
CS 119

jf

I MPL.

4 MATHEMATICAL. PROGRAMMING LANGUAGE

I I BY
IRUDOLF BAYER MICHAEL B. MCCRATH

JAMES H. BIGELOW PAUL 0. P INSKY
~ IGEORGE B. DANTrZIG STEPHEN K. SCHUCK

DAVID J. GRIES CHR ISTOPH W ITZGALL

TECHNICAL REPORT N~O. CS 119
:1 MAY 15# 1968

I COMPUTER SCIENCE DEPARTMENT
USchool of Humanities and Sciences cc

I ýTANFORD UIJVERS ITY douo~

5<--EPt A Tr63 I,

I

SMPL
I MATHEMATICAL PROGRAIMMING LANGUAGE

I Rudolf Bayer Michael B. McGrath

James H. Bigelow Paul D. Pinsky

SGeorge B. Dantzig Stephen K. Schuck

David J. Gries Christoph Witzgall

I
I

Computer Science Department

I Stanford University

Stanford, CaliforniaI

Research partially supported by National Science Foundation Grant GK-6431;
Offfce of Naval Reseirch Contract OVR-N-00014-67-A-0112-O011 and Contract
ONR-N-O0OO4-6'l-A-O12-0O016; U.S. Atomic Energy Commission Contract
AT(04-3J 326 PA #18; Natioral Institutes of Health Grant GM 14789-01 A];
and U.S. Army Research Office Contract DAHC04-67-CO028.

I
MPL

I •MATh LAICAL PROGRAMMING LANGUAGE

[PART I

, •A SHORT INTRODUCTION

I

I Rudolf Bayer Michael B. McGrath

James H. Bigelow Paul D. Pinsky

I George B. Dantzig Stephen K. Schuck

David J. Gries Christoph Witzgall

II

I The purpose of MPL is to provide a language for writing mathematical
programming algorithms that will be easier to write, to read, and to modify than
those written in currently available computer languages. It is believed that the
writing, testing,and molification of codes for solving large-scale linear programs
will be a less formidable undertaking once MPL becomes available. It is hoped that
by the Fall of 1968, work on a compiler for MPL will be well underway.

The language proposed is standaid mathematical notation. tois, at
least, has been the goal. Whether or not there is such a thing as a standard3 notation and whether or not MPL has attained it, is up to the reader to decide.

The Manual to MUL comes in thzee parts

PART I: A SHORT INTRODUCTION

PART II: GENERAL DESCRIPTION

3 PART III: FORMAL DEFINITION

I

I

1/a

FURWARD

I
Mathematical programming codes for solving linear programing problems

I in industry and government are very complex. Although the simplex algorithm (which

is at the heart) might be stated in less than twenty instructions nevertheless error

checks, re-inversion, product-form inverses for compactness, compacting of data,

special restart procedures, sensitivity analysis, and parametric variation are

necessary for practical implementation. Twenty thousand instructions are not

uncommon. The cost to program such a system is several hundreds of thousands of

dollars.

Recently, there has been much interest in extending mathematical

J programming codes into the large-scale, nonlinear, and intege• programming areas.

The large-scale mathematical programming applications are among the largest

mathematical systems ever considered for practical solution by man. For exam)ile,

a system o` close to a million variables and thirty five thousand variables his

already beei4 solved using the decomposition principle.

If large-scale dynamic linear programs could be successfully solved

it would have enormous potential for industrial, national,and international

long-rae.e planning.I
For this reason, there is considecable interest in solving large-scale

J dynamic systems. Many psperq have been written on this subject and the number of

theoretical proposals now number in the hundreds, Very little in the way of

"ompiricai tests have been made. Occasionally, a "soft-ward" company has dared to

go from a theoretical prcposal to a commercial program with inclusive results. It

t like going from a drawing board to a battleship when all that has been built

before Iat been a rwboat.

The need then is to be able to write elaborate codes for solving

mathematlcal programing systems; to test them out on sample problems; and to

oimpare them with competitive ana modified codes. Present day ccnurter languages

ilk# FURTRAN. ALGOL, PL/I are not in tile sama world as machine language of 0 1 bits.

Nevertheless, it ts a formidable undertaking to read coJes in theits languages,

particularly when they Involve stoe twenty thousand Instructions. The finding of

1/b

I ,errors (debugging) is time consuming. It is often difficult for the author of a
program to decipher his own hierogliphics assuming he is available for consultation.
This difficulty becomes ever more acute when extended to proposals for solving
Large-scale systems. It is one of the chief stumbling blocks to progress in getting3 practical large-scale system codes.

For this reason, the chief effort of MPL has been directed towards

readability. The objective is not to invent a powerful new language but to have

a highly readable language, hence one easy to read, correct, and modify.

The Iverson Language is an example of a powerful language. With a[small amount o:! effort it could have been set up in standard mathemaLical notation
and made readable (to a non-expert) as well. It is probably possible to implement

S[MPL by using I'erson Language as a translator. This is not our plan.

It is possible to view MPL as nothing more than a beefed-up ALGOL or
FORTRAN. The new programuing language PL/1 is very powerful and could also be used
to realize NFL. This is being considered. Moreover, recently there have become
available excellent compilers for compilers that make easier the job of
developing a compiler that would directly translate NPL into machine language.
Ve are seriously considering this as our approach for implementing NPL.

Ii

lS

t -

__ _ __ _ ___l_ _ __I

COMPARATIVE MATH VS MPL NOTATION

The short introduction (Part I) that follows in not t formal description

of the languagG. This is done in Part III; nor is it a g.neral manual as Part II;

rather our purpose is to motivate the need for HPL and to provide a short comparision

with standard mathematical notation. MPL notation assumes that a standard key-punch

or its equivalent is all that is generally available at present for program preparation. 1

This limits the alphatet to Capital Roman and replaces A by its functional

equivalent A(I,J).

-I MATHMP

SUBSCRIPTS: Au A(IJ)

SUPERSCRIPT: A k A(K)(I,J)I ~it
HATRICLS: A A

Matrix Addition A+B A+B

Matrix Product AB or A.B A*B

"Transpose A' or AT TRANSPOSE(A)

Inverse A71 INVERSE(A)

-AMatrix, K=Scalar, L-Scalar A/K A/K

AK A*K

KA K*A

KL K*L

Composing a matrix 14 from M- FA 8 M :w (A8B)G

submatrices A, B., C, D LC D (CD);

M :- (A,B)#(C,D);

b4,(AOC) 14 :a (A,B,C);

Column of a atrix A A AI*.J)

Row of R matrix A All,)

Determinant JAI DKTKEIKINAW (A)

Array of .onsecutive Integer% (k. k+l,....,t) (K,...L)

i .4

1/2

MATH MPL

II OPkRATORS:

Matrices or Scalars:

Addition, Subtraction, +, -, • +, -, *
Multiplication

Division by Scalar A/k A/K

Exponent A2 A**2

A71 INVERSE (A)

g Sign 2, +2, -2 2, +2, -2

Substitution Operator(a) New value of A := B+C; (meaning:
Anvalue of B+C change thei value of Aon L}IS to

equal the
value of
B+C on RKS.)

Logical Operators AND, OR, NOT AND, OR, NOT

MATh: If A B, C> D, and not D O
MPL: IF A > B AND C >- D AND NOT D 0 THEN

MATh: If A > B or C > D,
H! NPL: IF A > B OR C > D THEN

Kt Relational Operators .* , >, >,

SSet Operators U , IA+B A OR B

A MI B, A, A AKO B

A M(not), A AND N 5

MAPPINGS. PK, SUSiOUTINES:$I, X, ¥...JMatricee, Sets, s¢4amrs Y a FWX Y is F(X);-

St Y a SINWX Y to SIM();

Y •a kX 2 V :- 2e3e(X,2) ;
S1 v . a'lY •"IMVISE(B);

1/3

SYMBOL REPLACL4ENT: Let W - f(2,y) LET W :, F(X,Y);

(meaning do not compute
W but replace it by
F(X,Y) wherever 11
appears later on.)

SETS: (any set of elements) (Index sets only)

S - {1,3,-2,5) S :- Str(:,Z,-2,5);

S - (1,...,nl S :- (1,...,

"I S I IN S

"IcAUBUC I IN A OR s OR C

I c An B MC I IN A AND B OR C

I An I IN A AND NOT B

D - (kWB)()C. D :=(A Ok B) AND C;

- Index Set or Domain of a vector A Domain of A DOK(A)

Index Set of a watrix A Row Domaia of A W)W...D((A)

Defining of Set where P(I) a {!cR:P(I) - true) (I IN RIP(I) - TRIE)
Boolean E.xpression or
property is true

or {IcR:P(I)} o - TV I)

2 {(icRIP(I))

(IcRIA1 0) (I IN ItI(I)) 0)

(ihA 1 O) (1 IN DOM(A)JA(I) 0)

uEmpty Set *, Null. Empty NULL

SET FUN•CTIONS:

Suppose S - is a i6 - (A* ,A ,..s,A) B :- A(S);
1-dim•nsional array of 1 2
integers and we wish to pick o I B (A(J) FOR J IN S);
out colium vectors A ,A •r--A

1 2o 5 - (A(S(M)) FOR I IN
Zo form a matrix . (1,... ,M));

Howevr,

a -.- (ASMt),...,
AM(SO)) is not

correct because

(PP4,PZ. • Q)k NFL

d
1/4

MATH MPL

SYMBOLS:
CAPS A, B, --- A, B ---

Lower Case a, b. --- (not available yet)

II Greek , 0, --, (not available yet)

Integers 0, 1,...,99, .-- 0, 1,...,99, ---

Multi-Character Symbol:

as function name: PIVOT(M,R.S) PIVOT(MR,S)
SIN(X) SIN(X)

as variable name: (not used) B2, BASIS, X.S

Brackets (not available yet)

I+

+a

A'
!

I!

1/5

S' SYNTAX

In general, a procedure has the form:

PRCEURE F(X,Y,Z)

Statement;

Statement;

-0* FNI ;

Certain reserve words like FOR and IN can be interspersed in place of commas In

F(X,Y,Z) as in the example given below.

-ixample Given an array of integers R, we wish to write an algorithm, called SUM,

"that yields S -5 F(J)
JcR

*" PROCEDURE SUM(F)

"SET UP A STORAGE REGISTER S TO ACCUMULATE

THE SUM OF TERMS. INITIALLY,"

* (1): S :0 0; "LET S' BZ ThE UPDATED VALUE OF S. WE WANT

TO STORE S' IN THE SAME PLACE AS S AND

j THEREAr.tER CALL IT S."

(2): SAHE LOCATION(SS');

(3): S' :- S + F(I) FOR I IN DON(F); "ITERATIVELY ADDS F(I) TO S."

(4): SUM -So "SLIS TIE VALUEZ OF LIE FUNCTION EQUAL TC S"

(5)1 RETURN; REItTURN MMNS: UT•UW To MI~rN IOUTIIM."

FINI; " 'INl* HEWS: 00 Of •iUTZ-U?."'

Once the symbol, or rather SUM, to in the procedure library we can use

at a
it towrite a statemet like I to TnPL.

P :0 SUN(|**2 qR* I IN T) WEL1bJU T :"(to ,.l

1/b

The reference numbers like (1), (2),..., on the left are called labels. They

I are not necessary in the above example and may be omitted. Labels can be a string

ol characters or numbers like (1), (2). If the 1&tter, they need not be consecutive.

Labels are used to locate a statement when a program branches.

A statement like the one with label (3) is called a substitution statement because

S':= 8 + F(I)• means: Substitute for die current value of S' on the left a new value

Sequal to the currtnt value of S + F(I) on the right.

In general, A :a B; means updated A - Current B. A statement S S 5 + F(I);

looks like nonsense but means: Updated S - Current (S + F(I)). Hence a programmer

not interested in readability would probably boil down the procedure SUM to two

lines.

PROCEDURE SUM(?')

SUM - 0; SUM :- SU + 7(J) FOR J IV DOM(F); RETURN; FINI;

It

1*

1/7

There are several different types of statements that one can draw upon to

X write a procedure:

Procedure Name If Define

Substitution For Release

Let Same Location Fini

Return Go to

and some words like "then", 'ktherwise", "endif", "do", endfor" that indicate

different parts of a compound "if" or "for" statement.

Procedure Name Statement: PROCEDURE F(X) PROCFDURE F("IN" X, "OUT" Y)

where X, Y represents a list of one or more

symbols.

Lxamples: PROC•DURE SIN(X)

PROCEDURE PIVOT(AR,S)

PROCEDURE SIHPLEX(A,B,C,BV)

"PROCEDURE ARGMIN(F(I) FOR I IN T)

"where ARGMIN finds the first index or argument

where the minumum occurs."

Substitution Statement: A := Arithmetic Expression;

Examples: S 0 0; M :a ARGNWH(J) FOR J IN R);

A :-PIVOT(A,R,S); G :- INVERSE(HATRI1)+ H;

S : AB;MQ C(J) FOR J IN T) MILRE T :N (,....,);

Let Statement: LET A : Arithmetic Expression;

E.xamwles: LET A :" B;

LET T :- (I IN DOK(B) A(I,S) , 0);

LET R := ARQ4IN(B(I)/A(I,S) FOR I IN T);

I
1/8

If LET is used to simplify only one statement,

3 a WHERE can be used instead using inverse order.

I G :- INVERSE(B) WHERE B :- TRANSPOSE(A);

3 eturn Statement: RETURN;

3 If this statement is reached during execution of the subroutine,

the next step is to return to the main routine.

If Statement: IF P THEN statement ;...; statement;

I OTHERWISE statement ;...; statement;

ENDIF;

Example: IF R - NULL THEN GO TO (21); OTHERWISE

3A :- PIVOT(A,R,S); ENDIF;

I All statements up to "OTHERWISE" are executed if proposition p is true and

then sequence control skips to the statement following ENDIF. However, as in the

above example, there Is a GO TO statement pzeceding the OTHERWISE then control

skips to wherever GO TO directs. If p is not true, control skips to statements

following "OTHERWISE". For the case of several parallel conditional statements

fl I OR !Vstatementua are available - see Part II and III. OTHERWISE can be omitted if

imnediately followed by ENDTF.

3 For Stateent: FOR I IN T DO statement ;...; statement; ENMR;

Example: FOR I IN (l,.,.,M) DO

S' :- S + F(I);

I . T' :- S' + (I);

ENDFOR;

I*!

"1 1/9U
Same Location Statement: SAME LOCATION(A,B);

I A and B will be assigned the same set of storage locations in the computer.

An alternative way to accomplish the same thing would be to write: LET A :- B; For

psychological reasons, it seems best to separate the concept: "A is another symbol

for B" from t e concept "same storage location".

Go to Statement:

GO TO 9. (where i is a label). This means that control is to skip to the

statement that has L. as a label.

I
Define Statement:I

Example: DEFINE B DIAGONAL M BY M;

i Used to define the size of storage array needed for a symbol whose value will be

computed piecemeal later on.

Release Statemett:

To release a symbol aud its storage assignment a release statement takes the

form:
RELEASL a,B;

Its purpose is to conserve storage and permit re-use of the same symbol for some
other purpose. A special type of automatic release is available that allows release

of all symbols in a block of code.

Relsase occurs automatically when a procedure returns to a main routinei all

symbols defined in the procedure and thtir u.orage are released jjagj- the output

symbols, which are treated as part of the symbols of the main routine.

Symbols used a dtmien as C in the statement: Z :a AMG WHERE G- :a INV*RSE(I);

1/10

are treated as local to the statement and are immediately released. The same applies

to the running index in a compound For statement and to a dufny parameter in a Let

statement as I in : LiT G(I):- B(I)/A(I,J);

SI

2I

'I
I
!g
I!
!

"'• 1/11

EXAMPLE: SIMPLEX ALGORITHM

PROCEDURE SIMPLEX ("IN'! AB,C,BV, "OUT" BV', ' , CASE);

"WARNING: ALL INPUTS ARE W9DIFIED IN THE COURSE OF CALCULATIONS."

X "TIHE PROBLEM IS TO FIND MIN Z, X > 0 SUCh THAT:

AX-B, Cl Z.

IT IS ASSUMED ThAT:

A IS IN CANONICAL FORM WITH RESPiCT TO

3V ThE INITIAL SEI OF BASIC VARIABLES.

B > 0 ARE ThE X VALUES OF BV, I.E. X(BV) , B.

THIS INITIAL BASIC SOLUTION IS REQUIRED TO BE FEASIBLE,

I.E. B > 0.

BV' IS ThE OPTIMAL SET OF BASIC VARIABLES.

B' ARE THL X VALUES OF BV', I.E. X(BV') - B'.

-Z MINZ

"CASE - FINITE OR UNBOUNDED.

By', B', Z' REFER TO LAST BASIC SOLUTION IN ThE CASE ThAT

'CASE - UNBOUNDED'."

"INITIALIZATION"

DEFINE CASE CHARACTER;

(1): Z :- O. "PRIMES WILL BE USED FOR UPDATED VALUES OF VARIOUS SYMBOLS.

THESE WILL BL STORED IN THE SAME LOCATION."

(2): SAME LOCATION (A, A'), (A, b'), (C, C'), (BV, aV'), (X, X%), (Z, Z');

"ITERATIVE LOOP"

"LET S BL COLUMN COMING INTO BASIS."

1/12

(3'): MINJ.("IN" C, "OUT" So CL-);

(3): �M -IN"1" IS A FUNCTION TW4AT RETUNS THE INDEX AND THE

VMINIMUM COMPONENT OF VECTOR. IN THIS CASE VECTOR "C.1

"WE NOW TEST WHETHER X(BV) "B IS OPTIMAL."

(4): IF G.S " 0 THEN CASE :- 'FINITE' ; RETURN; OTHERISE

"LET R BE THE INDEX OF THE BASIC VARIABLE DROPPING."

I (5): MUN1("IN"(B(I)/A(I,S) FOR I IN DOM(B)IA(I,S) > o),"OUT" R,Q);

"I "IF ABOVE SET EMPTY, MIN.1 RETURNS R " NULL, Q "- '

OTHLRWISE THE INDEX R AND THE MINIMUM RATIO, CALLED

Q, IS RETURNED."

(6): IF R a NULL THIN CASE := !'NOUNDEDt ; RETURN; ENDIF;

"UPDATE EVERYTHING BY PIVOTING ON A(R,S), PRIMES WILL

I• BE USED FOR UPDATED SYMBOLS. THESE ARE STORED IN SAME

i ILOCATION, SEE (2)."

* (7): B'(R) :- Q;

(8: A°(R,%ý) .. A(R.R*)/A(R,S);

"RDOWIM(S) IS THE DOMAIN OF INDICES FOR B."

(9) FOR I INRM .D(B) I R DO

S(10): '(I) i- b(I) - A(I*S) *Q;

S (11): a'(I.*) A-k(I,.) - A(I.S) * A'(R,*); VDWFOR;

(12): C' i- C - C(S) * A'(R.*);

(13): Z' : Z + C(S) *q ;

1/13I
(14): BV'(R) :- S;

I "TILE RPIAINING COMPONENTS OF BV ART, UNCHANGED AND

$NCE ,V AND BV' ARE STORED IN TiE SAME LOCATION.

UPDATING IS COMPLETE, RECYCLE."

1 (15): GO TO (3); FINI;

I
I
I

I
I

-r

I•

HA7hEKATICAL PROGRAM'!TNG LANGUAGE

PART II

GENERAL DESCRI1TION

3 March -1968

Prepared by Paul D. Pinsky

Rudolf Bayar Michiel B. McGrath

, James H. Bigelow Stephen K. Schuck

Georg* B. Dantzig Christoph Witzgall

U David J. Gries

I Thu Manual to MPL comes its three parts

PART I: A SHORT INTRODUCTION

PART 11: GENERAL DESCRIPTION

H PART III; FORMAL DEFINITION

I,
I

II

2/a

The objective is Zo develop a r 1 lanage for vriting experimental codes

to solve large-scale mathematical programming systems. Readability is defined as

standard mazhematical nc4ation with minor adjustments reflecting current limitations

5 ! of input-output equipment. Thus symbols are restricted to those found on a standard

keypunch; subscripts (or superscripts) like Au appear as A(I,J). Starting in

the Spring of 1967, sever;,l test algorithms written in the proposed language gave

I evidence that readability was an achievable objective.

A task group in the latter part of 1967 began to define the proposed language in

BAC'US Normal Form with the intent of using a special compiler's compiler to

implement the language.

