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ABSTRACT

If a full AFL £ is not closed under substitution, then £ o £ , the result
of substituting members of £ into £, is not substitution closed and hence
& generates an infinite hierarchy of full AFLs. If £1 and .£2 are two
incomparable full AFLs, then the least full AFL containing Sliand £2 is
not substitution closed. In particular, the substitution closure of any
full AFL properly contained in the context-free languages is itself properly
contained in the context-free languages. If any set of languages generates
the context-free languages, one of its members must do so. The substitution
closure of the one-way stack languages 1s properly contained in the nested
stack languages. For each n, there is a class of full context-free AFLs
whose partial ordering under inclusion is isomorphic to the natural partial

ordering on n-tuples of positive integers.
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CHAINS OF FULL AFLs*

1. Introduction

Recently there have been several investigations of the closure under substi-
tution of various families of languages such as the linear context-free
languages [10], [12], [5], counter languages [6]) and stack languages [7], [11].
In some of these cases a chain of full AFL's, 81} 5 o dff Sn, «es Was
exhibited such that each £n is properly contained in £n+1’ obtained from
313 by application of a substitution operator. Hence the infinite union

H £, is a full AFL which cannot be principal [4]. In this paper we shall
show that for any full AFL €, if £ is not substitution closed then we can
exhibit such a chain and hence the substitution closure of £ is not principal.

To make this precise we need a few definitions.

Definition 1.1 A full semi~AFL is a family of languages containing at least

one nonempty set and closed under union, homomorphism, inverse homomorphism
and intersection with regular sets. A full AFL is a full semi-AFL closed

under concatenation and Kleene closure.

Definition 1.2 If 2 is a family of languages, %(2) is the least full
AFL containing 2. If £ = %(2), then 21s a core of £. If for each L

in 2, %(2) +# .’}(Q - {L} ), then 2 is independent. If 2 = (L}, then

we write F(L) for %(9) and £ = %F(L) is full principal and L is a

generator of &£.

* Research sponsored in part by the Air Force Cambridge Research Laboratories,
Office of Aerospace Research, USAF, under contracts F-19628-67-C-N0N8 and
F-19628-68-C-0029, and by the Air Force Office of Scientific Research,
0ffice of Aerospace Research, USAF, under AFOSR Grant No. AF-AFOSR-1203-67A
and the Division of Engineering and Applied Physics of Harvard University.



12 May 1969 4 T™-738/053/00

Definition 1.3 Let 21 be finite and for each a in 21 let 1(a) be a

+
language. Let Tt(e) = {e} . Let T(al an) = T(al) T(an), a; €Iy

*

and for LcI,, let T(L)-wléL 1(w). Then 1 is a substitution on L. If

each t(a) 1is in &£ for a ezl, then 1 is an £-substitution. If each t(a) is
regular, then 1 is a regular substitution. We let R be the family of regular

sets.

Definition 1.4 Let £l 3 £2 = {1(L) | L e &1, T an £,-substitution}, £
is substitution closed if £ & £ c . Let JO(S,) = R, J(8) = £, and

Jn_'_l(.?.) = -;n(S) 6 £ Let .3(4',) be the least substitution closed full

AFL containing &£.

Our general result will be that if £ is a full semi-AFL that is not substi-
tution closed, then & § £ 1s not substitution closed and -}(g) is not a
full principal AFL. Since the context-free languages are a full principal
AFL, if £ is a full semi-AFL contained in the context-free languages but
not substitution closed, then .;(S) is properly contained in the context-
free languages. This provides an immediate proof of the result of Yntema [12]
and Nivat [10) that the standard matching choice languages (the least
substitution closed full AFL containing the linear context-free languages)
are properly contained in the context-free languages, and yields the further
result that the substitution closure of the linear context-free and the one
counter languages is likewise properly contained in the context-free
languages. Similar reasoning establishes that the one-way stack languages

are properly contained in the nested stack languages [1].

+
We let A* be the monoid generated by A with identity e. A language
is any subset of a finitely generated free monoid.
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In order to prove that the one-way stack languages are not substitution

closed, the author of this paper examined a special class of substitutions [7].

