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MATHEMATICAL PROGRAMMING LANGUAGE

PART 1

A SHORT INTRODUCTION

Rudolf Bayer Michael B. McGrath

James H. Bigelow Paul D. Pinsky

George B. Dantzig | Stephen K. Schuck

David J. Gries Christoph Witzgall

The purpose of MPL is to provide a language for writing mathematical
programming algorithms that will be easier to write, to read, and to modify than
those written in currently available computer languasges. It is believed that the
writing, testing,and moiification of codes for solving large-scale linear programs
will be a less formidable undertaking once MPL becomes available. It is hoped that
by the Fall of 1968, wcrk on a compiler for MPL will be well underway.

The langueze proposed is standard mathematical notation. 1iis, at
least, has been the goal. Whether or not there is such a thing as a standard
notation and whether or not MPL has attained it, is up to the reader to decide.

The Manual to MPL comes in three parts

PART I: A SHORT INTRODUCTION
PART II1: GENERAL DESCRIPTION
PART III: FORMAL DEFINITION




HREEA G e B bt o

I
]
]
]
1
1
I
I
]
I
I

l/a

FURWARD

Mathematical programming codes fof solving linear programming problems
in industry and government are very complex. Although the simplex algorithm (which
is at the hea;t) might be stated in less than twenty instructions nevertheless error
checks, re~inversion, ptoduct-form‘inverses for compactness, compacting of data,
special restart procedures, sensitivity analysis, and parametric variation are
necessary for practical implementation. Twenty thousand instructions are not

uncommon. The cost to program such a system is several hundreds of thousands of
dollars.

Recently, there has been muc!i interest in extending mathematical
programming codes into the large-scale, nonlinear, and intege: programming ar:as.
The large-scale mathematical programming applications are among the largest
mathematical systems ever considered for practical solution by man. For examrle,
a system of close to a million variables and thirty five thousiand variables his

already beeu solved using the decomposition principle.

If large-scale dynamic linear programs could be successfully so/ved
it would have enormous potentiai for industrial, national, and internaticnal

long-raige planning.

For this reason, there is considerable interest in solving large-scale
dynamic systems. Many papers have been written on this subject and the number of
thzoretical proposals now number in the hundreds. Very little in the way of
ompiricaj tests have been made. Occasionally, a "soft-ware" company has dared to
no from a theoretical prcposal te & commercial program with inclusive results. It

+- like going from @ drawing board to a battleship when all that has been built
before has been & rewboat.

The need ithen is to be able to write elaborate codes for solving
mathenatical programming systems; to test them out on sample problems; and to
rompare them with competitive ana modified codes. Present day ccuputer languages
ilke FURTRAN, ALGUL, PL/] are not in the sasa world as machine language of O 1 bits.
Mevertheless, it is a formidable undertuking to read coles in theine languages,

particularly vhen they involve some twenty thousand instructions. The finding of
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errors (debugging) is time'consuming. It 18 often difficult for the author of a
pProgram to decipher his own hierogliphics assuming he is available for consultation.

This difficulty becomes ever more acute when extended to proposals for solving

large-scale systems. It is one of the chief stumbling blocks to progress in getting

practical large-scale system codes.

For this reason, the'chief effort of MPL has been directed towards

The objective is not to invent a powerful new language but to have
a highly readable language, hence one easy to read, correct, and modify.

readability.

The Iverson Language is an example of a powerful language. With a

small amount of effort it could have been set up in standard mathematical notation

and made readable (to a non-expert) as well. It is probably possible to implement

MPL by using Iverson Language as a translator. This is not our plan.

It is possible to view MPL as nothing more than a beefed-up ALGOL or

FORTRAN. The new programming language PL/1 is wery powerful and could also be used

to realize MPL. This is being considered. Moreover, recently there have become

available excellent compilers for compilers that make easier the job of

developing a compiler that would directly translate MPL into machine language.

Ve are seriously considering thls as our approach for implementing MPL.
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COMPARATIVE MATH VS MPL NOTATION

i The short introduction (Part I) that follows is not a formal description
of the language. This is done in Part III; nor is it a general manusl as Part 11;
I rather our purpose is o motivate the need for MPL and to provide a short comparision
with standard mathematical notation. MPL notation assumes that a standard key=-punch
I or its equivalent is all that is generally available at present for program preparation.
This limits the alphatet to Capital Roman and replaces Ai j by its functiocnal
1 ]
I equivalent A(I,J).
MATH MPL
I SUBSCRIPTS: A A(1,J)
1,3
I SUPERSCRIPT: Al;_ 3 A(K){1,J)
MATRICES : A A
: I Matrix Addition A+b AvB
- Matrix Product AB or A.B AnB
- Transpose A' or AT TRANSPOSE (A)
E - Inverse Al INVERSE(A)
‘ A=Matrix, k=Scalar, L=Scalar A/K A/K
1 AK ASK
- KA K#A
: « KL Kal,
% o Composing a matrix M from Ms A B M := (A,B)}
submatrices A, B, C, D lc o (c,D);
or M :e (A.B)'(C|D)3
? M= (A,B,C) M := (A,B,C);
Column 2f a matrix A A 3 ‘A(n,Jt)
sy
Rov of » matrix A A(l,»)
(Rl
Deterainant |A} DETERMINANT (A)
Array of Consecutive Integers (k, k*+1,...,0) (K,...,L)
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OPLRATORS :

Matrices or Scalars:

e R A S G 1 Stz

Addition, Subtraciion,

Multiplication

Division by Scalar

Exponent

Sign

Substitution Operator(=)

Logical Operators

MATL:
MPL:

MATHh:
MPL:

Relational Operators

Set Uperators

If A > B,
IF A>B

If A>B
IF

L1 4

MAPPINGS, PROCEDURLS, SUBROUTiIRES:

B, X, Y...Matricee, Sets, Schalars

2. +2' -2

‘New value of
A=value of B+C

AND, OR, NOT

C>D, and not

D=0

MPL

+, =, *

A/K

Akn2

INVERSE(A)

2, +2, -2

A = B+C; (meaning:
change the
value of A
on LHS to
equal the
value of
B+C on RHKS.)

AND, OR, NOT

AND C >= D AND NOT D = 0 THEN

or
OR

¢ > D,
C > D THEN

¢,
AV B, A+B

A3, A'B

A\ (not B),

AN

F(X)
SIN(X)

ax?
3k

¢ € ¢ £
»

= F{X):

$

< % ¢ <

SIN(X):
= ZaBa(Xea2);
= INVERSE(B):
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SYMBOL REPLACEMENT:

SETS:

Index Set or Domain of a vector A
Index Set of a matrix A

Defining of Set where P(I) a
Boolean Expression or
property is true

Empty Set

SET FUNCTIONS:

Suppose S = (8,,...,5 ) is a

l-dimensional "array = of

integers and we wish to pick

out column vectors A. .A. 1--A.
1 "2 »

30 form a matrix b,

i Y I . TP, et e

1/3

MATH

let W= f(x,y)

(any set of elements)
s ={1,3,-2,5}
$={1,...,n}

IesS

I1ecAVUBUC
I1cANBAC

I AN

D= (2UB)NC.
Domaiz of A

Row Domain of A

{2eR:P(1) = true}

{1er:P(1)} or
{1eR|P(1)}
{unlar 0}
“"1 > 0}

#, Null, Empty

' - (‘.1|A.2.| .s ."-)

(5

MEL

LET W := F(X,Y);

(meaning do not compute
W but replace it by :
F(X,Y) wherever W i
appears later om.) S

(Index sets only)

S := SUT(1,3,-2,5);

S o (lyeesye

I IX S

I IN A OR B OR C
1 IN A AND B OR C
I IN A AND NOT B

D :=(A Ok B) AND C;
DOM(A)

ROW_DOM(A)

(I IN R|P(I) = TRUE)

‘v elr(n)

s

(I IN R|XI) > 0)
(I TN DOM(A)|A(T) > 0)

NULL

B o= A(S):
B t» (A(J) POR J IN 8);

B = (A(S(1)) FOR 1 IN
(l..-o."))‘

Howsver,

B = (A(S(1)),...,
A(S(M))) s not
cotrect decause
(,...,Q) wasns

(PPl 002,...,0)0n ML
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cAPS A, B, ——- A, B, —-

Lower Case ‘ ' a, b, === : (not available yet)
Sreek ; t a, 8, === (not available yet)
integers 0, 1,....99,~-~-‘ 0, 1,...,99, =---
Multi-Character Symbol: |

as function name: PIVOT(M,R,S) PIVOT(M,R,S)

Brackets {} (] ’ (not available yet)

ine X e s R P P N

e

‘ SIN(X) . SIN(X)
as variable name: (not used) B2, BASIS, XS

Ve

o e

S e igg
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In general, a procedure has the form:

Certain reserve words like FPFOR and IN

F(X,Y,Z) as in the example givea below.

Example Given an array of integers R,

that yields S = ) F(j) .
: jeR

PROCEDURE SUM(F)

(1): S := 0;

(2);  SAME LOCATION(S,S');

(3): §' 1= § + F(I) FOR I IN DOM(F);
(4): SUM := S3

(5): RETURN;

" FINI;

PROCEDURE F(X,Y,Z2)
Statement;

Statement;
FINI;

can be interspersed in place ¢f commas in

we wish to write an algorithm, called SUM,

“SET UP A STURAGE REGISTER S TO ACCUMULATE

THE SUM OF TERMS. INITIALLY,"

"LET S' ol THE UPDATED VALUE OF S. WE WANT
TO STORE S' 1IN THE SAME PLACE AS § AND

THEREAFTER CALL IT S."

"ITERATIVELY ADDS F(I) TO S."

“SE1S THE VALUE OF {HE PUNCTION ZQUAL TC §"
" 'RETURN' MEANS: RETURN TO MAIN ROUTIKE."
" 'FINI' MEANS: END OF WRITE-UP."

Onee the { symbol, or rather SN, 1is in the procedure library we can use

a
it to vrite a statement like P = ] 12
1

P e SUM(Tea2 FOR I IN T)

in MPL,

WHLARE T := (l.~~oon):
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The reference numbers like (1), (2),..., on the left are called labels. They
‘are not necessary in the above example and may be omitted. Labels can be a string
of charscters or numbers like (1), (2). Lf the latter, they need not be consecutive.

Labels are used to locate a statement wheu a program branches.

A statement like the one with label (3) is called a substitution statement because
S':m 5 4+ P(I); means: Substitute for the current value of S' on the left a new value

equal to the curuntk value of § + F(I) on the right.

In scnchl, A := B; means updated A = Current B. A statement S := S + F(I);
looks like nonsense but means: Updated S = Current (S + F(I)). Hence a programmer
not interasted in readability would provably boil down the procedure SUM to two

iines.

PROCEDURE SUM(F)

'SUM := O; SUM := SUM + F(J) FOR J IN DOM(F); RETURN; FINI;

P FarR e T
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There are several different types of statements that one can draw upon to

write a procedure:

Procedure Name

Substitution

Let

Return

If Define

For Release
Same Location Fini
Go to

and some words like 'then", "utherwise", "endif", "do", endfor" that indicate

different parts of a compound

Procedure Name Statement:

Examples:

Substitution Statement:

Examples:

Let Sta

Examples:

"if"

or

"for" sgatement.

PROCEDURE F(X) PROCFDURE F{"IN" X, "OUT" Y)
where X, Y represents a list of one or more
symbols.

PROCEDURE SIN(X)

PROCEDURE PIVUT(A,R,S)

PROCEDURE SIMPLEX(A,B,C,BV)

PROCEDURE ARGMIN(F(I) FOR I IN T)

"where ARGMIN finds the first index or argument

where the minumum occurs."

A := Arithmetic Expression;

S := 0; M := ARGEIN(H(J) FOR J IN R);
A := PIVOT(A,R,S); t= INVERSE(MATRI® + K;

S := ARGMIN(C(J) FOR J IN T) \HERE T := (1,...,N);

LET A = Arithmetic Expression;

LET A = B;
LET T := (I IN DOM(B)I|A(I,S) > 0);

LET R := ARGMIN(B(I1)/A(1,S) FOR I IN T);
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If LET 1is used to simplify only one statement,

a WHERE can be used instead using inverse order.

t= INVERSE(B) WHERE B :» TRANSPOSE(A);

Statement: - RETURN;

If this statement is reached during execution of the subroutine,

the next step is to return to the main routine.

1f Statement: IF P THEN statement ;...; statement;
OTEERWISE statement ;...; statement;
ENDIF;
Example: IF R = NULL THEN GO TO (21); OTHERWISE

A := PIVOT(A,R,S); ENDIF;

All statements up to "OTHERWISE" are executed if proposition p is true and
then sequence control skips to the statement following ENDIF. However, as in the
above example, there is a GO TO statement preceding the OTHERWISE then contrel
skips to wherever GO 70 directs. If p 1is not true, control skips to statements
following "OTHERWISE". For the case of several parallal conditional statements

OR IFstatementa are available - sea Part II and III. OTHERWISE can be omitted if
immediately followed by ENDIPF, :

Fox Statement: FOR I IN T DO statement ;...; statement; ENDPOR;

Exanple: FOR I IN (1,...,M) DO
S' = S + F(I);
T' = §' + G(I); 3

ENDFOR;
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Same Location Statement: SAME LOCATICN(A,B);

A and B will be assigned the same set of storage locations in the computer.
An alternative way to accomplish the same thing would be to write: LET A := B; For
psychological reasons, it seems best to separate the concept: "A 1s another symbol

for B" from t e concept "same storage location".

Go to Statement: :

GO TO 4 (where £ is a label). This means that control is to skip to the

statement that has £.as a label.

Define Statement:

Exsmple: DEFINE B DIAGONAL M BY M;

Used to define the size of storage array needed for a symbol whose value will be

computed piecemeal later on.

Release Statemeut:

To release a symbol aud its storage assignment a release statement takes the

form: :
RELEASL A,3B;

Its purpose is to conserve storage and permit re-use of the same symbol for some
other purpose. A special type of automatic release is available that allows release

cf all symbuls in a block of code.

Release occurs automatically when a procedure returns to s main routine; all
symbols defined in the procedure and th:ir siorage are released 2XSCept the output

symbols, which are treated as part of the symbols of the main routine.

Symbols used sx duamien as G in the statement: 2Z :» A*C WHERE G :» INVERSE(M);
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are treated as local to the statement and are immediately released. The same applies

to the running index in a compound For

statement and to a dummy parameter in a Let

statement as I 4in : LET G(I):= B(I)/A(I,J); .
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EXAMPLE: SIMPLEX ALGORITHM

PROCEDURE SIMPLEX ("IN A,B,C,BV, "OUT" BV', 3', 2', CASE);

"WARNING: ALL INPUTS ARE ™)DIFIED IN THE COURSE OF CALCULATIONS."

“THE PROBLEM IS TO FIND MIN Z, X > O SUCh THAT:

AX =B, CX=2Z,

IT IS ASSUMED THAT:

A IS IN CANONICAL FORM WITH RESPCT TO
BV THE INITIAL SE1 OF BASIC VARIABLES.
B>0 ARE THE X VALUES OF BV, I.E. X(BV) = B.

THIS INITIAL BASIC SOLUTION IS REQUIRED 10 BE FEASIBLE,

I.E. B> 0.

BV' IS THE OPTIMAL SET OF BASIC VARIABLES.

B' ARE THk X VALUES OF BV', I.E. X(BV') = B'.
z' = MIN 2

CASE = FINITE OR UNBOUNDED.
BV', B', 2' REFER TO LAST BASIC SOLUTION IN THE CASE ThAT

'CASE = UNBOUNDED'."

"INITIALIZATION"

(1):

(2):

DEFINE CASE CHARACTER;

Z := 0 "PRIMES WILL BE USED FOR UPDATED VALUES OF VARIOUS SYMBOLS.

THESE WILL BE STORED IN THE SAME LOCATION."
SAME LOCATION (A, A'), (R, B'), (C, C'), (BV, BV'), (X, X'), (2, 2');
“ITERATIVE LOOP" '

"LET S BE COLUMN COMING INTO BASIS."

e s AR TS a5 e
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(3):  MINI("IN" C, "OUT" S, C.S);

"MIN.1 IS A FUNCT/ON THAT RETUNS THE INDEX AND THE

MINIMUM COMPONENT OF A VECTOR. IN THIS CASE VECTOR = C."

"WE NOW TEST WHETHER X(BV) = B IS OPTIMAL."

(4): 1IF C.S = O THEN CASE := 'FINITE' ; RETURN; OTHERWISE

(5):  MIN_1("IN" (B(I)/A(I,S) FOR I IN DOM(B)|A(I,S) > 0), "OUI" R,Q);

"IF ABOVE SET EMPTY, MIN.1 RETURNS R = NULL, Q = O:

OTHERWISE THE INDEX R AND THE MININUM RATIO, CALLED

Q, IS RETURNED."

(6): IF R = NULL THEN CASE := }UNBOUNDED®: ; RETURN; ENDIF;

"UPDATE LVERYTHING BY PIVOTING ON A(R,S), PRIMES WILL

l "LET R BE THE INDEX OF THE RASIC VARIABLE DROPPING."

