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The problem of a mixture of two stimulants in a biological quantal
assay ls investigated from a mathematical standpoint. The basic assump-
tion is made that the response region does not depend on biological con-
siderations - i.e., given a specified mixture of stimulants z , the response
region is defined by the point z' in the p-variate space where there are
p stimulants under consideration; instead, the probability functionms,
themselves, may take on different forms. A general form is proposed and
investigated. Three analytic models (one utilizing the bivariate normal
distribution, one a bivariate logistic distribution developed by Gumbel
(1961) , and cne a bivariate Burr distribution developed by this author)
are employed in this investigation. The investigation includes the anal-
ysis of data, under the three analytic models, which had been classified
by previous investigatcrs as examples of synergistic action, simple similar
action, indeperdent action, and additive action. The residual analyses
are included as well as the FORTRAN IV subroutines used in evaluating the
functions, the partial derivatives and the weights.

The investigation lends some support to the assumption of a constant

response region for a diversity of mixtures of stimulants. The analytic

iv




model incorporating the bivariate Burr distribution is recommended for

all cascsd wiléss Lhe nwmweil Of parawmctirs ¢
concern, in which case the analytic model utilizing the bivariate normal
distribution is recommended. The bivariate Burr distribution developed

ir this paper is found to be more useful Iin application than that devel-

oped by Takahasi (1965).
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CHAPTER I

1. Introduction

The joint action of mixtures of stimulants in a biological assay
has been investigated by Bliss (1939), Finney (1942), Plackett and Hewlett
(1967), Ashford and Smith (1966), and others. Plackett and Hewlett have
made their investigations largely from the standpoint of biological con-
siderations such as the p.uysiology of the bioclogical organism being used
in experimentation. Ashford and Smith, on the other hand, have dealt with
the problem somewhat more within a mathematical framework. In this paper,
the problem will be approached mathematically.

For the purposes of this paper a biological assay of a mixture of
two stimulants will be conducted as follows: A population of N organisms
is divided at random into t groups, where the ith group is of size ng o
n, tn, oo + n, = N . The ith group receives a treatment of a pre-~
determined mixture (zli ' zzi) of two drugs, where zji is the quantity
of stimulant j measured in any convenient units. r, is the observed number
which manifest a prescribed quantal response. The observed relative
frequency of response pi = ri/ni is an estimate of the probability of an
organism respcnding if picked at random from the population. The proba~
bility that this organism picked at random will respond when treated by

the mixture (z 2i) may be assumed to take on a general form, say,

11’2

v 2o o0 Q) .

Pz 2i

1i

Now the probability of ¥, responses with the ith combination of




levels of drugs can be written as

nil

. r.. asl
PAL,) =™ T~ 7 |Ft% ¢ & v ¥
NN L7141 © “24 ]
ri-o' 1' 2, o8 t (l)

= 0 elsewhere.

A series of t combinations of doses is tested in an experiment. The prob-~

ability of a particular set of ri's is equal to exp(L) , the likelihoed,

whore
t t

L= } r In () + 2 (n;-r,)1n(Q) + ] lnln 1/r,1(n~x,)1] (2)
=1 i=1 1=1

and Pi = P(zli , zzi ¢ 9)y Qi =1 - Pi . The maximum likelihood estimator

® of a parameter © , O an element of @ , must satisfy the relation

0 =3k, f i R f (n;-r;) 3Q, & n, (p;~P;) 9P .
% L P, 0 'L T o ae L TR, 30

Direct solution for © is not in general possible, but iterative techniques
are available which give a convergent series of approximations to the
solution.

The following procedure for two parameters © and ¢ , © and ¢ elements
of @ , is of completely general applicability and may easily be extended

for the estimation of a greater number of parameters. By the Taylor-

3L
20 ' a¢

containing terms of higher than the first degree

Maclaurin expansion of = (See relation (3).) ignoring gquantities

2

3L 52y, e
30 t% 3% %0 30,96, =0 (4)
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where the addition of the suffix 1 to © , ¢ indicated that the first
| approximations are to be substituted after differentiation. The solutions

s 6¢ are adjustments to ¢ which give the improved approximations

€]
2 =0 T8y 0y =yt S,

1'%
)

Egquations (4) may be simplified through the following procedure

which will be illustrated by means of the first of equationa (4).

oL + 8 SZL +4 82L =
0 go2 ¢ B0338)

o
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2
» { { np, 3P, i f n,p, 9P, izi
® iz B %990 44 pig 20, 9%y
L . .2
. { nypy 9k, oF, i f 2£ 57F,
=1 Plgi 89y 3y oy 9y 80,04,
CEmmon) .
1=1 g2 30, %%, § 299,

At this stage the equation may be simplified by putting p; = Pi in

2 2
the coefficients of 2—4% , =L _ , i.e., on the left hand side of
o° | 80,3¢

the last equation to give expected instead of enpirical values. The last

equation then reduces to

2 .
ny <3Pi) . E. n, ("Pi) <3Pi) _ L
i=1 P39\, = CIR COV ATV AN

The latter equation in (4) can be reduced by means of a similar procedure,

S

o~I¢t

%L %
i.e., putting Pi = Pi in the coefficients of —z 36—3$_' .
8¢1 171

Thus equations (4) are simplified to

2 .
s f n, (api) . %; _ni_<api>(api> i § 1_11_(151 ) <api),
9 j=1 P11%1\%9 ¢ g2y Pi1din \39/\ %0, =1 Pi1%1 \%9

(5)
\ 2 -
© 421 P1191 \%9;/\3¢; ¢ 521 P \9¢y i=1 P11 \%¥%

Here the addition of the suffix 1 to Pil ’ Qil

indicates that the first

PC) I

approximations are to be used in the evaluation of P(zli ' 2y )

Equations (5) illustrate that only first derivatives are needed in this

iterative procedure.




2. Methodology for Obtaining Estimates

Now, it will be seen from +hat follows that relation (3) can be

mndi £iad nan-linear least squares [Moore and Zeigler

a by g 2w od

P e - aama
CA%Z RS 1 A

(1967)]. Assume that the data corresponds to the mathematical model
Yi"h(Ei:E)"‘Ei y 1=1,2, ¢ , ¢t (6)

where the yi are observed random variables, Ei is a vector of known

independent variables, ¢ is a vector of unknown parameters, and €y is a
random variable such that E(ei) =0, E(ei) = oi , and E(eiej) = 0 for
all i # § . Then the vector of unknown parameters may be estimated by

minimizing the weighted sum of squares,

1

wn
"
I ot

) 1(yi -niz o0)w 1

where Wi is an appropriate weight. If the usual procedure is modified so

that the partial derivatives are taken ignoring Wi , the normal equations

are
t h(z, , a)
as -1 -
—_—= - 2 z w, [y, - h(?:- ' C_!)] =0 , {8)
aak i=1 i1 i Bak

for k=1, 2, *** , % , where % is the number of unknown parameters. Now
by letting Wi = ni/PiQi (the reciprocal of the variance of pi) 2 P T
hi{z., ,a) =P, ,9,=1-P, , and a_ = © it can be seen that relation

-1 - i i i k
(3) and equation (8) are equivalent. Thus the maximum likelihood estimate
can be obtained by means of a modified weighted non-linear least squares.

Relations (5) and their equivalent extensions are used in the modified

non-linear least squares fitting of equation (6).
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3. Consideration of Necessary Conditions on P(z1i v 2y 0 2

z
li . ,
From this point onward the vector Ei = (z ;) will be considered
~nd

N\ &y

from the standpoint of a mixture of stimulants where a transformation has

been applied to the original dosage levels so that —~ is equivalent to
zero dosage and +~ 1is equivalent to an infinite dosage. For the purposes

of this paper P(zli ;2 s Q) must satisfy the following conditions

2i
Pz, ot , Q) =P, 2, ,0) =1, (9)
P(zli r = 4 Q) =Pylz,, , 0 , (10)
and P(= y 2,; + Q) =P,lz,, » Q) (11)

where P, (z,, , Q,) and P,(z,; + Q,) are not in general zero, but rather
are marginal probabilities, i.e., the probability of a random individual

biological organism responding if it is given a dosage of stimulant j

corresponding to zji . Conditions (9), (10), and (11) imply the conditions

P(-® , -»= , Q) (12)

It
o

It
[
.

and P(#o , 4o , Q) (13)

All five of these conditions are necessary in a bioassay of quantal response
data involving a mixture of two stimulants. Natural extensions of these
conditions for a mixture of more than two stimulants are now obvious.

Plackett and Hewlett (1967) proposed that

P = SR f(z1i ' zZi)dzlidzzi (14)

where f(zli ' zzi) is a bivariate density with the usual properties and

R is defined on the basis of biological considerations, thus implying that
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|

the region of integration may, arbitrarily, be changed due to biological
considerations. Their papers do not indicate any homogeneity in the regions.
Nowhere is there a general formulation for P(zii ¢ 2o ©) where the form
of the region of integration is homogenecus, much less ccnstant. It would
appear that the region of integration should be constant except possibly

for simple monotonic transformations of the original dosage levels, such

as a logarithmic transformation. The bivariate function itself might be,

in specific instances, of different types but still retaining a constant
response region.

Let F, (z 8,0 Fz(z2 » ©,) be univariate distributions where the

1 r
parameter vectors Ql ’ 92 are not, in general, equal. Note that Fl(z1 ' Ql),
F2(22 ' Qz) are not necessarily even from the same family of distributions,

e.g., the family of normal distributions. Let F3(zl r 2, » @) be a bivariate

2

distribution such that F3(z + , Q) = Fl(z1 r 9,) and_rFa(-Fm ' 2y 0 Qz)

1 r
= L] = 1 1 ] s :
F2(22 , 92), where 0O (Ql . 92 ’ Q3) . Now, what is needed is a
function which satisfies conditions (9) through (13).

Let

H(z, 2, , Q) =F,(zy , Q) +Fyiz, 9,) —Falzy 42, » Q) . (15)

Then H(-= , z, , Q) = F (2, , Q,), H(z , ==, Q) = F,(z) , 9)),
H(+> , z, Q) = 1= H(z1 ; + , @), H(= , == , Q) = 0, and H(+= , +> , Q)
=1 . Thus H(zl P2y 0 @) does satisfy conditions ( 9) through (13) which

suggests that

P(2y, » 2,5 + Q) =Fylz) » 9)) + Fy(zy , Q) = Fylz) , 2y, 0) (16)
is a genezal formulation for P(zli Y 0) where the responsé region
is corstant, Note that the forms Fl(zli , QQ ’ Fz(z2i ' Qz) ' F3(z1i R ZZi ’




are completely general distributions whose forms can depend on biological,
cheimical, of othesr foaside 2+ +he eames +ima the region of inte-
gration is constant and easily understood from a geometrical standpoint
as well as from other standpoints. It is noted here that the general
formulation for P(z,; , 2,; « 0) can easily be extended for a vector of
more than two stimulants. The utility of this form is quite general;

the only restrictions being conditions (9) through (13) which have been

imposed in the development of the general form in equation (16).

o m—— o
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CHAPTER II

It is natural in the study of a mixture of two stimulants to con-
sider a bivariate probit or nommit. Probit analysis has no advantage over
a normit analysis if the analysis is run on a high-speed computer. Also,
the analyses are equivalent, Almost all of the work that has been done
to date has been along the lines of a bivariate normit.

Bliss (1939) was among the first to study the action of mixtures
of two stimulants. He classified the joint action of two stimulants into
three biological categories: independent joint action, similar joint
action, and synergistic action. Independent joint action occurs when-
ever two components act on different vital systems in the organism and
do not interact with one another. Similar joint action is observed when-
ever two components act independently of one another but on the same vital
system; gynergistic action is characterized by a larger frequency of .
response than could he predicted from experiments using the individual
stimulants. He mentions antagonistic action but did not treat this concept
at all., He stated that it is the reverse of synergistic action. Finney
(1942; suggested that antagonism is negative synergism and can thus be
treated in the same category as synergism.

Bliss (1939), for the category of independent joint action, plotted
expected response in probits against dosage of mixture in logarithms. At
each point the ratio of the amount of a given stimulant to the amount of

the other stimulant was held constant. These curves were not smooth but
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rather fell into two segments each of which appeared to be a straight
line. The transition from one straight line to the other was relatively

abrupt. He suggested the equation

where P, > Py r By is the probability of response due to the effect of
stimulant A , Pp is the probability of response due to stimulant B , r

is a measure of "association of susceptibilities," and P is the proba-
bility of death due to the combination of stimulants A and B He did not
indicate what, if any, relation he assumed between equation (17) and the
plots of data.

For the category of similar joint action Bliss suggested equation

= at
Y, =a'+ b log(DA + kDB) (18)

for the dosage response curve, where D and D_ are the respective doses

A B
of stimulants A and B in the mixture and k is the ratio of the freguency
of response of the individual stimulants. The plots for this case are
thus straight lines.

Bliss suggested two possible equations for synergistic action. The

first, which relates the total amount of active material (DA + DB) and the

amount of the more active stimulant, say A , is
(D, + D )Di = k (19)
A B’ A !

where DA and DB are in original dosage units, which implies the probability
of response to the combination of the two stimulants is determined by the
sum of the ingredients multiplied by some power of the amount of the more
active stimulant. The second equation, again with A being the more active

stimulant, is



i i R A ——

s i S

11

(1 + leA)o; =k, (20)

which was suggested for the cases where the proportion of A approaches
zero. It should be noted that these suggested equations do not bear
any clear logical relation one to another.

Plackett and Hewlett (1961) utilize the following biological

classification of joint drug actions:

Similar Disgimilar

Non-interactive Simple Similar | Independent

Interactive Complex Similar | Dependent

Here the suggestion is that the actions of the stimulants are similar or
dissimilar respectively as the stimulants act on the same biological site
or on different ones, and as interactive or non-interactive depending on
the presence or absence of synergism (or antagonism). They, then, propose
mathematical equations (some in an implicit form) based on the above
biological classifications which, again, do not bear any clear logical
relation one to another. Finally, they introduce a statistical concept
into their presentation by making an assumption as to the bivariate
distribution of 21 ’ 22 where 21 ’ 22 are the respective tolerances to
stimulants A and B . They suggested that a reasonable assumption would
be that the log tolerances log 21 , log 22 are distributed bivariate
normally. They did not give examples of data fitting any of the proposed
models.

Ashford and Smith (1964) approached the problem somewhat differently.

They classified the mathematical model as interactive or non-interactive
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rather than attempting to classify on the basis of biological considera-

FY

tions. Thev definv non-interaction as beinag equivalent to the condition

on P = P(zl ¢+ 2, ., 0), the probability of response, wherxe z. and z_ are

2 1 2

the logarithms of dose, such that

2 2
W g(P) = PiP,(PyPry = PiPyoo) + Py (PiPyy = PyPyy) =0 (21 )
2 3
P 3% 3% , _
where Pa =3z ! PaB = 3% 3z ' and deY = 3% 3z 32 . Their mathematical
a o "B a "By

classification is not equivalent to Plackett and Hewlett's. Ashford and
Smith remarked that no valid distinction can be made between similar and
dissimilar action purely on the basis of quantal response data.

Ashford and Smith published some trivariate data on exposure to
coal dust for which the response was the prevalence of pneumoconiosis for
groups of mine workers. The three dosage variables, respectively, were

the time spent in years at coalface coal-gstting, coalface preparation,

and elsewhere underground. They assumed that the tolerances were normally

distributed. They then compared two models where the regions of response

were not only different but were each complicated functions of the dosage
levels. They applied chi-square goodness-of-fit tests (each with fifteen
degrees of freedom) to the models obtaining chi-square values of 12.73 and
16.86 , respectively, from which they quote the corresponding approximate:
significance levels. They do not indicate explicitly the form of the
probability function used but rather only the functional forms indicating

the response regions.

