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FOREWORD 

BESRL's OPTIMIZATION MODELS Work Unit seeks to provide means of solution to 
personnel management problems relating to the distribution, training, career progression, 
reassignment, and utilization of personnel in current and future Army personnel subsys- 
tems. Personnel systems are analyzed and areas identified for which objective optimiza- 
tion techniques can profitably be applied. 

Quantitative models and computing algorithms for optimal assignment and for evaluat- 
ing the feasibility of alternative approaches to personnel system problems have been pro- 
vided. Optimization techniques are developed to identify the "best" policy for meeting 
future military contingencies at minimum cost in terms of personnel system esources. The 
present Technical Research Note compares techniques for estimating manpower require- 
ments where a number of individually varying skills, performance potentials, background 
and behavioral factors must be considered. 

The entire research work unit is responsive to requirements by RDT&E Project 
2Q062106A723, "Human Performance in Military Systems," FY 1969 Work Program. 

n. E. UHLANER, Director 
U. S. Army Behavioral Science 
Research Laboratory 



EXPERIMENTAL COMPARISON OF MONTE-CARLO SAMPLING TECHNIQUES 
TO EVALUATE THE MULTIVARIATE NORMAL INTEGRAL 

BRIEF 

Requirement: 

To represent more realistically and precisely the complex and multiple interrelation- 
ships within the Army personnel system, continued development of quantitative and tech- 
nical methodology is required. The present objective was to evaluate two different numeri- 
cal methods for estimating probability when a multivariate normal model (for example, one 
involving scores on a battery of tests) can be assumed. 

Procedure: 

In a series of simulation experiments in which random vector observations were 
generated, probability estimates were computed by each of the methods. Probability ««.„ions 
on which the experiments were based were chosen to have a variety of properties. The 
precision of the two methods was compared from the magnitudes of the variances of the 
probability estimates over independent samples. 

Findings: 

Results appear to be affected both by the size of the probability region being estimated 
and by the goodness of the approximation of the sampling distribution to the unknown 
distribution. The more complex method was consistently superior for very small probability 
regions; but when the sampling approximation was poor, the precision of the probability 
estimates favored the simpler approach. 

Utilization of Findings: 

The computational procedures developed in conjunction with this series of experiments 
are considered practical methods of estimating probability based on multiple scon« for 
individuals in a sample population. Estimation problems for which one method can be 
expected to be superior to the other were clarified. Changes in the computational proce- 
dures from which methodological improvements may be expected were also made apparent. 
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EXPERIMENTAL COMPARISON OF MONTE-CARLO SAMPLING TECHNIQUES 
TO EVALUATE THE MULTIVARIATE NORMAL INTEGRAL 

Personnel management research relating to manpower has led to the 
development of both optimization and simulation models within BESRL. 
These models can relate to the formulation of policies regarding man- 
power requirements and are effective In the evaluation of such policies. 
Realistic estimates require, however,   that multiple behavioral  response 
patterns,  as well as the complex interrelationships among these patterns, 
be Incorporated  into the model of the personnel  system.    The continued 
development of more advanced quantitative techniques is therefore 
required. 

The research reported is directed toward the development of one 
such quantitative technique for use with models  for which the multiple- 
response patterns can be characterized by a particular, but very commonly 
encountered distribution,   the multivarlate normal distribution.     One 
example of the application of this technique is  In policy formulation, 
where it may be necessary to estimate the proportionate Increase of men 
assigned in various    Army job areas which would occur if requirements on 
certain classification criteria were made more lenient.    A suggested 
policy of lowering requirements five points on each of the Job areas 
under investigation might  show,  for Instance,   that too few men would be 
classified  into these areas to meet  Increased manpower needs.    As another 
example,   some estimate of the proportion of the  total Army population 
which lies between certain bounds on a system of behavioral measures 
might be required before performing a valid  simulation experiment.    Such 
problems require the  Integration of the multivarlate probability dit» • 
tribution characterizing the population,  which In this case is assumed 
to be the multivarlate normal distribution. 

A general  analytical method for  integrating the multivarlate normal 
distribution is  at the present time unavailable.    The integral  can be 
approximated by numerical quadrature,  but a very large number of data 
points needs to be generated when the number of dimensions  is large. 
Another approach, designed to improve the approximation to the Integral 
and shorten computation time,  is to obtain the observations by random 
sampling over the region of integration rather than use the systematic 
sampling of quadrature.     Such a "Monte-Carlo" approach will yield prob- 
ability estimates which vary from sample to sample.    The larger the 
variance,  however,  the larger is the number of points which must be 
generated to obtain a given degree of precision,  and again the time 
required  for computations may be appreciable.    Assuming,  then,   that a 
given Monte-Carlo method yields unbiased estimates,  the precision of the 
method can be evaluated from the magnitude of the variance of the esti- 
mates over Independent samples. 

Experimental results have been obtained to evaluate two different 
methods of Monte-Carlo sampling to Integrate the multivarlate normal  prob- 
ability density function.    Resulcs for different types of probability 
Integrals and a description of the sampling techniques are presented. 
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MONTE-CARLO METHODS 

Tallied Sampling (Monte-Carlo Method I) 

One of the Monte-Carlo methods described has already been used and 
reported by Hillier (1).   Random vector observations are generated to 
have the multivariate normal distribution of interest.    The proportion 
of observations which fall within the specified region of integration 
constitutes the probability estimate.    Even though the computations 
involved are simple,  this type of estimate shows considerable change 
from sample to sample.    Such variability serves, however,  as a useful 
standard by which to compare the behavior of a second method of Monte- 
Carlo sampling, more complex computationally,  but which has showed 
promise of yielding estimates with a higher degree of precision. 

The Model is described below: 

Since any multivariate normal distribution can be easily converged to 
standard  form, methods of integration can be described in more general terms 
with reference to the standardized distribution.    Let X ■ [jt^ f X,,   ..., 4L1 

represent a k-dimensional vector of random variables distributed as the 
multivariate normal with mean vector 0 and correlation matrix ft.    The 
multivariate normal  integral over a given region A ■ 
{k, ui);  (^9, MB),   ...,  (Ak,  uk)    is 

TT - f(X)dX 

(2Tr)k/2-ii Ji»      «jek 

To estimate TT,   introduce a new random variable y, where 

y ' \ if £ c A 

y ■ 0 otherwise. 

In scalar notation, X c A if i. < X. < u. for J ■ 1,  2,   •.., k. 

(1) 

Then 

E(y) = j^ j^ ... j^ y f(xil x^,  ..., xk) (äb^  dxa  ... dxk 

+ 1/1  ix8  ••• ^ y f(Xx' Xa'   ••" V ^  ^  ••• ^k 
+ j      j      '' • J"   y f (^x » »a ,  ..., x ) dx,.  dxa  ... dx 

IT. 
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The •■tiiut« of TT it the random variable p 

n 

., where y^, y^,  ...» 

u    represent a sample of independent random variables defined as in (1)  from 
n ' ' 

n vector observations X ,X    ,  ,,,, X   randomly sampled from f(X). 
i     » n 

If Vi » Ya  >   •••» y    are a given set of observations, 

n 

i-l 

The variance of the binomial variate y is ^(y) ■ —* n"    *   • 

*,/  v     P U'P) 
Its estimate is r(y) ■ n       > 

or,  if written In terms of the observation«,  ^  (y) ■ P ' n' P^   • 

To obtain the observed values ft,, ya,   ..., y ,  first, n vectors Z^ 

of independent random normal deviates are generated; Z has mean vector 

UV» 0 and the identity correlation matrix I ■ R ■ Var(Z,Z) when n - •. 