In the next section we prove a lemma about these substitutions which is used
to establish the main result in Section 3. A variant of the basic lemma is
used in Section 4 to show the companion result that if Sl_and 32 are
incomparable full semi-AFLs, then the least full AFL containing Sl_and 32
is not substitution closed. This result yields many further chains of AFLs
and shows that there is no way to factor the context-free languages into a
finite number of subAFLs which jointly generate the whole family; the argument
shows that any core of a substitution closed full principal AFL contains a
generator and that a substitution closed full AFL that is not principal has
no independent core. In Section 5 we extend the results of the previous
sections to exhibit for each n a class of context-free full principal AFLs
whose partial ordering under inclusion is isomorphic to the natural partial
ordering on n-tuples of positive integers. The corresponding lattice is not

a sublattice of the lattice of all context-free full AFLs with

Lub, (£, £,) = %( £, U8

2. The TE Lemmas

In this section we establish a series of lemmas concerning particular types
of substitutions. These lemmas will be used to yield the results in the
following sections. In this and subsequent sections we shall freely use the
results established in [8] that G is associative (among full semi-AFLs),
that &£ is substitution closed if and only if &£ =& & £, and that

.;(S,) = 'I{ %’(2). Also, if & 1is a full semi-AFL, £ = £ 5 R and

§(£)= Ro S and if &£ 1is a full AFL, £ = £ 5 R = R o £[3].
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z

*

Definition 2.1 Let z, N 22 = ¢ and let ch:zz. Let TLl be the substi-
T 2

tution defined by 1 1(a) = gL, for each a eZ,.
L2 2 1

* *
Lemma 2.1 Let 21 and £2 be full semi-AFLs. Let L, S1,I,, L,&I,I,,

t,Nz, =@, If ril(Ll) is in 31_8 £2, thea either L, is in £1 or L, is

1 2 2 1 2
in 32.
Proof
21
= 5 = s
Let L rLz(Ll). If L is in Sl 0 £2, then L r(L3) for some L3 e, where
*
L3 G 23 and 1(a) ¢ £2 for each a 623. Since 21 is a full semi-AFL we can

obviously assume that I, N (21 U 22) = ¢ and that 1(a) ¥ ¢ for each a el .

3
We shall think of r(L3) and ri;(Ll) as representing alternative parsings of
words in L. The idea of our proof is that the form of L forces such
constraints on the r(L3) parsing that either L1 can be recovered from L3 by
semi-AFL operations or else L2 can be obtained from the t(a) by semi-AFL

operations.

For any w in L a factorization of w is an expression a1¥y e @ Yo where
a; +e. 8 € L3, v, € T(ai) for each { and w = Yy e Vg A factorization

of w is a parsing of w as a member of T(L3); by its very form w is already

b3
uniquely parsed as a member of rLl(Ll). Note that in this factorization,
2
n > 1 since L does not contain e. Further, w ¢ T(a1 oo an) and each w in

L has at least one factorization. For each b1 cee bm in Ly m 3 b1 in I,

and each z {n L., let u(b1 IBT bm, z) = b,z ... bmz. By definition of L,

2’
u(b1 %00 bm’ z) is in L for each b

i

50 g bm in L, and z in L..

1 1 2



12 May 1969 7 TM-738/053/00

We shall restrict attention to factorizations of the u(b1 bm’ z). We say

that such a factorization a v @Y splits if each ¥ contains at most one

171
* * * <
bk’ that is, Yy €L, Zl 22 U Zye Let hl be the homomorphism defined by

hl(b) = b for be I, and hl(c) = e elsewhere., Then the substitution defined by

1
T(a) = hy(r(a) N [z

* ®
2212y

Li = 7(L3). Since every full semi-AFl, is closed under regular substitution [3],

1]
L1 is in 1°
(b, ... bm’ z) splits, then hl(yi) € ?(ai) for each i; thus

* =
U 22]) is regular since each 7(a) is finite. Let

Now observe that if the factorization a1y e ¥ of

1
= . — 1
b1 bm £ r(a1 «esa )G 1(L3) = Ll' On the other hand,

1 Thus Li is contained in L1 and contains each
s ess b 1n L. for which there exists a z in L
1 m 1 2
a splitting factorization.

Li = 'r'(L3) c hl[T(L3)]' L

b such that p(bl bm’ z) has

Consider the following condition:
(A) For every bl bm in Ll’ there is some z in L2 such that
u(b1 bm’ z) has a factorization that splits.

