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BOUNDARY LAYER STABILITY AND TRANSITION

by Eli Reshotko
Case Western Reserve University
Cleveland, Ohfo

INTRODUCTION .

We are indebted to Prandtl (1904) for introducing us to the
notion that in flows over solids at high Reynolds numbers ("bei gehr
kleiner Reibung"), the effects of viscosity are important only in a
thin layer in the neighborhood of the boundary of the solid. That
this boundary layer flow was not necessarily laminar but could also
be turbulent was pointed out in early experiments by Froude, Eiffel
and Prandtl. While for flat plates, the suspected turbulence resulted
in larger values of skin friction than in laminar flow, the drag
coefficient of a sphere displayed a dramatic decrease beyond a "eriti-~
cal” Reynolds number. Prandtl (1914) successfully explained this
latter phenomenon as resulting from the transition of the flow in the

sphere's boundary layer from laminar to turbulent ahead of separation.

" The ability of the turbulent boundary layer to sustain larger adverse

pressure gradients than laminar boundary layers moved the separation
point downstream increasing the degree of flow attackment and conse-
quently reducing the drag.

It is scen even from these early examples that the understanding
and prediction of the flow characteristics of vehicular shapes requires
knowledge of transition behavior in addition to the characteristics of
laminar and turbulent boundary layers. Nowadays, we have many more
such examples over the entire range of aerodynamic speeds, from Mach
number zero to the limits of our hypersonic experience.

An early hypothesis on the mechanism of transition from laminar
to turbulent flow is that due to Reynolds and developed further by
Rayleigh. This hypothesis, that transition is a consequence of iastabil-
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ity of the laminar boundary layer, remains most highly regarded by
workers in the field. It has certainly stimulated much theoretical
and experimental work in boundary layer stability. (See Betchov and
Criminale 1967 for a fairly up-to-date summery of this work). The
excellent agreement between the boundary layer stability experiments
of Schubauer and Skramstad (1943), Liepmann (1943), Laufer and
Vrebalovich (1960) and Kendall (1967) with appropriate theories pro-
vides a basis for proceeding in aeveloping the conrequences of the
Reynolds-Rayleigh hypothesis.

Nevertheless, transition data have been accumulated and correlated
over the years quite independently of stubility considerations. These
efforts have yieldad neither a transition theory nor any even moder-
ately reliable means of predicting transition Reynolds numbers.

In the last two to three years (Morkovin 1968, Reshotko 1968,
Mack 1968, Morkovin 1969) attention has again focused on the importance
in the transition process of the response of the boundary layer to
the available disturbance environment. A significan: start toward
incorporating such considerations into transition experiments has been
reported very recently by Wagner et al. (1969).

One may view the transition of the boundary layer to a turbulent
_state as the nonlinear response of a very complicated oscillator -
the laminar boundary layer - to a random fecrcing function whose
spectrum is assumed toc be of infinitesimal amplitude compared to the
appropriate laminar flow quantities. The initial response to this
random disturbance is covered by infinitesimal disturbance considera-
tions on which there is now a considerable thecretical literature as
wvell as a small but significant experimental literature,

Some remarks are in order about the infinitesimal disturbance
theory in which the response of the boundary layer is described by
linearized cquaticns. An infinitesimal disturbance is one where the
amplitude is insufficient to alter the basic flow whose stability is

being studied.* Disturbances are referred to as large or finite when

*The appropriate parameter is 82R8 where 2 is the dimensionless ampli-
tude and_Re is a thickness Reynolds number. For infinitesimal distur-

bances a“Re << 1.
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they become of sufficient amplitude for the tyme-independent or time-
averaged flow quantities to depart from their laminar values.

It would seem most desirable to formulate stability theory in a
way that simulates experiment-namely, to take a given initial distur-
bance spectrum and follow it forward in time. The response wculd of
course depend on the particular disturbance spectrum assumed and so
this treatment is akin to the numerical experiments that are becoming
increasingly popular these days. However, in the linear limit of
infinitesimal disturbances, the initial disturbance spectrum may be
composed in a Fourier semse from a2 complete set of orrhogonal normal
modes. The nature of each of these normal modes is determined from
the solution of the eigenvalue problem arising from the congideration
of the linearized disturbance equaticas subject to appropriate boundary
conditions. Boundary layer stability analyseg generally utilize the
normal modes apprnach. The normal modes represertatiorn of a distur-
bance spectru: however does not extend conveniently to finite ampli-
tude and so the nonlinear processes between initial instability and
the completion of the transition process are to date hardly understood.

Thus, the relationship between transition Reynolds number and
some rcresentative Reynolds number from infinitesimal disturbance

atability theory, is quantitatively nebulous and only moderately

_ strong qualitatively. Conversely when it comes to evaluating experi-

mental transition data, the results of stability theory can only
serve as a guide.

In this paper the normal modes procedures as they apply to
boundary layers will be briefly reviewed and the mechanism of instabil~
ity discussed. It will then be indicated how normal modes results may
be used to give guidance regarding the factors affecting transitian.
Finally some remarks will be made about the prediction of transition
and about the fixing of transition.,
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YORMAL MODES PROCEDURES ¥OR BOUNDARY i.AYERS

The normal modes met’.wds can be generally described as follows:
Let each flow quantity be composed of its vaiue for the specified

basi~ flow plus a disturbance componaut
-
Q=q (x, t) + ' (x,t) (1

For most problems a'is independent of time. The time variation is
left in here momentarily in deference to those who study the stabil-
ity of basic flow patterns that are time cependent (e.g. Shen, 1961,
Yang and Kelleher 19G4).

The total flow satisfies the time dependent conservation lavs of
mass, momentum and energy, whiie the bazic flow satisfies a more re-
stricted set of equations. If one is studying the stability of steady
laminar boundary layers, then the basic flow equaticus are the steady
boundary laysr equations. Subtracticn of the basic flew equations
from the tucal flow equations yields the set of conservation law equa-
tions satisfied by the disturbances. Since it is stipulated that the
fluctuaticn amplitudes are very small compared to tha basic flow
quantities, products and squares of fluctuation quantities are neglected.

The resulting equations are then linear partial cifferential eguations

in the variabies (x, t).

Parallel Flow Assumption

The equations can be further simplified by treating the boun..iry
layer as a parallel flow. By a parallel flow, we mean onre whose
streamlines are everywhere parallel to each other and parzllel to any
bounding surface.* Strictly speaking, growing boundary layers are
not parallel flcws. It has however been shown (Clieng 1953, Dunz 1953)
that to leading esymptotic approximation, the parailel flow apr.roxima-
tion is valid for boundary layers. It has been cv:iomary to treat
the boundery layer as a parallel-fluw even to higher apprcximatican

*This definition is for a two dimensional flow. For a thre. dimensional
parallel flow, the streamlines all lie in parallel planes which are also
parallel ro any bounding planes.

4
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as evidenced by the extensive numerical solutions of Mack (1985;.
Brown (1967) has included some non-parallel effects in hig calculations

but in such a way that their importance cannot be precisely ascertained.

