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Charles T. Nardo and Robert J. Cresci’
Polytechnic Institute of Brooklyn

ABSTRACT

ra

An experimental investigation has been conducted of the
viscous-~inviscid interaction occurring along the interior corner
of two intersecting flat plates under hypersonic, low density,

conditions.

The program involves the measurement of surface heat
transfer rates and surface pressures in the vicinity of a corner
with included angles of 60°, 90° and 120°, The interpretation
of these measurements gives rise to some understanding of
local flow behavior and, therefore, on the nature of the three-
dimensional boundary layer and shock shape within the corner
region, In addition, pitot and temperature surveys are conducted
in cross planes to obtain information pertaining tc the flow field

variables within the corner region, and also, the comalex shock
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I INTROP UCTION

The three-dimensional, low density, hypersonic flow occurring
in the interior corner of two intersecting flat plates represents a basic
flow configuration of significant interest to both experimental and
theoretical aerodynamicists, This particular flow configuration has
practical applicability in relation to lifting and controi.surfa.ces and
wing-body intersections of hypersonic flight vehicles at high altitudes.
Due to its current interest, a considerable amount of effort has been
devoted toward solving the complicated flow system within the region
of corner influence,

The inviscid flow field generated by corner intersections has
been studied quite extensively in its supersonic counterpart, cf,
references (1) through (4), however, the basic mechanism of inter-
action in hypersonic flow is quite different, In the supersonic case,
the interaction occurs vy virtue of the convergence of the two-dimen-
sional flows generated over each planar wedge surface, In the hy-
personic case, however, the interaction takes place due to the viscous-
inviscid interaction produced, since the shock layer and the boundary
layer are of the same order of magnitude under these conditions,
Therefore, one can no longer treat the boundary layer problem and
the shock layer problem independently since the two layers are in-
timately coupled, These coupling effects have made the theoretical
tr:’jeatment of this problem very difficult until quite recently, Even
with the development of the analyses of ref, (5) - (7), mgreover,
experimental data is required under a wide variety of concg.itions

to verify these analyses for the different flow regimes of interest.
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In addition, detailed fi_ ¥ field measurements are always necessary
in the determination of new techniques for improving existing analyses,
' The visccus layer in a rectangular corner has been studied
experimentally in the weak interaction regime ( X < 1 ) in reference
(8) and in the strong interaction regime in reference {9). The latter
research program was extended in reference (10) to include the in-
viscid flow field and also to determine the shock configuration in the
vicinity of the corner, The bifurcated shock configuration which
results is qualitatively similar to that achieved in reference (4) in
which there was negligible viscous interaction, This complex
shock shape has yet tc be verified analytically,

The current study presents an experimental investigation of
the low density, hypersonic flow in a non-rectangular corner formed
by two sharp, flat plates whose intersection line lies parallel to the
free stream velocity. Primary emphasis in this paper is placed on
the measurement of surface heat transfer rates, surface pressures,
and some flow field charzcteristics in the viscous and shock layers.
The tests were conducted at a free stream Mach number of 11,2 at

a Reynclds number of 1,5 x 104/in.  he flow field surveys were

conducted in planes perpendicular to the free stream at values of

{
the hypersonic interaction parameter ("T= Moo3 J_E/Rex )y of 2.5

and 5,0, The surface measurements correspond to valueos? of X be-
tween 1.5 and 17, Effects cf varying the interior corner angle between
600, 900, and 120° were also investigated,

Some results of the initial experimental programs in rectangular

corners were reported in references (9) and (10) in which measurements
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of heat transfer and pressure werc presented over a ranée of X of 1.0
through 17, The present paper presents an extension of these in-

itial investigations in order to give a moze complete picture of the
entire corner region (i.e., both viscous and inviscid layers), and,

in addition, to study the effects of non-rectangular corner geometries.
The previous data are compared with the measurerr;ents obtained in the
present program to provide a general picture of the effects of varying

corner geomeiry,
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II, MODEL DESIGN AND TEST PROCEDURES
The test model under consideration consists of two sharp
flat plates intersecting along a line parallel to the free stream,

cf,, fig, (1), The leading edges of both plates are unswept and are

R 4D

machined to a nose radius of less than 0,001 inches, The interior

e AT e N B

corner angle is adjustable to study the effect of corner geometry
on the flow field pattern within the corner region, The three angles