BE USED FOR UPDATED SYMBOLS. THESE ARE STORED IN SAME

" LOCATION, SEE (2)."

g (7):  B'(R) := Q;

i (8): A'(R,x) := A(R,»)/A(R,S);

“ROW_DCM(B) IS THE DOMAIN OF INDICES POR B."
,_ (9) POR I IN ROW.DOM(B) |1 =-~eR DO

%,

(11): A'(I,n) := A(I,a) = A(L,S) & A'(R,»); ENDPOR;
(12): C' 1= C = C(S) » A'(R,»);

(13): 2' =2+ C(S) 2 Q;

|
a
|
i
' (10): B'(I) i= B(I) - A(1,S) » Q;
i
1
I
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(14):

(15):

1/13

BV'(R) := S;
"THE REMAINING COMPONENTS OF BV ARF, UNCHANGED AND
S™NCE BV AND BV' ARE STORED IN THE SAME LOCATION.

UPDATING 18 COMPLETE, RECYCLE."

GO TO (3); PINI;
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ABSTRACT

The objective is :o develop a readable language for writing experimental codes

to solve large-scale mathematical programming systems. Readability 1s defined as
standard mathematical nciation with minor adjustments reflecting current limitations ;
of input-output equipment. Thus ayubo]a are restricted to those found on & ctlndtrd

keypunch; subscripts (or superscripts) like A 3 appear as A(I,J). Starting in
[ ]

PR PR T T L e

the Spring of 1967, sever.l test algorithms written in the proposed language gave

evidence that readability was an achievable objective.

A task group in the latter part of 1967 began to define the proposed language in
BACKUS Normal Form with the intent of using a special compiler's compiler to

implement the language.

-
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1.0 " INTRODUCTION

This paper describes recent work on a computer prograaming language for
the implementation of mathematical programming algorithms on a digital computer

the objectivee of the language are:

a) to facilitate programming an algorithm from
theoretical form to computer code in as short
a tine as possible, and

b) to cnable other mathematical programmers to
understand and modify an existing code with
a ninimum of effort. The present efrorts are
being directed toward the coding of experimental
mathematical programming algorithms rather than
commercial techniques. By and large, the first
report (Mathematical Programming Language, June
1967) represented the thinking of persons with
mathematical programming backgrounds. Since
then, several computer scientists contributing

to the project heve brought the lacguage much
closer to implementation.

The purpose of this report is to explain the use and the reasons for the
concepts being devel&ped in MPL. This part of the Manual attempts to explain the
reasons for using the specific concepts of MPL while the third part developed
undcr the guidance of David Gries gives a formal definition of the language in a
modified form of BACKUS Normal Form. Part 1II !s primarily the work of Stephen
Schuck, who, since joining the project last summer, has been a driving force behind
the implcméntn:#on of MPL. His work in turn usea several cnncepts developed by
Rudolf.laﬁcr and Cﬁ;istoph Witzgall of the Boeing Scientific Research Laboratories,
At present, ﬁhe BACKUS Nornal_?ort_i; used to describe the legal programs, not the

phrase structure of the langusge.

ﬁav!d Gries éf-StinferdfvnivérsiSy is currently developing a technique of

writing coapilers, called the xénpllcr laplemsntation System (KIS}, which, it is

planned will be used in the lnpxenuntation of the Language. Many of che concepts
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presented herein, are the same as or similar to those found in existing compiler
languages (ALGOL, FORTRAN, COBOL, PL/1l, etc.). One of the difficulties
encountered thus far in writing a formal definition of MPL is that mathematical
notation depends upon the context for its meaning. (Pl,...,PM) may mean

(Pl, PZ' P3""’PM) or it may mean (Pl’ P

+1, P, +2,...,P

H), This is defined

1 1

in MPL to mean the latter.

There are certain concepts planned for MPL that have not yet been set down in
BACKUS Normal Form. In particular, the representation of index sets has not been
completely formalized; the ability to operate with matrices whose elements are
matrices (useful for example in the decomposition principle) has not yet been fully
developed. Procedure parameters need more work. Input-output statements have not

yet been defined, nor storage commands that would reflect the variable size and

speed of different memory locations.

N
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2.0 MPL LANGUAGE ELEMENTS

The set of characters upon which MPL is built is the character set found
on standard key-punches (such as the IBM 029 key-punch). For convenience, we
ihall gtéup these characters into the categoriaﬁ of letters, digits, and special
characters., The lstters are A through Z, the digits are 0 through 9, and

the special characters are as follows:
) <> , « % = & [/ : 3 ~=" " 4@ x & |

and a blank. Elements of MPL are defined to be vne of the following four constructs-
variable, constant, operator, or reserved word. Let us now delve more deeply into

each of the above elements.

2.1 VARIABLES

Variables are symbols which represent those data values which may change
during the execution of the program. There are several types of variables - arithmetic,

logical, set and character.

For example, if C 1is a row vector and Q a scalar both previously defined

then

b o= (2, SIN(Q));

sets up a new row vector D with one more component than C. The function sin(x)
is a veserve word and “"sin" cannot be used as symbol for & variable on the left hand

aide of an 2quation.

& variable may have rero, one, cr two dimensions. A zero~dimensfonal variable

is a scalar, a one-dimensional variable a vector, a two-dimensional variable a matrix.

n e e e Y S b 1Y A
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In the remainder of this report, an array refers to any variable whose dimension

is greater than zero. Each ma:rix‘has associated with it a structure shape

commonly used in mathematical programming algorithms. These shapes are rectangular,
diagonal, upper triangular, lower triangular, and sparce (meaning few non-zero
elements). The concept of structure shape is useful in conserving memory space

and execution time. An example of the use of shape matrices is in the storage and
multiplication of two diagonal matrices of size nxn. Storing them as diagonal

in the computer .equires only n memory words for each (as opposed to n2 for a
rectangular matrix), and the multiplication of two diagonal matrices requires

only n elementary multiplications as opposed to n3 for rectangular matrices.
Vectors have the shape of row or column; this distinction is required for
multiplying vectors by vectors or matrices. An additional feature of MFL is that
the elements of an array may be arrays. This construct is heipful in coding algorithms
such as the decomposition principle. Another variable allowed is an index set

variable. This consists of an ordered set of integers. Examples of index sets are:

(1,...,M}
SET(1, 3, =4, 3, 12}
(1 IN (i,...,M)]A(1,8) > 0)

More will be said about how to defirne and use variables later on.

The symbols which constitute variablga have two parts, the vdrisble name and
an optional subscript. The variable name alone complg:ely identifies the variable
under consideratlon 1f that variable ia a scalar or an entire storage structure
(vector, matrix, etc.). if the variable represents & subset (¢lement, row, column,
etc.) of a larger urray, the variahle-nawnc part oniy identifies the larger array,
subscripts being nasded to specify the sarticular submet. Varieble names alvays

begin with a lstier, but the characters which follow it may be any number of letters,

LAt S



2/5

L

digits, or underscores. Reserved words (defined in Section 2.4) may not be used

as variable names.
Examples of variable names are

A

OBJECTIVE.1
KEY_SET
BASIS_INVERSE

However, variable names with blanks like KEY SET are not allowed. Subscripts
are either scalar arithmetic expressions or the symbol # . Scalar arithmetic
expressions (defined in Section 3.2) are automatically bounded to the nearest
integer value when ujzed as a subscript. The subscript # refers to an entire

dimension of a storage structure. Thus

A(x, J) refers to the Jth column while

th

A(I, %) refers to the I row of the matrix A .

The following examples illustrate the use of subscripuc:

M(B + C, 3)
B_INVERSE(1l, =)

X_VALUE (BASIS_LIST(I)).

2.2 CONSTANTS

Constants are of four types--arithmetic, logical, se: and character. The
type of a coastaut determines how the number will be stored in the machine and used

in calculations.

N s
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ARITLMETIC CONSTANTS may be either integer or real.

ANTEGER ARITHMETIC CONSTANTS are written as a string of digits without

a Jvcimal peint, examples 1, 10, 10090.

REAL ARITHMETIC CONSTANTS may or may not have an exponent. An exponentless
real number is a sequence of digits containing a decimal point. Examples: 1.,
1.0, .3925, 102.34. Thz exponent form of *he real constant allows writing the
constant in modified scientific notation. This form consists of an exponentless
real number followed by an L (meaning 10 to the power) followed by an optionally

signed string of digits.

Examples:
2.5802  (25.%10° = 2500.)
1.0E-02  (1.0%10"2 = .01)
.8E03  (.8x10° = 800.)
9.1E405  (9.1v10° = 910000.)

LOGICAL CONSTANTS are TRUE and FALSE.

A SET CONSTANT is NULL.

ChARACTER CONSTANTS are anv string of characters enclosed by ringle quotes (")

Examples:

' TARBLEAU'

'PRICES ARE'

PEwETawaTS

SN
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2.3 OPERATORS

Operators are the connecting elements which allow the grouping of variables

and constants into larger language phrases ceslled expreslioh;. Operators are of

tivo classas:

a) arithmetic operators-unary: + and - ;
and binary: + (addition), - (asubtracticn),
* (multiplication).' / (davis.on), and

** (exponentation).

b) logical operators-unary: NOT ;

and binary: AND, OR.

¢) relational operators - = (equal),
== (not equal), >= (greater than or
equal), <= ‘jess than or equal),
> (strictiy greater than),

< (strictly less than).

d) concatenation cperators (for building
up matrices from elements) : a
comma (,) 1is used for horizontal
concatenation; a number sign (#) is

used for vertical concatenation.

e) set operators - OR (union),
AND (intersection), AND NOT (relative

complement).

The use and meaning of the first three operators is quite similer to operators

‘an existing languages (ALGOL) while the concatenation operator may be new to the
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reader. This operator is used to build larger storage structures from smaller
ones. For now an exampie of concatenation operators will be given; the detailed

explanation of their use being presented in Section 3.2.3. Suppose A, B, C, and D

.are matrices of the same dimensions. Then M .:= (A, B)#(C, D); represents a

larger matrix of the following form: M = A ') . If the programmer vrites

CD
M := (A, B)#(C, D); partly on one punch card and partly on the next it takes the

form M := (A, )¢ .
(C. D);

To resolve mmbiguities which can develop in forming combinations of elements,
each operator has an associated precedence. In the sbsence of parenthesis to
dictate the meanings of such combinations, the meaning will be given by the
precedence of the operators, with those having higher precedence being first.
Operators of equal precedence vwill be performed from left to right as one would

expect. Section 2.5.2 in Part 1II interprets the operator symbols in order of

decrrasing precedence. A # before an cperator indicates that its precedence is the

same as the preceeding operator. The following exsmples show the meaning of

precedetice.

A-B/C+D is interpreted as A-(B/C)+D
(A, 3)iIC is interpreted a» [ (A, l)]
c
B+ C/D o BaA is iaterpreted s B + ((C/(Dwel))eA)

Amdiguous notation in tve of the exsmples can be avoided, of courss, by use

of parentheses.

it
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2.4  Raserved Words

Reserved words in MPL fall into the categories of keyword symbols or
standard function names such as sin(x) and procedure names. Recall that
reserved words may not be used as variable names. Keyword symbols (such as

FOR, IN, END, GO TO ) will Be discussed in Section 4s2.3

Fynctions:

A standard fypccion name identifies a Otandard function. It is hoped
that extensive use of staudard functions will lead to ease in programming and
shhance the readability of the resulting codes. Presented in Section 5, Part III
is a list of stsndard’ functions, which hopefully will grow as MPL developes.
kcference to a standard function is of the form V := F(P) where V represents
the value of the function, F represents the name of the function, and P
represents one or more arguments which we will refer to as a parameter list.
Depending upon the function, the value may be integer cr real, scalar, vector, or
matriz,and if matrix, it wmay have any structure shape. These properties as well
as the properties of the parameter list are described in Part III. Following are
a few examples of the use of standard functiona. Let C and X be vectors,

A a matrix, and T an index sat all previocusly defined:

Z := SM(C(I)aX(I) POR I IN T);

R := ARGMIN (B(I)/A(1,S) POR I IN T|P(I1,5) > 0);

2.5  Cosment Syatemenis (Quote Symbols)

in the algorithme coded thus far by the MPL group, it hss been
found that comments are essential for readability of computer codos. Comments may

be placed betwveen any two sentences and are separated from the program by quote

e e ATV 18 o ek RN D) DG
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marks before and after the comment. Example:

SAME LOCATION (COUNT, COUNT');

A := B+ C;
"A IS THE SUM OF B AND C"

FOR I IN SEL.1, COUNT' := COUNT + 1;
"WHLRE COUNT' IS THE UPDATED VALUE OF
COUNT WHICH IS STORED IN THE SAME

LOCATION AS COUNT AND REFERRED TO HERE-

AFTER AS COUNT."

The general objective of MPL is readability. It is however, doubtful that
a program will be readable unless liberally interlaced with comments statements
whereby the programmer explains to the reader why he is doing the various steps.
In experiments with mathematical programming reutines, almost two lines of comments
are needed on the average to explain an executable line of code., Comment statements

can consist of one or several lines set off at the beginning and end by quote makes,

"PIVOTING WILL BE DONE ON THE FULL
MATRIX D WHICH INCLUDES A, THE

RHS B, AND COSTS C."

D := (A, B)¢
(c, 0);

"WE NOW INCREMENT COUNT AND RECYCLE."

COUNT' := COUNT + 1; GO TO (21);

PRI, [EW P OTTTICN SHIC TR
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3.0 Expressgions

Variables, constants, and operators arz combined into larger language
phrases called expressions. Expressions vre either arithmeti:, logical, set or
‘charactct. In addition, the value of an arithmetic expression has a shape
(rectangular, diagonal, lower triingulnr, upper triangular, sparce). The

following sections explain the use and meaning of some of the special features

‘of MPL expressioas.

3.1 Logical Express

A logical expression, having the value of TRUE or FALSE, is a comparison
between two arithmetic expressions. Twe arithmetic expreassions which are compared
by a relational operator must be identical in type, form and shape. Following

are examples of logical expressions:

A>B
NOT (X(I) > Y(I))
(Z>M) AND (B+C <A+ D)

(H(I) = 2(I)) OR (M = Q)

When A and B are scalars and p is a relational operator, then the interpretation
of A pB is clear. However, in the case of arrays, the meaning of A > B can
differ by author. Table 1 below defines precisely what is meant by the relational

operators in MPL.
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TABLE ]

In this Table, A and B are arrays identical in type, form, and shape.

Ai' Bi refer to elements of A and B.

MPL Statement Mathematical Meaning
A= B A1 L Bi Vi
A<B Ai < B, Vi
A<B Ag < B1 Vi
A>B A1 2 B‘l Vi
A>3B A1 > B1 Vi
A~ Ai ¢ Bi for some 1

3.2 Arithmetic Expressions

Arithmetic expressions are any combination of the following types--

compu.ational expressions, function references, and array builders.

3.2.1 Cosputational Expressions

Computation expressions are of the structure 'left-operand'-'operator’
‘right~operand'. If the left operand is nissing, the operator is unary (one
operand) - Example: =-A, + (Q~Z/B). If both cperands are prssent, they are
connected by a binary operator (two operands) -~ Example: A+B, CwaD . At cxerutllon
tire the expression will be evaluated to produce a result. In addition to being
defined, an operation can only be pezformed i{f the operands conform to the
conventional restrictions of matrix algebra (for exsmple - M and X arc matrices,
then Mo has meaning if and only {f the number of columns of M equals the
number of rovs {n N). Section 2.5 of Part III descridbes these relationships in

detail.
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3.2,2 Function References

A function referance expression invrlvcs the use of predefined functions
as set forth in Section 2.4. Examples of function references used with

computatiocnal expressions to form new arithmetic expressions are given below.
XeSUM(Y) é
AxTRANSPOSE(B)

BASIC_COSTS*INVERSE (BASIS)

We shall see further use of function references in array builders in the next

section.

i daan i

3.2.3 Array Builders
There are two types of array builders--concatenadors and array dzsignators. A

A concatenator is a notational device for ccnstructing vectors and matrices

by concatenation. The rules for the use of a concatenator will be given followed 1

by several examples.

CGperat.ons within & concatens;ot are horizontal concatenation (denoted by
# copmi) and vertlical conca:ﬁnaﬁion (denoted by a number sign). Horizontal
concatenation has precedence over vertical concatenation and is performed first
whenever both opcratianlklppcar. Twe structures being concatenated must conform,
f.e., have the samc number of rnui for horizontal ccncatenation and the sam:
nusber of columns for vertical concatentition. Both of the structures being

concatenated must be of the sane type, all arrays sust bde roétangullr avd the

resuit is also rectangular. As an exampie of the use of array comstruc-ors,

consider the following:
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A has M rows and N columns (matrix)
B has 'M rows and 1 column (cclumn vector)
C has 1 row and N celumn (row vector)

(B, TRANSPOSE(C)) has M rows and 2 columns: (B cT)
(A,B) or A,B has M rows and N+1 columns: (A B)
(A)#(C) has M+l rows and N columns (2‘

(A,BY#(C,0) has M+l rows and N+1 columns lé 8)

The above examples of correct usage of the array constructor while the

following examples display incorrect usage *ecause of the incompatability of the

rows and columns.