Then X, ■ Z^ ft' for i-l, 2,  ..., n, where ft* is the   cjuare root matrix LB    fnv   4   ■   1      9      ...      n     uh«kra ß*   lg 

Z'ZS^ • 

as is required for the parameters which characterize f(X).    If,  for each 

element x.. of any vector XJ» ^i < x
1* < u*»  t^en y* *■* 8et to ^« but *•' 

any element of X.  falls outside the specified interval, y. is set to 0. 

Importance Sampling 

ka alternate Monte-Carlo approach to integration is referred to as 
importance sampling.    Random numbers upon which the estimates of the 
unknown parameter are based are generated from a distribution other than 
the one suggested by the problem.    Each value of this ''biased" sample la 
multiplied by an appropriate weighting factor which corrects for having 
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used  the wrong distribution.    The  probability that a sample will  be drawn 
from an "interesting" or "important" region is increased as a result of 
the biasing;   the probability that it will  come from an "uninteresting" 
or "unimportant" region is decreased—a desirable result.     By basing more 
computations on random numbers generated   from portions of the probability 
region with which the manpower problem is  concerned,   it  Is possible to 
improve the accuracy--that is,  reduce  the  variance--of the estimate. 

The model   is developed as  follows: 

Let g(X) - g(i\ , Jfe, ..., x.) represent a k-variate uniform 
probability density function defined over the probability region 
A ■ [(U ,  "i ),   (la,  MB),   ..-,  (lk,  uk)].     That is, 

,  v 1 > 0 If X e A 
8(X)  . 

0 otherwise 
and 

l: 
i f1 f*    rUk 
JAg(X)dX - J      J1    ... J      gfr^ xa,   ..., xk) 

(1) 
Let h represent another function of the random variable X.    The expected 
value of h Is defined as 

a»        CO m 

BCh(jf)] " Jj» !_„••• Jj. hfcj, x^,  ..., xk) gCxj, x,,  ..., xk)dx1 dx, ... dx^ 

In particular,   suppose 

h(X) - |f§ 

with f(X)  representing the multlvarlate normal probability density function 
whose Integral over A is required.    Then 

[■S]-J*S-^^« 
-TT (2) 

which Is the unknown probability region of Interest. 

An estimate of TT is the random variable 

„   i ;   '^i' 

where X , X ,   ,,,. X   are random vectors sampled from g(X). 
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Let f^l) for any 1, represent a sample 

of independent random variables over A. Then the variance of the random 
variable p is 

ff8 CP) = a« -i-   fa 
f(^i) 

e(^) 
0» 

f^l) 

g(^) 
4- o" cy] • (4) 

The variance of y is o8   (y) = E(yS)-i?(y) r f*(x)    , x I   -i-i- g X dX 
JV(x) 

n8. 

An estimate of E (v)   is -     E ^l) 

"     i-1        fVj 
where X     X ,   ....  X   represent the same sample of random variables 

i     a7 a 
uniformly distributed over A and used  to estimate TT. 

Standard Importance Sampling Approach to Integration 

Different Monte-Carlo methods for estimating TT result from alternate 
choices for the sampling distribution g(X).     In one of the simplest and 
most frequently used methods of Monte-Carlo sampling,  sampling is based 
on the uniform distribution.    Random vectors with limits on the elements 
defined by the probability region of interest are generated.    These 
observations are then used to compute the ordinate of the given multi- 
variate normal distribution, and a weighted mean of the ordinate values 
provides the estimate of TT.    Since random uniform numbers within specified 
limits can bo easily generated, no computational  time is wasted through 
rejection of any sample values.    In more detail,   let 

" 

' 

g(X)  - g(X  ,   X^ 

/     1 
FTu 

V n j V 
1 

[A] 
iflJ<Xi<UJ 

0 otherwise 

This is the k-variate uniform probability density function over the 
unknown probability region A = [l1,  x^),   (la,  UB)> (1,, uj] with 

a k-dimensional volumn, the cartesian product of one dimensional intervals 
dj,   Uj),   J 1,  2, 
g(X) > 0 for all X and 

k, being denoted by [A].    As is required. 

L w^CD 

r   , ,     [A] 
J^ g(X)äX = 1 

[A] 



Written in the form of this distribution, the estimate of IT is 

P m—     Z     t(X ),  and the variance is o* ty)  -[[A] J f*(X)<JxJ - TI*, 
i-1   1 A      " 

where X t X t   ,.., Xn are random vectors sampled from g(X). 

Observations Xj " Cxxl» 
x
f 1* •••! xkl] which have the g(X) distribu- 

tion are constructed by first generating n vectors Z. ■ [z.^, Z-i, ,.., ZV*] 
of independent random numbers which are uniform over the interval (0, 1). 
Then x^ - (z^) (a^ 1 + x " aj> ! ) + aj* ! for a11 i» J- The 

observed probability written in terms of these observations is 

l«f|   k n 1 

where fL. is the correlation matrix for the given multivarlate normal dis- 

tribution and |RJ is the determinant of ft. 

Evaluating the relative precision of different procedures for esti- 
mating TT is, of course, equivalent to examining the size of the varia ices 
of the different estimates. One way to reduce the variability of the 
estimate for a given method of Monte-Carlo sampling Is to adopt some 
appropriately designed procedure for stratified sampling. The probability 
region of Interest A is divided Into mutually exclusive subreglons 
A , A , ..., A*, an independent probability estimate p   obtained for each 
A , and the sum of these estimates used to estimate the probability over 
S 

the entire region. If the number of points sampled within each area is 
proportionate to the size of the region over which sampling Is defined, 
then It can be shown that the variance of the estimate of TT for the 
stratified sample will be less than or equal to, but never greater than, 
the variance for the estimate obtained without stratification. 

There are, of course, alternative approaches to the way In which the 
total area A is divided into strata. One procedure, particularly appro- 
priate when sampling proceeds over uniform dimensions, Is "A Modified 
Monte-Carlo Quadrature" presented by Haber (2). The area for each stratum 
Is the accumulated product of one-dimensional uniform unlvarlate distribu- 
tions over k dimensions; i.e., 

k 
A - H (a*, - * 1 - »ji « ) for Pj * 0, 1, ..., qj - 1 and a « 1, 2, ..., t. 

