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ABSTRACT

Several nonparametric estimators of the failure
rate function, assuming that the true unknown
failure rate is increasing, are proposed and their
asymptotic properties compared. Finite sample
comparisons are made using Monte Carlo methods,
Recommendations are made for the benefit of
potential users.



1, INTRODUCTION

In many statistical studies involving failure data, biometric mortality
data, and actuarial mortality data, the failure rate r(x) = £(x)/[1 - F(x)] ,
(corresponding to a lifetime distribution with density £(x) and distribution
function F(x)), is of prime importance. A problem of considerable interest,
therefore, is the estimation of the failure rate function from a sample of n
independent identically distributed lifetimes. Many observed failure rate function
estimators seem to first decrease and then increase (are U-shaped) or simply
increase or decrease. For simplicity, we will confine attention to monotone

\
failure rate functions. (The U-shaped case can be estimated by suitably modifying
the monotonic estimators, see for example Bray, Crawford and Proschan [4] and
Barlow [1, pp. 60-61].)

In most cases, of course, the mortality data wiil be incomplete. Hence, we
require estimators which can cope with incomplete data and which will, in some
sense, be efficient. The efficiency of a method may be expressed by its meaﬂ\
square error, and one wants naturally an estimate of high efficiency. We q%ll
compare several nonparametric estimators of the failure rate function on the basis
of their asymptotic mean square error for large sample sizes, as well as their
Monte Carlo mean square error computed for small sample sizes.

Parametric and nonparametric methods for estimating the failure rate function
are discussed in detail by Grenander [ 5]. He also characterizes the max%mum
likelihood estimate (MLE) of the failure rate function under the increasing failure
raée (IFR) assumption. The MLE can be easily computed even for very incomplete

data (withdrawals may be allowed for example). If a total of n items are exposed

to risk, failures are observed at times

2, <Z, <€ .00 € (k < n)



and n(u) is the number of items exposed to risk at time u , then the MLE

estimate for the failure rate, r(t) , can be expressed as a step function, whero

= 1
(1.1) rn(t) = rn(Zi) Zi <t < Zi+l
i B 2 Zk
and
(1.2) En(zi) = Max Min zt -3 .
sct 2041 ) T34l
) / n(u)du
j=s
VA
b

Marshall and Proschan [ 6] proved that ;n(t) is strongly comsistent in the
complete sample case.
Prakasa Rac [ 7] has characterized the limiting distribution of %n(t)

L
assuming r(t) increasing and r (t) > 0 . He shows that

pY 1
(1.3) ¥ n3{—,§—f-)(%(——)-}3 ERCERIOH RIS
r (t)r (t

where H(x) 1is a distribution whose density is determined implicitly as a

solution to the heat equation. This result enables us to make asymptotic

comparisons with other nonparametric estimators of the failure rate function.
The main deficiencies of the maximum likelihood estimate as defined in

(1.1) and (1.2) are:
_1
(1) According to (1.3) the MLE converges like n : while many estimators

1

for parametric models converge much faster; c.o., live n

<
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(2) Some failure times must be observed to use (1.2) whereas in practice
we often know only the number of failures within prescribed intervals.
However, this criticism is partially unfair since the MLE estimate for
discrete IFR distributions could be used in this situation (see

Marshall and Proschan [ 6], pp. 76-77).

Watson and Leadbetter [ 9] study nonparametric estimators for the fajlure
rate function which perform better, asymptotically, than the IFR maximum likelihood
estimator. However, their estimator will in general be very 'ragged" and certainly
not monotonic even though we may feel that the true failure rate function is

be a subdivision of [0,2) . Let

o] . < < LS
onotonic Let O wO,n wl,n w2,n

Fn be the empirical distribution function corresponding to an ordered sample

=X <X, <X, <... <X
[»]

from F ; i.e.,

0 x<Xl
F (x) = 1 X, <x <X
n n i-=- i+l
1 N X .
- n

Watson and Leadbetter [9 ] study the estimator

Fn(wi.-+-1.n) " Fn(wi,n)
W1.<|-1,n B wi,n)[l - Fn(wi,n)]

Ta (x) = (

-a 1
where wi,n <x < wi+1,n . Let w1+1,n - wi,n cn for 5 <a <1l, They

show that asymptotically, as n + =




v l-a
N
(1.4) f{[—i—f(-%‘lj n 2 (e (x) - r(x)]¢ + N(0O,1)

where N(0,1) stands for the normal distribution with mean 0

1f we compare (1.3) and (1.4), we see that rn(x) will be osymntotically

more efficient than the MLE for IFR failure rate functions when o < 3 ;