I

2/b

TABLE OF CONTEN'S

! .. LAGE

1.0 Ik7B2DVCTIOk. 2/1

2.0 NFL LANGUAGE ELDEENTS 2/3

2.1 VARIABLES 2/3

3 2.2 CONSTANTS 2/5

2.3 OPERATORS 2/7

2.4 RSERVED WORDS 2/9

SI 2.5 COMMENT STATEMENTS 2/9

3.0 EXPRESSIONS 2/11

3.1 LOGICAL EXPRESSIONS 2/11

3 .2 U•ITMLTID EXRS SION~ S 2/12

3.2.1 COMPUTATIONAL EXPRESSIONS 2/12

3.2 .2 FNTION C ERE SIONERN S 2/12

E 4.0 SLI .T 2/16

4.1 LABELED STATEMENTS 2/16

S 4.2 UNLABLED STATEMNS 2/16
3 4.2.1 ASSIGNMENT STATEMENT .. 2/16

4.2.2 PROCEDU CALL STATfIMUT 2117

t 3 4.2.3 KETIJORD STATEMENTS 2/17

4.2.3.1 00 TO STATEMENT 2/1?

[4,.1.3.2 CONDITIONSAL STATZHMENT11

4.2.3.3 ITLRATWD STATIMMN 2/18

4.2.3.4 LET STATEMIMT 2/19

~ 34.2.3.5 D:;LSTATDM~NT 2/120

ba

2/c

1 5.0 STATEMENT BLOCKS 2/23J 5.1 PROCEWRLE BLOCKS 2/23

5.2 STORAGE ALLOCATION BLOCKS 2/25 1J 5.3 ITERATION BLOCKS 2/26

15.4 CONDITIONED BLOCKS 2/26

1 6.0 EXAMPLES OF NFL PROC]DURES. 2/28

II

I
1!

ii: r

I."

S21.0

This paper describes recent work on a computer programming language for

the implementation of mathematical programming algorithms on a digital computer

the objectives of the language are:

Sa) to facilitate programming an algorithm from

theoretical form to computer code in as short

a time as possible, and

b) to onable other mathematical programmers to
-a understand and modify an existing code with

a minimum of effort. The present efrorts are
being directed toward the coding of experimental
mathematical programming algorithms rather than
Scommercial techniques. By and large, the first
report (Mathematical Programming Language, June
1967) represented the thinking of persons with
mathematical programming backgrounds. Since
then, several computer scientists contributing
to the project hove brought the larguage much
closer to implementation.

The purpose of this report is to explain the use and the reasons for the

concepts being developed in NFL. This part of the Manual attempts to explain the

reasons for using the specific concepts of MPL while the third part developed

under the guidance of David Cries gives a formal definition of the language in a

modified form of BACKUS Normal Form. Part III 1s primarily the work of Stephen

Schuck, who, since joining the project last sumer, has been a driving force behind

the implmntation oi MPL. His work in turn uses several cnncepts developed by

Rudolf layer end Christoph Witagall of the Boeing Scientific Research Laboratories.

At pr.sent, the ACUUS Normal Form. is used to describe the legal programs, not the

g •phrase structure of the language.

SDavid Grieo c! Stanford University is currently developing a technique of

writing complterp, called the Kompil~r lmplemnntatiou System (KIS), which, it is

P - pn.ied will bt used in the implesentation of the Language. Many of ch cotncepts

2/2l
presented herein, are the same as or similar to these found in existing compiler

I languages (ALGOL, FORTRAN, COBOL, PL/l, etc.). One of the difficulties

encountered thus far in writing a formal definition of MPL is that mathematical

notation depends upon the context for its meaning. (Pl'...,PM) may mean

T I (P'P P ,)3"PM) or it may mean (PI. P1 + 1, P1 + 2 ,..'.M, This isdefined

in MPL to mean the latter.I
There are certain concepts planned for MPL that have not yet been set down in

I BACKUS Normal Form. In particular, the representation of index sets has not been

completely formalized; the ability to operate with matrices whose elements are

matrices (useful for example in the decomposition principle) has not yet been fully

I devw oped. Procedure parameters need more work. Input-output statements have not

yet been defined, nor storage commands that would reflect the variable size and

I speed of different memory locations.

9'

!! 2/3

2.0 MPL LANGUAGE EL24LNTS

I The set of charactern upon which MPL is built is the character set found

I on standard key-punches (such as the IBM 029 key-punch). For convenience, we

shall group these characters into the categorias of letters, digits, and special

characters. The letters are A through Z, the digits are 0 through 9, and

I the special characters are as follows:

) , +-*/ # @ &

I and a blank. Elements of MPL are defined to be one of the following four constructs-

variable, constant, operator, or reserved word. Let us now delve more deeply into

each of the above elements.

I 2.1 VARIALUS

Variables are symbols which represent those data valnes which may change

during the execution of the program. There are several types of variables-arithmetic,K logical, set and character.

F For example, if C is a row vector and Q a scalar both previously defined

then

D :- (C, SIN(Q));

[sets up a new row vector D with one more component than C. The function sin(x)

is a reserve word and "sin" cannot be used as symbol for a variable on the left hand

r side of an -quatton.

fA variable may have zero, one, er two dimensions. A zero-dLmensional variable

is a *c.lar, a one-dimensiona! variable a vector, a two-dimensional variable a matrix.

2/i

In the remainder of this report, an array refers to any variable whose dimension

Iis greater than zero. Each matrix has associated with it a structure shape

commonly used in mathematical programming algorithms. These shapes are rectangular,

diagonal, upper triangular, lower triangular, and oparce (meaning few non-zero

I elements). The concept of structure shape is useful in conserving memory space

and execution time. An example of the use of shape matrices is in the storage and

I multiplication of two diagonal matrices of size nxn. Storing them as diagonal

in the computer :eqliires only n memory words for each (as opposed to n2 for a

I rectangular matrix), and the multiplication of two diagonal matrices requires

i only n elementary multiplications as opposed to n3 for rectangular matrices.

Vectors have the shape of row or column; this distinction is required for
multivlying vectors by vectors or matrices. An additional feature of MPL is that

the elements of an array may be arrays. This construct is helpful in coding algorithms

such as the decomposition principle. Another variable allowed is an index set

variable. This consists of an ordered set of integers. Examples of Index sets are:

(1,.. ,M)

SET(l, 3, -4, 3, 12)

(I IN (1,...,M)fA(l,S) > 0)

More will be said about how to define snd use variables later on.

The symbols which consti'ute variables have two parts, the #ariable name and

an optional subscript. The variable name alone completely identifies the variable

under consideration if that ,ariible is a scalar or an entire storae&e tructure

(vector, matrix, etc.). If the variacle represents a subset (element, row, colhmn,

etc.) of a larger array, the vartable-namc part enly identifies the larger array,

subscripts being needed to specify the oarticular subRet. Variable names always

begin with a letter, but the characters which follow it may be &ny namber of letters,

I: 2/5

digits, or underscores. Reserved words (defined in Section 2.4) may not be used

3 as variable names.

Examples of variable names are

"3 ~A

OBJECTIVE.1

KEY_SET

BASIS-INVERSE

3I However, variable names with blanks like KEY SET are not allowed. Subscripts

SI are either scalar arithmetic expressions or the symbol * . Scalar arithmetic

expressions (defined in Section 3.2) are automaticalJy bounded to the nearest

3 inteber value when nied as a subscript. The subscript * refers to an entire

dimension of a storage structure. Thus

A(*, J) refers to the Jth column while

3 A(I, *) refers to the Ith row of the matrix A

3 IThe following examples illustrate the use of subscripts:

3 •M(B + C, 3)

BLINVERSE(I, ,)

ILVALUE(BASIS-LIST(I)).

I 2.2 MNSThhTS

3 Constants are of four types--arithmetic, logical, set and character. The

type of a constatit determines how the number illl be stored in the machine and used

K in calcu!ations.

I
I

S~2/6

ARITI,MLETIC CONSTANTS may be either integer or real.

1NTEGLR ARIT•METIC CONSTANTS are written as a string of digits without

a ,.kcimal point, examples 1, 10, 10090.

REAL ARIThMETIC CONSTANTS may or may not have an exponent. An exponentless

j real number Is a sequence of digits containing a decimal point. Examples: 1.,

1.0, .3925, 102.34. Th, exponent form of the real constant allows writing the

J constant in modified scientific notation. This form consists of an exponentless

real number followed by an E (meaning 10 to thi power) followed by an optionally

I signed string of digits.

J Examples:

2.5E02 (25.xl02 , 2500.)

I.OE-02 (lOxl0 -2 .01)

.8E03 (.8x103 . 800.)

59.lE+05 (9.ll05 - 910000.)

LOGICAL CONSTANTS are TRUE and FALSE.

A SET CONSTANT is NULL.

ChARACTLR CONSTANTS are any string of characters enclosed by single quotes (')

'TABLEAU'

'PRICES AE'

2/7

1 2.3 OPERATORS

Operators are the connecting elements which allow the grouping of variables

and constants into larger language phrases celled expressions. Operators are of

11 five classes:

a) aritbnetic operators-unary: + and -

and binary: + (addition), - (aubtracticn),

* (multiplication), / (divisý.on), and

S[** (exponentation).

Sb) logical operators-unary: NOT

and binary: AND, OR.

c) relational operators - a (equal),

[-9 = (not equal), >- (greater than or

equal), <- `,less than or equal),

S> (strictly greater than),

< (strictly less than).

d) concatenation operators (for building

I up matrices from elements) : a

.~ ccma (,) is used for horizontal

concatenation; a number sign (M) is

used for vertical concatenation.

a) set operators - OR (union),

AND (intersection), AND NOT (relative

ccmplmeent).

The use and meaning of th* first three operators it quite similar to operators

'a existing languages (ALGOL) while the concatenation operator may be new to theL

T 2/8

reader. This operator is used to build larger storage structures from smaller

ones. For now an exmple of concatenation operators vill be given; the detailed

explanation of their use being presented in Section 3.2.3. Suppose A, 39 C, end D

are matrices of the ae dimnensions. Then M.:- (A, 3)#(C, D)i represents a

larger matrix of the folloving form: M ~~ If the progrinr writes

M :- (A, B)#(C, D); partly on one punch card aW partly on the next it taks the

"form M :-(A,)O
(C,, D);

"To resolve mbigulties which can develop in forming combfiation of elements,

each operator has an associated precedence. In the absence of parenthesis to

dIctate the eanings of such combinations, the eaning will be given by the

precedence of the operators, with those having higher precedence being first.

- Operators of equal precedence vill be performed from left to right as one would

"expect. Section 2.5.2 in Part III interprets the operator symbols in order of

decrrasing precedence. A e before an operator indicates that its precedence is the

same as the proceeding operator. The following exsles show the meenig of

precedence.

A - I/C + D is interpreted as A - (l/C) + 0

(A, 2)#C ti Interpreted [(AC5)]

I + C/I a. 3M Is isterpreted as a + ((CI(DeI))A)

Ambiguous notation in two of the examples cen be avoided, of morse, by use

of parentheses.

2/9

I 2.4 Reserwod Words

Reserved words in MQL fall into the categories of keyword symbols or

standard function names such as sin(x) and procedure names. Recall that

U reserved words may not be used as variable names. Keyword symbols (such as

3 FOR, IN, LND, GO TO)will be discussed in Section 4.2.3,

I ~Functionp:

2I A standard function name identifies a Itandard function. It is hoped

that extensive use of standard functions will lead to ease in programming and

3I mhhance the readability of the resulting codes. Presented in Section 5, Part III

is a list of standard' functions, which hopefully will grow as MPL developes.

Reference to a standard function is of the form V :- F(P) where V represents

3 the value of the function, F represents the name of the function, and P

represents one or more argument', which we will refer to 1w a parameter list.

Depending upon the function, the value may be integer or real, scalar, vector, or

S matriz,and if matrix, it uay have any structure shape. These properties as well

as the properties of the parameter list are described in Part III. Following are

few exampler of the use of standard functions. Let C and X be vectors,

A a matrix, and T an index set all previously defined:*1 3
Z :- SM(C(I),X(I) FOR I IN T);

R :, ARGMIN(B(I)/A(I.S) FOR I IN TIP(I.S) L> 0);

I 2.5 Comment Stateogjs (Quote Symbols)

In the al~orithm coded thus far by the WL group. it hbe been

found that coenats are essential for readability of computer codes. Coaments may

be placed between any two sentences and are separated from the program by quote1'

1 2/10

marks before and after the comment. Example:

SAME LOCATION (COUNT, COUNT');

A :*B + C;

A "A IS THE SUM OF B AND C"

j FOR I IN SET.l, COUNT' :- COUNT + 1;

"WHLRE COUNT' IS THE UPDATED VALUE OF

] COUNT WHICH IS STORED IN THE SAME

LOCATION AS COUNT AND REFERRED TO HERE-

IAFTER AS COUNT."

I The general objective of MPL is readability. It is however, doubtful that

a program will be readable unless liberally interlaced with comments statements

whereby the programmer explains to the reader why he is doing the various steps.

In experiments with mathematical programing routines, almo.t two lines of coements

are needed on the average to explain an executable line of code. Comment statements

can consist of one or several lines set off at the beginning, and end by quote makes.

"PIVOTING WILL BE DONE ON THE FULL

MATRIX D WHICH INCLUDES A, THE

RHS B, AND COSTS C."

D :- (A, 1)1

(C, 0);

"WE NOW I1NcRMNT COUNT AND RECYCLE."

COUNT' :a COUNT + 1; GO TO (21);

2/11

C 3.0 Eolessions

SI Variables, constants, aid operators art combined into larger language

I 3phrases called expressions. Expressions e:re either arithmetiz, logical, set or

character. In addition, the value of an arithmetic expressioa has a shape

(rectangular, diagonal, lower triangular, upper triangular, sparce). The

following sections explain the use and meaning of some of the special features

SI of KPL expressions.

3.1 Lomical £xnressionc

I A logical expression, having the value of TRUE or FALSE, is a comparison

5 . between two arithmetic expressions. Twc' arithmetic expressions which are compared

by a relational operator must be id~nti;al in type, form and shape. Following

3 are examples of logical expressions:

NOT (X(I) > Y(I))

(Z > M) W (B + C A + D)

(H(I) - Z(I)) OR (M- Q)

Mhen A and B are scalars and o is a relational operator, then the interpretation

I of A P B i& clear. However, in the case of arrays, the meaning of A ., B can

i differ by author. Table 1 below defines precisely what is meant by the relational

operators in WL.

I
I
I
N

2/12

TABLLJ

In this Table, A and B are arrays identical in type, form, and shape.

Ail, Bi refer to elements of A and B.

J PL Statement Mathematical Meaning

A - B A B V
I i

A _< B A, _ B i Vi
A < B Ai <B V- Bi £l

A_> B A -I ''I ¥i

A > B A B> V

A-9-B Ai B for some i

3.2 Arithmetic Expressions

Arithmetic expressions are any combination of the folloving types--

compu...tional expressions, function references, and array builders.

* 3.2.1 Co.utational kj ressions

Computation expressions are of the structure 'left-operand'-'operator'

*i 'rtghL-operand'. If the left operand is issuing, the operator is unary (one

operand) - Example: -A, + (Q-Z/B). If both operands are pztsent, they are

connected by a binary operator (two operands) - Example: A+B, C**D , At execution

tiert the expression will be evaluated to produce a resilt. In addition to being

defined, an operatio:i can only be perfo,-ue, if the operands conform to the

conventional restrictions of matrix algebra (for example - M and N arc matrices,

then HeN has meaning if and only if the number of columns of M equals the

nuubvi #- rows in ,1). Section 2.S of Part III describes these relatlonahips in

detail.

K 2/13

3.2,2 FUnction References

• [A function reference expression invelvcs the use of predefined functions

L as set forth in Section 2.4. Examples of function references used with

computational expressions to form new arithmetic expressions are given below.

XSUM(Y)

[~A*TRANSPOSEM(i

BASIGOSTSINVERSE (BASIS)

We shall see further use ci function references in array builders in the next
ii• [section.

•1*
3.2.3 Array B~uilders

K •There are two types of array builders--concatenators and array designators.

I ~A concatenator is a notational device for constructing vectors and matricesj

by concatenation. The rules for the use of a concatenator will be given followed|
5 *by several examples.

K •Operations within a concatenator are horizontal concatenation (denoted by

a comaa) and vertical concatenation (denoted by a number silo). Horizontal

concatenation has procedencv over vertical concatenation and is performed first

• I whenever both operations appear. Two structures being concatenated must conform,

i.e.. have the same number of rows for horizontal concatenation and the sam

3 number of column• for vertical concatentation. both of the structures being

concatenated must be of the same type. all arrays must be rectan&u&ar ard the

result Is also rectangular. As an example of the use of array construcorn,

consider the following:

! 4

2/14

A has M rows and N columns (matrix)

B has M rows and 1 column (cclumn vector)

C has 1 row and N column (row vector)

i (B, TRANSPOSE(C)) has M rows and 2 columns: (B C

(A,B) or A,B has M rows and N+1 columns: (A B)

(A)#(C) has 1441 rows and N columns (Al

lA.B)#(C.O) has M+1 rows and N+l columns A B)

The above examples of correct usage of the array constructor while the

fol.lowing examples display incorrect usage ;,ecause of the incompatabiliiy of the

rows and columns*

(A, C)

(A #B)

arre deetinator is used to horizontally concatenate several matrices,
r

D(J) for J in sme index set L. For eaample L might be a list of basic

columns L(M), L(2),...,L(H). Then the basis B is given by

B : (A(*,J) FOR J IN L);

Alternativeiy, it can be written

It :- (A(*, L(1)) FOR I IN Q1,... M));

however, it should not be written

B :A(.,J) FOR J IN L;

because without the concatenation symbol i: is equivalent to

MR J IN L DO

8 :a A(*, J);

,NDPR;

2/15

SI which is quite different. Nor should it be written

B := (A(*, L(M)),...,A(,, L(M)));

because this does not define the running index and (k,...,I) in MPL means

(k, k+1,..,sX). Still simplier we can write

I: B :- A(*, L);

;i
-'1 I

I,

i .:0

2/16

4.0 Statements

I All statements in HPL are categorized first by whether or not they are

I preceeded by a label. All statements are ended by the terminator semi-colon (;).

J 4.± Labeled Statements

A label is a means of providing a specific location in a program to which

execution control may be transferred. Labels are either a string of digits enclosed

I n parentheses or can have a name like a variable. A labeled statement consists of a

label, followed by a colon followed by an "unlabeled statement" (defined in 4.2) and

IJ may be ased only once as a label vithin each storage block. A label can only be

referred to later in GO TO statements. Examples:

VAR :- X + Y;

UPDATING: ITERATIONS':- ITERATIONS + 1;I
GO TO UPDATING;

4.2 Unlabeled Statements

Unlabeled statements are of three types--assignment statements, procedure

call statements, and keyword statements.

4.2.1 A~ss ncjj Staitemnt

A•signment •tetent* are used for transferring data values between data

altcrue locations. 'he f1 r, of a substitution utatament !s V :- AE; where V

is any variable as defined in Section 2.1 aud Al is any arithmetic expression

as defined in Section 3.2. Examples:

A :a W;C

S :- ARGMIN(V);

A(&,*) : +C - 3,D;

3 I2/17

4.2.2 Procedgre Call Statement

I: A procedure call statement transfers execution control to a procedure. When

3'• •the execution of t* procedure is completed, control returns to the statement

following the procedure reference. More will be said about procedures in Section 5.1.

Ki Examples:

PIVOT (M,R,S);

SIMPLEX("IN" A,B,C, "OUT" Z, BV, X.BV);!
4.2.3 Keyword StatementsK

Much of the power of MPL lies in the use of keyword statements. Formally,

[a keyword statement is one which begins with reserve words such as DEFINE, FOR,

IF, GO TO, LET, ENDIF, RELEASE, RETURN. The complete-list will be found in 3.2.4

[Lin Part III. The keyword indicates to the computer and the programmer what type

[of action is desired. Some of the keyword statements will be discussed here, the

remainder being discussed in Chapter 5 (Statement Blocks).

4.2.3.1 GO TO Statement

A GO TO statement is used to alter the normal sequential flow of contr6l

C during the execution of a program. This form is GO TO t ; where L is any label

as defined in Section 4.1. Example:

ITERATE: I': a I + 1;
i.