Zeigler and Moore (1966) presented a paper at the 126%1 Annual Meeting
of the American Statistical Association on "Multivariate Quantal Response
Analysis Using Regression Methods." 1In this paper, in addition to showing

that weighted least squares can be used to converge on maximum likelihood
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estimates, they fitted a bivariste normal distribution to toxicity data
involving the direct sprays of Pyrethrins and D.D.T. in Shell 0il P31

appilied to flour beetles (Tribolium castaneum). Using a chi-square

goodness=of-fit teat with nineteen degrees of freedom, they cbtained a
value of 12.17 and reached the conciusion that the fit was satisfactory.
None of the investigations up to this joint have utilized the general
form suggested in Chapter I, although th: specific form utilized by Zeigler
and Moore (1966) is equivalent for the special case where the tolerances
él and 22 to drugs A and B are each distributed normally.
It would seem useful to do some numerical studies utilizing some
of the data in the literature with some analytic models which conform to
the general form in equation (16). FPor this purpose, seven sets of data
were utilized. Included among these were sets that have been classified
in the following categories by previous investigators: synergistic action,
simple similar action, independent action, and additive action.
Data set one, classified as synergistic by Bliss (1939), was first
published by Kagy and Richardson (1936). This set is from a study of the

combined action of 2-4-dinitro-6-cyclohexylphenol and petroleum oil

sprayed in emulsions against eggs of a plant bug (Lygueus kalmii stdl.).

Data set two, published by Plackett and Hewlett (1952), was classified by
them as simple similar action. This data set is from a study of the
combined action of D.D.T. and methoxychlor applied in Shell 0il P31 to
flour beetles. Data set three, published by Hewlett and Flackett (1950},
was classified by them as independent actior.. This is the data set which
Zeigler and Moore (1966) fitted to a bivariate normal by means of weighted

least squares. Data sets four, five, and six, published by Martin (1942),
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were not classified by the investigator into any category. Data set
four ie fram a atudy of the toxicity of the combined action of rotenone
and a dequelin concentrate in a medium of 0.5% saponin containing 5% of

alcohol applied to chrysanthemum aphides (Macrosiphoniella sanborni).

Data set five is from a study of the toxicity of the combined action of
rotenone and 2-elliptone under the same laboratory conditions as data set
four., Data set six is from a study of the toxicity of the combined action
of rotenone and %-a-~toxicarol under like laboratory conditions. These
three data sets showed some signs of synergism to the investigator, but
he did not find it to be significant in any one of the data sets. Data
set seven, published by Ashford and Smith (1964), is from a study of the
prevalence of pneumoconiosis in groups of mine workers where the years
spent on "coal-getting” is one imput and the other imput is years spent
in "haulage." This data set was classified as an example of additive
action by the investigators.

A bivariate normit analysis was run on the above seven sets of data.
The analytic model for the bivariate normit analysis was

al+B1z1 1 2
|) = S (21)  © exp(~ 5 t9at

-0

(S

2% -3 1 2
+ (27) exp (- 78 yds

-0

(22)

al+Blz.l a2+8222 .
- S (21/1 - pZ%)

-0 -

expl-(e% - 2pts + s%)/2(1 - o%)latas, - <z, ,
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A modified least squares (see Chapter I) FORTRAN IV Computer program was
utilized on a Model 44 IBM 360 system. A resume of the results is given
in ‘lable 1.

The following is a brief explanation of the items listed in Table 1
as well as the next two tables: N is the number of stimulant combinations.
SSE is the weighted sum of squares due to error which is approximately dis-
tributed as a chi-square. SSR is the weighted sum of‘équares due to re-
gression and is computed as SST - SSE where SST is the weighted sum of
squares adjusted for the weighted mean. SSR is approximately distributed
as a chi-square. R2 , which is computed as SSR/SST , tells what portion
of 88T is due to regression. Computing SSR as SST - SSE and R2 as SSR/SST
gives both a conservative estimate of the significance of regression and
a conservative coefficient of determination R2 . The colum entitled
"No. of significant chi-squares" tells how many of the chi-square statistics

computed at each dosage level (stimulant combination) exceeded 3.84 , the

.95 value of a chi-square with one degree of freedom.

Déta No. of l ]

set | N | Significant | ssE | d.f. | ssr | 4.f. R

No. Chi-gquares L,
1 18 5 67,029 | 13 | ce0dl | 4 .99899
2 10 1 21.775 | 5 | s98.86 | 4 . 96491
3 24 0 11.805 | 19 11176 | 4 .99894
4 17 2 27.147 | 12 1656.0 | 4 .98387
5 12 2 28,947 | 7 | 921.36 | 4 .96954
6 15 0 10.145 | 10 30672 | 4 .99967
7 40 2 36.141 | 35 | 217.75 | 4 . 85095

TABLE 1
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For all of the data sets the regression is found to be significant
using SSR as the indicator. However, the chi-square for departure from
the model is insignificant in only three of the cases, namely data sets
three, six, and seven, which include the cases of independent action and
additive action.

The synergistic data (data set 1) had sample sizes ranging from
240 to 479 (see Appendix I) at its eighteen data points. The bivariate
normit analysis indicated that five of these points differed significantly
from the bivariate normal model. Some of these points were marginal data
points and some werz not. One of the data pointe contributed 34.266 to
the cumulative chi-square, slightly more than half of the total, but the
chi-square would still be significant even without this particular data
point. Upon examination of the residuals, the fi% does leook good with the
exception of the one data point, but with the large sample size at each
point, the fit would have to be extremely close in order for the cumulative
chi-square to be insignificant. On the whole, it is felt that the bivariate
normit analysis did quite well with the data and that the model does des-
cribe the phenomenon reasonably well, considering the significance of
regression (SSR), the weighted sum of squares due to error (SSE), along
with the sample sizes, and the coefficient of determination R2 .

The simple similar action data (data set 2) had sample .sizes ranging
from 148 to 200 (see Appendix II) at its ten data points. The analysis
indicated that one of these points differed significantly from the bivariate
normal model. Again upon examination of the residusls, the fit does loock
good although not quite as good as the previous data set. The conclusion
based on the analysis of the data is that the model does describe the

phenomenon fairly well, with the ~xception of the one data point.
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The independent action data (data set 3) had sample sizes ranging
from 48 to 50 (see Appendix III) at its twenty four data points. The
model does fit the data well and none of the data points differed
. significantly from the mnodel. The weighted sum of squares due to error ‘
ig 11.805 . Zeigler and Moore (1966) fitted this same data set and the
weighted sum of squares due to error for their model is 12,17 , thus
indicating the similarity of the fit.
Data se%s four and five are quite similar. They had sample sizes
rangirg from 28 to 51 (see Appendices IV and V) at their data points.
Each had twe data points that differed significantly from the bivariate

normal model and examination of the residuals does not indicate as good

a fit as for any of the previous data sets. The model still does describe
most of the data points well, but it does not seem to do as well as for
the earlier cases.

Data set six had sample sizes ranging from 48 to 51 (see Appendix VI)

at its fifteen data points. The model does fit the data well and none of

the data points exhibit a significant deviation from the model. Two

bivariate normit analyses were run on this data set using slightly different

convergence criteria. The first run utilized the relative change in the

cre et e

unweighted sum of squares due to error and the second the relative change

in the weighted sum of squares due to error. The first run after conver-

gence had the sum of squares due to error as 0.031265, while the weighted

e n 3 e anaB T e e
.

sum of squares due to error was 0.78159 x 101> . The second run after

N convergence had the sum of squares due to error as 0.032040 while the
%_ weighted sum of squares due to error was 10.145 . Which criteria produces

the best fit becomes questionable at this point. It would seem that either

set of parameter estimates would have to be considered acceptable despite

| the large chi-square value attributea to the first fit.
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Data set seven had sample sizes ranging from 2 to 135 (see Appendix VII)
at its forty data points. The model does fit the data well although there
are two data points which deviate significantly £rcm the model. Ashford
and Smith (1964), who classified this data as an example of additive ac’ on,
fitted the data to a model, assuming the marginals to be logistic, using
a rather complicated response region which does not seem to have been
necessary.

In general the bivariate noxmit analysis seems to do quite well with
a diversity of mixtures of stimulants, as is evidenced by the seven sets
of data analyses here. These analyses appear to lend support to the
assumption that the form of the response vregion should remain constant
irrespective of the biological considerations, at least in relation to a

bivariate normit.




CHAPTER III

A bivariate logit is, perhaps, as natural to consider in the study
of a mixture of two stimulants as a bivariate normit, even though very
little work has been done along these lines.

Ashford and Smith (1964) ran an analysis on data set seven assuming
the marginals to be logisti:w. They fitted the data to a model using a
cerplicated response region without explicitly defining the mathematical
mode!. There does not appear to have been any other examinations of
data by means of a bivariate logit in the literature

In the case of a bivariate logit, the first consideration is the
form of the bivariate distribution to be used. The bivariate logistic

digtribution utilized in this study was

[1+expl- 2] (1 + exp(~ v)17L

Folxy) = { + {1+a 1 +exp- 0171+ expl- y17°
* expl-x~y)} , ~w<x,y<w (23)
which was developed by Gumbel (1961). The density function is
-2
[exp(- x = )+ [1 + exp(- x)]
S ML+ expl- 17} s {1+ agll - exp(- x)
£3 (x,y) = - exp(~y) + exp(- x ~ ¥)1/[1 + exp(~ x)
+ exp(-y) +exp(~x=-y)l} ,w<x,y<w (24)

The correlation coefficilent is
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p = 3a0/T\‘2 ' (25)

where - 1 < a <_l:thus]p|<_3/n2.

0
A bivariate logit analysis was run on the seven data sets utilizing
the Gumbel bivariate logistic distribution. The analytic model for the

bivariate logit analysis was

-1 -
Plz) , 2z, , Q) = {1+ exp[B, (z, + al)]} + {1+ exp(B,(z, + az)]} !
-1 -
- {1+ exp (B (z, + al)]} {1+ exp(B, (z, + 32)]} 1
-1 -1
. {1 + ao{l + exp[B, (2, + al)]} {1+ exp(B, (z, + a2)1}

. exp[Bl(zl + al) + Bz(z2 + a2)]} .

z, < ® (26)

R N y

A resume of the results is given in Table 2. The entries of Table 2 are

the game as those of Table 1.

Data No. of | I 2
Set N | Significant | SSE | d.f. SSR | a.f. R
No. Chi-squares | i
1 18 5 76.403 | 13 | 48773 | 4 .99844
2 10 4 29.262 | 5 | 574.90 | 4 95157
3 24 0 15.603 | 19 | 3165.4 | 4 .99509
4 17 2 29.616 | 12 | 1365.2 | 4 .97877
5 12 3 30.169 | 7 | 675.69 | 4 95724
6 15 0 11.976 | 10 | 20170 | 4 .99941
7 40 2 39.020 | 35 | 221.36 | 4 .85014

TABLE 2
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As was the case for the bivariate normit, tue regression was found
to he aignificant fnar each of the seven data sets. and data sets three,
six, and seven have nonsignificant chi-squares indicating no significant
departure from regression.

Fnr each data set, the SSE from the bivariate logit analysis was
larger than the corresponding SSE from the bivariate normit analysis.
Similarly R2 from the bivariate logit analysis for each data set was
smaller than the corresponding R2 from the bivariate normit analysis.

The bivariate logit analysis indicated that the same number of data points
differed significantly from the bivariate logit model as was the case with
bivariate normit model for each data set with the exception of data set
two (simple similar action), and data set five. With data set two, the
bivariate logit analysis indicated that four out of the ten data points
differed significantly from the bivariate logit model as compared to one
out of ten in the bivariate normit analysis. With data set five, the
bivariate logit analysis indicated that three out of the twelve data
points differed significantly from the bivariate logit model as compared
to two out of twelve in the bivariate normit analysis.

On the whole, the bivariate logit analysis did not do as well as
the bivariate normit analysis, although it did nearly as well with six
out of seven of the data sets. It would seem likely that the main reason
that the bivariate logit model did not do as well was due to the fact
that the correlation coefficient of the model employed was restricted so
that |p| < 0.30396 , approximately, and |o| > 0.30396 for all seven data
sets in the bivariate normit analysis. It would be useful to extend this
investigation to include a bivariate logit model where the correlation

coefficient is not so restricted, i.e., where - 1 < p < 1 inclusive.
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CHAPTER IV

In this chapter the assumption that the marginals follow the Burr
distribution will be made. This is a somewhat more general assumption
than the assumption that the marginals are normal (or logistic).

The general system of distributions referred to here was first

given by Burr (1942). Using as an expression for the distribution function

1- 0+ P x50;b,p50
F(x) = - (27)

0 x <0

F(x) covers an important region of the standardized third and fourth central
moments in the following sense. Figure 1 shows that the system covers a
large portion of the curve-shape characteristics for Types I, III, IV, and
VI of the Pearson system. Figure (1) is drawn with coordinates 4y = Bl
and § = (2a4 - 3a§ - 6)/(a4 + 3), where oy is the ith standardized central
moment. The regions covered by the Pearson Types I (or beta), IV, and VI
are indicated, as well as Type III {or gamma) which lies on a curve, and
the normal, logistic,rectangular, and exponential distributions which are
represented by points. The subscript B refers to bell shaped functions
and J to J shaped functions. It can be seen from Figure (1) that this
system of digtributions is quite general.