Intuitively, it seems reasonable that if we can "smooth" rn(x) go that it is

monotonic, we will be able to improve on the IFR maximum likelihood estimate.

and variance 1 .
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2. MONOTONIC REGRESSION ESTI1MATORS

Let 0 = Y. n < V1.0 < epa o) oS wi,n < +.s be a subdivision of [0,x)

-]
and un{wj,n} a sequence of weights on {wj,n}j=0 . Assume Vi Sx<w

We consider two basic or initial estimators for the failure rate function, namely,

i+l,n °

F ( )= F (v, )

n wi+14n n _di,n

wi+1,n - wi,n)[l - Fn(wi,n)]

(2.1) rn(x) =T

and

~log [1 ~F (w, )] +1log [1 = F (w, )]
(2.2) ¢n(x) i n i,n n i,n .

Yi+41,n ~ Yi,n

We call ¢n(x) the "graphical" estimator since it is motivated by the fact that

wi+1,n
f r(udu = -log [1 - F(u,,, )] + log [1 - Fw, )] .

wi,n

The monotone increasing regression estimators corresponding to (2.1) and (2.2)

and weights u{wi n} >0 for i=1,2, ... are
’

t-1
) rn(wj’n)un{wj’n}
(2.3) r (x) = Min Max =s 1
. t>i+l s<i -
- - ) un{wj i
i=s ’
and
t-1
) ¢n(wj n)un{wj’n}
(2.4) 3 (x) = Min Max == ) :
5 £>1+1 s<i T e
un wj,n

i=s




(Monotone decreasing regression estimators correspond to interchanging the
Min and Max operatiovns.) It is easy to verify that both Qn(x) and $n(x)
are nondecreasing functions of x . It can also be shown that if r(x) 1is the
true nondecreasing failure rate function, then, in a certain sense, ;n is
closer than L to r and $n is closer than ¢n to r .,

We shall see that the maximum likelihood estimate for r(x) suggests the
total time on test weights. Suppose we take as our grid, the order statistics
0: Ko < Xy € eer <X and

1
Xyl =g (- DXy = X)) = [1-FXOIK ) - X)) .

Then rn(x) becomes, for Xi <X < xi+l y
t-1
L ora (ML= FL &)X, = X))
(2.5) r (x) = Min Max i=2_
n t>i+] s<i tgl [1<F (X)]( )
§ s Xy Ky = Xy
or
(2.6) fn(x) = Min Max - t-s .
t>1+1 s<i
- = st (n - j)(xj+1 - Xj)

We recognize (2.6) as the IFR MLE (1.2) when we have a complete sample. Thus,
the IFR MLE is a special case of a monotonic regression estimator. Note that

(n - 1)(X - Xi) {3 the total time on test between the ith and (i + 1l)st

i+1
failure. For arbitrary girds (2.5) becomes




- F(w, )=F (w )
(2.7) r (x) = Min Max iy n_t.n L0 .
TomMed T e ) - v, )
- - jas n wj,n wj+1,n wj,n

If we choose un{wi,n} = (wi+1,n - wi,n) and use the graphical estimator,

then (2.4) becomes

Jiog [T = F (v, 01+ log [1-F (v )]

Al

(2.8) ¢ (x) = Min Max T
" t>i+l s<i Ye,n T Ys,n

Although we consider only monotonic regression estimators of the form (2.7)
or (2.8) it is clear that we have a whole zoo of possible estimators. We are at

liberty to choose the basic estimators, rn(x) , the grid {wi n}w and the
' 1=1
weights un{wi n} >0. In| 2) it is shown that ;n(x) and 5n(x) converge

to r(x) as n + » under very general conditions on the grid size, etc.




3. ASYMPTOTIC RESULTS

In order to make asymptotic comparisons, we consider grids with spacings of

-Q

the type w = cn for ¢ >0 and 0 <a < 1.

i+l,n - w1,n

It can be shown that the estimator, rn(x) » given by (2.1) is asymptotically

normal with mean

(3.1) r(x) + é%.EﬁE%%§§§l c2n—2a + O(n-3a)

and variance

2 a-1
r’(x)n -1
(3.2) £ (%) + 0(n 7) .

