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FOREWORD

BESRL's OPTIMIZATION MODELS Work Unit seeks to provide means of solution to
personnel management problems relating to the distribution, training, career progression,
reassignment, and utilization of personne! in current and future Army personnel subsys-
tems. Personnel systems are analyzed and areas identified for which objective optimiza-
tion techniques can profitably be applied.

Quantitative models and computing algorithms for optimal assignment and for evaluat-
ing the feasibility of alternative approaches to personnel system problems have been pro-
vided. Optimization techniques are developed to identify the ''best’’ policy for meeting
future military contingencies at minimum cost in terms of personnel system -esources. The
present Technical Research Note compares techniques for estimating manpower require-
ments where a number of individually varying skills, performance potentials, background
and behavioral factors must be considered.

The entire research work unit is responsive to requirements by RDT&E Project
2Q082106A723, ‘‘Human Performance in Military Systems,’’ FY 1969 Work Program.

J. E. UHLANER, Director

U. S. Army Behavioral Science
Research Laboratory
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EXPERIMENTAL COMPARISON OF MONTE-CARLO SAMPLING TECHNIQUES
TO EVALUATE THE MULTIVARIATE NORMAL INTEGRAL

BRIEF

Requirement:

To represent more realistically and precisely the complex and multiple interrelation-
ships within the Army personnel system, continued development of quantitative and tech-
nical methodology is required. The present objective was to evaluate two different numeri-
cal methods for estimating probability when a multivariate normal mode! (for example, one
involving scores on a battery of tests) can be assumed.

Procedure:

In a series of simulation experiments in which random vector observations were
generated, probability estimates were computed by each of the methods. Probability (v,.ons
on which the experiments were based were chosen to have a variety of properties. The
precision of the two methods was compared from the magnitudes of the variances of the
probability estimates over independent samples.

Findings:

Results appear to be affected both by the size of the probability region being estimated
and by the goodness of the approximation of the sampling distribution to the unknown
distribution. The more complex methoc was consistentiy superior for very small probability
regions; but when the sampling approximation was poor, the precision of the probability
estimates favored the simpler approach.

Utilization of Findings:

The computational procedures developed in conjunction with this series of experiments
are considered practica! methods of estimating probability based on muitiple scores for
individuals in a sample population. Estimation problems for which one method can be
expected to be superior to the other were clarified. Changes in the computational proce-
dures from which methodological improvements may be expected were also made apparent.
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EXPERIMENTAL COMPARISON OF MONTE-CARLO SAMPLING TECHNIQUES
TO EVALUATE THE MULTIVARIATE NORMAL INTEGRAL

Personnel management research relating to manpower has led to the
development of both optimization and simulation models within BESRL.
These models can relate to the formulation of policies regarding man-
power requirements and are effective in the evaluation of such policies.
Realistic estimates require, however, that multiple behavioral response
patterns, as well as the complex interrelationships among these patterns,
be incorporated into the model of the personnel system. The continued
development of more advanced quantitative techniques is therefore
required.

The research reported is directed toward the development of one
such quantitative technique for use with models for which the multiple-
response patterns can be characterized by a particular, but very commonly
encountered distribution, the multivariate normal distribution. One
example of the application of this technique is in policy formulation,
where it may be necessary to estimate the proportionate increase of men
assigned in various Army job areas which would occur if requirements on l
certain classification criteria were made more lenient, A suggested
policy of lowering requirements five points on each of the job areas
under investigation might show, for instance, that too few men would be
classified into these areas to meet increased manpower needs. As another
example, some estimate of the proportion of the total Army population
which lies between certain bounds on a system of behavioral measures
might be required before performing a valid simulation experiment. Such
problems require the integration of the multivariate probability dis-
tribution characterizing the population, which in this case is assumed
to be the multivariate normal distribution.

A general analytical method for integrating the multivariate normal
distribution is at the present time unavailable. The integral can be
approximated by numerical quadrature, but a very large number of data
points needs to be generated when the number of dimensions is large.
Another approach, designed to improve the approximation to the integral
and shorten computation time, is to obtain the observations by random
sampling over the region of integration rather than use the systematic
sampling of quadrature. Such a 'Monte-Carlo" approach will yield prob-
ability estimates which vary from sample to sample. The larger the
variance, however, the larger is the number of points which must be
generated to obtain a given degree of precision, and again the time
required for computations may be appreciable. Assuming, then, that a
given Monte-Carlo method yields unbiased estimates, the precision of the
method can be evaluated from the magnitude of the variance of the esti-
mates over independent samples.

Experimental results have been obtained to evaluate two different
methods of Monte-Carlo sampling to integrate the multivariate normal prob-
ability density function. Results for different types of probability
integrals and a description of the sampling techniques are presented.
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MONTE-CARLO METHODS

Tallied Sampling (Monte-Carlo Method 1)

One of the Monte-Carlo methods described has already been used and
reported by Hillier (1). Random vector observations are generated to
have the multivariate normal distribution of interest. The proportion
of observations which fall within the specified region of integration
constitutes the probability estimate. Even though the computations 4
involved are simple, this type of estimate shows considerable change
from sample to sample. Such variability serves, however, as a useful
standard by which to compare the behavior of a second method of Monte-
Carlo sampling, more complex computationally, but which has showed
promise of yielding estimates with a higher degree of precision.

The Model is described below:

Since any multivariate normal distribution can be easily converted to
standard form, methods of integration can be described in more general terms
with reference to the standardized distribution. Let X = l_'.‘rtl y gy eeey "k]

represent a k-dimensional vector of random variables distributed as the
multivariate normal with mean vector O and correlation matrix R. The
multivariate normal integral over a given region A =

(b, m); (o, W), «oo, (4,5 uk) is

M = £(X)dX

-+ w u
= &Lk/a r (s rk exp [-&(x R X')] dx.
(2m)¥/€ vea itg n
To estimate T, introduce a new random variable y, where
Yy=11if X ¢A
(1)
Y = O otherwvise.
In scalar notation, X ¢ A if "j <.7t:.1 < u, for 1= 1, 2, .50, ks

Then

E(Y) = j{: J{: - j{: y f(xl, X s eees xk) dx, dxa ... dxk

1, dg,

+J:: J:' J:kyf(xx. %y ey X ) &g & ... &

=T.