Takahasi (1965) developed a multivariate Burr distribution by using

the fact that a Burr distribution is a compound Weibull distribution with

a gamma-distribution as a compounder. That is, if

22
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Figure 1. Upper and lower bounds of coverage in Bl , 6

space for the general system of distributions as given

by Burr (1968).
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iObxb-le—Gx x> 0
wi{x;b V) = (28)
0 x<0
and 0 is a random variable such that
0P %rp) 0> 0
g(oip,1) = (29)

0 o)

A
(e}

then the resultant probability density function is Burr. The speciai case

of the bivariate density is

b.-1 b. -1 b b

= [(p+2) 1 "2 1 2, - (p+2)
f(xl, x2) T (o) blbzrlrle X, (1 + rlx1 + r,X, ) xi>o (i=1,2)

=0 elsewhere. (30)
The bivariate distribution is .

b b b b
‘ =1 - 1,-p _ 2,-p 1 2. -p
F(xl, x2) =1 (1 + rlx1 ) (1 + r,%, ) + (1 + r)X + Y )
x, < 0
l -
=0 elsewhere. (31)

It should be noted at this point that the r, are equal to one in the Burr
distribution as given by Burr (1942). If X, is set equal to Bi(zi + ai).
it is easily seen that the ri's are redundant. In addition, if the bi's
and p are held constant, e.g., the third and fourth standardized central
moments can be set equal to those of the normal distribution by proper
choice of the bi's and p , then the correlation coefficient is a constant.
It was attempted to find a form of a bivariate Burr distribution such

that the correlation coefficient would not be a fixed constant. The form

developed by the author is




B e~

T e re——
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b b b b b, b
= l-p _ 2, -p 1 2 1 2. -p
F(xl.xz)—l (1+x1) (l+x2) +(l+xl + %, +rx1x2) .
x, > 0
l—
N< r< pt+ 1
=0 elsewhere . (32)

The bivariate density is

b2 bl bl—l b, -1 b1 b2 .
f(xl ,xz) =pp + 1)(1 +rx, Y (1 + rx, )blb2 I (1 + X, + X,
b, b b. -1 b,~1 b b b, b
w1 T2, =(p+2) 1 2 1 2 1. 72, -(p+l)
+ :xl X, ) Prblb2xl X, (1 + xl + X, + rxl x2 ) .
X, > 0O
1 -
O<re<p+1
=0 elsewhere . (33)
The marginals are of the form given by Burr (1942). The conditional
distribution of xi given xj i#3 is
b, b, _
1+ x,9 1+ rx,l b, P
F(x.[x.) =1~ r|—d 1+ —— ] x*
il7y b b, i
1 +rxjJ 1+ x, J
b,
/ r -1 1+ rx.J bi (p+1)
* b, L+ b, X L °
1+ rx:] 1+ xjJ
=0 elsewhere . (34)
The conditional density of X, given xj is
b b,
N - +
b, [ 1+ xx] b, -1 1+ rx.” \ by (p+2)
f(xilxj) = (p+1) (1+rx, ™) ol RIE 1+ —-——-l—b_ Xy
1+ x.] 1+ x 7
J J
b,
bi-l 1+ rx,’ bi (p+1)
- rbixi 1+ b, X, . x, >0
1+ ::.:J
]
=0 elsewhere. (35)




The correlation coefficient is

N

O A N R A )

where 2F1(u,8;y,z) is Gauss' hypergeometric function. If r = 1 , then

o} =0 .,
*1%

A bivariate Burrit analysis was run on the seven sets of data using
the bivariate Burr distributinn described above. The analytic model for

the bivariate Burrit analysis was

b, b,
P(z) , 2y » Q=1 -1+ [B,(zy + 201 7 + [By(z, + a))]

b b

1 2)-p - w

+ r[Bl(zl + al)] [B2(z2 + az)] . a; $z5 ¢
'32 S 22 < ®
=0 elsewhere . (37)

A resume of the results is given in Table 3. The rows corresponding to

eight parameters to be estimated congtitute the general case of the Burrit




Data No. of No. cf 1 I P
Set Parameters | N |Significant| SSE |d.f.| SSR |d.f.| R
No. |To be Estimated Chi~-squares | ]
8 2 41.646] 10 | 67964 | 7 |.99939
1 7 18 5 64.694| 11 [ 45745 | 6 |.99859
5 5 70.017' 13 | 70566 ' 4 |.99901
4 5 92.619| 14 | 34582 | 3 {.99733
8 3 23.0271 2 573.70! 7 96146
) 7 10 4 38.279| 3 (544,20 6 {.93380
5 3 26.296| 5 577.20’ 4 |.95643
4 5 46.538 6 |559.09' 3 |.92316
|
1 1
8 0 13.227) 16 4262.0; 7 | ,99690
3 7 04 z 29.737' 17 |1178.8' 6 |.97539
5 2 32.579| 19 | 8668.4] 4 |.99696
4 10 114.17) 20 |1309.0 3 |.91978
8 2 27.125] 9 [1655,7] 7 |.o8388
4 7 17 3 32,782, 10 1683.0) 6 |.98089
5 2 27.130' 12 |1673.8' 4 |.98450
4 3 34.593| 13 {1483.8 3 |.97722
8 2 29.221I 4 1081.9, 7 |.97370
5 7 12 2 31.901] 5 |1508.3] 6 |.97929
5 2 29.379; 7 |862.11 4 |.96705
4 3 36.603! 8 | 905.50 3 .96115
1
[ |
8 1 9.660, 7 | 67305 , 7 }.99986
. 7 15 2 13.648' 8 {13398 ' 6 |,929R98
5 0 12.047| 10 {23681 | 4 |.99949
4 1 23.480| 11 [6862.7 3 |.99659
8 2 38,293 32 |217.30] 7 |.85018
; 7 40 3 38.765, 33 219.84 6 |.85020
5 2 38.338' 35 {218.53' 4 |.85075
4 2 38.766| 36 |219.06] 3 |.84964

TABLE 3
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analysis; thz rows corresponding to seven parameters to be estimated
correspond to the special case with r = 0 which reduces to a Burrit analysis
using the bivariate Burr distribution developed by Takahasi (1965). The
rows corresponding to five and four parameters to be estimated have aa =0,
a, = 3 (the third and fourth standardized central moments), which are the
same as the normal distributions' a, and Gy The first of these is a
special case of the general Burrit analysis and the second, a special case
of the Burrit analysis using the Takahasi bivariate Burr distribution.

As was the case for both the bivariate normit and the bivariate logit,
the regression was found to be significant for each of the seven data sets
for all of the bivariate Burrit analyses (four on each data set). The
chi~square test was insignificant, indicating no significant departure
from regression for data set three with the yeneral Burrit analysis, for
data set six for all but the analysis with four parameters to be estimated,
and for data set seven for all four of the analyses.

The SSE from the general case of the bivariate Burrit analysis was
significantly smaller than that from the bivariate normit analysis only
with the synergistic data (data set one). In no other case is there any
indication that the bivariate Burrit model is better than the bivariate
normit model in the actual fitting of these data to a model.

Each SSE from the bivariate Burrit analyses utilizing the bivariate
Burr developed in this paper is significantly smaller than the corresponding
SSE from the analyses utilizing the Takahasi bivariate Burr distribution
in all but three cases: both cases with data set seven, and the first case
with data set five (the case corresponding to the two analyses with eight

and seven parameters to be estimated). On the basis of these analyses it

would seem that the bivariate Burr developed in this paper would be, in
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general, more useful in application than the form developed by Takahasi.
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synergistic data, as characterized by a, and Ay s do not lie in the same
Pearson curve area (see figure 2). The marginals for data set three also
digplay this characteristic but not to as high a degree. The marginals
for data sets four through seven are all clustered around the normal dis-
tribution. The fact that the assumption that the marginals are Burr dis-
tribution does allow given marginal to have curve shape characteristics
different from that of the other marginal suc¢gests that the bivariate
Burrit analysis may be well adapted for the analysis of data where the
marginal distributions do not belong to the same family, e.g. the family
of normal distributions.

In summary, the bivariate analyses utilizing the general form indicated
by equation (16) seem to do quite well with a diversity of mixtures of
stimulants as is evidenced by the scven sets of data which have been ana-
lyzed in this paper. The bivariate normit model and the bivariate Burrit
model (general case, i.e., the case with eigut parameters to be estimated)
seem to be best suited for these types of analyses. The bivariate normit
model would have to be recommended if the number of parameters to be esti-

mated is of concern, but otherwise the bivariate Burrit model could well

be the best model for these types of analyses.

e
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Figure 2. Expanded portion of the coverage Bl ,» & space.
The x's mark six of the sample population points (Bl : 8),

from the data sets analyzed in this paper. Ni(N=1, 2, 3;

th

i=a, b) refers to the i~ marginal of the Nth data set.




APPENDIX I

Data of Kagy and Richardson (1936): The combined action of 2-4
dinitro-6~cyclohexylphenol and petroleum oil sprayed in emulsions against

eggs of a plant bug (Lygaeus Kalmii stal). Th data as described by Kagy

and Richardson, the translated data, and the analyses on this set of data

(data set one) are in this appendix.

31

Il




32

DATA AS DESCRIBED IN TEXT TRANSIATED DATA
CONCENTRATION OF
‘ﬁ Ny
Phenol Mixture Number Nat
in 0il in of Kill X(1) X(2) Py
Mixture % Spray % Eggs %
0 1 240 6.5 0 .01 .0667
(o] 2 479 40.1 0 .02 . 4008
0 3 479 58.7 0] .03 . 5866
0.1 1 240 9.9 .00001 .00999 .1000
0.1 2 479 59.7 .00002 .01998 .5971
0.1 3 479 72.3 .00003 .02997 . 7223
0.5 1 288 30.1 .00005 .00995 .3021
0.5 2 479 73.7 .0001 .0199 . 7370
0.5 3 479 90.4 .00015 .02985 .9040
1.0 1 288 58.6 . 0001 .0099 .5868
1.0 2 384 94.0 .0002 .0198 . 9401
1.0 3 288 97.22 .0003 .0297 .9722
2.0 1 288 81.2 .0002 .0098 .8125
2.0 2 384 97.13 .0004 .0196 .9714
2,0 3 288 99.65 . 0006 .0294 . 9965
3.0 1 288 86.8 .0003 . 0097 .8681
3.0 2 384 99.48 .0006 .0194 .9948
5.0 1 240 96.66 .0005 .0095 .9667

Here (Ni(ith Net kill %)/100) was rounded off to the nearest integer --
wh:.... should be X the number that responded to the ith mixture of stim-

ulants, and then p, was computed as ri/Ni.
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BIVARIATE NORMIT ANALYSIS

Parameter Estimates Chi-square Analysis Table
31 = 8.640 source a.f.
. Bl = 0.935 Due to Model SSR 4 66041
; = 5.583 Departure from Model SSE 13 67.029
“2 TOTAL ssT | 17 | 66107
82 = 1.489
6 = -0.379 Coefficient of Determination R = .99899
Residual Analysis
P Pi Residual | Chi-square
. 0667 .1016 -.0349 3.201
.4008 .4049 -.0041 0.033
.5866 .6417 -.0551 6.317 c
.1000 .1180 -.0180 0.750
.5971 .4637 .1334 34.266
.7223 .7231 -.0008 0.002
.3021 . 3596 -.0575 4,139
.7370 .7675 -.0305 2.490
’ .9040 | .9277 | -.0237 4.024
.5868 .5859 ~.0009 0.001
.9401 .8986 .0415 7.266
.9722 .9768 -.0046 0.274
.8125 .7986 -.0139 0.346
.9714 .9691 .0023 0.069
.9965 .9950 .0015 0.137
.868l1 .8865 -.0184 0.973
.9948 .9870 .0078 1.809
. 9667 .9536 .0131 0.931
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BIVARIATE LOGIT ANALYSIS

Parameter Estimates Chi-square Analysis Table
30 = -0,938 source d.f.
31 = 9,220 Due to Model SSR 4 48773
A = -1.690 Departure from Model SSE 13 76.402
1 TOTAL SST 17 48849
a2 = 3,762
éz = =2,413 Cecefficient of Determination R2 = ,99844

Residual Analysis

P, Pi Residual | Chi-square
.0667 .1155 -.0488 5.597
.4008 ,4103 ~.0095 0.177
.5866 .6492 ~.0626 8,246
.1000 .1352 -.0352 2.540
.5971 .4601 .1370 36,200
.7223 .7120 .0103 0.247
.3021 .3438 -.0417 2.220
.7370 . 7627 -.0257 1.749
.9040 .9303 -.0263 5.117
.5868 .5837 .0031 0.011
.9401 .9013 .0388 6.503
29722 .9774 -.0052 0,348
.8125 . 8087 .0038 0.027
.9714 .9658 .0056 0.365
.9965 .9929 .0036 0.520
.8681 .8917 -.0236 1.654
.9948 .9821 .0127 3.527

. 9667 .9504 .0163 1.354
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BIVARIATE BURRIT ANALYSES

1: General Case - Eight Parameters to De kstimated

Parameter Estimates Chi-square Analysis Table
r = 3.556 source a.f.
by = 9.643 Due to Model SSR 7 | 67964
£ = 1.773 Departure from Model SSE 10 41 .646
22 TOTAL SST 17 68006
p = 4.813
a, =18.073
B, = 0.094 Coefficient of Determination R° = .99939
?2 = 4,877
B2 = 0.318
Residual Analysis
e
Py Pi Residual Chi-square
} 0667 .0602 . 0065 0.181
: .4008 | .4273 | -.0265 1.377
5866 .6289 -.0423 3.676
.1000 .1018 -.0018 0.008
5971 .5054 . 0917 16.107
7223 .7202 .0021 0.010
+3021 .3471 -.0450 2.575
7370 7743 -.0373 3.821
.9040 .9211 -,0171 1.935
.5868 .5627 .0241 0.682
.9401 .9010 .0390 6.580
.9722 .9755 -.0033 0.130
.8125 .7823 .0302 1.540
.9714 .9711 .0003 0.014
. 9965 .8950 ,0015 0.137
.8681 .8781 -.0100 0.271
.9948 .9883 . 0066 1.420
,9667 .9516 . 0151 1.194
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table
Bl = 8,008 source d.f.
1?.2 = 1.799 Due to model SSR 6 45745
T 6.239 Departure from Model SSE 11 64,694
p = % TOTAL ssT | 17 | 45810
a, = 16.156
s
B1 = 0.113 2
- y Coefficient of Determination R™ = ,99859
a2 = 4.869
B2 = 0.291

Residual Analysis

Py Pi Residual | Chi-square
.0667 .0592 . 0075 0,245
.4008 .4480 -.0472 4.318
.5866 .6599 -.0733 11.463
.1000 .0921 .0079 0.181
.5971 .5001 .0970 18.015
.7223 . 7115 .0108 0.272
.3021 .3552 -,0531 3.544
.7370 . 7466 -.0096 0.231
.9040 .8874 . 0166 1.319
.5868 .5958 ~,0090 0.097
.9401 .8844 . 0557 0.001
.9722 .9581 .0141 1.420
.8125 .8261 -.0136 0.370
.9714 .9670 .0044 0.230
.9965 . 9904 .0061 1.111
.8681 .9151 ~.0469 8.167
.9948 .9875 .0073 1.656
. 9667 .9733 -.0066 0.403
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= 3 (Third and Fourth Standardized Central Moments)
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b, = 4.874 ; p = 6.158 ; Five Parameters to be Estimated

2

Parameter Estimates

N> W W N
NN

w>

Chi-square Analysis Table

4,383 source 4.f.
13.485 Due *o Model SSR 4 70566
0.153 Departure from Model  SSE 13 70.017
TOTAL SS8T 17 70636
6.426
0.242 Coefficient of Determination R2 = .99901
Residual Analysis
P, Pi Regidual | Chi-square
.0667 .1057 -.0390 3.861
.4008 .4058 -.0050 0.049
. 5866 .6443 -.0577 6.967
+1000 1221 -.0221 1.090
.5971 .4603 .1358 36.090
7223 .7168 . 0056 0.073
.3021 .3594 -.0573 4.107
. 7370 .7592 -.0222 1.296
. 9040 ,9271 -.0231 3,794
.5368 .5829 .0039 1.873
.9401 .8964 . 0437 7.906
.9722 .9782 -.0060 0,483
.8125 .7985 .0140 0.353
.9714 .9691 .0023 0.068
. 9965 .9954 .0011 0.073
. 8681 .8876 -.0195 1.100
.9948 . 9869 .0079 1.847
. 9667 .9543 .0124 0.843
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4: Takahasi Burr = r = 0 ; u3 =0 ; u4 = 3 (Third and Fourth

Standardized Central Moments); b, = b2 = 4,874 ;

1

P = 6,158 ; Four Parameters to be Estimated

Parameter Estimates Chi-gguare Analysis Table
a, = 13.460 source d.f.
Bl = 0.160 Due to Model SSR 3 34582
A = 6.265 Departure from Model SSE 14 92.619
22 ¥ TOTAL SST 17 34674
B, = 0.259
2 1
Coefficient of Determination R2 = ,99733 }

Residual Analysis

P Pi Residual Chi-square
.0667 | .0957 -.0290 2.333
.4008 | .4125 -.0117 0.270
.5866 | .6674 -.0808 14.102
X .1000 | .1140 -.0140 0.463
.5971 | .4596 .1375 36.464
.7223 | .7144 .0079 0.147
. .3021 | .3799 -.0778 7.395
.7370 | .7378 -.0008 14,954
F .9040 | .8911 .0129 0.822
? .5868 | .6188 -.0319 1.246
% .9401 | .8789 L0612 13.499
: .9722 | .9564 .0158 1.723
? .8125 | .8321 -.0196 0.796
E .9714 | .9611 .0103 1.086
; .9965 | .9877 .0088 1.844
, . .6681 | .9128 -.0446 7.208
: .9948 | .9830 .0118 3.208
| ) L9667 | .9680 .0013 0.013