9O TO ITERATE;

4.2.3.2 Simnle Conditional Statement (IF)

A simple conditional statement enables one to execute a single stattment only

!0

1 2/18

if certain conditions hold, and skip it otherwise. The form is

I a IF le;

J where le is any logical expression as defined in Section 3.1 and a is an

S assignment statement. Examples:

S :- 0 IF A(*, 3) - B;

I R:S+T IF Z -O;

"I K:= R IF U - 0;

L :- S IF V> 0;

I If the logical expressions le is true, the program is executed with a replacing

J the entire conditional statement. If not true, the program goes to the .iext

statement.

In section 5.4 a compound conditional form is discusiied. Its form is

IF le THEN .i" 's

"OR 17 le THEN am

OTHERWISE sm+l,...,sn

ENDIF;

4.2.3.3 Simple Iterated Statement (FOR)

A simple iterated statement is used to perform a given statement several

times in such a manner that during each execution an iteration index is changed

according to a predetermined pattern. The form is

s FOR, v IN set;

2/19

SI
where v is any variable name as defined in Section 2.1, set is any index set

S I variable as defined in Section 2.1 and s is a statement. s in general depends

on v . The first part of the conditioned statement (the FOR phrase) states that

I the values of an iteration index (v arc to range over set). The first cycle

through s is executed with the first value of v in set; the second cycle is

executed, the second value of v in Pet, and so forth until the last value of

3 I the iteration index has been used in the execution of a. Then control is passed

onto the next statement. Example:

I A(I) :- B(I,J) FOR 1 IN (1,...,M);

K In Section 5.3 a compound iterated statement is discussed. Its form is

3 FOR V IN set DO

Sl,*...,..m

3• ENDFOk;

I 4.2.3.4 Let Statement

3 The let statement enables one to represent one symbol by another and was

introduced into MPL to ehhance read.bility. This statement is similar to a MACRO.

3i t causes modification of the program at compiler time instead of execution time-

The let statement will be explained by showing several examples of itt use.

a) LET M :- MATRIX:

A : MtB;3 is e!quivalent to A :M MATRIX * C;

3 b.) LET L(I) :- RYS(l)/A(IS); LET T :(

R :a ARGMIN (L(T))-;

is equivalent to R :a ARGMIN.(Lf') FOR J IN T);

or equivalent to R : M ARGtIIN(R(S(I)iA(I,S) FOR 1 1. .

I

1 2/20

c) LET BI :- BASIS-INVERSE; LET BC :- BASIC._COSTS;

PI :- BC*BI;

is equivalent to PI :a BASIC-COSTS*BASISINVERSE;

I Note also in the first example that I is a dummy and that another symbol

i . was used in its place later on. The form of a let statement is LET v :w e,

where v is a variable and e is an expression.
T

In the case that let is only used to simplify a single statement, an inverted

let or WIM form can be used.

R :- ARCMIN(L(J) FOR J IN T)

WHERE T :- (1,...,M);

4.2.3.6 Define Statement

Before a variable name may be used in a program the type, structure and

storage requirements of the values which it represents must be explicitly or

implicitly defined. The only exc.ption to this rule is that an undefined variable

may be used as a dummy iteration index or as a dummy variable in a let or where

situation. The declaration may be done in two ways. One is to define the variable

but not give it any values:
I

DEFINE V 1 BY M;

The other is to define the variable and assign it values at the same time. In the

example below V is a new variable while A and B have been previously

defined.

V :- A + B;

Let us now explore the details and meaning of the dtfine statement.i

1 2/21

I The form of an explicit DEFINE statement is

I SIZE

DEFINE Variable Type S Dimensions or Domain

A

name ARITHMETIC RECTANGULAR m BY n

DIAGONAL (m1 ,...,m2) BY (nl,...,n2)

UPPER TRIANGULAR

LOWER TRIANGULAR

[SPARSE WITH K NONZEROS

[name LOGICAL

name CHARACTER in

name SET n

Words "ARITIHMTIC", "RECTANGULAR" will be understood if type, shape or size

"descriptors are omitted. Scalar is assured if size description is missing. Let

symbols k, m, n, m1, mi2 , n 1 , n2 be any previously deflned integers or integer

expressions. A matrix "SPARSE WITH K NAN-ZEROS" means the matrix has at most

k non-zeros. It will be stored as a sparse matrix. A list which has neither row

nor column interpretation may be indicated by "(m)" where m is the number of

elements. Examples:

1. DEFINE E M BY N;

2. DEFINE D, E DIAGONAL P BY B;

3. DEFINE D (1,..,,) BY (K,...,I);

4. DrFINE J;

5. DLFINiE M SPARSE WITH P NONZEROS;

6. DEFINE C 1 97 N;

7. DEFINE 5 M BY 1;

8. DLFINL L CHARACTER;

9. DEFINE S SET;

S

2/22

J The form of a domain descriptor is SRL where SRL is a subscript range

list, a series of subscript ranges separated by a BY. A subscript range

I is two arithmetic expressions separated b7 ,..., . Example of subscript range

list: (1,...,M) BY (M+N,...,K). Each subscript range determines the minimtm and

maximum values of the array's subscripts. The number of subscript ranges in the

S subscript range list determines the number of dimensions of t storage structure.

If the domain is of the form (1,...,M) BY (l,...,N) it is written in Dimension

I form M BY N or simply M for a one-dimensional list or set. T'ae description

shape and size descriptions may appear in any order in a define statement.

The second (knd most used) method of defining a variable :Ls implicitly. The

form of an imolicit define statement is vn :- as; where vn is a

.. variable name as defined in Sectlon 2.1 aad ae is an arithmetic expression as

defined in Section 3.2. In this version of the define statement the variable

name being defined is given the same form, type, and structure as the value of

the first arithmetic expression. Examples:

M :- (A, B)#

(C, D);

M :- (A, B, C);

b :u (P(*, BL(I)) FOR I IN (l....,M));

1D :- E + F*G; "WHERE E AND F ARE MATRICES"

2/23

I 5.0 Statement Blocks

I A prograi in MPL consists of a sequence of statements (defined in 4.0)

and statement blocks. A statement block is a sequence of statements with special

initiating and terminating statements. There are four kinds of statement blocks--

3 I procedure blocks, stork'e allocatioo blocks, conditional blocks and iteration

blocks. The entire program is a procedure blo':k. A block can have other blocks

I imbedded within itor it may be imbeedded in other blocks, but no two blocks

i partially overlap.

I 5.1 Procedure Blocks

3 A procedure is designed to carry out a specific sequence of operations which

mua, be required over and over again. Rather than rewriting the sequence of steps

I each time, they may be written once in a form which can be utilized whenever needed.

It is hoped that a library of procedures written in 1QL will be developed, thereby

enabling the work of one programmer to be available to others. This will not only

* 3 speed up the writing of MPL codes, but will also enhance the readability. Later on

we will say how to call a procedure in a program.I
If one wants to write a proceiurc (which will later be called by some main

I routtie), the procedure is initiated by a prnceure ststt-"t, coatains a

statement sequence, and is ttruttnated by a ft'•1 %tatre•ent. A procedure statement

I consists of the reserved word PROCEDURE 'o!1owed by a procedure identifife

I The procedure identifitr spt-€c!ies both the procedure name and the local nmes of

the input-output paramoters. The form of a procedure Idetif ier is a variable naiv

I folloved usually by a list of Faraeeters enclosed in a pa~r of parenthemss.

I
I

2/24

The fini statement is used to mairk the end of a procedure write up. In

contrast, RETURN is a signal during execution of a program that control is to

be passed back to the main routine. This also terminates any storage allocation,

J iteration, or conditional blocks which webre initiated but not explicitly or

implicitly terminated within the procedure.I
Control is passed to a procedure by either a function or a procedur3

J reference call. A procedure may have several return statements, each one may cause

termization during execution. Values are transferred to and from the procedure

by means of substitution statements in the input-output section of the procedure

idencifiero In general, new variables for the main routine may be defined in the

output section.

As an example of the use of the return statement in a procedure

consider the following routine for checking whether two column vectors are equal.

COMPARE :n 0 means A - B.

PROCEDURE COMPARE(A,B)

(1): IF ROW.DIM(A) -a ROWDIM(B) THEN

COMPARE := I;

RETURN;

OTHLRWISE

(2): FOR I IN ROW.DOk(A) W.

IF A(M) -to B(1) THLN

COMPAJ•E := 1;

RETURIN;

ENDIF;
E$DFOR

"CI*PARE :- 0;

(3): RETURN;

EtDIF;

FINI

22/25

5 Next suppose that in a program we have the following sequence of statements:

IF COHPME(XY)-O THEN GO M(21); OTHERWISE GO TO (23); ENDIF;

4 I thus if the vector X equals the vector Y in each component* control isi

transferred to the statement (21), if not, it goes to (23).

5.2. Storage Allocati•n Blocks. Release Statements

Storage allocation blocks are required for the efficient use of memory

I core ir a computer. To release a symbol and eny storage for cther use, the

statement takes the iorm:

RLLEJASE A, B;

I Aftir much debate, it was decided that in writing mathematical programing codes,

block storage allocation was preferable to continual re-allocation.

Release of symbols takri place automatically, however, with subprogram

blocks and special release blocks.

All symbols and storage except outputs, generated within a procedure are

i released wh, -he procedure returns to the main routine. Hence the same symbols

outside the procedure cpe be used wt.A eoutirely different meaning-

G In the sratemenz

Z :- A + G WHERE C :- INVERSE(M);

S in treated as a Iusmy variable locally defined within the block and irmediattly

released. hot. vet, in the situationI
L1.1 G :- INVERSE'X);

Z :a A + G;

I the release ,f G is not possible urv 41 v'he end of a procedure unless by a special

2/26

release statement

J RELEASE G;

I 5.3 Iteration Block

I An iteration block is a statement sequence which is repeatad a number of

times only with an iteration index changed between each execution, As such, this

is a generalization of the iterated statement (Section 4.2.3.3). An iteration

block is initiated by a for statement, contains a statement sequence, and is

terminated by an endfor statement. The for statement (very similar to the

I for phrase of Section 4.2.3.3) governs the behavior of the iteration by specifying

the values for the iteration ivdex. Iteration blocks do not release symbols and

I storage like a subroutine blocks. Exzaplee The form is

FOR v IN set DO

el'".'s X

ENDFOR;

FOR I IN (1,...,M) DO

X(I) :- Y(;

J' :- J + 1;

A(*,I) : (I);

ENDFOR;

5.4 CondiLi t al Blocks

Conditional blocks are constructions wherein the program selects .between

a set of mutually exclusive courses oL action. A conditional ýIock is initiat~d

Ly so if rLte'wenL a&n terminated by an endit statement. Or if and otherwise

statemants allow for the provision of maltiple alternatives. This construct is a

[__

2/27

generalization of the conditional statement (Section 4.2.3.2). Conditional blocks

, t do not release symbols generated witifn them. The form is:

"IF le THEN 9l,.0., 1

OR IF le THEN a +1,~..s

OTHERWISE m+l ,Sn

ENDIF;I
IF A- B THEN GO TO (7);

[OR IF A C THENGOTO (8);

OTHERWISE

[:- A;

ENDIF;

r The OR IF and OTHERWISE are optional in a conditional block. For example

IF le THEN si,..., $I ENDIF;

I.

1 2/28

6.0 Eamples o~ f ML Procedureq

SI PROCEDURE SUM(F)

"SUMS A VECTOR F OVER ITS DOMAIN"

"ACCLMULATE THE RUNNING SUM IN S."

(1): S :- o;

(2): SAME LOCATION (S', S);

"S' WILL BE THE UPDATED VALUE OF S TO BE STORED IN THE SAME

I . LOCATION AS S AND ThEREAFTER REFERRED TO AS S."

1 (3): S' :- S + F(I) FOR I IN DOM(F);

"ITERATIVELY ADDS F(I) TO S"

(4): SUM :- S;

(5): RETURN•; FINI;

PROCEDURE MIUl.("IN" F, "OUT" K, M)

"K IS THE FiRST INDEX I WHERE F(I) TAKES ON ITS MINIMUM

VAI.UL M OVLR DOMAIN OF F."

"INITIALIZE K AND Me"

(1): K : DO•(F)(1); "I.E. THE FIRSTCOMPONENT OF THF SET NK(F)"

(2): H :- F(K);

(3): SAML. LOCA'A T N -A), (Ve F',;

"k', '. MeAR UPDA'I D VALUES OF K, M"

1 2/29

(4): FOR I IN DON(F) DO

IF F(I) < M THEN

K' := I;

M'l:" F(I);

EkNDIF;

" ! ENDFOR;

1 (5): RETURN; FINI;

I PROCEDURE COL__PIVOT (A,P,R);

"WARNING - MODIFIES A ANJD STORES THL RESULT A' IN THE

I SAME LOCATION AS A."

3 "PIVOTS (A, P) ON P(R) WHERE A IS A MATRIX AND P A

COLUMN VECTOR, AND RETURNS V', THE MODIFIED A PART ONLY."

I
(1): SAME LOCATION (A', A);

I (2): M :- ROWiDIM(A);

(3): LET T : (1,...,M) AND NOT R;

1 (4): A'(R, *) :- A(R, *)/P(R);

5 (5): A'(I, *) :, A(I, *) -A'(R, *) * P(I) FOR T IN T;

(6): COL.PIVOT :- A';

3 (7): RETURN; FINI;

I PROCEDURE RLVISLD..SIMPLLX_2("IN" A,DC,BV, "OUT" STATUS, X,Z,I);

I' "REVISEDSIMPLEX.2 IS JUST PHASE 2.

A - MATRIX, C a COSTS, D a RHS, BV a BASIC VARIABLES,

fX - BV VALULS, Z a OBJECTIVE VALUE, K ITERATIONS"

"ThE PROBLEM IS TO FIND M[IN Z, X > O, AX - D, CX - Z.

j1. IF MLN Z IS FINITE, STATUS - FINITE, OTHURIISE STATUS

rINFINi'rE. IT Is ASSIIMD THAT BV IS A BASIC FEASIBLE SET

OF VARIAMLES."

2/30

""IflITIALIZATION"

(1)" K :- C,

(2): STATUS :- 'FINITE';

"TiHL FIRST STEP IS TO SET UP THE INITIAL BASIS WHICH CONSISTS

OF THE SET OF BASIC VARIABLE COLUMNS, BV, OF A. THUS

B$ASIS :- A(BV). LET G BE THE INVERSE OF THE BASIS.

WE ARE INTERESTED IN COMPUTING G AND LATER UPDATING IT."
-wa

(3): G :-INVERSE(BASIS) WHERE BASIS :- A(BV);

"ALSO X, ThE VALUES OF TIHE BASIC VARIABLES, ARE INITIALLY"

(4): X :- G * D;

"ITERATIVE LOOP"

"THL COSTS ASSOCIATED WITH BASIC COLUMNS ARE C(BV] - HENCE

ThE SIMPLEX MULTIPLIERS P ARE GIVEN BY"

(5): P := C(BV) * G;

"LET S DLNCTE THE INDEX OF ThE COLUM2 OF A COMING IMTO _dE

BASIS AND '.7S CM-($)."

d 2/31

£I (6): MI.1_("IN" C.P • A, "OUT" S, C...S);

"WhICh IS ThL INDEX (ARGUMENT) OF ThE SMALLEST COMPONENT

OF Thh VECTOR OF RELATIVE COSTS C-P * A."

"TEST FOR FINITE MIN Z"

S(7): GO TO (16) IF C•_S 0;

j "LET Y BE ThE REPRESENTATION,

TLRMS OF ThL BASIS."

(8): Y :. G * A(*, S);

"LLT R DENOTE ThE INDEX OF THE COLUMN IN THE BASIS TO BE

REMOVED"

LET T :- (I IN DOM(Y)jY(I) > 0);

IF T - NULL THEN

STATUS :; 'INFINITE';

GO TO (16);

ENDIF;

j (9): MIN..("IN" (X(I)/Y(I) FOR I IN T), "OUT" R, Q);

" "UPDATE X. G, K. BV DLNOTFD BY X' G'1 Ke' $I

(10): SAML •LCATIGI. (X, X'), (C. G'). (K, K'). (IV, IV');

1 2/32

1 (12): X' :- X-Y •

X'(R) := Q;

(13): G' :- COLPIVOT(G,Y,R);I
"COL.PIVOT PIVOTS (G,Y) ON Y(R) AND RETURNS MODIFIED G

PART."

I
(14): BV'(R) :- S;

"1*

"ChiANGE. R-TH BASIC VARIABLE TO S."

"UPDATING COMPLETE, RECYCLE"

(15): GO TO (5);

"TERMINATION"

(16): Z :- C(BV) X;

(17)t RETURN;

(18): FINI;

'1
MPL

MATHt•MATICAL PROGRAMMING LANGUAGE

PART III

[A FOPMAL DEFINITION OF MPL

[
PREPAIRED BY STEPHEN K. SCHUCK

APRIL 1968

r
COMMITTEE MEMBERS

I.RUDULF BAYER MICHAEL MCGRATH
JAMES RICPELOW PAUL PINSKY

GFOI.GF DANTZIG ST~EPHEN SCHPUCK
0 j AVIU (,RIES CHRISTOPH WITIGALL

THis iS THk THIRD CF THREE PARTS:

PART I A 14CRT ItjRnDUCTILN
PART i1 A GEkERAL DESCRIPTION
PART III A FORMAL DEFINITiON

NUTt: BECAUSE THE r)l(V*L0PMtNi (OF PARTS I AND II WAS SLICGHTLY
CUM rF PHASE %ITH THE UEVELUPMENT OF PANT III THE READER WAY
CIPSE*PVE SOME NCVICEABLkt ALTHnIVGH NOT SIGNIFICANT* DESCEPENCIES

FI*FtN THEM4. tHkSE OFSCREPENCIES ARE DUE TO THE FACT THAT PPL Is
.NqtT YLT FULLY DEVELOPEP ANO MA~4Y IDEAS ARE STILL EEPERIMENTAL*

1.S

I
0(i)

0-1 ABSTRACT

COMMUNICATIUN WITH A DIGITAL COMPUTER IS A PRORLEM WHICH HAS
OCCUPIED MANY PEOPLE FOR A LnNG TIME. IN ORDER TO ALLOW THE
COMPUTER TO BE MORF WIDELY USED AS A COMPUTATIONAL TOOL MUCH OF
THIS EFFO)RT HAS GO]NE INTO DEVELOPING SYSTEMS THROUGH WHICH A V
P'.RSUN MAY COMMUNICATE HIS DESIRES EVEN THROUGH HE IS NOT FAMILIAR
WITH THE SOPHISTICATED AND HIGHLY DETAILED PRnGRAMMING LANUAJAGFS
AVAILA.3LE,, THE MATHEMATICAL PROGRAMMING LANPUAGE IS ANOTHER
ATTEMPr TO PROVIDE A LANGUAGE IN WHICH THE NnN-PROGRAMMER MAY
WHITE PROGRAMS* THE VALUE OF THIS WORK LIES IN THE FACT THAT IT
IS O)RIENTED DIRECTLY TOWARD MATHF.OATICAL PRORAMMING. CONSEl UFNTLY
CLONSIC)ERAPLE EFFrORT HAS BEEN MADE TJ MAKE MPt. LOOK AS MUCH LIKFJ STANDARD MATttEMATICAL NCTATION AS PrISSIBLE.