‘O-J"'H ua DOL J.::yf(x;) xg: L | xk) dx-; dxg oo e dxk
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The estimate of 7T is the random variable » = .—ir—, where yx, y', ceey
y represent a sample of independent random variables defined as in (1) from
2

n vector observations X X , ..., Xn randomly sampled from f(X).
PR

I£ yy , Y2 , eee, y, are a given set of observations,

n
Ly

i=]
n

i

p-

The variance of the binomial variate y is o®(y) = Ta-m

n
P(1-p

Its estimate is 0*(y) = —(—n——),

or, if written in terms of the observations, e (y)= L‘-l-n;z)- 5

To obtain the observed values ¥, , Y2, <., Yy first, n vectors z1
of independent random normal deviates are generated; Z has mean vector
mt = 0 and the identity correlation matrix I = f = Var(2'z) when n = o,
Then X, = 2, Ri for i =1, 2, ..., n, where 8 is the .quare root matrix
of R. Furthermore, M = 0 and Var (X) = ﬂéz'mi = Rélﬁt =R whenn = o,
as is required for the parameters which characterize f(X). If, for each
element x,, of any vector xi, L, < xij < uj, then ¥y is set to 1; but 1if

i J
any element of x1 falls outside the specified interval, ¥y is set to O.

importence Sampling

An alternate Monte-Carlo approach to integration is referred to as
importance sampling. Random numbers upon which the estimates of the
unknown parameter are based are generated from a distribution other than
the one suggested by the problem. Each value of this "biased' sample is
multiplied by an appropriate weighting factor which corrects for having

;
s A




used the wrong distribution. The probabiliiy that a sample will be drawn ,
from an "interesting" or "important" region is increased as a result of i
the biasing; the probability that it will come from an "uninteresting'

or "unimportant' region is decreased--a desirable result. By basing more
computations on random numbers generated from portions of the probability
region with which the manpower problem is concerned, it is possible to !
improve the accuracy--that is, reduce the variance--of the estimate.

The model is developed as follows:

Let g(X) = g(n, %, ..., X, ) represent a k-variate uniform
probability density function def¥ned over the probability region
A=[(L, w), (13, w), .., (lk’ uk)]. That is,

>201irfrXecA
g(X)
= 0 otherwise

and

3 x dx = J I (XN} I s(x » X 9 oeoe )
A B B T e % (1)
Let h represent another function of the random variable X. The expected
value of h is defined as

E(h(X)] = J‘__ L. L_ h(Xy, X5, eoes xy) &lxy, x5, oo0y x )ax, O, ... dx, .

In particular, suppose

£(X

h(X) = S

with f(X) representing the multivariate normal probability density function
wvhose integral over A is required. Then

&(x)
=1 (

e %gﬁ - Jp L gmax o, ro0ax

ne
A

which is the unknown probability region of interest.
An estimate of M is the random variable

1 b (&) '

P 2 =
B i=l g(Xy)

where X . X . .... X are random vectors sampled from g(X).
;’ ﬂ’ ? 'n

2 A=




#

£(41)
Let vee where = ——— for any i, represent a sample
y‘) yﬂ, ’ yn yi 8("1) y 1, P
of independent random variables over A. Then the variance of the random
variable p is

g £(4y)
151 S(Xi)

n
J
%

g(4

.1)
The variance of y is o® (¥) = E(/)-E (y) = J 1‘:(1() g(X) -,
Ag® (x)

1 £y
An estimate of E (y) i8 = § ————=—
Tl £(X)

, s+es, & represent the same sample of random variables

where X ; p
l 3

n
uniformiy distributed over A and used to estimate T.

Standard Importance Sampling Approach to Integration

Different Monte-Carlo methods for estimating 7T result from alternate
choices for tte sampling distribution g(X). In one of the simplest and
most frequently used methods of Monte-Carlo sampling, sampling is based
on the uniform distribution. Random vectors with limits on the elements
defined by the probability region of interest are generated. These
observations are then used to compute the ordinate of the given multi-
variate normal distribution, and a weigliited mean of the ordinate values
provides the estimate of 7. Since random uniform numbers within specified
limits can be easily generated, no computational time is wasted through
rejection of any sample values. In more detail, let

1 1
g(X) = g(X, X, .oy X =441
0 otherwise

This is the k-variate uniform probability density function over the
unknown probability region A =[1;, w ), (la, w), ..., (lk’ uk)] with

a k-dimensional volumn, the cartesian product of one dimensional intervals
(1_1’ uj), j=1,2, ..., k, being denoted by [A]. As is required,

g(X) > 0 for all X and
J’ F £ [A)
- .!.o o .].e gX)&X = — -1
Ly

-5-
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Written in the form of this distribution, the estimate of 7 is

(A] n
)
pP=— 151 f(li), and the variance is o° (¥) r[[A] IA f'(X)dX] = IT.,
where X;, A;, ol Xh are random vectors sampled from g(X).

Observations X = [xxi' Xy 12 *os Xxq4] which have the g(X) distribu-

tion are constructed by first generating n vectors Z1 = (24, Zags eeey 2Zky)

of independent random numbers which are uniform over the intarval (0, 1).
Then Xg " (zji) (aj, lj +1° %y 1J) + 2y, lj for all i, j. The
observed probability written in terms of these observations is
> IR:t'li I‘;(l y g 4 (x R-x .
= -1 (> 4 -
(211)272 =173 Y tm1 Pl 1R %))

where Rf is the correlation matrix for the given multivariate normal dis-
tribution and |RT| is the determinant of R.

Evaluating the relative precision of different procedures for esti-
mating T is, of course, equivalent to examining the size of the variaices
of the different estimates. One way to reduce the variability of the
estimate for a given method of Monte-Carlo sampling is to adopt some
appropriately designed procedure for stratified sampling. The probability
region of interest A is divided into mutually exclusive subregions
Az’ Ab’ FOUR At’ an independent probability estimate 5; obtained for each

As’ and the sum of these estimates used to estimate the probability over

the entire region, If the number of points sampled within each area is

* proportionate to the size of the region over which sampling is defined,
then it can be shown that the variance of the estimate of T for the
stratified sample will be less than or equal to, but never greater than,
the variance for the estimate obtained without stratification.