APPENDIX II

Data of Plackett and Hewlett (1952): The toxity to Tribolium
castaneum of D.D.T., methoxychlor (MOC), and combinations of the two
applied in shell 0il P31 as films on filter paper, six-day exposures.
The data as described by Plackett and Hewlett, the translated data, and

tho analyses on this set of data (data set two) are in thisg appendix.
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DATA AS DESCRIBED BY PLACKETT AND HEWLETT

—

D.D.T. MOC Nu:ger Observed
Percent Percent of Mortality
w/v w/v Beetles Percent

0.0 0.4 193 7.5

. 0.8 148 29.7

. 1.6 199 77.9

. 0.0 200 14.5

. 0.4 150 26.0

. 0.8 151 63.6

. 0 149 43.6

. 0.4 148 66.2

. 0.8 150 78.7

0.8 .0 199 70.9

40
TRANSLATED DATA

X(1)  x(2) Py

0.0 0.004 .0754
0.0 0.008 .2973
0.0 0.016 | .7789
0.002 | 0.0 .1450
0.002 | 0.004 | .2600
0.002 0.008 .6358
0.004 0.0 .4362
0.004 | 0.004 | .6622
0.004 0.008 .7867
0.008 0.0 .7085
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Chi-square Analysis Table
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5,787 source da.f.
1.071 Due to Model SSR 4 598.86
6.925 Departure from Model SSE 5 21.775
TOTAL SST 9 620.63
1.503
~-C.9999 Coefficient of Determination R2 = ,96491
Residual Analysis
P, Pi ' Residual Chi=-square
.0754 .0844 -.0090 0.210
2973 . 3693 -.0720 3.292
.7789 . 7606 .0183 0.365
.1450 .1920 . 0470 2.848
+2600 . 2764 -.0164 0.203
.6358 .5613 .0745 3.405
.4362 .4491 -.0129 0.100
.6622 .5335 .1287 9.845
. 7867 .8184 -.0317 1.013
. 7085 . 7306 -.0221 0.494




Parameter Estimates
= =1,000
5.448
-1.776
4.645
-2.559
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BIVARIATE LOGIT ANALYSIS

Chi-Square Analysis Table
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r
source a.f.
Due to Model SSR 4 574.90
Departure from Model SSE 5 29,262
TOTAL SST 9 604.16
Coefficient of Determination R2 = ,95157

Residual Analysis

.0754
.2973
. 7789
.1450
.2600
.6358
.4362
.6622
. 7867
.7085

Pi Residual | Chi-square
. 0958 -.0204 0.960
. 3846 -.0873 4.760
.7865 -.0076 0.068
. 2041 -.0591 4,297
.2944 -.0344 0.856
. 5486 .0872 4,638
.4675 -.0313 0.586
L5401 .1221 8.811
7312 .0555 2.351
. 7504 -.0419 1.864
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BIVARIATE BURRIT ANALYSES

1l: General Case - Eight Parameters to be Estimated

Parameter Estimates Chi-sgquare Analysis Table
; = 5.271 source a.f.
51 = 2,351 Due to Model SSR 7 | 573.70
b = 6.755 Departure from Model SSE 2 23.027
T2 T TOTAL S5T 9 596.73
p = 4.271 .
al = 7.252
él = 0,270 Coefficient of Determination R2 = ,96141
?2 = 8.206
B2 = 0.216

Residual Analysis

Py P, Residual | Chi-square
.0754 .1009 -.0255 1.430
.2973 .3814 -.0841 4.440
. 7789 . 7764 .0025 0.007
.1450 .1889 -.0439 2.513
. 2600 .2862 -.0262 0.504
.6358 .5423 .0935 5.321
.4362 .4835 -.0473 1.332
.6622 .5643 .0979 5,768
. 7867 . 7559 .0308 0.770
.7085 .7387 -.0302 0.943




2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table H
' 51 = 0.961 source d.f. %
82 = 5,064 Due to Model SSR 6 | 544.20 ‘
c 3.265 Departure from Model SSE 3 38,249 ‘
P : TOTAL SST 9 582, 45 !
a. = 6,399
1
?1 = 0,298 ) ;
a2 = 7,263 Coefficient of Determination R™ = .93433 :
52 = 0.290

Residual Analysis

2, Pi Residual Chi~square
) .0754 | ,0987 -.0233 1,217 j
02973 | .4096 -.1123 7.723 '
.7789 | .7928 -.0139 0.234
. .1450 | .1774 -.0324 1.440
.2600 | .2542 .0058 0.026
.6358 | .5004 .1354 11.071 :
.4362 | .5490 ~.1128 7.662 :
.6622 | .5844 .0778 3.685 ;
.7867 | .7037 . 0830 4.953 ;

.7085 . 7240 .0155 0.239
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[N}

a. =0 ; a, = 3 (Third and Fourth Standardized Central Moments)

3

bl = b2 = 4,874 ; p = 6,158 ; Five Parameters to be Estimated
Parameter Estimates Chi-square Analysis Table

; = 7.158 source d.f.

5.1 = 9,108 Due to Model SSR 4 | s577.20

B = 0.176 Departure from Model SSE 5 26.296

1 ‘ TOTAL SST 9 603,50

a, = 7.272

a2 2

32 = 0,245 Coefficient of Determination R = ,95643

Residual Analysis

Py Pi Rasidual | Chi-square
.0754 .0946 -.0192 0.854
.2973 . 3869 ~.0896 5.005
. 7789 . 7805 -.0016 0.003
.1450 .2018 ~.0568 4.002
. 2600 . 2928 ~,0328 0.780
.6358 .5586 .0772 3,653
.4362 .4628 -.0266 0.424
.6622 .5410 .1212 8,757
.7867 . 7490 .0377 1.133
.7085 .7484 ~.0399 1.685
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4: Takahasi Burr - r = 0 n3 =0 ; a4 = 3 {Third and Fourth
Standardized Central Moments):; bl = b2 = 4,874 ;
p = 6.158 ; Four Parameters to be Estimated
DParameter Estimates Chi-square Analysis Table
31 = 9,196 source d. £,
fal = 0.174 Due to Model SSR 3 | 559.09
A = 7.270 Departure from Model SSE 6 46,537
22 o TOTAL 8ST 9 605.63
B, = 0.248
2 2
Coefficient of Determination R” = ,92316

Residual Analysis

.0754
.2973
. 7789
. 1450
. 2600
.6358
.4362
6622
. 7867
.7085

Pi Residual Chi-square
.0990 -.0236 1.239
. 4013 -.1040 6.666
. 7952 -.0163 0.324
. 2165 -.0715 6.027
.2912 -.0312 0.707
.5219 +1139 7.855
.4798 -.0436 1.135
.5264 .1358 10.953
.6727 .1140 8.857
. 7590 -.0505 2,775

]
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APPENDIX III

Data of Hewlett and Plackett (1950): A study of six day toxicity to

heetles (Tribolium castaneum) of direct sprays of Pyrethins, D.D.T., and

the two together in Shell 0il P31. The data as reproduced by Zeigler and
Moore (1966), and the analyses on chis set of data (data set three) are in

this appendix.
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DATA AS REPRODUCED BY ZEIGLER AND MOORE
DEPOSIT

. Insecticide (mg./10 sq. cm.) X{1) X(2) Nj Pi

1.2% w/v 2.52 .03024 0 48 | .0625

Pyrethins 3.30 .03960 0 48 | .0625

4.25 .05100 0 50 | .1800

5.33 .06 396 0 50 | .3200

7.15 .08580 0 50 | .4000

9.53 .11436 0 50 | .6000

12.28 .14739 0 49 | .7551

15.58 .18696 0 50 | .7000

2.0% w/v 2.45 0 .0490 | 49 | .1633

D.D.T. 3.18 0 .0636 | 50 | .1600

4.25 0 .0850 | 50 | .3200

5.48 0 1096 | 50 | .4200

7.24 0 .1448 | 50 | .5000

9.54 0 1908 | 50 | .5600

12,36 0 2472 | 50 | .7000

15.54 0 .3108 | 50 | .7400

. 1.2% w/v 2.74 .02964 | .0494 | 50 | .2800

Pyrethins 3,20 .03840 | .0640 | 49 | .3673

plus 4.10 .04920 | .0820 | 50 | .4400
[ 2.0% wyv 5.34 .06408 | .1068 | 50 | .7200 ;
{ D.D.T. 7.11 .08532 | .1422 | 50 | .8400 i

E 9.60 .11520 | .1920 | 50 | .9000

{ 12.45 .14940 | .2490 | 50 |1.0000

} 15.65 .18780 | .3130 | 50 |1.0000
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BIVARIATE NORMIT ANALYSIS

Chi-gsquare Analysis Table

2.827 source d. .
1.231 Due to Model SSR 4 11176
1.698 Departure from Model  SSE 19 11.805
TOTAL SS8T 23 11188
0.882
-0.686 Coefficierl of Determination Rz = ,99894
Resj-aual Analysis
P, Pi Residual | Chi-square
.0625 .0696 -.0071 0.037
.0625 .1257 ~.0632 1.744
.1800 .2017 -.0217 0.146
.3200 .2888 ,0312 0.237
.4000 .4225 -.0225 0.104
6000 .5629 .0371 0.280
. 7551 .6809 .0742 1.241
. 7000 7773 ~-.0773 1,727
.1633 .1677 -.0044 0.007
.1600 .2318 ~-.0718 1.447
. 3200 .3166 .0034 0.003
.4200 +4002 .0198 0.082
.5000 .4972 .0028 0.002
.5600 5934 -.0334 0.231
. 7000 .6790 .0210 0.101
. 7400 .7476 ~-.0076 0.015
.2800 .2358 . 0442 0.542
.3673 . 3506 .0167 0.060
.4400 .4896 -.0496 0.492
. 7200 .6559 .0642 0.912
. 8400 .8215 .0185 0.117
» 9000 .9364 -.0364 1,109
1.0000 .9816 .0184 0.939
1.0000 .9954 . 0046 0.231
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BIVARIATE LOGIT ANALYSIS

Chi-sguarc Analysis Table
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-1.000 source a.f.
2,338 Due to Model SSR 4 3165.4
-2.090 Departure from Model  SSE 19 15.603
TOTAL S5T 23 3181.0
1.960
-1.520 Coefficient of Determination R2 = ,99509
Rccidual Analysis
Py Pi Residual | Chi-square
. 0625 .0813 -.0188 0.227
.0625 .1346 -.0720 2.140
.1800 .2087 -.0287 0.250
. 3200 .2975 .0225 0.121
.4000 .4390 -.0390 0.309
. 6000 .5879 .0121 0.030
. 7551 .7079 .0472 0.528
. 7000 . 7994 -.0994 3.082
.1633 .1674 -.0041 0.006
.1600 .2301 -.0701 1,385
. 3200 <3171 .0029 0.002
. 4200 .4059 .0141 0.041
,5000 .5105 -.0105 0.022
.5600 .6133 -,0533 0,600
. 7000 .7016 -.001e6 0.001
. 7400 . 7690 -.0290 0.237
. 2800 . 2442 .0358 0.347
. 3673 . 3493 .0180 0.070
. 4400 .4754 ~-.0354 0.252
. 7200 . 6266 .0934 1.865
. 8400 .7816 .0584 0.999
. 9000 . 9002 -.0002 0.000
1.0000 .9578 .0422 2.201
1.0000 . 9826 .0174 0.888
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BIVARIATE BURRIT ANALYSES
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Parameter Estimates

r = 6.323 source a.f.
Bl = 3.933 Due to Model SSR 7 4258.4
b = 2.041 Departure from Model SSEJ 16 13,227
A2 TOTAL sSsT 23 4271,6
p = 5.323
a; = 4.863
?1 = 0.239 Coefficient of Determination RZ = ,99690
?2 = 4.760
B2 = 0.183 ' .
Residual Analysis
rr Py Pi Residual l Chi-square
. 0625 .0622 .0003 0.000
L0625 .1216 -.0591 1.569
.1800 .2025 -.0225 0.156
. 3200 .2947 .0253 0.154
.4000 .4346 -.0346 0.244
. 6000 .5784 .0216 0.095
. 7551 .6963 .0588 0.802
. 7000 .7898 -.0898 2.429
.1633 .1666 -.0033 0.004
. 1600 .2384 -.0784 1.691
. 3200 .3208 -.0098 0.022
.4200 .4161 .0039 0.003
.5000 .5120 -.0120 0.029
.5600 .6034 -.0434 0.393
. 7000 ,6820 . 0180 0.075
. 7400 .7438 -.0038 0.037
. 2800 .2261 . 0540 0.832
.3673 . 3475 .0l98 0.085
. 4400 .4875 -.0475 0.451
. 7200 +6463 .0737 1.187
. 8400 . 8007 . 0393 0.484
. 9000 L9135 -.0135 0.115%
1.0000 . 9660 . 0340 1,759
1.0000 .9873 .0127 0.644
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2: Takahasi Burr - r = 0 ; sSeven Parameters to be Estimated
Parometer Estimates Chi-square Analysis Table
~ . ! T T 1
D) = 3.841 source g;gL‘
2-.2 = 2.939 i Due to Model SSR 6 | 1178.8
A Leparture trom Model SSE 17 29.737 |
p = 6.740 ’ TOTAL ssT | 23 l 1208.5 |
?1 = 4,575 5
Bl = 0.243 Coefficient of Determination R™ = ,97539
a, = 4.701
52 = 0.176
Residual Analysis
P, Pi Residual Chi-square
. 0625 .0540 .0085 0.067
.0625 .1148 -.0523 1.292
.1800 .2011 -.0211 0.138
. 3200 .3017 .0184 0.080
. 4000 ,4552 =-.0552 0.614
.6000 .6110 -.0109 0.025
. 7551 .7346 .0205 0.106
. 7000 .8282 -.1282 5,772
) .1633 .1707 -.0074 0.01°
.1600 .2469 -.08B69% 2.032
.3200 . 3444 ~.0244 0.132
' .4200 | .4381 ~.0161 0.053
.5000 .5373 -.0373 0.280
.5600 .6326 -.0725 1.132
. 7000 .7132 -.0132 0.042
. 7400 .7752 -.0352 0.355
.2800 .2137 .Gu63 1.310
. 3673 . 3256 . 0417 0,387
.4400 | .4503 | =-.0103 0.022 :
. 7200 .5888 .1312 3.554
. 8400 .7267 .1134 3.234
. 9000 . 8406 .0594 1.318
1.0000 .9088 .0912 5.019
1.0000 .9478 .0522 2.754
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7.129
5.499
0.200
5.056
0.207

I.

= 6.158 ; Five Parameters to be Estimated

Chi-square Analysis Table
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source da.f.
Due to Model €3 4 8668.4
Departure from Model SSE 19 32.579
TOTAL SST 23 8701.0
Coefficient of Determination R2 = ,99626

Residual Analysis

Py

.0625
.0625
. 1800
.3200
<4000
.6000
. 7551,
+7000
.1633
.1600
.3200
.4200
+ 5000
+5600
. 7000
. 7400
. 2800
.3673
. 4400
.7200
.8400
. 9000
1.0000
1.0000

Pi Residual Chi-square
.0679 | ~-.0054 0.022
.1215 | -.0590 1.566
.1937 | -.0137 0.060
2771 .0429 0.460
.4076 | -.007% 0.012
.5483 .0517 0.540
.6695 .0856 1.624
.7699 | -.0699 1.378
.0884 .0749 3,408
.1525 .0075 0.022
.2532 .0668 1.178
.3654 .0546 0.644
.5046 | -.0046 0.004
.6438 | -.0838 1.530
.7602 | ~-.0602 0.995
.8431 | ~-.1031 4.014
.1542 .1258 6.062
.2656 .1018 2.601
.4094 .0306 0.194
.5903 .1297 3.477
.7803 .0597 1.041
9197 | ~.0197 0.263
.9767 .0233 1.193
.9942 .0058 0.291
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4,932
0.246
4,585
0.237

; Fou

1 2

r Parameters to be Estimated

.
’

Chi-square Analysis Table

t. = 3 (Third and Fourth

source da.f.

