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ABSTRACT 

Several nonparametric estimators of t he failur 
rate function, assu ing that t e t ue unknown 
failur e rate is .i creasing, are pr s d a d t eir 
asymptot i c propert ies compar ed . Fi 
comparisons are de using Mon e 
Recormnend.ations a e made f o t h 
potent ial users . 



1. INTRODUCTION 

In many statistical studi es i nvolving fa i lure data, biometric mortality 

data, and actuarial mortality da ta, the failure rate r(x) • f(x)/[1 - F(x)] , 

(corresponding to a lifeti~e distr i ut ion with density f(x) and distribution 

function F(x)), is of prime importance . A pr9blem of considerable interest, 

therefore, is the estimation of t he f ilure rate function from a sample of n 

independent identically distribut ed l ife t i mes. Many dbserved failure rate function 

estimators seem to first decrease and t en increase (are U-shaped) or simply 

increase or decrease. For simplicity, we~ill confine attention to monotone 

' failure rate functions. (The U-shaped case can be estimated by suitably modifying 

the monotonic estimators, see for example Bray , Crawford and Proschan [4] and 

Barlow [1, pp. 60-61].) 
I 

In most cases, of course , the mortality data will be incomplete. Hence, we 

require estimators which can cope wi th incomplete data and which will, in some 
'-. 

sense, be efficient. The efficiency of a _me thod may be expressed by its mean 

square error, and one wants naturally an estimate of high efficiency. We ~11 

compare several nqnparametr ic es timators of the failure rate function on the basis 

of their asymptotic mean square error for l a rge sample sizes, as well as their 

Monte Carlo mean square error co uted fo r small sample sizes. 

Parametric and nonparametric methods for estimating the failure rate function 

are discussed in detail · by Grenander [ 5 ]. He also characterizes the maximum 

likelihood estimate (MLE) of the fa ilure rate function under the increasing failure 

rate (IFR) assumption. The MLE can b easily computed even for very incomplete 

data ~withdrawals may be a llowe for examp le). If a total of n items are ex~osed 

to risk, failures are, observed at times 

(k < n) 



and    n(u)     is  the number of itcns exposed to risk at time    u  ,   then  the MhF. 

estimate  for  the failure  rate,    r(t)   ,   can be  expressed as a sten  function,  wh^' 

(1.1) 

and 

0 < t < Z, 

rn(t) = {  rn(Zi)   Zi ^ t < Zi+1 

t > Z, 

(1.2) 
^^^ 

Max Min 
s<i t>i+l 

t - s 

t-1 
Jj+1 

I f     n(u)du 

Marshall and Proschan [ 6 ] proved that r (t)  is strongly consistent in the n 

complete sample case. 

Prakasa Rao  [ 7 ]  has  characterized  the  limiting distribution of    r   (t) 

assuming    r(t)    increasing and    r  (t)  > 0   .    He shows that 

(1.3) 
3 2f(t)  3  (- 

'^  2,  ,       (rn ( r  (t)r  (t))    l 
(t)  - r(t) + H(x) 

where H(x)  is a distribution whose density is determined implicitly as a 

aolution to the heat equation. This result enables us to make asymptotic 

comparisons with other nonparametric estimators of the failure rate function. 

The main deficiencies of the maximum likelihood estimate as defined in 

(1.1) and (1.2) are: 

(1) According to (1.3) the MLE converges like n   while many estinntors 
_ i. 

for parametric model? converse much  faster;   c.r,.,   li--.n    n 
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(2) Some failure times must be observed to use (1.2) whereas in practice 

we often know only the number of failures within prescribed intervals. 

However, this criticism is partially unfair since the MLE estimate for 

discrete TFR distributions could be used in this situation (see 

Marshall and Proschan [6], pp. 76-77). 

Watson and Leadbetter [9] study nonparametric estimators for the failure 

rate function which perform better, asymptotically, than the IFF maximum likelihood 

estimator. However, their estimator will in general be very "ragged" and certainly 

not monotonic even though we may feel that the true failure rate function is 

monotonic. Let 0 = w_  < w,   < w«  < ... be a subdivision of  [O,00) . Let D,nJ.,nz,n 

F      be  the empirical distribution function corresponding to an ordered sample 

OiX     <X1<X<...<X o 1        2 n 

from    F  ;   i.e.. 

