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ABSTRACT

In this investigation the thermal entrance region problem is solved
for flow in rectangular ducts of various aspect ratios and for various
Peclet numbers. The assumptions under which the problem is solved
are steady, fully developed laminar velocity profile, constant fluid prop-
erties of viscosity, density, specific heat and thermal conductivity, con-
stant wall temperature, and a uniform inlet fluid temperature. Included
in the solution are axial conduction and viscous dissipation. The method
of B. G. Galerkin is used to formulate an approximate series solution of
the problem. The data presented include bulk mean temperature, local
Nusselt number, and the ratio of the local heat-transfer rate to the long
wall to the local heat-transfer rate to the short wall. It is concluded that
for low Peclet numbers, neglecting the axial conduction term leads to con-
siderable error in the solution.
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SECTION |
INTRODUCTION

¥

1.1 BACKGROUND INFORMATION

The problem of the thermal entrance region heat transfer for flat
ducts (parallel plates) and circular tubes has received considerable
attention in the literature. However, the similar problem for ducts
of finite aspect ratio has been investigated far less thoroughly.

The heat transfer in laminar flow of an incompressible fluid with"
constant properties in the entrance region of a circular tube was first
investigated analytically by Graetz (Ref. 1)} under the assumption of
specified uniform wall temperature, no axial conduction, and no viscous
dissipation. Prins, Mulder, and Shenk (Ref. 2) applied the Graetz
method to parallel plates under the same assumptions. Various authors
(Refs. 3 through 6) have extended the problem to include more complex
boundary conditions.

Sparrow (Ref. 7} and Siegel and Sparrow (Ref. 8) solved the parallel
plate entrance problem for simultaneous development of velocity and
temperature profiles by use of the von Karman-Pohlhausen method for a
range of Prandtl numbers for uniform wall temperature and uniform heat
flux, respectively.

Schneider (Ref. 9} included axial conduction in the parallel plate
solution for slug flow of various Peclet numbers with finite wall resist-
ance and both uniform and step discontinuity ambient temperature,

Hwang and Fan (Ref. 10) used finite difference techniques to solve
the problem of simultaneous development of velocity and temperature
profiles for parallel plates for uniform wall temperature and uniform
heat flux, Yau and Tien (Ref. 11) solved the same problem for flow of
a non-Newtonian fluid with the use of numerical techniques.

Mercer, Pearce, and Hitchcock (Ref. 12) presented experimental
data for laminar flow of air between heated plates for Reynolds numbers
of 300 to 1500,

For the rectangular duct, Clark and Kays (Ref. 13) used a numer- -
ical relaxation method to obtain limiting Nusselt numbers for laminar
flow in ducts with aspect ratios of 1, 2, and 5 for constant heat flux and
aspect ratios of 1 and 2 for constant wall temperature but without con-
sideration of axial conduction. Sparrow and Siegel (Ref. 14) developed
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a variational method for application to rectangular ducts and calculated
the first two eigenvalues and eigenfunction constants for the square duct
case for constant heat flux but presented no further information.

Dennis, Mercer, and Poots {(Ref. 15) used a method similar to the
Galerkin method to solve the constant temperature wall case for aspect
ratios of 1, 1,5, 2, 4, and 8 but did not include axial conduction.

In this investigation the method of B. G. Galerkin as developed by
Eraslan (Ref, 16) for entrance regions is used to formulate approximate
solutions for the thermal entrance region of rectangular ducts of various
aspect ratios and Peclet numbers. To be included are axial conduction
and viscous dissipation.

1.2 STATEMENT OF THE PROBLEM

The purpose of this investigation is to solve the thermal entrance
region problem for flow in rectangular ducts of various aspect ratios
and for various Peclet numbers. The assumptions under which the prob-
lem is to be solved are steady, fully developed laminar velocity profile;
constant fluid properties of viscosity, density, specific heat and thermal
conductivity; constant wall temperatures; and a uniform inlet fluid tem-
perature. To be included in the solution are viscous dissipation and
axial conduction.

The assumption of fully developed laminar flow in a thermal entrance
region is applicable for fully developed flow in a duct where the fluid en-
counters a step change in duct wall temperature. It may also be applied
as an approximation for a combination hydrodynamic, thermal entrance
region where the velocity profile develops much more rapidly than the
thermal profile.

SECTION II
ANALYTIC PROCEDURE

2.1 FORMULATION OF THE PROBLEM WITH GOVERNING EQUATIONS AND
BOUNDARY CONDITIONS

The mathematical problem is formulated in the Cartesian coordinate
system (X, Y, and Z) with Z taken in the direction of the applied pressure
gradient, dP/dZ. The origin of the system is taken at one corner of the
rectangular duct and in the plane at which the thermal entrance region is
initiated, as shown in Fig, 1.
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Fig. 1 Flow Geometry
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For laminar incompressible flow with constant fluid properties and
fully developed velocity profile, the equation of motion may be written
as

2 2

W 9w dP

Wl = + — =g (1)
X 3

with the boundary conditions

W(T) =

where I"' is the boundary of the duct. The energy equation may be written
as

3T 321 921 3?1
pCp Woz=K + + + p (2)
P " 3z 2wl 32

with boundary conditions

T(r,2) = T,
T(X,Y,0) = T_(X,Y)

Define a new temperature T* as

THE=T - T,

T(X,Y,Z) = T¢(X,Y,2) (3)

where Ty is the fully developed viscous temperature profile. The energy
equation then becomes

o Gy ¥ oT* | Tt 221r | a%rx aZT*]
-t |t K e T Tz

22T¢  2T¢ 52Ty awlZ  [aw)2
+ K + + = + |u + (4)
[axfﬁ av? 322 3w (57) ]
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where T* satisfies the equation

aT* 32T* 32T* 32T* (5)
PO W -k + +
P~ 3Z [BXZ ay2 372

For constant wall temperature boundary conditions,

7 25z 0

and thus Ty satisfies the equation
32Ty  32T¢ awl?  [aw)2
oz * oz | tvllex) * lav) | =0 (6)

The boundary conditions for T* and Ty are

T* (r,2) = 0
T* (X,Y,0) = T* (X,Y)
lim T* = 0

7w

Tf (r,z) =TW

2.2 NONDIMENSIONALIZED EQUATIONS

The mathematical problem is nondimensionalized based on the width
of the rectangular duct, L1, and on the pressure gradient, ¢P/dZ, with
the following variables and parameters:

W

u —1
wref
0 T—-—T*
ref
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Tt
ef = —
ref
W N e
ref Y dZ
T .= ! Wret
ref =~ E‘E;‘tT
a = X/L'
£ = Z/LIPe
W C
o = £ 1ref %p U (7)