There are, of course, alternative approaches to the way in which the
total area A is divided into strata. One procedure, particularly appro-
priate when sampling proceeds over uniform dimensions, is 'A Modified
Monte-Carlo Quadrature" presented by Haber (2). The area for each stratum
is the accumulated product of one-dimensional uniform univariate distribu-
tions over k dimensions; i.e.,

k
A. = Jrjl (aJ, pd + 1 - aJ, pJ) for pJ = 0, 1, soey qJ O 1 a-nd 8 = l, 2, soey tc

The intervals within each of the k dimensions are construci2d so that the
differences aJ, pJ .l aj, PJ, are commensurable; in the simplest case,

N loN=
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all of them may be multiples of the smallest one. Consequently, the
k-dimensional volumns A , Ayy ooey Ay will be commensurable, and the

variance of the estimate based on the sum ot estimates over t strata
will be less than or equal to the variance of an estimate based on an

undivided sample; i.e.,

t

Var ( £ p ) < Var (p).
s=1 ¢

Preliminary experimental results, including results with the
advantage of sample stratification, indicated that the uniform distribu-
tion was not a suitable sampling distribution for integrating the multi-
variate normal distribution. The choice of an appropriate design for
importance sampling is, of course, not routine, and the variance of the
sample estimates may be increased, even infinitely, if the random data
points are generated from thc wrong distribution., It did appear more
profitable to examine in detail experimental results based on a differ-
ent importance sampling design which showed more promise of having the
desired property of reduced sample variance.

Importance Sampling: Boldt Method (Method 1)

An original approach to importance sampling was devised by Boldt (3).
Boldt suggested that a multivariate normal distribution with a single
common factor covariance structure often is a good approximation to covari-
ance structure observed in practice and might serve as a suitable solution
for the integral of the sampling distribution over the same limits required
for the unknown integral. A simple quadrature solution does exist for
variance-covariance matrices with the common factor structure and has been
described a number of times in the literature, for example, by Curnow and
Dunnett (4) and by Lord (5). Furthermore, the generation of random obser-
vations which have one common factor is also quite simple. To force the
points within the specified limits of integration complicates the compu-
tational procedure somewhat, but does not result in a significant in-
crease in computer time,

Development of the model follows:

Identical with formula (2), the integral over A for the multivariate
normal distribution is

£(X f £x
me= IA EE_X% g(X)dX = E I_EEY}] , where
f(X
; (£1)
i=1 E(X))

where Xl’ A, oo, Xn are random vectors sampled from g(X). Rather than
2

J.Ag(x)dx =1, and the estimate of M (formula 3) is p --;1‘-

representing g(X) by the uniform distribution, however, sampling is from
a rank-one multivariate normal distribution.

-7-
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Retaining the convention that integration will be performed with re-

spect to standardized variates, let R represent a correlation matrix with
the structure r . = o, oy (1 #3)), where -1 €S o, s +1 for i =1, 2, ..., k.

Then

1j {

kg 1Rgl ™ exp [#(x R x)] = kg g*(x) = 1- (X)X e A;

0 otherwise

The cumulative density function of g(X) can be expressed as a single integral
having a product of univariate normal cumulative density functions in the
integrand; consequently, p8 is easy to evaluate mmerically. In more detail,

mMa IA p‘ lif_l.: exp [-Qx(ﬂ': - R?)X'] g(X)a&x and
X

rltlt & e [4562 -]
Ia,l*

where I‘, Loy oeey Xn represent the random sample of vectors from the

distribution g(X) defined over A. Based on (4), an estimate of this
variance of D is

S (p)-d[x @) 2 p f)
= [ 1-1 c'(‘t)-[" 11 T(YTT]

FA[EE B [ e )

a la‘l 11

where Xl, X., esey dg aTe the same random vectors sampled from g(X) to
estimate T,




Solution for a factored integral. To obtain the estimate for T as
stated in 255, ps, a solution for the integral of the sampling distribu-

tion g(X) over A, the probability region of interes:, is required. The
sampling distribution g(X) is chosen to have a singie common factor
correlation structure and, consequently, can be factored into a product
of univariate integrals.

In more detail, variates 2, Ty eeey ‘k vhich have a multivariate

normal distribution with zero means and correlation coefficients
Ty Ty 0y (1 ¢ )), where -1 < o, S+ 1 for { =1, 2, ..., k, are gener-

?
sted by the formula z, = (1 - gk ragp. The Xy, X, L., Xy,
Y are k + 1 independent standard normal variates. The cumulative density

function of interest for the k variates & (s

P(hgy; (rgy)) = Prob {25 < ny ; an2 g)

* r-: .r: e r.: £(%y, X3, ..o, ’k)dx‘ axy ... dx,

Since the x's are mutually independent, Fk can be expressed as the product
of single integrals; {.e.,

;
Py » . Prod %< (hy - apy) / (1 - a ) an1 g) £y

k
Ja Ty ) 7 (- ap ) iy

where f(t) = exp (-4 ¢®) / (2 YT)é

t
and F(t) = L_ £(t)dt
This integral {s very easy to evaluate numerically by use of some
quadrature procedure in which the integral is replaced by a sum. In
the present application, the infinite interval <-» 6 4= > i{s taken as
(-5, +5] and is divided into an even number of 2m = 10" intervals with

end-points defined by y., y., ..., Y. Then, using the sum given by
' 0 1 2m
Simpson's rule,

K (b (ryg)) -

-{&(Ja—ln—){t(yo) + 2(yay,) + 't[r(y‘) +f(yg) ¢ .o e ’V--x]
+{f(y.) s 2(ye) + ... ¢ f(y’_')J}

-9 -
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where f(yt) = exp [-bPJ] :17;—17 r_icxp -4 ’.J }z !
and ‘J . (b - °l!‘) |
(1- GJ' )‘

for { =0, 1, 2, ..., Om.

The univariate standard cumulative density functions are evaluated by a
Hasting's approximation (Hastings, 6).

Since, in most examples, it is not the cumulative density function
which must be evaluated, but the density function integrated between any

limits ‘j and uj, J=1,2, ..., k, in the infinite range. Therefore,

computation of p' is facilitated by the formula

‘ ‘ ‘ e
Prob[l.‘s.'l ul,z' x fu, . "k""k‘“k]
-z (-1) no. of lower bounds

all 2k

possible

1
Prob [xl ‘Axyxa sAa’ coey xksﬁk.n

combinations
where 4, takes on the value 1, or u,.