If (A) holds, then L1 = Li and L1 is in 31. Since every u(bl bm’ z)

has at least one factorization, if (A) does not hold then surely the following
must be true:

(B) There is a b, ... bm in L, such that for all z in L

1 1 2°
u(b1 bm, z) has a factorization that does not split.

Now suppose that u(b1 bm’ z) has a factorization a that does

11 3n

*
not split. Thus for some 1, " xbucx' for some x in Z;, u in 22, x' in (Zl U 22)*

and b, ¢ in I But u(b1 s bm’ z) is in L so that the only members of I, in

1° 1
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any y, are the bi and only z can appear between consecutive bi' Hence u = 2

and for some k, 1 < k< n, b= bk and ¢ = bk+1'

mapping which erases all symbols up to and including the first member of %

Now if we let M be the gsm
1’
then acts as the identity until another member of 21 is encountered whereupon
it erases that symbol and all subsequent symbols, then clearly

z = M(xbkzbk+1x') = M(yi). Now since all t(a) ¥ 4, if a appears in any word
of L, and y is any member of 1(a), then y must appear in some word of L. Let

3

I! contain all and only members of I, appearing in at least one member of L

3 3 3
s *
U = *
and for each a, let t1'(a) = 1(a) N [22 Iy I I ()31U 22) ]. The previous
argument shows that for a in }::; and y in t'(a), M(y) is in L2, and t'(a) is )
! '
in 22. Hence, if we let L:’Z = U ' M(t'(a)), then L, < L,, and L, s in £,
acl
3

since every full semi-AFL is closed under gsm mapping [3].

Furthermore, if u(bl bm’ z) has a factorization that does not split, then

z i1s in L!. Therefore, if (38) holds, L.

2 o) & L2, so that L

2 is in 1'.2.

Thus either (A) holds and L, is in 21, or (B) holds and L, is in 32.

1 2

Lemma 2.1 is a syntactic lemma regarding possible factorizations or parsings
of certain languages. We shall find it more convenient to express it in the

following form as a lemma regarding families of languages.

Lemma 2.2 Let n > 1, and for each 1, 1 < i < n, let £i and S,i be full

semi-AFLs such that £1 - £; # 6. Then

! !

0 & 0...3£n*¢.

:g a,ﬁ a.ao a £n- £1 2

2
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Proof

We establish the result for n = 2; the general result then follows by an
obvious induction on n. Assume L, € J, - £i and L, e £, - £ '2 Since we are
dealing with full semi-AFLs we can assume that Ll c Zl Z*, L2 < 22 Z; with
LN )32 = ¢4, LetL=r Ii:zl(Ll). Then by definition L is in -S!l c; £2. But
by Lemma 2.1, L cannot be in 'S:‘l c; £'2, since L1 is not in 55'1 and L2 is not

in Sé.

For Section 4 we need a variant of Lemma 2.1, for which we give the following

definitions.

are families of languages, let

Definition 2.2 If .531 and 5!2

dus,= {L|Lin £,orLin L5}, and
£,V ¢, ={1,UL, | Ly in £, L, in £ ).
2.3 1 y Z. ¥ L.c .5y, and let £, £ be full
z 2 o
semi-AFLs., If TL;- (Ll) is in .'i(£l U SZ), then either L1 is in ’F(sl)

or L2 is in £2.

Proof

The proof is similar to the proof of Lemma 1. Note that %( ,S:lU L 2) =

1

L(L

R (£1U Sz) [3). Again, we assume that L = 1 = t(R), R < Z;.

2 v
):3 N (Zl 1 22) = ¢, 1(a) #  for a in 23, where this time R is regular and

for each a in )33, either t(a) is in .531 or t(a) 1is in £2.

We define u(bl bm’ z) and factorizations as before. This time we say that

a factorization 8,y «-+ @Y, of u(bl bm’ z) splits with respect to £

1
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* %
if for each 1 either y,el, I, I,Z, or else t(a;) is in L .+ We define h,

as before (hl(b) =b,bin hl(c) = e, ¢ in 22) and let

1'
hl(T(a)), T(a) iu £1
T(a) =

hl(r(a) N (2; Zl Z; U }:;)), otherwise

.

and L'1 = ?(R). As before we note that L. < hl(T(R)) = L. and that

1 1

by oo bm e L if any factorization of u(bl bm’ z) splits with respect

1 1
to £1. Furthermore, a full AFL 1is closed under substitution into regular

sets and contains all regular sets [3]; thus each -T-(a) is in Sl and hence

L1 is in F(& 1)- Hence, if we have:

(A) For every bl bm in L1 there is a z in L2 such that

u(bl bm’ z) splits with respect to .531

, .
then L, = L, and so L, e #( Sl). If (A) does not hold, we surely must have:

(B) There is a b, ... bm in L, such that for every z in L

1 1 2

no factorization of J(bl bm’ z) splits with respect to 5:1.
If the factorization alyl anyn of u(bl 300 bm’ z) does not split with

* * *
respect to 31, then for some 1, T(ai) € 532 and ¥y € 22 Z Z, I, (zl 1 ):2) -

so that yy " xbkzbk+1x' as before. Let Z; be the set of all a in 23 such

that a appears in some member of R and t(a) is in .22. Define the gsm mapping

* * *
M as before. Let L; = U M(t(a) N [22 Zl I, 21 (Zlu 22) ]1). As before,

asts
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2 2soL

We note the

Lemma 2.4
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and Lé < LZ' Also, 1f any factorization of u(b1 bm’ z)

it with respect to & 1’ then z is in Lé. Hence, if (B) holds,
9 is in £ 9" But either (A) or (B) must hold.

following result for full semi-AFLs.

Let ¢ 1 and ° 2 be incomparable full semi-AFLs. Then
el

Proof
e. - = i - &,
Let Ll be in 1 2 and L2 in SZ 1 As before, we can assume
* *
Ll < Zl £y and L,cz, 22 with 21 n ):2 = ¢, Let c be a new symbol, Clearly,
: By c.- ¢ . ure =
L, YL, is in 5'1V 2 lJ ,+ Let L = LjcL,. Obviously, L is in
vl . 'vl ‘-" . =
F (£,U £,). We claim that L is not in £, v 5+ For suppose L = L, U L,,
v, ,(: R = 1 =
L3 in T LA in 2 Let hl(a) a, a in Zl, hz(a) a, a in ZZ’
hl(c) - hz(c) = e, hl(a) = ¢, a in 22, hz(a) = e, a in Zl. Either there is
aw in Ll such that wcLz = L3, in which case L2 = h2(L3) or for each w in Ll
there is a z in L2 with wecz in L4 in which case Ll = hl(L4)' Hence, if L
is in ("l v .",2, either L, is in “.2 or L, is in ",1. Thus L is not in
e e
1 v 2°
3. Chains of Full AFLs

We are now r

AFL chains:

eady to establish the main results concerning substitution and

namely that a full AFL that is not substitution closed generates

e
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under substitution an infinite ascending chain of full AFLs that are not

substitution closed.

Theorem 3.1 Let £ be a full semi-AFL. Then § 1is substitution closed if

and only if © ; £ is substitution closed.

Proof

Clearly £ = € ; £ if £ 1is substitution closed. Now if £ is not
substitution closed, £ o € = € # ¢ and hence by Lemma 2.2,

(s :M‘.) ; («2; £)) - (s ; £) 4 6. Therefore, £ ; ¢ is not substitution

closed.

Corollary 1 A full semi-AFL £ 1s substitution closed if and only if 3'}(,(:)

is substitution closed.

Proof
Since f(}:) = Q ; £, and every full AFL contains all regular sets [3], if
£ 1is substitution closed then %(L) = ¢ By Theorem 3.1, if £ is not
substitution closed, neither is S‘,; S . But 'f(‘s:) = R 3 £ a S,; £, and
if F(°) is substitution closed, ot « %(g), so é(&) -2 s 8.

Hence if ¢ 1is not substitution closed, neither is ";(x).

Corollary 2 If a full semi-AFL £ 1is not a full AFL, then ?1;(,?.) is not

substitution closed.
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Corollary 2 to Theorem 3.1 tells us for example that in order to show that

the least full AFL containing the linear context-free languages 1s not
substitution closed it suffices to show that the linear languages are not
closed under concatenation. In the corollaries to the next theorem and in

the rest of the paper we assume the reader 'to be familiar with the definitions
of "context-free," "linear context-free" [2], "stack automaton" and 'nested
stack automaton" [1]. We shall call a family of languages ''context-free" if

all of its members are context-free.

Theorem 3.2 Let £ be a full semi-AFL that is not substitution closed.

A

Jn+1($) and J/(£) is not full principal.