The variables o, 3, and § are defined on the intervals

0Sas|

03gim (8)

Substitution into Eq. (5) for T* gives

2 2 2

a0 90 946 -2 348
Ue—— = ———— 4 _.7. + Pe 7 (9)

£ aaz 9B 13

with the boundary conditions

o(r,g) =0

8(a,B,0) = 6,(a,B)

6
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lim 6(a,B,E) = 0
E <> o (10)

Substitution into Eq. (6) for T¢ gives
320¢  320¢ [[au)? . [au)?
3aZ 382 T Pe[(é‘d’) ¥ (E) (11)

with the boundary conditions

84(r,&) =9, (12)

With the substitution

Equation (11) becomes
326 328 3u )2 au |2
+ = - R — —

with the boundary condition

Sn(I‘,E) =0

SECTION Il
APPROXIMATE SOLUTION OF THE ENERGY EQUATION BY THE METHOD
OF B. G. GALERKIN

From Kantorovich (Ref. 17) the solution of an equation of the form
L(v) = 0, where L is some linear differential operator in two variables
and whose solution satisfies homogeneous boundary conditions, may be
approximated by the method of B. G. Galerkin by constructing an approx-
imate solution of the equation in the form
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n
vIX,Y) = :E: ‘a; ¢;(X,Y)
1=1

The ¢ i(X,Y)i = 1, 2, ---n) is a chosen set of linearly independent func-
tions satisfying the boundary conditions and representing the first n func-
tions of some system of functions ¢ (X, Y)(i = 1,2, ---o} which is com-
plete in the given region. In order that ¥(X,Y) with n = = be the exact
solution of the given equation, it is necessary that L(v) be identically
equal to zero. This requirement, with L(¥) considered continuous, is
equivalent to the requirement of orthogonality of L(¥) to the functions

® i(X, Y). With these conditions the system of n linear equations

ff L(VIX,Y)) $;(X,Y)dX dY =
D

n
J[[ L (j{; 2 ¢j(X,Y))¢i(X,Y)dX dY = 0
D J=

(1 =1,2,~==n)

may be solved for the n unknown coefficients, C
mate solution.

i to complete the approxi-

The assumed form of the approximate solution to Eq. (8) will be

K N
-B £
0c,8,8) = ) ) a4 (o806 (14)
n=l i=]

where the functions ¢ j{a, B) satisfy the boundary condition

¢,(P) =0

and possess continuous first- and second-order derivatives in @ and 8
in the region D and on the closed boundary, I', and the a; nhg are con-
stants. The constants ai(n) can be determined by the B. G. Galerkin
method.

Substitution of Eq. (14) into Eq. (9) and following the method of
B. G. Galerkin, which involves multiplying the equation by each ¢ (e, 8}
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and integrating over the region, D, yields the linear system of equations:

N
2: ;" |k, D+ By 150k, 1) + (8,2/Pe?) 15tk 1) [= 0 (15)

k=1,2,...N
where the integrals are given by

I R

F(k, i) = ff v2 ¢$;(a,B) ¢, (a,B) do dB (18)
o o
I R

botk, 1) = JF J[ ula,B) ¢;(a,B) ¢ (a,B) da db (17)
oo
| R

I3(k,l) = f j ¢i(a,B) ¢, (a,B) da dB (18)
oo

Since ¢ ;(e, B) is the known selected set, the integrals may be eval-
uated either analytically or numerically for a given velocity profile,
ule, B), to give Eq. (15) as a system of linear homogeneous equations
for the undetermined constants, ai(n)

For a nontrivial solution to exist for the ai(n)'s, the determinant
of the coefficients must be identically zero, that is

Det [I)(k,1) + By 15tk 1) + (By2/Pe2) 15k, )] = 0 (19)

Equation (19) represents a polynomial of at most 2N degree in Bp
which must be solved for the eigenvalues (B,'s). For each eigenvalue
there will be a set of (N-1) linearly independent equations for the al(n)'
which may be solved in terms of one of the unknown linear combination
constants, aj N which will remain undetermined. Selecting the par-

ticular undetermined constant as ay n)’ the linear system of equations
becomes
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I (k, 1) + By I5(k, 1) + (B,2/Pe?) |3(k,i)] =

N
1=2

- 11,1+ By 1,0k, 1) + (B,2/Pe2) I3(k,l)]

k =2,3, ...N (20)

where

v

c,{M = a.(nlya (M) 22

With the solution of the Cij{n)'s from the system of Eq. (20), the
approximate solution of Eq. (9) becomes

M

N
-B
6(a,B,E) = Z al(“) ¢!(G,B) + Z Cl(n) ¢ita,?) e n (21)
n=| i=2

The constants a l(n) may then be determined from the inlet boundary
conditions given for Eq. (10),

M N
6(a,B,0)= (M1s (a,8) (n) _
P, a) ¢| a,B) + CI ¢i(a,B) = 90(0,8) (22)
n=| 1=2

which specifies the function 6,(e, 8) as a linear combination of known
functions.

The constants al(n) may now be determined by the application of an
extension of the Weirstrass approximation theorem (Ref. 20). Hence,
multiplication of Eq. (22) by

N

¢|(a,8) + Z CJ-(n) ¢J.(a,8)
Jj=2

and integration over the region D gives

10
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M
a (N [m n)] =JR), &= 1,2,-==M (23)
| » ’ [

n=|

where the integrals in Eq. (23) are specified as

| R N
I(g,n) = If¢,(a,s) + z ;M ¢;(a,B)| [ ¢,(c,8)
oo i=2
N
+ Z cJ‘") ¢;(a,8) |da ds (24)
j=2

and

I R N
J(2) =ff 85(a,8) | ¢, (a,B)+ Z cJ-‘“’ $j(a,8) | du d8 (25)

©c o J=2

Since the Ci(n)'s are determined from Eq. (20), Eq. (23) represents
a nonhomogeneous system of M linear equations in M unknowns, al(n),
which has a unique solution for |60(a, B)}>0. For the thermal entrance
region problem to exist, the condition is satisfied since Go(a, B) repre-
sents the difference between the duct inlet temperature and the fully de-
veloped temperature profiles, Therefore, the al(n)'s can be determined
to give a complete approximate solution of the thermal entrance region
problem.