] ) b

Generation of Sample Values. Generation of the Z vectors which have
the rank-one multivariate normal distribution and which also lie within
the limits defined by A is not a straightforward computational procedure.
For the k elements of Z generated from the formula

TRy Ty
letting
a(1-4 )0
it is required that

1j < zj < uj, where lj and uj are the lower and upper bounds defin-
ing the § =1, 2, ..., k dimensions for a given probability region A.

1f Xy, X, eee, xk' y are random normal deviates sampled over the infinite
domain, the probability that the resulting 2 , & , .,., 2 will lie within ;
b 2 ' Tk

the required region A is 1, and p, an estimate of T, is determined from
the proportion of the sampled vectors which lie within the region A, It
is desirable, however, to generate Z variates which have the rank-one

- 10 -




distribution without rejecting any observations. If, for instance, A is
very small, the number of observations which are rejected will be very
large; the associated amount of computation will also be very large,
Alternatively, Z values can be constrained to lie within the specified
limits by appropriately scaling the range of the variates

ﬁ.’ x;, cees Xy Yo Since

T = Prob [[14 $Byxy +agy € ugl; all J]
= Prob [[11 -oyy $%y < Y - ayyl; al1 J]

bJ pJ
4, -a,y u, - a4,y
* * * *
= Prod [[ZJ st < uJ}; all J], letting Lj = —J-?J— and uJ -—J?J—

the variables x , x;, «es, X, can be constrained to lie within the required
1

k
range by first sampling the random variable y anywhere over the infinite
domain and then constructing limits for the x's as a function of y. This,
of course, is saying that

Proh[{td* sxd*s uy | y}; all .1] =1,

which is not the required 1, nor does such a method yield the correct
distribution of points for the sampling probability density function g.

To clarify the discussion to follow, suppose y can take on exaztly
t possible value s, each with probability ﬂt' Then the unknown

To generate points having the correct distribution, if n represente a
very large number of points,
m
8
t
ol |
s=1 °

n . =n, points

must be generated for each value of s. It is convenient to represent
each ﬂs in terms of conditional probabilities:

ma= Prob[[zd $2,% uJ| y=8); a1 J]- Pmb[y = ’]

- qs . ts .

- 11 -




The conditional probability term q, can be easily computed:

q= Prob[(LJ ‘2J < U.JI vV = 8}; all J]

-]

Ly -0 -
- prob[ (2L <y, < 22y e an ]
J J

- [m_sx‘sﬂl—'.ﬂlly.,]
BJ ¢ BJ

sincex ,x_, ,,,, ¥ are independent standard normal variates and q,

is simply the accumulated product of probabilities associated with
bounds of normal deviates for independent standard normal univariate
distributions. Furthermore, assume that all

Prob [/ = g] = Prob [y=s'] for s, s' =1, 2, ..., t; i.e., that all
values of y are equally likely. TLen

q_ . T q
== — — ¢

sfl % rs sEI qs
and
a =t

sfl T

Aside from purposes of explanation, the variate y is, of course,
continuous. Rather than t discrete values which y can take, there are t
intervals or ranges of values, each bounded by a lower and upper limit

Vg and V41’ 58Ye Then

Prob[{zJ < 8; s uJI Vg S Y S vg,y); all J]

represents a range of probabilities corresponding to the range of y. To
estimate this range, an approximation must be introduced, letting ome
probability q,, say, represent the range of possible values. If suffi-

ciently small intervals are constructed for y, the probabilities will
have a small range for each interval, and the mean of the smallest and
largest probabilities should yield a good approximation; alternatively,
y could be chosen as the normal deviate corresponding to the probability
midpoint of each interval. The latter alternative was chosen for the
experiments descriled here.
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THE MONTE-CARLO EXPERIMENTS
Proceriure

The relative efficiencies of the different Monte-Carlo methods were
examined for a variety of experimental problems. Two sets of runs were
prepared, one with four variates and the other with eight; the experi-
mental problems for the two sets were designed to be somewhat comparable.
The correlation matrix Rf characterizing the multivariate normal distri-

bution for the 'unknown' integral was chosen to have a single common
factor with all correlations of the structure rij = aiaj, where

-1s< @, <+l for i =1, 2, ..., k. Then the unknown probability area

could be verified from the same quadrature formula used earlier to com-
pute the probability area for the single common factor distribution from
which the random observations are generated. Such a choice for R,

however, lesser.s the representiveness of the problem. To evaluate the
importance sampling approach, results should be compared when sampling
proceeds from a distribution which poorly approximates the distribution
of interest as well as when both distributions each have only one common
factor. To increase the generality of the results, therefore, for each
single common factor R,, both a 'good" single factor approximation and

a "poor" single factor approximation were constructed for the sampling
distribution.

All correlationsin Rt were chosen to be .90 (both for four and eight

variates) for one set of problems. Such high positive correlations will
yield multidimensional probability regions highly concentrated about the
center of the distribution. To work with probability regions more evenly
distributed over the infinite domain, all correlation elements were set
to .10. Four- and eight-variate matrices containing randomly selected
positive correlations with more than one common factor were also con-
structed, although a quadrature procedure for checking the Monte-Carlo
estimates was not available. For the two kinds of single common factor
correlation matrices used for sampling, one Rs had the structure

I (.90)(.90) = .81, and the other had the structure
= (.10)(.10) = .01 (both for four- and eight-variate problems). For
= ,90, the RG with all correlations

riJ
rij

the "unknown" integral with all rij

equal to .81 represented the ''good" importance sampling approximation;
the Rg with all correlations equal to .0l represented the '"poor' approxi-

mation., Conversely, when all r . were set to .10 in Rf’ the Rg with

i}
correlations equal to .81 was the poor sampling approximation and the R
with correlations of .0l was the good one. €

pact L. | e T—— L]

Tlnrd AR




A R TITT R — et
o an

Probability estimates were also obtained for 3 different kinds of
integration limits. One set of limits included only the central portion
of the distribution, -1. to +1. for all four or eight variates. Another
set included the tails, -» to O. for all variates. In a third set, the
limits contained a variety of both tails and central portions (-5. to -1.;
-1, to 0; O to 1; and 1. to 5. for four variates and -3. to 1; -3 to 2;
=3 to 3.; ~2 to l.; =2 to 2.; -2 to 3.; =-1. to 2.; -1 to 3. for eight
variates).

