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ABSTRACT

. The purpose of this paper is to examine the computational aspects of the
minimum fuel continuous low thrust orbit transfer problem and to display
characteristic numerical features introduced by various physical constraints.
Minimum-fuel orbit transfer by low thrust is typical of many problems in
optimal control which result in a two point boundary value problem which
must be solved by sorne iterative numerical procedure. Two techniquer,
Multiple f.ubstitution Polynomials (MSP) and Marquardt's method, are shown
to be applicable to this task, and a detailed analysis is mace of the behavior
of these methods in the context of the low thrust problem. A variety of sub-
problems is considered with parametric variation of endpoints, thrust-to-
weight ratio, and orbit axial orientation. A physical barrier is found which
restricts sample points in certain limiting case fixed endpoint transfers. The

existence of multiple stationary solutions is shown for the case of intersecting

A XS

orbits, and the nearly singular behavior in that region is investigated. Numer-
ical results for several transfers are found to compare with similar results

reported elsewhere, |
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GLOSSARY
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GLOSSARY (Continucd)

total velocity magnitude

circumferential component of velocity

v
Vr radial component of velocity
X state vector
Aw axial rotation of the final orbit with respect to the initial orbit
J perturbation parameter
n constant Lagrange multiplier vector
A(t) vector of Lagrange multiplier functions (costate)
18 gravitational constant for the earth
v true anomaly of spacecraft relative to perigee of initial orbit
, ) thrust angle measured clockwise from the forward
’ circumferential direction
. o(x, t) function to be minimized ir the Mayer Problern
() =< ()
(") =< ()
X Subscript
Lo 0 initial conditions
i initial orbit
f final orbit
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I. INTRODUCTION

The purpose of this report is to examine computational aspects of the
mirimum fuel continuous low thrust orbit transfer problem and to display
characteristic numerical features introduced by various physical constraints,
Computational difficulties in finding numerical solutions of optimal control
problems have severely limited the application of modern control theory. The

low thrust problem is typical of many optimal control problems for which the

‘ necessary conditions may be established, and yet which defy analytic solution
1 (without drastic simplification) or straightforward numerical solution because
of computational difficulties.

Orbit transfer by low thrust has received considerable attention in the
past decade (Refs. 1 - 5), and numerical solutions have been obtained
for a large variety of subproblems in the control of low-thrust vehicles.

However, in emphasizing the physical characteristics of the problem, the

i CA R A oot

computational complexities have been somewhat overlooked. There has been

little mention of the behavior of various numerical techniques, or of a com-

parison of techniques. Very often the schemes employed have been severely

limited in general application, and, in most cases, the extreme sensitivity

et A2,

of the solution to the choice of initial conditions has dictated knowing the form
of the solution a priori. The two point boundary value problem (TPBVP)
arising from the low thrust problem has been solved by Newton-Raphson

techniques (Refs. 2,5), quasilinearization (Ref. 3), and dynamic programming

AN e

(Ref. 6), although the computational difficulties encountered have usually been
formidable for all but the simplest of orbit transfer conditions, for example,
circle~to-circle coplanar transfers,

In this report, numerical solutions are obtained for ellipse-to-ellipse

transfers, with several combinations of fixed and free endpoints., Of particular

s il A S Rl

interest is the minimum fuel transfer between given elliptical orbits in which
both endpoints are free. Optimal solutions are obtained numerically for transfers
between rotated coplanar elliptical orbits, and the existence of multiple

extrema is- demonstrated. Two finite dimensional optimization techniques,
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Multiple Substitution Polynomials (MSP) and Marquardt's method, will be
examined in the context of the low thrust orbit transfer problem. Attention
will be focused on-obtaining a successful iterative convergent process with
emphasis on the numerical algorithm, the method of reduction of the problem
for computational purposes, and the behavior of neighboring solutions for
parametric studies,

The problem to be considered is (refer to Fig. 1) to determine the
opiimal thrust orientetion history to transfer a constant magnitude, low-thrust
vehicle by having it thrust coatinuously from an initial orbit to some desired
terminal orbit, with the minimum expenditure of fuel, The initial and terminal
orbits are assumed to lis in a common plane about a spherical, drag-free
earth, Thus, the only forces acting on the vehicle are its tarust and its own
weight. Plane polar coordinates are chosen for the geometry of the problem,
with the thrust orientation angle measured clockwise from the circumferential
direction. The assumption of a constant mass flow rate transforms the mini-
mum fuel problem to a minimum time problem, with fuel expenditure linearly
proportional to total transfer time.

The orbits chosen have perig.:e/apogee altitude values of 55/110 and
80/180 n mi. Initially, the orbits are taken as co-apsidal (Aw= 0 deg), but
results are obtained for vaiious axial rotations. A thrust-to-weight ratio of
T/W =0,0125 is initially assumeaq; the effects of varying T/W are also
investigated.