Due to Model SSR 3 1309.0

Departure from Model SSE 20 114.16

TOTAL SST 23 1423.2

Coefficient of Deternination R2 = ,91978

Residual Analysis
pi Pi Residual Chi-square

.0625 .0377 .0248 0.813
.0625 .0849 -.0224 0.309
.1800 .1588 .0212 0.168
. 3200 +2533 .0667 1.176
. 4000 .4114 -.0114 0.027
.6000 .5849 .0151 0.047
. 7551 . 7280 .0271 0.182
.7000 .8357 -.1357 6,706
.1633 .0482 .1151 14.133
.1600 .0989 .0611 2,094
.3200 .1906 .1294 5.423
. 4200 . 3043 1157 3.162
.5000 .4569 .0431 0.374
. 5600 .6174 ~-.0573 0.696
.7000 .7533 -.0533 0.764
. 7400 . 8480 -.1080 4.521
. 2800 .0827 .1973 25,672
.3673 .1693 .1978 13.626
.4400 .2940 .1460 5.132
.7200 .4632 .2568 13.259
. 8400 .6569 .1831 7.440
. 9000 .8241 .0759 1,987
1.0000 .9172 .0828 4,513
1.0000 .9625 .0375 1.947




APPENDIX IV

Dala ol 5. T. Martin (1242): Thc toxicitics tec Macrosighoniella

sanborni of rotenone, a deguelin concentrate, and of a mixture. Tests

of 17 November 1938. Fivefold replication. Results one day after spraying.
Medium 0.5% saponin, containing 5% alcohol. Tattersfield apparatus. The
data as described by Martin, the translated data, and the analyses of this

set of data (data set four) are in this appendix.
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DATA AS DESCRIBED BY MARTIN TRANGLATED DATA
CONCENTRATIONS (mg./%&.)
Ny
X(2) ’Number of
X(1) Deguelin Insects Percent
Rotenone Concentrate Used Mortality Py
10.2 0.0 50 88.0 . 8800
7.7 0.0 49 85.7 .B8571
5.1 0.0 46 52.2 .5217
3.8 0.0 48 33.3 .3333
2.6 0.0 50 _ 12,0 .1200
0.0 50.5 48 100.0 1.0000
0.0 40.4 50 94.0 .9400
0.0 30.3 49 95.¢9 .9592
0.0 20.2 48 70.8 ,7083
0.0 10.1 48 37.5 .3750
0.0 5.1 49 32.6 .3265
5.1 20.3 50 96.0 .9600
4.0 16.3 46 93,5 .9348
3.0 12.2 48 79.2 . 7917
2.0 8.1 46 58.7 .5870
1.0 4.1 46 47.8 .4783
0.5 2.0 47 14.9 .1489
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BIVARIATE NORMIT ANALYSIS

Chi-sqguare Analysis Table
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-2.775 b source d.f.
1.762 Due to Model SSR 4 1656.0
-1.645 Departure from Model  SSE 12 27.146
TOTAL SST 16 1683.1
0.823
-0.530 Coefficient of Determination R2 = ,98387
Residual Analysis
Py Pi ATiResidual Chi-squa;;—W
. 8800 .9059 -.0259 0.392
. 8571 . 7940 . 0631 1.193
.5217 .5377 -.0160 0.047
.3333 . 3359 -.0026 0.001
.1200 .1374 -.0174 0.128
1.0000 . 9432 .0568 2.823
. 9400 . 9190 .0210 0.297
.9592 .8773 .0819 3.053
.7083 . 7962 -.0879 2.284
. 3750 .6017 -,2267 10.297
. 3265 . 3805 -.0540 0.605
. 9600 .9649 -.004%9 0.036
.9348 .9084 .0264 0.386
. 7917 .7893 .0024 0.702
.5870 .5826 . 0044 0.004
.A783 . 3170 .1613 5.528
. 1489 | .1506 -.0017 0.001




58

BIVARIATE LOGIT ANALYSIS

Paramater Fatimataaq Chi -square Analysis Table .
X ao = -1,000 source d.f.
i ——————— ——
' 51 = -1.568 Due to Model 55R 4 1365.2
i =T, Departure from Model  SSE 12 29,616
i By = -2.984 TOTAL S3T | 16 | 1394.9
i a, = -2.029
: .2 2
: B2 = =1.450 Coefficient of Determination R = ,97877

] Residual Analysis

pi Pi Residval Chi-square
.8800 | .9034 -.0234 0.315
.8571 | .8026 . 0545 0.918
.5217 | .5453 -.0236 0.103
.3333 | .3392 -.0006 0.000
L1260 | .1400 ~.0200 0.166 =
1.0060 | .9397 .0603 3.082
.9400 | ,9185 .0215 0.309 ‘
.9592 | .8813 .0779 2.84>
.7083 | .s048 -.0965 2.848
.3750 | .6014 -.2264 16.267
. .3265 | .3590 -.0325 0.225
L9600 | .9505 .0095 0.095
.9348 | .8865 .0484 1.069
L7917 | 7672 . 0245 0.161
.5870 | .5722 .0148 0.041
.4783 | .2985 .1798 7.099
.1489 | .1352 .0137 0.076
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BIVARIATE BURRIT ANALYSES

1: General Case - Eight Parameters to be Estimated

Parameter FEstimates Chi=-gquare Analysis Table
r = 7.109 source d.f.
Bl = 4,891 Due to Model SSR 7 1655.7
b = 4.011 Departure from Model SSE 9 27.125
"2 " TOTAL SST 16 1682.8
p = 6.109
?l = 0.695 R
Bl = 0,286 Coefficient of Determination R™ = .98388
?2 = 2,730
B2 = 0.136

Residual Analysis

Py Pi Residual | Chi-square
. 8800 .9125 -.0325 0.660
. 8571 .8021 .0550 0.934
.5217 .5430 -.0213 0,084
3333 . 3407 -.0074 0.012
.1200 .1434 -.0234 0.222
1.0000 . 9456 .0544 2.763
. 9400 .9214 0187 0.240
.9592 .8786 .0806 2,983
.7083 . 7937 -.0854 2,135
.3750 .5888 -.2138 9.065
. 3265 .3629 -.0364 0.281
. 9600 ;9637 -.0037 0.019
.9348 .9020 .0328 0.559
. 7917 . 7760 .0157 0.068
.5870 .5663 .0207 0.080
.4783 .2997 .1786 6.991
.1489 .1403 .0086 0.029
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

rarameter Esiimdies Chi sguarc Anclysiz Takls ;
b, = 4.048 source d.f.
. b, = 4.676 Due to Model SSR 6 | 1683.0
A Departure from Model  SSE 10 32.782
p = 17880 TOTAL ssT | 16 | 1715.8
. a, = 0.425 _1
B, = 0.226 o _ 2
52 = 2.438 Coefficient of Determination R™ = ,98089
éz = 0.112
Residual Analysis
Py Pi Residual Chi-square
.8800 | .9119 -.0319 0.632
8571 | .7994 .0577 1.019
.5217 | .5436 -.0219 0.089
.3333 | .3454 | -.0l21 0.031 i
.1200 | .1476 -.0276 0.303
1.0000 | .9662 .0338 1.€82
.9400 | .9453 -.0053 0.027
s .9592 | .9053 .0539 1.658
. .7083 | .8202 -.1119 4.075
.3750 | .6047 -.2297 10.592
.3265 | .3655 -.0390 0.322
§ .9600 | .9125 .0475 1.411
| .9348 | .8463 .0885 2,772
L .7917 | .7359 .0558 0.769
f .5870 | .5561 .0309 0.178
i .4783 | .2980 .1803 7.146
' .1489 | .1351 .0138 0.076
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6l

= 3 (Third and Fourth Standardized Central Moments) ;

4.874 ; p = 6.158 ; Five Parameters to be Estimated

Parameter Egtimates

W P W WO N>
N N =

n

[t}

7.158
0.689
0.286
2,702
0.136

Chi~sguare Analysis Table

source d.f.
Due to Model SSR 4 1674.8
Departure from Mndel S3E 12 27.130
TOTAL SS8T 16 1700.9
Coefficient of Determination R2 = ,98405
Residual Analysis
p; Pi Residual Chi-square
.880Q0 .9124 -.0324 0.657
.8571 .8020 .0551 0.937
.5217 .5428 -.0211 0.083
»3333 . 3405 -.0072 0.011
.1200 .1433 ~.0233 0.220
1.0000 .9461 .0539 2.737
.9400 .9220 .0180 0.225
.9592 .8796 0796 2.931
.7083 . 7951 ~.0868 2,222
3750 .5909 -.2159 9.257
.3265 . 3649 -~.0384 0.311
.9600 .9641 -.0041 0.024
.9348 .9029 .0319 0.533
.7917 . 7775 .0142 0.056
5870 .5683 .0187 0.066
.4783 .3014 .1769 6.837
.1489 1412 .0077 0.0213
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4: Takahasi Burr - r = 0 ; 03 =0 ; a4 = 3 (Third and Fourth

Standardized Central Moments); bl = b2 = 4.874 ;

p = 6.158 ; Four Parameters to be Istimated

Parameter Estimates Chi-square Analysis Table
;1 = 0.743 source a.f.
fal = 0.283 Due to Model SSR 3 | 1483.8
A = 2.458 Departure from Model SSE 13 34.593
2 ‘ TOTAL SST 16 1518.4
B2 = 0,145

Coefficient of Determination R2 = ,97722

Residual Analysis

Py Pi Residual | Chi-square
. 8800 .2176 -.0376 0.935
.8571 .8128 .0443 0.631
.5217 .5617 -,0400 0.298
.3333 . 3600 -.0267 0.149
.1200 .1571 -.0371 0.519
1.0000 . 9596 .0404 2.019
.9400 .9391 .0009 0.001
.9592 . 9009 .0583 1.867
.7083 .B202 -.1119 4.074
.3750 .6113 -.2363 11.284
. 3265 . 3706 -.0441 0.408
.9600 .9052 .0548 1.750
.9348 | .8417 .0931 2.991
. 7917 . 7370 .0548 0.742
.5870 .5635 .0235 0.103
.4783 . 3025 .1758 6.734
.1489 .1343 .0147 0.087




APPENDIX V

Data of J. T. Martin (1942): The toxicities to Macrosiphoniella

sanborni of rotenone, f%-elliptone, and of a mixture. Tests of 7 July 1941.

Fivefold replication. Results one day after spraying. Medium 0.5%
saponin, containing 5% alcchol. Tattersfield apparatus. The data as
described by Martin, the translated data, and the analyses of this set

of data (data set five) are in this appendix.
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DATA AS DESCRIBED BY MARTIN

CONCENTRATIONS (mg./%.)
Ny
Number of
X (1) X(2) Insects Percent
. Rotenone k-Elliptone Used Mortality

10.2 0.0 28 100.0
7.65 0.0 40 84.7
5.10 0.0 48 38.4
3.06 0.0 49 8.4
, 0.0 50.5 51 91.9
' 0.0 37.9 49 91.6
0.0 23.3 49 39.6
0.0 15.2 46 6.9
5.1 25.3 50 91.8
3.8 18.9 48 66.0
2.55 12.6 44 32.8
1.5 7.6 493 10.4

TRANSLATED DATA

e

Py

1.0000
.8500
. 3750
.0816
5216
.9184
.3878
.0652
.9200
6667
.3182
.1020

Here [Ni(ith percent mortality)/100] was rounded off to the nearest

th

integer -- which should be . the number that responded to the i

mixture of stimulants, and then pi was computed as ri/Ni.
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65
BIVARIATE NORMIT ANALYSIS
Parameter Estimates Chi-square Analysis Table
:a] = ~4.184 source a.f.
fal = 2,545 Due to Model SSR 4 | 921,36
A = -4.978 Departure from Model SSE 7 28,947
8 = 7% TOTAL ssT | 11 | 950.30
92 = 1.618
5 = -0.743 Coefficient of Determination R2 = ,96954

Regsidual Analysis

P, Pi Residual | Chi-square
1.0000 .9577 .0423 1.236
. 8500 .83% .0104 0.032
.3750 .4846 -.1096 2.306
.0816 .0904 -.0088 0.046
.9216 .9145 .0071 0.032
.9184 .B172 1012 3.359
.3878 .5467 ~.1589 4.993
.0652 .2830 -.2178 10.753
.9200 .9217 -.0017 0.002
6667 .6173 .0492 0.491
. 3182 .2258 .0924 2.149
.1020 .0458 .0562 3.548




Parameter Estimates
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BIVAR.ATE LOGIT ANALYSIS

Chi-square Analysis Table
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-1.000 source a.f.
-1l.611 Due to Model SSR 4 675.39
-3.509 Departure from Model  SSE 7 30.169
TOTAL SST 11 705.56
-3.136
-3.145 Coefficient of Determination R2 = ,95724
Residual Analysis
py Pi Residual Chi-square
1.0000 .9240 .0760 2.303
.8500 . 8159 .0341 0.310
+3750 .5164 -.1414 3.844
.0316 .1510 -.0694 1.841
.9216 .9221 -.0005 0.000
.9184 .8275 .0909 2.836
. 3878 .5095 -.1217 2.904
. 0652 .2133 -.1481 6.010
. 9200 . 8549 .0651 1.707
. 6667 .5743 .0924 l1.678
.3182 .2141 .1041 2.835
.1020 .0441 .0579 3.902

-k R
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BIVARIATE BURRIT ANALYSES

1: General (ace - Ficht DParamatare to ke Ectimated
Farameter Estimates Chi-square Jlnalysis Table
r = 7.345 source d.f.
51 = 6.078 Due tc Model SSR 7 1081.9
b = s5.388 Departure from Model SSE 4 29.221
L2 ' TOTAL SST 11 1111.1
p = 6.345
a, = 0.22¢ 5
él = 0.373 Coefficient of Determination R™ = ,97370
%2 = -0.483
B, = 0.260
Residual Analysis
P; Pi Residual Chi-square ¢
1.0000 | .9691 .0309 0.893
i .8500 | .8526 | -.0025 0.002
; .3750 | .4718 | -.0967 1.803
; .0816 | .0896 | -.0080 0.039
| 9216 | .9361 | -.0145 0.180
g .9184 | .8434 .0750 2.087
: .3878 | .5585 | - 1707 5.794
f .0652 | .2823 | -.2171 10.704
i .9200 | .8784 .0416 0.811
: .6667 | .5871 .0796 1.254
! .3182 | .2258 .0924 2.151 '
% .1020 | .0460 .0560 3.503

i




2:

Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates

Ry > W o O O
NN e (=

[eoR3

9.296
7.€96
77.198
1.655
0.183
0.700
0.142

68

source d.f.
Due to Model SSR 6 1508.3
Departure from Model SSE 5 31.901
TOTAL SST 11 1540.2
Coefficient of Determination R2 = ,97929
Residual Analysis
p; Pi Residual | Chi-square
1.0000 .9804 .0196 0.559
.8500 .8623 ~-.0123 0.051
. 3750 .4921 -.1171 2.631
.0816 .1317 -,0501 1.074
.9216 . 9509 -,.0293 0.935
.9184 .8434 .0751 2.089
. 3878 .5262 ~-.1384 3.767
.0652 .2614 -.1962 9.171
.9200 . 7874 .1326 5.253
.6667 .5364 .1304 3.280
. 3182 .2376 .0806 1,577
.1020 .0602 .0418 1.515