Form of Disturbance

Under the parallel flow assumptions, terms involving the mean
normal velocity and longitudinal derivatives of mean quantities are
omitted. The stability of a local flow is calculated as if its pro-
files existed from - < to + = in a boundary layer of constant
thickness. Under these circumstances the profiles are functions of
the normal coordinate y only and the equations admit of a disturbance
of the form

- in {x cor ¢ + z sin ¢ - ct)
Q' (x, t) =q (y) e 2)

Tihis is the equatiou of an oblique plane wave propagating at amngle V¥
with cespect to the x direction. The wave number of the disturbance

2%
A
of the disturbance. The disturbance may be assumed to grow spatially

is a (a= where A is the wavelength) and ¢ is the phase velocity
(S: a complax and ac real) or temporally (T: a real and ¢ complex).
Disturbances which neither grow nor decay are referred to as neutral.
Despite the obvious compatibility of the spatial description to the
growth of dis:iurbances in boundary layers, the temporal description
wvas used almos: exclusively until about 1964 when Kaplan (1964) pre-
sented results based on his method of exact numerical integration of
the Orr-Sommerfeld equation. Of course most interest until that time
was in defining the boundaries of neutral stability in which limit the
two alte:tzatives degeaerate to the came analytical problem, For
disturbances propagating in the flow direction of a two~dimensional
boundary layer Gaster (1962) has shown that in the limit of small
amplification the spatial and temperal descriptions both yield c, as
the phase velocity and that the growth rates in the two descriptions
are related through the group velocity as follows:

o, ()= - 2e (D (3
8




vhere the group velocity

- 3{acy) = der
cg a cr + e 4)

In most boundary layer problems, the amplification rates are sufficiently
small for Gaster's relation to hold. For more general situations such

as two-dimensional flows subject to oblique plane wave disturbances

and for three-dimensional flows to arbitrary plane wave disturbances,

the relationship is not quite as simple. This is because the phase

and group velocities are vector quantities but are not necessarily in
the same direction.

In summary, the disturbances considered in normal modes z2nalyses
are plane waves. For a two-dimensional boundary layer those distur~
bances that propagate in the direction of boundary layer development
(local free-stream direction) are called two-dimensional disturbances,
while those propagating at some angle to the local free stream direc-
tion are called three-dimensional disturbances. For a three-dimensional
boundary layer where the local free stream is not in the direction of
the pressure gradient and, therefore, one might say that there is no
single direction of boundary layer development, it is convenient to
consider all disturbances as three-dimensional and to identify them
by the angle % of the direction in which they vropagate relative to
the reference, say x, direction.

For boundary layers in incompressible and subsonic flow, the
thase velocities of the normal modes are generally within the velocity
spread of the basic flow. For boundary layers in supersonic flow, one
generally deals only with "subsonic" disturbances that is disturbances
that move subsonically with respect to the component of the free stream
in the direction of wave propagation. Such disturbances have amplitudes
that decay exponentially in the free stream. A disturbance that pro-
pagates supersonically with respect to the free stream would be expected
to have a nonvanishing amplitude far from the wall.

A most important development in recent years in the stability of

supersonic laminar boundary layers is the discovery of the higher modes.
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following the questioning of the uniqueness of subsonic disturbances,
(Lees and Reshotko 1962), Mack (1965) encountered the higher modes

in his numerical calculations and Lees (lLees and Gold 1966) confirmed
the conditions for the existence of these additional modes. We now
know that if the wall is supersonic relative tn the phase velocity of
infinitesimal disturbances (%5 > 1), then the boundary layer is rich
in unstable normal modes, some of which are not damped by cooling
(Mack, 1965). For insulated surfaces, highér modes appear for M > 2.2;
however it is not until the Mach number is of the order of four or
greater that the second mode is at low enough frequency to have
experimental consequences. With cooled walls, since for subsonic
disturbances ¢, > 1 -1

M
Mach numbers as low as 1 if the cooling is sufficient.

. the higher modes can be significant at

Properties of Disturbance Equations

The disturbance equations derived by the procedures indicated in
this section* have been shown to display the following properties:

With regard to the stability of two-dimensional parallel flows
to three-dimensional disturbances, Squire (1933) has shown that for
an incompressible fluid, the disturbance equations can te transformed
to the completely two-dimensional Orr-Sommerfeld equation and that
the two-dimensional disturbance is the least stable. Dunn and Lin
(1955) considered the stability of a two-dimensional compressible
boundary layer to three~dimensional disturbances. They showed that
vhen only the leading viscous-conductive effects on the disturbances
are considered the equations for three-dimensional disturbances can
be transformed to thosc for two-dimensional disturbances. They care-
fully pointed out that for compressible flow these transformed equations
are not the equations of a proper two-dimeansional disturbance so that
no "families of solutions” are obtainable; however, the transformation
does permit the use of solution procedures for two-dimensional distur-

bances in problems of three-dimensional disturbances.

* The complete disturbance equations for a three-dimensional compressible
parallel flow subject to an arbitrary plane wave disturbance are derived
and stated in Reshotko (1962),




The stability of three~dimensional becundary layers to three-
dimensional disturbances is considered for incompressible flow by Ouen
and Randall (1953) and by Gregory, Stuart, and Walker (1955). Their
results for a parallel flow have been concisely summarized by Moore
(1956) : “For a disturbance assumed to be moving in a certzin direction,
the eigenvalue problem may be treated as a two-dimensional one, governed
by the boundary-layer velocity profile measured in that direction." Of
course, for incompressible flow the energy equation is irrelevant and
within the framework of the parallel flow assumption this statement
is exact. It is shown fcr compressible flows (Reshotko, 1962) that
the transformaticn implied by Moore's statement applies exactly for
the continuity and momentum equations but only for the leading terms
of the energy equation. As already pointed out by Dunn and Lin (1955)
the dissipation terms do not all transform. Mack (1967) has receantly
compared results for first mode disturbances with (eighth-order system)
and without (sixth-order system) the non-transforming terms and has
found the differences in amplification rate to be generzlly less than
10X. The differences are mcst pronounced at low Reynolds numbers as

would ba expected.

Results of Normal Modes Calculations
The results of normal modes calculations are usually presented
in diagrams of wave number a versus a thickness Reynolds number. Such
diagrams for three different Mach numbers are shown in Figure 1. Since

the dimensionless frequency‘%% can be written

and since for a given frequency c, varies very little, a line cf con-
stant frequency is almost a straight line through the origin cf the

o-Re diagram. Note that when higher modes are present, a given fre-
quency may correspond to progressively higher modes as the Reynolds
number is increased, or else may excite the higher modes without exciting
the first mode. The Reynolds number below which all wave numbers are

damped is termed the minimum critical Reynolds number.
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Stability diagrams of the results available to 1966 say be found
in Betchov and Criminale (1967). The repmorted results of iack's
extensive calculations for flat plate boundary layers are to be found
in Mack (1969).

A rather concise summary of boundary layer stability characteris-
tics ag presently understood is giver through the following figures
taken from Mack (1969).

Figures 2 - 4 describe the characteristics of the cost unstable
first and sacond mode frequencies Yor insulated boundary lavers. Tne
data are for Re = 1500 which corresponds tc a leagth Reynolds nixber
of 2.25 x 10°. This is enough ahead of observed transition Reynolds
numbers so that the stability results are relevant. In figure 2, the
dimensionless frequencies are shown. To be noted is that the =cst
ustable first mode frequencies at supersonic speeds occur for obliaue
waves with § generally between 45° and 65° while the mest unstable
second (and higher) mode frequencies occur for ¢ = (°. The M, = (]
point is of course for ¢ = 0° by virtue of Squire's theoren. The
associated temporal and spatial growth rates are shown in figures 3
and 4 respectively. The sccond mode onice activated, clearly disglzys
higher growth rates than the first. To be noted also is the rapidity
in decline of spatial growth rate with Mach nusber particularly arouad
Mach nuxber zero.

The effect of surface cooling on stability is of significance
because of the great variety of aerodynamic appiications which require
cooling. The first wode is generally stat-ilized by cooiing. Ia fact
two-dimensional first wode disturbances can be completely stabilized
by cooling up to Mach numbers of the order of 2 (Lees 1947, Dunn and
Lin 1955, Rechotko 1963). While the otlique waves cannot all be co=-
pletely stabilized, it is expected that cooling greatly increases
mninimum critical Reynolds numbers and dinminishes growth rates. On the
otlier hand, the higner modes are not stabilized by cooling. They tend
toward higher frequency and higher growth rate as the surface tespar-
atare is reduced. Stability diagrams for two-dicensional disturbances

at Hl = 5.8 with different degrees of cooiing sre shown in figure 5.
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It is seen that when the temperature level has decreased to %E = 0,25,
the first mode has completely disappeared while the second moge buige
has shii“ted to higher wave numbers (higher frequencies)., The effect

of surface temperature on growth rate at Ml = 5,8 is shown in figure

6 in the inviscid limit. The effect of cooling on growth rate in the
inviscid limit of the first four modes at M1 = 8 and Ml
shown in figures 7 and 8 respectively. The upward shift with cooling

= 10 are

in both frequency and growth rate is apparent.