The Intervals within each of the k dimensions are construe-..*d so that the 
differences a** _   1 " ai»  ' are commen8urable; in the simplest case, 

J J 
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all of them may be multiples of the smallest one.    Consequently,   the 
k-dimensional volumns A . A ,   ,,,, A+ will  be comnensurable,   and  the 

variance of the estimate based on the sum ot estimates over t strata 
will be less than or equal to the variance of an estimate based on an 
undivided sample;  i.e., 

Var (   E   p ) * Var (p) . 
s-1   * 

Preliminary experimental results,   including results with the 
advantage of sample stratification,   indicated that the uniform distribu- 
tion was not a suitable sampling distribution for Integrating the multl- 
variate normal distribution.    The choice of an appropriate design for 
importance sampling is, of course,  not  routine, and the variance of the 
sample estimates may be increased,  even infinitely,  if the random data 
points are generated from the wrong distribution.    It did appear more 
profitable to examine in detail experimental results based on a differ- 
ent importance sampling design which showed more promise of having the 
desired property of reduced sample variance. 

Importance Sampling:  Boldt Method (Method II) 

An original  approach to importance  sampling was devised by Boldt C^), 
Boldt suggested  that a multlvariate normal distribution with a single 
coimon factor covariance structure often is a good approximation to cover1- 
ance structure observed in practice and might serve as a suitable solution 
for the integral of the sampling distribution over the same limits required 
for the unknown Integral.    A simple quadrature solution does exist  for 
variance-covariance matrices with the common factor structure and  has been 
described a number of times in the literature,  for example,  by Curnow and 
Dunnett (4)  and by Lord (5).    Furthermore,   the generation of random obser- 
vations which have one common factor is also quite simple.    To force the 
points within the specified limits of integration complicates the compu- 
tational  procedure somewhat,  but does not  result in a significant  in- 
crease in computer time. 

Development of the model  follows: 

Identical with formula (2),   the integral over A for the multlvariate 
normal distribution is 

J, 1 " g(X)dX = 1,   and the estimate of TT (formula 5) is j? - -      E 

where 

i-1 «(*,) 

where X t X t   ,,,tX   are random vectors sampled from g(X).  Rather than 

representing g(X) by the uniform distribution, however, sampling is from 
a rank-one multlvariate normal distribution. 

- 7 



Retaining the convention that integration will be performed with re- 
spect to standardized variates,   let ft   represent a correlation matrix with 

the structure r      ma.a.  (i J* j), where -1 ^ cr    « -»■ 1  for i ■ 1, 2,   ,..,  k. 

Then 

g(X) 

kg iRgl"1 «cp [4(X «^ X')] - kg g»(X) -   -L- g#(x) if X « A ; 

0 otherwise 

The cumulative density function of g(X) can be expressed as a single integral 
having a product of univariate normal cumulative density functions in the 
integrand; consequently,  p    is easy to evaluate numerically.    In more detail, 

where X.Xm.  ,,,. I   represent  the random sample of vectors from the 

distribution g(X) defined over A.     Based on (4),  an estimate of this 
variance ofp is 

o   (p 
«   Ln       1-1      ^^j   Ln      i-l      g^^JJ 

i-t^l^T   -I -[^^-^7)-p-] 

where X t JC p  ,.., Xa «r« Che same random vectors sampled from g(X) to 
estimate Tf. 

- 8 
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Solution for a t«ctor«d Infa^l» To obtain th« •■tlmat« for TT as 
stated In (^), p , a solution for tha integral of tba sampling dlstrlbu- 

tlon g(X) over A, the probability region of intereat, la required. The 
sampling distribution g(X) is chosen to have a slngie coomon factor 
correlation structure and, consequently, can be factored Into a product 
of unlvarlate Integrals. 

In more detail, varlatea jr , JT  ,##| *. which have a nultlvarlate 

normal distribution with tero means and correlation coefficients 
r11 "crlQ'l ^l ^ ^*  wher* -1 $ »i * "♦" 1 for 1 - 1, 2, ..., k, are gener- 

ated by the formula * - (1 -of .)* Jr. -•• »,^. The »j, J^, ...» «fc. 

If are k + 1 Independent standard normal varlatea. The cumulative density 

function of interest for the k varlatea t    is 

'kO'jlJ Crijl) ■ ftrob (*J < hj ; »11 j) 

" r* n ••• n a*» **, •..» v^»djt» ••• dxk. 
Since the x's are mutually independent, F. can be expressed as the product 
of single integrals; I.e., 

F^ . j^ ftrob t^ < (hj - orjy) / (1 . tffi. an j) f^)^ 

r      k i 

where f{t) - exp ^ t8 ) / (2 TT)^ 

and r(t) • J^ f(t)dt 

Thia integral Is very easy to evaluate numerically by use of some 
quadrature procedure in which the Integral is replaced by a sum. In 
the present application, the infinite Interval <«••, -H» > It taken aa 
[-5, -K)] and is divided into an even number of 2m ■ loo intervals with 
end-points defined by y., y., ..., y. . Then, using the sum given by 
_ .      i     . 0    1 ■ TB 
Simpson s rule, 

it^H'^o) * '(**) * »[*(*>) * fir,) * ... * ffc.J 

♦C^»») * '(n) ♦ ... ♦ f(y   )]} 
- 9 - 



.nd ,, . Si * «fflj 

for I - o, I, 2, ..., 2BI. 

Th« univariatc «tandard cumulative density functions are evaluated by a 
Hasting*s approximation (Hastings, 6). 

Since, in most examples, it is not the cumulative density function 
which must be evaluated, but the density function integrsted between any 
limits I. and u , J ■ I, 2, ..., k, in the Infinite range. Therefore, 

computation of p is facilitated by the formula 

Frob [1 <ar <U,i «* < U , ..., A. < X. < u. ] 
1X19 9 3 KKK 

no. of lower bounds 
Prob [jr * A . * 5 A > • • •» ^ 

all 2 

possible 

combinations 

where A. takes on the value 1. or u . 

Generation of Sample Values. Generation of the Z vectors which have 
the rank-one multivarlate normal distribution and which also lie within 
the limits defined by A Is not a straightforward computational procedure. 
For the k elements of Z generated from the formula 

•i ■ ejKj • v- 
letting 

(i -«/•/, 

It is required that 

1 « c < u., where I. and u. ere the lower and upper bounds defin- 

ing the J ■ 1, 2, ..., k dimensions for a given probability region A. 
If jr. x.     X     it are random normal deviates sampled over the infinite It *»»  • • •» "'it» » r 

domain, the probability that the resulting g t g ,  ..., ^ will lie within 

th« required region A is TT, and p, an estimate of TT, Is determined from 
the proportion of the sampled vectors which lie within the region A. It 
Is desirable, however, to generate Z varlates which have the rank-one 
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distribution without rejecting any observations. If, for instance, A is 
very small, the number of observations which are rejected will be very 
large; the associated amount of computation will also be very large. 
Alternatively, Z values can be constrained to lie within the specified 
limits by appropriately scaling the range of the variates 

I 

•» Since 

ff . ftrob [Uj « ß^cj + ajy   * uj}; all J 

' ft** \ih -*li/ ^ *J < U]  -Qfiy}; all j] 

Prob [{ij* * 'j * «jl; all JJ»     letting 
*  j 

'j 3 
j 

u " V 
and u. ■ J „  ■< 

^ 

the variables x , x , ..., x. can be constrained to lie within the required 

range by first sampling the random variable y anywhere over the infinite 
domain and then constructing limits for the x's as a function of y. This, 
of course, is saying that 

Rrob[{i/ **f* uj 1 y}; all j] - 1, 

which is not the required TT, nor does such a method yield the correct 
distribution of points for the sampling probability density function g. 