SECTION IV
NUMERICAL RESULTS

4.1 NUMERICAL PROCEDURE

The general method, developed in the previous section for Eq. (9),
was used to approximate the solution of the thermal entrance region heat
transfer for rectangular ducts of aspect ratio 1, 2, 5, and 10 and for
Peclet numbers, based on the pressure gradient and the velocity nondi-
mensionalization parameter, of 10, 100, 300, and 1000 for each aspe,ct
ratio.

11
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The uniform wall temperature boundary condition and the resulting
symmetry about the duct centerlines allowed the selection of the func-
tions ¢ ;(«, 8) to be of the form

¢;(a,B) = sin p ma sin q 78/R (26)

where p and q are pairs of odd integers corresponding to i.

For the special case of the square duct, the extra symmetry of the
equal wall lengths allowed the functions, ¢ i{e,8), to be written in the
double form

¢;(«,B) = sin p na sin q %8 + sin q ma sin p 78 (27)

where p and q again are odd integers corresponding to i. This, in turn,
allowed a smaller number of functions to be used for the square duct
solution with a consequent decrease in computation time required. It
was found, by solving specific cases with different numbers of functions,
that ten functions for the square cases and 15 functions for the nonsquare
cases gave satisfactory convergence.

The equation of motion (Eq. (1)) was solved in terms of a double
Fourier series for the velocity profile. The solution is given as Eq.
(I-14) in Appendix I. The integrals, Ii(k,i), Ia(k,i), and I3(k, i), were
integrated analytically. The integration is given in Appendix III. This
allowed a general expression for the elements of the determinant (Eq. (19))
to be determined in terms of the indices k and i.

The determinant was found to be diagonally dominant, and the roots
of the determinant, B,'s, were evaluated by use of the maximum diag-
onal pivot Gaussian reduction technique with the final iteration by the
method of reguli-falsi. The Bn's were sufficiently iterated to guarantee
an accuracy of eight significant digits,

Table I gives the integer pairs (p, q) for the functions ¢ i(a,B8). It
should be noted that this is a triangular truncation of the approximating
series. It was found that this gave quicker convergence than a square
truncation for this type of solution where the coefficients are determined
from a set of linear nonhomogeneous equations. However, this is not
necessarily true for a series such as that found for the velocity profile
solution, Eq. (I-14), in Appendix I.

12



AEDC.TR.69-115

TABLE |
INTEGER PAIRS (p, q) FOR THE FUNCTIONS ¢, (a, 8)

LS I R ¢

w N O

R# 1 R=1 R=1
Pe = 10, 100, 300, 1000 [Pe = 100, 300, 1000 Pe = 1, 10

I, 1,1 I,
1,3 1,3 1,3
1,5 1,5 1,5
1,7 1,7 1,7
1,9 1,9 1,9
3,1 1,11 1,11
3,3 3,3 3,3
3,5 3,5 3,5
3,7 3,7 3,7
5,1 5,5 3,9
5,3

5,5

7,1

7,3

9,1

13
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Tables II through VII give the eigenvalues for the cases of aspect

ratios 1, 2, 5, and 10 and Peclet numbers 10, 100, 300, and 1000.

Also

included are the cases of aspect ratio 1,5 and Peclet number 1000 and
aspect ratio 1 and Peclet number 1.

TABLE Il

EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO

OF 1 AND Pe OF 1 AND 10

P q °n
Pe = Pe = 10

{ [ 4.41418 x 100 4,16395 x 10!
| 3 9.91052 x 109 9,69653 x 10!
3 3 1.33097 x 10! 1.31405 x 102
| 5 1.59962 x 10! 1,57925 x 102
3 5 1.82987 x 10! 1.81228 x 102
| 7 2.21918 x (0! 2.19889 x 102
3 7 2.39072 x 10/ 2.37424 x 102
l 9 2.84257 x 10! 2.82231 x 102
3 9" 2.97854 x 10! 2.96222 x 102
| I 3,46775 x 10! 3,44763 x 102

14



AEDC-TR-69-115

TABLE UI
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO
OF 1 AND Pe OF 10Q: 300 AND 1000

Bn
Pe = 100 FPe = 500 Pe = 1000
2.40433 x 102 3.19609 x 102 3.36964 x 102
7.80820 x 102 1.51035 x 103 1.94644 x 10>
1.15619 x 10° 2.62382 x 107 4.09313 x 10
1.38884 x 107 3,15950 x 103 4.99693 x 103
1.64573 x 107 4.01269 x 107 7.34183 x 10>
2.00434 x 103 4,91449 x 10> 9.07017 x 103
2.05702 x 107 5.40188 x 107 1.21179 x 104
2.22453 x 10° 5,84892 x 10° 1.32607 x 10
2.62970 x 10> 6.76701 x 103 1,40835 x 10%
3,25869 x 10° 8.72051 x 103 2.10690 x 10%
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TABLE |V
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO

OF 1.5 AND Pe OF 1000

Bn
P q Pe = TO00
| | 1.76879 x 102
| 3 7.25395 x 102
3 | 1.38991 x 10°
[ 5 1.79159 x 10>
3 3 2.27422 x 103
3 5 3,76529 x 10°
| 7 3,82280 x 103
5 [ 4.20636 x 107
5 3 5,80292 x 107
7 [ 8.21247 x 10°
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TABLE V
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO
OF 2 AND Pe OF 10, 100, 300, AND 1000

Pe = 10 Pe = 100 Pe = 300 Pe = 1000

3.08423 x 10! | 1.18467 x 102 | 1.31451 x 102 | 1.33316 x 102
5.28847 x 10! | 2.96333 x 102 | 3.85064 x 102 | 4.03407 x 102
8.09030 x 10' | 5,47520 x 102 | 8.35539 x 102 | 9.24158 x 102
9.19682 x 10' | 6.54024 x 102 | 1.05383 x 103 | 1.19538 x 103
1.02318 x 102 | 7.84682 x 102 | 1.38913 x 103 | 1.66049 x 103
1.10675 x 102 | 8.27962 x 102 | 1.43639 x 10> | 1.70509 x 10°
1.19715 x 102 | 9.64982 x 102 | 1.87316 x 103 | 2.42366 x 103
1.41147 x 102 | 1,14109 x 10° | 2.31374 x 103 | 3.21220 x 103
1.41921 x 102 1.20110 x 103 | 2.48366 x 10> | 3.27438 x 107
1.54327 x 102 | 1.25707 x 103 | 2.63597 x 10> | 4,02052 x 10°
1.60993 x 102 | 1.36135 x 103 | 2.87559 x 10 | 4.14845 x 103
1.72741 x 102 | 1.51392 x 103 | 3.53555 x 10> | 6.01251 x 103
2.16938 x 102 | 1.87356 x 105 | 4.14751 x 103 | 6.36712 x 103
2.21957 x 102 | 1.98928 x 10> | 4.80427 x 10> | 8.88796 x 10°