It is curious that for boundary layers in water, the effect of
cooling is destabilizing while the effect of heating is stabilizing
(Wazzan, Okamura and Smith 1967). Because the viscosity of water
decreases sharply with increase in temperature, heating yields a
fuller velocity profile while cooling tends to give an inflected
velocity profile.

Mechanism of Instability

The early work in hydrodynamic stability and in particular the
work of Rayleigh emphasized inviscid aspects of the problem under the
generally accepted premise that the effects »f viscosity on the dis-
turbance flow could only be dissipative. It was concluded at that
time that only inflected profiles were unstable. It remained for the
originator of the boundary layer concept, Prandtl (1921), to clearly
demonstrate the mechanism by which viscosity could be destabilizing and
to show therefore that even non-inflected profiles could be unstable.

If one were to construct a disturbance energy equation, then for
a neutral subsonic disturbance, the energy "production' through Reynolds'
stress would just equal the viscous dissipation.* The Reynolds' stress
-p u'v' is zero for a neutral inviscid disturbance since u' and v' are
909 out of phase. The effect of the viscosity near the wall as explained
by Prandtl (1921) is to shift t .¢ phase resulting in a correlation be-
tween u' and v' and thus yield a Reynolds stress. This Reynolds stress

level is cancelled by an equal and opposite drop at the critical layer.

*An early detailed derivation is by Schiichting (1935). For compressible
flows, this matter has just been examined carefully by Mack (1969).
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Prandtl's argument was redeveloped by Lin (1954, 1955) for an incom-
pressible flow and by Lees and Reshotko (1962) for the compressible

boundary layer.

é Effect of Surface Curvature

% This paper is concerned by and large with propagating waves of
the form of equation (2), historically termed Tollmien-Schlichting
waves in the boundary layer context. Over concave surfaces GYrtler
(1940 a, b) showed that the boundary layer is unstable to longitudin-~
al vortex disturbances (Taylor-GBrtler vortices) very much akin to
the vortices that appear between two cylinders, the inner one rotat-
ing and the outer at rest (Taylor 1923). Liepmann (1943) has in

fact ohserved for incompressible flow that transition on convex

surfaces occurs at about the same Reynolds numbers as for flat plates
while on concave surfaces the transition Reynolds number decreases
almost linearly with 8/R from the flat plate result. In this expression,
the symbol R denotes the radius of curvature of the plate. A compari-
son of the calculations of Kaplan (1964) and Smith (1955) shows that

for incompressible boundary layers over concave surfaces, the minimum

critical Reynolds number for Tollmien-Schlichting instability is

lower than that for Taylor~GlL tler vortices when §/R < and

1
40,000
vice-versa.
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BEHAVIOR SUBSEQUENT TO GROWTH OF INFINITESIMAL DISTURBANCES

It has previously been mentioned that our understanding of the
processes from initial instability of the laminar beundary layer to
the realization of a fully turbulent boundary layer are qualitatively
vague and quantitatively nebulous. This is regardless of speed or
even compressibility. We do however expect the time dependent velo-
city field of a fully turbulent "two-dimensional" boundary layer to
be random, nonlinear and three-dimensional. The current notions of

how these properties develop will be briefly discussed.

Randomness - The initial disturbance spectrum is generally thought
to be random in the sense of absence of discrete peaks in both fre-
gquency and orientetion. The resulting frequency and orientation
spectra of the fully turbulent boundary layer are also expected to
be devoid of discrete peaks but they will probably differ greatly
from the initial disturbance spectrum. It is generally thought that
the spectra of an equilibrium turbulert boundary layer are independent
of the developmental history of the boundary layer and that the final
spectra after their evolution through nonlinear processes display
detailed balance between production and decay at each frequency.

It is not clear that this equilibrium state is generally reached
in our axperimental turbulent boundary layers particularly at super-
sonic and hypersonic speeds.

Noniinearity - The processes leading to tramsition are fundamentally
nonlinear. After initial instability some of the important fecatures
of the nonlinear growth are the effects on the frequency and distur-
bance spectra through distortion of the mean flow, generation of
harmonics and beat or resonance phenomena.

Another possible feature of nonlinear processes is the attainment
of a metastable equilibrium state at a finite amplitude as suggested
by Landau (1944). This question has been examined in some detail by
Stuart (1960, 1962) for incompressible plane Poisecuille flcw. Because

12
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he could not fully evaluate the relevant terms in his equation for
equilibrium amplitude, Stuart could not come to a definite conclusion
regarding the existence of a finite amplitude equilibrium state.
However, if such a state did exist, then there could be no subcritical
instability a la Meksyn and Stuart (1951) and vice versa. This
question and that of subcritical instability have yet to be critically

examined for boundary layer flow.

Three~Dimensionality - The initial disturbance spectrum is very likely

three-dimensional in orientation. Even though not all orientations
are amplified at once, certainly a band of them become unstable within
the regime of infinitesimal disturbances. Additional orientations
might be excited through the "resonance" mechanism suggested by Raetz
(1959). Furthermore, spanwise energy transfer and steamvise vorticity
can result from the interaction of two~dimensional and oblique waves
as pointed out experimentally by Klebanoff, Tidstrom and Sargent(1962)
and theoretically by Beuney and Lin (1960). These factoxs all contri-
bute to the three-dimensionality of the eventual turbulent velocity
field. To be noted is that the referenced studies are ali for incom-
pressible flow.

It is evident that very little is known about finite amplitude
belhavior for boundary layers and that none of what is known has been
developed for compressible boundary layers. Nevertheless, it is felt
that the arguments on raundomness, nonlinearity and three-dimensionality
as developed in the context of low speed flows are in their general
sense equally applicable to the compressible, even hypersonic boundary

layer.




FACTORS AFFECTING TRANSITION

Whether one proceeds from the discussion of the prior sections or
else goes through similit:ude arguments (Reshotkoe 1968), it is abundantly
clear that in addition to being a function of the mean flow conditioms,
transition must in some way be related to the wave-number and orienta-
tion spectra of the disturbance environment. This was pointed out by
Laufer (1954) many years ago and again emphasized by Morkovin (1968)
as evidenced by figure G taken f£rom his work. The disturbances are
identified unequivocally at the top of the diagram as INKPUT. The
traditional "factors affecting transitiocn” are identified in the dia-
gram as operation modifiers ~ factors modifying the amplification
characteristics of the oscillator. This diagram is well worth study-
ing in that it summarizes in a very concise way the behavior in the
linear and early non-linear regimes of instability that may eventually
lead to transition.

Based on stability considerations, Reshotko (1968) has deduced
the following plausible forms for the relation betueen the transition
Reynolds number and the characteristic dimensionless frequencies and/
or wavelengths of the disturbance spectra:

PR
(Re), , ~ (—- (5)

WV

n
(Re), ™ (—"—‘— )

ve
b 4

Equation (5) indicates that for a given disturbance frequency
spectrum characterized by w , the transition Reynolds number will vary
with %Z-. The coefficient and exponent will be functions of Xach
number and surface temperature level and possibly also %; to allow
for deviations from the power law of Equation (5). Equivalently,

equation (6) indicates that for a given wavelength spectrum character-

\
*Note that wy crv
w7 2"(01 )
1

4
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ized by A, the tvansition Reynolds number will vary wich U/v where
again the coefficient and exponent will depend on Mach number, sur-
face temperature level and %%; + The dimensionless phase velocity
is a very slowly varying quantity particularly at hypersonic Mach
numbers.

