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ABSTRACT.    Horizontal VLF transmitting dipole arrays are much 
easier and less expensive to construct than vertical VLF trans- 
mitting antennas in use at the present time.    The horizontal dipoles 
have much greater power-radiating capability and bandwidth.    The 
theoretical and experimental effects of mutual resistance on array 
efficiency gain over one dipole are presented.    The radiation effi- 
ciency is greatly increased by increasing the wave velocity along 
the resonant dipole.    Radiation characteristics of a theoretical 
18-dipole array on Hawaiian lava are shown.    The antenna radia- 
tion pattern needed at VLF in order to get omnidirectional coverage 
is presented.    Directivity is needed due to the non-reciprocal east- 
west propagation attenuation. 
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NOMENCLATURE 

c Free-space wave velocity (3 x 10° meters/sec) 

Cp Antenna distributed capacitance to ground (farads/meter) 

EQ Electric field strength in elevation plane 

Ey Electric field strength in azimuth plane 

F Isotropie array factor 

I. Antenna input current in 

t j Length of longest part of dipole from feed point to the end 

t 2 Length of shortest part of dipole from feed poirt to the end 

n Number of quarter wavelengths long 

N Number of dipoles 

Pr Radiated power 

r Antenna series resistance per unit length 

R Range from center of antenna in meters 

R. Antenna input resistance in r 

7"rT1 Mutual resistance 

rs Antenna self resistance 

s Distance between dipoles 

v Wave velocity along antenna 
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Vrnax Maximum antenna voltage 

Z0 Characteristic impedance 

a Attenuation constant 

6 Skin depth (meters) 

eo Free-space dielectric constant (8.85 X 10"     ) 

n Antenna radiation efficiency compared with that of a 
perfect monopole 

X Free-space wavelength 

tu Ztri 

<r Earth conductivity (mho/meter) 

4) Angle in azimuthal plane measured from antenna axis 

3 Angle in elevation plane measured from antenna axis 

VI 
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INTRODUCTION 

A program of very low frequency antenna research and develop- 
ment has been in progress at the Naval Weapons Center Corona Labo- 
ratories for the past five years.    It has been found that the horizontal 
VLF transmitting antenna,  requiring no ground plane,  is much easier 
to construct and is less expensive than the vertical monopole antenna 
that is typical of the most modern VLF transmitting antennas in use 
at the present time.    In addition, the horizontal antenna operates more 
efficiently over low conductivity material,  of which much of the earth 
is composed.    Its bandwidth,  which is 100 times greater than that of 
the equivalent vertical antenna,  increases both the rate of transmission 
and the stability of the transmitted signal.    The power radiating capa- 
bility of the horizontal antenna is several hundred times greater than 
that of the vertical monopoles presently in use.    Because VLF radia- 
tion propagates over the earth with less loss in an easterly direction 
than in a westerly direction,  the omnidirectional radiation from a 
vertical monopole does not give omnidirectional coverage at a given 
radius from the transmitter.    By contrast,  the off-center-fed hori- 
zontal antenna naturally beams the VLF energy with more intensity in 
one direction than in the opposite direction.    If the main antenna beam 
is pointed west,  it can be designed to radiate equal signals at a given 
range in both directions.    The radiation efficiency of a single dipole 
is only a few percent,  but the efficiency can be multiplied to a high 
radiation efficiency by using closely spaced parallel dipoles.    The 
extent to which the efficiency can be increased by this method is 
limited by the mutual resistance between dipoles.    This limitation is 
examined and the results reported in this report.    A large number of 
dipoles also limits the azimuthal beamwidth by the array factor.    The 
beamwidth of the horizontal dipole can be increased for long dipoles 
by increasing the wave velocity along the antenna.    However,  if the 
wave velocity is too much greater than free space wave velocity,   the 
elevation launch angle is high.    This is the angle of maximum radia- 
tion m the elevation plane,  and it should be as small as possible for 
long range propagation.    One of the desirable features of the hori- 
zontal antenna is that the radiation in the elevation plane is launched 
at low angles,  thus minimizing wasteful vertical angle radiation. 
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RADIATION PATTERNS 