2.79692 x 102 | 2.51698 x 10° | 6.16419 x 10° | 1.20650 x 107
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TABLE VI

EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO
OF 5 AND Pe OF 10, 100, 300, AND 1000

Pl 4 Pe = 10 Fe = TO0— =300 Pe = T000
I | 1 {2.71323 x 10 | 8.82645 x 10! | 9.45499 x 10' | 9.53839 x 10!
1| 3 |3.19397 x 10! | 1.18039 x |o? 1.29705 x 102 | 1.31344 x 102
I | 5 |3.98096 x 10' | 1.70549 x 102 | 1.95330 x 102 | 1.99152 x 102
1 | 7 | 4.94473 x 10! [ 2.41554 x 102 | 2.91486 x 102 | 3.00176 x 102
I | 9 |6.01129 x 10" | 3.35243 x 102 | 4.41311 x 102 | 4.64455 x 10%
3 | 1 |9.03114 x 10' | 6.10023 x 102 | 9.30171 x 102 | 1.02871 x 10°
3 | 3 19.21879 x 10! [ 6.34871 x 102 | 9.84766 x 102 | 1.09692 x 10°
3 | 5 |9.55470 x 10! | 6.75797 x 102 | 1.08452 x 10° | 1.22914 x 103
3 | 7 |1.00300 x 102 | 7.47551 x 102 | 1.31498 x 10> | 1.57715 x 103
5 | 1 |1.53107 x 102 | 1.21204 x 10> | 2.29434 x 10° | 2.90775 x 103
s | 3 |1.54326 x 102 | 1.23440 x 107 | 2.38673 x 10° | 3.09339 x 10°
5 | 5 |1.56509 x 102 | 1.29307 x 10° | 2.67877 x 103 | 3.77781 x 10>
7 | 1 [2.15909 x 102 | 1.82828 x 103 | 3.90311 x 10> | 5.66938 x 103
7 1 3 |2.16910 x 102 {1.87311 x 103 | 4.24036 x 10° | 6.97333 x 10>
9 | 1 |2.78759 x 102 | 2.46842 x 103 | 5.89038 x 103 | 1.09241 x 10%

18
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TABLE VIl

EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO
OF 10 AND Pe OF 10, 100, 300, AND 1000

Pe = 10 Pe = 100 Pe = 300 Pa = 1000

2.66084 x 10! | 8.49501 x 10! | 9.07163 x 10! ]9.14761 x 10

2.78789 x 10! | 9.20748 x 10! | 9.88936 x 10! |9.98038 x 10!
3.02449 x 10' | 1.05706 x 102 | 1.14767 x 102 | 1.16006 x 102
3.34911 x 10 | 1.25430 x 102 | 1.38313 x 102 | 1.40138 x 102

3.74307 x 10! | 1.52746 x 102 | 1.72788 x 102 | 1.75807 x 102
9.01022 x 10! | 6.06540 x 102 | 9.22175 x 102 | 1.01866 x 103
9.05687 x 10! | 6.11968 x 102 | 9.33374 x 10% | 1.03235 x 103
9.14621 x 10 | 6.23653 x 102 | 9.62644 x 102 | 1.07083 x 103
9.27769 x 10! | 6.51246 x 102 | 1.04882 x 10° | 1.19224 x 103
1.52964 x 102 | 1.20916 x 10> | 2.28500 x 10> | 2.89177 x 10°
1.53264 x 102 | 1.21497 x 103 | 2.31009 x 103 | 2.94085 x 10>
1.53871 x 10Z | 1.23987 x 105 | 2.46839 x 103 | 3.33297 x 103
2.15795 x 102 | 1.82484 x 103 | 3.88155 x 10> | 5.60739 x 10°
2.16058 x 102 | 1.84707 x 10> | 4.11711 x 103 | 6.59961 x 103

2.78647 x 102 | 2.46319 x 103 | 5.86196 x 105 | 1.08121 x 104
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For the lower Peclet numbers the integrals I;(k, i) and I3(k,i), as
specified by Egs. (16) and (18), respectively, dominate the determinant
to the extent that two integer pairs with the same value of the sum
(p2 + q2/R2) produced nearly equal eigenvalues. For the cases of aspect
ratio 1 and Peclet numbers 1 and 10, the eigenvalues produced by the
pairs (1, 7) and (5, 5) differed only in the fifth significant digit. This was
close enough to produce difficulty in evaluating the nonhomogeneous sys-
tem, Eq. (23), and as shown in Table I for these cases, the integer pair
(3, 9) was substituted for the pair (5, 5).

It was found that each function ¢ j(a, 8) produced an eigenvalue, and
for the lower Peclet numbers it was possible to identify which function
generated which eigenvalue on the basis of the value of p2 + q2/R2, In
Tables II through VII the eigenvalues are listed in ascending order.
Listed with the eigenvalues are the integer pairs which generated them.

The inlet temperature boundary condition Bo(a, B), which was defined
as the difference between the temperature at the duct inlet and the final
developed viscous temperature profile, was written as

65(a,8) = A8; - @ (a,B) (28)

where Afr is the temperature difference between the constant tempera-
fure inlet condition and the uniform wall temperature, and Bn(a, B) is the
solution of the transformed viscous dissipation equation given as Eq.
(II-10) in Appendix II.

The constants al(n) from Eq. (23) were solved for by the maximum
diagonal pivot Gaussian reduction technique. With separation of the in-
let boundary conditions into nonviscous and viscous dissipation compon-
ents, two sets of constants, aj) 1} and aln(n), were solved for during
the same matrix reduction. This was accomplished by writing Eq. (25)
for J(£) as

J(2) = 4, (0) - ¢ (29)
where
I R N
J,‘(!.)aff ¢)(a,B) + Z ¢, ¢;(a,8) | da dp (30)
o o0 Jj=2
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and

o ——
O

N
(n)
Jn(z)ﬂ en(a,B) [¢|(¢,B) + Z CJ- n ¢J(G,B) da df

J=2

[ -]
Z Z Ts(s,ﬂ sin stasin + wB/R
s=1,3,5.. t=1,3,5..

o-— -
o\———

N

[¢|(a,8) + :E: cj‘"’ ¢;(a,8 | da d8 (31)
j=2

and by specifying J) (£) and Jy,(2) as separate column vectors in the
matrix solution for aji, n) and aln(n). Given in Appendix IV as Egs,
(IV-1) through (IV-9) are the integrated solution forms for Eq. (24)
for I(2,n) and Eqgs. (30) and (31) for J)(£) and J,(£).