0        x < X 

F  (x)  -/  -       X.   < x < X.^ 
n \   n i - i+1 

1        x > X    . -    n 

Watson and Leadbetter {9 1  study  the estimator 

F  (w,^.     )  - F  (w,     ) 
r (x)  _ n    i+l.n n    l.n 

l+i, n        l, n n    i, n 

—fi 1 
where    w.      < x < w.,,       .    Let    w,..      " w        • en for   7 < a < 1  .    They 

1,11 -            l+i,n                     i+i,n        l,n j 

show that asymptotically,    as    n ♦ • 



(r     ^ ~ ) (1'4) ^ 1 TU)1 J n 2  lrn(x) ' r(x)] " N(0'1) 

where N(0,1)  stands for the normal distrihutlon with mean 0 and varinnce 1 

If we compare (1.3) and (1.4), we see that r (x) will be i-jsymototically 

more efficient than the MLE for IFR failure rate functions when a < — . 

Intuitively, it seems reasonable that if we can "smooth" r (x)  so that it is 

monotonic, we will be able to improve on the IFR maximum likelihood estimate. 
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2.  MONOTONIC REGRESSION ESTIMATORS 

Let 0 = wn  < w,  < ... < w.  < ...  be a subdivision of [0,co) 0,n   l,n        i,n l 

and u {w.  } a sequence of weights on <w.  I   . Assume w.  < x < w... 
n j,n     M I J»n)j=o 'n "     i+l.n 

We consider two basic or initial estimators for the failure rate function, namely, 

(2.1) r (x) a_i±Ln TL_j^n 
i+i,n   l,n     n l,n 

and 

-log [1 - F (w. n)] + log [1 - Fn(w. )] 
(x) D^i^n r^ij^ > 

(2-2)       *n- n i+l,n  wi,n 

We call $  (x) the "graphical" estimator since it is motivated by the fact that 

Wi+l,n 

f r(u)du - -log [1 - FCw...  )] + log [1 - F(w. )]   . f 1+L,n i,n 

l,n 

The monotone increasing regression estimators corresponding to (2.1) and (2.2) 

and weights M{W.  } > 0 for i ■ 1,2, 
i,n — 

.. are 

t-1 

Ama    n J>n n J>n 

(2.3) r (x) - Min Max 
n     t>i+l s<i    v   r   i 

A        n 1 ,n j-s    J 

and 

t-1 

(2.4) * (x) = Min Max '  
n     t>i+l s<i    v1  , 

."  n 1 ,n 
j=3     J 



(Monotone decreasing regression estimators correspond to interchanginr, the 

Min and Max operations.)  It is easy to verify that both r (x)  and ? (x) n n 

are nondecreasing functions of >: . It can also be shown that if r(x) is the 

true nondecreasing failure rate function, then, in a certain sense, t  is 

A 

closer than r  to r and <t>      is closer than $      to r . 
n n n 

We shall see that the maximum likelihood estimate for r(x) suggests the 

total time on test weights. Suppose we take as our grid, the order statistics 

0=Xo<X1< ... <X  and 

W " t(n - i)(xi+i - V - [l - Vxi)](xi+i - V • 

Then r (x) becomes, for X < x < X . , 
n i ~     ITI 

1    r^Ml-F^mx^-Xj) 
(2.5) r   (x) -   Min   Max  ''St_1  

t>i+ls<i jr     [1 - Fn(Xj)](Xj+1 - Xj) 
J"S 

or 

(2.6) r (x) -   Min   Max  jL-JI 

j-s J  ^        J 

W« recognize  (2.6) as the IFR    MLE  (1.2) when we have a complete sample.    Thus, 

the IFR MLE is a special case of a monotonic regression estimator.    Note that 

(n - i)(X.  .  - X.)    is the total time on test between the    ith    and    (i + l)st 

failure.     For arbitrary girds  (2.5) becomes 



J..W:. ."-«•.:--■-*■■"'■w»**^«".^*-—* 

(2.7)     r (x) = Min Max 
F (vr  ) - F (w  ) 
n t.n7   n s.n 

t>i+lS<i Y U.F (w  m     -w.  ) 
^g     n j,n   j+l,n   j ,n 

If we clioose y {w.  } = (w., n  - w.  ) and use the graphical estimator, 
n 1,n    l+i,n   l»n 