To clarify the discussion to follow, suppose y can take on exactly 
t possible value s, each with probability TT . Then the unknown 

TT 
t 
L     TT . 

s-1  8 

To generate points having the correct distribution, if n represents a 
very large number of points, 

TT_ 
n 

t 

s-1 

n points 

must be generated for each value of s. It is convenient to represent 
each TT  in terms of conditional probabilities: 

TT - ProbLUj i r. i uj| j/ « s}; all jj.  Prob[y = sj 

11 
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The conditional probability term q can be easily computed: 
s 

q - Prob[(ij ^ j ^ Ujl y =8); all Jj 

J B. 

since X , * >. ... * are independent standard normal variates and q 

is simply the accumulated product of probabilities associated with 
bounds of normal deviates for independent standard normal univariate 
distributions. Furthermore, assume that all 

Prob [y ■ •] - Prob [y* a'] for s, s' - 1, 2, ..., t; i.e., that all 
values of y are equally likely. Than 

TT 

and 

n 

t 
L   q 

s-l 
s 

t 

8-1 

n . q^ 

8-1 

Aside from purposes of explanation, the variate y is, of course, 
continuous. Rather than t discrete values which y can take, there are t 
intervals or ranges of values, each bounded by a lower and upper limit 

say. Then v   and v   .,, s s+l' 

Prob[£XJ « »j ^ ujj vs ^ y ^ v8+1); all j] 

represents a range of probabilities corresponding to the range of y.    To 
estimate this range, an approximation must be introduced,  letting one 
probability q ,  say, represent the range of possible values.    If suffi- 

ciently small Intervals are constructed for y, the probabilities will 
have a small range for each interval,  and the mean of the smallest and 
largest probabilities should yield a good approximation;  alternatively, 
y could be chosen as the normal deviate corresponding to the probability 
midpoint of each Interval.    The latter alternative was chosen for the 
experiments described here. 
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mm 

f 

ij  "i'j' 
-1 ^ a. s +1 for i ■ 1, 2, ..., k. Then the unknown probability area 

could be verified from the same quadrature formula used earlier to com- 
pute the probability area for the single common factor distribution from 
which the random observations are generated.  Such a choice for R. 

however, lessens the representiveness of the problem. To evaluate the 
importance sampling approach, results should be compared when sampling 
proceeds from a distribution which poorly approximates the distribution 
of interest as well as when both distributions each have only one common 
factor. To increase the generality of the results, therefore, for each 
single common factor ft , both a "good" single factor approximation and 

a "poor" single factor approximation were constructed for the sampling 
distribution. 

All correlations in ft. were chosen to be .90 (both for four and eight 

varlates) for one set of problems. Such high positive correlations will 
yield multidimensional probability regions highly concentrated about the 
center of the distribution. To work with probability regions more evenly 
distributed over the infinite domain, all correlation elements were set 
to .10. Four- and eight-variate matrices containing randomly selected 
positive correlations with more than one common factor were also con- 
structed, although a quadrature procedure for checking the Monte-Carlo 
estimates was not available. For the two kinds of single common factor 
correlation matrices used for sampling, one R had the structure 

r ma.a.  ■ (•90)(.90) ■ .81, and the other had the structure 

r  ■ (.i0)(.l0) • .01 (both for four- and eight-variate problems). For 

the "unknown" integral with all r  ■ .90, the ft with all correlations 
IJ g 

equal to .81 represented the "good" Importance sampling approximation; 
the ft with all correlations equal to .01 represented the "poor" approxl- 

e 
mation. Conversely, when all r  were set to .10 in ft*, the ft- with 

correlations equal to .81 was the poor sampling approximation and the ft 
with correlations of .01 was the good one. * 

'; 

THE MONTE-CARLO EXPERIMENTS 'f 

Procedure 

The relative efficiencies of the different Monte-Carlo methods were 
examined for a variety of experimental problems. Two sets of runs were 
prepared, one with four varlates and the other with eight; the experi- 
mental problems for the two sets were designed to be somewhat comparable. 
The correlation matrix ft. characterizing the multivariate normal distri- 

f 
bution for the "unknown" integral was chosen to have a single common 
factor with all correlations of the structure r, . ■ or.«., where 

- 15 
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Probability estimates were also obtained for 5 different kinds of 
Integration limits. One set of limits Included only the central portion 
of the distribution, -1. to +1. for all four or eight varlates. Another 
set Included the tails, -« to 0. for all varlates. In a third set, the 
limits contained a variety of both tails and central portions (-5, to -1.; 
-1. to 0; 0 to 1; and 1. to 5. for four varlates and -5. to 1; -5 to 2; 
-5 to 3.; -2 to 1.; -2 to 2.; -2 to 5.; -1. to 2.; -1 to 5. for eight 
varlates). 

In sumnary, the series of experiments used to compare the relative 
efficiency of two Monte-Carlo methods for evaluating the multlvarlate 
normal Integral contained four categories of Independent variable: 
1) number of varlates, 4 and 8; 2) structure of the multlvarlate normal 
distribution of Interest, as characterized by a one common-factor corre- 
lation matrix with high positive correlations, a one common-factor corre- 
lation matrix with low positive correlations, and a correlation matrix 
with randomly selected positive correlations; 3) goodness of approxima- 
tion of the sampling distribution to the multlvarlate normal distribution 
being Integrated; 4) range of Integration, with limits Involving only the 
central portion of the distribution or Including both tall and central 
portions as well. 

All possible combinations of the Independent variables planned for 
the series of experiments totaled 36 problems; 18 of these problems were 
based on four-varlate distributions and 18 comparable problems were for the 
elght-varlate distributions. For each of these problems, 10 Independent 
probability estimates were obtained. The estimates for the four-varlate 
problems were each based on an n of 1000 random vector observations; 
10,000 random vectors were generated for each of the elght-varlate problems. 

Results from the Monte-Carlo Experiments 

Results are presented in Tables 1, 2, and 3* For each of the four- 
and elght-varlate series, 9 different probability regions were being 
evaluated. The first line of values presented for each such region Is 
based on the first and simplest method of Monte-Carlo sampling described 
(Method l). The second two lines of values were obtained using the Boldt 
importance sampling approach (Method II), but with one set of estimates 
being obtained from a "good" sampling distribution approximation and the 
other set from a "poor" approximation. 

For the single conmon-factor distribution, probabilities computed by 
quadrature are presented in the tables as IT, to represent the "population" 
value. The average squared deviation from this population value (^JTT) 
over the 10 estimates per problem was used as a measure of the accuracy 
of a given method*-'. The average squared deviation from the observed mean 

^ It is the within sample variances which are presented in formulas (4), 
(6), and (9). The measures of between sample variability, however, 
were more discriminatory of the effectiveness of the different Monte- 
Carlo methods and are therefore the ones presented in the tables. 

14 



(^|p) based on each set of 10 samples was also computed.    It is the 
square roots of these measures (sJTT    and sj p,  "standard deviations") 
that are presented in Tables 1 and 2.    The standard deviations obtained 
for the simple Monte-Carlo method were used as the baselines by which 
relative amount of variation for different problems could be evaluated. 
These ratios of standard deviations are also presented in Tables 1 and 2 
for each set of problems. 