The temperature solutions now become, for the nonviscous com-
ponent,

M
(n)
n={

N
-B.E
+ E: ;™ oita,® [e (32)
1=2

and for the viscous component,

M

(n)
8,(a,8,6) = Pe 2: ajg | ¢ite.B) +
n=|
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N

. 8.£
Z c;(M ¢,te,8)] @ (33)
i=2

4,2 RESULTS

Of primary interest in this study are the bulk mean temperature,
6. as specified by Egs. (IV-10) through (IV-14) in Appendix IV, the
Nusselt numbers, Nu, as specified by Egs. (IV-20) and (IV-21) in
Appendix IV, and the ratio of the long-to-short wall heat-transfer rates,
QB/Qq. as may be determined from Eqgs. (IV-15) through (IV-19) in
Appendix IV,

Figure 2 gives the nondimensionalized mean velocity, upy,, as eval-
uated from Eq. (I-17), as a function of aspect ratio. It is this mean ve-
locity which must be multiplied by the Peclet number used in this study
to obtain the more standard Peclet number.

0.10
[ Parallal Plates —3‘
0.08
0.06 I~
£
=] -
0.04 |-
0.02 I~
i1 | 1 1 1 1 1 |
0 2 4 (Y B8 10
R

Fig. 2 Mean Velocity versus Aspect Ratio
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Figure 3 gives a comparison of the nonviscous component of the
bulk mean temperature for aspect ratio of 10 and Peclet numbers of
1000 and 100 to that given by Ref, 2 for the parallel plate solution with
no axial condition. The parameter, P€, is the Peclet number based on
the mean velocity for parallel plate flow as used by Ref. 2. Figure 4
gives a comparison of the nonviscous component of the bulk mean tem-
perature for aspect ratio of 1 and Peclet numbers of 1000 and 100 to
that given by Ref. 15 for no axial conduction. For aspect ratio of 1,
the Peclet number of 1000 as used in this study corresponds to a
Peclet number, based on the mean velocity, of 35, The data from
Ref. 15 should be applicable for Peclet numbers, based on the mean
velocity, of 100 and above, It may be seen from this figure that ignor-
ing axial conduction for low Peclet numbers can give considerable error.

t.0
R=10a Pe = 100
0.8 -
Parallel Plates
(Ref. 2)
0.6 -
& 0.4
<]
~
<
£
@ -
0.2 [~
10 ~ Pe = 1000
0 | | | 1 1 L |
0 0.2 0.4 0.6 0.8 1.0

L]
Z/L Pe
Fig. 3 Bulk Mean Temperature for Aspect Ratio of 10 and Parallel Plates
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Fig. 4 Bulk Mean Temperature for Aspect Ratio of 1
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Figures 5 through 8 give the nonviscous component of the bulk mean
temperature for aspect ratios of 1, 2, 5, and 10, respectively, with the

Peclet number as a parameter.

tively, with the aspect ratio as a parameter,

.0

0.8

0.6

e
£

0.2

Fig. 5 Bulk Mean Temperature for Aspect Ratio of 1 and Various Peclet Numbers

Figures 9 through 12 give the same tem-
perature distribution for Peclet numbers 10, 100, 300, and 1000, respec-

-

1

Pe = 1000
Pe = 300
| /- Pe = 100

-

)
/
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e
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Fig. 6 Bulk Mean Temperature for Aspect Ratio of 2 and Various Pe'clef Numbers
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Fig. 7 Bulk Meon Temperature for Aspect Ratio of 5 ond Various Peclet Numbers
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Fig. 8 Bulk Mean Temperature for Aspect Ratio of 10 and Various Peclet Numbers
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Fig. 9 Bulk Mean Temperature for Pe of 10 and Various Aspect Ratios
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Fig. 10 Bulk Mean Temperature for Pe of 100 and Various Aspect Rotios
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Fig. 11 Bulk Mean Temperature for Pe of 300 and Various Aspect Ratios
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Fig. 12 Bulk Mean Temperature for Pe of 1000 and Various Aspect Ratios
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Figure 13 gives the bulk viscous dissipation mean temperature for
fully developed flow as a function of aspect ratio. Included is the value
for the parallel plate solution.

5.0

Parallel Plates _.__/'_

530 =

Ompy X |03/F,’e
||

2.0 -

Fig. 13 Bulk Mean Viscous Temperature for Fully Developed Flow versus Aspect Ratio
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Figures 14 through 17 give the viscous component of the bulk mean
temperature for aspect ratios of 1, 2, 5, and 10, respectively, with the
Peclet number as a parameter. Figures 18 through 21 give the same
temperature distribution for Peclet numbers of 10, 100, 300, and 1000,
respectively, with the aspect ratio as a parameter.
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Fig. 14 Bulk Mean.Viscous Temperature for Aspect Ratio of 1 and Yarious Peclet Numbers
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Fig. 15 Bulk Mean Viscous Temperature for Aspect Ratio of 2 and Various Peclet Numbers
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Fig. 16 Bulk Mean Viscous Tcmperc;furo for Aspect Ratio of 5 and Various Peclet Numbers
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Fig. 17 Bulk Mean Viscous Temperature for Aspect Ratio of 10 and Various Peclet Numbers

37



AEDC.TR-69.115

0 1.0 2.0 3.0 4.0
2/,

Fig. 18 Bulk Mean Viscous Temperature for Pe of 10 and Various Aspect Ratios
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Fig. 19 Bulk Mean Viscous Temperature for Pe of 100 and Various Aspect Raties
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Fig. 20 Bulk Mean Yiscous Temperature for Pe of 300 and Various/Aspect Ratios
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Fig. 21 Bulk Mean Viscous Temperature for Pe of 1000 and Yarious Aspect Ratios
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Figure 22 gives the limiting Nusselt number as a function of aspect
ratio for the various Peclet numbers, which isidentical for both the
viscous and nonviscous components. Plotted in the figure are data from
Refs. 13 and 15. The values from Ref. 13 are 2. 89 and 2, 54 for the
aspect ratios of 1 and 2, respectively, and from Ref, 15 are 2.98 and
2.54. These values compare well with the values obtained in this study
for Peclet number of 1000, which are 2.981 and 2. 548. ,

6.0

© Ref. IS5

A Ref. I3

5.0

Pe = 100
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2.0 | 1 1 1 i 1 | | |
0 2 4 6 8 10