(A, C)

(A#B)

An arrev designator 1s used to horizontally concatenate several matrices .

for J 1in scme index set L. For example L might be a list of basic

columns L(1), L(2),...,L{M). Then the basis B 1is given by

B := (A(»x,J) FOR J 1IN L);

Alternativeiy, it cau be written

R := (A(x, L(1)) FOR T IN(1,...,M));

however, it should not be written

= A(#,J) FOR J 1IN L;

because without the concatenation symbel it is equivalent to

PFOR J IN L DO
B e A%, J);

ENDFOR;
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‘which is quite different. Nor should it be written

B := (A(x, L(1),...,A(%x, L(M)));

becguse this does not define the running index and (k,...,%2) 1in MPL means

(k, k+tl,...,8). Still simplier we can write

B := A(%x, L);
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4.0 Statements

All statements in MPL are categorized first

preceeded by a label. All statements are ended by

4.1 Labeled Statements

b s

by whether or not they are

the terminator semi-colon (;).

A label is a means of providing a specific location in a program to which

execution control may be transferred. Labels are either a string of digits enclosed

in parentheses or can have a name like a variable.

A labeled statement consists of a

’abel, followed by a colon followed by an "unlabeled statement" (defined in 4.2) and

may be a0sed only cnce as a label within each storage block. A label can only be

referred to later in GO TO statements, Examples:
VAR := X + Y;

UPDATING: ITERATIONS':= ITERATIONS + 1;

€0 TO UYPDATING;

4.2 Unlabeled Statements

Unlabeled statements are of three types-—-assignment statements, procedure

call statements, and keyword statements.

4.2.1 Ass!gnmcnc Statement

Asaignment statements tre used for transfervring data values betwveen data

steruge locations. The furw of a substitution statement is V := AE; whare V

is any vaviable as defined in Section 2.1 aud AF

as defined in Section 3.2. Examples:

A = B,
§ :» ARGMIK(Y);

A{I,8) o BC - 3#D;

is any arithmetic expression

e

o it o
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4,2.2 Procedure Call Statement

A procedure call statement transfers execution control to a procedure. When
the execution of tha procedure is completed, control returns to the statement

following the procedure reference. More will be said about procedures in Section 5.1.

Examples:

PIVOT (M,R,S);
SIMPLEX("IN" A,B,C, "OUT" Z, BV, X_BV);

4.2.3 Keyword Statements

Much of the power of MPL lies in the use of keyword statements. Formally,
a keyword statement is one which begins with reserve words such as DEFINE, FOR,
IF, GO TO, LET, ENDIF, RELEASE, RETURN. The complete-list will be found in 3.2.4
in Part III. The keyword indicates to the computer and the programmer what type
of gction is desired. Some of the keyword statemmnts will be discussed here, the

remainder being discussed in Chapter 5 (Statement Blocks).

4.2.3.1 GO TO Statement

A GO TO statement is used to alter the normal sequential flow of contrél
during the execution of a program. Thea form is8 GO TO 1 ; where & 1s any label

as defined in Section 4.1. Example:

ITERATE: 1': =1 +1;

G0 TO ITERATE;

4.2.3.2 Simple Conditional Statement (IF)

A simple conditional statement enables one to execute a single statument only
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if certain conditions hold, and skip it otherwise. The form is

AN L WA T

e,

s IF le; , :

where le 1s any logical expression as defined in Section 3.1 and s 1is an

assignment stetement. Examples:

S 1= 0 IF A(x, J) = B;
R:=S+T IF Z = 0;
K:t=RIFU-=0;

L:=SIFV>0;

If the logical expressions le 1s true, the program is executed with s replacing
the entire conditional statement. If not true, the program goes to the -ext

statement.

In section 5.4 a compound conditicnal form is discusced. Its form is

IF le THEN BireeesBy

OR IT™ 1le THEN LTTOETEREL

OTHERWISE Spe1’ "' 25,

ENDIF;

4.2.3.3 Simple Iterated Statement (FOR)

A simple iterated statement is used to perform a given statement several
times in such & manner that during each execution an iteration index is changed

according to a predetermined pattern. The form {s

s FOR v IN gset;
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where v 1s any variable name as defined in Section 2.1, set 1is any index set
vqriable as defined in Section 2.1 and 8 1s a statement. s 1in general depends
on v . The first part of the conditioned statement (the FOR phrase) states that
the values of an iteration index (v arc to range over set). The first cycle
through 8 1is executed with the first value of v 1in set; the second cycle is
executed, the second value of v in ret, and so forth until the last value of
the iteration index has been used in the execution of s. Then control is passed

onto the next statement. Example:

A(I) := B(I,J) FOR I IN (1,...,M);

In Section 5.3 a compound iterated statement is discussed. Its form is

FOR V IN set DO
S seeesS
ENDFOX;

4.2.3.4 Let Statement

The let statement enables one to represent one symbol by another and was
introduced into MPL to ehhance readsbility. This statement is similar to a MACRO.
It causes modification of the program at compiler time instead of execution time.

The let statement will be explained by showing several examples of ita use.

a) LET M := MATRIX;
A = MaB;

is equivalent to A = MATRIX *» C;

b) LET L(I) := RHS(I)/A(1,S); LET T := (1,...,M);
R = ARGMIN (L(T));
is equivalent to R := ARGMIN (L¢3) POR J IN T);
or equivaient to R := ARGMIN (RMS(I)/A(I1,S) FOR I IN (1,...,M);
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¢) LET BI := BASIS_INVERSE; LET BC := BASIG_COSTS; §
PI := BC#BI;
is equivalent to PI := BASIC_COSTS*BASIS_INVERSE;

Note also in the first example that I is a dummy and that another symbol

was used in its place later on. The form of a let statement is LET v := ¢ %

where v 18 a variable and e 1s an expression,

In the case that let is only used to simplify a single statement, an inverted

let or WHERE form can be used.

R := ARGMIN(L(J) FOR J IN T)

WHERE T := (1,...,M); ’

4.2.3.6 Define Statement

Before a variable name may be used in a program the type, structure and
storage requirements of the values which it represents must be explicitly or
implicitly defined. The only exception to this rule is that an undefined variable
may be used as a dummy iteration index or as a dummy variable in & let or where

situation. The declaration may be done in two ways. One is to define the variable

hut not give 1t any values:

DEFINE V 1 BY N;

The other is to define the variable and assign it values at the same time. In the

example below V is a nev variable vhile A and B have been previously

defined.
V ie A+ B,

Let us now explore the details and meaning of the define atatement.
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The form of an explicit DEFINE statement is

SIZE
DEFINE Variable Type Shape Dimersions or Domain
name ARITHMETIC RECTANGULAR mBYn
DIAGONAL (ml""'mz) BY (nl,...,nz)

UPPER TRIANGULAR
LOWER TRIANGULAR

SPARSE WITH K NONZEROS

name LOGICAL
name CHARACTER n
name SET n

Words "ARITHMETIC", "RECTANGULAR" will be understood if type, shape or size
descriptors are omitted. Scalar is assured if size description is missing. Let
symbols k, m, n, m, My, By, W, be any previously de{ined integers or integer
expressions. A matrix '"SPARSE WITH K NON-ZEROS" means the matrix has at most

k non-zeros. It will be stored as a sparse matrix. A list which has neither row

nor column interpretation may be indicated by ''(m)" where =m {s the number of

elements. Examples:

1. DEFINE E M BY N;

2. DEFINE D, E DIAGONAL P BY B;

3. DEFINE D (1,oo0 M) BY (K,...,1);
6. DEFINE J;

5. DLFINE M SPARSE WITH P NONZEROS;
6. DEFINE C 1 BT N;

7. DEFINE B M OBY I

3. DLFINE L CHARACTER;

9. DEFINE 5 SET;
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The form of a domain descriptor is SRL where SRL 1is a subscript range
list, a series of subscript ranges separated by a BY. A subscript range
is two arithmetic expressions separated by ,..., . LExample of subscript range
list: (1,...,M) BY (M+N,...,K). Each subscript range determines the minimum and
maximum values of the array's subscripts. The number of subscript ranges in the
subscript range list determines the number of dimensions of th> storage struciure.

If the domain is of the form (1,...,M) BY (1,...,N) it is writt:n in Dimension

by ey e g Gy ey

form M BY N or simply M for a one~-dimensional list or set. Tue description

shape and size descriptions may appear in any order in a define statement.

3 —

The second @ud most used) method of defining a variable :s implicitly. The

form of an implicit define statement is vn := ae; where vn 1is 8

variable name as defined in Sectiun 2.1 aud ae 1is an arithmetic expression as

defined in Section 3.2, In this version of the define statement the variable
name being defined is given the same form, type, and structure as the value of

the first arithmetic expression. Examples:

M o= (A, B)#
(C, D);

M := (A, B, O);
B :e (P(x, BL(I)) FOR I 1IN (1....,M));

D :» E+ FaG; "WHERE E AND F ARE MARRICES"
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5.0 Statement Blocks

A program in MPL consists of a sequence of statements (defined in 4.0)
and statement blocks. A statement block is a sequence of statements with special
initiating and terminating statements. There are four kinds of statement blocks--
procedure blocks, storare allocation blocks, conditional blocks and iteration
biocks. The entire program is a procedure block. A block can have other blocks
{mbedded within it, or it may be imbe:dded in other blocks, but no two blocks

partially overlap.

5.1 Procedure Blozks

A procedure is designed to carry out a specific sequence of operations which
ma; be required over and over again. Rather than rewriting the sequence of steps
each time, they may be written once in a form which can be utilized whenever needed.
It is hoped that a library of procedures written in MPL will be developed, thereby
enabling the work of one programmer to be available to others. This will not only
speed up the writing of MPL codes, but will also emhance the readability. Later on

we will say how to call a procedure in a program.

If one wants to write a proceiure (which wili Jater be called by some main
routiie), the precadure is inftiaced by a procedure gistiment, contajins a
statement sequence, and is turminated by a fi{ :tatement. A procedure stgatement
consists of the reserved word PROCEDURE ‘olloved hy a procedure identifier.

The procedure identifiir specifies both the procedur® name and the locxl names »f
the input-output parameters. The forw of a procedura tdentifisr is a varifable naw

followed usually by & list of parameters enclosed in a pair of pareathanes.
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The fini statement is used to mark the end of a procedure write up. In
contrast, RETURN is a signal during execution of a program that control is to
be passed back to the main routine. This also terminates any storage allocation,
iteration, or conditional blocks which ware initiated but not explicitly or

implicitly terminated within the procedure.

Control is passed to a procedure by either a function or a procedurs
reference call. A procedure may have several return statements, each one may cause
termjnation during execution. Values are transferred to and from the procedure
by means of substitution statements in the input-output section of the procedure

idencifier. In general, new variables for the main routine may be defined in the

output section.

As an example of the use of the return statement in a procedure

consider the following routine for checking whether two column vectors are aqual.

COMPARE := ( means A = B.

PROCEDURE COMPARE(A,B)

| (1):  IF ROW.DIM(A) == ROW_DIM(B) THEN
- COMPARE := 1;
RETURN;
’ OTHERWISE
L (0: FOR I IN ROW.DOM(A) DC

IF A(1) == B(1) THEN
COMPARE := 1;

RETURN;

ENDIF;
ENDFOR;

COMPARE :» O;
(3): RETURN;
ENDIF;

FINI
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Next guppose that in a program we have the following sequence of statements:

IF COMPARE (X,Y)=0 THEN GO T0(21); OTHERWISE GO TO (23); ENDIF;

thus 1f the vector X equals the vector Y in each component, control is

transferred to the statement (21), if not, it goes to (23).

5.2, Storage Allocation Blocks, Release Statements

Storage allocation blocks are required for the efficient use of memory

core ir a computer. To release a symbol and eny storage for cther use, the

statement takes the form:
RELEASE A, B;

Aftar much debate, it was decided thsat in writing mathematical programming codes,

block storage allocation was preferable to continual re-allocation.

Relesse of symbols takes place automaticaily, however, with subprcgram

blocks and special release blocks.

All symbols and storage except outputs, generated within a procedure are
released wh- -he procedure returns to the main routine. Hence the same symbols
outside the procedure ca1 be used wit.a eutirely different meaning-.

G In the sratement
Z :» A+ G WHERE G := INVERSE{M);

is treated as a “ummy variable locally de{ined within the block and immediately

released. how ver, in the situation

LE1 G :» INVERSE'M);
e ®mA+G;

the release ¢f G {is not poseilile uniil rhe end of a procedure unless by a special
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release statement

RELEASE G;

5.3 Iteration Block

An iteration block is a statement sequence which is repeatod a number of
times only with an iteration index changed between each execution. As such, this
is a generalization of the iterated statement (Section 4.2.3.3). An iteration
block is ifnitiated by a for statement, contains a statement sequence, and is
terminated by an endfor statement. The for statement (very similar to the
for phrase of Section 4.2,3.3) governs the behavior of the iteration by specifying
the values for the iteration irdex. Iteration blocks do not release symbols and ‘

storage like a subroutine blocks. Example: The form is

FOR v IN set DO
Sp0eess,

ENDFOR;

FOR I IN (1,...,M) DO
X(I) = Y(I);

J' = J + 1

A(#,I) := B(1);

ENDFOR;

5.4 Conditicnal Blocks

Conditional blocks are constructions wherein the program selects batuncur
s set of mutually exclusive courses o: action. A conditional biock is initiated
by an  i{ ristement ana terminated by an endit statsment. Or {f and othervise

stateasnts allou for the provision of wmultiple alternatives. This construct {s a




oy peny ey PEay P pEy oWy 0NN OB N BB

et

2/27

generalization of the conditional statement (Section 4.2.3.2). Conditional blocks

do not release symbols generated wituin them. The form is:

IP le THEN 81500028,

OR IF 1le THEN 841" 0%
OTHERWISE Bop10ee o8y,

ENDIF;

IF A=B THEN GO TO (7);
OR IF A= C THEN GO TO (8);
OTHERVISE

B := A;

ENDIF;

The OR IF and OTHERWIBE are optional in a corditional block. For example

IF le THEN LIEREREL ENDIF;
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6.0 [Examples of MPL Procedures

PROCEDURE SUM(F)

"SUMS A VECTOR F OVER ITS DOMAIN"

"ACCUMULATE THE RUNNING SUM IN S."

(1): S := 0;

(2): SAME LOCATION (S', S);

"S' WILL BE THL. UPLATED VALUE OF S TO BE STORED IN THE SAME

LOCATION AS S AND THEREAFIER REFERRED TO AS S."

(3): S'" :=S+ F(I) FOR I 1IN DOM(F);

"ITERATIVELY ADDS F(I) TO s"

(4): SUM := §;

(5): RETURN; FINI;

PROCEDURE  MIN_1("IN" F, "OUT" K, M)

"K 1S THE FiRST INDEX I WHERE F(I) TAKES ON ITS MINIMUM

VALUE M OVER DOMAIN OF ¢."
"INITIALIZE K AND M"

(1): K := DOM(F)();
(2): M = F(K);

(3): SAME LOCATION (A, A'), (M, M');

"N, M', ARE UPDATED VALUES OF

e T -«

"I.E. THE FIRST COMPONENT OF THF SET DUM(F)"

1
i
i
3

[T T e




(4): FOR 1 1IN DOM(F) DO

IF F(I) <M THEN
K' = I;
M' := F(I);

ENDIF;
ENDFOR;

(5): RETURN; FINI;

PROCEDURE COL_PIVOT (A,P,R);
"WARNING - MODIFIES A AND STORES THE RESULT A' IN THE
SAME LOCATION AS A."
"PIVOIS (A, P) ON P(R) WHERE A IS A MATRIX AND P A

COLUMN VECTOR, AND RETURNS A', THE MODIFIED A PART ONLY."

(1): SAML LOCATION (A', A);

(2): M := ROWWIM(A);

(3): LET T :~ (1,...,M) AND NOT R;

(4): A'(R, *) := A(R, %)/P(R);

(5): A'(I, =) := A(I, x) -~ A"(R, *) * P(I) FOR T IN T;
(5): COL_PIVOT := A';

(7): RETURN; FINI;

PROCEDURE RLVISED_SIMPLEX. 2 ("IN" A,D,C,BV, "OUT" STATUS, X,Z,K);
"REVISED_SIMPLEX.2 1S JUST PHASE 2.
A = MATRIX, C = COSTS, D = RHS, BV = BASIC VARIABLES,
X = BV VALULS, 2 = OBJECTIVE VALUE, K . ITERATIONS"
“Tht PROBLEM 1S TO FIND MIN Z, X 2 0, AX e D, CX = 2.
IF MIN 2 1S FPINITE, STATUS = FINITE, OTHERAISE STATUS =
INFINITE. LT 1S ASSIMED THAT BV IS A BASIC FEASIBLE SEI

OF VARIABLES."
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(1): K:=¢(,

(2): STATUS := 'FINITE';

(3): G :=

(4): X :=

"ITERATIVE LOOP"

(5): P :=

"THr. FIRST STEP IS TO SET UP THE INITIAL BASIS WHICH CONSISTS
OF THE SET OF BASIC VARIABLE COLUMNS, BV, OF A. THUS
BASIS := A(BV), LET G BE THE INVERSE OF THE BASIS.

WE ARE INTERESTED IN COMPUTING G AND LATER UPDATING IT."