Then for each n > O, Jn(.ﬁ) c

Proof

Since the regular sets are substitution closed, if £ 1is not substitution
closed, then ';0(’2) = R i = .;1(£). Now if )n(&) is substitution
closed for any n > 1, then clearly a;(.c) = :’( ,;n(,g)) = Jn(.c), so that

Jn(,ﬁ) = (£) and Jn+k(.t) is substitution closed for all k > O, Now

n+k
let n be the smallest positive integer such that Jn( £) is substitution

closed. By hypothesis, n > 1. Then :,n-»L( 7)) {s not substitution closed. By

Theorem 3.1, JZn_Z(.“,) = Jn_l(g) o Jn_l(.S:) is not substitution closed. But
2n-2 > n, so by the previous argument Jn(.s) is not substitution closed.

Hence, for all n, Jn(S,) is not substitution closed. Now if .;'n(,S‘,) = ";n+l(£ ),
then by induction Jzn(.ﬁ‘.) Jn(.ﬁ ), so Jn(s‘,) is substitution closed.

Therefore, ,;n(.ﬁ) .c;_' ,,:n+1(£) for all n > 0. Since .;0(.8) c;’l(£) c;’z(.ﬁ)
+ +

B i B e 1]

— el
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is an infinite strictly increasing chain of full AFLs, #( £) is not full

principal [4].

Corollary 1 If a context-free full semi-AFL is not substitution closed,

then its substitution closure is properly contained in the context-free

languages.

Proof

The context-free languages form a full principal AFL closed under substitu-

tion [2].

Corollary 2 The substitution closure of the linear context-free languages

is properly contained in the context-free languages.

Corollary 2 only says that some context-free language is not contained in the
substitution closure o of the linear languages. More delicate methods are
needed to establish the precise result of Nivat [10] and Yntema [12] that

there is a one counter language not contained in o/; we shall use that result

in Section 5 to establish infinite hierarchies of context-free AFLs.

Corollary 3 The substitution closure of the one-way stack languages is

properly contained in the nested stack languages.

Proof
The one-way stack languages are not substitution closed [7], [11]. The nested

stack languages [1] form a full principal AFL [4].
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In the next section we shall use Lemmas 2.3 and 2.4 to establish results on
incomparable full AFLs analagous to Theorem 3.1 and to examine the question

of independent cores for substitution closed full AFLs.

4, Substitution and Cores of Full AFLs

In this section we use Lemmas 2.2 and 2.4 to show that if £ 1 and £ , are
incomparable full semi-AFLs then J(£1 Uuzeg 2) is not substitution closed.
This yields some interesting results on the cores of substitution closed

full AFLs as well as further chains of full AFlLs.

Theorem 4.1 Let 21 and .5'.2 be incomparable full semi-AFLs. Then

(1) £1 o %, and 32 o @ . are incomparable, (2) 5‘(.",1U By 2) is not

2 1
substitution closed, and (3) J(‘Sl U £2) is not full principal.

Proof

Part (1) is a direct application of Lemma 2.2, since "("1 -, ¥ ¢ and
$ s
2
follows directly from (2) by Theorem 3.2. Since —Sl and 'SZ are incomparable,

U ‘32) -® # 4. By Lemma 2.4,

d-l # 4. Now J(wl U £2) = :’( 5‘(.21 U 32)), so that statement (3)

each must contain nonregular sets, so %( tl

FOS U wp) = (ug Vowp) $6 Now (2,02, = FlayVay =

o (s, V '~‘,2), and £, Vv o o is a full semi-AFL. Hence by Lemma 2.2,

f,t(.-“,lU ,,“,2) o f’f(a.l U] .tz) - :(.‘;.’lu &2) # 4, so that ?,‘(,;;lu ;;12) is not

~

substitution closed.

Corollary 1 Let £ 1 and 532 be incomparable context-free full semi-AFLs.

Then (8 1 U £2) is properly contained in the context-free languages.
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Corollary 2 The substitution closure of the linear context-free languages
and the one counter languages is properly contained in the context-free

languages.

If we are dealing with full AFLs, Lemma 2.3 yields a further condition we

shall use in the next section.

Theorem 4.2 Let £1 and £2 be incomparable full AFLs. Then é( £1 u s 2)

is properly contained in £ 2 ; £1.