Fig. 22 ‘Limiting Nusselt Number versus Aspect Ratio for Various Peclet Numbers
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Figures 23 through 26 give the Nusselt number for the nonviscous
component as a function of distance from the duct entrance for aspect
ratios of 1, 2, 5, and 10, respectively, with the Peclet number as a
parameter,

8.0
7.0 =
i Pe = 1000
6.0 — Pe. = 300
_ {—Pe =100
< Pe = |0
2 5.0 F
4,0 L
3.0
| 1 1 ] L 1 1 | l
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Fig. 23 Nusselt Number for Aspect Ratio of 1 and Various Peclet Numbers
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Fig. 24 Nusselt Number for Aspect Ratio of 2 and Various Peclet Numbers
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Fig. 25 Nusselt Number for Aspect Rdtio of 5 and Yarious Peclet Numbers
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Fig. 26 Nusselt Number for Aspect Ratio of 10 and Various Peclet Numbers
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Eraslan and Snyder (Ref. 18) have shown that for viscous dissipa-
tion the mean value of the dissipation function over the duct cross sec-
tion is equal to the product of the pressure gradient and the mean ve-
locity. With the values of bulk mean temperature, mean velocity, and
Nusselt number for fully developed viscous flow between parallel plates
obtainable from a closed form solution, it is possible to obtain a more
accurate estimation of the fully developed viscous dissipation Nusselt
number for various aspect ratios by means of the ratio of energy dissi-
pated than is obtainable by differentiating the finite series for the fully

developed viscous temperature profile. The Nusselt number may then
be shown to be

Um emnf R
Nun = Nunf m (m) (34)

where the subscript f denotes parallel plate values and where uy,, and
Omn may be obtained from Figs. 2 and 13. Figure 27 gives the Nusselt
number obtained by this approach as a function of aspect ratio.

10

Parallel Plates

Nup, ()
1

Fig. 27 Nusselt Number versus Aspect Ratio for Fully Developed Yiscous Temperature
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Figures 28 through 31 give the Nusselt number for the viscous com-
ponent as a function of distance from the duct entrance for aspect ratios
of 1, 2, 5, and 10, respectively, with the Peclet number as a parameter.
These figures show that the Nusselt number for the viscous component
is not infinite at the duct entrance, as in the case for the nonviscous
component, but is given by Fig. 27. Therefore, the curves in Figs. 28
through 31 were started at the duct entrance using the values given by
Fig. 27.
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Fig. 28 Viscous Nusselt Number for Aspect Ratio of 1 and Various Peclet Numbers

48



AEDC-TR-69-115

8.0

700 -l

6.0 -

1 1
0 1.0 2.0 3.0 4.0 5.0

Z/L|

Fig. 29 Viscous Nusselt Number for Aspect Ratio of 2 and Various Peclet Numbers
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Fig. 30 Viscous Nusselt Number for Aspect Ratio of 5 and Various Peclet Numbers
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Fig. 31 Viscous Nusselt Number for Apsect Ratio of 10 and Various Peclet Numbers
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Figures 32 through 34 give the ratio of heat-transfer rate long-to-
short wall as a function of distance from the duct entrance for the
nonviscous component and for aspect ratios of 2, 5, and 10, respectively,
for the various Peclet numbers, Near the entrance to the duct the solu-
tion converges more rapidly to the long than to the short wall. For this
region the heat-transfer rate ratio has been estimated by extending the
curves as dashed lines.
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Fig. 32 Heat-Transfer Ratio Long-to-Short Wall for Aspect Ratio of 2 and Various Peclet Numbers
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Fig. 33 Heat-Tronsfer Ratio Long-to-Short Woll for Aspect Rotio of 5 and Various Peclet Numbers
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Fig. 34 Heot-Transfer Ratio Long-to-Short Wall for Aspect Ratio of 10 and Various Peclet Numbers
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Figures 35 through 37 give the ratio of heat-transfer rate long-to-
short wall as a function of distance from the duct entrance for the vis-
cous component and for aspect ratios of 2, 5, and 10, respectively, for
the various Peclet numbers. Again, near the entrance of the duct, the
ratios have been estimated by dashed lines.
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Fig. 35 Viscous Heat-Transfer Ratio Long-to-Short Wall for Aspect Ratio of 2 and Various Peclet
Numbers
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Fig. 36 viscous Heot-Transfer Ratio Long-to-Short Wall for Aspect Ratio of 5 and
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Fig. 37 Viscous Heat-Transfer Ratio Long-to-Short Wall for Aspect Ratio of 10 and Various

Peclet Numbers

57



AEDC.TR-6%9.115

SECTION V
GENERAL CONCLUSIONS

It is concluded that the B. G. Galerkin method may be used to solve
the thermal entrance region heat-transfer problem for laminar flow of a
constant property fluid in rectangular ducts with axial conduction and
viscous dissipation included if c¢onsideration is given to avoiding near
multiple roots for the eigenvalues.

The separation of the inlet boundary conditions into viscous dissipa-
tion and nonviscous dissipation components allowed a solution to be ob-
tained which was general for the duct entrance to wall temperature dif-
ference, A0. The combination of the viscous and nonviscous compon-
ents gives the solution for the inlet boundary conditions as stated in
Section 1.2, The nonviscous component alone will give the solution for
no viscous dissipation and uniform temperature inlet, as well as for fully
developed viscous temperature flow with a step change in wall tempera-
ture in the Z-direction. The viscous component alone will give the solu-
tion of viscous temperature flow for the condition of uniform inlet tem-
perature equal to a uniform wall|temperature.

The solutions for the thermal entrance region in rectangular ducts
with constant wall temperature conditions verify the fact that for low
Peclet numbers, the few previous cases solved for no axial conduction
can be in considerable;error,
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APPENDIX |
SOLUTION OF THE EQUATION OF MOTION FOR THE YELOCITY PROFILE

Given the equation of motion (Eq. (1))

32w 32y | dP
+ = = I-1)
axZ gyl w @ (

L2 o W
w. T m— o r— 1_2
ref TR vl ( )
and
=X_Y -
Ly=2=1% (1-3)
the equation becomes
Wref (82u 32y ) | dP (I-4)
+ = —
le aaz 382 u EZ'
or
32y 32y
o — T - l (1‘5)
gf o8
The boundary conditions are
u(l) = 0 (1-6)

The solution may be obtained using the finite Fourier sine transform
as given by Sneddon (Ref, 19), Taking the transform of both sides of the
equation
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| R
2 2
f[(a—;. +§—%)slnmnasin-n—":- da dB =
o "o !0 %8

sinm ma sin P8 dq dB

R

M
O\ﬁ—
o—x

(1-7)

the transform of the left side of the equation with the specified boundary

conditions becomes

2
-n2 (m2-+ %2-)-2- A(m,n)