The nature cf the physical problem itself and the structure of the resulting
TPBVP have led to a set of three Cases which are described in Table {.
Reference will be made extensively throughout the rest of the paper to Cases 1,
II, and III, Case I consists of transfers between fixed points on the initial and
terminal orbits whose locations are specified in advance., The solution of the
TPBVP yields the optimum thrust orientation history as well as the transfer
trajectory and fuel expenditure. Case II consists of transfers from a spec:-
fied point on the initial orbit to a point (not specified in advance) on the terminal
orbit, the location of which is an additional part of the problem. Case III
consists of fuel optimal transfers between orbits in whicn neither the departure
nor arrival point is fixed in advance, but must be determined as part of the

solution to the problem.

v




TERMINAL ELLIPSE

NOTATION
e, = terminal ellipse eccentricity v, = circumferential component
hf = terminal ellipse angular momentum of velocity
~ V = radial component of velocity
m = spacecraft mass r » 2\1/2
m =mass rate (constant) V =total velocity V = (Vr * vV)
Py = terminal ellipse semilatus rectum w = gravitational constant
r = radial distance to spacecraft V.= angul.a.r position of spacecr.aft
relative to perigee of terminal
T = thrust magnitude {constant) orbit
t, = final time ¢ = thrust angle
. t =time subscript 0 refers to initial conditions
N Figure 1. Geometry and Nomenclature of the Orbit Transfer




Table 1, Orbit Transfer Cases

Physical Interpretation

Fuel optimal transfer from a fixed
peoint in the initial orbit to a fixed
point in the terminal orbit

Fuel optimal transfer from a fixed
point in the initial orbit to a point
(not fixed) in the terminal orbit

Fuel optimal transfer between two
orbits in which neither departure
nor arrival point is fixed in ad-
vance

Fixed endpoint optimization
problem

One endpoint fixed, one endpoint
free optimization problem

Two free endpoints optimization
problem

b Case
¢
y {
Y I
:
1I
3 1
:
\
3
e
3
:




II, FORMULATION OF THE PROBLEM

A, DYNAMIC EQUATIONS AND SPECIFIED BOUNDARY CONDITIONS

Using the notation defined in Fig., 1, the equations of motion for the non-

atmospheric spherical earth gravitational model are:

r=V
r
. VV
V= —
r
2
5 v .
% ='V“"E"+(Tfu;ht)
r roo m
1 % __Vrvv+ T cos ¢ (13
v~ r (mo-lrhlt) )

The initial conditions are specified by:

| B (t,) !

r =

0 i + e, cos v(to)
v(to) = VOspeC (Cases I and II only)
V(e = eihi sin v(to)
: ro P
i

p hi
’f Volte) = 1) @)




with the terminal conditions given as

(t) ot
rit,) =
;_ f 1 +ef cos v(tf)
v(tf) = vfspec (Case I only)
) efhf sin v(tf)
v (t,) = —————
r'’f P¢
hf
Vit =15 (3)

where the subscripts i and f refer to the initial and final orbits; ;s 2, ey and
aare specified orbital parameters (eccentricity and semimajor axis); and hi’
P;? hf, p; are the corresponding angular momentum and semilatus rectum for
each ellipse.

The orbit transfer is to be made by orienting the thrust vector at the
best instantaneous angle ¢(t), measured clockwise from the circumferential
direction, to minimize the total fuel expenditure for the maneuver. Since a
constant mass flow rate is assumed, a minimum time transfer is equivalent
to minimizing the fuel. This can be viewed as a classical Mayer Problem in
the Calculus of Variaiions, and the necessary conditions for optimality are

reviewed in the next section.

B. NECESSARY CONDITIONS FOR OPTIMALITY:
THE MAYER PROBLEM

It is desired to minimize the criteria function of the form

J = olx, t) lt=tf (4)
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subject to the differential equation constraints

i), xg = x(t) (5)

Ine

where x and f are n-vectors and u is a scalar function of time, and to the speci-

fied terminal constraints.

M(x,t) Imf =0 (6)

where M is an m-vector with m = n. I, for example, the cornplete state

vecto. is specified at the terminal point (as in the Case I orhital transfer),

then
Py
M| =r-TTe cosv
f fspec
MZ TveT stpec
M3 Sy . efhf sin- vfspec .
s Pg
hf
M4 =V, - — (7)
f f

Consider further the free time problem where the final time t, is not specified

The augmented cost function is constructed as

tf
J, = &gt T ETM(J_gf,tf) *Jtr L,T(ﬁ)[é - f(x,v)]at (8)
0
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where A (t) is an n-vector of Lagrange multiplier functions and 1 is a constant

m-vector of Lagrange multipliers.