INVERSE(BASIS) WHERE BASIS := A(BV);

"ALSO X, THk VALUES OF THE BASIC VARIABLES, ARE INITIALLY"

G »x D

"THL COSTS ASSOCIATED WITH BAS1C COLUMNS ARE C(BV] - HENCE

THt SIMPLEX MULTIPLIERS P ARE GIVEN BY"

C(BV) *» G;

"LLT S DENCTE THE INDEX OF ThE COLUMM OF A COMING INTO _dE

BASIS AND ~.S = C(5)."

© i W B ARG e NS
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(6): MINJL("IN" CoP » A, "OUT" S, C_S);

"WhICH IS THL INDEX (ARGUMENT) OF THE SMALLEST COMPONENT
OF Thk VECTOR OF RELATIVE COSTS C-P % A."

"TEST FOR FINITE MIN 2"

(7): GO TO (16) IF C.S > O;

“"LET Y BE THE REPRESENTATIO:

TERMS OF THk BASIS."

(8): Y := G % A(a, S);

"LET R DENOTE ThE INDEX OF THE COLUMN IN THE BASIS TO BE

REMOVED"

LET T := (I IN DOM(Y)|Y(I) > 0);
IF T = NULL THEN

STATUS := 'INFINITE';

GO TO (16);

ENDIF;

(9): MINZL(YIN" (X(1)/Y(1) FOR I IN T), "OUT" R, Q);

"UPDATE X, G, X, BV DENOT¥D BY X', G', X', BV' "

(10): SAME LUCATION (X, X'), (G, G'), (K, K'), (BV, BV');

NI IR SEELE N Y
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(12): X' := X=Y % Q;
X'(R) := Q;

(13): G' := COL_PIVOT(G,Y,R);

"COL_PIVOT PIVOTS (G,Y) ON Y(R) AND RETURNS MODIFIED

PART."

(14): BV'(R) := §;

"CHANGE R~TH BASIC VARIABLE TO

"UPLATING COMPLETE, RECYCLE"

(15): G0 TO (5);

"TERMINATION"

(16): z := C(BY) * X;

(17 RETURN;

(18): FINI;

S."
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MpL

MATHEMATICAL PROGRAMMING LANGUAGE

PART 111 . X

A FORMAL DEFINITION OF MPL

PREPARED BY STEPHEN K. SCHUCK
APRIL 1968

COMMITTEE MEMBERS

RUDULF RAYER MICHAEL MCGRATH
JAMES RIGELOW PAUL PINSKY
GFORGF DANTZIG STEPHEN SCHUCK
DAVID GRIES CHRISTOPH WITZIGALL

THES IS ThHe THIRD CF THREE PARTS:

PART | A SHORT INTRNDUCTIUN :
PART 1 A GENERAL DESCRIPTION
PART |11 A FORMAL DEFINITION

NUTEF: BECAUSE THE DIEVELOPMENT (F PARTS T AND I1 «wAS SLIGHMTLY

CUY PF PHASE niTH THE UVUEVELUPMENT OF PARY [1] Tht READER wAY
CRSERVE SOME NOYICEABLE, ALTHOUGH NOT SIGNIFICANY, DESCREPENCIES
AP TwFFN THEM, THESE OFSCREPENCIES ARE NUE TO THE FACT THAT mMpy |-
NGY YET FULLY CEVELOPENR ANU MANY JDEAS ARE STILL EXPERIMENTAL.
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0~1 ABSTRACT

COMMUMICATIUN wITH A DIGITAL COMPUTER IS A PRORLEM WHICH HAS it
OCCUPIED MANY PEUPLE FCR A LONG TIME, [N ORDER TD ALLOUW THE 4
COMPUTER TO BE MORF WIDELY USED AS A COMPUTATIONAL TOOL MUCH OF :
THIS EFFORT HAS GONE INTO DEVELOPING SYSTEMS THROUGH WHICH A 2
PERSON MAY COMMUNICATE HIS NESIRES EVEN THROUGH HE IS NOT FAMIL IAR «
WITH THE SOPHISTICATED AND HIGHLY OETAILED PRNGRAMMING LANGUAGFS
AVAILA3ILEs THE MATHEMATICAL PROGRAMMING LANGUAGE IS ANOTHER

ATTEMPT TO PROVIDE A LANGUAGE IN WHICH THE NON=-PRNGRAMMER MAY

WRITE PROGRAMS, THE VALUE NF THIS WIRK LIES IN THE FACT THAT IT

IS ORIENTED DIRECTLY TOWARD MATHEMATICAL PROGRAMMINGe CONSENUFNTLY
CONSINERARLE FEFFURT HAS REEN MADE TJ MAKE MPIL L0OOK AS MUCH LIKF

STANDARD MATHEMATICAL NCTATION AS PNSSiBLEs

IT IS HOPEN THAT THIS WORK WILL PRNDUCE A R!GOROUSLY NEFINED LANGUAGE
IN WHICH MATHEMATICAL PROGRAMMERS CAN DESCRIBE ALGORITHMS WHICH

WILL AT THE SAME TIME BE EASILY UNDERSTOOD BY OTHER MATHEMATICAL
PROGRAMMERS AND MEANINGFUL A&ND VALY COMPUTER PROGRAMS,

SINCE 4PL IS A LANGUAGE INTEMDED FOR COMMUNICATION BOTH WITH QT HER
INDIVIJALS AND WITH COMPUTERS, ITS DEVELOPMENT IS AN EFFORT TD

PRIVIDE A *READABLE®* PROGRAMMING LANGUAGE, HOWEVER, FOR A PROGRAM

TO 6% QEANABLE (AN EASY TO JSE AND RAPID METHOD FOR TRANSFERRING !
INFORMATION) IT MUST RE BOTH SUNDERSTANDABLE® (THE NOTATION IS

FAMILIAR OR SELF=-EXPLANATORY WITHIN ITS CONTEXT) AND *COMPREHENDARLE'
(THE PARTS (OF A PRAGRAM MUST INTERRELATE IN A MEANINGFUL MANNER

FOR THE PROGRAM REACER), IN THIS RESPECT THE EMPHASIS OF MPL

IS UPON PROVIDING AN IINDERSTANDABLE LANGUAGEe COMPREHENDABILITY

WILL STILL BF THE USER®'S RESPONSIRILITY,
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(=2 TABLE OF CONTENTS (CONTINUEN)
4 INPUT/NUTPUT STATEMENTS
5 L IBRARY PRDCEDURES
) PROGRAM FORMATION MECHANICS
6-1 CARD FORMAT
6~2 USE OF BLANKS
6~3 COMMENTS
7 RESUME OF DEFINITIONS
8 SAMPLE PROGRAM
0-3 MPL LANGUAGE DESIGN PHILOSOPHY

THE PHILOSOPHY BEHIND THE DES'GN OF THE MATHEMATICAL PROGRAMMING
LANGUAGE (HEREAFTER CALLED MPL) IS TG PROVIDE A MAXIMUM OF
READABILITY TO THE UNINITIATEDe THUS IT CAN HOPEFULLY BE
ASSUME) THAT THE USER HAS ONLY A FAMILIARITY WITH THE NCTATOM

OF CURRENT MATHEMATICAL LITERATUREe AS A RESULT THE LANGUAGE
DEFINITION ATTEMPTS TO AVOID ABBREVIATIONS WHICH MAY BE

OBSCURE, TO KEEP THE NUMBER OF SPECIAL SYMBOLS TO A MINIMUM,

AND TO PROVIDE THE MOST FAMILIAR NOTATION AND FORHATION.

AS MPL DEVELOPEN IT BECAME OBVIOUS THAT MANY USEFUL STRUCTURES
WERE AVAILABLE IN EXIST.NG LANGUAGES, AS A RESULT THE READER
WHD IS FAMILIAR WITH ALGOLy FURTRAN, PL/1y ETCes WILL ENCOUNTER
FAMILIAR FORMS AND PHILOSOPHIESe NO ATTEMPT HAS BEEN MADE

TO PARALLEL ANY SINGLE SUCH LANGUAGE, BUT WHERE APPLICABLE

TO DEVELIP THE BEST THAT was AVAILABLE.
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0-4 USE 0OF THE MANUAL

THE FOLLOWING DISCUSSION IS ORGANIZED SC THAT THE READER MAY
FOLLOW THE CONSTRUCTION CF MPL FROM THE MOSY ELEMENTARY

UP T+~ JUGH THE BROADEST CONCEPTS, THE FINAL SECTION IS A RESUME
OF THE FORMAL DEFINITIONS SO THAT THIS PAPER MAY BE USED BOTH

CFOR IN TRUCTION AND AS A REFERENCE MANUALe EXAMPLFS WTLL BE

LIBERALLY SPRINKLED AMONG THE DESCRIPTIONS,

THE DEFINITION OF MPL WHICH APPEARS HERE IS AIDED BY THE

USE CF A METALINGUISTIC OR LANGUAGE~DESCRIBING LANGUAGE WHICH

HAS SEVERAL SPECIAL SYMBROLS,

<) A PAIR OF BROKEN BRRACKETS NELIMITS A PHRASE NAME.

‘e A PAIR OF PRIMES DELIMITS A CHARACTER STRING WHICH
APPEARS IN A PHRASE EXACTLY AS IT APPEARS WITHIN
THE PRIMES,

= READ THIS SYMPOL "IS DEFINED AS™e [T SEPARATES THE
- PHRASE NAME ON THE LEFT FROM THE PHRASE DESCRIPTION
ON THE RIGHT,

{ READ THIS SYMBJL ®OR™, IT SEPARATES MUTUALLY EXCLUSIVE
DESCRIPTIONS.

EXAMPLE METALINGUISTIC STATEMENTS
<CHARACTER>:2=CLETTER> |KDIGIT>IKSPECTIAL CHARACTER)>

THIS METALINGUISTIC STATEMENT READS ™A CHARACTER 1S DEFINED AS
A LETTER OR A DIGIY QR A SPECIAL CHARACTER,"

CITERATED STATEMENTD::=f[F PCEXPRESSIOND® s *CSTATEMENT>
THIS READS "AN ITERATED STATEMENT IS DEFINED AS THE CHARACTERS

'IF ¢ FOLLCWED BY AN EXPRESSION FOLLOWED BY A COMMA FCLLCWED
BY A STATEMENT,®
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1{1)
1-1 AN ORGANIZATIONAL OVERVIEW

THE MPL LANGUAGE IS DESIGNED TD FACILITATE THE COMMUNICATION

OF MATHEMATICAL PROGRAMMING ALGORITHMS, ThE COMPLETE STATEMENT

OF AN ALGORITHM [N MPL IS A *PROGRAM', A PROGRAM IS COMPOSED 1
ONE OR MORE *PROCEDURES®, EACH OF WHMICH 1S A SEQUENCE OF SEVERAL
YSTATEYENTS's EACH STATEMENT iS MADE UP OF *RESERVED WORDS' ANOD

CYEXPRESSIONS', THE BASIC BUILOING BLOCKS OF MPL, THESE, FINALLY,

ARE COMPOSEN OF CHARACTERS?',

1-2 THE MPL CHARACTER SET

THE CURRENT VERSIGN OF MPL IS RASED UPON THE CHARACTER SET OF
THE IBM 029 KEYPUNCHe FOR CONVENIENCE THESE CHARACTERS ARE
GROUPED INTO THE CATEGORIES NF LETTERS, DIGITS, AND SPECIAL
CHARAC TERS,

CCHARACTERD>::aCLETTER>| KDIGIT>| KSPECIAL CHARACTER>

WHERE THE SPECIFIC CHARACTERS IN EACH CATEGORY ARE GIVEN BY:

CLETTERDzt=0A [ 080 |eCoopo|eEr |eFe oo |oejegejejejegajope
[ SME|INY|eQo]oprjoQejvRejoSofeTejoyrjoyejogefjexejoyejrye

KDIGIT>:z=0Q0 o0 |e2e |03t |04t|o50(0gt]uTs|oge]ege

KSPECTIAL CHARACTERDss=t(0|0)ejogeonifo sja afcasfjoojoge]oy
|030[0,|||=o|oto|o_o|' sjegejogeageloegejepefe]jejrge

TWQ NTHER CHARACTERS ARE AVAILABLE ON THE 029 KEYPUNCH, BUT ARE
NOT INCLUDED IN THE ABOVE CATEGORIES NUE TO THEIR SPECIAL USAGE
IN MPL. THESE CHARACTERS ARE

e STATEMENT TERMINATOR
vt COMMENT NELIMITER
-3 SOME ELEMENTARY PHRASES

CCHARAZTER STRINGD>::=** | CCHARACTER STRING>CCHARACTER>

© <DISIT STRING>It=<DIGIT>IKDIGIT STRING>CDIGIT)

CNULL PHRASED: % | CGNULL PHRASED! ¢

THESE PHRASES ARE USED IN SEVERAL PLACES THROUGHOUT THE MANUAL.

THE CHARACTRR 4ND DIGIT STRINGS ARE JUST STRINGS OF CHARACTERS
NR JIGITS A5 THEIR NAMES IMPLY, THE NULL PHRASE INDICATES THAT
THE 242858 W/[CH IT DESCRIAES MAY BE OMITTED,
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2(1)
2 EXPRESSIONS

CEXPRESSIOND: =9 (*CEXPRESSIOND® )
| <XNUMBER>
[ *TRUE® | *FALSE?®
JeNULL?
| S99 CCHARACTER STRINGD IV
{<VARIABLED
1<PI.OCEDURE CALL>
I<CCOMPUTATIONAL EXPRESSIOND>
| <DOMAIN [TEM
| SCCONCATENATORD>
| CARRAY CONSTRICTORD
| <SUBSET SPECIFIERD>

EXPRESSIONS ARE ELEMENTS OF MPL WHICH HAVE *VALUE®t, THEY USUALLY
DERIVE THEIR VALUES FROM MANTPULATIONS OF VALUES OF CONSTITUENT
PARTSe THE MOST BASIC EXPRESSIONS ARE CONSTANTS WITH FIXED

VALUES AND VARIABLES WITH VALUES WHICH MAY CHANGE DURING PROGRAM
GPERATIONs, EACH CONSTANT AND VARIABLE, AND CONSEQUENTLY EACH
E<PRESSION, MAS AN ASSOCIATED SET QOF ATTRIBUTES WHICH NESCRIBE THE
PPOPERTIES OF THE VALUE OF THE EXPRESSION.

2-1 EXPRESSION ATTRIBUTES

*TYPES® MPL ALLOWS THE USER TO MANIPULATE VALUES WHICH ARE ARITHMETIC
QUANTITIES, LOGICAL OR BOOLEAN QUANTITIES, SETS, OR CHARACTER STRINGS.
CIONSEQUENTLY THE POSSIBLE VALUES FOR THE TYPE ATTRIBUTE ARE ARITHMFTIC,
LOGICAL,y SET,y AND CHARACTER, INITIALLY NO ATTEMPY IS BEING

MADE T:) IMPOSE THE °*'FLOATING POINT® AND *INTEGER® SUB=-CLASSISICATIONS
OF THE ARITHMETIC TYPE ON MPL USERS. INSTEAD IT IS HOPED, PERHAPS

IN VAIN, THAT THESE HARDWARE IMPOSEN CONVENTICONS MAY BE BYPASSED,

YFORM? [F A VALUE HAS TYPE ARITHMETIC, THEN IT MAY BE EITHER A SCALAR
QUANTITY, A VECTOR QUANTITY, NR A MAYRIX QUANTITY, CONSEQUENTLY THE
POSSIBLF VALUES FOR THE FORM ATTRISUTE ARE SCALAR, VECTOR, AND MATRIX,

'SHAPE® IF A VALUE HAS TYPE ARITHMETIC, ITS FORM USUALLY HAS A& RELATED
SHAPE ATTRIRUTE WHICH PROVIDES ADDITIONAL INFORMATIION ABOUT THE VALUL'S
NRGANTZATIONe A SCALAR FCRM HAS NO SHAPE ATTRIBUTE., A VFCTOR MAY

BE FITHER a4 ROW VECTDR OR A CULUMN VECTOR SO ITS POSSIBLE SHAPFS ARE
ROw AND COLUMN, MATRICESy NORMALLY RECTANGUL AR, ARE GIVEN SHAPFES TN
CONSERVE STORAGE SPACE BY STDRING ONLY SUBSETS OF EFLEMENTS, PISSIALE
MATRIX SHAPES ARE RECTANGULAR, UPPER TRIANGULAR, LOWER TRIANGULAR,
DIAGONAL, AND SPARSE,
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2-2 CONSTANTS

A CONSTANT IS AN EXPRESSION WHICH HAS A FIXEDC VALUE DETERMINED BY
THE NAME OF THE CONSTANT, THERE ARE CONSTANTS OF EACH TYPE.

2=2-1 NUMBERS
<NUMBE >3 :=<NUMBER BASE> [KNUMBER BASEDCEXPONENT>

CNUMBER BASE>::=CDIGIT STRING>
I<KDIGIT STRING>'e !
| 9.9 <NIGIT STRINGD
{<DIGIT STRINGD !4 *<DIGIT STRING>

CEXPONENT>22=?E*KDIGIT STRING>
|$E**+¢<DIGIT STRING>
| PE1'=¢KDIGIT STRING>

ESSENTIALLY A NUMBER IS A DIGIT STRING (1-3)y POSSIBLY CONTAINING A
SINGLE DECIMAL POINT, 1IF THE NUMBER HAS A VERY LARGE OR A VERY SMALL
VALUE SO THAT WRITING IT REQUIRES MANY ZERQS, IT BECOMES WORTHWHILE

TO USE THE ABBREVIATED 'SCIENTIFIC NOTAYION' PROVIDED BY THE EXONNENT.
HERE *E' MEANS *T(MES TEN TO THE POWER's THE SYMBOL *°* [INDICATES

THAT THE SIGN FOLLOWING THE *E* IS OPTIONAL.