Proof

*
1 1 2 2 1° We can assume LlGZl Zl and
* I2
LEI, L,and I NI, = 6. Let L = TLl(Lz). By definition L is in

22 o .21. If L 1s in $(£1U £2), then by Lemma 2.3, either L

or L

Let L, bein £, - ¢ . and L 1n£2-£

2 is in ;S!l

is in £ 99 contradicting the definition of L, and L,. Hence L is not

1 1 2

We use Theorem 4.1 to show that if £ 1s a substitution closed full AFL,

either £ has no independent core or else every core contains a generator.

Theorem 4.3 Let £ be a substitution closed full AFL and let 2 be any

coreof %, If 0= Qlu 0., either Dl or 92 is a core of (.

2

Proof

Let .911- 5(31) and £2' .'1'(122). Then § = '.r'(ﬂlU 92) = F( £, U .5:2).

Since f 1is substitution closed, 21 and 552 cannot be incomparable. Hence
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either £, ¢ = £ or &2 c L - L., and either 91 or 3, is a core of

2
~

‘.

Corollary 1 If £ is a substitution closed full AFL that is not full

principal, then « has no independent core.

Proof
If 9 1is acoreof £, and L ¢ 3, either {L} or 2 - {L} must be a core.

But since £ 1is not full principal, {L} cannot be a core.

Corollary 2 If § 1is a substitution closed full principal AFL, any core of

£ must contain a generator of &,

Proof

Let 2 be a core of &£. Since £ 1is full principal, & = é(L) for some L
in L. Hence for some finite 2' g 9, L ¢ é( 2'), so Q' is a core. Let
Ql be a finite independent core contained in 2'. By Theorem 4.3, Qlimust

be of size one, that is, 2. = {Ll} where L. is in 3 and is a generator

1 1

of ©.

Corollary 3 If < 1s a substitution closed full AFL, either £ has no

independent core or else every core contains a generator.

Theorem 4.3 and its corollaries yield examples of full AFLs (such as the
context-free languages) with no independent core of size larger than one.
These could be called essentially full principal since every core contains -

a single generator. The regular sets, the context-free languages, the
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nested stack languages and the recursively enumerable languages .

all form essentially full AFLs. For example, if K, is the Dyck set

2

on two letters and R is any regular set, then either K2 N R or

K, - (K2 N R) must generate the context-free languages. Another con-
sequence of this 1s that if L is any generator of the context-free languages
then the least full semi-AFL containing L is a full AFL, that is, closed under
concatenation and Kleene closure. This is not always true of AFLs that are
not substitution closed; for example, the Dyck set on one letter, Kl,

generates the one counter languages [6], but the least full semi-AFL

containing Kl is not a full AFL.

The results of Section 5 yield context-free independent cores of size n

for each finite n. It is an open question if there is any full AFL with an
infinite independent core. We conjecture that no context-free full AFL can
have an infinite independent core and indeed that there is nc infinite class

k

of mutually incomparable context-free full AFLs. If L, = {a" | n > 1}, we

conjecture that 3 = {Lk | k > 1} is an independent core of %( 2).

We conclude this section by showing that a substitution closed full principal
AFL always contains a unique maximal subAFL, unless it is equal to the

regular sets.

Theorem 4.4 Let £ be a substitution closed full principal AFL properly
containing the regular sets. Then there is a unique maximal full AFL

properly contained in £,
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Proof
Let %' = {L in & | é(L) # £}. Clearly &' contains all full AFLs properly
contained in £. Since £ 1is full principal it properly contains £ '. Thus,
1f £' is a full AFL it will be the unique maximal full AFL properly contained
in £. Since ® ¥ £, £' is nonempty. Consider ,';(5.‘,'). If :.:(.v,') is

not contained in £', then it contains a generator of £, so that %( £y = £,
Then §£' is a core of &. By Corollary 2 of Theorem 4.3, £' must already
contain a generator of £. This contradicts the definition of £'. Hence

é( ¢') must be contained in £'. So £' is a full AFL.

Remarks

Theorem 4.4 above shows that there is a maximal full AFL properly contained
in the context-free languages. We conjecture that this full AFL is the full
AFL described in Corollary 2 to Theorem 4.1, namely the substitution closure
of the linear context-free languages and the one counter languages, and that
this is also the intersection of the context-free languages with the one-way
nonerasing stack languages; its members are all one-way nonerasing stack

languages, in fact, checking automata languages [7].