then (2.4) becomes 

-log [1 - F(w. n)] + log [1 - Fn(wo )] 
(2.8)   4 (x) - Mln Max  ^ '  

t>i+l s<i t.n   s,n 

Although we consider only monotonic regression estimators of the form (2.7) 

or (2.8) it is clear that we have a whole zoo of possible estimators. We are at 

liberty to choose the basic estimators, r (x) , the grid iw  I    and the n I 1,nfl«l 
weights M {w.  } > 0 .  In [ 2] it is shown that r (x) and $ (x) converge 

n i,n —                         n n 

to r(x) as n ■+■ o» under very general conditions on the grid size, etc. 
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3.     ASYMPTOTIC RESULTS 

In order  to make asymptotic comparisons, we consider grids with spacings of 

the type    w..,      - w.      »en        for    c > 0    and    0 < a < 1  . Jr        1+1,n        i,n 

It can be shown that  the estimator,    r   (x)   ,  given by  (2.1)  is asymptotically 

normal with mean 

/■»  i\ / \        *   r(x)f"(x)     2 -2a J   n. -3a. 
(3.1) r ^x^       24 "fOO* c n        + 0(n      ) 

and variance 

2,  v  a-1 
(3.2) ^-^2 + od^"1)   . 

Hence, the mean square error (MSE) of r (x) is approximately 

MSE[rnW1.x!^ + [AM^]
2
n-- 

For 1/5 < o < 1 

1-a 

(3.4) ^S?" 2 [rn(x) * r(x)] 

has asymptotically a   N(0,1)    distribution, while for    1/7 < a < 1/5 

(3.5) &SL ^ [rnU) . rW . cV2°r(»)f(.)] 

Is asymptotically N(0,1) . 

It Is show in [3 ] that for 0 < a < 1/3 and r'M  > 0 

MSE [r (x)] = MSE [r (x)] 
n n 



m 

asymptotically so that asymptotically the monotonic regression estimator is no 

more efficient than the basic estimator, r (x) . However, as we pointed out 

earlier, if the true failure rate is nondecreasing, the monotonic regression 

estimator will be "closer" to the true failure rate, at least for small sample 

sizes, than the basic       estimator. However, if the true distribution is 

-h exponential,  the monotonic regression estimator will converge like n   for 

any choice of a(0 < a < 1)  [see [ 3 ]]. Note that in this case even the 

IFR MLE is superior to the basic estimator. 

It is shown in [3], that the estimator $  (x) is asymptotically normal 

with mean 

(3.6) r(x) + — r"(x)c2n"2a + 0(n"3a) 

and variance 

(3.7) JLl*}n__+0(n-l) < 

ncn f(x) 

For    1/5 < a < 1  ,   ^   (x)    is asymptotically equivalent to    r  (x)   .    However, 
n n 

for    1/7 < a < 1/5 

i     Izä r 7 1 
/, ON v^cf^ö      2    L   , v ,  v      c r"(x)    -2a (3'8) Too   n      lVx) " r(x) " """2^ n    J 

is asymptotically    N(0,1)   .    Note that  (3.5)  and  (3.8) differ in the bias term. 

Asymptotically,   for    0 < a <  1/3  ,   ^   (x)    and    $  (x)    are equivalent.    However, 
n        n 

the same remarks concerning r (x) apply to ^ (x) . Therefore, if the true 

failure rate is nondecreasing,we would prefer $ (x) to $  (x) with 0 < a < 1/3 . n       n 

The mean square error of both r (x)  and $ (x) are minimized when we 
n n 

choose    a • 1/5  .     Therefore, on  the basis  of asymptotic  considorations, we would 

recommend using either    f  (x)    or    ^  (x)    with    a = 1/5  .     However,   this is not n n 
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too helpful since the optimum choice of c would still depend on the true 

failure rate function which is of course unknown. The MLE Cakes care of this 

problem by choosing w.  » X. , the ith order statistic from our sample. One 

might modify the MLE by choosing w   = X  a  where [  ] denotes the 
i,n        [in8] 

greatest Integer In the quantity within the brackets and     6 = 1 - a  ,    Hence, 

x «   -x    ß  -oj^) 
[(l+l)nß] [in8]        pVn/ 

0p(n-a)   . 

and by choosing    o ■ 1/5 , we realize the recommended requirement, 

J 
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4.  NUMERICAL RESULTS 

Asymptotic investigations indicate that we should use either 4 (x) or r (x) 
n        n 

with a - 1/5 .  However, for this choice of a , 4 (x) and r (x) are not 
n        n 

asymptotically equivalent.  They differ in their bias terms. In general, we will 

Ä A 

prefer    (Ji   (x)     if    r    is "nearly" linear  in a neighborhood of    x    and    r  (x)     if    f n n 

is "nearly"  linear  in a neighborhood of    x  . 