EXAMPLE NUMBERS
2 13.6 2454 16325 15.6E~03 2ES « 006

2~2-2 LOGICAL CONSTANTS

LOGICAL, BOOLEAN, OR TRUTH VALUED EXPRESSIONS RESULT MOSTLY FROM TESTS
ON OTHER QUANTITIES WHICH YIELD THE VALUES TRUE OR FALSEe SINCE

THERE ARE ONLY TWC POSSIBLE VALUES FOR ANY L.NGICAL EXPRESSION

THERE ARE ONLY TWO PQOSSIBLE LOGICAL CONSTANTS, °*TRUE® AND °*FALSE®,

2=2=~3 SET CONSTANTS

SETS IN MPL ARE INTENDED PRIMARILY FOR [NDEXING OVER ROWS OR CIi.UMNS OF
MATRICESy [TERATINN LOOPS, ETCe AS A RESULT, SET ELEMENTS HAVE WHOLE
NUMBER VALUES, THERE ARE NO DUPLICATE ELEMENT VALUES IN SETS,

HOWEVER, SINCE SETS MAY CONTAIN & VARTABLE NUMBER OF ELEMENTS, THEY
HAVE AN ASSOCIATED SIZE OR NUMRER QF ELEMENTSe THE SINGLE MOSY
IMPORTANT TEST ON A SET IS THEREFNRE WHETHER IT 1S EMPTY, THUS THE

THE SET CONZTANT *NULL® IS PROVIDED TO FACILITATE THESE TESTS AND

FOR (OTHER USFS.
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2=2-4 CHARACTER CONSTANTS
CHARACTER CONSTANTS HAVE THE FORM ¢t *CCHARACTER STRING>**¢,
CHARACTER CONSTANTS WERE ORIGINALLY PROVIDED IN MPL FOR CONVEYING FORMAT

INFNORMATION TO THE INPUT AND OUTPUT ROUTINESs HOWEVER, WITH ONLY SLIGHT
OEVELOPMENT A VERY POWERFUL MANIPULAT ING CAPABILITY APPCARED. A

- CHARACTER CONSTANT IS ANY STRING OF CHARAGTERS DELINEATED AY A

PRIME (SINGLE QUOTL) ON EACH ENDe A PRIME WITHIN A CHARALTER
SYTRING MUSP BE REPRESENTED BY TWO ADJACENT PRIMES, [eEe *' (AS
OPrOSEN TN A DOURLE QUGTE ™),

EXAMPLE CHARACTER CONSTANTS
"1H=425E13,6"

*HELP,HELP?

"THIS [S THE JONES®* HOUSE®

2-3 VARIABLES
CVARITABLE>::=<VARTABLE NAME> | CVARIABLED ' (*¢SUASCRIPT LIST>?)?

VARTABLES REPRESENT VALUESe JUST AS A VARIABLE NAME IS USED Tn
REPRESENT AN ENTIRE MATRIX OR VECTOR, VARIABLE NAMES WITH SUBS"RIPTS
REPRESENT SPECIFIC ELEMENTS OR SETS OF ELEMENTS 0OF THESE FORMS,

MPL VA..IABLES CAN REPRESENT VALUES INDIRECTLYs FOR INSTANCE, IF A
REPRESENTS A MATRIX, THE ELEMENTS OF THE MATRIX COULD BE NUMBERS,
OR THEY COULD BE POINTERS TO OTHER MATRICESs IN THE LATTER MAMNER
AlLyJ) (KoL) WOULD PICK FROM A{l,J) THE POINTER TO SOME MATRIX FROM
WHICH THE (XK,L)TH ELEMENT WAS ACTUALLY DESIRENDe THE FOWER MERE

IS THAT THE ELEMENTS OF AN ARITHMETIC MATRIX DR VECTOR MOW MAY RE
OTHER ARITHMETIC QUANTITIES, LOGICAL QUANTITIES, SETS, OR CHARACTER
STRINGS.

2=3-1 VARIABLE NAMES

CVARTABLE NAME>: :sLFTTERD>
| <VARTABLE NAMEDXLETTERD
| <VARTABLE NAMEXXDIGIT>
ICVARIABLE NAMED? ¢
ICVAIRARLFE NAMED® ¢ ¢

A VARIABLE NAME NAMES A STORAGE STRYUCYURE AND THEREBY HAS

ALL OF THE ASSOCIATED PRNPERTIES OF THE STRUCTURE, [F THE STRUCTURE
HAS TYPE ARITHMETIC ITS FLEMENTS MAY BE PUOEINTERS TO OTHIR STRUC TURES
HAVING CTHER TYPES, A VARITABLE NAME ALWAYS REGINS WITH A LETTFR
WHICH MAY RE FUOLLOWED BY ANY NUMBER NF LETTERS, DIGITS, UNULERSCORES,
R PRIVES,

EXAMPLS VARIABLE NAMES
A A ALPHAJS THIS_IS_A_VARIABLE_NAME ORJECTIVE_FUNCTICN
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2-3=-2 SUBSCRIPTS
SUBSCRIPTS ARE SUBSCRIPT LISTS ENCLOSED IN PARENTHESES.

CSUBSCRIPT LIST>::=CSUBSCRIPY ELEMENT>
I CSUBSCRIPT LIST>?,*<SURSCRIPT ELEMENTD>

"CSUBSCRIPT ELEMENT>ss=v#¢|KEXPRESSION>

SUBSCRIPTS ARE USED TO ACCESS SUBSETS OF ELEMENTS OF ARITHMEYIC
DATA STRUCTURESe THE NUMBER OF SUBSCRIPT ELEMENTS IN A SUBSCRIPT
LIST MUST BE EQUAL TO THE NUMBER GF LIMENSIONS OF THE DATA STRUCTURE.
TME * USED AS A SUBSCXIPT ELEMFNT REFEXIENCES AN FNTIRE ROW OR
COLUMN OF AN ARRAY, THUS Af{*,%) =2 5 AND @&(*) = 8 WHERE A AND B
ARE A MATRIX AND A VECTOR RESPECTIVELYse VALUES OF EXPRESSTONS

USED AS SUBSCRIPT ELEMENTS MUST HAVE EITHER ARITHMETIC OR SEY

TYPE, [F THE EXPRESSION IS ARITHMETIC IT MUST BE EITHER A SCALAR
NR & VECTORe A SCALAR ACCESSES A SINGLE ELEMENTY WHILE A VECTOR
ACCESSES A SET OF ELEMENTS. ANY FRACTIONAL PART OF A VECTOR OR
SCALAR ELEMENT VALUES IS DROPPED AND ANY VALUES OUTSIDE THE RANGE
OF THF SUBSCRIPT ELEMFENT ARE [GNOREDN,

EXAMPLE VARIABLES
A(3*A+¢3,C) A'(T143) B(I) A'(ly%) A(ROW_SET,COL_SET)

AS MENTIONED IN (2-3) THE ELEMENTS OF AN ARITHMETIC DATA STRUCTURE
(VECTOR OR MATRIX) MAY ALSO POINT TN OTMER SUCH QUANTITIESe HENCE
YMATRIN_LISTIK)I(I4J)® ACCESSES THE (I,J)TH ELEMENT [N THE MATRIX
INDICATED 8Y THE (K)TH ELEMENT IN *MATRIX_LIST's THIS PROCESS MAY
BE CONTINUED TO ANY LEVEL, BUT WITH CARE.

2-4 PRNCEDURE CALLS

CPROCEDURE CALL>::=<VARIARLE NAME>
I <VARIABLE NAMEDY (*CEXPRESSION LIST>® )¢

CEXPRESSION LIST>::=CEXPRESSIOND> | KEXPRESSTON LIST>?,*<CEXPRESSIOND

A PRNCEQURF CALL CALLS A PROCEDURE FROM WITHIN AN EXPRESSIONs IT
1S ASSUMEND THAT THE CALLEND PROCEDURE RETURNS A VALUE WHICH CAN
RF USED TO EVALUATE THE EXPRESSION IN THE CALLING PROCEDURE.

WHEN A PROCEDURE 1S DEFINED (3) ANY VALUES WHICH WILL BE PASSFD FROM
THE CALLING PROCENURE AT THE TIME OF THE CALL ARE REPRESENTED 3¥
VARTABLE NAMES IN THE VARIABLE NAME LIST FOLLOWING THE PROCENURE
NAME [N THE NEFINITION, THESF VARIARLEL TVTAKS THE VALUES NF THE
EXPRESSIONS IN THF PROCEDURE CALL EXPRESSION LIST IN THE ORUDER [N
WHICH THEY OCCUR,

THF VALUE OF A PRUCEDURE IS OETERMINED IN AN ASSIGNMENT STATEMENY
WITHIN THE PROCEDURE IN MHICH THE NAME OF THE PROCEOURE APPEARS
ON THE LEFT NF THE ASSIGNMENT SYMAOL (3-2-2),

EXAMPLE PRNCEDURF CALLS
PIVOT{AGAY 480, ]¢2,)eR=-3)
sust(al
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2-5 COMPUTATIONAL EXPRESSIONS

CCOMPUTATIONAL EXPRESSICN>::=? ¢ CEXPRESSION>
| 1= ' CEXPRESSIOND
I 'NIT *CEXPRESSION>
| CEXPRESSTOND* + *CEXPRESSTINON>
| CEXPRESSTIOND* =0 <EXPRFSS ION>
| CEXPRESSTOND* % CEXPRESSTOND
I CEXPRESSINND? /9CFXPRESSIOND
I CFXPRESS TOND #nt CEXPRESSIOND
J KEXPRESSINND* #¢CEXPRESSTOND>
| CEXPRESSTOND® AND *<EXPRESSION>
ICEXPRESSIOND? CR *<EXPRESSIOND>
I CEXPRESSTON>® IN *<CEXPRESSIINY
I1CEXPRESSICND? AND NOT *<EXPRESSION>
| CEXPRESSIOND>Y =v<EXPRESSTON>
| CEXPRESSTOND I ~x ¢ CEXPRESSIOND
| CEXPRESSIOND* > *CEXPRESS TOND>
| CEXPRESSIOND? C*CEXPRESSIOND
| CEXORESSTIOND* D=t CEXPRESSIOND
ICEXPRESSINND® <2 CEXPRESS IOND>

YUPERATORS® 4ODIFY OR CONNECT *NPERAND® EXPRESSINNS IN COMPUTATIONAL
EXPRESSTINSe, ALL COMPUTATIONAL EXPRESSIONS HAVE ONE OF TwO

GENERAL FORMS:

UNAPRY <UPERATORYCR-NPERANDD

AINARY <L=-0PERANNDCNP ERATORICR=-TPERAND>

2-5-1 OPERATOR CLASSES AND ALLOWABLE CONFIGURATIONS

EACH UPERATNR HAS A UNIQUE CONTEXT IN WHICH IT MAY BE USEDe THE
CONTEXT IS DETERMINED RY THE TYPES JF TH. ASSOCIATED OPERANDS.
AS A RESULT NPERATORS ARE CLASSED AS C*ARITHMETIC*, 'SET?,
SARITHMETIC TESY*, *SET TEST', AND °LOGICAL‘.

THE FOLLOWING TABLE DETERMINES THE TYPES OF OPERANDS ALLOWABLE -
WITH EACH CLASS OF NPERANDS,

L=JPERAND OPERATOR R-0OPERAND RESUT
TYPE C_ASS TYPE TYVE
ARITHMETIC ARTTHMET IC ARITHMETIC ARTTHMETIC
SET SET SET SET
AR[THMETIC ANTTHMETIC TEST ARITHMETIC LNGICAL
SET SET TEST SET LaGlICAL
LIS1CAL LOGICAL LNGICAL LOGICAL
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2-5=2 (OPERATOR DEFINITIONS AND PRECEDENCES

THE OPRK.TORS WHICH FALL INTC YHESE CLASSES AND THEIR MEANINGS

[RE SHOWN IN THE FOLLOWING TABLE. S0 THAT THE ORDER OF COMPUTATION
(N ANV COMPLICATED EXPRESSION WILL BE UNAMBIGUOUS, EACH OPERATOR
H85 A PRECENENCE (INDICATED BY A PRECEDENCE NUMBER) AND OPFRATIONS
WITH THE HIGHEST PRECEDENCE (NUMBER) ARE PERFORMED FIRST,

OPERATIRS WITH THE SAME PRECEDENCE NUMBER HAVE EQUAL PRECEDENCF

AND ARE PERFORMED FROM LEFT TO RIGHT,

NPERATNR JEFINITION TABLE

OPERATJR PRECEDEMCE USE INTERPRETATION

ARITHMETIC OPERATORS

t e 10 BINARY VERTICAL CONCATENATION

te? 65 UNARY NN EFFECY

- 65 UNARY NEGATION

LA 60 BINARY EXPONENTIATION

P 55 BIMNARY MULTIPLICATION

A 5¢ RINARY DIVISIUN

e 45 B1NARY SUM

tas 45 BINARY DIFFERENCE
SET OPERATORS

' AVD ! 40 BINARY SET INTERSECTION

' QR 35 BINARY SET UNION

tOAND NOT v 345 BiNARY SET RELATIVE COMPLEMENT
ARITHMETIC TEST OPERATORS

=t 25 BINARY IS EQUAL TO

=t 25 BINARY IS NOT EQUAL TO

1>a0 25 BINARY IS GREATER THAN OR EQUAL TD

1<a? 2% BINARY IS LESS THAN OR EQUAL YO

e 25 BINARY IS STRICTLY GREATER THAN

't 25 RINARY IS STRICTLY LESS THAN
SET TEST OPFRATORS

L 2¢ BINARY IS CINTAINED IN (IS A SUBSEY OF)
LPGICAL OPERATORS

YNQT 0 ) uNARy LOGICAL NEGATION

' AND 1 BINARY LIGICAL INTERSECYION

L R S S BINARY LOGICAL UNION
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2=5~13 SEMENTICS

EACH C IMPUTATIOUNAL EXPRESSION HAS THE FORM
CL={IPERANDMSOPFRATOR>CR-IPERANDD

‘THIS SFCTIUN DESCRIBES THE RESTRICTIONS PLACED UPON EACH
OPERAND AND SOME ADDITIONAL PROPFRTIES OF THE RESULTS,

ARITHMEZTIC NPERATORS

THE CURRENT VERSION OF MPL RESTRICTS ARITHMETIC DATA STRUCTURES
TO TWO DIMENSIONSe THIS RESTRICTION ALLOWS CONSIDERAALE IMPLICIT
COMPUTING POWER WITHOUT BEING OVERLY RESTRICTIVE FOR MATHFMATIC AL
PROGRAYMING APPLICATIONS, THUS ALL ARITHMETIC DATA STRUCTURES
(EVEN THE CONSTANT 15) CAN RF VISUALIZFD AS MATRICES.