The first observation which should be made about the results is an 
apparent equivalence of the two measures of variability,  s|TT and s|p. 
That is,  the degree to which one Monte-Carlo method is more precise than 
another for a given problem appears to be independent of whether the 
deviations of the estimates are taken about the observed mean or about 
the population value.    Of course,  such a generalization can be made only 
with respect to unknown integrals based on single common factor distri- 
butions.    Equivalence of the measures,  if equivalent over all  types of 
problem,  could be taken as an indication that the Monte-Carlo estimates, 
even though highly variable, are unbiased estimates and can be expected 
under increased sampling to converge to the true population value. 

To further clarify the form of the results, the ratios of standard 
deviations were extracted from Tables 1 and 2 and regrouped to form 
Table 3«    Noting that a ratio of standard deviations above 1.0 indicates 
superiority of the Importance sampling method, whereas a ratio below 1.0 
favors the simpler sampling procedure,  a striking characteristic of 
Table 3 is that neither method is consistently superior over the differ- 
ent types of integral being evaluated.    The ideal result,  of course,  is 
to find some method which yields estimates with a marked reduction of 
variance on all problems.    With the results shown here,  the types of 
problem for which one method might be superior to another is a matter 
only for hypothesizing.    Ultimately,  perhaps,  the most economical pro- 
cedure with respect to computer time will be the design of some test in 
which the type of probability integral to be evaluated is examined by 
the computer before it proceeds to analysis by one of several alternate 
methods.    At most,  these experimental results may have bearing on some 
entirely new approach to the problem of evaluating multivariate normal 
integrals. 

An independent research project is being conducted by Cecil Johnson 
(7) at BESRL on increasing the goodness of fit of the single common-factor 
sampling distribution to the multivariate normal distribution of Interest 
to Increase the precision of importance sampling.    Preliminary results 
of this research Indicate that using improved methods to determine the 
parameters from which the common factor random entities are generated 
can result in an appreciable reduction in variance.    That such an approach 
is a fruitful one is supported by the data presented in the present pub- 
lication.    In fact,  the one striking observation which comes from Tables 
1, 2, and 5 1B the superiority of the "good" approximation sampling dis- 
tribution to the "poor" approximations in yielding minimum variance 
estimates.    This advantage shows up in all 24 of the problems where 
goodness of fit was compared and goes as high as 42 to 1  in problem 22 
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with eight varlates.  One should be aware, of course, of the fact that, 
when the sampling approximation is very good (i.e., when the sampling 
distribution is nearly identical to the distribution associated with the 
unknown integral), the variable components on which an importance sampling 
estimate is based are very small relative to the scaling constant com- 
puted by quadrature. Therefore, the superiority shown in problems 1, 4, 
7, 10, 15, 16, 22, 28, and 34 is partly a consequence of the fact that 
the unknown distribution is one of the rare distributions whose integral 
value is near to the value computed by the given quadrature formula, a 
situation not to be encountered often. The real test of an importance 
sampling approach is whether an advantage can be observed when the 
sampling approximation is only moderately good or poor.  Such an advantage 
does show up in problems 5 and 21 ( for four and eight varlates) and 9 
(for four varlates), both poor approximation problems, but not in other 
poor approximation problems, 2, 8, 1^, 20, 26, and 55, (for four and 
eight varlates) and 27 and 52 (for eight varlates). 

The determination of a suitable single common-factor distribution 
and the manner In which random entitles are generated from this distri- 
bution Is not a straight-forward procedure. By varying such a procedure, 
precision of the estimates based on even a poor sampling distribution 
can be improved. The results presented here may be considered relatively 
crude with respect to this aspect of the problem; improvement is expected 
wher the procedures under Investigation by Johnson are incorporated into 
the techniques described here. 

The estimates in Table 5 do appear to favor slightly the importance 
sampling approach when the region of integration is over the center of 
the distribution. The best results, in problems 4 and 22 for four and 
eight varlates, were obtained when the range of integration was from -1. 
to +1., the center, even though the associated multlvariate normal dis- 
tribution was least concentrated about the center (i.e., all r's * .10). 
Furthermore, the ratios of standard deviations were greater than one In 
all but one of the problems designed for the central region, regardless 
of the type of distribution being integrated. The importance sampling 
method tends to be relatively less efficient when tails are Included in 
the integration limits. For example, problems 25 and 24 for eight 
varlates indicate a gross failure of the imporatnce sampling method, 
although these problems are also based on poor approximations to eight 
varlate common factor distributions. Furthermore, any observation on 
tail results cannot be stated too conclusively, since the tail regions 
for the data under discussion were not examined to the exclusion of any 
of the more central regions. 

Clearly, the relative advantage of one sampling method over another 
is highly sensitive to variations in the region of integration relative 
to the structure of uhe correlation matrix. For instance, the ratios for 
the four-varlate distribution characterized by a single common-factor 
correlation matrix with large positive elements (problems 1, 7, 13, 19, 
25, and 31) Increased by a multiple of about 2 when the integration limits 
included a variety of ranges, even though the probability area was small. 
By contrast, when the correlation matrix had very small positive elements, 
the advantage of the Importance sampling method decreased to about one- 
half when the tails were included (problems 4, 10, 16, 22, 28, and 54). 
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Table 1 

MONTE-CARLO ESTIMATES BASED ON TWO DIFFERENT SAMPLING PROCEDURES FOR 
EVALUATING THE MULTIVARIATE NORMAL INTEGRAL 

FOUR-VARIATE  PROBLEMS 
(N - 1000) 

All  correlations - . 90; Centered limits:    -1 to +1 

Problem Method TT P •IP 
s 

ratio .|7I 
s 

ratio 

1 
f 

I .5114 .5121 .0217^ .02177 

1 II r -.81 Good 
ff 

.5114 .5125 .00871 2.50 .00877 2.48 

2 II r -.01  Poor 
g 

.5114 .5125 .02856 0.77 .02858 0.77 

All correlations - . 10; Centered limit .s:    -1 to +1 

Problem Method TT P -IP 
s 

ratio .|TT 
s 

ratio 

5 I .2202 .2205 .00551 .01551 

5 II r -.81 Poor g .2202 .2156 .01092 1.22 .01   ^6 1.12 

4 II r -.01 Good 
8 

.2202 .2204 .00057 55.56 .00040 55.46 

Full Rank,   positive correlations; Centered limits: -1 to +1 

Problem Method P •|p 
8 

ratio 

5 I .5217 .00212 

5 II r -.81 g .5187 .01645 1.29 

6 II r -.01 
8 

.5226 .00525 6.56 

All c.rrelations - .90 ;  limits include tails: -• to 0 

Problem Method TT P •IP 
s 

ratio s|TT 
s 

ratio 

7 I .5695 .5618 .01659 .01805 

7 II r -.81 Good g .5695 .5705 .00688 2.58 .0069ft 2.58 

8 II r -.01  Poor .5695 .52Q6 .05068 • 55 .05018 • 56 
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Table 1 (continued) 

All correlations ■ .10; limits include tails: -» to 0 

Froblem 

9 

9 

10 

Method 

I 

II r -.81 Poor 
g 

II r -.01 Good 
g 

TT      p s|p 

.0871 .0869 .01065 

.O87I .0845 .00965 

.087I .O87I .00075 

s 
ratio 

1.11 

14.25 

s|Tr 

.01066 

.01005 

.00075 

s 
ratio 

1.05 

14.22 

Full rank, positive correlations; limits include tails: -» to 0 

Problem Method 

11 I 

11 II r -.81 
g 

12 II r -.01 
g 

Problem 

15 

1? 