Equations have been derived to describe the performance of 
several types of horizontal antennas.    The radiation patterns of the 
horizontal conductor near the earth are dependent upon the feed point 
position along the conductor and the method of termination at the con- 
ductor ends.    The fields radiated from uniform current on an incre- 
mental length conductor have been derived by Wait (Ref. 1),   Banos 
and Wesley (Ref. 2).  Golden,  et al,   (Ref. 3),  Moore and Blair (Ref. 4), 
and Biggs (Ref. 5).    The radiated electric field in the elevation plane 
through the axis of the conductor is 

6       J   RX   Ua  ' U + sinG 

and in the azimuthal plane the field is vertically polarized and is 

Ez = j ^(I di)U cos* (2) 

where 

U  = 
/f X 10"9 

jl8<r 

If these fields are equated to the fields radiated by a perfect lossless 
vertical monopole,   E? = (\/90Pr)/R,  an equation for the power radiated 
by the horizontal incremental conductor results.    When this equation 
is divided by the input power at the antenna terminals,  the radiation 
efficiency is 

\     in' 

2 
160IT ue _ 

71 z =
 -7R:— 

COS
 Mtt^ {:u 

xn \     in' 

The radiation patterns for particular antenna configurations can now 
be derived by summing up the current on the differential lengths by 
integrating the current distribution on that type of antenna. 
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Z   -TERMINATED ANTENNA o 

If a very large bandwidth is needed,  the dipole is terminated at 
each end with its characteristic impedance and fed at any position 
along its length.    The resulting radiated power pattern in terms of 
efficiency,   for the azimuthal plane,   is 

4   2 ^ 2 x — ir   fC    cos   * 
i E  

-aXiu-j2iri    (f-cos*) 
1 - e ' 

a\ + j2ir(— - cos <j>l 

-J2,ri2x(v+C08*) 

(4) 

i\ A 
1 - e 

2\ 

aX + jZirl— + cos «|>) 

If this antenna is fed at one end against a zero impedance ground plane, 
it ic a Beverage wave antenna.    The second term within the brackets 
is zero and the term outside the brackets is doubled because the input 
resistance is halved,  apd 

-oAi     -i2ir i     |—-cos<J>] 
U J        U\v 8    2^ 2A — ff   fC    cos   «j> 

P  

aX + jZirl cos 4>) 

(5) 

The power radiation patterns in the elevation plane can be derived by 
simply replacing the cos    fy  term outside the brackets of Eq.   4 and 5 
with [ sin 9/{U + sin 9)]     and (j)  inside the brackets with Q.    This can be 
seen by comparing Eq.   1 and 2. 

OPEN-TERMINATED DIPOLE 

The horizontal dipole near the earth is most efficient when placed 
over low conductivity earth.    In areas of low conductivity,  it is usually 
very difficult to construct terminating ground planes.    So in most in- 
rtances an open-terminated dipole must be used.    This type of antenna 
is more narrow band (50% to 100% half power bandwidth) than the 
Z0-terminated antenna, but it radiates with greater efficiency. 
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The power radiation pattern is found in the same manner as de- 
scribed above by integrating over the current distribution.    This has 
been done in a previous report (Ref. 6), and for a resonant dipolc fed 
at a current maximum the power radiation pattern In terms of the 
radiation efficiency in the azimuthal plane is 

^Z = 

IsinhaX/      +j   cos {2ir/      cos <J>i 

— ItanhaXi      + tanh a\ ■'2Xj/ a^ + J2ir ("' " C08 <l>) coshaXi 

8   2 2 
■r ir f C    cos   6 
3 j^ 

sinh aX i_.   + j j    cos IZtr i  . cos «})l 

aX + J2IT(— + cos 4>)   cosh aX i2. 
(6) 

2 
Here again the elevation pattern is derived by replacing the cos    6 
term outside the brackets with [ sin 0/(U +  sin 6)]  ,  and replacing 6 
inside the brackets with 9.    The efficiencies computed by Eq.  4,   5, 
and 6 are thf efficiencies of the horizontal antenna compared to a 
perfect lossless vertical antenna. 