In summary, the series of experiments used to compare the relative
efficiency of two Monte-Carlo methods for evaluating the multivariate
normal integral contained four categories of independent variable:

1) number of variates, 4 and 8; 2) structure of the multivariate normal
distribution of interest, as characterized by a one common-factor corre-
lation matrix with high positive correlations, a one common-factor corre-
lation matrix with low positive correlations, and a correlation matrix
with randomly selected positive correlations; 3) goodness of approxima-
tion of the sampling distribution to the multivariate normal distribution
being integrated; 4) range of integration, with limits involving only the
central portion of the distribution or including both tail and central
portions as well,

All possible combinations cf the independent variables planned for
the series of experiments totaled 36 problems; 18 of these problems were
based on four-variate distributions and 18 comparable problems were for the
eight-variate distributions. For each of these problems, 10 independent
probability estimates were obtained. The estimates for the four-variate
problems were each based on an n of 1000 random vector observations;
10,000 random vectors were generated for each of the eight-variate problems.

Results from the Monte-Carlo Experiments

Results are presented in Tables 1, 2, and 3. For each of the four-
and eight-variate series, 9 different probability regions were teing
evaluated. The first line of values presented for each such region is
based on the first and simplest method of Monte-Carlo sampling described
(Method I). The second two lines of values were obtained using the Boldt
importance sampling approach (Method II), but with one set of estimates
being obtained from a "good" sampling distribution approximation and the
other set from a "poor'" approximation.

For the single common-factor distribution, probabilities computed by
quadrature are presented in the tables as T, to represent the "population"
value. The average squared deviation from this population value (s’lﬂ’)
over the 10 estimates per problem was used as a measure of the accuracy
of a given method~, The average squared deviation from the observed mean

L 1t is the within sample variances which are presented in formulas (4),
(8), and (9). The measures of between sample variability, however,
were more discriminatory of the effectiveness of the different Monte-
Carlo methods and are therefore the ones presented in the tables.
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(sali) based on each set of 10 samples was also computed. It is the
square roots of these measures (s|TT and s|p, "standard deviations')
that are presented in Tables 1 and 2. The standard deviations obtained
for the simple Monte-Carlo method were used as the baselines by which
relative amount of variation for different problems could be evaluated.
These ratios of standard deviations are also presented in Tables 1 and 2
for each set of problems.

The first observation which should be made about the results is an
apparent equivalence of the two measures of variability, nlﬂ and lli.
That is, the degree to which one Monte-Carlo method is more precise than
another for a given problem appears to be independent of whether the
deviations of the estimates are taken about the observed mean or about
the population value. Of course, such a generalization can be made only
with respect to unknown integrals based on single common factor distri-
butions. Equivalence of the measures, if equivalent over all types of
problem, could be taken as an indication that the Monte-Carlo estimates,
even though highly variable, are unbiased estimates and can be expected
under increased sampling to converge to the true population value.

To further clarify the form of the results, the ratios of standard
deviations were extracted from Tables 1 and 2 and regrouped to form
Table 3. Noting that a ratio of standard deviations above 1.0 indicates
superiority of the importance sampling method, whereas a ratio below 1.0
favors the simpler sampling procedure, a striking characteristic of
Table 3 is that neither method is consistently superior over the differ-
ent types of integral being evaluated. The ideal result, of course, is
to find some method which yields estimates with a marked reduction of
variance on all problems. With the results shown here, the types of
problem for which one method might be superior to another is a matter
only for hypothesizing. Ultimately, perhaps, the most economical pro-
cedure with respect to computer time will be the design of some test in
which the type of probability integral to be evaluated is examined by
the computer before it proceeds to analysis by one of several alternate
methods. At most, these experimental results may have bearing on some
entirely new approach to the problem of evaluating multivariate normal
integrals.

An independent research project is being conducted by Cecil Johnson
(7) at BESRL on increasing the goodness of fit of the single common-factor
sampling distribution to the multivariate normal distribution of interest
to increase the precision of importance sampling. Preliminary results
of this research indicate that using improved methods to determine the
parameters from which the common factor random entities are generated
can result in an appreciable reduction in variance. That such an approach
is a fruitful one is supported by the data presented in the present pub-
lication. In fact, the one striking observation which comes from Tables
1, 2, and 3 is the superiority of the ''good" approximation sampling dis-
tribution to the "poor" approximations in yielding minimum variance
estimates. This advantage shows up in all 24 of the problems where
goodness of fit was compared and goes as high as 42 to 1 in problem 22

- 15 -
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with eight variates. One should be aware, of course, of the fact that,
when the sampling approximation is very good (i.e., when the sampling
distribution is nearly identical to the distribution associated with the
unknown integrai), the variable components on which an importance sampling
estimate is based are very small relative to the scaling constant com-
puted by quadrature. Therefore, the superiority shown in problems 1, 4,
7, 1o, 13, 16, 22, 28, and 34 is partly a consequence of the fact that

! the unknown distribution is one of the rare distributions whose integral
value {8 near to the value computed by the given quadrature formula, a
situation not to be encountered often. The real test of an importance
sampling approach is whether an advantage can be observed when the
sampling approximation is only moderately good or poor. Such an advantage 2
does show up in problems 3 and 21 ( for four and eight variates) and 9 i
(for four variates), both poor approximation problems, but not in other
poor approximation problems, 2, 8, 15, 20, 26, and 33, (for four and
eight variates) and 27 and 32 (for eight variates).

The determination of a suitable single common-factor distribution
and the manner in which random entities are generated from this distri- '
bution is not a straight-forward procedure. By varying such a procedure, 3
precision of the estimates based on even a poor sampling distribution
can be improved. The results presented here may be considered relatively
crude with respect to this aspect of the problem; improvement is expected ;
wher the procedures under investigation by Johnson are incorporated into 1
the techniques described here. :

The estimates in Table 3 do appear to favor slightly the importance
sampling approach when the region of integration is over the center of
the distribution. The best results, in problems 4 and 22 for four and
eight variates, were obtained when the range of integration was from -1,
to +l., the center, even though the associated multivariate normal dis- i
tribution was least concentrated about the center (i.e., all r's = .10). ;
Furthermore, the ratios of standard deviations were greater than one in
all but one of the problems designed for the central region, regardless A
of the type of distribution being integrated. The importance sampling '
method tends to be relatively less efficient when tails are included in
the in*egration limits. For example, problems 23 and 24 for eight
variates indicate a gross failure of the imporatnce sampling method,
although these problems are also based on poor approximations to eight
variate common factor distributions. Furthermore, any observation on
tail results cannot be stated too conclusively, since the tail regions
for the data under discussion were not examined to the exclusion of any
of the more central regions.