IT IS lOPED THAT THIS W13RK WILL PRODUCE A RG(OROUSLY DEFINED L8NGUAGE
IN WHICH MATHEMATICAL PROGRAMMERS CAN DESCRItiE ALGORITHMS WHIC4
WILL AT THE SAME TIME BE EASILY UNDERSTOOD BY OTHER MATHEMATICAL
PROGRAIMERS AND MEANINGFUL AND VALID COMPUTER PROGRAMS*

SINCE IPL IS A LANGUAGF INTEI',lED FOR COMMUNICATION qOTH WITH OTHER
INDIVI)UALS AND WITH rfmPLITERS9 ITS DEVELOPMENT IS AN EFFORT TI
PRr)VI!,)E A 'READABLE' PROGRAMMING LANGUAGE, HOWEVER, FOR A PROGRAM
TO b' READARLE (AN EASY TO USE AND RAPID METHOD FOt' TRANSFERRING
INFORMATIONI IT MUST RE BfnTH 'UNDERSTANDABLEt (THE NOTATION IS
FAMILIAR OR SELF-FXPLANATOPY WITHIN ITS CONTEXTI AND ICOMPREHENDABLE'
(THE PARTS OF A PROGRAM MUST INTERRELATE IN A MEANINGFUL MANNER
FOR THE PROGRAM REACERI. 'N THIS RESPECT THE EMPHASIS OF MPL
IS UPOI PROVIDING AN IuNnERSTANDABLE LANGUAGE* COMPREHENDABILITYf WILL STILL BF THE USER'S RESPONSIRILITY,

I

0(21

c - TA•o.F OF CONTENTS

C I NTROIIC T I (IN
0-I ARSTRACT
,.C-2 TABLE OF CUNTF.NTS

r--3 MPL LANGUAGE CESIGN PHILO]SnPHY
.. 4•• USE OF TH4E MANUAL

I BASIC LANGUAGE STRIUCTURE
1-1 AN ORGANIZATIjN OVERVIEW
1-? THE MPL CHARACTER SET
1-3 SOME ELFMFNTARY PHRASES

2 EXPRESSIONS
2-I ATTRIBUTES OF EXPRESSIONS
2-2 CONSTANTS
2-2-1 NUMBERS
2-2-2 LUGIrCAL t;VNSTANTS
2-2-3 SET CONSTANTS
2-2-4 CHARACTER CONSTANTS
2-3 VARIABLES
2-1-1 VARIABLE NAMES
2-3-2 SUBSCRIPTS
2-4 PROCEn'URF CALLS
2-4-1 PROCEDURE NAMES
2-4-2 PARAMETER LISTS
2-5 COMPUTATIONAL EXPRESSIONS
2-5-', OPERATOR CLASSES AND ALLOWABLE CONFIGURATIONS
2-5-? OPERATOR DEFINITIONS AI4D PRECEDENCES
2-5-3• SEMANTICS
2-• OTHER FXPRESSIONS

S2-h-D oMAIN ITEM
2-6-2 CONCATENATOR
2-6-3 ARRAY CONSTRUCTOR
2-6-4 SUBSET SPECIFIER

3 kLIGam CONSTRUCTION (PROCED)IJRESI
3-1 STATEMENT SEQUENCES
3-? STATEMENTS

3-7-1 LABELS
"-2-2 ASSIGNMENT STATEMENTS
,!-7-, P*UCE:'IURF CALL STATEMFNTS
4-?-4, SItIF. KFYWORD STATFMENTS
1-?-4-1 LEr STATFMENT
I--- GI TO STATFMENT
1-2-4-1 RETVION STATEMENT

-FFINE STATF4FNT
RFLCESE STATFMF,4T

S3-?-S COMPLPK KEyWfRO STATFMEE-4TS
"C¶INOITIONE0 iTATEMENT
ITERIATEn STATEMENT

I BLC•K STATEMENT

I 0131

J C-2 TABLE OF CONTENTS (CONTINUEn)

4 INPUT/OUTPUT STATEMFNTS

5 LIBRARY PROCEDURES

6 PROOGRAM FORMATION MECHANICS
6-1 CARD FORMAT
6-2 USE OF BLANKSJ6-3 COMMENTS

7 RESUME OF DEFINITIONS

8 SAMPLE PROGRAM

j0-3 MPL LANGUAGE DESIGN PHILOSOPHY

THF.PHILOSOPHY BEHIND THE DESIGN Or THE MATHEMATICAL PROGRAMMING
, -LANGUAGE (HEREAFTER CALLED MPLI IS TG PROVIDE A MAXIMUM OF

READANILITY TO THE tUNINITIATED* THJS IT CAN HOPEFULLY BE
ASSUME) THAT THE USER HAS ONLY A FAMILIARITY WITH THE NOTATO04
OF CURRENT MATHEMATICAL LITERATURE. AS A-RESULT THE LANGUAGE
DEFINITION ATTEMPTS TO AVOID ABBREVIATIONS WHICH PAY BE
OBSCURE, TO KEEP THE NUMBER OF SPECIAL SYMBOLS TO A MINIMUM,9
AND TO PROVIDE THE MOST FAM!ILIAR NOTATION AND FflRRiATION.

AS 4PL DEVELOPEr IT BECkME OBVIOUS THAT MANY USEFUL STRUCTURES
WERE AVAILABLE IN EXISTNG LANGUAGES* AS A RESULT THE READER
OHO IS FAM•LIAR WITH ALGOL, FORTRAN# PL1I, ETC.t WILL ENCOUNTER
FAMILIAR FORMS AND PHILOSOPHIES. NO ATTFMPT HAS SEEN MADE
TO PARALLEL ANY SINGLE SUCH LANGUAGEr BUT WHERE APPLICABLE
TO nEVELJP THE BEST THAT WAS AVAILABLE*

+
" [

0(41

0-4 USE OF THF MANUAL

THE FOLLrJWING, DISCUSSION IS ORGANiZED SO THAT THE READER MAY
FOLLOW THE CONSTRUCTION OF MPL FROM THE MOST ELEMENTARY
UP Tý- 'UGH THE BROADEST CONCEPTS. THE FINAL SECTION IS A RESUME
OF THE FORMAL HEFINITIONS SO THAT THIS PAPER MAY BE USED BOTH
FOR IN'TRUCTION AND AS A REFERENCE MANUALe EXAMPLES WILL BE
LIBERALLY SPRINKLED AMONG THE DESCRIPTIONS&

THE DEFINITION OF MPL WHICH APPEARS HERE IS AIDED BY THE
US. (rF A METALINGUISTIC OR LANGUAGE-DESCRIBING LANGUAGE WHICH
HAS SEVERAL SPECIAL SYMPOLSo

[(< A PAIR OF BROKEN BRACKETS OELIMITS A PHRASE NAME.

* * A PAIR OF PRIMES DELIMITS A CHARACTER STRING WHICH
APPEARS IN A PHRASE EXACTLY AS IT APPEARS WITHIN
THE PRIMES.

READ THIS SYMPOL "IS DEFINED AS". IT SEPARATES THE
PHRASE NAME ON THE LEFT FROM THE PHRASE DESCRIPTION
ON THE RIGHTe

I READ) THIS SYMBO.L "OR", IT SEPARATES MUTUALLY EXCLUSIVE
DESCRIPTIOiS,

EXA4PLE METALINGUISTIC STATEMENIS

<CHARACTER>::-<LETTER>I<DIGIT>I<SPECEAL CHARACTER>

THfS HETALINGUISTIC STATEMENT READS *A CHARACTER IS DEFINED AS
A LETTER OR A DIGIT OR A SPECIAL CHARACTER."

I <ITERATED STATEMENT>::=-IF v<EXPRESSION>,'v(STATEMENT>

* THIS READS "AN ITERATED STATEMENT IS DEFINED AS THE CHARACTERS
$IF 0 FOLLCWED BY AN EXPRESSION FOLLOWED BY A CO4MMA FCLLOWED
BY A STATEMENT*"

I

I
I
I

I(I

1-1. AN ORGANIZATIONAL OVERVIEW

THE MPL LANGUAGE IS DESIGNED T-1 FACILITATE THE COMMUNICATION
OF MATHEMATICAL PROGRAMMING ALGORITHMS. THE COMPLETE STATEMENTI iOF AN ALGORITHM IN MPL IS A $PROGRAM'S A PROGRAM IS COMPOSED 'i•
nNE OR MORF 'PROCEDURES1, EACH OF WHICH IS A SEQUENCE OF SEVERAL
'STATE4ENTSI. EACH STATEMENT IS MADE LIP OF 'RESERVED WOROS' AN'.
eEXPRESSIONS', THE BASIC BUILDING BLOCKS OF MPLo THESE, FINALLY,
ARE CO1POSEI) OF OCHARACTERSO'

1-2 THE MPL CHARACTER SET

THE CURRENT VERSICJN OF MPL IS RASED UPON THE CHARACTER SET OF
THE IBM 029 KEYPUNCHe FOR CONVENIENCE THESE CHARACTERS ARE
GROUPED INTO THE CATEGORIES nF LETTERS, DIGITS, AND SPECIAL
CHARACTERS.

<CHARACTER>::=<LETTER>I<DIGIT>I<SPECIAL CHARACTER>

I WHERE THE SPECIFIC CHARACTERS IN EACH CATEGORY ARE GIVEN BY:

<LETTER>: "=A' I 'B' I 'C !o'O' I 'E I 'F' I 'G' I 'H' I'I'I J, I J'K' I'L

<DIGIT>=::=@OoIl I l2o I13ol'4o I151 I 6111761JS81 19o

I <SPECIAL CHARACTER>::='(I') I'(' I <'>*I ',I'.' 'I-'l'*''/'I ** ~'~I ='I' I' I'>' 1 'e'i'a' e I.:4I*&| |-I'?I'0I 'i 's

TWO OTHER CHARACTERS ARE AVAILABLE ON THE 029 KEYPUNCH, BUT ARE
NOT INCLUDED IN THE ABOVE CATEGORIES rUE TO THEIR SPECIAL USAGE
IN 4PL, THESE CHARACTERS ARE

I ';4 STATEMENT TERMINATOR
COMMENT DFLIMITER

1-3 SOME ELEMENTARY PHRASES

<CHARi:TER STRING>::=''I<CHARACTER STRING><CHARACTER>

* <011i, T TqRI"G>-:*m<.DIGIT>I<D,'GIT STRING><DIGYT>

(N<NULL ••ASE>::slI<NULL PHRASE>) o

rTHSF- PHRASES ARE USEr IN SEVERAL PLACES THROUGHOUT THE MANUAL,
THE CIaRACTFR i•.qn DIGIT STRINGS ARE JUST STRINGS OF CHARACTERS
OR JIGITS AS THEIR NA#4ES IMPLY* THE NULL PHRASE INOECATES THAT

SItHF -)AjAE W1tICH IT OESCRINES MAY BE OMITTED.

i

iiII

•, 2(11

5 2 EXPRESSIONS

<EXPRESSION>:-:'(I<EXPRESSION>'It
I <NUMBER>
I 'TRUE'I 'FALSE'

6'NULL'
I'''<CHARACTER STRING>'''
1<VARIABLE>K<DOCEDURE CALL>

(COMPUTATIONAL EXPRESSInN>
I<DOMAIN ITEM>

;' I<CONCATENATOR>
I<ARRAY CONSTPICTOR>5 [<SUBSET SPECIFIER>

EXPRESSIONS ARE ELEMENTS OF MPL WHICH HAVE IVALUEt. THEY USUALLY
nERIVS THEIR VALUES FROM MANIPULATIONS OF VALUES OF CONSTITUENT
PARTS* THE MOST BASIC EXPRESSIONS ARE CONSTANTS WITH FIXED
VALUES AND VARIABLES WITH VALUES WHICH MAY CHANGE DURING PROGRAM
OPERATION. EACH CONSTANT AND VARIABLE, AND CONSEQUENTLY EACH
E,ýPRESSIONq HAS AN ASSOCIATEn SET OF ATTRIBUTES WHICH DESCRIBE THE
PPROPERTIES OF THE VALUE OF THE EXPRESSION.

S2-1 EXPRESSION ATTRIBUTES

'TYPE' MPL ALLOWS THE USER TO MANIPULATE VALUES WHICH ARE ARITHMETIC
QUANTITIES, LOGICAL OR BOOLEAN QUANTITIES, SETS, OR CHARACTER STRINGS.
CJNSEQUJENTLY THE POSSIBLE VALUES FOR THE TYPE ATTRIBUTE ARE ARITHkFTIC,
LOGICAL, SET, AND CHARACTERs INITIALLY NO ATTEMPT IS BEING
MADE TJ IMPOSE THE 'FLOATING POINT' AND 'INTEGER' SUB-CLASSICIOATIONS
OF THE ARITHMETIC TYPE ON MPL USERS. INSTEAD IT IS HOPED, PERHADS
IN VAIN, THAT THESE HARDWARE IMPOSED CONVENTIONS MAY BE BYPASSED,

STFORM, IF A VALUE HAS TYPE ARITHMETIC, THEN IT MAY BE EITHER A SCAL.PR
QUANTIrY, A VECTOR QUANTITY, OR A MAYRIX QUANTITY. CONSEQUENTLY THE
POSSIOLF VALUES FOR THE FORM ATTRIgUTE ARE SCALARe VECTOR, AND MATRIX,

K 'SHAPE' IF A VALUE HAS TYPE ARITHMETIC, ITS FORM USUALLY HAS A RELATýr)
SHAPE %TTRIqUTE WHICH PROVIDES ADDITIONAL INFnRMATIV"N ABOUT THr VALUL'S
)W.;ANIlATI0.'q9 A SCALAR FrRM HAS NO SHAPE ATTRIBUITE, A VECTOR MAY
BE FITHER A ROW VECTfR OR A COLUMN VECTOR SO ITS POSSIBLE SHAPFS ARE
ROflW AND COLUMN, MATRICES, NORMALLY RECTANGULAR, ARE GIVEN SHAPES Tn
CONSERVE STORAGE SPACE BY STORING ONLY SUBSETS OF FLEMENTSo P(ISSIALF
MATRIX SHAPES ARE RECTANGULAR, UPPER TRIANGULAR, LOWER TRIANGULAR,
DIAGONIL, AND SPARSE.r

[
[0

2(21

2-2 CONSTANTS

A CONSTANT IS AN EXPRESSION WHICH HAS A FIXED VALUE DETERMINED BY
- THE NAME OF THE CONSTANT. THERE ARE CONSTANTS OF EACH TYPE.

2-2-1 NUMBERS

<NUMBEA>: : <NUMBER BASE>I<NUMIBER 8ASE><EXPONENT>

<NUMBER BASE>::=<DIGIT STRING>
I<DIGIT STRING>'.'
I'.'<I)IGIT STRING>
I<DIGIT STRING>''o<DIGIT STRING>

<EXPONENT>::m'El<DIGIT STRING>
llE'l4<(DIGIT STRING>
"I'Elf-'<DIGIT STRiNG>

E5SENTIALLY A NUMBER IS A DIGIT STRING (1-31, POSSIBLY CONTAINING A
SINGLE DECIMAL POINT* IF THE NUMBER HAS A VERY LARGE OR A VERY SMALL
VALUE SO THAT WRITING IT REQUIRES MANY 7EROS, IT BECOMES WORTHWHILtn
"TO USE THE ABBREVIATED 'SCIENTIFIC NOTATION' PROVIDED BY THE EXPONkNT,
HERE 'El MEANS 'TIMES TEN TO THE POWER'. THE SYMBOL Of INDICATES
THAT THE SIGN FOLLOWING THE 'E' IS OPTIONAL.

EXAMPLE NUMBERS
"2 13.6 2.54 16325 15*6E-03 2E5 .006

2-2-2 LOGICAL CONSTANTS

LOGICALt BOOLEAN, OR TRUTH VALUED EXPRESSIONS RESULT MOSTLY FROM TESTS
ON OTHER QUANTITIES WHICH YIELD THE VALUES TRUE OR FALSE* SINCE
THERE ARE ONLY TWO POSSIBLE VALUES FOR ANY LOGICAL EXPRESSION
THERE ARE ONLY TWO POSSIBLE LOGICAL CONSTANTS, 'TRUE' AND IFALFEse

2-2-3 SET C.NSTANTS

"SETS IN MPL ARE INTENDED PRIMARILY FOR INDEXING OVER ROWS OR CJf.UMNS OF
MATRICES, ITERATInN LOOPS, ETC. AS A RESULT, SET ELEMENTS HAVF WHOLE
NUMBER VALUES. THERE ARE NO DUPLICATE ELEMENT VALUES IN SETS.
HOWEVER, SINCE SETS MAY CONTAIN A VARIABLE NUMBER OF ELEMENTS, THEY
HAVE Al ASSOCIATED SIZE OR NUMWER OF ELEMENTS. THE SINGLE MOST
IMPORTANT TEST ON A SET IS THEREFORE WHETHER IT IS EMPTY. THUS THE
THE SET CON'."TANT 'NULLI IS PROV!.DED TO FACILITATE THESE TESTS AND
FOR OTHER USFS.

2(31

I ?-2-4 CHAkACTFR CONSTANTS

CHARACTER CONSTANTS HAVE THE FORM 6e0<CHARACTER STRING>4''.

[CHARACTER CONSTANTS WERE ORIGINALLY PROVIDED IN MPL FOR CONVEYING FORMAT
INFORMATION TO THE INPUT AND OUTPUT ROUTINES@ HOWEVER, WITH ONLY SLIGHT
DEVELOPMENT A VERY PIWERFtJL MANIPULATING CAPABILITY APPEARED. A

SCHARACTER CONSTANT IS ANY STRING OF CHARACTERS DELINEATED RY A
PRIME (SINGLE QUOTE) ON EACH END* A PRIME WITHIN A CHARACTER

TtRI'NG MUSr RE REPRESENTED By TWO ADJACENT PRIMES, I.E. '' (ASC LOPý,OSEO TO A OCURL QUCTE "eI

EXAMPLE CHARACTER CONSTANTS
• r e IH-9 2SE13*69

[I HFLPHELP'

'THIS IS THE JONES'' HOUSE'

2-3 VARIABLES

t <VARIAdLE>::z<VARTABLE NAME>J<VARIA8LE>'('<SU3SCRIPT LIST>$I'

VARIABLES REPRESENT VALUES. JUST AS A VARIABLE NAME IS USFD Tn[REPRESENT AN ENTIRE MATRIX OR VECTOR, VARIABLE NAMES WITH SUBSCRIPTS
REPRESENT SPECIFIC ELEMENTS OR SETS OF ELEMENTS OF THESE FORMS.
MPL VA,.IABLrS CAN REPRESENT VALUES INDIRECTLY. FOR INSTANCE, IF AE. REPRESENTS A MATRIX, THE ELEMENTS OF THE MATRIX COULD BE NUMBERS,
OR THEY COULf BE POINTERS TO OTHER MATRICES. IN THE LATTER MANNER
A(IJI(KvLl WOULD PICK FROM A(IJl THE POINTER TO SOME M'iTRIX FROM
WHICH THE (KtLITH ELEMENT WAS ACTUALLY DESIRED. THE POWER 14ERE
IS THAT THE ELEMENTS OF AN ARITHMETIC MATRIX OR VECTOR NOW MAY BE
OTHER ARITHMETIC QUANTITIES, LOGICAL QUANTITIES, SETS, OR CHARACTER
STRI NGS.

I-
2-3-1 VARIABLE NAMES

"<VARIABLE NAME>::=<LFTTER>
I<VARIABLE NAME><LETTER>
I<VARIARLE NAME><nIGIT>
I(<VARIABLE NAME>'..
I<VAIRARLE NAME>SI4

A VARIABLE NAME NAMES A STORAGE STR9CTtJRE AND THEREBY HAS
ALL OF THE ASSOCIATED PRnPERTIES OF THE STRUCTURE. IF THF STRUCTURE
HAS TYPE ARITHMETIC ITS FLEMENTS MAY BE POINTERS TO OTH[E STRUCTURES
HAVING OTHER TYPES. A VARIABLE NAME ALWAYS BEGINS WITH A IETTFR
WHICH 4AY RE FOLLOWEr, BY ANY NUMBER OF LETTEPS, DIGITS, UNbEkSCORES,

EXAMPL-: VARIABLE NAMES
A A* ALPHA36 THIS_ ISAVARIABLE-NAME ORJECTIVEFUNCTIC'4

I.

2(41

2-3-2 SUBSCRIPTS

SUBSCRIPTS ARE SUBSCRIPT LISTS ENCLOSED IN PARENTHESES*

<SUBSCRIPT LIST>::'<SUBSCRIPT ELEMENT>
I(SUBSCRIPT LIST>l',<SURSCRIPT ELEMENT>

<SUBSCRIPT ELEMENT>:':uI*IJ<EXPRESSION>

SUBSCRIPTS ARE USED TO ACCESS SUBSETS OF ELEMENTS OF ARITHMETIC
DATA STRUCTURESe THE NUMBER OF SUBSCRIPT ELEMENTS IN A SUBSCRIPT
LIST MUST BE EQUAL TO THE NUMBE GF UIMENSIONS OF THE DATA STRUCTURE.
THE * USED AS A SUBSCdIPT ELEMENT REFEAENCES AN ENTIRE RfW OR
COLUMN OF AN ARRAY. THUS At***) a A AND b(*I w B WHERE A AND B
ARE A MATRIX AND A VECTOR RESPECTIVELY. VALUES OF EXPRESSIONS
USED AS SUBSCRIPT ELEMENTS MUST HAVE EITHER ARITHMETIC OR SET
TYPE. IF THE EXPRESSION IS ARITHMETIC IT MUST BE EITHER A SCALAR
OR A VECTORe A SCALAR ACCESSES A SINGLE ELEMENT WHILE A VECTOR
ACCESSES A SET OF ELEMENTS. ANY FRACTIONAL PART OF A VECTOR OR
SCALAR ELEMENT VALUES IS DROPPED AND ANY VALUES OUTSIDE THE RANGE

T' OF THF SUBSCRIPT ELEMENT ARE IGNORED.