In less abstract language, we are saying that the importance of
a given physical {dimensional) frequency or wavelength depends on
the amplification associated with that frequency or wavelength. 'But
the amplification depends on the dimensionless frequency or dimension-
less wavelength and so the importance of a given physical spectrum
(characterized by w or 1) in leading to transition depends on the
associated values of ( %g) or (%)respectively.

The phenomenon just described through equations (5) and (6) may
well be what has been traditionally referred to as the unit Reynolds
number effect. From the arguments presented, this effect is to be
expected in any facility or test where the spectrum of available
disturbances is non-white in the bands that have relevance to instabil-
ity and transition. Accordingly it may be encountered in any facility.
If it is a physical frequency spectrum that remains invariant from one
test to the next in a given facility then (Re)tr will depend on (%Z) .
On the cther hand, if it is a physical wavelength spectrum of distur-
bances that remains fairly constant over a range of facility operating
conditions, then (Re)tr will vary with U/v. A combination of the two
is also possible.

The discussion so far has for simplicity ignored the orientation
spectra of disturbances. These can be readily accommodated. It is
known that the growth rate of disturbances is orientation dependent
and so it is quite possible that the transition Reynolds number would
also show some dependence on orientation spectrum. This dependence
has yet to be sought experimentally.

A relevant calculation has recently been performed by Mack (1968).
He calculated the response of a M, = 4.5 flat plate boundary layer to
the spectrum of far field sound radiated from the side-wall turbulent

boundary layer of the JPL 20" supersonic wind tunnel (Laufer 1964).
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lle assumed that the spectrum is independent of position in the boundary
layer, that the intensity and shape of the spectrum are independent

of unit Reynolds number and that the disturbance energy is distributed
uniforaly through all wave angles. The pertinent response functions
are shown in figure 10. In this figuxe, A is the amplitude of the
mos* unstable constant-frequency disturbance at Re = 1500 (Rey = 2.25
x 106) and A1 is the amplitude at the start of the unstable region.
Similar figures are available for other Reynolds numbers. The power
spectral density of the input and output spectra at three different
thickness Reyn:ids numbers are shown in figure !1 for a unit Reynolds
number of 1 x iG° per inch. The quantity n %¢ the dimensionless
frequency, Lx is the integral scale of turbulence and Us is the aver-
age convection speed of the sound sources. Similar resulis have been
calculated for othar unit Reynolds numbers. The output amplitudes are
shown in figure 12 where it is seen that as unit Reynolds number
increases a larger thickness Reynolds number is required to attain

a given amplitude. If ir turn the transition point is identified

or correlated with the attainment of 2 given disturbance amplitude
then the transition Reynolds number would increase with unit Reynolds
number as is in fact observed experimentally.

It is probable that few of the assumptions underlying the calcula-
tion are strictly correct, but it is believed that the essence of the
phenomenon, which is the movement with unit Reyrolds number of the
unstable frequency band with respect to the input spectrum, hias been
retained. A more definitive calculation of unit Reynolds number effect
must await measurements of the variation of input spectrum with unit
Reynolds number and wave angle.

Reshotko (1968) points out another consequence of the dimension-
less frequency and/or dimensionless wavelength argument, and that is
the tendency of facilities or flight altitudes to emphasize particular
modes of instability of the supersonic and hypersonic boundary laver.
It is shown there shat in the ballistic range tests of Sheetz (1965)
at Mach number 5, second and higher mode excitation is highly inmprobable

and so the observed transition behavior is dominated by first mode
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considerations. Shock tunnel data reported by S:etson and Rushton
(1967) at about the same Mach number and surface temnerature level
but at an order of magnitude lower value of %— show a decrease of
transition Reynolds number with cocling as might be expected through
the involvement of second and higher modes. It is also shown that in
data reported by Deem and MMurphy (1965) and by Sanator, et al (1965)
at Mach number 10 in VKF Tunnel ¢, second and higher mode excitation
is quite likely and tends to explain the insensitivity of transition
Reynolds number to surface cooling.

The prospective involvement of higher modes in a given supergonic
or hypersonic situation is as follows: The lower the value of %}-)
(therefore higher %% )}, the greater the importance of the higher
wodes. It seems that it ray be difficult to escape the higher modes
in steady flow hypersonic wind tunnels, while on the other hand, they
may have little relevance to transition in a ballistic range.

While the physical disturbance fregquencies in flight are unknowm,
the corresponding dimensionless frequencies (%;) are strongly dependent
on Mach number and altitude. This is shown in figure 13 for an assumed
frequency of 10 ke. The dimensionless frequency changes by about an
order of magnitude for each 50,000 feet of altitude. Thus a 100 kc
disturbance at 100,000 fecet has the same dimensionless frequency as a
10 ke disturbance at 150,000 feet. The dimensionless frequencies
corresponding te 10 kc in each of a number of hypersonic facilities
are superimposed. Because of the equali%y of freguencies, the altitudes
indicated for each facilfty are their %—) altitudes.

If the disturbance spectrum of a given facility is known, then
its corz: oponding range of dimensionless frequencies would indicate
the range of frequency-altitude combinations simulated.

Again, equivalent arguments may be presented in terms of wavelength
through the paramecter ({?L> . The values of the dimensionless wavelength
%L for a disturbance having a physical wavelength of one inch at
various flight altitudes are shown in figure 1l/. The values fer 2
one inch wavelength disturbtance in each of the facilities of figure 13

are superimposed. To be noted in comparing figures 13 and 14 is that
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the (_Ll) altitude of a given facility is not necessarily equal to the
%Z) altitude. Tor the cited facilities the (%)altitude is slightly
lower than the (%—) altitude. ,

The order of magnitude variations of %- and %%- with each 50,000
feet of altitude indicate that significant attention must be given to
the choice of laboratory test conditions in order to closely simulate

a particular dimensionless disturbance environment.
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PREDICTION OF TRANSITION

As has been mentioned, the objective of the foregeing presenta-
tion is to lead to a rational scheme of predicting transition behavior
in wind tunnels as well as in flight,

A significant attempt in accomplishing this objective was by
Smith and Gamberoni (1956), who for low speed flow tried to correlate
transition Reynolds number over‘plates, wings and bodies with the
amplitude ratio of the most unstable frequency from its neutral point
to the transition point. Using theoretical values of c4 from the
temporally growing calculations of Pretsch (1942) for the Falkner-
Skan profiles, together with experimental data on transition Reynolds
number, they found that the transition Reynolds number Rex,:r as
predicted by assuming an amplification factor of e? was seldom in
error by more than 20%Z., Jaffe, Okamura and Smith (1969) updated the
Smith-Gamberoni method by using spatial growth rates calculated by
exact solution of the Orr-Sommerfeld equation for the locally observed
profiles on the various shapes. They found good correlation with
estimations based cn an amplification factor of elo.

Despite the apparent success of these procedures, they are defec-
tive in principle and perhaps also in practice. Smith (Smith and
Gamberoni 1956) acknowledges that the boundary layer is "agitated by
disturbances impressed upon it by external turbulence, sufface rough-
ness, noise, and vibration", and that "the true flow is similar to a
forced vibration", Yet, the disturbance spectrum is in no way involved
in his method and accordingly there is no way of introducing a unit
Reynolds number effect. A pointed example of the defectiveness of
the method is that it cannot explain why for a flat plate, Schubauer
and Skramstad (1943) obtain a transition Reynolds number of 2.84 x 105
vwhile Wells (1967) obtains 4.9 x 105, The difference is no doubt due
to the reduction in background noise in the Wells (1967) experiment
but there is no acgcommodation of this fact into the Jaffe et al (1969)
procedure. This points out the need for a criterion bused on amplitude

rather than amplification.