IPERATUR PART CHARACTERISTICS

LK L L-0PERAND ANY ARITHMETIC QUANTITY,
R=NOERAND AN ARITHMETIC QUANTITY WITH THE SAME NUMBER
OF COLUMNS AS THE L-OPERAND,
RESULT THE VERTICAL CONCATENATION OF THE TWO OPERANDS
IT HAS THE SAME NUMRER OF COLUMNS AS EACH
OPERAND AND THE NUMBER OF ROWS EQUAL TO THKF
SUM OF THFE NUMBERS NF ROWS IN EACH OPERAND-

tet L-OPERAND NONE,
R~0CFRAND ANY ARITHMETIC JUANTITY,
RESULT SAME AS R-OPERAND,
. -t L-UPERAND NONE
' R-UPFRAND ANY ARITHMETIC QUANTITY,
FESHLT THE R-UPFRAND WITH ALL ELEMENT VALUE SIGNS
REVERSEN.
tewt L=TOERAND ANY ARITHMETIC QUANTITY WITH THE SAME NUMBER OF

ROWS AND COLUYNS, THUS THE L-OPERAND MAY
RE EITHER A SQUARE MYATRIX NR A *SCALAR®,
R<{1PERAND MUST BF A SCALAR (UNE RNOW AND ONE COLUMNY}
WITH A NION-NEGATIVE VALUE.
RESNTY THE L=DPERAND ILTIPLITO 8Y [TSELF THE NUMRER
OF TIMES SPECIFIED 3Y THE R-NPERAND,
1 THE L=-0CFRAND HAS MQSE THAN ONE RQOU AND
COLUMN ANY FRACTIONAL PORTIOH OF THE R-ONPFIAND
wilL 2F DROPPFN. (THERWISE 'ME L-OPERAND 1S A
SCALAR AND ANY OPOSITIVE VALUKES FNR THE R=0PERAND
ARE At LOWED,

. R . . . R - p T % i BT VTN e T R A i L 23
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SEMANTICS (CONTINUED)
PAKT CHARACTERISTICS
L=OPERANY  ANY ARITHMETIC JQUANTITY,
R=IPERAND  ANY ARITHMFTIC JUANTITY WITH THE SAME NUMBER 0OF
RNOWS AS THFE L-DPERAND HAS COLUMNS EXCEPT vuar
EITHFR OPERANND vMAY BE A SCALAR,
RESULT AN ARITHMSTIC NYANTITY WITH THE SAME MUMBER
OF RNOWS AS THE L=-PERAND AND THE SAME NUMFER
OF COLUMNS AS THE R=-0OPERAND. ELEMENT VALUFS ARE
THF RESULY OF CONVENTIONAL MATRIX MULTIPLICATI(N,
IF FITHER NPFRAND 19 A SCALAR THE RESULT HAS
THE SAME NUMRER (F ROWS AND COLUMNS AS THE NTHER
NP ERANN, '
L=UPERAND  ANY ARITHMETIC JUANTITY,
R=0PFRANN  ANY SCALAR ARITHMETIC QUANTITY,
RESULT HAS ALL THE PROPERTIES OF THE L-OPERAND
EXCEPT THAT ALL ELEMFNT VALUES HAVE BFEN
DIVIDED 8¥ THE R-PERAND,
L=UPERAND  ANY ARITHMETIC QJUANTITY,
Q-0PFRAND  ANY ARITHMETIC QUANTITY WITH THE SAME NUMRER
(IF RCOwS AND CNLUMNS AS THE (-0OPERAND,
RESULT AN ARITHMETIC QUANTITY WITH THE PROPERTIES

OF THE L-0PFRAND, ALL POINTERS ARE SET TO IERC,

SAME AS *+'(BIMARY)

SET NPERATORS

JPERATIR

¢ aND

PART

L=-OPERAND
R=IPERAND
RESULY

L= Pt RAND
R=-UPERAND
RESULT

OAND NIT Y

L=:'¥s R AND
R=-N0LTAND
ReiiL?y

CHERACTERESTICS

ANY SET,

ANY SFT,

4 SET CONTVAINING ONLY THNSE ELEMENTS WHICH
APPFARED [N AOTH THE L-(IPERAND ANND THE R-N7ERAND,

ANY SETY,

ANY SFT,

A SET CONTAINING ALL FLEMENYS WHICK APPEARLID

IN ETTHES THE L-QPERAND, THE d-0GPERAND AR a0TH,

ANY SET,

ANY SETY,

A SEY CONTAINING ALL ELEMENTS wH™CM APPEARFD
IN THME L-DPERAND BUT NOT N THE R<QPERAND,

T
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ARTTHMETIC TEST NPERATNRS

ARITHMETIC TEST )PERATORS IMPOSE THREE DIFFERFNT REQUIREMENTS
ON THEIR Tw0O OPERANNS., TO SATISFY THESE REQUIREMENTS BNTH OPEANDS
ARF TREATED AS MATRICES, THESE REQUIREMENTS ARF:
1) THF TWwD UPERANDS HAVE THE SAME NUMRER IF RNWS,
2)  THF Tuw) OFPFQANDS HAVE THE SAME NUMBER NF COLUMNS,
3) THE SPECIFIED RELATIONSHIP HILDS WITHIN EACH PAIR OF
CORRESPONNDING (L-OPERAND,R-UOPERAND) ELEMENTS,

OPERAT'IR  PART CHARACTERISTICS
L L~0PERAND ANY ARTTHMETIC QUANT (TY,
R=QPERAND ANY ARTTHMETIC JUANTITY, :
RES'ILT A LOGICAL QUANTITY WHICH IS TRUE ONLY IF

REQUIREMENTS 1)y 20, AND 3) ARE SATISFIED
WITH THE EQUALITY RELATIONSHIP,

¢at L=GPERAND ANY ARITHMETIC QUANTITY,
R=NPERAND ANY ARITHMETIC QUANTITY,
RFSULT A LIGICAL QUANTITY WHICH IS FALSE ONLY IF
REQUIRFMENTS 1)y 2)y AND 3) ARE SATISFIED
USING THF EQUALITY RELATIONSHIP,

' >=0 L~-OPERAND ANY ARITHMETIC QUANTITYS
R=UPERAND ANY ARITOMETIC JUANTITY,
RESULT A LOGICAL QUANTITY WHICH 'S TRUE ONLY IF
REQUIREMENTS 1), 2)y AND 3) ARE SAVISFIED
USING THF GREATER THAN NR EQUAL RFLATIONSHIP,
AN ERROR CONDITION EXISTS IF FITHER OF
REQUIREMENTS 1) AND 2) IS NOT SATISFIED,.

<= SAME AS *>=' EXCEPT THAT THE RELATIONSHIP FOR RFQUIREMENT
3) IS LESS THAN JR EQUAL.

"H:* SAME AS ">z EXCEPT THAT VHE QELATIONSHIP FOR REQUIREMENT
3) IS STRICYLY GREATER THAN,

' SAME AS *>=' EXCEPT THAT THE RELATIONSHIP FOR REQUIREMENT
3) IS STRICTLY LESS THAN,
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2=-5=13 SEMANTICS (CONTINUED)
SET TEST OPERATORS
NPERATIR PART CHARACTERISTICS
" IN ' L-UPERAND ANY SFT,
R=0PFRAND ANY SFT,
RESULT A LOGICAL QUANTITY WHICH IS TRUE ONLY IF ALL

COGICAL OJPERATORS
OPERATOR PART

*NOT * L-0PERAND
R=NPERAND
RESULT

Y AND ' L-NPERAND
R-(1PERAND
RESHLT

¢ OR ' L-MPFRAND
R=-0PERAND
RESULY

ELEMENTS OF THE L-0OPERAND ARE ALSO ELEMENTS OF
THE R=0OPERAND,

CHARACTERISTICS

MUNE,

ANY LOGICAL QUANTITY,

A LOGICAL QUANTITY WHICH Is FALSE IF THE
R-NPERAND IS TRUE AND IS TRUE IF THE R-DPERAND
IS FALSE.

ANY *0OGICAL QUANTITY.

LNY  JGICAL QUANTITY, o

A LOGICAL QUANTITY WHICH IS TRUE ONLY IF BOTH
THE L-(OPZRAND AND THE R-NPERAND VALNES ARE TRUE.

ANY LOGiCAL QUANTITY,

ANY LOGICAL QUANTITY,

A LUGICAL QUANTITY WHICH IS FALSE CONLY IF

BOTH THE L-OPERAND AND THE R-OPERAMND VALUFS ARF
FALSE. '

7L s a RS
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2-6 NTHER EXPRESSIONS

MPL CONTAINS CONSTRUCTIONS WHICH ARE NOT PRUPERLY CLASSED AS
COMPUTATIONAL EXPRESSIONS, BUT WHICH ARE USED TO COMBINE VARIARLES,
CONSTANTS, NK MORE COMPLICATED EXPRESSIUNS INTO LARGER EXPRESSIONS,

2=5=~1 DOMAIN ITEMS
CDOMAIN ITEM>22=t(*CEXPRESSIOND? gneo ! CEXPRESSIOND )

DOMAIN ITEMS HAVE VALUES WHICH ARE SETSe THE SETS ARC SPECIFIED

BY SPECIFYING THE LOWEST AND HIGHEST VALUED ELEMENTS ANMD ASSUMING
THAT ALL INTERMEDIATE VALUED ELEMENTS ARE IN THE SET, BOTH
EXPRESSIONS SHNULD HAVE SCALAR ARITHMETIC VALUFS AND ONLY THE

WHOLE MNUMBER PARTS NF THESE WILL BE USEDe THE VALUE OF THE

FIRST EXPRESSIUN SHOULD BE LESS THAN THE SECONDe IF THE EXPRESSION
VALUES ARE EQuAL THE SET WILL CONTAIN ONE ELEMENT, [IF THE FIR:T
EXPRESSION IS GREATER THAN THE SECOND THE SET WILL BF EMPTY,

EXAMPLE DCMAIN ITEMS
(lysoae™)
{[+J-Kyeaesbl-1)
{HEREyoe o9 THEPE)

2=6=2 CONCATENATOR
CCONCATENATOR>2:=* (*CEXPRESSION LIST> )

A CUNCATENATOR HAS AN ARITHMETIC VALUE, [T ALLOWS THE CONSTRUMTICN

OF ARITHMETIC DATA STRUCTURES BY THE EXPLICIT 4ORIZONTAL CONCATENATION
(ADJACENT PLACEMENT) OF SEVERAL SMALLFR STRUCTURES WITH ing CAMC
NUMBER OF RUWSe THE INDICES OF THE RESULTING STRUCTURE BEGIN

AT NNE. VERTICAL CONCATFNATION IS ACCOMPLISHED USING THE

OPERATIR ',

EXAMPLE CONCATENATORS
{1930498,10C)
{3%] (REK, 2% 143 ,]4),13,€9)
{4L,B)

AU, I o M 3, W o e bt
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2=6-~13 ARRAY - CONSTRUCTOR
CARRAY CONSTRUCTOR>::=t (*<FXPRESSIOND>! *<FOR PHRASE>')?

AN ARRAY CUONSTRUCTOR HAS AN ARITHMETIC VALUEe. IT ALLOWS THE
CONSTRUCTION OF ARITHMETIC DATA STRUCTURES BY THE IMPLICIT HURTZONTAL
CONCATENATINN OF SEVERAL EXPRESSINN VALUESe THUS ALL EXPRESSIONS
BEING ZONCATENATED MUST KAVE THE SAME NU 'BER OF ROWSs THE

FOR=-PHRASE (3-2-5-2) GOVERNS THE ITERATIVE PRNCESS WHICH PROVINES
VALUES 7O BE CONCATENATED.

EXAMPLE ARRAY CONSTRUCTORS
(A(*,1)+B8 FOR I IN S)
(BCIY FOR I IN (lyseeoN))
(C(J) ¥OR J 1IN S|F(J) >= D)

2=6=4 SUBSET SPECIFIER

CSUBSET SPFCIFIER>::=%(*<VARIABLE NAME>* IN S<EXPRESSION>
| CEXPRFSSIOND )

SURSET SPECIFIERS PRODUCE SETSe THEY F(R't SETS FROM LARGER

SETS HY SELECTING ELEMENTS WITH A GIVEN PRUPERTY, THE VARIABLF
NAME REPRESFNTS ELEMENTS SELECTED FROM THE *PARENT® SET SO THAT
THEY MAY BE TESTED FUR THE PROPERTY, THE FIRST EXPRESSION
DETERMINES THF PARENT SET AND MUST BE SET VALUEDe THE SECOND
EXPRESSION TESTS THE PROPERTY AND MUST BE LOGICAL VALUEDe ONLY
TH(SE ZLEMENTS IN THE PARENT SET FOR WHICH THE LOGICAL EXPRESSION
IS TRUE ARE INCLUDED IN THE NEW SFT,

FXAMPLE SUBSET SPECIFIFRS
(J IN SIA(JyK)I<=R)
(J INS | J>=D AND J~= YY)

L e TG




S L

*

ey

3 ' * '

r e OGN MER GNP Gwy Gy pey -y ey

|

3(1)
3 PROGRAM CONSTRUCTION

CPRAOGRAM> 2 2= PRUICENUYRE *<PRNCEDURE IDENTIFIERD
<STATEMENT SEQUENCEDT'FINIt 3
| <PRNAGRAM> *PROCEDURE *<PROCEVURE ITDENTIFIERD
CSTATEMENT SEQUENCED*FINTe

<PROCEDURE TUENTIFIFR>::=<VARIABLE NAME>
IKVARTABLE NAME>® (*<VARIABLE NAME LIST>'}?

CVARTABLE NAME LIST>::=<KVARIARLE NAME>
|KVARTABLE NAME LISTD!,*<VARTABLE NAMED>

A PROGRAA IN MPL IS A COMPLETE STATEMENT OF AN ALGORITHM AND

IS MADE UP OF ONE NR MORE PROCEDURE DEFINITIONSe IT IS ASSUMED
THAT THE OROGRAM BEGINS WITH THE FIRST PROCEDURE SO DEFINEDe

IN THE CURRENT VERSION OF THE LANGUAGE PROCEDURE DEFINITIONS

MAY NIOT BE NESTED (APPEAR WITHIN OTHER PROCEDURE DEFINITIONS)
ALTHNUSH PROCEDURE CALLS MAY BE NEZTED TO ANY DEPTH (PRNCEDURE A
CALLS PROCEDURE B WHICH CALLS PROCEDURE Cy ETCele

PROCEDJRE REFINITINNS BEGIN WITH THE KEYWORD *PROCEDURE® AND
END WITH THE XEYWORD *FINI*e NOTE THAT PROCEDURE DEFINITIONS
HAVE THE SAME GENERAL FORM AS A COMPLEX KEYWORD STATEMEIT (3-2-5),

THE PRUCEDURE IDENTIFIER PRNVIDES NAMES FOR THE PROCEDURE AS WFLL

AS FOR THE INFORMATION WHICH WILL BE PASSED TO THE PRNCEDURE RAY

A CALLING PROGRAMe WHEN THE PROCEDURE IS CALLED THE PARAMETER
EXPRESSIONS (SEE PROCEDURE CALLS (2-4)) ARE EVALUATED AND THESE
VALUES ARE USED IN THE CALLEN PROCEDURE WHEREVER THEIR REPRESENTATIVE
NAMES JCCUR,

EXAMPLZ PROGRAM CNMPOSEND CF TWO PROLECURES

PROCEDURE PROG
o0

SURTJ KD S
LX N

FINTSS

PRUCFDURE SUBLEF)
o0 e

RETUXNS

FINISS

3-1 STATEMENT SEQUENCES
CSTATE 4ENT SEQUENCE>: :=CSTATEMENT)> [CSTATEMENT SEQUENCEXCSTATEMFENT>
A STAT.MENT SEQUENCE IS A SEQUENCE OF NNE QR MORE STATEMENTS,

THIS CINCERT 1S USEFUL FOR DEFINING PROGRAM; (3} AND COMPLEX
KEYWOR) STATEMENTS (3-2-S),
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3-2 STATEMENTS

<STATEVENT>::=<LAREL> 2 *CSTATEMENT>
I CASSIGNMENT STATFMENTDY
I CPRCCEDURE CALL STATEMENT>
| CKEYWORD STATEMENTD

STATEMENTS IN MPL DETERMINE THE SFQUENCE OF (QPERATIONS WHICH
MAKES A PRUGRAM MEANINGFULa

3-2-1 LABELS
CLABEL>23=KVARTABLE NAMEX|*(*LDIGIT STRING>*

LABELS ARE EITHER VARIABLE NAMES OR STRINGS OF DIGITS ENCLOSED
IN PARENTHFSESe SINCF MPL IS WRITTEN IN A FREE FORMAT, A LABREL
MUST HBE SEPARATED FROM THE FOLLOWING STATEMENT BY A COLON 029,
LAoELS MAY DMLY BE REFERENCEC RY *'GND T(' STATEMENTS (3-2-4-2),

FXAMPLE LARELED STATEMENTS
LABEL: VAR:=EXP;
LOCATION_B: VAR2:=EXP2;
(13): VAR3:=EXP3;

3-2-2 ASSIGNMENT STATEMENTS
CASSIGNMENT STATEMENT>::=<KVARIABLED>*:=*CEXPRESSIOND*3?

[KVAKTABLED* :='<EXYPRESSINI Y *CFOR PHRASED' ;!
IKVARTABLED>® s=SCKFXPRFSSION>Y ¢ [F ¢CEXPRESSION>®:3 ¢

ON THE LEFT OF vHE ASSIGNMENT SYMAROL TAKES THF VALUE OF THE§

g ey ey Guee ey Say ew Gy Geaed Gy Gy Op

AS THE VARIARLE,.

»—

EXAMPL : ASSIGNMENT STYATEMENTS
I R
MATRIX: (A B) ¥
(CyC)
YES_OR_NJ:aMATR IX~=INVERSE(A)
. SET1:=2SET2 AND SET3I OR SET4;

R
»

| KVARTABLED :=*<FYPRESSION>' WHERE ¢<SYMBNL SUBSTITUTFRD 3¢
ASSIGNMENT STATEMENTS ALTFR THE VALUES OF VARIABLESe THE VARIAALE

EXPRESSIIN NN THE RIGHT, THIS EXPRESSION MUST HAVE THF SAME TYPF
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3-2~-2 ASSIGNMENT STATFMENTS (CONTINUED)

THE ASSIGNMENT STATEMENT HAS SEVERAL MODIFIED FORMS WHICH ARE
PROVINED TO MAKE MPL A MORE *NATURAL® LANGUAGE.