B

Parameter Estimates

x

> o> o>
N N

o0 B3
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Pa, = 3 (Third and Fourth Standardized Central Moments) ;
b2 = 4.874 ; p = 6.153 ; Five Parameters to be Estimated
Chi-square Analysis Table
7.158 source d.f.
-0.085 Due to Model SSR 4 862.11
0.414 Departure from Model SSE 7 29.379
* TOTAL SST 11 891. 49
-0.588
0.260 Coefficient of Determination R2 = .96705
Residual Analysis
P, Pi Residual Chi-square
1.0000 .9598 .0402 1.174
. 8500 .8426 .0074 0.016
. 3750 .4811 -.1061 2.166
.0816 .0925 -.0109 0.069
.9216 .9181 0035 0.00¢%
.9184 .8217 .0697 3.126
.3878 .5500 -.1622 5.205
.0652 .2887 -.2235 11.188
. 9200 . 8762 .0438 0.883
6667 .5942 .0725 1.046
. 3182 .2333 .0849 1.773
.1020 .0504 .0516 2,723




4:

Takahasi Burr = r = 0 ; a, =0 ; a, = 3 (Third and Fourth

3 4

Standardized Central Moments); b, = b, = 4.874 ;

P

1 2

= 6.158 ; Four Parameters to be Estimated

Parameter Estimates

a

> >

>

1
1
2
2

]

Chi-sgquare Analysis Table
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i

905.59
36.603
942.19

o -

~0.080 gource d.f.
0.418 Due to Model SSR 3
-0.488 Departure from Model SSE 8
TOTAL SST 11
3.254
Coefficient of Determination R2 = .
Residual Analysis
pi P, Residual Chi=-square

1.0000 .9659 .0341 0.989

. 8500 .8588 -.0088 0.025

. 3750 .5037 ~-.1287 3.179

.0816 0993 -.0177 0.172

.9216 .9207 .0009 0.001

.9184 . 8294 .0890 2.741

.3878 .5697 -.1819 6.615

. 0652 .3118 -.2466 13.032

«9200 .7923 .1277 4,954

. 6667 .557%5 .1091 2.317

. 3182 . 2484 .0698 1.147

.1020 .0611 .0409 1.430

96115

o
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APPENDIX VI

Data of J. T. Martin (1942): The toxicities to Macrosiphoniella

sanbo:ni of rotenone, L-a-toxicarol, and of a mixture. Tests of
24 September 1941. Fivefold replication. Results one day after spraying.

Medium 0.5% saponin, containing 5% of alecchol. Tattersfield apparatus.

The data as described by Martin, the translated data, and the analyses of

this set of data (data set six) are in this appendix.




DATA AS DESCRIBED BY MARTIN

CONCENTRATIONS (mg./%.)

Ny
Number of
X(1) X(2) Insects Percent
Rotenone 2-a=-Toxicarol Used Mortality
1.06 0.0 51 100.0
0.85 0.0 48 97.9
0.64 0.0 48 93.8
0.42 0.0 48 62.5
0.21 0.0 48 12.5
0.0 9.75 49 100.0
0.0 7.80 48 97.9
0.0 5.85 52 98.1
0.0 3.90 49 87.7
0.0 1.95 48 50.0
0.53 4.88 48 100.0
0.42 3.90 48 100.0
0.32 2.J3 49 89.8
0.21 %.95 50 82.0
0.11 0.98 50 30.0

TRANSLATED

72

DATA

Pj

1.0000
.9792
.9375
.6250
.1250

1.0000
.9792
.9808
.8776
.5000

1.0000

1.0000
. 8980
+8200
. 3000

e

LGt alid
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BIVARIATE NORMIT ANALYSIS
1: Using Relative Change in Weighted Sum of Squares Due

To Error as Part of the Convergence Criteria

Parameter Estimates Chi-square Analysis Table
al = 2,372 souzxce d.f.
fal = 2.212 Due to Model SSR 4 | 30672
i = -0.580 Departure from Model  SSE 10 10,144
2 TOTAL SsT 14 30682
B, = 1.328
p = -0.432 Coefficient of Determination R° = .99967

Unweighted Sum of Squares Due to Error = .03204

Residual Analysis

EL fl Residual Chi-square
1.0000 .9938 .0062 0.318
.9792 9779 .0013 0.004
.9375 .9169 .0206 0.267
.6250 6747 ~,0497 0.541
.1250 . 1401 -.0151 0.090
1.0000 .9928 .0072 0.357
.9792 . 9845 -.0053 0.089
.9808 .9614 .0194 0.528
.8776 .8903 -.0127 0,081
. 5000 .6207 -.1207 2.971
1.0000 + 9985 .0015 0,072
1.0000 .9893 .0107 0,518
. 8980 .9385 -.0405 1.391
. 8200 . 7130 .1070 2.796
. 3060 . 2780 .0220 1,210




ST
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BIVARIATE NORMIT ANALYSIS

2: Using Relative Change in Unweighted Sum of Squares

Due to Error as Part of the Convergence Criteria

Parameter Estimates . Chi-square Analysis Table
31 = 2,279 source d.f.
él = 2,063 Due to Model SSR 4 | .19-10'8
3 = -0.589 Departure from Model SSE 10 .78°1015
2 T TOTAL ssT | 14 | .19-10i8
B, = 1.290
5 = =0.9999 Coefficient of Determination R> = .99592

Unweighted Sum of Squares Due to Error = .03127

Residual Analysis

1 Pi Regidual Chi-square
1.0000 | .9918 .0082 0.422
.9792 | .9740 .0052 0.050
.9375 | .9129 .0246 0.367
.6250 | .6878 | =~.0628 0.882
L1250 | .1736 ~.0496 0.790
1.0000 | .9906 . 0094 0,465
.9792 | .9808 | ~-.0CL6 0.006
.9808 | .9545 .0263 0.828
.8776 | .8784 | =-.0008 0.000
.5000 | .6074 | -.1074 2.321
1.00¢ |1.C000 .0000 0.000
1.0000 |1.0000 .0000 0.000
.8980 |1.0000 -.1020 0.78+1015
.8200 | .7810 .0390 0.445
.3000 | .2806 .0194 0.928




Parameter Estimates

W > N

> >
[ N N e =)
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=1.000

1.053
-4,027
~-0.436
-2.332

BIVARIATE LOGIT ANALYSIS

Chi-square Analysis Table
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source 4.£.

Due to Model SSR 4 20170

Departure from Model  SSE 10 11.975

TOTAL ssT 14 20182

Coefficient of Determination R2 = ,99941

Residual Analysis
Py Pi Residual Chi-sguare

1.0000 .9888 0113 0.580
«9792 .9731 .0061 0.069
.9375 .9201 .0174 0.198
.6250 .6786 -.0536 0.632
.1250 .1146 .0104 0.051
1.0000 .9865 .0135 0.670
.9792 9779 .0014 0.004
. 9808 .9570 .0238 0.717
.8776 . 8962 ~.0186 0.183
.5000 .6317 -.1317 3.579
1.0000 .9979 .0021 0.102
1.0000 . 9869 .0131 0.635
. 8980 .9286 -.0306 0.690
. 8200 .6976 .1225 3.554
. 3000 .2652 .0348 0.311
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BIVARIATE BURRIT ANALYSES

: 1: Generai Case - Biyghi Farameiers Lu be Catliated
Parameter Estimates Chi-sguare Analysis Table j
. r = 8.817 source d.f.
. b, = 5.045 Due to Model SSR 7 | 67305
‘ b = 5.469 Departure from Model SSE 7 9.6604
e 2 7 TOTAL ssT | 14 | 67314
p = 7.826
E- a; = 2.869 ,
B, = 0.339 Coefficient of Determination R" = ,99986
' ?2 = 3.055
82 = 0.184
Residual Analysis
Py P Residuwal | Chi-square
1.0000 .9948 .0052 0.266
.9792 .9797 -.0005 0.0041
.9375 .9144 .0231 0.327
* 6250 .6434 -.0184 0.070
. .1250 .1202 .0049 0.011
' 1.0000 | .9932 .0068 0.335
v .9792 .9851 .0059 0.113
.9808 .9612 019 0.536
.8776 . 8850 -.0074 0.026
.5000 .6025 -.1025 2.107
1.0000 .9994 .0006 0.030
1.0000 .9920 .0080 0.385
.8980 .93558 -.0375 1.140
.8200 .6866 .1334 4,135
. 3000 .2734 .0266 0.179
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Esgtimated

Parameter Estimates

Chi-square Analysis Table

131 4.451 source a.f,
52 5,250 Due to Model 13398
A Departure from Model 13.648
P 7.940 TOTAL 13412
2 2.746
By = 0.346 Coefficient of Determination RZ = .99898
3, 2.909
B, = 0.192
Residual Analysis
p; Pi Residual Chi-square
F 1.0000 | .9932 .0068 0.349
.9792 | .9769 .0023 0.011
.9375 | .9139 .0236 0.339
{ .6250 | .6637 -.0387 0.321
7 1250 | .1385 | -.0135 0.073
1.0000 | .9953 .0047 0.229
.9792 | .9894 -.0102 0.472
.9808 | .9708 .0100 0.183
.8776 | .9067 -.0291 0.492
.5000 | .6402 -.1402 4,095
1.0000 | .9854 .0146 0.711
1.0000 | .9590 .0410 2.051
.8980 | .8865 .0115 0.064
.8200 | .6844 .1356 4,255
.3000 { .2967 .0033 0.003




0 ; 04

b, = 4.874 ;

2

Parameter Egtimates

w> K>

>
NN

w>

5.265
2.907
0.357
3.215
0.179

= 3 (Third and Fourth Standardized Central Moments) ;

p = 6.158 ; Five Parameters to be Estimated

Chi-square Analysis Table

78

source a.f£.

Due to Model SSR 4 23681

Departure from Model SSE 10 12,047

TOTAL SsT 14 23693

Coefficient of Determination R2 = ,99949

Residual Analysis
Py Pi Residual | Chi-square

1.0000 .9943 .0057 0.294
.9792 .9808 -.0016 0.006
.9375 .9267 .0108 0.083
.6250 .697¢4 -.0684 1.056
.1250 .1561 ~.0311 0.353
1.0000 .9826 .0174 0.869
.9792 .9697 .0095 0.148
.9808 .9397 .0411 1.549
.8776 .8637 .0139 0.081
.5000 .6229 -.1229 3.086
1.0000 .9980 .0020 0.095
1.0000 .9868 .0132 0.642
.8980 .9297 -.0317 0.755
.8200 .7131 . 1069 2.792
.3000 .3326 .0326 0.240




4:

Parameter Ectimates

o> m> Q>

o>

1
1
2
2

1

]

)]

2,741
0.357
3.171
0.189

1 Four Parameters to be Estimated

-\ .
Wosineaitend ) g

=k, = %.G7
1 2 '

I

= 3 (Third and Fourth

Chi-square Analysis Table

source d.f.
Due to Model SSR 3 6862.7
Departure from Model SSE 11 23.480
TOTAL SST 14 €886.2
Coefficient of Determination R2 = ,99659
Residual Analysis
Py Pi Residual | Chi-square
1.0000 .9857 .0143 0.741
.9792 .9567 .0225 0.586
.9375 .8604 .0771 2,374
.6250 .5544 .0706 0.969
.1250 .0863 .0387 0.911
1.0000 .9914 .0086 0.423
.9792 .9840 -.0048 0.070
.9808 .9648 .0160 0.393
.8776 .9088 -.0312 0.575
.5000 .6934 -.1934 8.444
1.0000 .9773 . 0227 1.114
1.0000 .9479 .0521 2,640
.8980 .8801 .0179 0.148
.8200 .7154 . 1046 2.685
» 3000 .3814 -.0814 1.405
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APPENDIX VII

Data of Ashford and Smith (1964): Exposure to dust and prevalence
of pneumoconiosis for groups of mine workers. The data as described by
Ashford and smith, the computed Py v and the analyses on this set of data

(data set seven) are in this appendix.
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DATA AS PRESENTED BY ASHFORD AND SMITH COMPUTED DATA

Period Spent (Years)
ry
Nj Number
X(1) X(2) Number of Observed With
Coal-Getting Haulage Men Pneumoconiosis P
2.1 0.5 135 3 .0222
1.9 6.6 18 2 .1111
1.6 12.0 16 1 .0625
1.4 16.9 17 3 .1765
0.7 21.6 14 2 .1429
1.1 27.6 12 3 .2500
1.2 32.4 22 5 .2273
1.5 37.2 31 7 .2258
2.4 41.6 25 5 .2000
1.4 47.1 17 5 .2941
6.6 0.4 80 7 .0875
6.3 6.7 10 1 . 1600
7.1 12.0 14 5 .3571
6.4 17.5 8 2 .2500
6.3 21.9 21 11 .5238
6.9 27.2 14 5 .3571
6.2 32.3 13 7 .5385
7.2 37.3 10 7 . 7000
12.2 0.2 71 19 .2676
12.0 6.9 8 1 .1250
11.8 11.8 4 2 .5000
11.0 le.7 7 2 .2857
11.5 22.5 6 3 . 5000
i2.8 29.5 10 ¢} .6000
12.5 37.8 4 2 .5000
17.0 0.3 106 53 .5000
16.2 6.6 5 2 .4000
16.8 13.2 5 2 .4000
19.5 17.0 6 4 .6667
17.2 21.5 4 1 «2500
21.8 0.2 58 34 .5862
24.7 7.7 3 o] 0.0000
26.0 10.8 4 1 .2500
22.0 23.7 3 1 .3333
26.8 0.2 66 43 .6515
27.5 18.2 4 3 . 7500
32.5 13.0 2 2 1.0000
31.7 0.2 33 22 .6667
36.8 0.2 20 11 .5500
42.2 1.0 10 8 . 8000




Parameter Estimates

DV W > > P>

NN =

BIVARIATE NORMLIY ANALYSLS

Chi-square Analysis Table
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-2.818 source a.f.
0.937 Due to Model SSR 4 217.75
-2.446 Departcure firom Model SSE 35 38.141
TOTAL SST 39 255.89
0.501
-0.320 Coefficient of Determination R2 = .85095
Residual analysis
Py Pi Residual | Chi-square
.0222 .0195 .0027 0.053
1111 .0800 .0311 0.236
.0625 1236 -.0611 0.551
.1765 .1579 .0186 0.044
.1429 .1834 -.0405 0.153
.2500 +2200 .0300 0.063
2273 .2451 -.0179 0.038
.2258 .2703 -.0445 0.311
.2000 .3030 -.1030 1.256
.2941 .3091 -.0150 0.018
.0875 .1488 -.0613 2.375
.1000 .2025 ~.1025 0.651
.3571 .2719 .0852 0.514
.2500 .2886 =-.0386 0.058
.5238 .3120 .2118 4.390




Residval Analysis--Centinued

Py
. 3571
.5385
. 7000
.2676
.1250
. 5000
.2857
.5000
.6000
. 5000
. 5000
.4000
. 4000
.6667
, 2500
.5862

0.0000
. 2500
. 3333
.6515
. 7500

1.0000
.6667
.5500
. 8000

2

.3573
.3611
. 1099
. 3185
.3735
. 4047
.4146
. 4580
.5186
.5417
.4365
L4717
.5267
.5947
.5744
.5287
.6260
.6594
.6586
.6047
. 7069
.7376
.6638
.7132
.7591

Residual | Chi-square
-.0002 0.000
L1773 1.772
.2901 3.480
-.0509 0.847
-.2485 2.112
.0853 0.151
-.1289 0.479
.0420 0.043
.0815 0.266
-.0417 0.028
.0635 1.737
-.0717 0.103
-.1267 0.322
.0720 0.129
-.3243 1.721
.0575 0.771
~-.6260 5.022
-.4094 2,985
-.3253 1.412
.0468 0.606
.0431 0.036
2624 0.712
.0029 0.001
-.1632 2.603
.0410 0.092
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B4

Parameter Estimates Chi-square Analysis Table

. &0 = =1.000 source a.f, :

- iq

. 1% ~2.996 Due to Model S8R 4 221.36 3
B = ~1.627 Departure from Model SSE 35 39.020 !