In order  to choose between    $  (x)    and    r  (x)   ,   several numerical investiga- 
n n 

tions have been made. The most extensive numerical investigations have been 

conducted by Watson and Leadbetter [8 ] and [9 ]• They did not consider monotonic 

regression estimators except for the IFR MLE estimator. They obtained the best 

results from a "heuristic graphical" estimator. To obtain this estimator, they 

plot -log [1 - F (x)] against x . A smoot» curve is then drawn through these 

points and its slope determined, perhaps just with a straight edge. This estimator, 

by its construction, does not  come with formulae for its mean and variance.  The 

estimator $ (x)  is similiar to this estimator except that the slopes of the 

tangent lines are now required to be increasing. Because of this similarity, we 

might expect the good results obtained for their heuristic estimator to carry ovtr 

A 

for * (x) . 
n 

Tables I and II present the mean square error of the IFR MLE, r (x) , and its 

mean value when the underlying failure distribution is exponential with unit mean. 

Since the estimator is always infinite beyond the largest observation, we have also 

included the number of infinities obtained in the simulations. 

Tables III and IV present the mean square error and mean value of the MLE 

estimator assuming a U-shaped failure rate function when the underlying failure 

distribution is exponential with unit mean. In the case of an infinite estimator 

within the range of x values recorded, the estimator was assumed constant (not 

infinite) beyond the last order statistic for which the estimator was finite.  This 

probably accounts for the large mean square error values for large x values. 
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Tables V  through XIV compare  the graphical estimator and  the maximum, like" 

hood  estimator using  the grid  determined by order  statistics when the  true 

distribution is a Weibull distribution.     On  the basis  of moan  square  error 

calculations,  we can detect  little difference  in the  two estimators. 

These computer computations were performed by Tom  Bray of  the Boeing 

Scientific Research Laboratories. 
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TABLE I 

MLE FOR INCREASING FAILURE RATE WHEN TRUE 

DISTRIBUTION  IS THE  UNIT EXPONENTIAL DISTRIBUTION 

Himber of Simulations » 3000 

Sample Size = n » 25 

MEAN VALUE MEAN SQUARE NUMBER OF 

X OF    rn(x) ERROR OF    r n« INFINITIES 

0.10 0.6^6914 0.210603 0 

0.20 0.814584 0.117653 0 

0.30 0.886149 0.902205E- 01 0 

0.40 0.927219 0.835712E- ■01 0 

0.50 0.962705 0.841033E- -01 0 

0.60 0.993960 0.869380E- •01 0 

0.70 1.02032 0.918217E- -01 0 

0.80 1.04681 0.101941 0 

0.90 1.07076 0.112549 0 

1.00 1.09374 0.126824 0 

1.10 1.12219 0.157527 0 

1.20 1.15558 0.239723 0 

1.30 1.19133 0.428387 1 

1.4U 1.25097 3.72891 2 

1.50 1.24791 0.392483 6 
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TABLE II 

MLE FOR INCREASING FAILURE RATE WHEN TRUE 

DISTRIBUTION  IS THE UNIT EXPONENTIAL DISTRIBUTIO: 

Number of Simulations = 250 

Sample Size « n =■  100 

MEAN VALUE MEAN SQUARE NUMBER OF 
X OF    r (x) 

n 
ERROR OF    f   (x) 

n 
INFINITIES 

0.20 0.919915 0.268983E-0I 0 
O.40 0.974432 0.176583E-01 e 
0.60 1.01091 0.151868E-01 0 
0.80 1.03226 0.199563E-01 0 
1.00 1.05027 0.241104E-01 0 
1.20 1.06319 0.265414E-01 0 
1.40 1.07543 0.307885E-01 0 
1.60 1.09109 0.364013E-01 0 
1.80 1.12102 0.581159E-01 0 
2.00 1.14981 0.797719E-01 0 
2.20 1.18126 0.106373 0 
2.40 1.22572 0.161607 0 
2.60 1.27003 0.236557 0 
2.80 1.30381 0.259973 2 
3.00 1.43084 0.686589 2 