Other conditions besides substitution closure imply that 2" is a full AFL

and hence the unique maximal full AFL properly contained in £, Families having
maximal subAFLs include the one-way stack languages and the least full AFL
containing the linear context-free languages. It is an interesting question

to identify some of these subA¥Ls. We can also turn the question around and

s e e
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ask if, for example, R = £' for any &£. Equivalently, is there any full
AFL covering the regular sets, in the sense that it properly contains no full

AFL properly containing the regular sets?

S Lattices of Full AFLs.

In this section we generalize the results of [6] by showing that for each n
there is a class of context-free full principal AFLs whose partial ordering
under inclusion 1s isomorphic to the natural partial ordering of n-tuples of
positive integers. To do so, we need the existence of two full context-free
AFLs which might be called "strongly independent;" not only they but also

their substitution closures are incomparable.

Lemma 5.1 There are full context-free AFLs £1 and £2 such that

1 £.- & SJ:IH# £,- 8 sz,and

1 1 2
(2) £,- HE)Fbd £, - J).
Proof

Let ‘21 be the one counter languages and £2 the least full AFL containing
the linear context-free languages. Neither ‘Sl nor £2 is substitution
closed [6]. The Dyck set on one letter is in £1- )( £2) [10], [12], and

the set of palindromes on two letters is in £2 - )(é:l) [6].

In the sequel we assume that £1 and .22 are full AFLs with the properties
listed in Lemma 5.1. For convenience, we introduce the following notation,

used in the rest of this section. We let p(n) =1 if n is odd and p(n) = 2
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if n is even. Then we define £<m> = "3m( .cl) and

~
A

= £ J. (£ . We define
£<m1, ceey Moy t> <m1, Fo ol mn> o 3t( p(n+1)) i

(ml, et mn) < (kl, Yexsdy kn) if and only if miiki for 1 <1i < n. This is the
natural partial order on n-tuples of positive integers. We shall show that

e e &
<m1, 3 bk mn> <k1, 3 I

First we establish two preliminary lemmas. We shall use the fact that

kn> if and only if (ml, S 12 ot mn) < (kl, a5 kn);

A

Jo(ﬁ) = £ and for a full AFL £, R 6 £ = £ as well as the associativity of

-

o. Thus, for example, & = ;Ism(.\‘,z) g £ $ = £ ,» and

<0,m,n> <n>’ “<0,0,m,n> <m,n

A

£ o &

=
<m,n,r,s> ' <m,n> <r,s>’

Lemma 5.2 Letn >1, andm, > 1 for 1 <1 <n. Then for any nonnegative

i

integers kl, 0 obl kn’

(1) £<m k>"d’ and
n

1> cres M2 ° S‘p(n+1) - 'g<k1, 0Q0 L

2) .czéx -

<m Ceagy ML <k
1° ' Tn

d
mpo kn> ¥ 4, an

£ 58 : -
1 <0, Mys eees mn> £<0, k

¥ 8.
10 cv kn>

Proof
We shall show (1) by induction on n; the proof of (2) is similar, despite the

asymmetry caused by the notation. For n = 1, observe that '£<m 3= R44
1

since L. and thus £<m , contain nonregular sets. We defined p(2) = 2,

1
o 1 -
Since £<kl> € #(£;) and £, # (L)) # 6 by hypothesis, then

># ¢. Hence by Lemma 2.2, £ 50 £p - &£ 4 6, since

Yo 7 fuk ap® Fo@ T Lk

1

) =R L . .
<k1> <k1>
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Suppose we have shown (1) for some n > 1. We have the following inclusions:

3) ¢ 58 c ¢ -t o (T ).
<ml, Slel o3 mn> p(n+l) SMys eees mn+1> SMyy eees mn> 3mn+1 p(n+l)
and
y c £ 5 ;’ £ .
(4) <kpy eens k2T Tk, e, k> O (% (a1’

Combining the induction hypothesis and (3) yields:

) - ¢ .

A

£ - J(F . o 28
By assumption p(n+2) J( p(n+1)) ¥ ¢. Hence by Lemma 2.2

e ) o :
(6) <m1, ce 0y mn+1> o p(n+2) <k1’ 00y kn> p(n+l

Combining (6) and (4) yields (1) for n + 1, namely:

e o

s = £
<m1, ceey m .2 p(n+2) <k

> ¥+ 4é.
n+l k

1 °°" “ntl
Lemma 5.3 Let n > 1, mj 2y kJ 21lfor 1 <3<n and let m_ = kt + r for

> < < n. L. ==
some r > 1 and some t, 1 < t < n. Then “mpy s m > <k1, oy K 4.