Clearly, the relative advantage of one sampling method over another

is highly sensitive to variations in the region of integration relative

to the structure of :he correlation matrix. For instance, the ratios for

the four-variate distribution characterized by a single common-factor

correlation matrix with large positive elements (problems 1, 7, 13, 19, ‘
k 25, and 31) increased by a multiple of about 2 when the integration limits

included a variety of ranges, even though the probability area was small.
By contrast, when the correlation matrix had very small positive elements,
the advantage of the jmportance sampling method decreased to about one-
half when the tails were included (problems 4, 10, 16, 22, 28, and 34).

e e
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Table 1

MONTE-CARLO ESTIMATES BASED ON TWO DIFFERENT SAMPLING PROCEDURES FOR
EVALUATING THE MULTIVARIATE NORMAL INTEGRAL

FOUR-VARIATE PROBLEMS

N

(N = 1000)
All correlations = .,90; Centered limits: -1
s
Problem Method m P slp ratio
1 1 ' 5114 5121 ,0217¢
1 11 rg-.81 Good .5114 .5125 .00871 2.50
2 11 rg-.01 Poor .5114 5125 .02836 0.77
All correlations = ,10; Centered limits: -1
A
Problem Method n P llp ratio
3 1 2202 .2205 .00331
3 11 rg-.81 Poor .2202 .2156 .01092 1.22
4 11 rs-.Ol Good 2202 .2204 .00037 35.56

Full Rank, positive correlations; Centered limits:

Problem Method P llp ratio
5 I 3217 .00212
5 11 rs"81 3187 .01645 1.29
6 11 rs-.ol .3226 .00323% 6.56
All c_rrelations = ,90; limits include tails:
s
Problem Method m P s|p ratio
7 1 .3693 .3618 .01639
T 11 rg-.81 Good .3693% .3705 .00688 2.38
8 11 rs-.01 Poor .3693 .3296 .03068 53
- 17 -

to +1
s
s|T ratio
02177
00877 2.48
.02838 0.77 :
to +1
s
s|m ratio )
.01331
01 36 1.12
.00040 33.46
=1 to +1
-® to 0
s
s|T ratio
.01803
.00698 2.58
.05018 .36




Table 1 (continued)

All correlations = ,10; limits include tails: -» to 0
] 8
Yroblem Method m P s|p ratio slﬂ ratio
9 I 0871  .0869  .01065 .01066
9 II rg-.81 Poor .0871 .0843  ,00963 1.11 .0l003 1.03
10 11 rg-.Ol Good  .0871 L0871 .00075 14.23  .00075 14.22
Full rank, positive correlations; limits include tails: - to O
8
Problem Method P s|p ratio
11 1 .1951 .01304
11 11 rg-.81 .195¢  ,01783 TP
12 11 r8=.01 1919  .00892 1.46
All correlations = ,90; limits are varied
] s
Problem Method 1 P slp ratio slﬂ ratio
13 I 07054 .07410 .007¢0 .00858
13 II rs-.81 Good .07054 .07063 .00145 5.38  .00145 5.90
14 11 rg-.OI Poor .07054 .06926 .00723 1.08 .00734 1.17
All correlations = .10; limits are varied
8 8
. Problem Mechod n P s|]p ratio s| I ratio
15 1 1535  .1544  .01547 .01550
15 II rg-.81 Poor .1535 .1463 .02461 .63 .02562 .60
16 II rs-.Ol Good 1535 1534 00042 36.74 .0004> 35.93
Full rank, positive correlations; limits are varied
s
Problem Method P slp ratio
17 1 1188  .0l1260
17 I1 rs-.81 1307  .04198 .30
18 II rg-.01 1148  .00320 3.94
- 18 -




Table 2 ' a

MONTE-CARLO ESTIMATES BASED ON TWO DIFFERENT SAMPLING PROCEDURES FOR
EVALUATING THE MULTIVARIATE NORMAL INTEGRAL

EIGHT-VARIATE PROBLEMS
(N = 10,000)

All correlations = ,90; centered limits: -1 to +1

Problem Method 1 P slp ra:io slH ra:io
19 I .4302  .4309 .00335 .00343
19 11 r8=.81 Good  .43%02  .4304 .00327 1.03 .00327 1.05 .
20 11 rg=.01 Poor .4302 .4245 .01582 .21  .01682 .20 '

All correlations = ,10; centered limits: -1 to +1

Problem Method il P slp ra:io slH ra:io
21 I .0499  .0502  .00229 .00232
21 11 r8=.81 Poor .0499 .0502 .00214 1.07 .00216 1.08
22 11 rg-.OI Good .0499 .0499 .00005 4%5.02 .00006 38.87
Full rank, positive correlations; centered limits: -1 to +1
8
Problem Method P s|p ratio
23 I 1757  .00378
23 II rg=.81 1731 ,00291 1:36
24 11 rg-.01 1751 .00238 1.59

All correlations = ,90; limits include tails: -» to O

Problem Method 1 P s[p ra:io s|H razio
25 1 3211  .3206 .00412 00415
25 I rg-.81 Good .3211 ,3212  ,00280 1.47 .00280 1.48
26 II rg'.Ol Poor 3211 «2590 .02%46 A7 06640 .06

- 19 -




Table 2 (continued)

All correlations = .10; limits include tails: - to 0

Problem Method n P s|p razio s| 1 razio
27 1 .0l141  ,0l41  .00025 .00095
27 11 rg-.81 Poor .0141 .0126  .00136 .70  .00203 .47
28 11 rg-.m Good .0141 .0l41 ,00010 9.03  .00011 E.64