. 
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TABLE III 

MLE FOR U-SHAPED FAILURE RATE WHEN TRUE DISTRIBUTION 

IS THE UNIT EXPONENTIAL DISTRIBUTION 

Nuaber of Simulations -  150 

Sanpli » Size » n * ; 15 

MEAN VALUE MEAN  SQUARE NUMBER OF 
X OF    r   (x) 

n 
ERROR OF    r   (x) 

n INFINITIES 

0.05 1.29297 0.549797 0 
0.10 1.08526 0.381039 0 
0.15 0.959894 0.314845 0 
0.20 0.937388 0.302800 0 
0.25 0.890439 0.273362 0 
0.30 0.877699 0.253101 0 
0.35 0.864808 0.232931 0 
0.40 0.835557 0.228444 0 
0.45 0.828066 0.220882 0 
0.50 0.788042 0.249237 0 
0.60 0.758739 0.266121 0 
0.70 0.782102 0.257277 0 
0.80 0.836567 0.215058 0 
0.90 0.820652 0.253918 0 
1.00 0.824013 0.265950 0 
1.20 0.922699 0.324050 0 
1.40 1.04247 0.439205 0 
1.60 1.17449 0.861991 0 
1.80 1.63692 17.6990 2 
2.00 1.83803 18.7647 3 
2.20 4.56656 502.373 10 
2.40 5.06498 514.575 17 
2.60 5.74322 549.582 23 
2.80 8.96341 1544.13 31 
3.00 9.17613 1545.75 50 
3.20 9.51944 1550.91 55 
3.40 9.77481 1556.98 66 
3.60 9.80845 1557.00 76 
3.80 9.80993 1557.00 87 
4.00 9.81614 1557.01 96 
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TABLE  IV 

MLE FOR O-SHAPED FAILURE RATE WHEN TRUE 

DISTRIBUTION IS THE UNIT EXPONENTIAL DISTRIBUTION 

lAonber of Simulations « 100 

Sample Size =• n » 50 

MEAN VALUE MEAN SQUARE NUMBER OF 
X OF f (x) 

n 
ERROR OF r (x) 

n 
INFINITIES 

0.05 1.16594 0.265775 0 
0.10 1.04175 0.164489 0 
0.15 1.00883 0.148645 0 
O.20 0.994515 0.108994 0 
0.25 0.961543 0.128702 0 
O.30 0.956456 0.124807 0 
0.35 0.888189 0.164545 0 
0.40 0.860720 0.174514 0 
0.A5 0.852992 0.187309 0 
0.50 0.845861 0.205879 0 
0.60 0.849351 0.219402 0 
0.70 0.940997 0.122661 0 
0.80 0.943531 0.127397 0 
0.90 0.915578 0.159765 0 
1.00 0.910690 0.162759 0 
1.20 0.936932 0.143381 0 
1.40 0.952359 0.165201 0 
1.60 1.00287 0.168174 0 
1.80 1.06294 0.212498 0 
2.00 1.10732 0.328394 0 
2.20 1.13930 0.389655 0 
2.40 1.46696 5.32901 2 
Z.60 1.50744 5.38283 2 
2.80 1.70013 6.04579 2 
3.00 1.97122 8.75948 6 
3.20 2.65745 23.2704 14 
3.«0 2.77963 23.8924 21 
3.60 2.86158 24.2406 27 
3.80 2.91245 24.3000 29 
4.00 2.98504 24.4582 34 

M, 
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TABLE V 

a -  1 

MLE FOR  INCREASING FAILURE RATE WHEN TRUE 

DISTRIBUTION IS THE WEIBULL DISTRI-il'TION 

a 
F(t)  = 1 -  e"X 

Number of Simulations » 500 

Sample Size = n = 20 

MEAN MEAN SQUARE NUMBER OF 
X BIAS ERROR OF r (x) 

n 
INFINITIES 

0.0 + 0.00000 0.00000 0 
0.2 — 0.17781 0.11695 0 
0.4 + 0.08053 0.08095 0 
0.6 + 0.00269 0.10185 0 
0.8 + 0.06714 0.13693 0 
1.0 + 0.12675 0.17096 0 
L.2 + 0.18478 U.26036 0 
L.4 + 0.23401 0.32004 1 
1.6 + 0.37319 0.90744 1 
1.8 + 0.48808 1.54212 7 
2.0 + 0.62947 4.67073 23 
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TABLE VI 

a - 1 

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIBUTION i: 
THE WEIBULL DISTRIBUTION 