14 

Problem 

15 

15 

16 

p s|p 
s 

ratio 

.1951 .01504 

.1954 .01785 •75 

.1919 .00892 1.46 

All correlations - .90; limits are varied 

Method n p s| p 

I .07054 .07410 .007FO 

II r -.81 Good  .07054 .07065 .00145 

II r -.01 Poor  .07054 .06926 .00725 
g 

s 
ratio s|n 

.00858 

s 
ratio 

5-58 .00145 5.90 

1.08 .00754 1.17 

All correlations - .10; limits are varied 

Method n p s|p 
s 

ratio s n 
s 

ratio 

I .1535 .1544 .01547 .01550 

II r -.81  Poor g .1535 .1465 .02461 .65 .02562 .60 

II r -.01 Good 
g 

.1535 .1534 .00042 36.74 .00043 35.93 

Full rank, positive correlations; limits are varied 

Problem Method 

17 I 

17 II r -.81 
g 

18 II r -.01 
g 

P s p 
s 

ratio 

.1188 .01260 

.1307 .04198 • 30 

.1148 .00520 3.94 
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Table 2 

MONTE-CARLO ESTIMATES BASED ON TWO DIFFERENT SAMPLING PROCEDURES FOR 
EVALUATING THE MÜLTIVARIATE NORMAL INTEGRAL 

EIGHT-VARIATE   PROBLEMS 
(N » 10,000) 

All correlations * .90; centered limits: -1 to +1 

Problem 

19 

19 

20 

Problem 

21 

21 

22 

Method 

I 

n     p     s| p   ratio 

.4502  .4509  .00535 

II r -.81 Good  .4502  .4504  .00527   1.05 

II r =.01 Poor  .4502  .4245  .OI582    .21 

All correlations ■ .10; centered limits: -1 to +1 

s|n 
s 

ratio 

.00545 

.00527 1.05 

.01682 .20 

Method 

I 

n     p     s|p   ratio 

.0499  .0502  .00229 

II r -.81 Poor  .0499   .0502  .00214   1.07 
O 

II r -.01 Good  .0499  .0499  .00005  45.02 

Full rank, positive correlations; centered limits: 

s 

s|n 
s 

ratio 

.00252 

.00216 1.08 

.00006 58.87 

■1 to +1 

Problem 

25 

25 

24 

Method 

I 

II r -.81 
g 

II r -.01 
g 

p s|p ratio 

.1757 .00578 

.1751 .00291 1.50 

.1751 .00258 1.^ 

All correlations - .90; limits include tails: 

s 

-» to 0 

Problem 

25 

25 

26 

Method 

I 

n     p     s|p   ratio 

.5211  .5206  .00412 

II r -.81 Good  .5211  .5212  .00280   1.47 
g 

II r -.01 Poor  .5211  .2590  .02546    .17 
O 

s n 
s 

ratio 

.00415 

.00280 1.48 

.06640 .06 
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Table 2 (continued) 

All correlations - .10;  limits include tails:     •«• to 0 

Problem     Method 

27      I 

27 

n   p   s|p 

.0141   .0141   .00095 

II r -.81 Poor  .0141   .0126  .00136 
g 

28     II r -.01 Good   .0141   .0141  .00010 
g 

8 
ratio •In 

.00095 

8 
ratio 

.70 .00205 .47 

9.05 .00011 8.€4 

Full rank, positive correlations; limits include tails: -• to 0 

Problem  Method 

29 I 

29 II V .81 
30 II r - 

g 
.01 

P •IP 
8 

ratio 

.1349 •00557 

.1249 .00775 .44 

.1206 .00697 .48 

Problem  Method 

51      I 

51 

52 

II r -.81 
g 

II r -.01 
g 

All correlations - .90: limits are varied 

n     p     s|p 

.5962  .5960  .00564 

.5962  .^66  .00552 

.5962  .5895  .08477 

8 
ratio s n 

.00564 

8 
ratio 

1.02 .00555 1.02 

.07 .08505 .07 

Problem Method 

35 I 

55 

54 

II r -.81 
g 

II r -.01 
g 

All correlations - .10; limits are varied 

n     P sfp 

.4559 .4595 .00579 

.4559 .5128 .05915 

.4559 .4565 .00144 

Full rank, positive correlations: limits are varied 

8 
ratio •In 

.00510 

8 
ratio 

.10 .12919 .04 

2.64 .00148 3.45 

Problem Method 

55 I 

55 

56 

II r -.81 

II r -.01 
g 

P •IP 
8 

ratio 

.5234 .00488 

.4900 .09384 •05 

.5191 .02511 •19 
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Tabl« 3 

STANDARO DEVIATION RATIOS:     VARIABILITY OF IMPORTANCE SAMPLING 
PROBABILITY ESTIMATES RELATIVE TO METHOD I 

MONTE-CARLO ESTIMATES 

Correlation 
Structure Varied Integrati oil Limite 

(rf) V Problem 
No. 

S.D. 
Ratio 

Problem 
No. 

S.D. 
Ratio 

Problem 
No. 

S.D. 
Ratio 

I 
Four Varietes 

i 
^N - 1000) 

.90 .«1, good 1 2.^0 7 2.58 15 5.38 

.90 01, good 2 .77 8 .55 14 1.08 

.10 -1, poor 5 1.22 9 1.11 15 .63 

.ic oi, good 4 J^e 10 14.25 16 36.74 

Random Pi 5 1.2? 11 .75 17 .50 

Randcm 01 6 6.56 12 1.46 18 3.94 

Eif (ht Varietes (N - 10,000) 

.)0 81, good 19 1.03 25 1.47 51 J.02 

.90 01, poor 20 .21 26 .17 32 •07 

.10 81, poor 21 1.07 27 .70 35 .10 

.10 01, good 22 45.02 28 9.05 34 2.64 

Random 81 25 1.50 29 .44 35 .05 

Random 01 24 1.59 50 .48 36 .19 



Second Series of MonttH mlu I «.imimtmla 

An additional   ■artati «if  experiment a,   similar to the previous series, 
vat designed to examhu» (hi1 prcilnion of Monte-Carlo estimates for very 
small  probability reKtnni*.     A variety of single-factor problems,   for which 

TT could be easily approximated by quadrature,  was evaluated on the com- 
puter until a set of  probability regions similar in magnitude, but  small, 
were found.    The largest of  these regions was   .0296^ and the smallest was 
.00007«    On0 8et of experiments was designed for four variates and another 
for eight variates.    The correlation matrices characterizing the distri- 
butions to be integrated were the same single common-factor matrices used 
for the previous problems;  all  correlation coefficients in these matrices 
were equal either to   .90 or to  .10. 