Hence, the mean square error (MSE) of rn(x) is approximately

2
2 a=-1 2
I (xX)n cTr(x)f"(x) -ba
3.3 MSE [rn(x)] £ (x) +-[ 24E () ] n

For 1/5§ < a <1

1=a
(3.4) -'%:{-’)an 2 [r () - £())

has asymptotically a N(0,1) distribution, while for 1/7 < a < 1/5

1-a
Yo E(x) 2 ~2a T
(3.5 :§x§ n 2 [rn(x) - rx) - <& ;£X)E (xl]

is asymptotically N(0,1) .

It is show in [3] that for 0 < a < 1/3 and r'(x) > O

"

MSE [En(x)] MSE [r_(x)]




asymptotically so that asymptotically the monotonic regression estimator is no
more efficient than the basic estimator, rn(x) . However, as we pointed out
earlier, if the true failure rate is nondecreasing, the monotonic regression
estimator will be '"closer" to the true failure rate, at least for small samplé
sizes, than the basic estimator. However, 1f the true distribution is
exponential, the monotonic regression estimator will converge like n—% for
any choice of a(0 < a < 1) [see [3]]. Note that in this case even the

IFR MLE is superior to the basic estimator.

It is shown in [ 3], that the estimator ¢n(x) is asymptotically normal

with mean
(3.6) r(x) +'é% t"(x)czn—za + O(n-3a)
and variance
2 a-1
(3.7) r@n gl
-a
nen  £(x)

For 1/5<a<1l, ¢n(x) is asymptotically equivalent to rn(x) . Howevc -,

for 1/7 < a < 1/5

l=a

2 ”" iy
3.0 BB T [y - ro0 - L2 0]

is asymptotically N(0,1) . Note that (3.5) and (3.8) differ in the bias term,
Asymptotically, for 0 <a < 1/3, $n(x) and on(x) are equivalent. However,

the same remarks concerning fn(x) apply to $n(x) . Therefore, if the true

failure rate is nondecreasing,we would prefer $n(x) to on(x) with 0 <a < 1/3.
The mean square error of both rn(x) and ¢n(x) are minimized when we

choose a = 1/5 . Therefore, on the basis of asymptotic considerations, we would

recommend using either fn(x) or $n(x) with o = 1/5 . However, this is not




1C

too helpful since the optimum choice of ¢ would still depend on the true
failure rate function which is of course unknown. The MLE takes care of this

problem by choosing Yin~ Xi » the 1ith order statistic from our sample. One
»

might modify the MLE by choosing Win" X 8 where [ ] denotes the
’
[in"]

greatest integer in the quantity within the brackets anci B=1-a . Hence,

8
X X .o(l‘—).o %,
p\n p

[a+Dnf1  [e?

and by choosing a = 1/5 , we realize the recommended requirement.
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4, NUMERICAL RESULTS

Asymptotic investigations indicate that we should use either ;n(x) or ;n(x)
with a = 1/5 . However, for this choice of a , ;n(x) and ;n(x) are not
asymptotically equivalent., They differ in their bias terms. In general, we Qill
prefer ;n(x) if r 1is "nearly" linear in a neighborhood of x and ;n(x) i if
is "nearly" linear in a neighborhood of x .

In order to choose between &n(x) and ;n(x) , several numerical investiga-
tions have been made. The most extensive numerical investigations have been
conducted by Watson and Leadbetter [8 ] and [9]. They did not consider monotonic
regression estimators except for the IFR MLE estimator. They obtained the best
results from a "heuristic graphical" estimator. To obtain this estimator, they
plot -log [1 - Fn(x)] against x . A smoot: curve is then drawn through these
points and its slope determined, perhaps just with a straight edge. This estimator,
by its construction, does not come with formulae for its mean and variance. The
estimator ;n(x) is similiar to this estimator except that the slopes of the
tangent lines are now required to be increasing. Because of this similarity, we
might expect the good results obtained for their heuristic estimator to carry over
for ¢n(x) .

Tables I and II present the mean square error of the IFR MLE, ;n(x) , and its
mean value when the underlying failure distribution is exponential with unit mean.
Since the estimator is always infinite beyond the largest observation, we have also
included the number of infinities obtained in the simulations.

Tables III and IV present the mean square error and mean value of the MLE
estimator assuming a U-shaped failure rate function when the underlying failure
distribution is exponential with unit mean. In the case of an infinite estimator
within the range of x values recorded, the estimator was assumed constant (not

‘infinite) beyond the last order statistic for which the estimator was finite. This

probably accounts for the large mean square error values for large x wvalues,




Tables V through XIV compare the graphical estimator and the maximum like®'l-
hood estimator using the grid determined by order statistics whern the true
distribution is a Weibull distribution. On the basis of mean square error
calculations, we can detect little difference in the two estimators.