END-LOADED  DIPOLE 

If only limited space is available,  the most efficient short dipole 
(dipole length <\ /2) is the end-loaded dipole.    The end loading can 
consist of several conductors laid out in a radial manner at the ends 
of the dipole and sufficiently long to make the dipole resonant. 

The power radiation pattern is found by integrating over the 
truncated cosine current distribution and has been derived in a pre- 
vious report (Ref. 7).    It is 

1 
8.77X 10"8f i,2   /sinTr-i.V    -aX(i./2) , 

X     / v     X \ X c 
Z a- R. \ c  j 

in \    w — *» 
v    X 

e cos   <j)     (7) 
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This is the radiation efficiency in the azimuthal plane.    A short dipole 
will have nearly a uniform current distribution, which gives a four- 
fold increase in efficiency over the triangular current distribution of 
a short open-terminated dipole.    To obtain the power pattern in the 
elevation plane,   cos $  is replaced by sin 6/(U +sin 9) in Eq.  7. 

EFFECT OF FAST WAVE VELOCITY ON 
HORIZONTAL ANTENNA EFFICIENCY 

AND RADIATION PATTERN 

The wave velocity along a conductor near the earth is usually much 
less than its velocity in free space; c/v is typically about 1.4 for a 
conductor about one meter above the earth.    Both the wave antenna and 
the resonant dipole have very low radiation efficiency at this slow wave 
velocity,  as is shown by Fig. 1 and 2.    The wave velocity can be in- 
creased by inserting series capacitors into the antenna,  which in 
effect cancels a portion of the antenna inductance.    This increases the 
radiation efficiency as shown in Fig. 1 and 2,    The optimum wave 
velocity for efficiency is greater than free space wave velocity and 
occurs when c/v is about 0,9 for the sky wave radiation.    The optimum 
wave velocity for the ground wave (see Fig. 2) is slower (c/v =  1.05). 
For long range propagation,  the sky wave is more important than the 
ground wave.    The wave velocity along the antenna has an effect not 
only upon radiation efficiency but also upon the bearnwidth and elevation 
launch angle of the sky wave (see Fig. 3).    The beam launch angle can 
be varied over a wide range of angles (see Fig. 4).    This may be im- 
portant at VLF for selecting the angle for the best excitation factor. 
The data in Fig. 4 Is for a long,   Z0-terminated-wave antenna,  but the 
resonant dipole data shows similar characteristics (see Fig. 5).    Beam 
launch angles from 10° to 50°  can be selected by using different values 
of c/v,  but the lower launch angles are accompanied by lower radiation 
efficiency,   as are the narrower beamwidths (see Fig. 3). 

The faster wave velocities also broaden the bearnwidth in the azi- 
muthal plane,  giving greater coverage over the earth's surface. 

The resonant dipole sky wave radiates most effici0ntly when 
c/v = 0.9 (see Fig.   6).    However,   for a given length dipole there is 
not much difference in efficiency for c/v values from 0.8 to 1.0 (see 
Fig. 6).    Therefore the beam launch angle can be varied considerably, 
without loss of efficiency,  by changes in antenna wave velocity.    The 
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90* 

0.00 

30' 70° 
ELEVATION PATTERN 
LENGTH 30 km 

f = 20 KHZ 

1.2    1.6 
EFFICIENCY, % 

FIG.   3.    Hawaiian Wave Antenna Radiation Efficiency 
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efficiency appears to be nearly proportional to length for the range of 
wave velocities above, up to lengths of about 3 wavelengths.    The data 
in Fig. 6 is for areaa whose conductivity is the same as the Hawaiian 
lava beds (3 x lO"4 mho/meter at 20 kHz). 