In the second experimental series, results were highly encouraging 
in favor of the importance sampling approach.    With small TT, the ratios 
of standard deviations measuring precision of Monte-Carlo Method II, 
relative to Method 1, were quite large,  ranging from 7 to 1 to as high 
as 2989 to 1.    The beat result for the problems previously discussed was 
only 45 to 1 (problem 22, Table 5)«    Furthermore,   the direction of the 
results was consistent.    For every problem. Method II was more precise 
than Method I.    The two variance measures, with deviations taken about 
the observed mean In one measure and about the population parameter in 
the other, gave comparable results, as they did in the first series of 
problems.    This conformity was again taken to be an indication of lack 
of bias In the results. 

Judging by an Inspection of the results of Tables 4 and 5,  the 
advantage favoring the Importance sampling method appears to be related 
only to the size of the probability region.    Central regions versus tail 
regions, or four versus eight variates, do not appear to distinguish one 
method from another.    In general, better results were obtained with 
Method II when the sampling distribution approximation was good,   although 
exceptions occurred In problems 42, 44,  and 46. 

The point where the advantage due to size of TT disappears is,  of 
course, not entirely clear.    The very large ratios of Tables 4 and 5 are 
for TT's of .003 or less.    Note that in problem 47, when TT is as large as 
.030, the ratio drops to only 7 to 1.    The ambiguous results presented 
In Tables 1 and 2,  with Method I being superior in some problems and 
Method II being superior in others, usually involved very large TT's (e.g., 
.5114 or .4502).     But when TT was small ( .0499 or   .0705), as in problems 
13,   14, 21, and 22,   results favored the Importance sampling approach. 
On the other hand, TT for problem 27 was small,   .0141, and the relative 
sizes of the variances indicate greater precision in the brute-force 
method.    Very likely,   some interaction is occurring between size of  i.ne 
probability region and adequacy of the sampling distribution approxima- 
tion.    Results for Method II tended to be poor when integration was over 
the tails of a relatively flat multivariate normal distribution (such as 
when all r's equaled  .10),  and sampling was  from a distribution with most 
of its mass concentrated over the center (as when all r's • .90);  observe 
problems 9 and 27. 
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Table 4 

COMPARISON OF MONTE-CARLO ESTIMATES  FOR SMALL PROBABILITY REGIONS  IN EITHER 
THE TAILS OR THE CENTER OF THE MULTIVARIATE NORMAL DISTRIBUTION 

FOUR-VARIATE PROBLEMS 
(N -  1000) 

1 

All correlations ■  .90;  Central limits:    0  to  .50 

Problem      Method 

37 I 

57 

38 

n p s|p 

.00298      .00370      1.7349X10"-5 

s 
ratio s|n 

1.8776x10 -3 

g 

II r «".Ol Poor 
g 

.OO298 .00296     6.25l9xlo"e     277-5     1.9058xlo'5 

s 
ratio 

II r -.81 Good      .00298      .00296      2.75l5xlo"6      650.6      1.7728X1G'
5

    I05.9 

98.5 

Problem      Method 

39 I 

39 

40 

All correlations ■  .10; Central limits:    0  to  .50 

II                p s| p 

.00020       .00000 0 

II  r «.81  Poor      .00020       .00020 1.848lxlo"'7 

g 

II  r -.01 Good      .00020       .00020 5.8555x10 
g 

s s 
ratio sjn               ratio 

2.0l00xlo'4 

0 1.5733xlo"6    127.8 

0 1.6l29xlo"6    124.6 

All correlations ■  .90; Tail limits:    1.9  to 2.5 

Problem     Method 

41 I 

n s|p 

.00266       .00100       1.0954x10 

-e 

s 
ratio 

s 
s|n               ratio 

1.9855xlo'5 

122.8 1.3949xl0'5   142.3 41 II  r -.81 Good      .00266       .00267      8.9168x10 

42 II r -.01 Poor      .0026b      .00265      5.9575xlo"5        18.4      5.9927xlo"5     53.1 

All correlations -  .10; Tail limits:     1.5  to 2.5 

Problem      Method 

43 I 

n s p 
s 

ratio 

.00007     .00010    3.0000x10" 

s|n 

3.0170x10' 

s 
ratio 

45 11 r -.81 Poor      .00007       .00007      8.9698x10"^      554.4      1.5096xlo'6    I99.9 

44 II r -.01 Good      .00007      .00007      5.7956xlo"7      517.8     7.1l84xlo'7    423.8 
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Table 5 

COMPARISON OF MONTE-CARLO ESTIMATES FOR SMALL PROBABILITY REGIONS  IN EITHER 
THE TAILS OR THE CENTER OF THE MULTIVARIATE NORMAL DISTRIBUTION 

EIGHT-VARIATE  PROBLEMS 
(N -  10,000) 

All correlations - .90; Central  limits 0 to .55 

Problem Method n p s| p 
s 

ratio s|n 
s 

ratio 

45 I .00012 .00015 l.l874xlo"4 

Q 
1.1945X10"4 

45 II r -.81  Good 
g 

II r -.01  Poor 
g 

.00012 .00012 7.5757X10"1 1567.8 8.2050X10"7 145.6 

46 .00012 .00012 1.4855xlo"T 799-3 8.0974xlo"'7 
147.5 

All  correlations - .10; Central  limits 0 to .85 

Problem Method n P 8I p 
s 

ratio s|n 
s 

ratio 

47 I .02965 .02980 l.6528xlo'5 1.6598xlo"5 

47 II r -.81 Good .02965 .02965 1.0044x10"* 16.5 1.0295xl0"4 15.9 

48 
0 

II r -.01  Poor 
g 

.02965 .02959 2.1859X10"4 7.5 2.2927xl0"4 7.2 

All correlations - .10; Central  limits 0 to .85 

Problem Method n P s|p 
s 

ratio s|n 
s 

ratio 

49 I .00010 .00015 g.ooooxio"5 9.4868xl0"5 

49 

50 

II r -.81  Poor 
g 

II r -.01  Good 
g 

.00010 

.00010 

.00010 

.00010 

5.6664xlo"T 

5.4429xl0"8 

24,5.':) 

2614.1 

4.6482xl0"7 

1.987lxl0"7 

204.1 

477.4 

All correlations - .90; Tail  limits;     1 .8 to 2 •5 

Problem Method n p s|p 
s 

ratio •In 
s 

ratio 

51 I .00095 .00088 2.82l4xlö"4 2.9l45xl0"4 

51 II r -.81  Good 
g .00095 .00095 2.454lxl0"6 

115.9 2.5709xl0"6 115.4 

52 II r -.01   Poor 
g 

.00095 .00096 9.7721xl0"6 28.9 1.0l21xl0"5 28.8 

All correlations - .10; Tail   limits:    0 .8 to 2 ■ 5 

Problem Method n p s|p 
8 

ratio •In 
s 

ratio 

53 I .00008 .00009 8.5066xl0"5 8.4077xlo"5 

55 II r -.81  Poor g .00008 .00008 1.5748xl0"6 52.7 1.5968xlo"6 52.6 

54 II r -.01  Good 
g 

.00008 .00008 5.2592xl0"7 256.4 5.5284xlo"7 258.5 
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One implication of the results obtained  for small TT's is that the 
recommended importance sampling approach could be improved by introducing 
sample stratification.    The probability region A would be divided into 
mutually exclusive regions A-, A ,  ,.,, A ,  and the final estimate p 

would be the sum of t   independent estimates p.,  p-,   .,.,  p ;  i.e., 

TT ■ p *    ü     p .    Some properties of sample stratification were presented 
8-1       » 

under the section describing Importance sampling based on a uniform 
sampling distribution.    The advantage stated there was that, when the 
number of points sampled  in each region is proportional  to the magnitude 
of the region, the within sample variance based on stratification will 
be less than or equal  to the variance for an unstratified sample.    The 
importance sampling method used  in the experiments should have an addi- 
tional advantage because the probability regions will be small. 