THE ITERATED ASSIGNMENT STATEMENT

THE TTCRATED <5. ICNMENT STATEMENT PRUVIDES A METHOD FOR ITERATIVELY
PERFORMING AN ASSIGNMENTs THIS FORM [S EQUIVALENT TO THE SHORT
FORM [TERATE) STATEMENT (3-2-5-2), FOR PHRASES ARE ALSO DISCUSSED
IN {2-2-5-2),

EXAMPLE ITFRATED ASSIGNMENT STATEMENTS
A(P_ROW¢J) 2=A(P_ROWyJI/A(P_ROW,P_COL) FOR J IN COLOOM(A )3
Ally®)2=A(T,*)-AC14P_COLI®A(P_ROWy*) FNR T IN ROWDOM(A) |
[~=2_ROW;

CCNOITIONED ASSIGNMENT STATEMENT

THE CONDITIONED ASSIGNMENT STATEMENT ALLOWS THE SPECIFICATION NF
A CONDITION UNDER WHICH AN ASSIGNMENT WiLL OCCURs THIS FORM iS¢
EQUIVALENT TO THE SHORT FORM OF THE CONDITIONED STATEMENT (3-2-5-1),

ENAMPLE CONDITIONED ASSTGNMENT STATEMENTS
$=B-A(%,J) IF x(8)=1;
B{IV1:2R(T) IF R(II>203

THE ASSIGNMENT STATEMENT WITH SYMANL SUBSTITUTION

THE ASSIGNMENT STATEMEMT WITH SYMBOL SUBSTITUTION ALLOWS THE

USER Ti) REDUCE THE APPARENT COMPLEXITY NF EXPRESSIONS B8Y USING

& SINGLE SYMBOL TN REPRESENT A LARGE AND COMPLEX STRING OF
CHARACTERS AS DEFINED BY THE SYMBOL SUBSTITUTOR FNLLOWING

THE *WHERE' (SEE (3-2-4-1) FNR A DEFINITION NF SYMBOL SURSTITUTORSI),
UNLY A SINGLE SUBSTITUTION If ALLOWED SINCE THE '3% STATEMENT
TERMINATOR ALSO TERMINATES YHE STRING TO RE SUBSYITUTFEDe. THIS

FORY [5 SIMILAR TO USIMG A *LET® STATEMENT EXCEPT THAY THE

(SYMARNL 4CHARACTER STRING) FQUIVALENCE ONLY HOLDS WITHIN THE
ASSIANAENT STATEMENT DFFINING [T,

CXAMPL Y ASSIGNMENT STATEMENTS WiITH SYMAOL SUBSTITUTION
RisPeQ WHERE P:sINVFRSE((A,B)I$(C,0)):

IMPLICIT DEFINY STATEMENT

IT A VARIABLE FIRST APPEARS AS LEFT MEMBER OF AN ASSIGNMENT STATEMENT WITHOUT ITS
TYPE STRUCTURE AND STORAGE REQUIREMENTS HAVING B"EN PREVIOUSLY DECLARED BY A DEFINE
STATEMENT (3-2-4-4) THESE REQUIREMENTS ARE DETERMINED BY THE EXPRESSION THAT APPEARS
AS RIGHT MEMBER. THE IMPLICIT DEFINE CONCEPT IS UNDER DEVELOPMENT AND WILL NOT BE
DISCUSSED FURTHER.

e et 5 48B3 e
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3(4)

3-2-3 PROCEDURE CALL STATEMENT
<PROCEDURE CALL STATEMENT>::=(PROCEDURE CALL>';!?

A PROCEDURE CALL STATEMENT CALLS A PROCENURE WHICH DOES NOT RETURN
A VALUE (VSe THE PROCEDURE CALL WHICH CALLS A PROCEDURE FROM WITHIN

AN EXPRESSION)e SINCE THF ORNOCEDURE CALL STATEMENT APPEARS

ALONE (NOT IN AN EXPRESSION), ANY VALUE RETURNEN BY THE PROCEDURE
IS LOST, :

EXAMPLE PROCEDURE CALL STATEMENTS
PIVOT(A,P_ROW,P_COLYS
PROCL1(A4ByCyDI
PROC2(14J=3%KyJ=2 yWHAT_NOW,(A4ByC) )3

3-2-4 KEYWORD STATEMENTS

CKEYWORD STATEMENT>::=<LET STATEMENTD>
*<GM TN STATEMENTD
ICRETURN STATEMENT>
| KDEFINE STATFMFENT>
I<RELFASE STATEMENT>
| <CCONDTITIONED STATEMENT>
| CITERATED STATEMFNT)
{<BLOCK STATEMENT>

EACH KEYWNRD STATEMENT BEGINS WITH AN MPL KEYWORDe THESE
STATEMENTS ARE DIVINED INTO SIMPLE AND COMPLEYX STATEMENTSe COMPLEX
STATEMENTS HAVE SPECIAL BEGINNING AND ENDING SYMBOLS AND CONTAIN
GTHER STATEMENTS WITHIN THEMe THIS SECTION DISCUSSES NNLY THE
SIMPLE KEVYWIRD STATEMENTS,

3-2-4-1 LET STATEMENT

CLET STATEMENT>::s*LET *CSYMRUL SURSTITUTER>® ;¢
| *SAME LOCATION **(*CVARTABLE NAMED® " CVARIABLE NAME>® )06

<SYMBIL SUASTITUTER>::=CVARIABLE NAMED>®*:-*CCHARACTER STRING>
IKVARTACLE NAMED*(*CVARTABLE MAME LIST>? )20 :20CCHARACTER STRINGY

LET STATEMENTS DIFFER FROM OTHER MPL STATFMENTS RY MODIFYING

THE PR JGRAM AT TRANSLATION TIME INSTEAD OF EXECUTION TIME, THrY
CAN MAKE 4 OROGRAM EASIER TN WRITE AND/OR MNAE READAALF BY
ALLOWING THF PROGRAMMER TO REPRESENT CHARACTER STRINGS AY SYMRNLS.

THE TW ) PARTS UF A SYMROL SUBSTITUTER ARE THE CHARACTER STRING (1=3) TO THE
FIGHT )F THE ASSIGNMENT SYMBOL AND THE IDENTIFIER TO THE LEFT,

THE T)ENTIFIER PROVIDES A NAME FOR THE CHARACTER STRING AND,

(PTIANALLYy MAMES FOR PARAMETERS, [F TME STRING NAME IS DEFINFD

WITHUST PLRAMETERS EVERY OCCURREMCE NF THE NAME [N THE “OLLOWING

VEXT WILL AE REOLACED RY THE CHARACTER STRING, THE PARAMETERS

PEREOPE Y
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3(5)
3-2-4-1 LET STATEMENT (CONTINUED)

ALLOW 400IFICATION OF THE CHARACTER STRING AT THE TIME OF REPLACEMFNT
WAEN (OCCURRENCrS OF THF PARAMETER NAMES IN THE CHARACTER

STRING ARE REPLACED WITH THE CHARACTER STRINGS PRNAVIDEN AS

PARAMETERS WITH THE STRING NAME, [IF CNMMAS MUST APPEAR WITHIN

THESE 2ARAMETFR CHARACTER STRINGS, TwD MUST BE USFD FOR EVERY
INTENDED SINGLE NCCURRENCEs THUS (Ay8) AS A PARAMETER CHARACTER
STRING IN & LET STATEMENT MUST BE WRITTEN (A,,8)s WHICH IS TO AVOID
HAVING THE CUMMA TREATED AS A PARAMETER SEPARATOR, THE SEMICOLON
TERMINATES THF CHARACTFR STRING AND 3N MAY NOT OCCUR WITHIN IT.

AS A RATHER EXTREME EXAMPLE, THE STATEMENT
LET A(Cy1) 3= BLI)*CLJ)3
FOLLUWED RY
NIK)2=2A(R¢FyN) 3
YIELNS
OD(K) s=BINI®ReF(J)3
WHILE THE STATFMENT
LET LOGP(VAR,START,INCySTOP):=FOR VAR:=START STEP INC UNTIL
STAP 203
FCLLUW=D BY
LOOPLTe3 44K 15,N) A(I)2=B(1);ENDFNR:
YIELDNS
FOR Tsx3xjJek STEP 15 UNTIL N DO A(I):=B(1)IENDFORS

CERTAINLY THESE ARE RATHER OBSCURE USES IN A MATHEMATICAL
PROGRA 4MING LANGUAGE, BUT THEY ARE INCLUDED T0O GIVE THE READER
IN IDEA UF THE POWER WHICH IS INMERENT IN THIS CONCEPT,

IN a “)RE CNNVENTIONAL USAGE THE STATEMENT
LET BIT):sA(Te*inX;

FOLLOWeD RY
IF AB(11>0, GO TO (5)3

YIELDS
IF AlL,y®)®X>Cy GO TU (5)3

THE FURM USING THE KEYWORD *SAME LOCATION * INDICATES AN EQUIVALENCE
AETWEEN THE TWO SYMHOLS WITHIN THE PARENTHESFS,

A SHORT FORM OF LEl STATEMENT USING INVERTED WORD ORDER WITH 'WHERE' INSTEAD OF
'LET', 1S DISCUSSED UNDER (3--2-2),

Jedv4=2 G TC STATEMENT

<G YU STATEMENT> 13¢50 TO *CLABELD> !

GO TN STATEMENTS ALTER THF NORMAL SEYUENTTAL FLOW NF PROGRAM
EXECUTION AY TRAMSFERMING CONTROL T} THE PNINTY IN THE PROGRAM
INNICATED) RY THFE LAREL (3=2-1),

FXavMeL- G T STATEMENTS

A0 TO LOCYS
U TN 1231

e ot SR
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1-2-4-3 RETURN STATFMENT
CRETURN STATEMENT>::='RETURNGO G

THF RETURN STATEMENT Kkt TURNS CANTROL FROM A CALLEN PROCENDURE
T IT° CALLING PROCEDURE .

EXAMPLE USE IJF THF RETURN STATEMENT IN A PROCEDURE
PROCEDURE EQUELIALY)
IF NDOM(A)~=DCM(B) THEN

FQUAL:=FALSF:

RETURN 3

ENDIF;3
FOR [ IN NDUMLAY,

[F A(I}~=B(1) THEN
ENUAL:=FALSE;
RETURN S

ENDILF;

EJUAL:=TRYE;
RETHRNS
FINIS

3-2-4-4 DEFINE STATEMYENT

CDEFINT STATEMENT>:2='DEFINT *CVAR[ABLE NAME LIST)CTYPE PHRASE>
CSHAPE PHRASEDCSIZE PHRASED>

<TYPE OHRASE>::=* ARITHMETIC*{* LNGICAL*|* SET*|* CHARACTER?
1<NJLL PHRASED>

CSHAPE PHRASE>:t=¢ RECTANGULAPY|Y DIAGNONAL'|® UPPER TRIANGUL AR?
{* LOWER TRIANGULER|® ROW'1® COLUMN®|®* SPARSE WITH ¢
CEXPRESSION>Y NONZEROS® [<KNULL PHRASED

CST7F PHRASE>::=CEXPKIESSION>Y RY '<CEXPRESSTOND
| CEXPRESSIOND | KNULL PHRASED

REF(IRc A VARTARLE NAME MAY BF USED IN A PROGRAM THE TYPE,

STRUCT JRE, AND STNRAGE PEQUIPEMENTS OF THE VALUES WHICH [T

HEP1 e SENTS AUST HE DECLAREN: THE ONLY EXCEPTIONS ARE THE VARIABLES
USCY B4 ITERATEN STATEMENTS (3-2-5-21 AND ARRAY CONSTRUC TORS (2-6-3),
ANN SET CLEMENT REPRESENTURS USED IN SUBSET SPECIFIERS (2-6-4).

SEE IMPLICIT DEFINE ASSIGNMENT STATEMENT UNDER 3-2-2.

VARTASLE NAVME LISTS ARF NEFINED UNDER PRNGRAMS (1),

THT TYPE PHIIASE DETERMINES wHETHMER THE VALUE OF THE VARTABLE IS
Tu 3¢ TREATEN aS AN ARITHMETIC, LUOGICAL, SET, OR CHARACTER
QUANTI Ty, TF THIS PHRASE IS OMITTED THE VALUE IS ASSUMED T0O B¢
A THveT]Z,

THE SHAPE O-RASE "“AY CNLY BE USED WHEN DEFINING ARITHMETIC
QUAMTITIES AND DETERMINES THE STRUCTURE OF SPACE RYQUIRED FNR
STARING THT NATA &S WELL AS ITS ORGANIZATIONe 1F THE SHAPE
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Y=2<-b="% DFFINF STATCHMENT (CONITINVED)

PHRASE IS OMITTED THE DEF&ULT ASSUMPTIONS ARE:

DIMENSIOIN NEFAULT SHAPE
2 RFC TANGUL AR
1 COLUMN

THE MUDIFIEXS *RECTANGULAR®, *DIAGNNALYy *UPPER TRUANGULAR®, ANMN
LOAFR TRIANSULAR® ARE UNLY MEANINGFUL WHEN DEFINING TWO OIMENS IONAL
QUANTITICS (MATRICES) WHILE THE MODIFIERS *ROW® AND *COLUMN?

ARE MEANINGFUL ONLY WHEN DFFINING NNE NIMENSIONAL QUANTITIES
(VECTURS), THE MODIFIFR ¢SILRSE? CAN CONSERVE STORAGE WHEN

THERE IS & PREDOMINANCE OF ZFRO ELEMENTE IN THE ARCPAY, THE
EXORF33iIN IV THE SPARSF MONTFIER MUST B8F A SCALAR VALUED

ARITHMETIC EXPRESSION IN THAT [T INODICATFS THE NUMBER OF ELEMENTS

(IF TME SPARSE ARRAY WHICH ARE ACTUALLY TO BE KEPT,

THE STZZ PHRASE SPECIFIES THt NUMBER OF OIMFNSIONS OF THE VAPIZBLE
AS WELL A5 THE RANGES OF THE INDICFS ON EACH NF THESE DIMENSIONS,.
THE EXPRESSIONS IN THE SIZE PHRASE MUST BE EITHER DOMAIN [TEMS
(2-6=1) OR SCALAR ARITHMETIC EXPRFSSIONSe CNOMAIN ITEMS GIVE

AOTH THE JYPPER AND LUWER BiWUND ON THE RANGE OF THE SUBSCRIPT WHILE
SCALAR ARJTHMETIC EXPRESSICNS NETERVMINE ONLY THE UPPER B0UND

ON THE SURSCRIPT RANGE AND A LJIWER AOUND OF ONE IS ASSUMED.

THE TYPE PHRASE, SHAPE PHRASF, A’ O SIZE PHRASE MAY APPEAR [N

ANY ORJER IN A DEFINE STATENENT,

EXAMPLE DEFINE STATEMENTS
DFFINE JoK ARITHMETIC:
DEFINF SET1.SCT2,5L73 SET:
DEFINE STRINGL CHARACTER:
DFFINE A (loeee ™} PY (loasesNi2E
DEFINE A 4 BY N3
DEFINE C N 0W;
NFFINE SPARSE_A M 3y N SPARSE WITH [&N NONZEROS:

Yo 2=6-5 RELEASE STATEMENT
CRELEA IS YTATEYLNTI 12t RELEASFE "CVARIAHRLE NAME LIST>3

THE RELFASE STVATEMENT EXPLICTIYLY RELEASFS THE STORAGE ALLOCATED
HY R AFTEM THE CORKESPUNDING DFFINE STATEMENT(A=2<4-64), IV

1S IVMPRINPEN TN RELEASE & VARIAALF WHICH wWAS DFFINED OUTSIDE

OF THE CJRKRENT BLOGK (3=2=%-3), AELEASE STATEMENTS REFERENCEINMG
VAQLAALF NAAES wWICH MAVE NIT BEEN OEFINED DR HAVE ALRFADY BEEN
QELTASSN AKE TUNURED, THE RFLFASE STATEMENT ALSO INPLICHITLY
RELEASSY SLL STRRANE wHICM 483 DEFINED AFTER ANY VARTABLE IN

THE NASE LIST (SEF (¥=2-5=3) FOR AN EXAMPLF I,

ExAoLe RAELFASE STATCMENTS
QELEASE Al
RFELTASE AB8,C NP, T
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3-2-5 COMPLEX KEYWNRD STATEMENTS

THE FOLLIWING SECTION DISCUSSES COMPLEX KEYWORD STATEMENTS.
THESF STATEMENTS ALL HAVF THE FORM

CINTRODUCT IOND>CSTATEMENT SEQUENCEDCTERMINATIOND

3-2-5%-1} CUNNDITIONED STATEMENT

(CUNDIT!DNED STATEMENT> 3=V F *CEXPRESSIOND*, ' <STATEMENT>
IYIF *CEXPRESSIOND! THEN ¢CSTATEMENT SEQENCED>
<OR IF SEQUENCEOKOTHERWISE PHRASED*ENDIFto 3

<OR IF SEQUENCE>::=<NULL PHRASE>
IKOR 1F SEQUENCF>'OR [F 1CEXPRESSINM>® THEN ¢
CSTATEMENT SENUENCE>

COTHERWISE PHRASE>::=®OTHERWLISE *CSTATEMENT SEQUENCE> | KNULL PHRASE>

A CONDITIONED STATEMENT ALLOWS THE JSER TO SELECT CUNDITIONS
UNJER WHICH STATEMENT(S) WILL BE EXECUTED, THF SHORT FORM (5
USED INLY WHEN A CONDITIUON GOVERNS THE EXECUTION NF A

SINGLE STATEMENT, THE LONG FURM ALLIMS THE TESTING OF SEVERAL
MUTUALLY EXCLUSIVE CONDITIONS, WHEN A CONDITION IS SAVISFIED THE
STATEMENTS FOLLOWING THE TEST ARE EXECUTED AND CONTROL PASSES