EFFECT  OF PARALLELING  DIPOLES ON 
THE ARRAY EFFICIENCY AND 

RADIATION PATTERNS 

When N closely spaced parallel dipoles are connected in parallel 
and fed by a common transmitter,  the radiation efficiency is increased 
N-fold, reduced by a deteriorating factor caused by mutual resistance 
induced in each dipole by all the other dipoles in the array (Ref. 8 and 
Ref. 7).    It can be shown using Eq. 6 that the antenna losses have the 
greatest effect on efficiency when c/v = 1.0 and <t> = 0°.    Under these 
conditions it can also be shown that the antenna efficiency is inversely 
proportional to the antenna attenuation factor,  Q\ ,  if aX <  1.0,  which 
is the case for any practical antenna.    It can easily be shown that, 
under these restrictions, 

(8) 

Therefore the radiation efficiency is inversely proportional to r,  the 
total self and mutual resistance per unit length. 

The input resonant resistance at a current maximum is 

R.    = — (9) 
in       Z 

The efficiency is therefore inversely proportional to the resonant in- 
put resistance.    The efficiency gain of an array of dipoles over one 
dipole can be calculated by summing up the inverse of the ratios of the 
total resistance per unit length to the self resistance per unit length 
of '■-ach dipole: 

N 

 Ü array        =T^ 1  (10) 
1 one dipole       /     .        T^    _m 

N=l 

12 

N^l    r, 
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The mutual resistance and self resistance of conductors near the earth 
has been derived by Carson (Ref. 9).    The ratio of mutual resistance 
to self resistance,  rm/rs»  is plotted versus the separation between 
conductors in skin depths {see Fig. 7).    Figure 7 is used with Eq. 10 
to compute the efficiency gain of an array over one dipole with various 
spacing between dipoles (see Fig. 8).    To avoid excessive loss in effi- 
ciency,  resonant dipoles in an array should be spaced at least four skin 
depths apart. 

Radiation efficiency measurements made on a 5-dipole array con- 
structed on the lava beds of Hawaii tend to confirm the theoretical in- 
crease in efficiency (see Fig. 9 and 10).    The dipoles were resonant 
at 10 kHz,  where the ratio of mutual to self resistance was measured 
to be 0.1, which would indicate a dipole spacing of 3.6 skin depths 
(see Fig. 7).    A five-dipole array with this spacing should have an 
efficiency gain of 4 over one dipole (see Fig. 8).    The efficiency of the 
5-dipole array is approximately 4 times that of the single dipole at 
10 kH?;.    The efficiency gain of the array is larger at the higher fre- 
quencies, as it should be, because the skin depth decreases and s/6 
becomes larger.    The theoretical resonant ar*-ay efficiency gain applies 
reasonably accurately to non-resonant dipoles as well. 

The azimuth beamwidth of dipole arrays is narrowed over that of 
a single dipole by the array factor.    The azimuth patterns of arrays 
of dipoles are obtained by multiplying the power pattern of a single 
dipole (Eq. 4, 5, 6, and 7) by the array factor of an array of isotropic 
radiators.    This array factor,  which was derived by Kraus (Ref. 10), 
is 

F = 
sin  I N— sin 4> I 

N sin I— sin <M 
(ID 

The radiation patterns of arrays of dipoles,  whose single dipole patterns 
are described by Eq. 4, 5,   6, and 7,  are found by multiplying these 
equations by Eq. 11. 

An antenna has been designed to transmit from the lava beds of 
Hawaii to illustrate the radiation efficiency,  power radiating capability, 
and broad bandwidth that can be achieved with resonant fast wave dipoles. 
This area was chosen because the electrical parameters needed to com- 
pute the radiation pattern (see Eq. 6) have been measured on experi- 
mental horizontal antennas above these lava beds.    The 18 dipoles are 

13 
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FIG.   7.    Ratio of Mutual Impedance to Self Impedance for Two 
Parallel Conductors Near Earth. 
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one and a half wave resonant at the middle of the VLF band (20 kHz) 
and fed quarter wave from one ena with the resulting power radiation 
pattern shown in Fig. 11.    The effects of the array factor and of mutual 
resistance between dipoles have been taken into consideration in com- 
puting this radiation pattern. 