These computer computations were performed by Tom Bray of the Boeing

Scientific Research Laboratories.

t—
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TABLE 1

MLE FOR INCREASING FAILURE RATE WHEN TRUE

DISTRIBUTION IS THE UNIT EXPONENTIAL DISTRIBUTION

Number of Simulations = 3000

Sample Size = n = 25

MEAN VALUE | MEAN SQUARE NUMBER OF

X OF En(x) ERROR OF %n(x) INFINITIES
0.10 0.606914 0.210603 0
0.20 0.814584 0.117653 0
0.30 0.886149 0.902205E-01 0
0.40 0.927219 0.835712E-01 0
0.50 0.962705 0.841033E-01 0
0.60 0.993960 0.869380E-01 0
0.70 1.02032 0.918217E-01 0
0.80 1.04681 0.101941 0
0.90 1.07076 0.112549 0
1.00 1.09374 0.126824 0
1.10 1.12219 0.157527 0
1.20 1.15558 0.239723 0
1.30 1.19133 0.428387 1
1.40 1.25097 3,72891 2
1.50 1.24791 0.392483 6

13




TABLE II

MLE FOR INCREASING FAILURE RATE WHEN TRUE

DISTRIBUTION IS THE UNIT EXPONENTIAL DISTRIRLTION

Number of Simulations = 250

Sample Size = n = 100

MEAN VALUE | MEAN SQUARE . NUMBER OF

X OF in(x) ERROR OF Z-n(x) INFINITTES
0.20 0.919915 0.268983E-01 0
0.40 0.974432 0.176583E-01 ¢
0.60 1.01091 0.151868E-01 0
0.80 1.0322¢ 0.199563E~01 0
1.00 1.05027 0.241104E-01 0
1.20 1.06319 0.265414E~01 0
1.40 1.07543 0.307885E~01 0
1.60 1.09109 0.364013E-01 0
1.80 1.12102 0.581159E-01 0
2.00 1.14981 0.797719E-01 0
2.20 1.18126 0.106373 0
2.40 1.22572 0.161607 0
2.60 1.27003 0.236557 0
2.80 1.30381 0.259973 2
3.00 1.43084 0.686589 2




Sample Size = n = 25

TABLE III

MLE FOR U-SHAPED FAILURE RATE WHEN TRUE DISTRIBUTION
IS THE UNIT EXPONENTIAL DISTRIBUTION

Number of Simulations = 150

HEANAVALUE
OF rn(x)

MEAN SQUARE
ERROR OF £ _(x)

1.29297
1.08526
0.959894
0.937388
0.890439
0.877699
0.864808
0.835557
0.828066
0.788042
0.758739
0.782102
0.836567
0.820652
0.824013
0.922699
1.04247
1.17449
1.63692
1.83803
4.56656
5.06498
5.74322
8.96341
9.17613
9.51944
9.77481
9.80845
9.80993
9.81614

0.549797
0.381039
0.314845
0.302800
0.273362
0.253101
0.232931
0.228444
0.220882
0.249237
0.266121
0.257277
0.215058
0.253918
0.265950
0.324050
0.439205
0.861991
17.6990
18,7647
502.373
514.575
549.582
1544.13
1545.75
1550.91
1556.98
1557.00
1557.00
1557.01

| NUMBER OF
INFINITIES

—
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TABLE IV

MLE FOR U-SHAPED FAILURE RATE WHEN TRUE
DISTRIBUTION IS THE UNIT EXPONENTIAL DISTRIBUTION

Number of Simulations = 100

Sample Size = n = 50

HEAN“VALUE MEAN SQUAI}E NUMBER OF
x OF rn(x) ERROR OF rn(x) INFINITIES

0.05 1.16594 0.265775 0
0.10 1.04175 0.164489 0
0.15 1.00883 0.148645 0
Q.20 0.994515 0.108994 0
0.25 0.961543 0.128702 0
0.30 0.956456 0.124807 0
0.35 0.888189 0.164545 0
0.40 0.860720 0.174514 0
0.45 0.852992 0.187309 0
0.50 0.845861 0.205879 0
0.60 0.849351 0.219402 0
0.70 0.940997 0.122661 0
0.80 0.943531 0.127397 0
0.90 0.915578 0.159765 0
1.00 0.910690 0.162759 0
1.29 0.936932 0.143381 0
I1.40 0.952359 0.165201 0
1.60 1.00287 0.168174 0
1.80 1.06294 0.212498 0
2.00 1.10732 0.328394 0
2.20 1.13930 0.389655 0
2.40 1.46696 5.32901 2
2.60 1.50744 5.38283 2
2.80 1.70013 6.04579 2
3.00 1.97122 8.75948 6
3.20 2.65745 23.2704 14
3.49 2.77963 23.8924 21
3.60 2.86158 24.2406 27
3.80 2.91245 24,3000 29
4.00 2.98504 24,4582 34
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TABLE V
a0 =1

