines Corporation,
New York. December 1961.

Tine-A acti fi ,A

SORGNA TING ACTIVITY (Co to th 2A. REPORT SECURITY CLASSIFICATION
Applied Data Researpir Ato.Horj~o UnclassifiedF Corporate Research Center~ib,,u

450 Seventh Ave., New York, N.Y. 0001A
3 REPORT TITLE

A Handbook on File Structuring

4 DESCRIPTIVE NOTES (.pe OTRrepR•O annd inclusatve date#)

Final Report
5 AUTHOR_)_(First name, middle inRtialI,AClTatRnVme)

Robert M. Shapiro Anatol W. Holt

Harry Saint Stephen Warshall
Robert E. Millstein Louis Sempliner

6 REPORT L ATE 7METRYNTE 1. SO NS OFR PAGES MLbR No O•" RISSeptember 1969 159 1 60
88. CONTRACT OR GRANT NO 9iORIGINATOR'S REPORT NUMBERIS)

F30602-69-C-0034 CA-6908-2331
b. PROJECT NO

4594
9b. OTHE-R REPIORT N045) (Any Other nuMbere that way be eassined

th reportmpt)

d. RADC TR-69-313, Vol I
I1^, DISTRIBUJTION STATEMENT

This document has been approved for public release and
sale; its distribution is unlimited.

il SUPPLEMIENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. A85TRACT

This report makes an initial attempt at presenting a
coherent approach to the design and analysis of file
structures. The relative efficiency of different file
implementations is discussed as a function of usage
statistics. The fundamental differences between item
and descriptor-organized files are discussed in terms
of input-output requirements. The report concludes with
a discussion of batching, buffering and concurrency.

DD NOV°S .1473 UNCLASSIFIED
Ser urttv C17sRification

I l ' TM D T 1.rT)
Security Classifhcation

14 LINK A LINK I LINX C
KEY WORDS

ROLE WT ROLE WT ROLE WT

FILE STRUCTURING

STORAGE/RETRI EVAL