Proof

If n =1, Theorem 3.2 and the fact that £, is not substitution closed yields the

1
d O 2 . 7 = V A ("
‘esired result. Now let n > 1. We define 1 SR vn e Ay e o (t) and
1 t-1
% = ¢ ot wiiete T :
2 p(t) <0, veey 0’ mt+1’ ceoy >, e <m1, ey mt_l> s taken as

Rif t = 1 and similarly ¢

<0, .., 0, is taken as R 1f t =,

LN BN ] >
Met1? > My
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k >°

By Ilema 502’ ?1 - £<k k >* ‘ # ?2 - £<O’ ceey 0’ kt+1’ ese g n

l, sey t-l

Since £ is not substitution closed and kt =m -r,wve have by Theorem 3.2
P

()

~ A

73k, S0y "7 am-3e ) G am -2 Fp ()

Now

- S, (8 8 :
£<k1, ST S 2 TTIRTYR T . 3k, (%)) ° %o, ..., 0, Kppps »ooo K2
=%, 6 5 %, by Lemma 2.2
Similarly, $<m1’ ces m> 'Fl 0J3mt_2 (r'p(t)) o %,. Hence by Lemma A
PO v .
£<ml’ .'., mn> <kl’ ...’ k > * d
Lemma 5.4 Letn>1l, m, k, >1 for 1 < j <n., Then

3

£<m1, ceey m > < 'c<k1, cees ko>

b
if and only if (ml. 0o R mn) < (kl, ooy KT

Proof

-

Since Si s & 4 O -"—i for 1 = 1, 2 and 0 is associative, it is clear that if

(ml, s s mn) < (kl, SO0E kn)’ then £<m n > S £< Now

l, s 00y n
if we do not have (ml, cosy mn) < (kl, coesy kn), then for some t, mo2 kt + 1.

7
n

kl’ SO kn>‘

3, £ >
Then by Lemma 5.3, Wyy eeey M <k1, ot

The four lemmas give us the appropriate lattices.

Theorem 5.1 For each integer n > 1, there is a class of context-free full
principal AFLs whose partial ordering under inclusion is isomorphic to the

natural partial ordering of n-tuples of positive integers.
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Prcof
Let £1 be the one counter languages and £2 the least full AFL containing

the linear context-free languages. Let the £ be defined as
<m1’ sy mn>

above. Then Lemma 5.4 shows that this class of families of languages has

the desired partial ordering under inclusion. Now '£1 and «22 are full

principal context-free AFLs and hence so are the £< . [2], [4],
ml’ o 00 ’ mn>

[6l.

Corollary For each n, there is a full principal context-free AFL with an

independent core of size n.
For each n, the £ form a lattice with
<m1’ o e 0 ’ m >

+Ue Do s = £ )
l.u.b (£<m1, 000 mn>’ <kl, T kn>) <Max(m1, kl), ™" Max(mn, kn)>

and the g.l.b. similarly defined. Theorem 4.2 says that this lattice is not
a sublattice of the lattice of all context-free full AFLs (with
l.u.b. (%, 72) = #(ﬁlu %2)) which in turn is not a sublattice of the

lattice of all families of context-free languages (with 1l.u.b. (?1, ?2) = Fi v 43),

since for example,

(e = "
v’<l, 2>U '£<2’ 1> + L v & F(L

<, >V V<2, 1> £ . e

<, 2 Y T, 1) F g, g
We conjecture that this also holds for the g.l.b., that for example,
s

£ 'y

(& n
<1, 1> + <1, 2> "' <2, 1>°

Lemma 5.1 demonstrates the existence of two incomparable substitution closed
full AFLs. We conjecture that Lemma 5.1 cannot be extended to three AFLs,

that is, there are no three full context-free AFLs 5‘.1, £2, and £3 such
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that no 21 is substitution closed, and for 1 # j, 1 < i, § > 3, xi and
J(£j) are incomparable. This conjecture is obviously related to the one in
Section 4 regarding the maximal full AFL properly contained in the context-

free languages.
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