F(t) « 1 - e 

Number of Simulations * 500 

Sample Size « n = 20 

-x 

MEAN MEAN SQUARED | NU>SER  OF 
z BIAS ERROR OF r (x) 

n 
INFINITIE? 

0.0 + O.OOOOO , 0.00000 0 
0.2 - 0.22220 0.11886 0 
0.4 - 0.14343 0.08153 0 
0.6 - 0.06969 0.09808 0 
0.8 - 0.01284 0.12645 0 
1.0 + 0.04850 0.16330 0 
1.2 + 0.11063 0.25271 0 
1.4 + 0.17110 0.32801 1 
1.6 + 0.32720 0.96436 1 
1.8 + 0.45788 1.63002 7 
2.0 + 0.60703 4.76836 23 

A 
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TABLE VII 

o - 1.5 

MLE FOR INCREASING FAILURE RATE WHEN TRUE 
DISTRIBUTION IS THE WEIBULL DISTRIBUTION 

F(t) . 

Number of Simulations 

Sample Size = n = 20 

1 - e 
-x 

MEAN MEAN SQUARE  I NUMBER OF 
X BIAS ERROR OF r (x)1 

n   1 INFINITIES 

0.0 + 0.00000 0.00000 0 
0.2 + 0.04326 0.05232 0 
0.4 + 0.00724 0.09421 0 
0.6 + 0.04241 0.14567 0 
0.8 + 0.11443 0.25389 0 
1.0 + 0.21644 0.43585 0 
1.2 + 0.35952 1.06299 0 
1.4 + 0.68761 3.39264 2 
1.6 + 1.15985 23.00837 24 
1.8 + 1.02670 9.71217 86 
2.0 + 1.24338 103.99067 159 
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TABLE VIII 

a -  1.5 

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIRUTION  IS 
THE WEIBULL DISTRIBUTION 

F(t)  - 1 - e 

Munber of Simulations =  500 

Sample Size « n - 20 

-FEST 
BIAS 

0.0 + 0.00000 

0.2 + 0.04180 
0.4 - 0.01285 

0.6 + 0.00005 
0.8 + 0.05764 

1.0 + 0.15529 
1.2 ■«- 0.31463 
I.A + 0.68591 
1.6 + 1.18606 

1.8 + 1.04786 

2.0 + 1.26325 

MEAN UOUAkE- 

ERROR OF    rn(x) 

0.00000 
0.04764 
0.08097 
0.12260 
0.22584 
0.41857 
.1.08971 
3.67826 

23.28767 
9.86327 

104.11156 

NUMBER ÖT 
INFINITIES 

0 
0 
0 
0 
0 
0 
0 
2 

24 
86 

159 
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TABLE IX 

a «=  2.0 

MLE FOR INCREASING FAILURE RATI WHEN TRUE 
DISTRIBUTION IS THE WEIBULL DISTRIBUTION 

F(t) - 1 - e 

Number of Simulations ■ 500 

Sample Size =» n = 20 

-x 

MEAN MEAN SQUARE NUMBER    OF 
X BIAS ERROR OF    r   (x) 

n INFINITIES 

0.0 + 0.00000 0.00000 0 
0.2 + 0.08906 0.03585 0 
0.4 + 0.07154 0.09127 0 
0.6 + 0.07192 0.18479 0 
0.8 + 0.15319 0.36775 0 
1.0 + 0.32118 0.84297 0 
1.2 + 0.57333 2.19050 1 
1.4 + 1.45527 26.21926 17 
1.6 + 1.16589 9.95119 113 
1.8 + 1.52419 39.64151 223 
2.0 + 0.12816 2.52929 342 
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TABLE   X 

a «  2.0 

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIBUTION' 
THE WEIBULL DISTRIBUTION 

F(t) - 1 - e 

Number of Simulations * 500 

Sample Size = n » 20 

-x 

MEAN MEAN SOUAFE NTVRER 0" 
X BIAS ERROR OF r (x) 

n 
TN.rTVT^TC? 