1 ) TOTAL SsT 39 | 260.38

a, = ~4,527 !

B, = ~1.049 Coefficient of Determination R> = .85014 ;

Residual Analysis

1 Pi Residual | Chi-gquare
.0222 | .0201 | -.0069 0.226
.1111 | .0s02 .0309 0.233
.0625 | .1211 | -.0586 0.516
.1765 | .1567 .0197 0.050
. .1429 | .1828 | -.0399 0.150
: .2500 | .2280 .0220 0.033
| .2273 | .2592 | -.0320 0.117
I .2258 | .2912 | ~-.0654 0.643
' .2000 | .3297 | -.1297 1.903
.2941 | .3416 | ~-.0475 0.170
’ .0875 | .1446 | =~-.0571 2.111
.1000 | .1909 | ~-.0909 0.535
.3571 | .2575 .0996 0.727
.2500 | .2787 | -.0287 0.033
.5238 | .3063 .2175 4.674




Residual Analysis--Continued

Py
.3571
.5385
. 7000
.2676
.1250
.5000
.2857
.5000
.6000
.5000
,5000
. 4000
. 4000
.6667
.2500
: .5862
P 0.0000
’ .2500
.3333
i .6515

.7500
1.0000

.5500
. 8000

P,
i

.3564
.3674
.4202
. 3106
.3586
. 3897
. 4020
.4515
.5213
.5533
.4362
.4631
.5200
.5945
. 5748
.5361
.6290
.6632
.6666
.6178
. 7145
. 7447
.6798
.7302
. 7746

Residual Chi=-square
.0007 0.000
.1710 1.636
.279¢ 3.209

-.0429 0.612
-.2336 1.898
.1103 0.205
-.1163 0.394
.0485 0.057
.0787 0,248
-.0533 0.046
.0638 1.753
-.0631 0.080
-.1200 0.288
.0722 1.298
-.3248 1.727
.0501 0.586
-.6290 5.086
-.4132 3.058
-.3333 1.500
.0338 0,318
.0355 0.025
.2553 0.686
-.0132 0.026
-,1802 3.295
.0254 0.037

i
}i .6667
|
§
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BIVARIATE BURRIT ANALYSES

l: General Case - Eight Parameters to be Estimated

Parameter Estimates

w> > oy U O K
n

o> >
NN

8.582
4,714
5,933
7.582
1.127
0.147
3.533
0.082

Chi-sguare Analysis Table

£6

!

Residual Analysis

source d. £f.
Due to Model SSR 7 217.30
Departure from Model SSE 32 38.293
TOTAL SST 39 255,59
Coefficient of Determination R2 = ,85018

m——

.0222
1111
.0625
.1765
.1429
.2500
.2273
. 2258
.2000
. 2941
.0875
.1000
. 3571
.2500
.5238

P,
i

.0183
0734
.1170
.1528
.1809
.2208
. 2489
. 2774
. 3145
. 3223
.1500
.1997
.2711
.2908
L3171

Residual | Chi=-square
.0039 0.113
.0377 0.377

-.0545 0.459
.0236 0.073
-.0381 0.137
.0292 0.060
-.0217 0.055
-.0516 0.412
-.1145 1.520
-.0282 0.062
-.0625 2.448
-.0997 0.622
.0860 0.524
-.0408 0.064
. 2067 4.142




e S P s emaercs o

= e

Residual Analysis--Continued

Py
.3571
.5385
. 7000
.2676
.1250
. 5000
.2857
.5000
.6000
.5000
.5000
.4000
.4000
.6667
.2500
.5862

0.0000
.2500
.3333
.6515
. 7500

1.0000
.6667
.5500
. 8000

Py

.3670
. 3737
4274
3174
3704
.4050
.4188
.4677
.5355
.5653
.4344
.4689
.5303
.6034
.5866
.5275
.6271
.6642
.6754
.6048
. 7200
. 7466
.6653
. 7160
.7619

Residual | Chi-square
~,0099 0.006
.1648 1,509
2726 3.037
-.0498 0.811
-.2454 2,065
.0950 0.150
-.1331 0.510
.0323 0.025
.0645 0.167
-.0653 0.069
.0656 1.856
-.0689 0.095
-.1303 0.341
.0632 0.100
-,.3366 1.869
.0587 0.802
-.,6271 5,045
-.4142 3.076
-.342C 1.601
.0467 0.603
. 0300 0.018
.2534 0.679
.0013 0.000
-.1660 2.712
,0381 0.080
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!
i
! p
: 2: Tanahasi Burr - r = 0 ; Seven Parameters to be Estimated
Parameter Estimates Chi-square Analysis Table :
: b, = 5.074 source d.f.
. = 5.026 Due to Model SSR 6 | 219.84 '
= 6.351 Departure from Model  SSE 33 38.765
- TOTAL SST 39 258,60
1.369

= 0.149
= 3,850
= 0.075

Coefficient of Determination R2 = ,85010

m> 8> m> B> T T
(8]
[}

LV S N

Residual Analysis

: EL Ei Residual Chi-square
: .0222 | ,0222 .0000 0.000
.1111 | .0980 .0131 0.035
] .0625 | .1436 ~.0811 0.856
L1765 | .1779 -.0014 0.000
.1429 | .2034 -.0605 0.317
R .2500 | .2383 L0117 0.009
i .2273 | .2622 -.3349 0.139
.2258 | .2857 -.0598 0.544
.2000 | .3144 -.1144 1.517
.2941 | .3224 -.0282 Rt
.0875 | .1510 -.0635 T
.1000 | .2117 -.1117 N,
£3571 | .2752 .0819 0,471
.2500 | .2908 -.0408 0.064 _
: .5238 | 3117 .2121 4.402 f
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Residual Analysis--Continued

~ T T T |
Py Pi Residual | Chi-square
.3571 | L3507 .0064 0.003
.5385 . 3554 .1831 1,903
. 7000 . 3960 . 3040 3.865
. 2676 . 3165 -.0489 0.784
.1250 . 3683 -.2433 2,036
. 5000 .3937 . 1064 0.190
.2857 .4001 -~,1144 0.382
.5000 .4364 .0636 0.099
.6000 | .48B76 .1125 0.506 :
.5000 . 5059 -.0059 0.001
.5000 . 4342 .0658 1.867
. 4000 . 4615 -.0615 0.076
.4000 . 5057 -.1057 0.223
.6667 .5663 .1004 0.246
.2500 .5428 -.2928 1.382
.5862 .5276 .0586 0.798
0.0000 .6110 -.6110 4,712
.2500 .6388 -, 3888 2.620
.3333 .6218 -.2885 1.062
.6515 .6056 .0460 0.584
. 7500 .6760 .0740 0.100
1.0000 | .7149 .2851 0.798
6667 .6666 .0001 0.000
.5500 .7176 -.1676 2.773
.8000 . 7632 .0368 0.075




4= 3 (Third and Fourth Standardized Central Moments) :

Parameter Estimates

Wb w> D> > K>
NN e

[}

4.742
1.259
0.151
3.405
0.078

= 6,158 ; Five Parameters to be Estimated

Chi-square Analysis Table

90

source
Due to Model

Departure from Model

TOTAL

SSR
SSE
SST

d.f.

4 218.53
35 38.338
39 256.87

Coefficient of Determination R2 = ,85075

Residual Analysis

.0222
<1111
.0625
«1765
« 1429
.2500
2273
.2258
. 2000
. 2941
. 0875
.1000
.3571
.2500
.5238

P,
i

.0211
.0905
.1340
+1670
.1913
2261
. 2499
.2740
. 3061
+3103
.1528
.2139
+2820
.2978
. 3199

Residual Chi-square
.0011 0.008
.0206 0.093

-.0715 0.704
.0094 0.011
-.0485 0.212
.0239 0.039
-.0226 0.060
-.0481 0.361
-.1061 1,326
-,0162 0.021
-.0653 2.634
-.1139 0.772
.0752 0.391
~-.0478 0.087
.2039 4,013




Residual Analysis--Continued

By
.3571
.5385
. 7000
.2676
1250
.5000
.2857
.5000
6000
.5000
.5000
. 4000
.4000
.6667
.2500
.5862

0.0000
.2500
.3333
.6515
. 7500

1.0000
.6667
.5500
.8000

P:i.
.3631
. 3660
.4127
. 3187
.3793
.4103
.4198
.4615
.5201
.5420
.4353
- 4749
.5294
. 5964
+5760
.5273
.6278
.6612
.6598
.6039
.7086
« 7396
.6638
. 7139
. 7605

Rezidual Chi-squarc
-.0060 0.002
.1725 1.666
.2873 3.405
-.0511 0.854
-.2543 2.198
.0897 0.133
~.1341 0.517
.0385 0.036
.0800 0.256
~.0419 0.028
.0647 1.806
-.0749 0.112
-.1294 0.336
.0703 0.123
=-.3260 1.740
.0589 0.807
-.6278 5.059
-.4112 3.018
-.3265 1.425
.0477 0.626
.0414 0.033
. 2604 0.704
.0029 0.001
-.1639 2.632
.0395 0.086

r
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4:

Takahasi Burr - r

Standardized Central Moments); b

p = 6.158 ; Four Parameters to be Estimated

Parameter Estimates

[V IR

o IDS

> >

1
1
2
2

1.313
0.150
3.783
0.074

=0

s a,. =0 ; o

3 4

Chi-gsquare Analysis Table

1

= 3 (Third and Fourth

=b, = 4.874 ;

2

92

source a.f.
Due to Mocdel SSR 3 219.06
Departure from Model SSE 36 38.766
TOTAL SST 39 257.83
Coefficient of Determination R2 = , 84964
Residual Analysis
Py Pi Residual | Chi-square

.0222 .0240 -.0018 0.018

1111 .1007 .0104 0.021

.0625 .1456 -.0831 0.888

.1765 1791 -.0026 0.001

.1429 .2037 -.0608 0.319

. 2500 . 2380 .0120 0.010

. 2273 +2613 -.0341 0.132

.2258 . 2845 -.0587 0.524

.2000 .3135 ~,1135 1.49%6

.2941 .3200 -.0259 0.052

.0875 1566 -.0691 2,894

.1000 L2179 ~-.1179 0.815

.3571 .2809 .0763 0.403

.2500 . 2956 -.0455 0.080

.5238 . 3159 .2080 4.202




Residual Analvsis--Continued

93

Py

.3571
.5385
. 7000
, 2676
+1250
.5000
.2857
.5000
.6000
.5000
.5000
.4000
.4000
6667
.2500
.5862
0.0000
.2500
.3333
.6515
. 7500
1.0000
.6667
.5500
.8000

Py

.3542
.3581
. 3983
. 3210
. 3735
. 3984
.4045
.4399
.4899
.5075
.4363
.4645
.507¢9
.5669
.5441
.5271
.6096
.6369
.6209
.6027
.6734
.7108
.6619
.7115
. 7563

Regidual | Chi-square
.0029 0.001
.1804 1.841
.3017 3,799

-,0534 0.930
~.2485 2.110
.1016 0.172
-.l188 0.410
.0601 0.088
.1101 0.485
-.0075 0.001
.0637 1.750
-.0645 0.084
-.1079 0.233
.0997 0.243
-.2941 1,395
.0591 0.814
~-.6096 4.685
-.3869 2.588
~-.2876 1.054
.0489 0.658
.0766 0.107
.2892 0.814
.0048 0.003
-.1615 2.542
.0437 0.104




APPENDIX VIII

Listings of FORTRAN subroutines used in evaluating the functions,

partial derivatives, and the weights are in this appendix.
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1. Bivariate Normal Subroutines

DOUBLE PRECISION FUNCTION F(X,A)

BIVARIATE NORMAL FUNCTION

DIMENSION X(1),A(l)

DOUBLE PRECISION X,A,AA,B,R,S,GOFU,THA ,C,D
AA=A(1)+A(2)*X (1)

B=A (3)+A(4)*X (2)

IF (DABS(A(5)).LE.0.9999D+00) GO TO 16
A(5)=DSIGN(0.9999D+00,A(5))

R=A(5)

$=DSQRT (1.-R*R)

C=GOFU (AA)

D=GOFU (B)

FP=C+D-THA (AA,B/AA) ~THA (B,AA/B)

1+THA (AA, (B-R*AA) / (AA*S) ) +THA (B, (AA~R¥*B) / (B*S) ) =C*D
RETURN

END

SUBROUTINE PD(X,A,FXA,P)

DIMENSION X(1),A(l),P(l)

DOUBLE PRECISION X,A,AA,R,S,B,FXA,P,WATE,GOFU,GPRIME,C,D
Al=ALPHAl,A2=BETAl,A3=ALPHA2,Ad4=BETA2, A5=RHO
BIVARIATE NORMAL PARTIALS

AA=A (L)+A(2) *X (1)

B=A(3)+A(4)*X (2)

R=A(5)

S=DSQRT (1.=R*R)

C=GPRIME (AA)

D= (B~R*AR) /S

P(1)=C* (1.-GOFU(D))

P(2)=x(1)*P (1)

P (3)=GPRIME (B) * (1.~GOFU { (AA~R*B) /8))
P(4)=X(2)*P(3)

P (5)==C*GPRIME (D) /S

RETUEN

END
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DOUBLE PRECISION FUNCTION GPRIME (X)
DOUBLE PRECISION X,Al,A2,A3
Al =X*X*(-0.5D 0)

IF (Al.LE.-150) GO TO 15
A2=DEXP (Al)

A3 = .398942280401433D+00
GPRIME = A2*A3

GO TO 16

GPRIME=0

RETURN

END

DOUBLE PRECISION FUNCTION GOFU(U)
DIMENSION Y (160)

DOUBLE PRECISION U,GU,X,XSET,DELTA,GPR,DELK,DELTAX,Y,SUM,TOP

IF(Y(17)-.69146246127D+00)2,5,2

Y( 1) = .50000000000D+00
Y{ 2) = .39894228040D+00
Y( 3) = .00000000000D+00
Y( 4) = -.66490380066D-01
Y( 5) = .00000000000D+00
Y( 6) = .99735570100D-02
¥Y( 7) = .00000000000D+C0O
Y( 8) = ~.11873282155D-02
Y( 9) = .59870632568D+00
Y( 1l0) = .38666811680D+00
Y(11) = -.48333514600D-01
¥( 12) = -.60416893250D~01
Y( 13) = .11831641595D-01
Y( 14) = .84709519078D~02
Y( 15) = -.19305085421D~02
Y( 16) = ~.93949992204D-03
Y(17) = .69146246127D+00
Y( 18) = .35206532676D+00
Y(19) = ~.88016331691D-01
Y( 20) = -.44008165845D-01
Y( 21) = .20170409346D-01
Y( 22) = .45841839423D-02
¥( 23) = -.30714032413D-02
Y( 24) = -.32635023779D-03
Y( 25) = «77337264763D+00
Y( 26) = - «30113743216D+00
Y( 27) = -.11292653706D+00
Y( 28) = -.21957937761D-01
Y( 29) = .22938202840D-01
Y{ 30) = -.14703976180D-03
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3D
32)
33)
34)
3b)
36)
37)
38)
39)
40)
41)

]

nuu i

e uwu

42) =

43)
44)
45)
46)
47)
48)
49)
50)
51)
52)
53)
54)
55)
56)
57)
58)