Requiring that the first variation of Ja. vanish yields the Euler-Lagrange

equations

and

and boundary conditions

.&T - LT of (}::,u)

[costate equations] (9)

Z T alx.u) _

N B [ optimality condition] (10)

XT(tf) =-g§ +1]T -%—%— [+ransversality conditions]
(11)

Ty o208 nT M
SEINESE SR - (12)

In principle, Eq. (10) may be solved at each time point for the instantaneous

control

u =u(x,\) (13)

and substitution may be made into Eq. (9) to give the reduced adjoint equation

where

A =glx,\) (14)




-f an iterative numerical procedure is required to calculate u(t), starting
estimates must be made in a region where _)lTaz_f/Su < 0, as required by the
Weierstrass Cendition, An analytic solution must satisfy this condition as
well.

The boundary conditions for Eq. (14) are given at the final time by
Eq. (11), whereas the initial conditions of the state equations, Eq. (5), are
known, Hence, the original optimization problem of Mayer has been trans-
formed into a two-point boundary value problem (TPBVP), If Eq. (5) is a
set of non-linear dynamic equations, an analytic solulion of the TPBVP is not
possible except under extremeiy unusual circumstances, To sum up, the

unknown quantities are:

no. of elements

Ay = Mty) n
n m
t -
Total n+m+1{ unknowns

The conditions to be satisfied are:

no. of elements

M terminal constraints  Eq. (6) m
_)_\_(tf) transversality Eq. (11) n
(LTg)It Eq. (12) {
f —_——
Total m +n +1 conditions

Thus it is seen n + m + {1 unknowns are available to satisfy an equal number

of conditions; the system is determined.

C. REDUCTION OF THE TRANSVERSALITY CONDITIONS

Since the minimum fuel orbit transfer using a continuous-burning

constant mass flow rate engine requires a minimum time traversal, the
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appropriate Mayer problem cost function is &(x(t), t) It = tf.

The state variables may Le assigned as:

% =T
x2=V
x3::Vr
X4=Vv

The specified terminal conditions (Eq. 6) for Case I become

M ot

=X -
i if 1+ ef COs X,
M,y =%p¢- fspec
N efhf sin X,

3 " *35 P,
Moex Dy

4 4f Xy¢

10

(15)

(16)




Thus

p.e, sin x
' { _ £°f 2f > 0 0
(1 + e cos x?.f)
0 { 0 0 ;
SM— = efh cos x (17)
X
= 0 _ f 2f { 0
Pg
h
f
—5— 0 0 i
*1f

and since 9%/0x = (0,0,0,0), Eq. (11) gives

pge; sin %,

n
2 2
(1 + ef cos fo)

Mg =2 Ty (18)
it

The Lagrange multipliers Nys Mpy N30 Ny have no specified values and thus

-t the >‘1£’ )\Zf’ )\3£, )‘4f are undetermined for the Case I boundary conditions.

11
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For Case II transfers, the specified boundary conditions are

My =%~
T‘.:LZ = x3f -
My =%~
Thus
- _
oM, oM, oM, oM,
axi axz 8x3 3x4
M
oM., oM, oM, oM.,
i)x1 8x2 8x3 ax4
oM, oM, oM, oM,
9 9x, 9x, x4
Then since o, = (0,0,0,0),
h,
Mg=my 5,
it
. Pepsinx,, eshy
A, = - n, -
2f (1+e cos x )2 1
f 2f
Nag =M,
Agg =73

Pg
1+ e cos x2f
efhf sin Xy
Pg
Py
*if (19)
p.e. sin x
{ _ f°f 2f > . 0
(1 + ef cos x2f)
eh, cos x
- 0 __ff 2f 1 0
Pg
h
£
=z 0 o 1
*1f
(20)
\
COS Xof Transversality con-
Ps 12 ditions in terms of

Lagrange multipliers 7

y (21)

12




Thus, the terminal coupling of the state and adjoint variables can be expressed

as

p.e, sinx h eh. cos x
N a6 2f [y . _f.y +fhf____2f.)\ =0 (22)
2f (1 +e,cosx )2 1f e 4t Pg 3
£ 2¢ *1f

If the transfer is constrained to depart from the initial ellipse, but at

an unspecified exit point, an additional set of transversality conditions arises

leading to
P;e; sin %50 hi eihi cos X,
‘20 * Mo~ 2 M0 5 N3 =0 (23)

2
(1 + ei cos x20)

Thus Eq. (22) and (23) serve to couple both the initial and final state and
costate variables, and, although the unknowns Vo and Ve cannot be determined
directly from these, they provide the additional information necessary to

establish the optimal values.

D. SCALING OF THE VARIABLES

The state variables are scaled into characteristic units in the following

manner:

1/2t -

(@) Time: t= (u/»R3) Ct (24)

where

t = unscaled time, in seconds
r =GM

R
. G
M

radius of the earth
universal gravitational constant

mass of the earth/satellite system;

13
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T e

the scaling constant C has radians/second as the units and is the mean

angular velocity of a surface circular satellite.
(b) Length: T =r/R (25)

where r = radial distance to satellite measured from the center of the earth,
in feet.

(¢)  Velocity: V = V/RC (26)

where V = velocity of satellite in feet/second and the product RC = (P-/R)i/2

and is thus the velocity of a surface circular satellite measured in feet/second.