Full rank, positive correlations; limits include tails: -® to 0

Problem Method ] slp ratio
29 I 1349  ,00337
29 I1 rg-.81 1249  ,00773 .44
30 11 rg-.Ol .1206  .00697 .48

All correlations = ,90: limits are varied

Problem Method 1 P s|p raZio s| taZio

31 1 .5962  .5960  .00564 .00564
31 11 rg-.81 5962  .5966  .00552 1.02  .00553 1.02
32 11 rg-.Ol 5962  .5805 .08477 .07  .08503 .07

All correlations = ,10; limits are varied
8 8

Problem Method I P s|p ratio sln ratio

' 33 I 4359 .4393 00379 .00510
33 11 rg-.81 4359  .3128 ,0%3915 10 .12919 .04
34 II rg-.Ol .4359 .4363  .00144 2.64 .00148 3.45

Full rank, positive correlations: limits are varied

Problem Method P s|p ratio
35 I .5234  ,00488
35 II r =81 .4000  .09384 .05 .
36 11 r;-.01 .5191  ,02511 .19

- 20 -
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Table 3

STANDARD DEVIATION RATIOS: VARIABILITY OF IMPORTANCE SAMPLING
PROBABILITY ESTIMATES RELATIVE TO METHOD I

MONTE-CARLO ESTIMATES

Cg:i:t:&ig" Varied Integration Limits
{rf} frg] Problem S.D. Problem S.D. Problem S.D.
No. Ratio No. Ratio No. Ratio
Four Variates (N = 1000)

M "1, good 1 2.5 i 2.38 13 5.38
Ry .01, good 2 ST 8 .53 14 1.08
.10 #1, poor 3 1.22 9 1.11 15 .63
¢ .01, good 4 35,56 10 14.23 16 36.74
Random A1 5 1.29 11 T3 17 «30
Randem .01 6 6.56 12 1.46 18 3.94

Eight Variates (N = 10,000)

.0 .“1, good 15 1.0% 25 1.47 31 1.02
0 .01, poor 20 .21 26 A7 22 .07
.10 ‘1, poor 21 1.07 27 .70 33 .10
.10 N1, good 22 45.02 28 9.03% 34 2.64
Random .H51 23 1.30 29 .44 35 .05
Random .01 24 1.59 30 .48 36 .19

- 21 -
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Second Series of Monte-Carlo Exgniiments

An additional seriex of experiments, similar to the previous series,
was designed to examine the precinion of Monte-Carlo estimates for very
small probability regions., A variety of single-factor problems, for which
M could be easily approximated by quadrature, was evaluated on the com-
puter until a set of probability repions similar in magnitude, but small,
were found. The largest of these regions was .,02065 and the smallest was
+00007. One set of experiments was designed for four variates and another
for eight variates., The correlation matrices characterizing the distri-
butions to be integrated were the same single common-factor matrices used
for the previous problems; all correlation coefficients in these matrices
were equal either to .90 or to .l10.

In the second experimental series, results were highly encouraging
in favor of the importance saupling approach. With small T, the ratios
of standard deviations measuring precision of Monte-Carlo Method II,
relative to Method I, were quite large, ranging from 7 to 1 to as high
as 2989 to 1. The best result for the problems previously discussed was
only 45 to 1 (problem 22, Table 3). Furthermore, the direction of the
results was consistent. For every problem, Method II was more precise
than Method I. The two varlance measures, with deviations taken about
the observed mean in one measure and about the population parameter in
the other, gave comparable results, as they did in the first series of
problems. This conformity was again taken to be an indication of lack
of bias in the results.

Judging by an inspection of the results of Tables 4 and 5, the
advantage favoring the importance sampling method appears to be related
only to the size of the probability region. Central regions versus tail
regions, or four versus eight variates, do not appear to distinguish one
method from another. In general, better results were obtained with
Method Il when the sampling distribution approximation was good, although
exceptions occurred in problems 42, 44, and 46.

The point where the advantage due to size of T disappears is, of
course, not entirely clear. The very large ratios of Tables 4 and 5 are
for M's of .003 or less. Note that in problem 47, when T is as large as
.030, the ratio drops to only 7 to 1. The ambiguous results presented
in Tables 1 and 2, with Method I being superior in some problems and
Method II being superior in others, usually involved very large M's (e.g.,
.5114 or .4302). But when T was small (.0499 or .0705), as in problems
13, 14, 21, and 22, results favored the importance sampling approach.

On the other hand, T for problem 27 was small, .0141, and the relative
sizes of the variances indicate greater precision in the brute-force
method. Very likely, some interaction is occurring between size of c.ne
probability region and adequacy of the sampling distribution approxima-
tion. Results for Method II tended to be poor when integration was over
the tails of a relatively flat multivariate normal distribution (such as
when all r's equaled .10), and sampling was from a distribution with most
of its mass concentrated over the center (as when all r's = .90); observe
problems 9 and 27.

- 22 -




FEIIITOETY

Table 4

COMPARISON OF MONTE-CARLO ESTIMATES FOR SMALL PROBABILITY REGIONS IN EITHER
THE TAILS OR THE CENTER OF THE MULTIVARIATE NORMAL DISTRIBUTION

FOUR-VARIATE PROBLEMS

(N =

1000)

Problem

37
37
38

Probl em

39
39
40

Problem
41
41

42

Problem
43
45

44

All correlations = ,90;

Method Il P
1 .00298  .00370
I1 rg-.81 Good .00298  .00296
00298  .00296

II r =,01 Poor
g

All correlations = ,10;

Method I P
I 00020 .0C000
II rg'.81 Poor .00020 .00020
.00020 .00020

II rg-.Ol Good

All correlations = .90;

Method i P
1 .00266  .00100
11 rg-.81 Good .00266  .00267
.00266  .N0D265

II r =,01 Poor
g

All correlations = ,10;