utilized in this program are 60°, 90°, and 120°, A schematic of

"y
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the model along with its internal instrumentation details is showu

in figure (1). This entire configuration is sting mounted in the

3 Mach 11, 2 blow down test facility (see figure 2) of the Gas Dyn-
amics Research Laboratory of PIB,

E To measure surface static pressures, thermal conductivity
type Hastings gauges are used, since in the range of static pre¢ssures
measured, namely 100-1000 microns, these transducers proved to
be the most accurate, The Hastings gauges are inserted directly
beneath the surface of the plate with a 1/16 inch diameter exposed

pressure orifice to achieve rapid response time, Surface heat

o au Ty T il
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transfer data is obtained from circular, stainless steel, shim-

Lo

stock disks which are inserted flush with the plate surface; 40

gauge Chromel-Alumel thermocoupie wires are spotwelded to the

tidbrg
v

underside of the disks, The heat transfer rate is therefore pro-

portional to the rate of change of temperature with time; the con-

stant of proportionality being related to the thickness and density

of the stainless disk, All instrumentation cables are located
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within the sting mount and passed through the tunnel wall through

vacoum fittings, The test data is recorded on Honeywell and
Bristol strip chart recorders and analyzed directly from these
permanent traces,

During the course of the experimental investigation, two
types of flow field survey rakes are used at the two cross planes
of interest, Rake No, 1 1is use& in the cross plane equivalent to
X = 2.5; this particular rake contained two stagnation pressure
probes, cf, figure (2), of 1/16 inch outside diameter, For a
constant value of z, obtained by adjusting the vertical plate with
respect to the probe centerline, variations in the y coordinate are
obtained through the use of a gear and pinion device manipulated
external to the tunnel, In this manner, the tunnel pressure is
maintained on the order of a few millimeters of Hg between tests
which increases the testing frequency. To record pitot pressures,
variable reluctance transducers are used since the pitot pressure
level is somewhat higher than the surface pressures, The particular
transducers used have a range of 2-40 millimeters of Hg., Total
temperature probes are also used on the same rake after completion
of the pressure tests, These probes are of the open tip variety, con-
structed from 40 gauge Cromel-Alumel wire with a distance of 0, 30
inches between end supports., This configuration was found to give
minimal end support interference and relatively fast response times,

Rake No, 2 is used to examine the flow characteristics in a
cross-plane corresponding to X = 5,0 {see figure 2), This seem-

ingly complex configuration is necessary for probe rigidity and to
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minimize the rake support interference, Both pitot and total tem-

R

perature probes are insertea in this rake on alternate test series,

B

It is found that 1/16 inch diameter tubing is sufficiently large to

R T S

give fast response times and negligible viscous effects, vet small

enough to give an accurate location of the shock position (as deter-

TR

mined by a region of rapidly varying pitot pressure),

i~

The overall accuracy of the data obtained is established by

Lo o
L—

instrumentation accuracy and repeatability of test data., The tem-
perature data is believed to be within + 5 % of its true value. No
k effort was made to correct the temperature data for the actual re-

' covery temperature since the experimental scatter exceeds this ‘

correction and, in addition, all temperatures are normalized with

respect to the free stream stagnation temperature, This reduces

the errors introduced by omitting the correction due to the recovery

] factor, The pressure data is accurate to within + 10 %. It should

be noted that Statham strain gauge transducers are used in regions
where the stagnation pressure is expected to exceed the upper limits
of accuracy of the reluctance transducers, Where the range of valid-
ity of the pressure transducers overlapped, readings from both types
are used to determine repeatability and overall accuracy,

The horizontal plate is aligned to within + 10 min, of angular

deflection in the tunnel, however, the vertical plate presented some

difficulty in this connection, Alignment is performed mechanically

TOETCTY T

with respect to the tunnel walls, and then checked aerodynamically
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by examining the symmetry of the data obtained on both surfaces,
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It may be noted that in the 60° configuration, a 10 % error results
in the shock displacement distance from the fin surface. Both the
90° and 120° corners, however, produce errors less than 4 %.
Even for the 60° configuration, moreover, this inaccuracy is not
sufficient to alter the general flow field characteristics within
the corner envelope of interest,

The test procedure is carried out as follows:

(i) Check calibrations of all pressure transducers are obtained
during the tunnel pump down phase, and compared to the calibration
curves obtained before'the test,

(ii) The pebble bed heater is then pressurized, the throat
valve withdrawn, and the tunnel started, Test times of 3-4 seconds
proved sufficiently long so that both pressure and temmperature measure-
ments achieved steady state values,

(iii) Following each test, the tunnel test section is allowed to
reach a steady state condition and an additional calibration check is

taken; the tunnel is then pumped down for the next test.
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ilI, PRESENTATION AND DISCUSSION OF EXPERIMENTAL DATA

The initial portion of this experimental program was devoted
] toward the study of the two-dimensional flow field characteristics
corresponding to large lateral distances from the corner, Data

pertaining to flat plate overpressures, Stanton number, and skin

. friction coefficient were reported and compared to available thecretical

analyses in reference (9) consequently, these data will not be repeated

here.

In addition 10 the pitct pressures and stagnation temperatures
measured within the corner layer, one is also interested in obtain-
ing the static pressure to determine local Mach no., velocity, ctc,

; Unfortunately, due to the flow angularity and viscous interference

' on the static probe, this information was not attainable in this test

program,

The surface static pressures, however, were obtained and
‘5 are shown in figure (3) for X = 5,0, It is noted that the data peaks
at some distance away from the corner and then asymptotes to the
local two-dimensional value far from the region of corner influence,
The two-dimensional theoretical values are obtained from ref, (11)

and (12). As the corner angle decreases, the peak moves away from

g ML s
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the corner and increases in magnitude, For the 120° configuration,

little overshoot is observed in the surface pressure,
The surface heating rates are presented in figures (4a) through
(4d) as a function of distance from the corner, for various values of

X and included corner angles, Similar data were obtained in refer-

e Cras S 1)
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ence (9) for the 90° configuration which is included here for com-
parison, The typical behavior can be observed in figure {(4a); the
heat transfer increases from zero at the corner to a peak value above
that of a two-dimensional flat plate and then decreases to the flat plate
value far from the corner. For the smaller included angles, higher
peak heating rates result and, in addition, the location of the peak
occurs further from the corner., This is consistent with the behavior
of the surface pressure data where the corner region of disturbance
is also more extensive for the smaller included angle. The location
of the peak value of Stanton number with respect to the local two-dim-
ensional boundary layer thickness is noted in figare (4) where the
boundary layer thickness for an infinite plate is included correspond-
ing to each value of X. The peak seems to occur approximately at a
distance equal to the two-dimensional boundary layer thickness from
the corner, The peak is further from the corner for « = 60° and
slightly closer for » = 120%; in fact, the location of the maximum
heating appears to closely correspond to the projection of inter-
section of the undisturbed two-imensional boundary layer edges

on each surface,

The peak heating rates in teims of the maximum Stanton num-
ber are shown in figure (5) as a function of ‘,—{including the data of
reference (9) and the lower Mach number (Muo = 8,0) data of refer-
ence (13), As i decreases (in the downstream direction) the peak
value decreases and its location also moves away from the corner,

As the included angle increases, the overall heat transfer approaches
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that of a two-dimensional plate with only an extremely small region
of low heat transfer into the immediate corner region, The zero inter-
action, boundary layer analysis of reference (14) is also shown in this
figure for comparison, It can be observed that two different theoretical
curves result from this analysis for the two sets of data obtained at
different free stream Mach numbers, This occurs since the heat
transfer parameter that correlates with the viscous interaction
parameter (;) isM ;St rather than the Stanton number alone if there
is no vizcous interaction, In either case, the two-dimensional data
agrees quite well with the boundary layer theory for low ; The
experimental data for the 60° and 90° angles, however, appear to
correlate directly in terms of St for both s2tz of data, indicating that
the peak heating is dominated more by the three-dimensional, strong
interaction effects in the corner than by usual boundary layer behavior
even at lower values of )Z