(d) Time normalization (Long's transformation):

For computational purposes, it is convenient o introduce a new independent
variable s by the transformation

t =as (27)

where 0 = s <1 and .ais a constant.

Thus whens =1, a = 't'f (the scaled final time). Integration is performed
with respect to s for a fixed number of steps, since its range is constrained
to the unit interval. For free (variable) time problems, the value of the
unknown parameter a is determined as part of the optimization process. The
variable s is referred to as '""normalized time.'" From Egs. (24) and (27), the

differential relationship is seen to be
dt =2 ds (28)
C

and the state and costate differential equations are transformed accordingly.

14




Corresponding to the scaled state dynamic equations is the adjoint
system

- 2 - =
)\, _ vV, N . VVC)\3 ) ZC)\3 ) rVVC)\4
i fZR =2 £ i.2
'
A, =0
}\" - i_i_ + Vka-i
3 C T
)\: . Ao ) ZVV)\3 . Vr)\4 29)
4 RCF T T

where ( )’ = d( )/ds. The adjoint variables can thus be nondimensionalized

by selecting the following scaling relaticus

S|

7‘2 =\,/R

X3 =C\,

Xy =CNy (30)

E. REDUCTION TO STANDARD FORM FOR COMPUTATION

The necessary conditions which must be satisfied by the optimal orbital
transfer trajectory constitute a nonlinear two point boundary value problem
which in general does not admit an analytic solution. The unknown parameters
which must be determined to sclve the TPBVP are the initial condition vector
for the costate differential system % and the free (unspecified) final transfer
time tee These must be adjusted to satisfy the transversality conditions at the

initial and final point, when applicable, and the specified elements of the

terminal state vector.




For computational purposes, it is convenient Lo define a vector function

I in the following manner:

I I R (31)

where M represents the specified conditions on the state vector and T consists
of the transversality conditions (in reduced form). Thus since the functions

in T are evaluated at times t. and to (for Case III),

f

KXo A

_f’t

¢

)shgs tp (32)

where xi(tO) designates the unspecified elements of x =§(t0). A vector

0
of unknowns is next defined as

y = xi(to) (33)

and hence the problem is transformed into the following:
find X,,. such that

ry =9 (34)

16
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* .
where 0 is the zero vector of proper dimension and f is the optimal value

of y; or in the equivalent scalar form, find

min| |C(y)l|
L

where it is known from the definition of I that the minimum norm is zero.

The simplicity of the relation Eq. (34) is deceptive in that the solution z*
may be extremely difficult to obtain, There are several reasons for this:
(1) since y represents initial conditions on differential equations, the value
of the function I is very sensitive to small changes in its argument; (2) I can
be evaluated only after integration of the state and costate differential equations
from to to tf, which involves many computations and numerical integration
errors that may become critical here; (3) the contours of | |T|| are almost
always highly irregular and contain narrow channels and multiple extrema.,
Nevertheless, the above problem may, in principle, be solved by numerical

techniques which are applicable for multivariable function minimization.

17
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III. DESCRIPTION OF THE ALGORITHMGS

Two finite dimensional optimization techniques which were employed for
solving the nonlinear boundary value problems for the optimal orbit transfer
are reviewed in this section. The basic principles of the algorithms will be

discussed briefly. For further details the reader should consult the references.
A. MULTIPLE SUBSTITUTION FOLYNOMIALS

This is an iterative gradient-free optimization technique which acts to
generate a sequence of substitute contour systems for the vector function
I'(y). Each of these in turn is treated by standard techniques applicable for
solving simultanecus nonlinear algebraic equations. R.F. Jaggers (Ref. 7)
has developed the following method for calculating and applying multivariable
substitution polynomials in dynamic optimization problems.

The basic plan is to represent the vector function T (y) by a system of

second-order multivariable polynomials as follows:
n n
(1)
Ty(ygr ooe » Yy =>_-;Eaij YiY;
1=0 j=1
- (2)
Lolyys o s V) 'giaij Yi¥3
i=0j=1

. (n)
rn(yl’ Pee Yn) =2 i3 Yi¥; (35)

(k)

where v = (Vs eee » ¥ )T ig the vector of unknowns and the a,.  are constant
& i n 1]

coefficients t¢ e determined. By definition, Yo = i so both constant and

19
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first order terms are also present in the representation. It is convenient to

define a transformation

z, =y, - E))/A, i=...,n (36)

where Ei represents the best estimate of y: and the Ai are selected scaling

parameters, Thus Eq. (35) becomes

n n

53 IR

1=0 j=1

1

n
_z;Z (2),
rZ T & _A]._] i j
1=0 =1

(n)
Th © ZAIJ (37)

i=0j=i

(k)

where the constants Ai(‘lj() are related to the a.ij , but only the former need to be

determined. These coefficients may be calculated without recourse to a matrix
inversion, using the algorithm developed by Jaggers. See Ref. 7 or 8 for

details of this procedure.
The next step is to set the right side of Eq. (37) to the zero vector and

find the vector z = (24, ++. » zn)T which satisfies ['(z) = G. Denoting by

_(k) (z (k). oo s (k))T the solution of the k th substitute contour system (i.e.,