EXAMPLE VARIABLES
A(3*A÷3,C) At(IPJI B(II A'(1,*1 A(ROW._SETCOLSET)

AS MENTIONED IN (2-3) THE ELEMENTS OF AN ARITHMETIC DATA STRUCTURE
(VECTOR OR MATRIXI MAY ALSO POINT TO OTHER SUCH QUANTITIES. HENCE
IMATRIXLIST(K)(IvJI' ACCESSES THE (lIJTH ELEMENT IN THE MATRIX
INLICATED BY THE (KITH ELEMENT IN $MATRIXLIST'. THIS PROCESS MAY
BE CONTINUED TO ANY LEVEL, BUT WITH CARE.

2-4 PROCEDURE CALLS

<PROCEDURE CALL>:=:<VAPIA8LE NAME>
I<VARIABLE NAME>l('<EXPRESSION LIST>1''

<EXPRESSION LIST>::-<EXPRESSION>I<EXPRESSION LIST>v',(EXPRESSION>

A PRnCEOURF CALL CALLS A PROCEDURE FROM WITHIN AN EXPRESSION. IT
IS tSS'J4Er) THAT TRF CALLED PROCEDIJRE RETURNS A VALUE WHICH CAN
BF USEL. rO F.VLUATE THE EXPRESSmr1N IN THE CALLING PROCEDURE*

WHEN A PROCEDLRE IS DEFINED (43 ANY VALUES WHICH WILL BE PASSED FROM
THE CALLING PROCEnURE AT THE TIM5 OF THE CALL ARE REPRESENTED 3Y
VARIABLE NAMES IN THE VARIABLE NAME LIST FOLLOWING THE PROCEDURE
NAME I4 THE DEFINITION. THESF VARIABLEz, TAKF THE VALUES nF THE
FPRESIUKS IN TAF PROCEDURE CALL EXPRESSION LIST IN THE ORDER IN
WHICH THEY OCCUR*

THF VALUE OF A PROCEDURE IS DETERMINED IN AN ASSIGNMENT STATEMENT
WITHIN T4E 09OCEDURE IN WHICH' THF NAME OF THE PR)CEDURE APPEARS
ON TN! LEFT OF THE ASSIGNMENT SYMROL (3-2-21-

EXAMPLE PRQCEDURF CALLS
PIV0lT(A+A' ,BI1?,J4R-3I
SUB(sI

2(51

2-s COMFUTATIONAL E:XOPESSIONS

I; COMPUTATIOINAL. EXPRES1SICIN)::u''<EXPRESS ION>
I '-'<EXPRESSI0N>I~I ('NIT '<EXPRESSION>
I<EXPRESSION)'.'<EXPRESSIfJN>
I (EXtnRESSION>'-l<EX0R;SS ION)
I<EXPI4ESSION>' *f<EXPRESS ION>
(<EXPRESSII1N>'/l(cXPRESSIO4>
I <FXPRESS ION'>'*A*<EXPRESSION>
I <EXPRES.SION>' #'<EXPRESSION>

I<EXPRESSION>' ANn '<EXPRESSION>
l<FXDPFSSION>' C9 '<EXPRESSION>
I<EXPRESSIflN>' IN '<EXPRESSION>
I(EXPRESSION>l ANn NOT '<EXPRESSION>
I(EXPRESSION%>luvEKPRESSION)

l<EXPRFSSION>' >'CEXPRESSION>

'UPERATORS' 400IFY OR CONNECT 'flPERAND' EXPRESSIONS IN COMPUTATIONAL
E.XPKFSiINS. ALL COMPUTATIONAL EXPRESSIONS HAVE ONE OF TWO

GEEA FOIRMS:
UNAPY (<PERATOR>,<R-OlPERAND>
SINARY <L-OPFRANO><OPERATOR><R-'JPERAND>

2-5-1OPERATOR CLASSES AND ALLOWABLE CONFIGURATIONS

EAC OPERATr)R HAS A UNIQUE CONTEXT IN WHICH IT MAY BE USED* TAE
CONTEXT IS DETERMIN4ED BY THE TYPFS I3F TN.. ASSOCIATED OPERbNDS.I AS A RE.SULT ')PERATORS ARE CLASSED AS 'ARITHMETIC',p 'SET',
'ARITH4ETIC TEST', 'SET TEST', AND 'LOGICAL'*

K THE FQLL3WING TABLE DETERM[NES THE TYPES OF OPERANDS ALLOWABLE
WITH EACH CLASS OF- fPEPANns,

L-)P~ERVO4) OPERATOR R-OPERAND RESULT[TYPE C..ASS TYPE TYPDE

ARITHM~ETIC ARITHMETIC ARITHMETIC ARITHMETIC

SET SET SET SET

FARIT'4MFTIC AIPITHMETIC TEST ARITHMETIC LOGICAL

SrSET TEST SET LOGICAL

[L41ICAL LAGICAL LnGICAL. LOGICAL

?(61

2-5-2 OPERATOR DEFINITIONS AND PRECEDENCES j
T'4E OPEk..rnas WHICH FALL INTC YHESE CLASSES AND THEIR MEANINGS
(RE SHOWN IN THE FnlLL.GWiNG TABLE. SO THAT THE ORDER OF COMPUT6T!ON
(N ANY COMPLICATED EXPRFSSION WILL BE UNAMBIJGUOUS, EACH OPERATORi4AS A PRECEOENCE (INDICATED BY A PRECEDENCE NUMBERI AND OPERATIONS

witH T'IE HIGHFST PRECEDENCE (NUMBERI ARE PERFORMED FIRST*
OPERATORS WITH THE SAME PRECEDENCE NUMBER HAVE EQUAL PRECEDENCF
AND ARE PERFORMED FROM LEFT TO RI(HT,

I OPERATIR DEFINITION TABLE

I OPERATJR PRECEDEMCE USE INTERPRETATION

ARITHMETIC OPERATORS
t 70 BINARY VERTICAL CONCATENATION

65 UNARY Nn EFFECT
65 UNARY NEGATION
60 BINARY EXPONENTIATION
55 BINARY MULTIPLICATION

8/1 5C• BINARY rJIVl SIUNI +' 45 BINARY sum

I_ 1-w 45 BINARY DI FFERENCE

SET OPERATORS
t A0O t 40 BINARY SET INTERSECTION
t OR * 35 BINARY SET UNION
t A'4D NOT * 30 BINARY SET RELATIVE COMPLEMENT

ARITHMETIC TEST OPERATORS
25 BINARY IS EQUAL TO
25 BINARY IS NOT EOUAL TO
25 BINARY IS GREATER THAN OR EQUAL Tr
"25 BINARY IS LESS THAN OR EQUAL TO

9>1 25 BINARY IS STRICTLY GREATER THAN
tit 25 BINARY IS STRICTLY LESS THAN

St-T TEST OPFRATORS
* IJ t 2c BINARY IS CONTAINED IN (IS A SUBSET OFI

L17GICAL OPERATORS
'NOT ' UNARY LOGICAL NEGATION
* A 4f I k; BINARY LUGICAL INTERSECTION

s " BINARY LOGICAL UNION

2(7)

I 2-5-3 SEMfNTICS

.1 | EACH C)PUTATIONAL EXPRESSION HAS T4E FORM
<L-tJPERANDO<OP FRbTOR><R-OP ER AND>

THIS SFCTIUN DESCRIBES THE RESTRICTIONS PLACED UPON EACH
OPERAND AND SOME ADOITIONAL PRO.FRTIES OF THE RESULTS*

ARITHM4ET[C nPERATORS

THE CURRENT VERSION OF MPL RESTRICTS ARITHMETIC DATA STRUCTURES
rO TWO DIMENSIONS. THIS RESTRICTION ALLOWS CONSIDERABLE IMPLITOT
COMPUTING POWER WITHOUT BEING OVERLY RESTRICTIVE FOR MATHFMATICAL
PRnGRAIMING APPLICATIONS, THUS ALL AQITHMETIC DATA STRUCTURES
(EVEN THE rJNSTANT 15) CAN RE VISUALIZF.D AS MATRICES*

O)PERATOR PART CHARACTERISTICS

$#I L-€'PERANf) ANY ARITN4METIC QUANTITYo
R-flERAND AN ARITHMETIC QUANTITY WITH THE SAME NUMBER

OF COLUM'NS AS THE L-OPERANDo
RESULT THE VERTICAL CONCATENATION OF THE TWO nPERANDS.I• IT HAS THE SAME NUARER OF COLUMNS AS EACH

OPERAND AND THE NUMBER OF ROWS EQUAL TO THE
SUM OF THE NU4BERS OIF ROWS IN EACH OPERAND-

5 , L-OPERAND NONE.
R-OOFRANfl ANY ARITI-METIC 3UANTITY.

S1RESULT SAME AS R-OPERANO,

L-UPERANn NONEa
R-OPFRAND ANY ARITIMETIC QIUANTITY.
R FSOLT THE R-OPFRAND WITH ALL ELEMENT VALUE SIGNS

REVERSED.

S% -!70ERANf) ANY ARIT9METIC 4UANTITY WITH THE SAME NUMBER Of
ROWS ANO COLU4NS, THUS THE L-OPERANI) MAY
RE EITHEP A SQUARE 4ATRyI OR A *SCALAR$,

l-1-;JOERAND MUST BE A SCALAR (UNE ROW AND ONE COLUMN)
1 WITH A N(IN-NFGATIVE VALUE.

RE SILT THE L-OPERANn ''ILTIPLi,'0E $Y ITSELF THE N111nER
OF TINES SPECIFIED BY THF R-lPERANO.
IF THF L-(0FRAAN) HAS MUOR TFAN ONE ROU AND
CnLUNN ANV FRACTIONAL Pr'RTIOtl OF TME 0-OPFAAND
bIeL 9. OROPPF,% ()THERWISE V'Hf L-OPERANO IS A3 SCALAR ANtO ANY POSITIVE VALUtS FOR THE R-OPERAND

AkE AtLh~

I
F

2-5-3 SEMANTICS (CONT1441JED)

CPERAT'JR PART CHARACTERISTICSj

jL-OPERAN11 ANY ARITI-METIC JUA'4TITY.
R-OPE~RWN ANY AR!TIo-MFTIC 4UANTITY WITH THE SAMIE NUMBER OF

ROWS AS THE 1-OPERAND HAS COLUMNS EXCEPT 7144T
EITHFR OPERANO 4AY BE A SCALARe

OF ROWS AS THE L-OPERANO AND THE SAME NUMGE-R

OF COLUMNS AS THE R-oWERAND. ELEMENT VALUFS ARE
THF RESULT OF CONVENTIONAL MATRIX MULTIPLIrATIONe
IF FITHEP t1PFRAAJO IS A SCALAR T14F RESULT 94DS
THE SAME NUMPER OF ROWS AND COLUMNS AS THE OTHER

)P ERA Nn.

61 L-UFPERANI) ANY ARITI-METIC Q)UANTITY.
R-OPFRANn ANY SrALtR AR I T~fET IC QUANTITY.I tESJLT HAS ALL THE PRf0EIRTIES OF THE L-OPERAND

EXCEPT THAT ALL ELEMFNT VALUES HAVE BEEN
DIVIDOED 5Y THE R-rJPERANDs

L-UPERAND ANY ARITI-METIC ý)UANTITV*
R-OPFRAND ANY ARITIN4ETIC QUANTITY WITH THE SAME NUMPFR

OF ROwS AND COLUMNS AS THE L-OPERAND.
RESULT AN ARITHVETIC QUANTITY WITH THE PROPERTIES

OlF THE L-QPFRANDe ALL DOINTERS ARE SET TO ZER(le

SAME AS 9+14BINARY1

SETOPRTS

JPFRAT,)k PART CHtK~kCTER;STIrS

ANr) 'L-OPERAND ANY SET
R-l)PFRAN ANY SFTo
RýSILT A 5ET CnNTAINING ONLY THOlSE ELEMENTS WHICH

APPFARFD) IN BOTH THE L-OPERANn AND THE R-nFl'RAND.

* L-tAANO ANY SFT,
~-~ANO ANY SFT,
-4 S'.) T A SET CONTATNTN4ý ALL FLE*AENTS WHICIK APPEARED

IN ITE'THE L-OPERANO, THE R-OPERAN!a -; AO TH,

4 ~ IT *
L ý" 0 ýAN 1 A~NY SET,
ArFocAN!) ANY SET*

LT A SET CrINTAININle ALL ELEMENTS WHC.4 APPEARVO
IN4 THE L-OlPvRANI) BUf NOT 14 THE R-OPER40o.

ARITHMETIC TEST rOPERATf1RS

ARIT11METIC TEST *)PERATnRS I'MPOSE THR.EE DIFFERFNT REQUIREMENTS
(IN THEIR TWO OPERANTS. TO SATISFY THESE REQUIREMENTS BOTH OPEPANDS
ARF TREATED AS MATRICES. THESE REMUIREMENTS ARF:

11 THF TW: n UPERNANYS HAVE THE SA4E NUMBER 'F RCOWS.
2) T,4F TW, PFFRAND.S HAVE THE SAME NUMBER OF COLUMNS.•i! If 3) THE SPECIFIED FELATIn3NSMIP HIMLS WITHIN EACH PAIR OF

CO1RRESPONDING; (L-OPERANDtR-CPERAND) ELFMENTS.

II
O'{PEKATIJR PART CHARACTERISTICS 1

OL-OGERANI ANY ARLIP'ETIC TUANTNTYY

RESL A 4IA UANTITY WHICH IS FALSE ONLY IF
REQUIRFMENTS lit 21t AND 31 ARE SATISFIED

WITH THE EQUALITY RELATIONSHIP.

L-O1PERAND ANY ARITI-METIC IUANTITY*
R-fUPERANI ANY ARITf-METIC 1UANTITY,
iIFSULT A LtOGICAL QUANTITV WHICH IS FALSE ONLY IF

REQUIRFMENTS lit 2), AND 31 ARE SATISFIED
USING THF EQUALITY RELATIONSOLPE

11>=1 L-PERAND ANY ARITRIMETIC OUANTITYF
|.R-OPERANT) ANY ARITt-METIC 4UANTITY,

qESJLT A LOGIr'AL QUANTITY WHICH TS TRUE ONLY IF

rREQUIREMENTS lit 21' AND 1 ARE SATISFIED
A' AEUSING THF ,REATER THAN IR ESIFAL RFLATIONSHIPo

3AN ERRSSR CONDITII Fixisrs IF EITHER OFI" REGOUIRFAENTS, 11 AN{O 21 IS NOT SATISFIED*

0<21 SAME AS '>-' EXCEPT THAT THE RELATIONSHIP FOR RFQUIREMFNT31 IS LESS THAN OR EQUAL.,
i. t>y SAM-E AS I>=' EXCEPT THAT T"HE 9ELATIn1NSHIP FOR REQUIIREMENT

31 IS STRICTLY GREATER THAN.

4<8 SAME AS)a, EXCEPT THAT THE RELATIONSHIP FOR REQUIRFMFNT

31 IS STRICTLY LESS THAN,I"

"• ~2(10)

2-5-3 SEMANTICS (CONTIKUED)

SET TEST OPERATORS

OPERATO]R PART CHtRACTERIST"CS

IN ' L-OPERAND ANY SFT,
R-OPFRANn ANY SFTe

'l RESULT A LOGICAL QUANTITY WHICH IS TRUE ONLY IF ALL
ELEMENTS OF THE L-OPERAND ARE ALSO ELEMENTS OF
THE R-OPERAND,

LOGICAL OPERATURS

OPERATOR PART CHARACTERISTICS

#NOT ' L-OPERAND) NONE*
R-OPERANU) ANY LOGICAL QUANTITY.
RESULT A LOGICAL IUANTITY WHICH IS FALSE IF TNE

"- R-flPERAND IS TRUE AND IS TRUE IV THE R-OPEPAND
IS FALSE* -

S *N L-OPERAND ANY OGICAL QUANTITY*
R-OlPERAND PN34)GICAL QUANTITY.
RESULT A LOGIrAL QUANTITY WHICH IS TRUE ONLY IF BOTH

THF L-OIP:RAND AND THE R-nPERAND VALUES ARE TRUE.

R 0, , L-r•PFRANO) ANY LO.GiCAL QUANTITY*
R-OPERANO ANY LOGICAL QUANTITY*
RESULT A LOGICAL QUANTITY WHICH IS FALSE CINLY IF

BOTH THE L-OPERAND AND THE R-OPERARD VALUES ARE
"FALSE.

I
I
I
I
I
I

2f 1.11

S2-e THER EXPRESSIONS

MPL CONTAINS CONSTRUCTIONS WHICH ARE NOT PROPERLY CLASSED AS

COMPUTATIONAL EXPRESSIONS, BUT WHICH ARE USED TO COMBINE VARIAFRLES,
CONSTANTS, 014 MORE COMPLICATED EXPRESSIONS INTO LARGER EXPRESSIONS.

2 -S-1 DOMAIN ITEMS

(DOMAIN ITFM>::('(EXPRESSION>St,,.,O<EXPRESSION>* I'

DOMAIN ITEMS HAVE VALUES WHICH ARE SETS. THE SETS ARC SPECIFIED
BY SPECIFYING THE LOWEST AND HIGHFST VALUED ELEMENTS AND ASSUMING
THAT ALL INTERMEDIATE VALUED ELEMFNTS ARE IN 1HE SET. BOTH

II EXPRESSIONS SHOULD HAVE SCALAR ARIT4METIC VALUFS AND ONLY THE
WHOLE :,0UM8ER PARTS OlF THESE WILL BE USED. THE VALUE OF THE
FIRST EXPRESSION SHOULD BE LFSS THAN THE SECOND. IF THE EXPRESSION
VALUES ARE EQJUAL THE SET WILL CONTAIN ONE ELEMENT. IF THE FIR-T
EXPRESSION tee GREATER THAN T14E SECnND THE SET WILL OF EMPTY.