Typical pitot pressure profiles are shown in figures (6a) through
{6i} for both the 60° and 90° corners at;(. = 5,0, The value indicated
for the "y coordinate is measured from the fin surface; therefore,
for the 60° corner, constant values of "z" do not correspond to a
profile normal to the plate but to one inclined at 60° to the surface.
Fig, {6i) shows the complete two-dimensional profile far from the
corner correspondly to a completely two-dimensienal flow ( y = 900) .
Since the data for ~= 60°, along a line of constant "'y, does not
correspond to a profile normal to the fin surface, this data was plotted
as a function of the actual normal coordinate (z sin -} to facilitate com-

parison between the two profiles, It is observed, as noted previously,

10
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that the two-dimensional shock location on the fin for the 60° corner
is slightly less than for the 90° coruer; this is due to a slight mis-
alignment of the fin,

From the surface static pressure distribution of figure (3)
and the pitot pressures close tc the wall, the local skin friction
coefficient can be ohbtained, These data are shown in figure (7) for
= 60° and = 90°, at -)Z = 5,0; skin friction ccefficient times the
square root of Reynolds number is plotted versus the distance from
the corner, It is observed that the magnitude of the peak does not
change significantly, however, the distribution does, For the smaller
corner angle, the éeak skin friction moves outward and exhibits a some-
what slower decay to the local two-dimensional value,

The location of the imbedded shocks can be determined quite
accurately from the pitot pressure plots as the region where 2 "dis-
continuity' in pitot pressure results; this "discontinuity' is smeared
slightly due to the finite probe diameter. In figure (6e), for example,
the v = 90° configuration indicates a strong shock wave atz = 1,15
inches and a weaker wave at z = 1,05 inches, Comparison of the
data for the two different corner angles shows a distinct difference
in the flow behavior, For the 60° angle, the shock waves are sig-
nificantly stronger as characterized by the greater jump in pitot
pressure across them, Due to the complicated nature of the flow
in the corner, it is difficult to establish the overall shock pattern
and general flow behavior from these plots. One can get a better

picture of the entire flow pattern if one examin~s, for example, a

11
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cross section of the corner region including contours of constant pitot
pressures, This is shown in figure (8) for both corner angles at
.)-(. = 5, The differences in the shock pattern for the two corner angles
is made more obvious in these plots, For the 90° corner, the bi-
furcated shock in the corner intersects the two-dimensional shock
and appears to generate two additional shock waves at each end; one
approaches the plane of symmetry and is rapidly attenuated while the
other approaches the plate surface and extends into the boundary layer,
In the 60° configuration, however, the extent of the bifurcated shock is
decreased considerably and generates only one additional shock at its
point of intersection with the two-dimensional shock wave, This shock
also extends into the boundary layer and is considerably stronger than
in the 90° case. The two pitot pressure peaks existing in the 90° cor-
ner have also degenerated into one peak (of larger magnitude) in the 60°
corner region,

Stagnation temperature profiles were also obtained and are
shown in figures (9a) through (9d) for o= 60° and 90° and at X = 5.0.
The region of corner influence on the stagnation temperature is con-
siderably smaller than either on the pitot pressure or on the heat
transfer since here the variation is confined completely to the vis-
cous layer, The behavior in this case is quite similar to that obtained
in the 90° corner a.t_).( = 2,5, cf, reference (9), where a high temper-
ature core occurred in the immediate vicinity of the corner. Again,
to facilitate the ease with which one may interpret the data, stagna-
tion tempeature contours in the 60° and 90° corner for-)z = 5,0 have

been plotted and are shown in figures (10a) and (10b).

)
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IV, CONCLUSIONS

An experimental investigation of the hypersonic interaction

wvasrohie B R SMA i

flow along the interior corner of two intersecting flat plates has been
presented. From these results, once can draw several major con-
clusions. (i) The surface measurementis of pressure and heating

'
rates indicate a region of high pressure and high heat transfer in
the immediate vicinity of the corner. Moreover, the ratio of local
peak values to the value far from the corner increases with down-

stream distance (decreasing -}Z). (ii) Although the skin friction co-

efficient decreases to zero as cne approaches the corner, the ex-

DRI SR N P PN, TIPS W WL A NUPRRT Y R T T N

tremely high overshoot ia the immediate vicinity of the corner results
in integrated values of skin friction which increase the total drag co-
' efficient of the corner configuration, (iii) The effect of decreasing
the corner interior angle results in a larger envelope of corner dis-
turbance and higher overshoots of surface pressure, heat transfer,

and skin friction thereby discouraging design configurations including

this type of surface intersection.
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