(k) .

the Kk th 1terat10n), the corresponding value for y

(k)

(k) _
Yy = Aizi

; +Ei i=1,...,n (38)

20
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1t is aot presumed that this x(k) is the exact solution to the original
problem since it can be only as precise as the approximation used in Eq. (37).
Instead, y( Vs is treated as the new best estimate of the true optimum x* and,
accordingly, E. *y( )i is substituted. New polynomial representations are
generated, centered about this new estimate, and the procedure continues as
before. (k)
The procedure is schematically illustrated in Fig. 2 where an approximation
for a single function of two variables is given. The solution of the substitute
1)) can be found, for

Iterations are continued until T(y )= 0 to the required tolerance.

contour system aiter the 1th 1iteration (denoted by E E(
example, by using the Newton- Raphson algorithm, The gradient which is

required can readily be calculated analytically from the quadratic form as

follows:
3 =1 n
(z) ’ L] » L] ’
z 0k+zak3 £2=1,...,n (39)
where
2 if k=]
a, ., =
ki |1ifkt#j
and
(2) _ A(2) . .
AkJ AJk if k>j

The polynomials are established by evaluating actual function [ at test points

of the form

E. +4
Yi. = Ei 1= 2., e o o n
E, - A, (40)

21
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and the representation is made via multivariable interpolation formulas which
agree with the actual function at these test points only., The scale parameters
A should be selected relatively large when beginning the iterations and reduced
under program control, as the solution is approached, to refine the region of
interest. The desired situation occurs when the test points '""straddle’ the
solution, i.e,, have most of the I‘i change sign when the +Ai and -Ai test

points are used. Convergence on subsequent iterations will then usually pro-
ceed quite rapidly,

The principal features of the multiple substitution polynomial method are:
(1) the gradient of the function I is not required; (2) the general n dimensional
algorithm allows easy computer application, and programming effort and
computer storage requirements are minimal; and (3) convergence is rapid in
the neighborhood of the solution. This technique was found to perform well
for parametric studies of the fixed endpoint orbit transfer problem.

The computational difficulties which arise in applying MSP are related
tc the accuracy of the contour approximation and the iterative solution of the
substitute contour system. When the approximation is relatively weak, a
minimum norm solution of the latter can sometimes be used effectively when
the zero norm does not exist. An efficient iterative method for solving the
generated simultaneous nonlinear algebraic equations is essential for success
since loss of convergence here causes a breakdown of the whole procedure.
The Newton-Raphson algorithm with an automatic convergence monitor was

found to give good results.

B. MARQUARDT'S ALGORITHM

This is a gradient-oriented rnethod which seeks to combine the principal
features of the Taylor series method (i.e., Newton-Raphson) and the gradient
method (steepest descent) by performing an adaptive mterpolatmn between
them. The basic idea 1(5) to s(oi\ie) the(d)esued system I‘(y ) = 0 by generating
i i i

a correction vector Ay which minimizes the scalar function

s@y) = (o) +aay) (L) +Aay) + @y Ay - RP) (41)
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| where A = 9I'/9y is the gradient matrix evaluated at the point Yy, and N is a

| scalar Lagrange multiplier associated with a correction size constraint
_L_\_XTAX = RZ. R is a positive constant representing the radius of a hyper-
sphere over which the minimization of S is to be performed. The appropriate
minimizing correction vector corresponding to Eq. (41) is readily shown

. to be

: Ay = - aTa + M)'lATI(X) (42)

It is of interest to observe that the correction step given by the Newton-

Raphson algorithm is

Ayyg =- 471 (43)

which corresponds to the limiting case A = 0 in Eq. (42). Furthermore, the

, steepest descent direction for the function r, = [ |Ly) ]| |2 = _1_‘_()5)T£(X) is

éISD = - KATI(X) (44)

where K is a positive constant. This is approached by Eq. (42) as \ = o,

Marquardt (See Ref. 9) shows that (a) | |ay() ] IZ is a continuously decreasing

bl e TP S S

function of N such that, as A= o, |jay(\)| Iz - 0 and (b) the angle given by

- T
3 -1( Ay ..AlSD
= Ccos
Y [TAYTT [Taygp ]

is a continuous monotone decreasing function of N such that, as A\ == o, y-0,
It follows that, since AYgp is independent of N\, the vector Ay rotates toward
-é-zSD as A =+, In constructing the algorithm, the strategy for adjusting the

parameter A\ is as follows:
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(1)

(2)

At the kth iteration, )\(k) must be chosen such that
Iy (z(kﬂ)) < Iy (y_(k)). This can always be done in principle if
the steepest descent direction is defined and is non-zero.

However, this may necessitate choosing a large value of X(k).