SUMMARY 

Experimeaial results have been presented  to evaluate two different 
methods of Monte-Carlo sampling to integrate the multivariate normal dis- 
tribution.    Using random vector observations generated to have the distri- 
bution of interest,  one method  is basically a count of the observations 
which lie within the region of integration.    A more complex method is an 
adaptation of importance sampling in which a single common-factor multi- 
variate normal distribution is the sampling distribution.    Random vector 
entities are constrained  in such a way that only observations which lie 
within the specific integration limits are generated. 

The precision of the estimates for the two methods was compared from 
the magnitude of the variances of the estimates over Independent samples. 
The form of the results appears to be affected both by the size of the 
probability region over which Integration Is performed and also by the 
goodness of fit of the importance sampling distribution to the distribu- 
tion under evaluation.    When the probability region is very small,  the 
importance sampling approach is clearly the more efficient method.    For 
larger probability regions,  the importance sampling approach is superior 
to the tallied method when the sampling approximation is a good approxi- 
mation.    When the importance sampling approximation is poor,  the precision 
of the probability estimate favors the simpler Monte-Carlo procedure.    The 
results indicate that applying the importance  sampling technique to a 
probability region divided into strata, a very small  probability being 
associated with each stratum,  will yield precise estimates  for a wide 
variety of problems.    Sampling distributions other than the multivariate 
normal might also be superior for selected portions of the probability 
region.    Finally,  BESRL research scientists are continuing studies to 
improve the adequacy of the approximation of the one common-factor dis- 
tribution to a ■multivariate normal distribution of interest.    Information 
gained  from the new research may be expected  to increase the efficiency 
of the techniques described here. 

-  2'? 



■» 

LITERATURE CITED 

1. Hilller, Ann. A program for computing probabilities over rectangular 
regions under the multlvariate normal distribution.  Technical Report 
No. 54. Applied Mathematics and Statistics Laboratories. Stanford 
University, California. I96I. 

2. Haber, Seymour. A modified Monte-Carlo quadrature. Mathematics of 
Computation.  I966. 20, 361-368. 

3. Boldt, Robert. An Importance sampling integration of the multlvariate 
normal curve. U. S. Army Behavioral Science Research Laboratory. 
(In preparation). 

4. Curnow, R. N. and C. W. Dunnett. The numerical evaluation of certain 
multlvariate normal integrals. Annals of Mathematical Statistics. 
1962. ü, 571-579. 

3. Lord, Frederic M. Evaluating the multlvariate normal integral over a 
rectangular region when the correlation matrix has only one common 
factor. Research Bulletin. Educational Testing Service. November 

1957. 

6. Hastings, Cecil, Jr. Approximations for digital computers. 
Princeton, N. J. I955. 

7.. Johnson, Cecil. Programming plan and supplement number 1. OVHD-02, 
Statistical Research and Analysis Division, U. S. Army Behavioral 
Science Research Laboratory. I966. 

- 26 - 



mm 
* 

Unclassified 
Jkcuritj^lassineatltii 

(iwmllr elm»tllletllon ol Uli; bo4r 
I. ORiaiNATINO ACTIVITY CCM^waMMMiäf) 

U. S. Army Behavioral Science Research Laboratory, 
Wash., D. C. 

DOCUMENT CONTROL DATA • R 4 D 

1. MKVOMT TITLC 

. NCMIIT MCUIMTV CUAMiriCATIOM 

Unclassified 
Mw mmoui 

EXPERIMENTAL COMPARISON OF MONTE-CARLO SAMPLING TECHNIQUES TO EVALUATE THE MULTIVARIATE 
NORMAL INTEGRAL 

4. OKtcniFTivi Noras (Tfp* ml Mpoti mn4 Incl—ln ätH») 

•. AUTnomi)(Flnl imm*. SOBB infMal, laatiwaw) 

Elizabeth N. Abbe 

•. HIPONT o* 

June 1969 
M. CONTNACT OH OMANT NO. 

*. mmojtcr NO. 

DA R&D Proj.   No. 2Q062106A725 

*' Optimization Models 

A b-12 
10. OltTNiauTION ITATKMCNT 

7«. 

58 
•a. omaiMATon*« NB^ORT NUMUHIW 

Technical Research Note 208 

**• gTM** *'>ol>T wol*> 3S •••r—■»»«■ *«r—r S —10*4 

This document has been approved for public release and  sale; Its distribution Is 
unlimited. 

II. SIOPLCMKNTARV ' OT«» It. I»OM*ORIM« MILITARY ACTIVITV 

Office, Chief of Research and Development, 
DA, Washington,  D. C. 

It. ZRflRFF  
The research effort of the OPTIMIZATION MODELS Work Unit Is concerned with providing 

means of solution to personnel management problems relating to distribution, training, 
career progression, reassignment, and utilization of manpower In current and future 
Army personnel subsystems, "vThe present study compares techniques for fejtlmating man- 
power requirements where a number of Individually varying skills, performance poten- 
tials, background and behavioral factors must be considered. The specific objective 
was to evaluate two different numerical methods for estimating probability when a 
multlvarlate normal model (for example, one Involving scores on a battery of tests) can 
be assumed. 

In a series of simulation experiments In which random vector observc-.tions were gen 
erated,  probability estimates were computed  by each of the two methods.     Probability 
regions on which the experiments were based were chosen to have a variety of properties 
The precision of the two methods was compared from the magnitudes of the variances of 
the probability estimates over Independent samples.    Results Indicated that when the 
probability region Is very small,  the more complex of the two methods (importance sam- 
pling) is superior; but when the sampling approximation is poor, the precision of the 
probability estimates favors the simpler Monte-Carlo procedure.   The computational  pro 
cedures developed appear to be practical methods of estimating probability based on 
multiple scores   for individuals  in a sample population. 

DD /TJ473 Ra»kA«a« o» roMM •«»». • JAM M. «NICM IS 
OMOkBTe re« ANMV MB. Unclassified 

■Murllir CUMineattM' 



UncUsalfled 
BS5|5 CtoMtncatton" 

LINK  C 

*Multivarlate analysis 

Statistics 

♦Sampling techniques 

«Probability estimates 

*Multivariate model 

Simulation experiments 

Vectors 

♦Probability regions 

♦Computational procedures 

♦Monte-Carlo methods 

Optimization techniques 

50 - Unclassified 
••eatttir CiastlllcaUo« 

: 