MLE FOR INCREASING FAILURE RATE WHEN TRUE
DISTRIBUTION IS THE WELBULL DISTRIZUTION

a

F(t) =1-¢ "
Number of Simulations = 500
Sample Size = n = 20
MEAN MEAN SQUARE NUMBER OF
x BIAS ERROR OF rn(x) ' UINFINTTIES
|
0.0 | + 0.00000 0.00000 : 0
0.2 | - 0.17781 0.11695 0
0.4 | + 0.08053 0.08095 0
0.6 | + 0.00269 0.10185 | 0
0.8 | + 0.06714 | 0.13693 ‘ 0
1.0 | + 0.12675 0.17096 | 0
1.2 | + 0.18478 0.26036 . 0
1.4 | + 0.23401 0.32004 i il
1.6 | + 0.37319 0.90744 | i
1.8 | + 0.48808 1.54212 | 7
2.0 | + 0.62947 4.67073 | 23

[
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TABLE VI

a=1

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIBUTION

THE WEIBULL DISTRIBUTION

a
F(t) = 1 - e X

Number of Simulations = 500

Sample Size = n = 20

MEAN MEAN SQUARED
x BYAS ERROR OF r_(x) . TNFINITI®S
0.0 + 0.00000 . 0.00000 0
0.2 - 0.22220 0.11886 0
0.4 - 0.14343 0.08153 0
0.6 - 0.06969 0.09808 0
0.8 - 0.01284 0.12645 0
1.0 + 0.04850 0.16330 0
1.2 + 0.11063 0.25271 0
1.4 + 0.17110 0.32801 1
1.6 + 0.32720 0.96436 1
1.8 + 0.45788 1.63002 7
2.0 + 0.60703 4.76836 23

18




TABLE VII
a=1.5

MLE FOR INCREASING FAILURE RATE WHEN TRUE
DISTRIBUTION IS THE WEIBULL DISTRIBUTION

a
F(t) =1 - e X

Number of Simulations

Sample Size = n = 20

“MEAN MEAN SQUARE NUMBER OF
x BIAS ERROR OF rn(x)1 INFINITIES
0.0 + 0.00000 0.00000 0
0.2 + 0.04326 - 0.05232 0
0.4 + 0.00724 0.09421 0
0.6 + 0.04241 0.14567 0
0.8 + 0.11443 0.25389 0
1.0 + 0.21644 0.43585 0
1.2 + 0.35952 1.06299 0
1.4 + 0.68761 3.39264 2
1.6 + 1.15985 23.00837 24
1.8 + 1.02670 9.71217 86
2.0 + 1.24338 103.99067 159

19




TABLE VIII

a=1.5
GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIBUTION IS
THE WEIBULL DISTRIBUTION
F(t) =1 - e
Number of Simulations = 500

Sample Size = n = 20

MEAN MEAN SQUARE NCHMBER OF
x BIAS ERROR OF rn(x) INFINITIES
0.0 + 0.00000 0.00000 0
0.2 + 0.04180 © 0.04764 0
0.4 - 0.01285 0.08097 0
0.6 + 0.00005 0.12260 0
0.8 + 0.05764 0.22584 0
1.0 + 0.15529 0.41857 C
1.2 + 0.31463 1.08971 0
1.4 + 0.68591 3.67826 2
1.6 + 1.18606 23.28767 24
1.8 + 1.04786 9.86327 86
2.0 + 1.26325 104.11156 159
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TABLE IX

a= 2.0

MLE FOR INCREASING FAILURE RATI YHEN TRUE
DISTRIBUTION IS THE WEIBULL DISIRIBUTION

F(t) =1 - e

a
X

Number of Simulations = 500

Sample Size = n = 20

MEAN MEAN SQUARE NUMBER OF
X BIAS ERROR OF rn(x) INFINITIES
0.0 + 0.00000 0.00000 0
0.2 + 0.08906 0.03585 0
0.4 + 0.07154 0.09127 0
0.6 + 0.07192 0.18479 0
0.8 + 0.15319 0.36775 0
1.0 + 0.32118 0.84297 0
1.2 + 0.57333 2.19050 1
1.4 + 1.45527 26.21926 17
1.6 + 1.16589 9.95119 113
1.8 + 1.52419 39.64151 223
2.0 + 0.12816 2.52929 342