The power radiating capability of this antenna iar exceeds the power 
output of any existine; transmitter.    The limiting parameter is the maxi- 
mum antenna voltage before the onset of corona.    The onset of corona 
at VLF occurs at about 35 kV for a #6 wire,  20 ft above the ground 
(Ref. 11).    The maximum power radiated can be computed fi »m trans- 
mission line theory and is 

N IV cosh —- I    n   Itanh — + tanh —7- I 
\  max 4   / \ 4 4   / p =       :   "— i-L--—-J i i_^ (12) 

r max Z 
o 

where r\ is the efficiency of the dipole array and V is the maximum 
voltage on any dipole.    Using the corona onset voltage (3 5 kV) as the 
maximum dipole voltage, the maximum power radiated by the array is 
22 MW.    This would require 54 MW of transmitter power.    A more 
modest goal of matching the radiated power radiated from the most 
powerful VLF vertical antenna,   1.5 MW,  would require a maximum 
antenna voltage of 9 kV on the horizontal dipole array. 

EFFECTS OF  NON-RECIPROCAL VLF 
PROPAGATION ON RADIATION 

PATTERN 

As noted previously,   VLF radiation propagates around the earth 
wich less attenuation in an easterly direction than in a westerly direction. 
Therefore,  to obtain omnidirectional coverage on the earth,  the trans- 
mitting antenna must beam the VLF in a westerly direction.    The hori- 
zontal dipole has this type of radiation pattern,  while the vertical mono- 
pole radiates equally in all directions. 

This non-reciprocity propagation has been shown theoretically to 
be proportional to the component of the earth's magnetic field that is 
horizontal and transverse to the direction of propagation (Ref.  12). 
There is no difference in the propagation attenuation in a northerly or 
southerly direction.    The ratio of attenuation rate off the northerly 
magnetic path to the rate on the scuth-north path varies as the sine of 

18 
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the azimuth angle off the northerly path.    Experimental evidence 
(Ref. 1?- and 14) shows that the increase in attenuation rate of westerly 
«ea water path over an easterly sea water path varies from 0.5 dB per 
megameter at 25 kHz to 2.3 dB per megameter at 10 kHz (see Fig. 13). 
Since the attenuation rate increase is greater at lower VLF, the direc- 
tivity of the antenna radiation pattern must be greater for the lower 
frequencies and more directive for larger ranges over which omni- 
directional coverage is desired. 

The required antenna radiation patterns for omnidirectional cover- 
age at a range of 10 megameters from the transmitter over a sea water 
path are shown in Fig. 14.    The greatest directivity is needed at 10 kHz, 
where the required half power beamwidth is 70° and the radiation in 
the magnetic westerly direction must be 23 dB greater than that in the 
magnetic easterly direction.    At 15 and 20 kHz,  less directivity is 
required for omnidirectional coverage.    However,  at 20 kHz a half 
power beamwidth of 120° and a west over east radiation ratio of 8 dB 
are needed. 

It is evident from comparing the radiation patterns of the 18-dipole 
arrays (Fig. 11 and 12) with the required radiation pattern at 20 kHz 
(Fig. 14) that the array will not give omnidirectional coverage.    There 
is a deficiency of radiation in the northerly and southerly directions. 
This could be provided by a smaller center-fed array of resonant di- 
poles perpendicular to the 18-dipole array. 

ENVIRONMENTAL EFFECTS ON 
EXPERIMENTAL ARRAY 

The radiated field phase stability of VLF antennas is important in 
navigation systems.    The field phase shift due to rain on the horizontal 
dipole might be expected to be great due to its proximity to the earth. 
However,  field measurements made on the 5-dipole array in Hawaii 
before and during a rain storm indicated only a small phase shift 
(see Fig, 15).    This was no doubt due to large antenna bandwidth. 
Rubidium frequency standards v jre used to control the transmitter 
and receiver.    The radiated field was measured 26 km off the end of 
the antenna, where the skywave was gated out and only the ground wave 
was received. 

20 
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FIG. 13.    Differences in VLF Attenuation Rate 
Over Reciprocal Sea Water Paths. 

22 



T-T-t ••jmt&t^tBV »*& • .-■-■■* ^*>v*L».'f W»J^'S5IH(B^S?-'»5-BK 

NWCCL TP 881 

MAGNETIC EAST 
-OdB 

C WEST 

FIG.    14.    Antenna Radiation Patterns Required for 
Omnidirectional Coverage. 
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