EXAMnPLE DCMAIN ITEMSrt I÷+I-K,... ,L-I
S(~HEREt oosiTHEPEI

2-6-2 CONCATENATOR

<CONCArENATOR>::=l(6<EXPRESSION LIST>')'

A CUNCATENATOR HAS AN ARITHMFTIC VALUE. IT ALl.OWS THE CnNSTRUýTICN
OF ARITHMETIC DATA STRUCTURES BY THE EXPLICIT IORIZONTAL CONCATENATION
(ADJACENT PLACEMENT) OF SEVERAL FMA!i.'R STRUCTURES WITH fmC SAuC
NUMBER OF ROWS. THE INDICES OIF THE RESULTING STRUCTURE BEGIN
AT nNE, VERTICAL CONCATFNATION IS ACCOMPLISHED USING THE
(JPERATIR If'*

V {" EXAMPLE CONCATENATORS

f3*I(,.5*K,•*)+3,I4J,I3,v.9

I!
2(12)

2-6-3
ARRAY CONSTRUCTOR

<ARRAY CONSTRtJCTOR>::=@(@<FXPRESSION>I *<FOR PHRASE>')'

AN ARRAY CONSTRUCTOR HAS AN ARITHMETIC VALUE. IT ALLOWS THE
CONSTRUCTION OF ARITHMETIC DATA STRUCTURES BY THE IMPLICIT HORIZONTAL
CONCATENATION OF SEVERAL EXPRESSION VALUES* THUS ALL FXPRESSIOJNS

f iBEING SONCATENATED MUST HAVE THE SAME NL, BER OF ROWS* THE
FOR-PHRASE (3-2-5-21 GOVERNS THE ITERATIVE PRrCESS WHICH PROVIf)ES
VALUES TI BE CONCATENATEO,

EXAMPLE ARRAY CONSTRUCTORS
(A(*tI)+B FOR I IN SI
(t6I1I FOR I IN (19004,N)l

I (C(J) FOR J IN sIF(J) >-D)

2-6-4 SUBSET SPECIFIER

I <sUBSET SPFCIFIER>::=f('<VARIABLE NAME>' IN '<EXPRESSION)
1 '<EXPRESSION>I't

I SURSET SPECIFIERS PRODUCE SETS* THEY F(iF'1 SETS FROM LARGER
SETS 4Y SELECTING ELEMENTS WITH A GIVEN PROPERTY* THE VARIABLF
NA'4E REPRESFNTS ELEMENTS SELECTED FROM THE $PARENT$ SET SO THAT

f" THEY '4AY BE TESTED FOR THE PROPERTY. THE FIRST EXPRESSION
r OETERMINES THF PARENT SET AND MUST BE 'JET VALUED* THE SECOND

EXPRESSION TESTS THE PROPERTY AND MUST BE LOGICAL VALUEo. ONLY
THOSE ELEMFNTS IN THE PARENT SET FOR WHICH THE LOGICAL EXPRESSION
IS TRUE ARE INCLUDED IN THE NEW SFT,

FXAMPLE SUBSET SPECIFIFRS
(J IN SIA(J,KI<=R)
(J IN S I J>=D AND J-,z Y)

I 3(l

3 PROGRAM CONSTRUCTION

<PROGRAM>::='PRflCF.lURE '<PROCEDURE IDENTIFIER>
<STATEMENT SFQUENCE>'FINIl';'

I<PRnGRAM>oPROCEDURE '<PROCEUIJRE IDENTIFIER>
<STATEMENT SEOUENCE>lFINIOO;O

<PROCEOURF IL)ENTI1:IFR>:.=<VARIABLE NAME>
I<VARIABLE NAME>#(I<VARIABLE NAME LIST>9)d

<VARIAdLE NAM'E LIST>::-<VARIA9LE NAME>
I<VARIABLE NAME LIST>O,'<VARIABLE NAME>

A PROG•AA IN MPL IS A COMPLETE STATEMENT OF AN ALGORITHM AND
IS •4ADE UP OF ONE OR MORE PROCEDURE DEFINITIONS* IT IS ASSUMED
THAT THE OROGRAM BEGINS WITH THE FIRST PROCEDURE SO DEFINED*

IN THE CURRENT VERSION OF THE LANGUAGE PROCEDURE DEFINITIONS
MAY NIT BE NESTED (APPEAR WITHIN OTHER PROCEDURE nEFINITIONS)
AI.THOU!;H PROCEDURE CALLS MAY BE NE:,TEO TO ANY DEPTH (PROCEDURF A

CALLS PROCFOURE B WHICH CALLS PROCEOURE C, ETClo.

PROCEOJRE rEFINITIINS OEGIN WITH THE KEYWORD 4PROCEDURE° AND
END WITH THE KEYWORn 'FINI'. NOTE THAT PROCEDURE DEFINITIONS
HAVE THE SAME GENERAL FORM AS A COMPLEX KEYWORD STATEMF4 T (3-2-5).

[THE PRLOCEDURE IDENTIFIER PROVIDES NAMES FOR THE PROCEDURE AS WPLL

AS FOR THE INFORMATION WHICH WILL BE PASSED TO THE PRnCEDURE RY
A CALLING PROGRAM. WHEN THE PROCED'jRE IS CALLED THE PARAMETER

r EXPRESSIONS (SEE PROCEDURE CALLS (2-4)) ARE EVALUATED AND THESE

VALUES IRE USED IN THE CALLED PROCEOURE WHEREVER THEIR REPRESFNTATtVE
NAMES JCCUR9

£ EXAMPLE PROGRAM COMPOSED OF TWO PROLEE.URES

PROCEDURE PROG

SURi(JKI ;

S~~FINIS.li

PRUCrDURE SUB(EtF

RETURN;

F UNIS;

I
3-1 STATEMENT SEQUENCES

I <STATE4ENT SEQIJENCE>::-<STATEMENT>I<STATEMENT SEOUENCE><STATEMFNT>

A STar.24ENT SEQUENF IS A SEQUENCE OF ONE OR 4ORE S T ATEMENTS*
I THIsC INCFPT IS USEFUL FOR DEFINING PROGRAMS (3) AND COMPLEX

KEYWOni) 1TATEM4ENTS I3-E-•).

r

L

13-2 STATEMENTS

<STATE4ENT>::.(LAt3EL.': '<STATE'iENT).
I<ASSIGNMENT STATFPIENT>
I<PRCCED'JRE CALL STATEMENTý>
I<KEYWORO STATEMENT>

Ii ~STATEMENTS IN M1PL DETERMINE THE SFtQUENCE OF OPERATIONS WHICH

MAK(ES A PROGRAM MEANIN(GFUL.,

I3-2-1 LABELS

<LA6EL>::=(VARIABLE NAMF>jl(l<OIG!T STRING>')'

LA6ELS ARE EITHER VARIABLE NAMES OR STRINGS OF DIGITS ENCLOSED
IN PARENTHFSES9 SINCF MPL IS WRITTEN IN A FREE FORMAT# A LABEL
MUST 4E S2EPARATED FROM THE FOLLOWINI STATFMENT BY A COLON @:#a
LAorFLS MAY ONLY BE REFEREN~CEC RY 'GI TO' STATEMFNTS (3-2-4-21.

F-XAMFLE LA"c'ELED STATEMENTSI LABEL: VAR:=EXP;
LOICATI)N-B: VAR2:=EXP?;
113): VAR3:=EX(P3;

I 3-2-2 ASSIGNM4ENT STArEO'ENTS

<ASSIGIMENT STATEMFNT>::=<VARIABLE>I :s'<EI(PRESSION>';I
I<V~i0ABLE>l:=l(EXPPESSIll'o1 '<FOR PHRASE>';$

1 t(<VARIABLE>l:=v(FXPRFSSION>' $'IF '(EXPRESSION>';'
3, l(VARIABLE->l:=l<FYPI4ES5ION>f WHERE '<symBnL SUBSTITUTcR>';l

ASSIG-'4ENT STATEMENTS ALTER THE VALUES OF VARIABLES* THE VARII"RLE
(IN THE LEFT OIF 'iHE ASSIGNMENT SYmROL TAKES THF VALUE OF THE
EXPýS.SION ON T1HE RIGHT, THIS EXPRFSSION MUST HAVE THF SAME TYPrF
AS THE VAPIARLE.

EXV4PL- ASSIGNMENT STATEMENTS
k :R

(CC);
YES-0kN,N3:aMATR IX-.uTNVERSE(Al
SET1:xSET2 AND SET3 OR SET4;

3(3)

3-2-2 ASSIGNMENT STATFMENIS (CONTINUED)

THE ASSIGNMENT STATEMENT HAS SEVERAL MODIFIED FORMS WHICH ARE
PRJVIDED TO MAKE MPL A MORE 'NATURAL' LANGUAGE*

THE ITERATED ASSIGNMENT STATEMENT

THE ITERATE) ,-4.ICN4MENT STATEMENT PROVIDES A METHOD FOR ITERATIVELY
PERFORMING AN ASSIGNMENT, THIS FORM IS EQUIVALENT TO THE SHORT
FORM ITERATED) STATEMENT (3-2-5-2), FOR PHRASES ARE ALSO DISCUSSED
IN 13-Z-5-21,

EXAMPLE ITFRATED ASSIGNMENT STATEMENTSiAPROWvJl:-AIPROWtJIIA(PROwfPCOLI FOR J IN COLDOM(A)*;
A(I,*I:zA(I,*)-A(IPCOLI*A(P_ROWt*I F(.R I IN ROWDOM(All

I ".SPROW ;

CCNDITIONFD ASSIGNMENT STATEMENT

r THE CONDITIONED ASSIGNMENT STATEMENT ALLOWS THE SPECIFICATION (IF
A CONDITION UNDER WHICH AN ASSIGNMENT WILL OCCUR, THIS FORM Iz
FOUIVALENT TO THE SHORT FflRM OF THE CONDITIONED STATEMENT (3-2-5-11)

EL;AMPLE CONDITIONED ASSIGNMENT STATEMENTS

:=B-AI J IF x,. -_i;SB(I):-R(I) IF R(I)>-O;

I" THE ASSIGNMENT STATEMENT WITH SYMriOL SUBSTITUTION

THE ASSIGNMENT STATEME:T WITH SYMBOL SUBSTITUTION ALLOWS THE
USER TO3 REDUCE THE APPARENT COMPLEXITY OF EXPRESSIONS BY USING
A SINGLE SYMBOL TO REPRESENT A LARGE AND COMPLEX SfRING OF
CHARACTERS AS DEFINED BY THE SYMBOL SUBSTITUTOR FnLLOWING
THE 'W4ERE' (SEE (3-2-4-11 FfOR A OEFINITION OF SYMBOL SURSTITUTORSI)
UNLY A SINGLE SUBSTITUTION It ALLOWEI SINCE THE 1;9 STATEMENT
TERMINATOR ALSO TERMINATES TPE STRING TO RE SUBSTITUTFD. THIS
FOR4 IS SIMILAR Tn USING A 'LET' STATEMENT EXCEPT THAT THE
f(SyM4AfLvCHARt.TEIR STRING) FQUIVALENCE ONLY HOLDS WITHIN THE
hS;Ir,44ENT iTATEMFNT DFFINING IT.

EXAMPLý. ASSIGN4ENT STATEMENTS WiTH SYM480L SUBSTITUTION
R:eP*Q WHERE P:wINVFRSE((AqBl#(C#O));

IMPLICIT DEFINE STATEMENT

ir A VARIABLE ?'&T APPEARS AS LEFT MDIER OF AN ASSIGNMENT STATEKENT WITHOUT ITS
TYPE STRUUCTURE AND STORAGE REQUIREKENTS HAVING BIMtN PREVIOUSLY DECLARED BY A DEFINE
STATEMENT (3-2-4-4) THESE REQUIREIENTS ARE DETERMIN4ED BY THE EXPRESSION THAT APPEARS
AS RIGHT MEMBER. THE IMPLICIT DEFINE COMCEPT IS UNDER DEVELOPMENT AnD WILL NOT BE
DISCUSSED FURTHER.

I.

[a

S3(41
3-2-3 PROCEDURE CALL STATEMENT

I <PROCEDURE CALL STATEMENT>::=<PROCEOURE CALL>';'

A PRflC.DURE CALL STATEMENT CALLS A PROCEDlURE WHICH DOES NOT RETURNI A VALUE (VS. THE PROCEDURE CALL WHICH CALLS A PROCEDURE FROM WITHIN
AN EXPRESSION1. SINCE THF PROCEDURE CALL STATEMENT APPEARS
ALONE (NOT IN AN EXPRESSIONPt ANY VALUE RETURNED BY THE PROCEDJRE
IS LOST.

EXAMPLE PROCEDURE CALL STATEMENTE
PIVOT(At PROWPCCL);
PROC1(AtBtCDI;
PROC2(I÷J-3*KtJ-2,WPHeATNOwt(AtCI I;

I 3-2-4 KEYWORD STATEMENTS

(KEYWO•(D STATEMENT>::=<LET STATEMENT>
,<Gfn TO STATEMENT)
I<RETURN STATEMENT>
I(T)EFINE STATFMFNT>
I<REI.FASE STATEMENT>
J<CONDITIONED STATEMENT>
I <ITEkATEr) STA TElOF14T>
l<BLOCK STATEMENT>

X EACH KEYWORD STATEmENT BEGINS WITH AN MPL KEYWORD. THESE
STATEMENTS ARE DIVIDED INTO SI1PLE ANC COMPLEX STATEMENTS. CO4PLEX
STATEMENTS HAVE SPECIAL BEGINNING AND ENDING SYMBOLS AND CONTAIN
GTHER STATEMENTS WITHIN' THF4. THIS SECTION DISCUSSES ONLY THE
SIMPLE KEYWORD STATEMENTSe

i•-2-4-1 LET STATEMENT

(LET SrTTE•4ENT>::=,LET '<SYMPtIL SURSTITUTER>';'
"I'SAME LOCATION '('9<VARIA3L' NAME>0,'<VARIABLE NAME> I'9*;'

<SY48,'EL 5.S•TITUTER>::-<VARIABLE NAME>':-'<CHARACTER STRINGp
I<VARWILE NAME>('(<VARIABLE NAME LIST>0I)':*f(CHARACTER STRING>

LET Sr.ATEAATS DIFFER FROM OTHER MPL STATFMENTS BY MODIFYING
THF P. JGRA AT TRANSLATION TIME INSTEAD)F EXECUTIOA TIME. THrY
CAN MA'E A DROGRAM EASIER Tn WRITE ANDIOR mnkE READARLF BY
ALLOWING THF PAO&GRAmMEP TO RFPRESENT CHARACTER STRINGS BY SYMBILS,

THE rw) PARTS OF A SYMPOL SURSTITUTTER ARE THF CHARACTER STRING t1-31 TO TIeFPIGtr4T If THE ASSIGNMENT SYMBOL AND THE IflENTIFIFR TO THE LEFT.THE I)ENTIFIEaR PROVIDES A NAME FOR THE CHARACTER STRING AND.
OPTIOINALLY, NAMES FOR PARA"FTFRSO IF THE STRINK NAME IS DEFINFE
WI004 1 1tJr ýARAMFTFQS EVERY OCCURREfPCE 1F THE NAME IN THE 'OLLOWING
TEXT WILL AE RE0 LACE• PY T14E CHARACTER STRING. THF PARAMETERS

3-2-4-1 LET STATEN'ENT (CONTINUED#

ALLOW 400IFICATION OF THE CHARACTER STRING AT THE TIME OF REPLACEMFNTE l W,4EN ICC'JRPEC'CtS OF THF PARAMETER NAMES IN THE CHARACTER
STRING ARE REPLACED WITH THE CHARACTER STRINGS PRnViOFn AS
PARAMETERS WITH THE STPING NAME* IF CriMMAS MUST APPEAR WITHIN
THESE :)ARAti:TFR CHARACTER STRINGS, Two MUST BE USED FOR EVERY
INTENDEU SINGLE flCCURRENCE., THUS (Atil AS A PARAMETER CHARACTFR
STRINY IN A LET STATEMENT MUST BE WRITTEN (A,,BI. WHICH IS TO AVOID
HAVING THE COMMA TREATED AS t PARAMETER SEPARATORe THE SEMICOLONL TFRMA4•TES THF CHAqACTFR STRING AND S,1 MAY NOT OCCUR WITHIN IT.

AS A 4ATHER EXTREME EXAMPLF, THE STATEMENT
FLET A(Ctll := BfU)*C(J);

3FOLLOWED BY
n•(Kl:"A(R÷FtN);

YIELnS
D(Kl :zB(N)*R+F(J);

WHILE THE STATFMENT
LET LOflP(VARSrARTINCSrOPI:=FOR VAR:=START STEP INC UNTIL

STOP ¶)1 ;I FCI-LOWzD BY
LO L0P(|It3*4+K15tNlI A(I):=8(I);ENDFOR:

[FOR I:=3*J.K STEP 115 UNTIL N 0O A(I):s=(II;ENflFOR;

CERTAINLY THESE ARE RATHER OBSCURE USES IN A MATHEMATICAL[PROGRA4MING LANGUAGE, BUT THFY ARE INCLUDED Tol GIVE THE READER
IN IDEA OF THE PUWER WHICH IS INHERENT IN THIS CfONCEPT*

IN a *tJRE CONVENTIONAL USAGE THE STATE'4ENT
LET RITl:=A(T9*l*X;

FOLLOWED BY
. IF 9111>O GO TO (51;

YIELDS IF A(I,*1*X>", GO TO (45;

V THE FOVA4 USING THE KEYWORD $SAME LOCATION 0 INDICATES AN EOUIVALENCE
$FTWFE',4 TNE Twf2 SYMNOLS WITHIN THE PARENTHESFSe
A SHORT FORM OF LET STATEMENT USING INVERTED WORD ORDER WITH 'WHERE' INSTEAD OF
'LET', IS DISCUSSED UNDER (3-2-2).

3-?-4-? GO Tr STATEMENT

J <G-1 TU STArEMENT>::u'G0 TO *<LABEL>$;*

GO Ir(STATFMENTS ALTE4 THF NrP'AL SE4UENTIAL FLOW Of: PROGRAM
a ExECUTION tY r'oA•SFERUING CJNTR1L T) Tv.E PnI'qT IN THE PROGRAPI

INqICATE') RY VHF LAPFL -?-I1

FXA40L- G,) Tol STATEMFNTS
lGr Tr L(OCI;
t;U Tn 1231;

Ii

3-2-4-3 RrTURWN STATF4ENT

<'RFTURI STATEMENT>o:4:z'IETURW4f1;'

THF RETURN STATEMENT kýTURNs cnNTRrJL FRUM A CALLED) PROCEDURE
TO IT" CALLING PROCEDURE4

FXA IPLE USE -IF THF RETURN STATEMENT IN A PR(JCr.OURE
PROCEDURE FQI~eL(A93)
IF DO0M(A)-,=0CMfM! THEN

EQUAL: =FAL SF;I~ RTuJRN;
ENOIF;
FnR I IN DOUM(A I

IF A(Il-.,=BllI THEN

EQUAL: =FALSE;
RETU'R N:

ENfl IF ;
E.)'JAL :-TRIJE;
R~ETURN;

3-2-4-4 DEF INE STATEIENT

<OEF~I,4= STATEMENT)>::z9DkFIN9- $<VARIABLE NAME LIST><TYPE PHRASE),
(SHAPE PHRASE>(SIZE PHRASE>

<TYPE OHRASE>::=# ARITHKETIC111 LOGICAL1I' SET1I' CHARACTER*
I<NIJLL PHRASE>

<S4APE PHRAS'7>::=' RECTANGUILAP'I' DIAGONAL'I' UPPER TRIANGULAR'
10 LOWER TkH!ANGULIR'I' RQW'I0 CrOLUMN't' SPARSE WITHI

<EXPRESSION>,' N.ON7E.RO.SlkNlJLL PHRASE>

<S17F DHRASE>::w<EXPkI:SSION>' IRY *<EXPR4ESSION),
I(FXPRESSIO)N)I<NULL PHRASE>

AF04 A VAR&IAPLE 04AME MAY BE USEr) IN A PROGRAM THE TYPE,
STRJCTJRE9 AND STOlRAGE PEO(IIPEMFNTS OF THE VALUES WHICH IT

~t~TS4!)ST t4E DECLARE% THE ONLY EXCEPTIONS AkE THE VARI'tBLES
(USC') 14I !TFRATEr SrATE"FNTS (3-2-5-21 AND ARRAY CONSTRUCTORS (7-6-319
ANfl SE~T tLE4ENT REPPESEN4URS OSEP IN4 SUBSET SPFCIFIERS (2-6-41.
SEE I?QLICIT DEFINE ASSIGN!4NE STATEHME UNDER 3-2-2.
VAR IAdLE NA44F LISTS APF r)EPsiJED UNDER PRnGRAMS 13).

*~TYk)E PH.IA5r 'PrTERMINES mI'ETHER rHf. VALUE OF THr VARIABLE IS
Toi A. rREATEI AS AN ARITHMETIC, LOGCICAL* SET* no CHARACTEIP
#)UAN41jtY. If TýIIS PHRASC IS OMITTEa T4E VALUE IS ASSUMED TO BE

TH-' S-4ýIPE 9D.4;ASE NAY ONLY BE USED WHEN DEFIN~ING ARITHMFTIC
0GAN4TITtCS ANfl fETF9MIAIES T4E STRUCTURIE ni Pt50Cf Re-OUPEfl PFOR
stInRINis rMC IATA AS wELL AS ITS 0RGANIMATIINe or- Tlif S64APE

1--4 Is lF FINIF S TAT ['¶[NT(it1NE)I
PHR~ASE IS Ql"ITTED THE DEFalJLT ASSUMPTIONS ARE:

Ii DFIs 'F4I ON OEFAULT !SHAPE
2 RFC TANGUL AR

I COLUMN

* THE MU)IFIL14S 'RECTANGULAR', 'D)IAGONAL', OUDPER TRIANGULAR', AN')
@ Llmi4o TRIAIý;ULAR' ARE UNIV hFANINGFUL WHEN flEF1ININ. TWO DINEN5!ONAI.
OUANTIT~IS (4ATRICES) WHILF THE mnoIFIEkS 'ROW' AND 'COLUMN'I ARE MFANINGFI-IL "INLY WHEN DFFISIING ONE DIMENSIONAL QUANTITIES
IVECTIOtSI. THE MODIFIr-9 IS-ARSE# CAN ;ONSFRVE STORAGE WHEN
THERE IS 4 PREDOMINANCE OF ZFRO ELE-4ENT?:, IN THE APQAYe THEI EXORFS51)N I'1 THE SPARSF M90iIFIER M4UST BE A SCALAR VALUED
ARITH4ETIC EXPRtESSION IN THAT IT INDICATFS THE NUMBER OF ELEME~4TS
(IF THE SP~ARSE ARRAY WHICH ARE ACTUALLY TO BE KFPT.