21




F(t) =1 -¢e

Sample Size

TABLE X

a= 2.0

Q
X

Number of Simulations = 500

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIRUTION &3
THE WEIBULL DISTRIBUTION

H]

MEAN SOQUARE
ERROR OF rn(x)

NUVRER

T T T T e
L ENTRRES

COAPENODOEPTNS

NHHMRMHOOOCDOO
+++++++++++

0.00000
0.03649
0.08389
0.15483
0.317209
0.81702
2.30813
28.33272
10.29591
39.89294
2.62531

=HOOODOoOOoO

17
113
223
342




TABLE XI

a= 2.5
MLE FOR INCREASING FAILURE RATE WHEN TRUE
DISTRIBUTION IS THE WEIBULL DISTRIBUTION

o
F(t) = 1 - g

Mumber of Simulations = 500

Sample Size = n = 20

MEAN MEAN SQUARE ; NUMBER OF
x BIAS ERROR OF rn(x) [ INFINITIES
0.0 + 0.00000 0.00000 0
0.2 + 0.06873 0.02436 0
0.4 + 0.11064 0.07822 0
0.6 + 0.09774 0.18706 0
0.8 + 0.19814 0.49999 0
1.0 + 0.43034 1.39276 0
1.2 + 1.08370 8.84637 1
1.4 + 2.47167 58.14368 68
1.6 + 2.12447 78.06147 222
1.8 - 0.17729 7.53517 385
2.0 - 1.62648 4.42413 467

23




TABLE XII

a=2.5

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIBUTION IS
THE WEIBULL DISTRIBUTION

F(t) =1 - ¢
Number of Simulations = 500
Sample Size = n = 20
MEAN MEAN SQUARE NUMBER OF
x BIAS ERROR OF r (x) INFINITIES
n
0.0 + 0.00000 0.00000 0
0.2 + 0.07079 - 0.02546 0
0.4 + 0.11355 0.07525 0
0.6 + 0.08569 0.16751 0
0.8 + 0.15261 0.42956 0
1.0 + 0.37411 1.35641 0
1.2 + 1.10588 9.49925 1
1.4 + 2.62338 69.11603 68
1.6 + 2.22374 78.52692 222
1.8 - 0.16100 7.47486 385
2.0 ~ 1.60758 4.271771 467
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TABLE XIII

a=3.0
MLE FOR INCREASING FAILURE RATE WHEN TRUE
DISTRIBUTION IS THE WEIBULL DISTRIBUTION

a
F(t) =1-¢%

Number of Simulations = 500

Sample Size = n = 20

MEAN MEAN SQUARE NUMBER OF
X BIAS ERROR OF rn(x) INFINITIES
0.0 + 0.00000 0.00000 0
0.2 + 0.03376 0.01045 0
0.4 + 0.11782 ~ 0.05387 0
0.6 + 0.13871 0.21125 0
0.8 + 0.20063 0.55209 0
1.0 + 0.53841 2.08249 0
1.2 + 1.85227 21.50619 5
1.4 + 2.00208 25.27304 140
1.6 + 0.89666 62.18391 354
1.8 + 0.20132 1C0.25058 471
2.0 - 2.28445 6.30387 498
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TABLE X1V
a= 3.0

GRAPHICAL ESTIMATOR OF FAILURE RATE FUNCTION WHEN TRUE DISTRIBUTION IS
THE WEIBULL DISTRIBUTION

s ]
F(t) =1 -¢e %

Number of Simulations = 500

Sample Size = n = 20

MEAN MEAN SOUARE | NUMBER OF
X BIAS ERROR OF rn(x) INFINITIES
0.0 + 0.00000 0.00000 0
0.2 + 0.03467 0.01093 0
0.4 + 0.12249 0.05486 0
0.6 + 0.13366 0.19345 0
0.8 + 0.16158 0.48076 0
1.0 + 0.48233 2.03612 0
1.2 + 1.95784 23.51841 5
1.4 + 2.17050 27.00391 140
1.6 + 0.93123 62.01564 354
1.8 + 0.19225 100.29024 471
2.0 - 2.28445 6.30387 498
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