\ (k)

should be reduced toward zero as rapidly as possible when
conditions exist which allow convergence with the Newton-Raphson
correction vectors. Marquardt defines the following adaptive

scheme for carrying this out:

(a) Letv >1

(b) Let )\(k-i) denote the value of X from the previous iteration.

Initially let A 0) - 10-2, say.

(c) Compute rs(x(k)) I)\(k-i)/v and T (}:(k)) l)\(k-l) where
r oM, =g + ay®D0)) and ay is caleulated from
Eq. (42). The superscripts refer to the iteration number.

(@ Then if T_(y™)) N r ® ), teen ) o=ty
e T, ™) 'Mk-i)/‘ffs(!(k'“) and L0 gy T,
let A0S o\ (k=1) gy 1‘8(3[(1‘)) Ix(k’“/v > rs(y(k‘”) and

Lty \ (k=1) >Igly

)

increase )\(k-I by successive multiplications of v until for

gome smallest w,
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(k-1)

(x), o
rs(l )lk(k“i)/vw -lS(I ) and let

)\(k) = )\(k-i )Vw.

Since gradient methods are sca’ >~dependent, Marquardt elects to scale
the parameter space by introduc’ iy the transformation matrix D = diag (ATA).
The scaled correction vector corresponding to Eq. (42) then becomes
_ D-l/Z 1/2

-iIZAT -1/2. T

Ay = (D AD” +.\I)_1D A" T(y) (45)

and this, in conjunction with the procedure above for munipulating \, consti-
tutes the complete algorithm.

The principal advantage of Marquardt's method lies in its ability to
combine-the features of steepest descent which exhibit good starting charac-
teristics from an initial guess and the Mewton-Raphson procedure which gives
fast terminal convergence in the neighborhood of the solution. The adaptive
adjustment cf the interpolating parameter N assures that the procedure will
not diverge and a finite reduction of I‘S = l !E(I)I }2 is realized on each
iteration.

One of the numerical problems which has been found to occur is a very
slow rate of convergence so that a2 large number of iterations gives only a
small reduction of the function I' . This situation occurs when the calculated
A\ beccomes reduced so that the al;gle between Ay and AYep approaches 90 deg.
Thus very little improvement per iteration is obtained. Furthermore, a
matrix inversion and a computation of the function gradient is required for
each iteration, This latter is a time-consuming operation for dynamic
optimization problems which require integration of differential equations for
cach evaluation of the function L, Hence, one desires maximum cfficient usc
from each gradient computed. Nevertheless, Marquardt's method is a
powerful optimization procedure which can be used effectively to solve two-
point boundary value problems. Its performance compares favorably to
most first-order optimization techniques which do not exploit known contcur

features for a given problem.
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IV, DISCUSSION AND RESULTS

. The true minimum fuel transfer between two given orbits is the Case III
problem in which transversality conditions are derived which provide addi-
tional information for determining the optimal departure point from the initial
orbit and the best final arrival point. Because of the numerical complexities
involved, it is convenient to treat this problem as a sequence of subproblems
with the boundary conditions completely or partially specified, i.e., the
Case I and Case Il problems. This approach has several advantages:

(1) computational problems are reduced; (2) physical insight into the geometry
of low thrust transfers is provided by the optimal solution to the subproblems;
(3) sensitivity of the cost function to non-optimal departure and arrival points

is available; and (4) existence of multiple extrema can be demonstrated.

A. THE LIMITING CASE 1 PROBLEM: PHYSICAL BARRIER

Consider the Case I transfer starting from perigee of the initial orbit
and proceeding to a specified endpoint on a given co-apsidal final orbit (sece
Fig. 3). The Multiple Substitution Polynomial method was used to provide
. the numerical solution for the minimum fuel, continuous low thrust transfers

to various points on the terminal orbit, as specified by the final true anomaly

Ve Figure 4 shows the time variation of the true anomaly on the optimal tra-

f jectory for specified Ve of 270, 240, 210, and 180 deg. Time is normalized

; for each transfer trajectory by dividing by the total transfer time required.

‘ Thus each trajectory has its own normalization factor, and each is plotted
against the same fraction of its total time. The optimal solutions show that
the true anomaly is nearly a linear function of time for these low-eccentricity
orbits, and thus a minimum time transfer acts to minimize the total change
in true anomaly.