19
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Again it becomes clear that the d{sturbance environment must be
considered in the prediction of tramsition. In wind tunnels, Pate and
Schueler (1969) show that the transition Reynolds number on test models
can be correlated with parameters related to the sound radiated from
the turbulent boundary layers on the tunnel walls. Kendall at Ml = 4,5
observes no transition on a flat plate whose length Revnolds number is
3.3 x 106 wvhen the tunnel wall boundary layer is laminar. In the same
tunnel at the same Mach number but with turbulent side wall boundary
layers Coles (1954) observed transition at Reynolds numbers of the
order 1 x 106. The measurement of the disturbance spectrum (primarily
radiated sound) in wind tunnels and the determination of the exact
role that this spectrum plays in the transition process will be quite
important in assessing wind-tunnel transition data. A signi“icant
start in this direction is by Wagner et al. (1969) who meas.red the
spectra of radiated sound in the Langley Mach 20 lielium Tunnel at
different unit Reynolds numbers and conclude that the model transition
point was strongly coupied to the strength of the sound pressure level.

Whatever the difficulties of transition prediction in wind tunnels
where disturbance spectra are readily measurable, the rational predic-
tion of transition Reynolds numbers in free £light borders on the
impossible because of the lack of information on the disturbance envir-
onment in free~flight. The traditional ways of extrapolating wind-~
tunnel data to flight conditions fail to account for the differences
in disturbance environment. For example, the extrapolation of a wind-
tunnel result to flight unit Reynolds numbers tends according to equa-
tion (6) to assume the constancy of a characteristic disturbance wave-
length. There is nc basis for such ar assumption. 1lorkovin (1969)
indicates that there is some present effort in determining the distri-
bution, intensity and scales of disturbances at altitudes up to 200,000
feet. He suggests as an interim working hypothesis that the distur-
bances at high altitudes have characteristics that are no worse than
those at 20,000 - 40,000 feet where considerable information has been
and is being gathered in counection with commercial airline operation.

It is felt that any rational procedure for the prediction of
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transition should fecllow the processes of figure 9 as far alons as is
possil.le and then try to correlate transition with an amplitude level
or a level of distortion of the basic flow. The work of Hack (1968)
has demonstrated that such calculations are possible provided that

there is adequate INPUT inforwation.




FIXING OF TRANSITION

The achievement of carlier transition through artificial tripping
of the boundary layer is often desired in order to simulate turbulent
boundary layer behavior at full scale Reynolds numbers. The testing
literature is replete with descriptions of the response of the boundary
layer to varieties of surface roughness - single roughness elements,
multiple elements, spherical bodies, distributed roughness, etc.

These trips have been developed more or less by trial and error.
Stability considerations offer us both an explanation for the
observed behavior due to various kinds of trips as well as suggestions
for more effective tripping. The general decay in spatial amplifica-
tion rate with Mach number (figure 4) is probably responsible for the
increasing difficulty with Mach number of tripping. Also the art of

tripping has not really had the chance to benefit from the recent
documentation of greater first-mode instability to oblique waves
than to two-dimensional waves.

It is suggested that tripping devices be designed so as to capi-
talize on the known instability characteristics of laminar boundary
layers. Referring to figure 4, a trip should generate oblique waves
of appropriate wavelength to be most effective at Mach numbers up to
4., Note Hama's success with "triangular patch stimulators" at Mach
numbers up to about 5 (Hama 19%64). Beyond Mach number 4 it seems
desirable to excite the second mode for most efficient tripping.
Furthermore, the trips need not be mechanical. 1t is apparent that
radiated sound at appropriate frequencies (figure 2) can have a

noticeable effectiveness in promoting transition.




CONCLUDING REMARKS

The process of transition from laminar to turbulent flow remains
almost as baffling as the turbulence in the flow that follows it.
However, significant inroads into the understanding of transition are
now possilie because we are presently able to do sophisticated theoretical
and experimental studies of the stability of laminar boundary layers.
Some of the anomalies of the past are now explained and a greater sensi-
tivity has developed to the details of the instability and growth that
are at the foundation of transition,

The lack of knowledge of disturbance spectra in wind tunnel and
flight situations is salient at this time.

The fact that over one-third of the references cited in this
paper are less than five yearc old indicates the renewed interest in
boundary layer stability and transition and provides hope that our
understanding of transition will develop more rapidly than in the
past.

I wish to thank Dr. L. M. Mack and Dr. M. V. Morkovin for provid-
ing me preprint copies of their most recent works from which I have

quoted so freely. \This work was supported by AFOSR.

23




R

e

REFERENCES

BENNEY, D. & LIN, C. C. (1960). On the secondary motion induced by
oscillations in a shear flow. PHYS. FLUIDS. 3, 656~657.

BETCHOV, R. & CRIMINALE, W. O. JR. (1967). Stability of parallel flows.
Academic Press.

;o BROWN, W. B, (1967). Stability of compressible boundary layers, AIAA
; JOURNAL, 5, 10, 1753-1759. :

{ CHENG, S~I. (1953). On the stability of laminar boundary layer flow,
: Rep. 211, Aero. Eng. Lab., Princeton University (See also
F . QUART. APPL. IMT}{Q, _1_]:., Oct. 1953, 346-350)0

COLES, D. E. (1954). Measurements of turbulent friction on a smooth
flat plate in supersonic flow. JOUR. AERO. SCI., 21, 7,
433"448 .

DEEM, R. E. % MURPHY, J. S. (1965). Flat plate boundary layer transi-
tion at hypersonic speeds., AIAA Preprint, 65-128,

3 DUNN, D. W. (1953). On the stability of the laminar boundary layer
< . in a compressible fluid. Ph.D. Thesis, M.I.T.

DUNN, D. W. & LIN, C. C. (1955). On the stability of the boundary layer
in a compressible fluid. J. AERO. SCI., 22, 455-477.

Nryd R

T

GASTER, M. (1962). A note on a relation between temporally increasing

and spatially increasing disturbances in hydrodynamic stability.
J. FLUID MECH., 14, 222-224.

GREGORY, N., STUART, J. T., & WALKER, W. S. (1955). On the stability
of three dimensional boundary layers with application to the

1 flow due to a rotating disk. PIIL. TRANS. ROY. SOC. (London),
S: Sel‘. A’ _z_li_g, 155-1990

" n
GORTLER, H. (1940 a). Uber eine dreidimensionale Instabilitdt laminarer
GCrenzschichten ar konkaven Winden. Nachr. Acad. Wiss.
clttingen Math-Physik K1. IIa, MATH-PHYSIK-CHEM-ART., 2, 1-26
(Translated as NACA TM-1375, June 1954).

raddnd § An

! "®
. GORTLER, H. (1940 b). Uber den Einfluss der Wandkrlmming auf die
- Enstehung der Turbulenz. ZAMM, 20, 138-147.

RAMA, F. R. (1964)., Boundary layer tripping in super-~ and hyper- sonic
flows. JPL Space Programs Summary No. 37-29, IV, 163-168.

24

PO

Jarray




25

JAFFE, N, OKAMURA, T., & SMITH, A. M. O. (1969). The determination of
spatial amplification factors and their apnlication to pre-
dicting transition. AIAA Paper No., 69-10. Presented at
AIAA 7th Acrospace Sciences Meeting, Jan. 20-22, 1969.

KAPLAN, R. E, (1964)., The stability of laminar incompressible boundary
layers in the presence of compliant boundaries, M.I.T. Aero-
elastic and Structures Research Lab. ASRL-TR-116-1,

KENDALL, J. M. JR. (1967). Supersonic boundary-layer stability exper-
iments. In Proc. Boundary Layer Transition Study Group
Meeting (W. D. licCauley, ed.) Air Force Report BSD-TR-67-213, II.