The transform of the right side becomes

oy [eos =] [eos e - 1]

mnw

R
- [2] [2] ¢ d n odd
— ] [2] for m and n

0 for m or n even

Then
Alm,n) = -I—g _&2—__
d R2m3n+mn3'
The solution then becomes
u = Z Z A(m,n) sinm wa sin .“.E_B.

m=1,3,5... n=1,3,5...

or
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13 RZ nmg
—_— — sin —— (1~
u = 2 E ' [R2m3n 3 sinm na sin R (I-14)
m=l’3’5..l n=l'3'5lll

The mean velocity may then be determined as

y

u dadB/R

o\-—=m

or
I R
f f 161___R" | sinmmasin ";B dadB
5 % 1t R2m3n+mn3
Un ~ R
Then
64 R2
n 7 40 Z RZmnZ+mZnd
m=1,3,5... n=I1,3,5,,. [F ™ noimen
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APPENDIX If
SOLUTION OF THE VISCOUS DISSIPATION TEMPERATURE PROFILE

Equation (13) for the viscous dissipation temperature profile

220, 326 2 [au)2 (11-1)
] + _-‘5' = - + |53
da 3B P (35)

with boundary conditions

en(r,g) =0

may be solved using the finite Fourier sine transform. Taking the
transform of both sides as

{ R
28 28
f[ 2——2-" +§—-2. sin p ma sin q 78 dadB =
5 o \°¢ 3B R

I R
- Pe ff ( ) ( ) sin p ma sin q T8 "B dadB (I1-2)
o o

the transform of the left side as given by Sneddon (Ref. 19) becomes
A 2| R fip,q) (I1-3)
. RZ| 4

From the velocity solution

T D S S D - (B
da| |44 R2mZnen3 stzﬂpj

m=!,3,5 n=1,3,5 s=1,3,5 *+=1,3,5

. : 8
cos m ma sin n “_Ig' cos s ma sin t e (11-4)
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and

MG 16 Z Z Z mR R
8] * (;4- Z g RZm3+mn2 | |RZ2s3+s12

sin m ma cos n .’.'_g. sin s ma cos t l‘_g_ (11-5)

The right side then becomes

-Pe(lgz Z Z Z Z 2 R4
4 ™ o T ( R2m2n+n3) (R252T+'r3)

]

R

I
ffcosmmcossmslnpmsinn_’_‘_ﬁ_sin‘t_’_‘_@_slnq“s
A R R R

m n 3 T V(RZm3+mn2) (R2s3+st2)

wre LT YT )

Il R
f f sin m ma Sin S ma sin p ma cos n l'_g.cos t l'_g. sin q .’Lg. dadB | (II-6)
oo

By use of trigonometric identities for multiple angles the first inte-
gral becomes

I_ R
ff .:? sin (m + (s+p))ma - sin (m - (s+p))ma
o ©

- sin (m + (s=p))ma + sin (m - (s-p))na||sin (n + ('I'-q))‘l%
4+ sin (n=(+-@))7B = sin (n+(++qQ))7"B - sin (n-(++q))TB
Y= "= " 'x

da dB (I1-7)
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which, on integration, becomes

- 9

R | [ r I e [

472 | m{s+p) " m-{s+p) m+(s-p) m-(s-p)J
- - (11-8)

| O |
m+(1-q) n-(¥-q)  n+{t+q) = n-(++q)
L -
and exists only for pandgq =1,3,5 ---- since m, n, s, andt are odd

and

f sin n wada = O for n even
o

By the same process the second integral becomes

R [ + | _ | _ [
4n2 | mt(s-p) ~ m-(s-p) m+(s+p) m-(s+p)

{ I _ | . ] (11-9)
| n+(t+q) a={t+q) n+(t-q)  n=-(t-qQ)

and exists only for pandq =1, 3, 5 ------- .

The final solution then becomes

B en(a,B) = Pe Z Z ?s(p'q)

p=1,3,5.. g=I,3,5..

sin p ma sin g % (I1-10)

where
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2
R I |
- - +
(<R2m2n+n3)(R252f++3)) m¥(s+p) m-{s+p) mt(s-p) = m-(s-p)

-
| | | |

| 7FF=gy ¥ =(F=qY T nF(TFQ) T n=(Feq)

.

-

+
(RZm3+mn2) (R2s345+2)

m+(s-p) + m-(S5-p)  m+(s+p) _ m-(s+p)
L.

|
n-(1-q)

67
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APPENDIX il
SOLUTION OF THE INTEGRALS FOR Iy, I3, AND I3

For approximating functions of the form

¢'=sinpwuslnq%

where p and q are functions of i and for the velocity solution

2
u-= E Z Z ————vv-‘-'-'—R sm muaSIn n."_B_
% m=1,3,5... 0=0,3,5...\R2m3n+mn> R

and
| R
htk, D) =ff v2 4;(a,B) ¢, (a,B) dadB
' o ©
v2 ¢;(a,B) = - 2 (p2 + q2/R2) sin p ma sin q 12 “3
then

(p2 + q2/R2) sin p ma sin s ma sin q L "B

[« D W ¢}
2
N

|
Ly (ki) = f
o

sin t T8 dadB

=
where p=sandq =tfork =1
(k1) = = n2(p2 + qZ/RZ)% for k = i
Iy (k,1) =0 for k # i
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For
1 R
| (k i) fj’ u{a,B) ¢;(a,B) $ (a,B) da dB (111-8)
o ©
then

|
16 f

sin m ma sin p no sin s ma sin nl‘_g_ sin qu_g sin + E'Tg,da dg (I1I-9)

O\ﬁm

R2
m=1, ,5 n=1,53,5 Rzm:”n+mn'.5

which, with the use of trigonometric identities, becomes

R
\ RZ

|
.y 16 Z Z R
Iz(k, I ) = l6 R2m3n+mn3
o

' o m=1,3,5.. n=1,3,5..