I THF'SIZ PHRASE SPECIFIES Tiif NUMBER OF DIMFNSIUNS OF THE VAP1f'iLE
AS wELL AS THE RANGES OiF THE INOICES ON EACH OF THESE OIMFNS~fliS*
THE EXPRESSIO'NS IN THiF SILE PHRASE ~4UST BE EITHER DOMAIN ITEMSI (2-6-11 OR SCALARARITHA4ETIC EXPPPSSIONS. 004AIN ITEmS GIVE
AOTH THE 'iPPER AND LOWER BOUND ON THE RANGE OF THE SUBSCRIPT WHILE
SCALAR ARIT44ETIC EXPR~ESSIONS IETER41NE ONLY THIE UPPER ROUND
OIN THE SUBSCRIPT RANGE AtdO A LJWEQ ROUND OF ONE IS ASSUMED*[THE TYDE 0HRASEs SHAPE PHRASF, AYJ SIZE PHRASE MA.Y APPEAR IN
ANY ORC)ER 14N A DEFINE STATE'FNT*

IEXAMPLF O3EFINF STATEMENTS
OFFINE JK ARITHMFTIC;
DEE INr- SET 1,StT29SET3 SET:.
DEFINE STRINGI CHARACTER;
DFFINE A (19**99M) PY floooeNI:
DEFINE A 4 BY N;
OEFINE C '4 Row;,
OFFINF SIPARSE_.A P RY N SPARSE WI.TH I*N NVNLEROSO

II-4: RELFASE STATEOFNT

<k(lr;- ýTATF*A&NT>:2a$RFLFASF *<VA-tI-AI4E NAME LIST),60

r THF -ZELPASC S'AIE'4ENT EXPLICITLY RFLEASFS THE f.TflRAGE ALLOCATEP
14Y LiR AFTEk TH't Ct1~dfSPlhOI'G DEE INF STATEMENT(A-7-4-41, IT
IS 14P1PUIEo TO RELEASE I V&RIARLF WH'ICH4 WAS DEFINEID OUTSIPE
OF V4E CoJRIENT bLni.K 4.3-2-I-1If RELEASE STATEMENTS REFERENCE1'4GV VA41AALF NAAFS WHICH I4AVC NIT SEEN OEFINED OR HAVF ALRfADY BE(V
QWVAS-;P. AN; h..NwaEr'. THE RrLFASF STATFAIENT ALSO IM4PLICITLY
RekLtA'z-, LtL $trlAro wmICm wAS OF914E0 AFTER ANY VORIABLE IN
THE N04r4 LIST (5FF 11-2-5-31 FOR ANI EXAMPLF).

EXA4OLt~ RELFASi STATEMENTS
RELEASE A:

RELF ISE 4,8,Cng,l-R.t?

-__,f

3(81

L 1-2-5COMPLEX KFYWnRO STATFMEMTS

THE FOLL)WING SFCTIIOl [I[SCUSSES COMPLEX KEYWORD STATEMENTSs
THFSF STATEMENTS ALL HAVF T1HE FORM

<INTPODUCTION><STATEMENT SFJUENCE><TERMINAT!ON>

3-2-.'-i CuNOITiONEO STATEMENT

<CONDITIONED STATEMENT>*::"1F I<EXPRESSIONTStA<STATEMENT>

<Ci8I'IF *<EXPRESSON>T THEN OTATEENT EEN T>CE),
<OR IF SE!JUENCE><nTHERWISE PHRASE>WENDIF'';'

<OR IF StJUENCE>::;<NULL PHRASE>
[<OR IF SEJUENCF>WOR IF *<EXPIKESSInm>' 'CHEN
<STATEMENT SEQUENCE>

<OTHERWISE PH4ASE'>::u'OTHFRuiS•. I<STATEMENT SEQUENCE>I<NULL PHRASE>

A CONOITIoNEr) STATEMENT ALLfJWS THE JSER TO SELECT CONDITIONS
iWNtER 4HICH STATEMENTISI WILL BE EXECUTED. THF SHORT FORM It

USED JNJLY WHEN A CONDITION ;rVvERNS THE EXECUTION OF A
SINGLE STATEMENT. THE LONG FOR'4 ALLuJWS THE TESTING OF SEVERAL.
"MUTUALLY EXCLUSIVE CONflnITINS. WHEN A CONDITION IS SAVISFIED THE

-, STATEM4ENTS FOLLOiWING THE TEST ARE EXECUTED AND CONTROL PASSES
TO THE END (OF THE STATEMENT. THE EXPR4ESSIONS FIOLLOWING THE
KEYWOR) $IF' AND THE KFYW('RD 'OR IF' ARE LOGICAL VALUEDa
SP6:CIFICALLV THE L% vICAL EXPRESSIt3. FOLLOWING THE 'IFo IS
EVALUATED AND IF TRUE THE F11I.[WING STATEMENT SEQUENCE IS EXECITED
ANI) '304TROL THEN PASSES TO THE °ENrlIF14 IF THE EXPRFSSION IS
FALSE THE EXPRESSION IN THE NEXT FOLLOJWING $OR iY' Is fVALUATED
I1TH THE SAME ACTIONS. IF AN 'OTHERWISE' IS FNCntUNTEFkI! ALL

STATEMENTS I444EtIATELY FOLLOWING THE $OTHERWISE$ ARE EXECUTED.

EXA4PLE CONOITIONED STATEMENTS
19 I-%=0 , GO TO Nn4_ZERO;
IF Af*9J!-R, A(*#JI:-A(**KI;
IF A•R THFN

GO TO AEOUAL..9
Ow !€ AwC TMENý;rj Tn A_NF.b_0tlT.EQ_C,*

flW IF J-*K AND N)P41P THEN

n1THElRWISE

r1 TO N0)_G0O0la
ENO IFI

3EE ALSO CONDITIONED ASSIGRD STATIM UNDER (0-2-2) WlM A SHORT-IF '1lP21 1i
INVERTED ORDER IS DISCUSSED.

3191

I2 ~ -2-5 ITERATED STATEMENT

<ITERATED) STATEMENT>::m<FL1P PHRASF>','(STATEMENT>
I<OR PHRASE>@ DOr #<STATFMEt4T SFQUENCE>'EN)FtOR'';l

<(F;R P-HRASE>::=lFOR *<VARIARLtE NAME>' IN '<EXPRESSION>
I'FOR '<VARIABLE NAME'>$ 14 '(EXPRESSION>l''<eXPRESSION>
JIFOR '(VARIABLE NiAmE>l:=l<EXPRlESSION>' STEP'
<EwfRESSION>' UNTIL '<EXPRESSION>

THE FOR~ PHfQ4SE GOVERNS THE INDEXING OF AN ITERATION, ONE nFl THE
Twn rijR~i IN0ICATES AN INDEXING OVER ELEMENTS OF A SET, NAMFS THE
INDEX* SPtClfýIES THE SET, tND ALLOWS ELEMENTS OF THE SET Tfl ME
SL FCT IVELV M SCARDEDt ON EACH CYCLE OF THF IT=RATION THE !NrOFX

TAE IN "' '4EW VALU~E FROM T'.JE SET, THIS INDEX MAY BE USED TO
AFFECSTTMNS WIHN H SCOPE OF THE ITERATION. SELECT!VFE ISCA4.)ING OFFFFT SDc-RE YTHE OPTIIONAL EXPRFSSION

r-nLLOWIN'3 THE 'SUCH THAT' SYMBOL (#It)* HENCE THE INDEX VARIAPLE
AND FIj.ST EXPRESSION 411ST R~E SCALAR ARITHMETIC QUANTITIES, THE
SCOND EXPRESSION MUST 6E SET VALUED, AND THE ODTIONAI THIRnI EXPRFSSIi1N 4UST R~E LOGICAL VALUJED*

THE SLCOND FORM SPECIFIES THE INDEXING IN A MOPE CONVENTIONAL
MNNER IN WHICH THE INDEX IS GIVEN A STARTING VALUE FOR THE FIPST

CYCLE AND THAT VALUE IS INCREMENTED BY THE STCP ON EACH SUCCE~qIVi:
CYCLE. THE TERMINAL CONDITION IS TESTED ON EVERY CYCLE BFFORE
AlY r-NCLISEF) STATEMENTS ARE EXECUTED, EXECUTION OF THFSE S.TATi-M!NTSI CCURS AS LJNG AS THE CONDITION IS NOT SATISFIED. THUS THE VAPI1tiLE
NAm'E AND THE FIRST TWO EXPRESSIONS ALUST 9E SCALAR ARITHMETIC
QualiTITIES WHILE THE TERýIINAL CONDITION EXPRESSION MUST RE LOGT CAL
VALUED, THIS SECI)ND FgRm DOES NOT PROVIDE AN ADDITIONAL TEST rrR
SCRFNING INDICESo

EXAMPLý- ITERATED STATEMENTS
Fri', I IN (ItsooMI, A(14mil?2BfI;J
FOR I P'N SETI I J...P, FOR J 1~4 FET2, A(jjj:z~o;

F:04 I IN SET? OIR SFTI I BfU),Uo r)(

ý"' K:mI STEP 2 UNTIL K~mNs AlKl:mR(Kl*;

SEiF ALSO ETERATED ASSIGNMEKNT STATEM1ENT UNDER (3-2-2) WHERE THE ABOVE FIRST (SHIORT)
FORM IS i)ISCUSSED IN INVERTED ORDER.

"3(101

3-2-5-3 BLOCK STATEMENT

<BLJ•)K STATEMENT>::=IBLOCK '<STATEMENT SEQUENCE>'ENnBLOCK'';'

I ALLOCATION AND HAN1OLING CF STORAGE IS A 4AJOR PROBLEM IN MPL SINCE IT
WILL BE USED TO SOLVE PROBLEMS INVOLVING LARGE AMOUNTS OF DATA,
THF L)CK STATEMENT ALLOWS THE PROGRAMMFR TO DIVIDE HIS PROCEDURES
INTO BLOCKS WITHIN WHICH HE CAN ALLOCATE (DEFINE (3-2-4-4l1
STORAGE, THIS SPACE IS AUTOMATICALLY RPELEASFD WHEN CONTROL
LEAVES THE BLOCK. IN ADDITICN STORAGE MAY BE EXPLICITLYI RELEASED (3-?-4-51 ELSEWHERE IN THE BLOCK IN WHICH IT WAS
DEFINEl, BUT IN NO OTHER BLOCK* IN THIS CASE STORAGE IS RELEASED
IN AN)R,)ER OPPOSITE THAT OF DEFINITION* THUS THE SEQUENCE

DEFINE A;
DEFINE B;

RELEASE A;
CAUSES BATH A AND A TO HE RELEASED IN THAT ORDER* NOTICE THAT
A PROCeDURF IS AN IMPLIFD BLOCK STATEMENT.

:1 EXAMPLE lLCK STATEMENTS
BLOCK

DEFINE MATRIX M+l BY N+1;
4ATRIX:=(ARl 4,

I(CZl
ENDhLUCK; "EVEN THOUGH IT IS ASSUMED THAT At Bo C,

AND Z ARE DEFINEO OUTSIfE THE RLOCK9 THISI STATEMENT PRODUCES NO USABLE RESULTS"

I
I
I
I
I
I

I

I 4(1)

4 INPUT ! OUTPUT

VERY LI T TLE WORK HAS YFT BEEN DONE IJN THIS SECTION. IT IS
I CURRENTL.V THROUGHT THAT MANY IDEAS WILL BE ADOPTED FROM LANGUAGES

. SUCH AS AL(PLt FORTRAN, np PL/I.

II
II

I
I

ii

7
I

I,.

r
I..

5(11

5 LIBRARY PROC~nURFS

THIS SECTION DESCRIBES THF USE OF SEVERAL PROCEDURES WHICH ARE

PROVIDED IN THE MPL LIBRARY% REFERENCES TO THESE PROCEDURES AIL

HAVE THE FORM F(Pt WHERE F PEPRESENTS THE NAME OF THE PROCEDURE

AND P REPRESENTS A LIST OF '3ARAMETERS, WHERE INDICATED THESE

PROCEOJRES RETURN VALUES WITH TYPE, SHAPE, AND FORM AS DESCRIBFT) BELUW.I
ARGMAX (VECTOR I
VECTOR AN ARITHMETIC EXPRESSION WITH A VECTOR VALUE*
VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRST OCCURRING MAXIMUM

VALUED ELEMENT -IF 'IVECTOR',

AR(;MIN(VEC TORI
VECTOR ANY VE:CTIR VALUED ARITHMETIC EXPRESSION*
VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRST OCCURRING MI4I1MUM

VALUED ELEMENT OF 'VcCTOR'e

COLrOIM(AATRIXI
MATFiIX ANY ARITHMETIC EXPRFSSION.
VALUF THE SCALAQ ARITHMETIC NUMBER OF ELEMENTS IN THE RANGE OF

THE SFC(JN,) SUBSCRIPT OF 'MATRIX'. THIS FUNCTION IS
INTENDFI) FOR FINDING THE NUMtbER OF COLUMNS I4 A MATRIX,
SO IF 'MATRIX' IS A VECTOR OR SCALAR EXPRESSION, V := I1

DrIM(VE:TORI
VECTUR ANY ARITHMETIC EXPRESSION*
VALUE THE SCALAR ARITHvETIC NUMBER OF ELEMENTS IN THE RANGE OF

THF FIRST OR VNLY SUBSCRIPT OF IVECTnR', IF IVECTOR' IS

MATRIX VALUED THIS PROCEDURE IS EQUIVALENT TO ROWDIM.

j !IF 'VECTOR' IS SCALAR VALUED, V :2 Is

IDENT ITY(RANK)
RANK THF SCALAR ARITHMETIC RANK OF THE SQUARE IDENTITY MATRIX

w"ICH IS THE VALUF CF THE PROCEDURE*
VAL'.Ir 0i IDENTITY MATRIX •iTH 'RANK' R0a4S AND COLUMNS.

i AT,<I• A SQUfRE, N0N-S!NGIJtAR, MATRIX VALUED ARITHMETIC EXPRESSION*

VALUE rHf. INVFRSE OF 'MATRIX#*

''AAXiVFrýT1)R I
vF,': r 3 L rvrrK VALUED ARITHMETIC FXPRFSSION,
VAl(JE tiE SCALAR AKITHMFT IC VALUE OF THE m&XIMUM VALUED ELEUFNT

(OF oVECTnR'.

S1,4(V ; T:R I
VVCT • i A'v vtf.1. VALUEr AWITHMFTIC EXPRESSION.
vAto T•: SCALAR ARITHMFTIC VALUE OF THF MIN1MUm VALUED ELEMENT

,ir *4TRIXto ALL DCINTERS ARE IGNORED.

5(21

I LIBRARY PROCEDURES (CONTINUED)

II ONES(R,3WSCULUmNS)
ROWS THE SCALAR ARITHMETIC NUMtiFR OF ROWS IN V.
COLUMNS THE SCALAR ARITHMFTIC NUMRýR OF COLUMNS IN V.
VALUE A 4ARTIX OF ONES WITH $ROWS@ ROWS AND 'cOLUMNS' COLUMNS.

ROWDIM(MATRIXI
MATRIX ANY ARITHMETIC EXPRESSION.

3 VALUE THE SCALAR ARITHMETIC NUMBER OF ELEMFNTS IN THE RANGE
UOF THE FIRST SUBSrRIPT OF 'MATRIX'. THIS PROCEDOURE IS
INTENDED FOR FINDING THE NUMBER OF ROWS IN A MATRIX9
BUI IS EQUIVALFNT TO DIM(VECTOR) IF 'MATRIX' IS ACTUALLY
VECTOR VALUED. IF 'MATRIX@ IS SCALAR VALUED, V:- ,v

SUM(VECTOR)I VECTOR A VECTC)R VALUEU ARITHMETIC EXPRESSION*
VALUE THE SCALAR ARITHMETIC SUM OF THE ELEMENTS OF 'VECTOR'

IV ?TP,-NSPISE(rMATRIX I
MATRIX ANY ARITHMFTIC EXPRFSSION.
VALUE THE TRANSOSE OF 4MATRIX'. IF 'A4ATRIX' HAS 'M' ROWS AND

ON' COLUMNS THEN V HAS 'N' ROWS AND 'M' COLUMNS.

UNIT(SIZE, INDEX$
SIZE THE SCALAR ARITHMETIC NUMBER OF ELEMENTS IN VECTOR 'VS,I INDEX THE SCALAR ARITHNFTIC SUBSCRIPT OF THE SIN(LE ONE VALUED

ELEMENT IN IV', HERE 1 <= INDEX <= SIZE.
VALUE AN ARITHMETIC COLUMN VECTOR WITH SUBSCRIPT RANGE

(I,..,,SI/El WHICH HAS ALL ZERO ELEMENTS EXCEPT FOR THE
SINGLE ONE ELFMENT IN THE INOEX'TH POSITION,

ZERUS(AOWSCOLUMNS)
ROWS THE SCALAR ARITHMETIC NUMBER (IF ROWS IN 'V' 0
COLUMNS THE INTEGER SCALAR NUMSER Pr' COLUMNS IN IV'*
VALUE A MAATRIX OF ZEROS WITH 'ROWS' ROWS AND 'COLUMNS' COLUMNS,

ALSO
SIlE..,SC&LAR ARITHMETIC VALUED PROCEDURE FOR FINDING THE

NUM4BER OF ELEMENTS IN A SET.
iS'T..,SFT VALIFn PROCEDURE FOR CONVFRTING ARITHMFTIC

)UtNTITIES TO SETS&
0,M...SET VALUED PRcOCEDORF FOR INDEXING (IVFR VECTOR ELEMFNTS,

RnWDOM.,.SET VALUED PROCEDURE FOR INDEXING OVERMATRIX ROWS.
.rULDOM.,SFT VALUFD PROCEDURE FOR INFXING OVER MATRIX COLUMNS.

I
£
[
[

I 6(l)

I 6 PROtJRAM FORMATION A~ECHANICS4

6-1 CARD) FORMAT

MPL USES A 'FREE FORMAT$ STYLE WhICH MEANS THAT STATEMENTS MAY
BE STRUNG UNE IMMEDIATFLY AFTER THE OTHER, ONLY SEPARATED BY THE
';' TERINATORS, THUS MUCH CF THF RESPONS1I1LITY FOR AN AESTHETIC
AND READABLE PROGRAM RESTS ON THE WRITER*

WHEN CV]MHI;(-ICAT[NG THE PROGRAM TO THE COMPUTER ON PUNCH CARDS
I THE PRGR4• IfXTe MUST HIE CONFINFO TO COLUMNS 1 THROUGH 72.

COLUMNS 71 THRPUGH RG MAY BR USED FOR IDENTIFICATION SINCE THEY
WILL HE IWNREDe THIS IS A COMmON PROGRAMMING CONVENTION.

6-2 USE OF 'BLANKS

I BLANKS ARE USED AS DELIMITERS IN MPL AND ARE REQUIRED WHERE
SPFCTFIEJ IN THE VARIOUS DFFINITICNS* IN ADDITION THEY MAY BE
INSERTF•) BETWEEN ANY TWO SYMBOLS (ITEMS ENCLOSED IN PRIMES IN

I THE METALANGUAGE -)EFINITIONO BUT MAY NOT APPFAR WITHIN VAPIABLE
NAMES ')R KEY WORDS EXCEPT WHERE SPECIFIED.

WHEREVER A BLANK IS ALLOWED CR REQUIRED ANY NUMBER OF MULTIPLE
BLANKS IS ALLOWED.