] KLEBANOFF, P. S., TIDSTROM, K. D., & SARGENT, L. M. (1962). The three-
dimensional nature of boundary layer imstability. J. FLUID
MECH., 12, Part 1, 1-34.

LANDAU, L. (1944). On the problem of turbulence, Comptes Rand. Acad.
Sei., URSS, 44, 311.

LAUFER, J. (1954). Factors affecting transition Reynolds numbers on
models in supersonic wind tunnels, Technical Note. JOUR.
AERO. SCI.’ .2‘_1_’ 7, 497‘&980

LAUFER, J. (1964). Some statistical properties of the pressure field
radiated by a turbulent boundary layer. PHYS. FLUIDS, 7,
8, 1191-1197.

LAUFER, J. & VREBALOVICH, T. (1960). Stability and transition of a
supersonic laminar boundary layver on an insulated flat plate.
J. FLUID MECH., _9_, 25;‘299.

LEES, L. (1947). The stability of the laminar boundary layer in a
compressible fluid. NACA Technical Report 876.

LEES, L. & GOLD, H. (1966). Stability of laminar boundary layers and
wakes at hypersonic speeds. In Hall, J. G. ed.: FUNDAMENTAL
PHENOMENA IN HYPERSONIC FLOW. Cornell University Press.

LEES, L. & RESHOTKO, E. (1962). Stability of the comnressible laminar
boundary layer. J. FLUID MECH., 12, 555-590.

LIEPMANN, H. W. (1943). Investigations on laminar boundary-layer
stability and transition on curved boundaries. KRACA Wartime
Report W-107 (Originally issured as ACR ¥o. 3H30).

LIN, C. C. (1954). Some physical aspects of the stability of parallel
flows. Pfoc. Nat. Acad. Sci., Wash., 40, 741-7.

LIN, C. C. (1955). The theory of hydrodynamic stability. Cambridge
Univ, Press.




F

(e i o

T —.

Lt

A

ot T AR

TR T

MG

MACK, L.

MACK, L.

MACK, L.

MACK, L.

26

M. (1965). Stability of the compressible laminar boundary

layer according to a direct numerical solution. AGARDograph
97, Part I, 329.

M. (1967). The stability of viscous three-dimensional dis-
turbances in the laminar compressible boundary layer. Part

ii. JPL Space Programs Summary 37~48, III, 167-169.

M. (1968). Amplitudes of tuo- and three- dimensional linear

disturbances in the laminar boundary layer up to Ml = 10,
Bull. APS., Ser. II, 13, 11, 1582.

M. (1969). Boundary layer stability theory. JPL Preprint
900-277. Notes prepared for AIAA Professional Study Series
on High~-Speed Boundary Layer Stability and Transition.

MEKSYN, D, & STUART, J. T. (1951). Stability of viscous motion between

MCORE, F.

parallel planes for finite disturbances, Proc. Roy. Soc.,
London, A 208, 517-526.

K. (1956). Three-dimensional boundary layer theory. In
Kuerti, C. ed.: Advances in applied mechanics, IV, 159-228.

MORKOVIN, M. V. (1968). Notes on instability and transition to turbu-

MORKOVIN,

OWEN, P.

PATE, S.

PRANDTL,

PRANDTL,

PRANDTL,

PRETSCH,

lence. Von Karman Institute for Fluid. Dvnamics, Brussels,
Belgium,

M. V. (1969). Critical evaluation of transition from laminar
to turbulent shear layers with emphasis on hypersonically
traveling bodies. Air Force Flight Dynamics Laboratory,
AFFDL-TR~68-149.

R. & RANDALL, D. G. (1953). Boundary layer transition on a
swept back wing: a further investigation. Rep. AERO 330,
British RAE.

R. & SCHUELER, C. J. (1969). Radiated aerodynamic noise effects
on boundary layer transition in supersonic and hypersonic wind
tunnels. AIAA JOURNAL, 7, 3, 450-457.

"
L. (1904). Uter Fllssigkeitsbewegung bei sehr kleiner Reibung.
Verhandl. 3rd Intern. Math Kongr., Heidelberg, 484~491.

"
L. {1914), Uber den Luftwiderstand von Kugeln. GBttingen
Nachrichten, 177.

L. (1921). Bemerkungen Uber die Emtstehung der Turbulenz.
Zvol’io}lo; _1_, 431-4360

J. (1942). Die Anfachung instabiler St8rungen in einer laminaren
Reibungsschicht. Bericht der Aerodynamischen Versuchsanstalt




o

—

T T

27

Gittingen E. V. Institut flir Forschungsflugbetrieb und
Flugwesen, Jahrbuch der deutschen Luftfahrtforschung. (Trans-
lated as NACA TM 1343, 1952).

RAETZ, G. S. (1959). Norair Division Report. NOR-59-383 (BLC-131)
Northrop Aircraft, Inc.

RESilOTKO, E. (1962). Stability of three-dimensional compressible
boundary layers. NASA TN D-1220,

RESHOTKO, E. (1963). Transition reversal and Tollmien-Schlichting
instability. PHYS. FLUIDS, 6, 335-342.

RESHOTKO, E. (1968). Stability theory as a guide to the evaluation of
transition data. AIAA Paper 68-669. Presented at AIAA
Fluid and Plasma Dynamics Conference, June 1968,

SANATOR, R. J., DECARLO, J. P., & TORILLO, D. T. (1965). Hypersonic
boundary layer transition data for cold wall slender cone.
AIAA JOURNAL, 3, 758.

SCHLICHTING, H. (1935). Amplitudenverteilung und Emergiebilanz der
kleinen St8rungen bei der Plattengrenzschicht. Naehr. Ces.
Wiss. G8ttingen, Math-Phys. Kl. 1, 47-78, (Translated as
NACA TM-1265, 1950).

SCHUBAUER, G. B. & SKRAMSTAD, H. K. (1943). Laminar boundary laver
oscillations and transition on a flat plate. NACA Tech.
Report 909 (Originally issued as NACA ACR, 1943).

SHEETZ, N. W. (1965). Free-flight boundary layer transition investi-
gations at hypersonic speeds. AIAA Preprint 65-127.

SHEN, $. F. (1961). Some considerations on the laminar stability of
time-dependent basic flows. J. AEROSPACE SCI., 28, 397-404,
417,

SHMITH, A. M. O. (1955). On the growth of Taylor-Glrtler vortices
along highly concave walls. QUART. APPL. MATH, 13, 233-262.

SMITH, A. M. O. & GAMBERONI, N. (1956)., Transition, pressure gradient
and stability theory. Douglas Aircraft Co. Keport LS 26388,
El Segundo Division, August 31, 1956.

SQUIRE, H. B, (1933). On the stability of thiree~dimcnsional disturbances
of viscous flow between parallel walls. Proc. Roy. Soc. (Londen)
A 142, 621-628.

STETSON, K. F. & RUSHTON, G. H. (1967). Shock tunnel investigation of
boundary layer transition at M = 5.5. AIAA JOURNAL, 5, 5,
899-906.




o ay

T Caemi T

NS FEo T

T

TrRTY

pne'x - i >R KO 1
o o e o P A 3 Y

-

28

STUART, J. T. (1960). On the non-lincar mechanics of wave disturbances
in stable and unstable par.allel flows; Part 1: The basic
behaviour in plane Poiseuille flow. J. FLUID MECH., 9,

Part 3, 353-370,

STUART, J. T. (1962). Non-linear effects in hydrodynamic stabhility.
Proc. Tenth Int. Cong. Applied Mechanics. Elsevier, 63-97.

TAYLOR, G. I. (1923). Stability of a viscous liquid contained between
two rotating cylinders. Phil. Trans. Roy. Soc. (London)
A 233, 289-343.