The Case I problem specifies the Av = ve - vy for the transfer and it is

evident that there exists some Avmin which represents a physical limit of the
thrust capability of the vehicle. For a fixed v, no Case I solution exists for
ve< Vg without a large jump in the cost function caused by a transfer of

- min
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more than one revolution. Thus, the Case II solution represents the limit
of the Case I fixed-point transfers as Ve approaches Ytmin from above. The .
Yt min is a physical constraint such that no sample points can be evaluated
during the iteration process which requires Ve< Vein'
The sequence of substitute contours for I'(y) generated by the MSP
method was found to provide rapid convergence for the specified final points
taken over the range 180 deg = Ve = 330 deg, with v fixed at perigee. Approxi-
mately 5 iterations were required for complete convergence for a 30 deg
change of final true anomaly. However, as v, was reduced further, the region
of convergence diminished sharply and required a greater number of iterations
to produce neighboring solutions for 1 to 5 deg changes in Ve The method
became completely ineffective for Ve =< 158 deg. The actual contours of I'(y)
evidently could not be approximated sufficiently accurately because of the
effect of the physical border,
Marquardt's method was proved to be useful for extending the solution
region for ve < 158 deg. This technique acts to minimize the sum of squares
of the components- of I and, through its adaptive manipulation of the step size
parameter, local non-zero minima were sometimes encountered. These had
no apparent physical significance and often arrested the convergence process.
An increase in numerical sensitivity was observed as the border was approached,
and the trajectory integration range partitioning was increased from 100 to
200 steps to preserve numerical accuracy. The rates of change of the optimal
initial conditions )\10, )\30, )~40 were seen to experience a rapid rate of increase
as v, was decreased toward the minimum value (See Fig. 5). This caused a
reduction in the region of convergence for neighboring solutions as ve was
varied.
Calculations of the gradient by finite differencing was found to require
a careful adjustment of the perturbation parameter 6 especially for solutions

near v, = 155 deg. Figure 6 illustrates the rapid fluctuation in the
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approximation to tne partial derivative, as computed from

ar _Thig *0hg0.h4002) - ThygoRs0:hgq02)

Y 5
ar _Fygrh30:hgr2¥8) - Thygohg0:Ry008) (46)
Aa ~ 6

with 6§ ranging from 10"? to 101, The curves show the finite difference

approximations evaluated at the solution for v, = 155 deg where, in this case,

f
the scalar I' is defined by

4
r=. Il (47)
i=1

The significant features to note in Fig. 6 are the restricted range of § over
which the partial derivative approximations remain relatively constant and
the rapid falloff of the curves for 6 = 10-8. This latter point represents the
loss of numerical accuracy from integration truncation and roundoff effects,
and it fixes the lower limit for §. Comparison with Fig. 7 shows the relative
behavior of the derivative approximations taken about the solution points for
v = 240 and 100 deg. Notic_e7that the r_a‘.inge over which the curves remain
constant extends through 10 =<6 =10 °, a considerable increase over the
restricted range of good approximation 10—7 =6 = 10-6 required for the Ve =
155 deg example. Although no generalizations concerning this phenomenon
are evident, it suggests the need for a sensitivity analysis of this kind when
using finite difference gradient approximations for dynamic optimization

problems.
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Since the absolute value definition is used for I [see Eq. (47)], the
value of the partial derivatives, as seen in Figs. 6 and 7, evaluated at the
solution are not zero but are related to the slopes of the function I'in the
direction of the coordinate axes. As Ve is taken near the border of the Case 1
feasible region, these slopes approach zero. The determination of the true

limiting point v was made using the Case II problem formulation with the

fmin
single transversality condition. The optimal Case II transfer from perigee

was found to arrive at the final orbit with v, =v__. =90,6 deg.
f fmin

B. PARAMETRIC CASE II SOLUTIONS

Marquardt's method was used to generate a sequence of Case II (final
endpoint free) solutions, with the specified starting points taken 90 deg apart.
Typically, 7 iterations were required for convergence to the new solutions when
the initial takeoff point v. was changed by a 9C-deg interval. Figure 8 shows
the optimal transfer traj;ctories given as a polar plot of altitude versus true
anomaly, The arrows indicate the thrust direction and the cross lines mark
the point at which the thrust changes sign. If the optimal transfer times
(and equivalently fuel expenditure) are plotted as a function of the specified
initial true anomaly, the curve of Fig. 9 results. This shows that there is a
unique minimum-fuel transfer possible between these given co-apsidal ellipses
and furthermore indicates the magnitude of the fuel penalty of initiating the
orbit transfer at other than the optimal point. The true minimum was
determined by solving the Case III problem with the two transversality condi-
tions, and this gave v, = 319 deg as the best departure angle. The optimal
transfer trajectory lies in the mutual perigee region and is indicated in
Fig. 8. The sequence of Case II solutions served to isolate the proper region
for the Case III transfer and provided sufficiently close initial adjoint condi-
tions so that the five-dimensional optimization program gave rapid convergence,
The Case I and II problems required only a four-dimensional search as

formulated.
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C. AXIAL ROTATIONS AND THE MULTIPLE CASE III SOLUTIONS

An example of optimal low-thiust transfer between intersecti g orbits
was studied, using the same orbits employed previously but rotated with
respect to each other by &w = 90 deg. The intersection points were found to
occur at v = 84 deg and 155 deg as measured from perigee of the initial
ellipse,

Parame.ric solutions of the Case II problem were conducted, taking
selected starting points around the initial orbit, Severe computational
problems arose in the neighborhood of the intersection points where very fast
rates of change of the optimal adjcint initial conditions were observed. The
nature of the computational barriers is seen in Fig. 10, The solutions in the
vicinity of v, = 130 deg were especially difficult to obtain since the region of
convergence from neigaboring solutions was quite limited. This problem was
surrnounted by increasing the numerical integration accuracy; introducing
more precise gradient calculations using symmetric differencing; and
reversing the direction of the v, parameter variation. In the regions outside
of the double spike area shown in Fig. 10, 2u average of five iterations was
sufficient for convergence for a 30 deg change in the specified Ve using
Marquardt's method.