[ 

0.0 + 0.00000 0.00000 0 
0.2 + 0.09201 0.03649 0 
0.4 + 0.06967 0.08389 0 
0.6 + 0.04531 0.15483 0 
0.8 + 0.10356 0.31729 0 
1.0 + 0.26524 0.81702 0 
1.2 + 0.54895 2.30813 1 
1.4 + 1.57024 28.33272 17 
1.6 -t- 1.22317 10.29591 113 
1.8 + 1.58241 39.89294 223 
2.0 + 0.13982 2.62531 342 

4 
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TABLE XI 

a - 2.5 

MLE FOR INCREASING FAILURE RATE WHEN TRUE 
DISTRIBUTION IS THE WEIBULL DISTRIBUTION 

F(t) - 1 - e 

Humber of Simulations - 500 

Sample Size » n » 20 

-x 

MEAN MEAN SQUARE NUMBER OF 
X BIAS ERROR OF r (x) 

n 
INFINITIES 

0.0 + 0.00000 0.00000 0 
0.2 + 0.06873 0.02436 0 
0.4 + 0.1106A 0.07822 0 
0.6 + 0.09774 0.18706 0 
0.8 + 0.19814 0.49999 0 
1.0 + 0.43034 1.39276 0 
1.2 + 1.08370 8.84637 1 
1.4 + 2.47167 58.14368 68 
1.6 + 2.12447 78.06147 222 
1.8 - 0.17729 7.53517 385 
2.0 - 1.62648 4.42413 467 
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TABLE XII 

o » 2.5 

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIBUTION IS 
THE WEIBULL DISTRIBUTION 

F(t) - 1 - e 

Number of Simulations = 500 

Sample Size « n « 20 

-x 

MEAN MEAN SQUARE NUMBER OF 

X BIAS ERROR OF r (x) 
n 

INFINITIES 

0.0 + 0.00000 0.00000 0 
0.2 + 0.07079 0.02546 0 
0.4 + 0.11355 0.07525 0 
0.6 + 0.08569 0.16751 0 
0.8 + 0.15261 0.42956 0 
1.0 + 0.37411 1.35641 0 
1.2 + 1.10588 9.49925 1 
1.4 + 2.62338 69.11603 68 
1.6 + 2.22374 78.52692 222 
1.8 - 0.16100 7.47486 385 
2.0 - 1.60758 4.27771 467 
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TABLE XIII 

a - 3.0 

MLE FOR INCREASING FAILURE RATE WHEN TRUE 
DISTRIBUTION IS THE WEIBULL DISTRIBUTION 

F(t) • 1 - e~X 

Number of Simulations * 500 

Sample Size - n - 20 

MEAN MEAN SQUARE NUMBER OF 
X BIAS ERROR OF r (x) 

n 
INFINITIES 

0.0 + 0.00000 0.00000 0 
0.2 + 0.03376 0.01045 0 
0.4 + 0.11782 0.05387 0 
0.6 + 0.13871 0.21125 0 
0.8 + 0.20063 0.55209 0 
1.0 + 0.538A1 2.08249 0 
1.2 + 1.85227 21.50619 5 
1.4 + 2.00208 25.27304 140 
1.6 + 0.89666 62.18391 354 
1.8 + 0.20132 100.25058 471 
2.0 - 2.28445 6.30387 498 
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TABLE XIV 

a -  3.0 

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIBUTION IS 
THE WEIBULL DISTRIBUTION 

F(t) ■ 1 - e 

Number of Simulations » 500 

Sample Size =■ n = 20 

MEAN MEAN SOUARE NUMBER OF 
X BIAS ERROR OF r (x) 

n 
INFINITIES 

0.0 + 0.00000 0.00000 0 
0.2 + 0.03A67 0.01093 0 
O.A + 0.122A9 0.05486 0 
0.6 + 0.13366 0.19345 0 
0.8 + 0.16158 0.48076 0 
1.0 + 0.48233 2.03612 0 
1.2 + 1.95784 23.51841 5 
1.4 + 2.17050 27.00391 140 
1.6 + 0.93123 62.01564 354 
1.8 + 0.19225 100.29024 471 
2.0 - 2.28445 6.30387 498 
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