WAGNER, R. D. JR., MADDALON, D. V., WEINSTEIN, L. M., & HENDERSON, A.
JR. (1969). 1Influence of measured free stream disturbancas
on boundary layer transition. AIAA Preprint 69-704, Pre-
sented at 2nd AIAA Fluid and Plasma Dvnamics Cenference,
June 16-18, 1969.

WAZZAN, A. R., OKAMURA, T., & SMITH, A. M. 0. (1967). The stability
of water flow over heated and cooled flat plates. Douglas
Aircraft Co. Engineering Paper 4451, 15 March 1267.

WELLS, C. S. JR. (1967). Effects of free-stream turbulence on boundary
layer transirion. Technical Note, ATAA JOURNAL, 5, 1.

YANG, K~T. & KELLEHER, M. D. (1964). On hydrodynamic stability of two-
dimensicnal unsteady incompressible laminar boundary layers.

University of Hotre Dame, Department of Mechanical Engineering,




s19iwl-Lavpunog pajeInsur 103 suexBerq LITLIqeas 7 dxndygy

! 0

Gra) Cha! o utw

318YLS

Nol©3Y
TIFILING 300N o | X7
<

ansgwds 318VLSNO

R [

3Q0W |
IPYLS
»
F8YLS 374 0 3CoN "
. i » 7 T
gs= W St =W =]

T . PR —— e
. IRy o [
L —— 3 Ad el




(6961 A°BH) s?aanjeaadwdl [IuUNI-pulM ‘TIEM PIle[nsSuUl

*00ST = 2§ 3® SITouINbaij arqe3sun ISOH PPOK PUODIS PUB ISITJ UO IIQUMN YO®K FO 393333 7 3andFd

l

W 438WNN HOWW

01 6 8 L 9 S 14 € [4 { 0
{ ! { | | !

o
g
—

JQOW 1sild

— 6ap o = A
300W ONOD3S

1 i | L

Dot e Ol e T R Y ey s e et Y b d K LU L TOT SR I RPN "

A

o P
—_ o

t./1
x am
7Ol Z?/

N
-

¥l

‘ADNINOTYS SSTTNOISNIWIG




(6961 9€R) soanjexadwa) TIUUNI~PUTM ‘TTEM PIIVINSUI °Q0GT = 34 I SIdDULJINIST(Q IPOW PUAIIS
°¢ wand1d

puE 3SITJ ITQEISUN ISOK JO ey uof3edT3yrduy Telodual uo IdquAN YOBRK JO 3IVIFII

01

lw “42gWnN HOWW

—
-
-

movo - 9
300W ONOQOD3S

JQOW 15314

w—

*r°0

z'l

9°1

0°Z

8°C

't

9°'c

1
t.:(!! 4 XWI(.:D) 31V NOHVILINIWY IWVIQIWIL WRWIXVW




RGN B o

|
| 6.6 1 ] i 1 I | T ] ]
|
E ¥ 6-2 - -
E
| % N\
5 i " 4.0
- : SECOND MODE T
A ¥= 0deyg
3 3.6 .
. (¢
] v
A x
5- 33‘2 B ]
3 ’;_,
5 <
g -
a 'Y
5 g 281
3 2
: o
- [
S 24}
1 [
H &
C 2
2 2.0}
.
: <
% (%]
§ L6
3
1 V.24~ FIRST MODE
g N
i 0.0} . . -
0.4} : _l
oL~ 1 N 1 1 1 § ! 1 1
0 i 2 3 0 5 6 7 & ? 10

MACH NUMSER, M,

. Fgure 4. Effect of Mach Number on Spatial Amplification Rate of Most
Unstable First and Secord Mode Disturbances at Re = 1500, Insulated
Wall, Wind-Tunnel Temperatures (Mack 1969)




(6967 AoTR) No0§ = Ma ‘%92UvqanIsT(
[PUCTSUIRFQ-OAL *§°C = UK I ®AIND AIFTFQEIS Traanwy uo Buproey TTEM jo 9333 ‘S eandiy

Y Y30WNN SOTONATY

000z 008t  0OPL 00l 00ZL 000U  COB 007 0oy 0T 0
I T T ) T T ] ] ] 0
o ~1%0°0
! §9°0 = 't/ 1’

| ~{80°0

- —~z1°0
., . .
sz'0 = 1/™ o >
../P no
. a
£
o
- ~ozo §
TIVM G3LYINSNI @

. —y2'0

4
. ~Jgz'0
- . —ze0
(aszt = 10 50%0 = '1/M .
| 1 ] | ] | [ ] | ¢£'0

(O A NERUI AT UV SR W Ly N BR LT XTI <




Dt ootioon )

NS x AL e Y
<

: 8
ﬁo 7 []
o
x
s _— SECOND MODE, 2-D
?g 6 \\1&/
~r \
" \
—
3 \
3 Z
- g ? \
. -
: _6- \
B e
b 3
g 4
: 3
3 3 FIRST MODE, 3-D
3 g THIRD MODE, 2-0— _\\
3 t 2 \ o 55 deg—
9 60 deg /.——-—'
! v= 70 ¢q —)
3 . - 4‘_:{____.._.-  FIRST MODE, 2-D
o 0 N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
‘ RATIO OF WALL TO RECOVERY TETAPERATURE, T, /T,
-

Figure 5. Effect of wall cooling on maximum temporal

amplification rate of fiist three modes at Ml = 5.8,
' T} = 50°K  (Mack 1969)

TR




Ll

5.0

T
emmmmsn |NSULATED WALL
e === COOLID WALL
,2\ T, /r: = 0.05
\ T, =80 K
’ n  MODE NUMBER
)
4.0 —i ‘v
;!
| |
;|
o T
-
g p
&
p l |
o 1] = 50°K '
g l
= 3
-t
2 | i A
2
g . | | 1’ \
s 2 v
$ | ‘ Iy
o
;] |
! ;)
T: = 80°K | |
1
[ i Iy
[\
1.0 ‘ Y I ‘
n=l ' ! ’ \
l I \
l ! \ / \
| i / \
0 Vi i 1\ 2 N
¢ 0.4 0.2 0.3 0.4
WAVE NUMBER, a
< Tigure 7. Temporal amplification rat2 vs wave number for {irst three

modes for insulated wall and cooled wall (Ml -~ 8)

(Mack 1969)




At £ v C L arar sy

L B PP AIC t a  t ae o

I

B

AN

TTTTTT Y

TEMPORAL AMPLIFICATION RATE, ac. x 1C°

4.0

3.0

l

— INSULATED WALL
— = COOLED WALL

T, /I' .05

n  MODT NUMBER

2.0

modes for insulated wall and cooled wall (M

(Mack 1969)

1

= 10, Tl = 50°K)

3y
I
|
|l
2 | l
I
(. 4
l\ ﬂ | I
' \ 4 ' !
. \ !
nT ol : \ ‘ I ‘
_t o ;o)
0 0.1 0.2 0.3 . 0.4
WAVE NUMBER, a
Figure 8. Temporal amplificati‘on rate v.s wave number for first four




AL. INPUT= DISTURBANCES

free-stream vorticity

" sound

" entropy spots
high 3D Fourier

frequency SPECTRA

vibrations

i

: : RACE between
(I instability MODES
<k

LINEAR AMPLIFICATION

of xz Fourier
components

poor observation of disturbances
poor control of disturbances

[ multiple channels
in parallel:

OPERATIOR MODIFIERS =
= MEAN B.L. PROPERTIES

2D : DIRECT 30: INDIRECT

P il dad Ve

; - p(x) 3D roughness
of disturbances T, /T, properties
past Reg, of i functions of z
each mode - curvature e.q. p(z)
slow and waviness angle of yaw
extended - 2D roughness leading - edge
angle of sweep
CUMULATIVE EFFECTS attack 3D non-
now directly observable lowv ifbroﬁons homogeneify
; etc. etc.
NONLINEAR + 3 DIMENSIONAL
effect on mean flow {2 dim.
=DC. modifier 3 dim,
vorticity streching
iateral energy transfer wu
in overgrown waves
|
SECONDARY 4+ SCALE
INSTABILITY CHANGES
CRITERIA
OF SCALE, TURBULENT

INTENSITY

o)
AND ? SPOT

g "

Laminar Boundary lLayer as a Linear and Nonlinear Operator
(Morkovin 1968)

Figure 9.