Method I P

I .00007 .00010
II rs-.81 Poor  .00007 00007
II rg'.ol Good 00007 .00007

Central limits:

s|p

1.7549x10'3

2.7513x10"6

0 to .30
8
ratio s|0
1.8776x10'3
630.6  1.7728x10"°

6.2519x10"¢  277.5  1.9058x10"°
Central limits: O to .30
8
slp ratio slﬂ
0 2.0100x10™4
1.8481x107" 0 1.5733x10"°
5.8535x10'8 0 1.6129x10"°
Tail limits: 1.9 to 2.5
-
s|p ratio s|n
1.0954x10"° 1.9855x10™°
8.9168x10"¢  122.8 1.3949x10"°
5.9575x10" 2 18.4 5.9927x10'5
Tail limits: 1.5 to 2.5
8
s|p ratio s| 1l
3.0000x10" 4 3.0170x10"
8.9698x10”7  334.4  1.5096x10"°
5.7936x10"(  517.8 7.1184x1077

ratio

105.9
98.5

ratio

127.8
124 .6

ratio

142.3

33.1

ratio

199.9

42%,8
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Table 5
COMPARISON OF MONTE-CARLO ESTIMATES FOR SMALL PRORABILITY REGIONS IN EITHER :
THE TAILS OR THE CENTER OF THE MULTIVARIATE NORMAL DISTRIBUTION ;

EIGHT-VARIATE PROBLEMS
(N = 10,000)

All correlations = .90; Central limits: O to .35
s 8
Problem Method 1 P s|p ratio s|m ratio

45 1 00012 .00013 1.1874x10™* 1.1945x10™%
45 1I rg-.81 Good  ,00012 .00012 7.5737x10'8 1567.8 8.2030x10'7 145.6
46 IIr =.0l Poor .00012 .00012 1.4855x10"7  799.3  8.0974x10"( 147.5

All correlations = .10; Central limits: 0 to .85

s 8
Problem Method 1l P sl P ratio sI n ratio

47 1 .02065 .02080 1.6328x10"° 1.6398x10">
47 IIr =81 Good .02965 .02963 1.0044x10"%  16.3 1.029%3x10™%  15.9
48 I r =.0l Poor .02965 .029%9 2.185%x10"% 7.5 2.20927x107% 7.2

All correlatiuns = .10; Central limits: 0 to .85

s 8
Problem Method n P s|p ratio s|m ratio

49 1 00010  .00013  9.0000x10"° 3.4868x10™°
49 111 =.81 Poor .00010 .00010 3,6664x107!  245.5 4.6482x107( 204.1
50 11t =.0l Good  .00010 .00010 3.4420x10"0 2614.1 1.9871x10"7 477.4

All correlations = .90; Tail limits; 1.8 to 2.5

8 8
Problem Method n P sl P ratio s| n ratio

51 I .00095 .00088 2.8214x10”* 2.9143x10™*
51 I r =.81 Good  .00095 .00095 2.4341x10"%  115.9 2.5709x107% 113.4
52 It =.0l Poor .00095 .00096 9.7721x10"% 28,9 1.0121x10"2  28.8

All correlations = ,10; Tail limits: 0.8 to 2.5

8 s
Problem Method il P s| P ratio s| n ratio

53 I .00008 .00009  8.3066x10™° 8.4077x10"°
53  IIr=.8l Poor .00008 .00008 1.5748x107%  52.7  1.5068x10"% 2.6
54 It =.0l Good  .00008 .00008 3.2302x107 1 256.4 3.5284x10°1 238.3 '
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One implication of the results obtained for small 7's is that the
recommended importance sampling approach could be improved by introducing
sample stratification. The probability region A would be divided into
mutually exclusive regions Al’ A2, N At, and the final estimate p

would be the sum of t independent estimates Pys Pos ceoey Pyi i.e.,

N t
M=p= 35 p. Some properties of sample stratification were presented
s=]
under the section describing importance sampling based on a uniform
sampling distribution. The advantage stated there was that, when the
number of points sampled in each region is proportional to the magnitude
of the region, the within sample variance based on stratification will
be less than or equal to the variance for an unstratified sample. The
importance sampling method used in the experiments should have an addi- .
tional advantage because the probability regions will be small.

SUMMARY .

Experimeantal results have been presented to evaluate two different
methods of Monte-Carlo sampling to integrate the multivariate normal dis-
tribution., Using random vector observations generated to have the distri-
bution of interest, one method is basically a count of the observations
which lie within the region of integration. A more complex method is an
adaptation of importance sampling in which a single common-factor multi-
variate normal distribution is the sampling distribution. Random vector
entities are constrained in such a way that only observations which lie
within the specific integration limits are gencrated.

The precision of the estimates for the two methods was compared from
the magnitude of the variances of the estimates over independent samples.
The form of the results appears to be affected both by the size of the
probability region over which integration is performed and also by the
goodness of fit of the importance sampling distribution to the distribu-
tion under evaluation. When the probability region is very small, the
importance sampling approach is clearly the more efficient method. For
larger probability regions, the importance sampling approach is superior
to the tallied method when the sampling approximation is a good approxi-
mat.on. When the importance sampling approximatiorn is poor, the precision
of the probability estimate favors the simpler Monte-Carlo procedure. The
results indicate that applying the importance sampling technique to a
probability region divided into strata, a very small probability being
associated with each stratum, will yield precise estimates for a wide
variety of problems. Sampling distributions other than the multivariate
normal might also be superior for selected portions of the probability
region. Finally, BESRL research scientists are continuing studies to
improve the adequacy of the approximation of the one common-factor dis-
tribution to a multivariate normal distribution of interest. Information
gained from the new research may be expected to increase the efficiency
of the techniques described here. o
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[13. AGSTRACY

The research effort of the OPTIMIZATION MODELS Work Unit is concerned with providing
means of solution to personnel management problems relating to distribution, training,
career progression, reassignment, and utilization of manpower in current and future
Army personnel subsystems. > The present study compares techniques for edtimating man-
power requirements where a number of individually varying skills, performance poten-
tials, background and behavioral factors must be considered. The specific objective
was to evaluate two different numerical methods for estimating probability when a
multivariate normal model (for example, one involving scores on a battery of tests) can
be assumed,

In a series of simulation experiments in which random vector observations were gen-
erated, probability estimates were computed by cach of the two methods. Probability
regions on which the experiments were based were chosen to have a variety of properties
The precision of the two methods was compared from the magnitudes of the variances of
the probability estimates over independent samples. Results indicated that when the
probability region is very small, the more complex of the two methods (importance sam-
pling) is superior; but when the sampling approximation is poor, the precision of the
probability estimates favors the simpler Monte-Carlo procedure. ‘The computational pro-
cedures developed appear to be practical methods of estimaiing probability based on
multiple scores for individuals in a sample population.
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