The results of the Case Il parametric study for the 90-deg-rotated
geometry are displayed in Fig. 11 which is a plot of the non-dimensional
transfer time tf (scaled by a constant factor), shown as a function of specified
departure true anomalies. Thc existence of multiple extrema is clearly
displayed by this technique of using parametric studies of the Case Il problem.
The corresponding optimal adjoint variable initial conditions from Fig. 10
can thus be selected in the proper regions for finding the multiple minima
for the Case III problem, in which neither endpoint is specified. This latter
problem requires a five-dimensional search procedure, but good starting
values are available through the above technique,

Figure 12 shows three stationary solutions for the Case III orbit transfer
with Aw = 90 deg and displayed as a polar altitude plot. TLe lesser minimum

occurs for the transfer trajectcry beginning at v = 62 deg on tne initial ellipse;
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the solution starting at v, = 130 deg is a local minimum only. The remaining
trajectory represents a relative maximum. A second relative maximal

extremum is located between the minimizing solutions but is not shown,

D. PROPERTIES OF THE OPTIMAL LOW THRUST TRAJECTORIES

The optimal Case III continuous low thrust orientation histories for a
variety of relative orbit axial rotations Aw are shown in Fig. 13. The thrust
orientation angle ¢ is measured clockwise from the circumferential direction,
and each steering history is plotted with respect to the normalized time of
its own transfer. A relatively rapid change in thrust direction is seen to
occur at the halfway point of the transfer (T = 0.5) for the longer trajectories,
as shown by the Aw = 0 and 30 deg curves. From empirical results, the
optimal transfer trajectory appears symmetrical about the point of closest
approach of the two orbits. The rate of change of the thrust angle decreases
as the transfer distance decreases, as indicated by the Aw = 60 deg example,
although symmetry is preserved. The orbits intersect for Aw = 84 deg and
multiple extrema were found to exist for the Aw = 90 deg case examined. The
optimu:n thrust orientation history corresponding to the least fuel transfer
is shown for the 90 deg rotation case,.

The effect of the thrust-to-weight ratio (T/W) on the relative fuel cost
and transfer time is shown in Fig. 14. It is seen that, as the thrust capa-
bility for a given vehicle is reduced, the transfer maneuver becomes more
economical from the fuel cost standpoint but at the expense of an increase in
the transfer time. The curves shown were computed for the Case III problem

with Aw = 0 deg.
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V. SUMMARY AND CONCLUSIONS

Some computational aspects of the optimal continuous low thrust orbit

transfer problem have been presented., Numerical solutions were obtained

‘z. the method of Multiple Substitution Polynomials and Marquardt's method,
indicating their applicability for solving optimal control problems of this
type. Formulation of the problem for numerical solution was given, showing
how a sequence of subproblems can be used to indicate the existence and
location of multiple extrema. Computational problems relating to the break-
down of the numerical technique on restriction of the region of convergence
were discussed.

A physical barrier which restricts sample points was found for fixed
endpoint transfer problems, and the very rapid variation in the optimal
adjoint initial conditions near this region was shown, which accounts for the
severe convergence difficulties encountered here,

Parametric studies of the Case II transfers between intersecting orbits
were hampered by nearly singular behavior in the _)_\_0 vs v, characteristic
which created a computational barrier for isolating the multiple solutions for
this problem. This phenomenon was not found for non-intersecting orbits.

Sensitivity problems for calculating the function gradient by finite
differencing techniques were encountered, which caused loss of convergence
of Marquardt's method in certain transfer regions. The critical adjustment
of the differencing parameter § was demonstrated at several Case II solution
points. '

The optimal continuous low thrust orbit transfer trajectory for the
free endpoints case was empirically found to be symmetrically located with
respect to the point of closest approach of the two orbits. A rapid thrust
direction reversal was seen to occur at a time equal to approximately one
half of the ultimate transfer timme when the orbits were nearly co-~apsidal.
This corresponds to the longer duration optimal transfer maneuvers among
the cases studied and the form of this solution is in agreement, for example,
with the continuous low thrust Earth-to-Mars rendezvous results reported by

Melbourne and Sauer (Ref. 4) and Zimmerman et a2l (Ref. 5).
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From. a sequence of Case IIl solutions with various T/W ratios, it is
shown that a vehicle with a larger T/W capability requires more fuel expendi-
ture in transferring between two given orbits than does one with a smaller

T/W. The total time for the transfer maneuver constitutes the major tradeoff.
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