J 6-3 COMMENTS

COMMENTS MAY BE PLA,.LO ANYWr4RE IN AN MPL PROGRAM SINCE THEY ARE
"COMPLETELY IGNORED BY THE COJMPUTER, THEY ARE 9ELIO.TED ON BOTH
ENDS '•Y A QUOTE ("IITHIS IS NOT A D3U8LE PRIME (''1)9 OBVIOUS
CAqr MAST RE TAKFN TO INSURE THAT THE TERMINAL QUOTE APPEARS
IN ITS PROPFR PLACEm

f

I 7 RESJ'iE OF rJEFINITI.)NS

I<ARRAY CONSTRIICTOR>::='('<FXPRESSIJ'ýN>I '<FOR PHRASE>')'1
2-6-3

(ASS[GCNMENT ST AT EMENT>: :=<VAR I ABLE>':= '<EXPRESSIO)N>';0
I(VARIAfBLE>':='<FXPRESSION>' '<FOR PHRASE>';'.1 I<VARIABLE>9:=f<EX0QFSSION>1 $#IF $<EXPRESSION>#;'
I<VAR1ABLW>:=1<FXPPFSSiflN>§ WHFRE '<SY4R(OL SUBSTITUTER>';'

3-2-23 <BLOCK STATEMENT>::='bL.OCK '<STATEMENT SEQUENCF>'ENDBLOCK'';'
3-2-5-3

<CHARACTER),: :=<LETTZR>I<OTCIT>I<SPECI AL CHARACTER>
1-2I <CHARACTER STRING>::=f'I<CH4FeACTER SRING><CHARACT1_-R>
1-3

<COMPUTATIONAL EXPRESSION>::=','(<EXPRESSI0N>
I '-'(EXPRESSION>
I 'NOT '<EXPRESSION>
I (EXPRESS ION>' 4'(EXPRESS I1N>
I (FXPRFSc'flN>'-'(FXPRESSION>I ~I<EXPRFSS TON>'*'(FXPRESSIO4>
I (FXPRFSSION>' /'(EXPRESS ION>
I (EXPRESSION)'**1<EXPRESSION>I ~I(F XPR ESS ION>' '<F XPRESS ION>
I(EXPRESSIUN>' AND '(EXPRESSION>
I(EXPkESSION>' OR '(EXPRESSIUN>
I(<EXPRESSION>' IN '<EXPRESSION>
I(F)(PRESSION>' AND NOT '<EXPRESSION>
I <EXPRESS!(IN>'= '<EXPRESS I0N>r ~I(EXPRESSICN>'-s='(EXPRESS[ON>

A I<EXPRESSION>'"1(EXPRESSION>
I (EXPRFSS ION>' ''<EXrpESS!O)N>
I (FAPRESSIC)N>0'-<E)(PRESST IN>

<CIINCATEN'AT1P)R>;:z'('(EXPPESSi?,N LIST>'$'
2-6-2

<CW.'IT0NfJ ,TTid'1,4NT)>::='IF 1w'(,-kESSinN>',0'<STATFMENT>
I1< t-XPR[ESsIO(N>l THEN '<STATEMFNf SEQUJENC.E>

r~~ (ý~TI P)iFNr F><OTt HRW'Li PHRA SE> IEND IF:';

oDFr* '4' S- ;rT IA fý:: FDINF* ~IVARYABELE NAME LI ST><TYPE PHR.ASF's
< RAP H4ASF><S1IC PHRASE*>';'3-44

1-2
<0IGIT ~rI'),>: : -,11,;1T > : IGT T STRINC.>< 0I r.IT'p -

r 2-2-1

7(2)

7 RESUME OFDFNTOS CN.Un
<EXPRIESSION>: :='('(EXPPESSION>'I'I

I<NUMBER>
JITRUE'I 'FLtASE'I ~I NULL'
II'''<CHARACTER STR ING>''I'

I<VARIABLE>
I<PROCEDURE :A'LL>
WOCM~PtJTATmONAL EXPRESSION>,

t(<'1MAIN ITEMA>
l<CnNCATElJATflR>
I<ARR'v CONSrRUCTn'q>

I(SUfHSET SPECIFIER'>

<EXPRESSIJN LIST>: :=(EXPRESSION>I<EXPRESSION LIST>', '<EXPRESSI0N>

<FOR PtlRASE>::='FflR *<VARIA-iLE NAME>' IN)(EXPRESSION'>
I'FnR '<VARIABLE NAMF>' IN '(E(PRESSP)3N>'I'<EX2RFSSION>
IIFJR I(VANIAf3LE %lMF>l:='(cXPRESSI0N>l STFPI
(EXPRESSInN>' UNTIL '<EXPRESSION>,

<(GO TU STATE'AENT>::='G0 TO '<LABEL>';* 3-2-5-2

3-2-4-2
<IrFPATEt) STArEMENT>::-(FOR PHRASF>','(lST4TEMENT>

I(OR PHRASE>' nn '<STATEMENT SEQUENCE>'FN0FCJR9';'
3-2-5-2

<KFYwJ4D STATEMiFNT*>::=(LFT STA T EMENT),I ~I(Gg TO STAGEMENT>
tQRETURN STATFMFNT>
I<L)EFINE STATEMENJT>I I(RFLEASF STATEMENT>
ICCONDITIrJNED STATc-iFNT>
l<IITERATEDl STATEmN'JT>r ~Wi<FLK STATEMENT'>

4 ~3-?-4.

r 3-2-1
< L--T STAT~vc'lf>::=*LET '(SYMPOL SUtiSTITUTER>I;'

ISAMý LOICATIO)N ''('<VAPIARLE NAME>' 9'<VARIAB~LE NAME>')'''0
3-2-4-1

It I At I 0)j I #J I I Pt I 'C'@ ' I I A I ' I IS ' I IT I' ' I 'I t I' I V I 'K' I'X IG1'IZ

<NOLL -)HRA&>:1 I<K1tL Ph ýA SF>' I-
1 1-3

(NJ ~)::(NiMJA 3ASF>I(NU0A.iEQR tiS[E>(EXPONFNT)
- '-2-1

1 0I IT41 STR ING>'I*'
I IeI <I,,IT SrP ING>

I K1;?1 i~Nr->'o'<f"IGIT STRING>

2-2-1

I T(31

I i RESUMF OIF DEFINITIONS (CONTINUEDI

<OR~ IF SEQUENCE>::=<NULL PHRASE>
I<OR IF SEQUENCE>'OR IF '(EXPRESSION>' THEN 0

(STATEMENT SEQUENCE>
3-2-5-1

<OTHERWISE PHRASE>::m'OTHFPWISE '(STATEMENT SEOUENCE>3 I~~<NULL PHRASE>3-5-

<PROCEaURE CALL>::=<VARIA8LE NAME>3 I(VARlAB3LE NAME>'(''<EXPRESSION LIST>019

<PROCEDURE CALL STATEMENT>::=<PRflCEDURE CALL>';'
3-2-3

<PROCE)URE lDENTIFIER>::=<VARIA8LE NAME>
k<VARIAdLE NAME>'(l<VARIAI3LE NAME LIST>)'$

2-4
<PROGR4M>::='PROCEnlJRE '<PROCEOURF IDENTIFIER>I STATEMENT SEQU)ENCE>'FINI'';'

I <ROGRAM>'9PROCEDURE '<PROCEOURE IDENTIFIER>3 (STATEMENT SEQUENCE>'FINI'';'

<RELEASE STATE4ENT>::zlRELEASF '<VARIABLE NAME LISTI>';f

3-2-4-5
<RETURN STATEMENT>::=lPETUw~l';l

<SHAPE PHRASE>::=' RECTANGULAR'I' DIAGONAL'I' UPPER TRIANGULAR'
It LOWER TRIANGULAR'S' ROW1I' COLUMN'I' SPARSE WITH II <EXPRESSION>' NONZERCS' I<NULL PHRASE> 3-2-4-4

* <SIZE PHRASE>::=<EXPRESSION>' B3Y '<EXPRESSION>
* I<EXPRESSION>I<NULL PHRASE>

- 3-2-4-4

* 1-2
<STATE 4ENT>: :=<LABEL>' :'<STATF4ENT-

* I(ASSIGNMFNT STATEMENT>
U I<PRI)CEUURE CALL STATFFMENT->

I((EYWURfl STATEMENT>
3-2

<SYATý-4EVT S 4UENCE>::x<STATEmýNT>I<STATEMENT SEQUENCE><STATEMFNT>I 3-1
<SUBSC~4IPr ELEMENT>::-l*'I<ExPRESSION> 2-3-2

<SUBSCRIPT LIST>::s<SUBSCRI,-T ELEMENT>
I(SUBSCRIPT LIST>,q'<SoASCRIPT ELEMENT>

2-3-2

0NM IN O<EXPRES!SNDN1
sj@<x0RrSS~o~ll92-6-4

U SY4HAL SjsSrTVUTE4)::m<VAR1ASLE NA4E>0icf<CHARACTER STRING>
l<Vwl~AL NAF~~s<ARARL N14ELIT),ll:&*C3-A2SRSTRNG
I(VAIA~LE NME>((VRIARE N4E IST~I3-2-C4-1 CRSRIG

* <TYPE PHAASF>'.:z' ARITHMFTICI'I LOr,[CAL'I' SET4I' CHARACTER'

I I(<NULL PHR~ASE>

3-2-4-4

M(41

7 RESUME OF DEFINITIO)NS (CONTINUED

<VAR!A'3LE>::s<VARIABLE NAME>I(VARIA8LE>f(l<StJt3SCRIPT LIST>@)'
?-3

<VAR!AtdLE NAME>:: x(LETTER>
I(VARIABLF NAME><LETTFR>
I(VARIABLE NAME><D!GIT>
I<VARIABLE NAME>'-.'
I<VARIABLE NAME>@'@

2-3-1
<VARIABLE NAMF LIST>::=<VARIABLE NAME>lI (<VARIABLE NAMF LIST)',(<VARIA8LE NAME>

THIS STATETMENT IS NOT PART OIF THE FOJRMAL DEFINITION, BUT IS
INCLUDED FOR REFERENCEe

(KFYW,)RD>::=' AR~ITHMETIC$
I RLOCK 0

It CHARACTER#
11 CULUMN'

I'ENDBLOCK'
I 'END IF'
I 'FNDFORSII 'FALSE'
'IFINI'

4 G.0 TOI
1:IF I

I I'LET

11 LO)WER, TRIAI"'4ULAR'
II NJL L'I
11 NflN7EROS'
I 'lp, IF:
I'Ir)HEQW[SEI

114FLEASP
I a OW'
I'SA~4L LOC4TION
is SFT'

I'SPAUSE W~ITH

I ,'PF rH' ANU SR

I m RE*D~

J 3 B SAMPLE MPL PROGRAMS

PROCEuuRE REVISED SIMPLEX(4ATRIXCOSTSRHSBASICVARIABLFS,
UNBOUNDEDOBJECTIVEVALUE, ITERATIONSII DEFINE I,,i; "THESE ARE (NnICES LATER ON*

UNBOUNDED :2 FALSE; ITERATIONS a, C;
LET P :x MATRIX;
LET C :" COSTS;
LET Q :- RHS;
LET BV :' BAS!C.VARIABLES;
LET M :z ROWDIMIPI;
LET N :z COLDIM(P);

"WE ASSUME THAT BV CONSTITUTES A FEASIBLE SFT
OF BASIC VARIARLES GIVEN BY THEIR INDICES*
WF WISH TO FIND X >= 0 SUCH THAT P*X a 0

WHICH MINIMIZES C*X = OBJECTIVEVALUE* FIRST
WE CALCULATE THE INVERSE OF THE RASES."

OFFINF INVB M BY 4;
INV-B:-INVERSE (P(*PVI I;

3 "THE CURRENT RIGHT HAND SIDE IS"
Q:=INV_*0Q;

"THE CORRESPONDING COST VECTOR IS"

DEFINE CB M ROW;*! CZB: =C(RV)!;

"S IS TWE INDEX OF THE INCOMING COLUMN
R IS TWE INDEX OF THE OUTGOIN1 COLUMN."

I DEFINE S,R;

PR I C 1N1G:" LOCK
ITERATIONS:=ITERAT IONS.1;

TN "FIND THE SIMPLEX MULTIPLIERS 'SM'"
DEi'INE SM M QW;3 SM:-CgR INVB;

"-ANn THE SMALLEST RELATIVE COST FACTORw
izARG4IN(C-SM*PI;

"TEST FOA OPTIMALITY UF THE CURRENT BASIS"
IF CtSI>sSM0PiSS) THIN

""wE HAVE FOMND T-i OPTIMAL BASIS"
08 JJCT IVE-VALUf: uCRQ•;
RETURN:

F NO)IF

END-IL~rK;

"NOW COLVJMN S IS IPNRnDUCEn INTO THE BASIS*PS IS THE REPRESENTATION OF PlotSi IN TERNS np
tHE CURRENT I9ASISO

DOPINEf 1 * COLUMN;

PR: '80

R:uARGMIN(,(I)/P(Vq| FCG I IN (|teeeoMl I Pi!,SR)OI;

I
!a

I 8Z

I S•'4PLE MPL PROGRAl (CONTINUEOD

"IF ALL P4IS|<(O. THEN WE STILL HAVE RmO AND
A CLASS flF SOLUTIONS APPROACHING MINUS INFINITY
EXISTS*IF R-O THEN

UNBO UNDED := TRU•E;
RETURN;

ENDIF;

1 "NOW UPDATE THL,. BASIC V•IARLE LIST BV, THE COST I
ASSOCIATED WITH THE BASIS L
VECTOR CB ASSOCIATEO WITH THE BASIS, THE VALUES
Iý OF THE BASIC VARIABLES, AN') THE INVERSE

SBV(R I: 5; INV _B (OF THE BASIS."

CB(R):=C(Slt I

R "UPDATE i)
FOR J IN (Itsee,MI I J-,=R, Q(J):s fl(JI-PB*(Q(RAP(Rts)|;

"NOW UPDATE THE BAS!S INVERSE*
PIVOT(INV_Bq PBtRl;I

"NOW THE CYCLE IS COMPLETE AND WE RETURN TO
CHECK THE OPTIMALITY OF THE NEW BASIS*"

GO TO PRICING;
FINIS;

PROCEDURE PIVOT(MATR IXPIVCTCOLtPIV'CTtROCWI
LET M Mw hIATRIX;
LET P :PIVOTCr;
LET R :rPIVO•T-ROW;

FOR | IN ROWDOM(M) I I-,"Rt M(I|,*I:"(Rq*ltP(I)/P(Rfl;
Mq(Rv):ZM(Rt*)/p(R| ;

RETURN;
FINIS;

I
!
!
!I
1I

[Uncass~f'DOCUMENT CONTROL DATA - R&D

(2~*y b~S. .1thete of titl. 609 fIfe dloxt uintoatIs musbe etrdChndwoeelrpr ft ce..silld)

Copte ehcca Deermetortie

S. REPORNT TITLE1. OTL O.O AE 7 O OPRP[Mathmtia Prg5,mn 196891uage_

Tcnic~4-7a-l-O.l ReporcalReor

I* CONRC 00GAN O.t. OTHRI REPNAT (S~ (Anypu olh.,eni(S) fiaph

this e port)

d._ _ _ _ _ _ _ _ _ _ _ _

I10. A V A IL ABILITY/ LIMITATION NOT ICSS

Distribution of this document is unlimited.

11. UUPPLIMCNTARY NOTES [12. SPONSORING MILITARY ACTIVITY Logistics and
Mathematical Statistics Dran~h,
Mathematical Sciences Division, Office ot

________________________ Naval Resea4rch. WASHINGTON. D.C. 20306
13 ABSSTRACT

The purpose of MPL is to~ provide a language for writing mathematical

programming algorithms tha±t will be easier to vrite, to reL7.d, and ttu mnodify

than th-se written in currently available computer languages. It is believed

DO) 1473

ecudy0 aiam

- Uljcla;ified
.ccurity Classification ON-mo3 lLINK A LINK B LINK C

H E OD OLC WT ROLE6 WT ROLE WT

Mathematical Programming

Large-Scale Linear Programs

INSTRUCTIONS-

1. ORIGINATING ACTIVITY: Enter the neame and addretis imposed by security classification, using standard statements
of the contractor. subcontractor, grantee. Department of 0ce- such as:
fens. activity or other organization (corporate euthor) Issaing (1) "Quall'iid iequesters may obtain copies of this

the rport.report from DDC.'
2s. REPORT SECURTY CLASSIFICATION: Enter te over (2) "Foveign announcement and diusemirtation of this
all security clsiiainof the report. Indicate whethei rpr yDCi o uhrzd
"Restricted Daike" lit include&. aking is to btic in accord- eotb D sntatoie.
onsce with oippro',rlate security regulations. (3) "U. S. Government agencies may obtain copies of

2b. F:OP- utoati dongrdingIs pecfie inDoDDi-this report directly from DDC. Other qualified DDC
rective 5200. 10 and Armed Forces Industrial Manual. Enterusrshlreet eog
the groap nuni~er. Also, when applicable, show that optional - o
markings have been used tor Group 3 and Group 4 as author- (4) "U. S. military agencies may obtain copies of this
ized. report directly from DDC. Other qualified users
3. REPORT TtITLE., Enter the complete report title in all shall request through
capital letters. Titles in all cases should be unclassifiet.
If a meaningful title cannot be selected without classifics.
tion. show title classification in all capitals in parenthesis (5) "All distribution of this report Is controlled. Qtual.
immediately foll owing the titlea. ofified DDC %<rs shall request through

reprt eg. iteim pogrts smmry anulor final. If the report has been futa~shed to the Office of Technical
Give the inclusive date*shnaseii reporting peidis Srie.Department of (ý*ommerce, for sale to the public, indl.
coverrd. cats this fact and enter the price, if known
5. AUT1HOR(S) Enter the name(s) of author(s) as show~r on il SUPPLEMENTARY NOTES: Uss. for additional airplane.
or in the report. Entet lost name, first nome, middle initi.al. tory notes.
It mulitary, show rank 'end branch of serv~ce. The name tvf
the principal iotthor ina 'n absolute minunsmmm requirement. 12. SPONSORING MILITA RY ACTIVInTY: Etter the name of

Ri~pwr AT!,. nte th- dte f 0It epot s da, lff ot)theresearch and develcpmenL Include address.
n th reo", se ate f pbliatio. 1. ASIRAT,;Enter at ebstruct giv~ng a brief and factual

,& smmay ofthedocument indicative of the report. even though
o TOA IZEOFPAGES: Tets!pg oi it may oelo appoea elsewhere in the body of the technical re-

shfould fallow nn)rmrl pitaination proceduies, L.. ne ~ part. ffadditional space orqurd a contitnuation shoet shall

references cited in ther re$.nvl be unclesssifrd. Each parmiraspi of the atitract shad end with
go. MONTlACT OR GRHANT NUMBtlER. If approprisle, entor an kindicston of the militori security classifirstlan .)f the in-
the applicable number nf th# contract or giant Under w'lich formation in the paragraph. represented as (Tý. (S), (Cc, at tft'
the rmport was wvatter. There is noe Limitawttal an the length of the abstract. Hoct-
S4. SL Si S.,. PROJLk.CT 4U~J8R Eftef the sropdt the suaggested length i-, frontt 150 tU 225 words.
silbprojdeat nmbert sytdrantfarnsone. tuhask numer eat t e. 14. KE.Y WrORI)b: Key woords -rv tachtraiýally mooanitAuu termse

atatvnpct uarbr. risn .~arrere tak Ruber et.of short phrase* that ch4'actsrlae a repo-et and may bq, used as
g.. ORIGINATIOR'S ItLPURr NumnEP(s): Lease ibe effl- tades sisterio fot cataloging the -@pant Kay %rurdsa mu. be
cial oriort f% lmb.r by which the docu'tret will be Iden'ifiod seiocted so that no security ý.esosllcasiaa to requIred ldewo"ard contRolld by the originating activity. This a%;sI3 wrmst fiet,. such as *quipen~t mdl lasignt.14atrodo trAdena, 8"liesfy
be uruc~u. to this report. Project code namae. googtophir. tncation, May be Ieed as keyr
9111(0TIIF.R REPaORT NtlMI)ESNS); It the, raport hee keen wei bu sill be fillowett by ;L1 lndjcst.owr)I technical 0o0,

*s ane ry *thee report nwh~itto (#11hor by the ofrrgnaot* teat. The oustsrsrrr 4f inks. role,. and weights is opuiorel.

a? 6v~ IS* sponsor). a~so entr this nsrmbe.r a). '
10. AVALL ABILTY/LIMITAT',OPI NOTICE&S rntitr os.. hIL.
stations on further diesearrntation, of the report, other tQtari those

IF~ust Calijieto