[sin (m+{p-s))na + sintm-{p-s))mo - sin{mt(p+s)ina - sin(m—(p+s))11a]

[sin (n+(g-1)) T8 + sin (n-(g-1)) 1'_% - sin (n+(q+ﬂ_‘%
R

- sin (n-(g+t)) "gJ da dB (I11- 10)

Since p, q, s, and t may be specified as odd integers because of
symmetry about the duct centerlines, the solution then becomes

Gk, i) = — R !
2 © m=1,3,5.. n=0,3,5.. |RZm3ntmn3| |MF(p-s)

| Lo | | |
t A (p=s) ~ mF(ptsy _ m-(p¥s) (n+(q-+) Al o S Y )
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' 11
- T ) (I11-11)

where i corresponds to the pair of integers {p, q), and k corresponds to
the pair of integers (s,t). For

| R
150k, 1) = ff(bi(a,ﬁ) éy(a,B) da dp (II-12)
o ©

then

I R

i3(k;” = ffsin p ma sin s ma sin q “_S. sin t l’%'da g (II-13)
o %

I3(k, i) = R/4 for k = i (11I-14)

0 for k # i (I1I-15)

For the special case of the square duct where the eigenfunctions
used are

¢j(a,B) = sin p ma sin q =B + sin q ma sin p 78 (I1II-16)

the integrals may be shown to be

1k, i) = - 22(p2 + q2)/2 k=i andp #q (I1I-17)
1 tk,i) = - n2(p2 + q2) k=1landp=gq (11I- 18)
(ki) =0 k # 1 (11I-19)
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Iotk, i) = 4

!
=
OV
3
[}
-
W
-
g
=3
1]
_U‘M
-
U
———— e ——
3
AN
3
+ | —
3
3
W
"

I | | | - |
{(mﬂp-s) * m-(p-s) m+{p¥s) m-(p+s) ) (n+(q-ﬂ

| | | ] |
* n-(q-t) ~ n+{q+f) ~ n-(q++)) ¥ (m+(q-s) ¥ m=-(q-s)

| [ |
nFp=TT T nelpv) ~ n¥(pth)

I I
~ mt(g+s) m-(q+s).)

S N OO A R I S
n=(p+T) m(p=TY T m(p-T) ~ mF(pF¥Y _ m=(pFTy

I I I | |
(n+(q-sT * n-({q-s) ~ n+(q¥s) ~ n-(q+s) ) * ‘m+(q-ﬂ

i | | | |
* m-(g-1) " m¥(gFt) m-(q+1')) ‘n+(p-§) M= )

| |
T nt(pts) T n-(p+s) )] (I1I-20)

where i corresponds to the pair of integers (p, q), and k corresponds
to the pair of integers (s, t).

I3(k, 1) = | k=1andp-=gq (1-21)
|3(k;i) = |/2 k=1 and P # q (III-22)
I3(k,1} =0 k #1 (I11-23)
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APPENDIX IV
MISCELLANEOUS INTEGRALS

For the integrals given in this appendix the functions, ¢ i(e,B), are
those given by Egs. (26) and (27).

The integral I(£, m) as given by Eq. {24),

| R N
lcz,m)'=ff [«t'(u,ﬁ) + Z ci‘"" ¢;(a,B)
O ©

I=2

N
(a,B) + c, % $:(a,B) | da dB
bt ). S (Iv-1)
j=2

for the nonsquare cases becomes, on integration,

N
1+ ) ™™ (1V-2)
=2

1(g,m) =

&~

and for the square cases becomes

N
1e,m = |1+ Z; C* (Iv-3)
|=

where

C¥*¥ = Ci(m) Ci(“ for p = q

(m) ~ (&
%ci’" C;* forp # q
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The integral for J) (£) as given by Eq. (30),

N

| R
L
Jr(2) = ff [qa,(a.s) + Z CJ.‘ ’ ¢J-(a.s)] da dg  (IV-4)
o o

J=2

for the nonsquare cases becomes, on integration,
N
= AR (2)
J=2 )

and for the square cases becomes

N
_ 8 B (%)
JA(R') = 1—‘7 [I + Z_Z CJ. /pq] {IV-86)
J:

The integral for J,(£) as given by Eq. (31),

I R
Jptr) = ff Z Z fs(s,t) sin s ma sin t .’_'Tg.
o o s=1,3,5.. +*t=1,3,5.,

N
(L)
j=2

for the nonsquare cases becomes, on integration,

N
R | — =
Jglt) = 7 [fs (0 + ) Fulp, cj“-’] (1V-8)
J=2

and for the square cases becomes
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N

(0 = [2F,00,0 + 2 2: 7,0 ¢ (1V-9)
J=2

Tﬁe bulk mean temperature which is defined as

8(a,B,&) ul(a,B) dadB

jF
o]
R (Iv-10)
l[

Bm(E) =

u(a,B) da dB

0“‘—\—-0“-—\—-

for the nonsquare cases becomes, on integration, for the nonviscous
component

4RaeT N 2 N
Bma (€) = E

I
=L,
3
"M
V)]
e
-~
3
N
Rl =
<+
+
T
(@]
S
-
0
N
©
N
O 1=
+ W
9
fa]
1
\n
3
Caal
c
3
—
(=]
<
—
[uy
S’

N N -
B, () = 4RPg tn) | R? . (n) R2 Bl
n 7 A 7 LY w33 (IV-12)
R~ R+ = Rp7q+pq e

and for the square cases becomes, for the nonviscous component,

1628 N N (n)

GMA(E) = ——T[ al) é_ Z _______ e-By (IV- 13)
s + u
L—— o plavpa’ m

and for the viscous component

6 P N N : (n)
e (g) =_.>'® Z Lo 1 Z L |.Bnk (IV-14)

’ 4 A 72 e

o b n=1i n =2 P3q+Pq3 “m
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The ratio of heat-transfer rate per unit length at the duct walls to
the thermal conductivity may be written, for the o or short wall, as

Qu/K = ]9% do (IV-15)
[o) 8=0

and for the 3 or long wall as

R

0g/K = f-g% d8 (Iv-16)

° a=0

and becomes, on differentiation and integration, for the nonsquare cases

-

N

N
(n) 2 Z _(n) q ~B.E
n=1 i=2 o

-

N
Qg/K = Z a)("M 2+ 2 i: c; ™ .gﬂ e Bnt  (1v-18)
i i=2 J

where the coefficients al(n) become a) (n) and aln(n) for the nonviscous
and viscous components, respectively, and for the square cases becomes

N N
0/k=0g/k= ) 3™ |asz ) (%+%
i=2

n=1

o B (1v-19)

with the above-mentioned condition on the coefficient a l(n)_

With the evaluation of the heat-transfer rates, the Nusselt numbers
may now be written, for the nonviscous component, as

_ hiLy
NuA = <
- QaA QBA
K Y|/ (Ri)oy,,

(IV-20)
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and for the viscous component as

=hL|

N”n N

= [Jan . Q8n v-21
(_T<—+'T<—) (REDI g, ( )
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