T w e n s nn R nu

59) =
60) =

61)
62)
63)
64)
65)
66)
67)
68)

wnwnwEun

69) =

70)
71)
72)
73)
74)
75)
76)
77)
78)
79}
80)

non

[ U2 I I O 1

o

-.30400470751D=02
»34322406302D-03
.84134474606D+00
.24197072452D+00

-.12098536226D+00
.00000000000D+00
.20164227043D~01

-.40328454087D-02

~-.20164227043D-02
.76816103022D~03
.89435022633D+00
.18264908533D+00

-.11415567837D+00
.17123351755D-01
.13674898971D~-01

-.59872275061D-02

~-.57598079906D~03
.B81561889341D~03
»93319279874D+00
»12951759567D+00

=-.97138196750D~-01
.26982832430D-V1
.60711372969D~02

-.58687660536D~02
.65770654049D-03
.55772550961D~03
.95994084314D+00
.86277318827D-01

-.75492653974D-01
.29657828346D-01

~-.39319090611D~03

-.43110574348D~02
+13098172060D~02
.185766821700~03
.97724986805D+00
+539909665130-01

-.53990966513D~01
.26995483257D-01

-.44992472094D~02

-.22496236047D-02
.13497741628D-02

-.11783742691D~-03
.98777552735D+00
.31739651836D~01

-.35707108315D-01
.21420389264D-01

-.61371592417D~02

-.46183673081b~03
,99147667294D~03

-.26370836740D~-03
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Y(
Y(
Y(

Y (

Y (
Y (
Y(
Y (
Y (
Y (
Y !
Y (
Y (
Y (
Y(
Y (
Y (
Y (
Y (

81)
82)
83)
84)
85)
86)
87)
f8)
89)
90)
91)
92)
93)
94)
95)
96)
97)
98)
99)

Y (100)
Y (101)
Y (102)
Y (103)
Y (104)
Y (105)
Y {106}
Y (107)
Y (108)
Y (109)
Y{110)
Y {111)
Y (112)
Y (113)
¥(114)
Y (115)
Y(116)
Y (117)
¥ (118)
Y (119)
Y (1.20)
Y (121)
Y (122)
Y (123)
Y(124)
Y (125)
Y (126)
Y(127)
Y (128)
¥ (129)
Y (130)

(LA TN | [ A I N N A I (O

[ NI T2 A TN A TN O (U R T

w0 W on oy

.99379033467D+00
.17528300494D-01
=-.21910375617n-01
.15337262932D-01
-.59340600629D-02
.66644059169D-03
.51352442853D-03
~.26273974729D-03
+99702023677D+00
.90935625017p-02
-.12503648440D-01
.99460839861D~-02
~.47539913338D~02
.11227826357D-02
.11925680315D-03
~.18051548644D-03
»99865010197D+00
.44318484120D-02
-.66477726180D-02
+59091312160D~-02
-.33238863090D-02
+11079621030D-02
=.11079621030D-03
~.84416160226D~04
+99942297496D+00
.20290480573D-02
-~.32972030931D~-02
.32337953413D-02
~.20779248652D-02
.86558186169D-03
=.19180019295D-03
=.13995370141D-04
«99976737091D+00
.87268269505D-03
-~.15271947163D-02
.16362800532D-02
~.11772125938D-02
.57860680771D-03
-.18055895865D-03
«21297716502D-04
.29991158271D+00
.35259568237D~03
-.66111690444D-03
.76763018349D-03
-.60946714628D-03
.34195583218D-03
-.13246010895D-03
«30251745009D--04
.99996832876D+00
.13383022576D~03
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11

! 12

| 13
i 14
; 141

!

l

[

;- 142
100

15
,- 16

201

Y(131) = -.26766045153p-03
¥(132) = .33457556441D~03
¥(133) = -.28996548916D~03
¥(134) = .18178605667D~03
Y(135) = -.B82528639221D~04
¥:i136) - .25518025191p-04
Y(137) = .99998931147D+00
¥(138) = «47718636540D-04
¥(139) = -~.10140210265D~03
7(140) = .13569987266D=03
¥(141) = -.12728076426D-03
Y(142) = .87833668723D-04
Y(143) = ~.45244746779D-04
¥(144) = .17013635696D~04
¥(145) = .99999660233D+00
Y(1l46) = .15983741107D-04
Y (147) = -.35963417490D-04
¥(148) = .51281169385D~-n4
¥({149) = =.51697412642D-04
Y(150) = . 38835495972D-04
Y(151) = ~.22233633626D-04
¥(152) = .96697768581D-05
Y(153) = .99999898292D+00
Y(154) = .50295072886D-05
Y (155) = -.11945079810D-04
Y(156) = .18074791818D-04
Y(157) = -.194729686490~04
Y (158) = .15788101444D~04
Y{159) = ~.99025178234D-05
Y(160) = . 48400297796D-05
IF(U) 11,10,12

GU=.5D+00

GO TO 100

X=DABS (U)

GO TO 13

X=U

IF (X~7.0D+00)15,14,14
IF(U)141,10,142

GU=0, 0D+00

GO TO 100

GU=1.0D+00

GOFU=GU

RETURN

IF (X-4.87499D+00)16,16,40
XSET=X*4,0D+00
XSST=XSET+.5D+00

I=IFIX (XSST)
XSET=DFLOAT (T)

DELTA=X- (XSET*. 25D+00)
K=I*3+1

I=K+7

SUM=0.0D+00
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20

21

22

40

101
102

41

43

42

45

11

10
12

15

100

DO 20 J=X,7,1

=K+I~J

SUM=SUM*DELTA

SUM=Y (L) +SUM

CONTINUE

IF () 21,10,22

GU=1.0D+00 ~SUM

GO TO 100

GU=SUM

GO TO 100

XSET=-X*X

IF (XSET.LE.-300) GO TO 101

GPR= (DEXP (XSET*.5D+00) ) *,398942280401433D+00
GO TO 102

GPR=0

DELTA=1,0D+00/X

SUM=DELTA

TOP=1,0D+00

DELK=TOP/XSET

DELTAX=DELTA*DELK

IF (DABS(DELTA)-DABS (DELTAX))45,45,43
DELTA=DELTAX

SUM=SUM+DELTA

IF (DABS (GPR*DELTA)-,5D-9)45,45,42
TOP=TOP+2 ., 0D+00

GO TO 41

SUM=GPR*SUM

IF(U) 22,10,21

END

DOUBLE PRECISION FUNCTION THA (HX,AX)

DOUBLE PRECISION HX,AX,AR,U,H,A,SUM,C,DA,TA,TX,X,Y,2 ,GOFU

DIMENSION AA(9),U(9)

DATA AA(1l),AA(9),AA(2),AA(8),AA(3),AA(7),AA(4) ,AR(6),AA(5)/2*.4063
17194181E-1,2*.90324070347E-1,2*,1303053482,2%.15617353852,,1651196
2775/,0(1) ,u(2),U0(3),U(4),u(5),u(6),u(7),0(B),U(9)/.15919880246E-1,
3.81984446337E-1,.19331428365,.3378732883,.5, .6621267117,.806685716
435,.91801555366,.98408011975/

H=HX

A=AX

IF (DABS(H) .LE.5.77)G0O TC 10

THA=O0.

RETURN

IF (DABS(A).LE.1.)GO TO 13

H=A*H

IF (DABS(H).LE.5.77)G0 TO 15
GO TO 16
A=1./A
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6l

16
17
14

18
21
20

SUM=0.

Do 61 M=1,9,1
DA=1,+A** 2% (M) **2
C==.5%H*¥2¥D]

TA=DEXP (C)/DA * AA(M)
SUM=SUM+TA

CONTINUE
TX=2/6.2831853072*SUM
GO TO 17

TX=0,

IF (DABS (AX).LE.1.)GO TO 20
X=GOFU (HX)

Y=GOFU (H)

Zr=X*Y

TX=, 5%X+.5%Y~2-TX

IF (AX) 21,20,20
TX=TX-.5D+00

THA=TX

RETURN

END
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2. Bivariate Logistic Subroutines

DOUBLE PRECISION FUNCTION F(X,A)
BIVARIATE LOGISTIC (GUMBEL) FUNCTION
DIMENSION X (1),A(1l)
DOUBLE PRECISION X,A,C,CC,B,BB,D,E,BC,DE
IF (DABS(A(l)).GE.1.0D+00) A{1)=DSIGN(1l.0D+00,A (1))
C=A(3)*(X(1)+A(2))
IF (DABS(C).GT.150.0D+00) C=DSIGN(150.0D+00,C)
CC=DEXP (C)
B=A(5)* (X(2)+A(4))
IF (DABS(B).GT.150,0D+00) B=DSIGN(150.0D+00,B)
BB=DEXP (B)
D=1./(1.+CC)
E=1./(l.+BB)
BC=BB*CC
DE=D*E
=D+E-DE* (1.+A (1) *BC*DE)
RETURN
END

SUBROUTINE PD(X,A,FXA,P)

BIVARIATE LOGISTIC (GUMBEL) PARTIALS
A(l)=ALPHA 0,A{2)=ALPHAL,A (3)=BETALl,A (4)=ALPHA2,A (5)=HBETA2
DIMENSION X(1),A(1),P(1)

DOUBLE PRECISION X,A,P,FXA,WATE,C,CC,B,BB,D,DD,E,EE,BC,DE,R,S,T,2
C=A(3)*(X(1)+A(2))

IF (DABS{C).GT.150.0D+00) C=DSIGN(150.0D+00,C)
CC=DEXP(C)

B=A(5) * (X (2)+A(4))

IF (DABS (B).GT.150.0D+00) B=DSIGN(150,0D+00,B)
BB=DEXP (B)

D=1./(1.+CC)

DD=D*D

E=1./(1.4+BB)

EE=E*E

BC=BB*CC

DE=D*E

Z=1.+A (1) *BC*DE

P (1)=~DD*EE*BC

T=A (1) *P (1)

R=DD*CC* (E*Z-1.)+T* (1.-D*CC)

P(2)=A(3)*R

P(3)=(X(1)+A(2))*R
S=EE*BB* (D*z~1, )+T* (1.-E*BB)

P(4)=A(5) *S

P(5)=(X(2)+A(4))*s

RETURN

END
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3. Bivariate Burr Subroutines

DOUBLE PRECISION FUNCTION F(X,A)

BIVARIATE BURR R (FD) FUNCTION
Al=R,A2=Bl,A3=B2,A4=P,A5=ALPHAl,A6=BETAl,A7=ALPHAZ, AB=BETA2
DOUBLE PRECISION X,A,B,BB,C,CC,D,DD
DIMENSION X (1) ,A (1)
IF(A(l).GT.A(4)+1.0D+00) A(l)=A(4)+1.0D+00
IF(A(1) .LE.O.OD+00) A(1)=0.0

B=A () *(X(1)+A(5))

IF (B.GT.0.0D+00) GO TO 17

BB=0

GO TO 18

IF (A(2) *DLOG(B).LT.150.0) GO TO 19
BB=DEXP (150.0D+00)

GO TO 18

IF (A(2))13,14,15

BB=1./(B**DABS (A(2)))

GO TO 18

BB=1.0

GO TO 18
BB=B**A (2)
C=A(8)*(X(2)+A (7))
IF (C.GT.0.0D+00) GO TO 16
CC=0
GO TO 10

IF (A (3) *DLOG(C) .LT.150.0) GO TO 20
CC=DEXP (150.0D+00)
GO TO 10
IF (A(3))9,11,12
CC=1./(C**DABS (A (3)))
GO TO 10
CC=1.0
GO TO 10
CC=C**a (3)
D= (1.0+BB+CC+A (1) *BB*CC)
IF (A(4)*DLOG(D).LT.150.0) GO TO 21
DD=DEXP (-150, 0D+00)
GO TO 22
DD=1.0/(D**A(4))
F=1.0D+00-DD
RETURN
END
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SUBROUTINE PD(X,A,FXA,P)
¢ BLVARIATE BURR R PARTIALS
C Al=R,A2=Bl,A3:=B2,AA=P ,A5=ALPHALl,A6=BETAl,A7=ALPHA2 ,A8=BETA2
DIMENSION X(1),A(1),P(1)
DOUBLE PRECISION X,A,FXA,P,WATE,B,BB,C,CC,D,DD,E,EE,G,GG,H,HH,I
IF(A(1).GT.A(4)+1.0D+00) A(l)=A(4)+1.0D+00
. IF(A(l) .LE.0.OD+00) A(1)=0.0
B=A(6)* (X (1)+A(5))
IF (B.GT.0.0D+00) GO TO 17
‘ . BB=0
GO TO 18
17 1F (A(2)*DLOG(B).LT.150.0) GO TO 30
BB=DEXP (150.0D+00)
GO TO 18
30 IF (A(2))13,14,15
13 BB=1./(B**DABS(A(2}))
GO TO 18
14 BB=1.0
GO TO 18
15 BB=B**A (2)
18 C=A(8)* (X (2)+A (7))
IF (C.GT.0.0D+00) GO TO 16
CC=0
GO TO 10
16 IF(A(3)*DLOG{(C).LT.150.0) GO TO 31
CC=DEXP (150.0D+00)
GO TO 10
31 IF (A(3))9,11,12
9 CC=1./(C**DABS (A (3)))
. GO TO 10
11 ¢C=1.0
GO TO 10
12 CC=C**n(3)
10 D=(1.0+BB+CC+A (1) *BB*CC)
IF((A(4)+1.0)*DLOG (D) .LT.150.0) GO TO 32
DD=A (4) *DEXP (~150.0D+00)
GO TO 33
32 DD=A (4)* ((1.0/D)** (A (4)+1.0))
! 33 E=DD*BB
‘ G=1.0+a(1) *BB
b GG=1.0+A (1) *CC
H=DD*A (2) *GG
HH=DD*A (3) *G
P (1l)=E*CC
IF (B.GT.0.0D+00) GO TO 1
P(2)=0
. GO TO 2
P (2)=E*DLOG (B) *GG
2 IF (C.GT.0.0D+00) GO TO 3
P (3)=0
GO TO 4
3 P(3)=DD*CC*DLOG (C) *G
4 IF (A(4)*DLOG(D).LT.150.0) GO TO 34
P (4)=(DLOG (D) ) * (DEXP (-150.0D+00) )

=
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GO TO 35
34 P(4)=DLOG (D) /(D**A(4))
35 1F (B.GT.0.0D+00) GO TO 23
P(5)=0.0
P(6)=0.0
GO TO 24
23 IF ((A(2)-1.0)*DLOG(B).LT.150.0) GO TO 36
EE=H*DEXP (150.0D+00)
GO 10 8
36 IF (A(2)-1.0)5,6,7
5 EE=H/(B**DABS(A(2)-1.0))
GO TO 8
EE=H
EE=H* (B** (A (2)-1.0})
8 P(5)=EE*A (6)
"P(6)=EE*X (1)
24 IF (C.GT.0.0D+00) GO TO 25
P(7)=0.0
P(8)=0.0
GO TO 26
25 IF ((A{3)~-1.0)*DLOG(C).LT.150,0) GO TO 37
I=HH*DEXP (150.0D+00)
GO TO 22 .
37 IF (A(3)-1.0)19,20,21
19 I=HH/(C**DABS(A(3)-1.0))
GO TO 22
20 I=HH
GO TO 22
21 I=HH* (C**(A(3)=-1.0))
22 P(7)=I*A(8)
P(8)=1*X(2)
26 CONTINUE
RETURN
END

~ o
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4. Weight Subroutine

DOUBLEPRECISIONFUNCTIONWATE (X,FXA)
DOUBLEPRECISIONX ,FXA

DIMENSIONX (1)

WATE=DABS (X (3) /( (1.0D+00-FXA) *FXAa))
RETURN

END
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