S a1

DA s

TR YT

i

Lt camaty

of Constant Frequency Disturbances at Re = 1500, M
Insulated Wall, To ~ 311% (Approximate Calculation)

40

20
<o—
:g 10
o
-
<
(-
= 6
p
—
=
5 4
<

2
Figure 10.

wy, NF 10% = 0dmy

o

20

60 96

WAVE ANGLE, ¥, deg

Distribution with Wave Angle of Amplitude Ratio

(Mack 1969)

*

1

= 4.5,




T

P e - ————— " Gt—- - ———--‘q—-l-—.._—_-c-----—---—- - e rmta g B4 Gre @ b e mem W - - —
10, 000 - -
R =
1000 -~
_’X
SN
S
o~
> 100~ -]
2 k=
“w
o
>
(V]
]
Z
w
=
3
(-4
—
g 10}- -~
(V)
%
=
O
O
INFUT SPECIRUA
LAUFER (1964) ~
1= -
0.1 _1 |
0.001 0.01 0.1 }
DUACHSIONE €55 FRCULHCY, aL U
x| s
Figure 11. Input and Qutput Disturbance Spectra, Ml = 4.5,
*
Re/in. = 1 x 105, Insulated Wali, T, = 311K (Approximate

Calculation)

(Mack 1969)

0




T

TN

TR T

ai

TR

GRS wmal v

DISTURBANCE AMPLITUDE, A

| | i |
100 I ON[AR) ’ RE)fn. ” 10'1“
2
3
]
2
3
¢ = 60 deg, LAUFER INPUT
—~ SPECTRUM -
10} _
I\
\—LAUFER IINPUT SPECTRUM,
UNIFORM DISTRISUS 101
WITH WAVE ANGLL
1 ] | i |
0- . 400 800 1200 1600 2000 2402

REYNOLDS 1 WUNLBER, Re

Figure 12. Effect of Various Assumptions Concerning Distribution of Input
Energy with Frequency and Wave Angle on Disturbance Amplitude.

M) = 4.5. Insulated Wall, T4 = 311°%¢  (Mack 1969)




Ao

2
\ \ ALTITUDE F
1074 — id —
— f = 10,000 CPS
— 150,000
s pr—
- 100, 000
a«a 2 '"
100 |7 -
— 5 FACILITY
o O VKFC
GUN TUNNEL,

DIMENSIONLESS FREQUENCY

IMPERIAL COLL.

O BALLISTIC RAKGE
NOL

T
A

2 M

4 SHOCK TUNNEL —
AVCO RAD

V shiock TuNNEL
GE SSL

el

[

2 4 6 8 10

Figure 13. Dimensionless Frequency in Flight and in
Various Test Facilities for a 10 kHz Disturbance

(Reshotko 1968)

20 40 60380 100 120 140

MACH NUMBER, M




-

107 -
= /
s|— ALTITUDE A = 1INCH
— FT
T
2 T
0

FACILITY

QO BALLISTIC RANGE
NOL

-
T/ ome

Sia .
& J GUN TUNNEL

) IMPERIAL COLLEGE
z

3

5

S

8 ‘} 2] SHOCK TURREL

] AVCO RAD

5

& |7 SHOCK TURKEL

S CE SSL

(<) 2

/

N
!

II[IIII L 1|

6 810 20 40 60 80 106 120 140

MACH NUMBER, M
Figure 14. Dimensionless Wavelength in Flight and in Various Facilities
for a Disturbance of Physical Wavelength of 1 Inch (Fe<’ _iko 1968)

[
N

N
e T




i

"o

e

< At e vees o

)

0 e e o

"

e et SRV S SRRV
. .

e
3

)t

N smnee e e -

PPN

Do
#,

<

2

R

o
+

' b atoe «
oot A s s it e i e o SO e 3 e S i < S Ao e v

o

G

AL

L Sedunity (’!.IS*I"('hlil%h.‘ ,
ﬁ S T "DOCUMENT CONTROL DATA-R&D

S sl ehe atieiy sl 0t aedy ol b Wit friinid inebe ¥Eng inotetion misthe entered when the avenall report i bisaifiedy

i ] th Aot wathary - o .a. HEPORY SECUNITY CLASSIFICA LION
4 Paue weshnrn Regerve Unlvnrsxty . ' UNCLASSIFIED
.- Departaent of Aerospace Sciences e — =
CleVeland Ohio W4106 , ) ‘
R - N = Y - cuc i e - e =
(ﬁQuNDARY LAYER $TABIEITY “AND TRABB ITION
4 .)l'SC mME S oE NOTES f"‘yp:- of-repire md lnclmrlvo- nlavn)
4 Scientific Interim
¢ AUTHORIZ (Fient name, middie inttisl, inst name) -
| i Res"hotkq: / ’
N GRCT LTI T S —— — 'f’ Tm TOTAL N0 OF PAGES T NO.OFREFS T
. July 1969 N b1
IH it. :On‘mac OR GHANT NO AFOSR 68-1581 Y 9. ORIGINATOR'S REMOR Y NUMBERIS) s
3 1
b, BROJECT 2 9781-02 R
. i611b2}" - vy 3';:.:‘.:’::):’5&7 NOTST (Any oWher Tombere That v be .s’xl‘;;d
2 681‘397 - , ‘ ‘ AFOSR 69 2 3 3OCTR

> FEOT ey v ST ATEMI Y

1y Thls document has been approved for publlc release and sale;
1t5rdier1but1on is unlimited.

3 Y] [ >
I L A A A \ SF’O‘-&O“INGMIIIY!RV ACTIVI

B . ' ‘ TAF Office of Sv1ant1fic Research (SREH)
TECH, OTHER * 1400 Wilson Boulevard ‘
- 1ArLlington,. V1rg1nig 22209 _ E

l‘*b>h review is given of boundary lavnr stability and transition. The normsl modes

procadures as they apply te boundary Tayers are briefly reviewed snd ‘the mochanism
of instabllity ts disensned. 1L is shown how normal sodes resulbs may be used to
“lve guldance regarding the Coctors affecting Lransition. Some remarks are. imsde

" about. the: prediction of transilion and aboul the fixing of transition. It is con-
cluded that the process of transition from l-minar to vurbulent flow remsins
unsolyed ‘However, significsnt inroads into inroads into the understanding of
“transition are now pessible because of cur ability. to do sophisticated theoroticll
and expﬂrlmcntal studies .of the stebility of laminsr boundary layers.

N T

=

DD FORm “473

B Ml SIFI ED -

Neasger® Cluroqfr, ots

- - . - o : — . f SRR e ST 4.5, R, v S
Ty —

[ — - ~— T ——

o




i

e e e

T

T

ae B “ e G e ’; SLINE A . L!“l' '.‘
KoLt ) ar nou s “e
Fluid Mechanics
Boundary Layer Stability
: Transition
i Normal Modes
! Surface Curvature | )
kS
i
v H
*
i
‘ ,
1] =
¥
. g i
) : i !
-
P
. ! i
‘ l’ . z
! ’
. : ..
v : -
- K N -'
i ! f .
. . !
i l '
) l |
1]
3 B .
' i :
- - ' %
CT >
3
! ) | -
= 1

UNCLASSIFIED.

e %y K e

B S

'

o