T THE END OF THE STATEMENT, TVHE EXPRESSIONS FOLLOWING THE
KEYWORD YIF* AND THE KFYWORD *OR IF* ARE LOGICAL VALUED.
SPECIFICALLY THE L olICAL EXPRESSION FULLOWING THE ‘IF* (S

by b G e i b oy O

oo

i

- ANl COMTROL THEN PASSES TO THE *ENDEF*s [IF THE EXPRESSION IS
© FALSE THE EXPRESSION IN THE NEXT FOLLOWING *OR 17 I3 EVALUATED
4ITH THE SAME ACTIONSs [IF AN 'OTHERWISE® [S FNCOUNTERED aLL
STATEMENTS [MMENIATELY FOLLOWING YHE *OTHEOWISE® ARE EXECUTED,

EXAMPLE CONDITIONEDN STATEMENTS
IF 7~20 , GO TO NON_ZERQO:
IF A(e,jimR, A{®,))2=Al*,XK);
IF As® THFN
0 TO A_EQUAL_B?
N 1€ Asf, TMEN
31 TN A_NE_B_BUT_EQ_C:
NR [F Jask AND ND>I®R THEN
CR R LH
OTHERWISE
LR R T
Craky
60 T ND_GUOD
ENDIFS

SEE ALSO CONDITIONED ASSIGNID STATEMENT UNDER (3}-2-2) WHERE A SHORT-IF /0PN if
INVERTED ORDER IS DISCUSSED. '

EVALUATED AND IF TRUE THE FNULOWING STATEMENT SEQUENCE IS EXEC'TED

¥

A ALt R
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3(9})
3=2-5=2 ITERATED STATEMENY

CITERATED STATEMENTD: :=<FUP PHRASED?, *(STATEMENT>
| <FOR PHRASFED>' O *<STATEMENT SFQUENCE>*ENDFOR®* ;¢

CFUR PHRASED::=*'FOR *CVARIARLE NAME>' IN *EXPRESSION>
[*FOR "CVARTARLE NAME>' {N "CEXPRESSIOND>*|9<CEXPRESSIOND
] *FOR SCVARTABLE NAMED ! :='CEXPRESSION>® STEP ¢
CEXPRESSIOND® UNTIL *<EXPRESSIUND>

THE FOR PHRASE GOVERNS THE INDEXING OF AM ITERATION, 0NNE NF THE
Twn Fux43 INDICATES AN INOEXING OVER ELEMENTS OF A SET, NAMES THE
INDEX, SPECUFIES THE SET, ANC ALLOWS ELEMENTS OF THE SET TO RE
SFLECTIVELY DISCARDED, ON EACH CYCLE NF THE ITFRATION THE INDFX
TAKES ION 2 NEW VALUE FROM THE SET, THIS INDEX MAY BE USED TD
AFFECT STATEMENTS WITHIN THE SCNPE OF THE ITERATION., SELECTIVE
CISCAR)IING NF FLEMENTS IS OEQFNRMED BY THE UPTINNAL EXPRESSINN
FALLOWING THE *SUCH THAT® SymBOL (*1°%), HENCE THE INDEX VARIARLE
AND FIRST EXPRESSION MUST RE SCALAR ARITHMETIC QUANTYITIES, THC
SECOND EXPRESSIUN MUST BF SET VALUED, AND THF OPTIONAL THIRD
EXPRESSION MUST RE LOGICAL VALUED.

THE SECOND FORM SPECIFIES THE INDEXING IN A MORE CONVENTIONAL

MANMER IN wHICH THE INDEX [S GIVEN A STARTING VALUE FOR THE FIRPST
CYCLE AND THAT VALUE IS INCREMENTED BY THE STEP ON EACH SUCCESSIVE
CYCLEs THE TERMINAL CONDITION IS TESTED ON EVERY CYCLE BFFORE

&4Y FNCLUSED STATEMENTS ARE EXECUTED., EXECUTION OF THFSE STATHMSENTS
OCCURS A5 LING AS THE CUNDITION IS NOT SATISFIEDe THUS THE VARIAHLE
NAME AND THE FIRST TWO EXPRESSIONS ¥UST BE SCALAR ARITHMET IC
QUANTITIES WHILE THE TERMINAL CUNDITION EXPRESSION MUST RE LOGICAL
VALUED, THIS SECIND FORM NDOES NAT PANVIDE AN ADDITIONAL TEST FCR
SCREFNING INDICES,

EXAMPLS ITSRATED STATEMENTS
FOL T IN (losaerMly ALTI:=2R(T,4J13
FOR 1 IN SETL | I-=F, FOR J IN CET2, All,Jd12=2%4;
FOR 1 IN SET? OR SFTY | Bt:i)>=0 NN
Q([Ve==A(T1)3
R:zRe:
TNNENRS
=i Kia] STEP 2 UNTIL Kd>sh, A{K):=R(K);

SEE ALSO ITERATED ASSIGNMENT STATEMENT UNDER (3-2-2) WHERE THE ABOVE FIRST (SHORT)
FORM IS DISCUSSED IN INVERTED ORDER.
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3-2-5-3 BLOCK STATEMENT

a T

KBLICK STATEMENT>::=*BLOCK *<STATEMENT SEQUENCE>'ENNBLOCK®*3?

ALLOCATION AND HANDLING CF STORAGE IS A MAJOR PROALEM IN MPL SINCE IT
WILL BRE USED TO SOLVE PROURLEMS INVOLVING LARGE AMOUNTS OF DATA,
THE AL JCK STATEMENT ALLOWS THE PROGRAMMER TN NIVIDE HIS PROCEDURES
INTO BLOCKS WITHIN WHICH HE CAN ALLOCATE (DEFINE (3-2-4-4))
STURAGE, THIS SPACE IS AUTOMATICALLY RELEASFD WHEN CONTROL
LEAVES THE BLOCKe 1IN ADDITICN STNRAGE MAY BE EXPLICITLY
RELEASED (3-2-4~5) ELSEWHERE IN THE BLOCK IN WHICH IT WAS
NDEFINEN, BUT IN NN OTHER BLOCKe IN THIS CASE STCRAGE IS RELEASED
I[N AN )JRNER QOPPOSITE THAT OF DEFINITIONe THUS THE SEQUENCE

DEF INE A3

NEFINE 83

o 0 *

RELEASE A
CAUSES B8)TH B AND A TO BE RELEASEN IN THAT ORDERs NOTICE THAY
A PROCEDURE IS AN IMPLIFD BLOCK STATEMENT, :

EXAMPLE BLOCK STATEMENTS
BLOCK
DEFINE MATRIX M4l BY N+l
MATRIX:=(A,R) &
(Co2)s
ENDBLUCK: "EVEN THOUGH IT S ASSUMED THAT 4, B, C,
AND 2 ARE DEFINED OUTSINE THE BLOCK, THIS
STATEMENT PRODUCES NO USABLE RESULTS®




4(1)
4 INPUT / DUTPUT
VERY LITTLE WORK HAS YET BEEN DONE IN THIS SECTIONe IT IS

CURRENTLY THROUGHT THAT MANY IDEAS WILL BE ADNPTED FROM LANGUAGES
SUCH AS ALGIOLy FORTRAN, 0OR PL/Te

et S A |
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5 LIRRARY PROCENURES

THIS SECTION DESCRIBRES THF USE OF SEVERAL PROCEDURES WHICH ARE

PROVINED IN THE MPL LIBRARY, REFERENCES TO THESE PROCEDURES AlLL

HAVE THE FORM F(P? WHERE F FEPRESENTS THE NAME 0OF THE PRUCEDURE

AND P REPRESENTS A LIST 0NF PARAMETERS, WHERE INDICATED THESE
PRICEDJRES RETURN VALUES WITH TYPE, SHAPE, AND FNRM AS DESCRIBFD BELUW.

ARGMAX(VECTOR)

VECTCR AN ARITHMETIC EXPRESSION WITH A VECTNR VALUE,

VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRST OCCURRING MAX IMUM
VLLUED ELEMENT 1F 'VECTNR',

ARGMIN(VECTOR)

VECTOR ANY VECTOR VALUED ARITHMETIC EXPRESSION,

VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRST OCCURRING MINIMUM
VALUED ELEMENTY OF *ViCTOR®,

COLNIM(MATRIX)

MATR IX ANY ARITHMETIC EXPRESSION,

VALUE THE SCALA® ARITHMETIC NUMBER NF ELEMENTS [N THE RANGE 0OF
THE SECOUND SUBSCRIPT OF YMATRIX'e THIS FUNCTINN IS
INTENDFN FOR FINDING THE NUMBER OF COLUMNS IN A MATRIY,
SO IF *MATRIX® [S A VECTNR OR SCALAR EXPRESSIONy V 2= 1.

CIM(VECTUR)

VECTUR ANY ARITHMETIC EXPRESSIUN,

VALUE THE SCALAR ARJTHMETIC NUMBER OF ELEMENTS IN THE RANGE OF
THE FIRST OR ONLY SUBSCRIPT OF SVECTNR'Ys [IF *VECTOR® IS
MATRIX VALUED THIS PRUCEDURE IS EQUIVALENT TO ROWDIM.
I[F *VECTOR® [S SCELAR VALUED, t= 1.

IDENTITY(RANK)

RANK THF SCALAR ARITHMETIC RANK 0OF THE SQUARE IDENTITY MATRIX
wWHICH IS THE VALUE CF THE PROCEDURE.

VAL'IF AN INENTITY MATRIX wWwiTH YRANK®' R4S AND COLUMNS,

INVERST (MATRIX)
MATK [ X 4 SQUARE, NIN=SINGULAR, MATRIX VALUED ARITHMETIC EXPRESSION,
VALUE THE [NVERSE OF 'MATRIX?,

MAX(VFOTIR)

VEST R A VelIR VALUED ARJTHMEYIC EXPRFSSION,

VAL LE THe SCALAR AKITHMFTIC VALUE NF THE MAXIMUM VALUED ELEVFNY
(\F SVECTNRY,

MEGEYESTORY)

vECT W A%Y Wi 1% VALUED ARTTHMETIC EXPRESSION,

VAL Ut THE SCALAR ARITHMETIC VALUE ()F THF MINTMUM VALUED ELEVENT
AF CMATRIXYy  ALL PCINTERS ARF [GNORED,




5(2)

5 LIBRARY PROCEDURES (CONTINUED)

ONES(RIIWSy COLUMNS )

ROWS THE SCALAR ARITHMETIC NUMBER OF ROWS IN V,

COLUMNS THE SCALAR ARITHMFTIC NUMBER NF COLUMNS IN V.

VALUE A MARTIX OF ONES WITH *ROWS® ROWS AND *COLUMNS® COLUMNS.

ROWDIMIMATRIX)

MATRIX ANY ARITHMETIC EXPRESSION,

VALUE THE SCALAR ARITHMETIC NUMBER OF ELEMENTS IN THE RANGE
OF THE FIRST SUBSCRIPT OF *MATRIX*, THIS PROCECYRE IS
INTENDED FOR FINDING THE NUMBER OF RNWS IN A MATRIX,
BUT IS EQUIVALENT TO DIM(VECTOR) TF *MATRIX®* [S ACTUALLY
VECTOR VALUEDe IF *MATRIX®* IS SCALAR VALUED, Vi= !,

SUM(VECTOR)
VECTOR A VECTCR VALUED ARITHMETIC EXPRESSION
VALUE THE SCALAR ARITHMETIC SUM OF THE ELEMENTS OF *VECTOR®'.

TRANSPISE(MATRIX)

MATRI X ANY ARITHMETIC EXPRFSSION,

VALUE THE TRANSPQSE CF 'MATRIX'e IF *4ATRIX® HAS *M* ROWS AND
INY COLUMNS THEN V HAS 'N* ROWS AND "Mt COLUMNS,

UNIT(SIZE, INDEX)

SIZE THE SCALAR ARITHMETIC NUMBER OF ELEMENTS IN VECTOR 've,

INDEX THE SCALAR ARITHMFTIC SUBSCRIPT OF THE SINGLE ONE VALUED
ELEMENT IN 'y, HERE 1 <= INDEX <= SI1ZF,

VALUE AN ARITHMETIC CGLUMN VECTNR WITH SUBSCRIPT RANGE
(lyeeesSIZE) WHICH HAS Al ZERO ELEMENTS EXCEPT FOR THE
SINGLE ONE ELEMENT IN THE INDEX®*TH PNSITION,

ZERUS(OWS yCOLUMNS)

ROWS THE SCALAR AR[THMETIC NUMBER 0OF ROWS IN 'Ve,

COLUMNS THE INTEGER SCALAR NUMSER 7 COLUMNS 1IN 'v¢,

VALUE A MATRIX OF ZEROS WITH *ROWS® ROWS AND *COLUMNS® COLUMNS,.

8L S0
SI?EeeeSCALAR ARITHMETIC VALUED PROCEDURE FOR FINDING THE
NUMRER OF ELEMENTS IN A SET,
SETeee SFT VALUFN PRJOCEDURE FOR CONVERTING ARITHMETIC
QUANTITIES TO SETS,
U0Mg oo SET VALUED PROCEDURF FOR INDEXING OVER VECTOR EL EMFNTS,
ROWDOMg o o SET VALUED PRNCEDURE FOR INDEXING OVERMATRIX ROWS,.
FULDOMeaoSEY VALUFD PROCEDURE FOR INDFXING OVER MATRIX COLUMNS,
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6(1)
6 PROGRAM FORMATICN MECHANICS

6-1 CARD FORMAT

LRIPRE IS FF v R < T

MPL USES A *FREE FORMAT® STYLE WHICH MEANS THAT STATEMENTS MAY

BE STR'UNG UNE IMMENIATFLY AFTER THE OTHER, ONLY SEPARATED BY THE
'3 TEIMINATORSe THUS MUCH CF THF RESPONSIBILITY FOR AN AESTHETIC
AND READABLE PROGRAM RESTS ON THE WRITER,

WHEN CIOMMUMICATING THE PROGRAM TN THE COMPUTER ON PUNCH CARDS
THE PRIGRLM ¢yCXTY MUST HBE CONFINFD TO COLUMNS 1 THROUGH T72.
COLUMNS 73 THROUGH RGC MAY Bf USED FNR IDENTIFICAYION SINCE THEY
WILL HE [I5NIREDe THIS IS A COMMON PROGRAMMING CONVENTION.

6=2 USE 0OF S3LANKS

BLANKS ARE USED AS DELIMITERS IN MPL AND ARE RZQUIRED WHERE
SPECTFLED IN THE VARIOUS DEFINITICNS, IN ADDITION THEY KAY BE
INSERTF) BETWEEN ANY TwO SYMBOLS (ITEMS ENCtOSED IN PRIMES IN
THE METALANGUAGE DEFINITIONY BUT MAY NOT APPEAR WITHIN VAPIABLE
NAMES IR KEY WUORDS EXCEPT WHERE SPECIFIED.

WHEREVER A BLANK IS ALLCWED CR REQUIRED ANY NUMBER OF MULTIPLE
BLANKS IS ALLOWED,

6-3 COMMENTS

COMMENTS MAY 3E PLaALED ANYWHERE IN AN MPL PROGRAM SINCE THEY ARE
COMPLETELY IGNORED 8Y THE COMPUTER, THEY ARE NELIMITED ON BOTH
ENDS QY A QUOTE (")(THIS S NOV A OJUBLE PRIME ('?)), O0BVIOUS
CARF M:jSY RE TAKEN TQO INSURE THAT THE TERMINAL QUQTE APPEARS

IN ITS PRUPFR PLACE.
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7 RESUME NOF DEFINITIINS

CARRAY CONSTRICTORD 2 =" (Y CFXPRESSION>' *<FOR PHRASED>")?
2=6-3
CASSIGNMENT STATEMENTD::=<KVARIABLE> ' :='CEXPRESSTIAND ;0
|KVARTARLED":=*<EXPRESSINNDY *<FOR PHRASE> ;¢
| KVARITABLEDY:=¢KEXPRESSIOND? C¢[F SCEXPRESSION>?;?
ISKVARTABLED' =0 CEXPRFSSTIOND Y WHFRE *<SYMROL SUBSTITUTERD ;¢
3-2=2
<BLOCK STATEMENT>::='6LOCK *<STATEMENT SEQUENCED>YENDBLOCK®*;?
3=2-6§=~3
CCHARACTERD::=<KLETTERD|KDIGITO>|CKSPECI AL CHARACTERD
1-2
CCHARACTER STRINGD>::=?* | <CHARACTER S/RINGIMCCHARACTERD
1-3
CCNMPUTATINNAL EXPRESSIOND: :='+#¢CEXPRESSIOND
| 1= *CEXPRESSIOND
| *NOT *<CEXPRESSIOND>
[ CEXPRESSTOND* ¢+ CEXPRESSININD
| CEXPRESCSINNDY-¢CEXPRESSIOND
I KEXPRESKSTION> S #* CEXPRESSIOND
I <EXPRESSIOND* /S CEXPRESS IOND
| CEXPRESSIOND ' %% CEXPRESSIOND
| CEXPRESSIOND* #*<EXPRFSSTOND
| <KEXPRESSIUN>® AND *<CEXPRESSION>
| CEXPRESSION>® (R t<CEXPRESSIUND
| CEXPRESSIOND® IN '<EXPRESSIOND>
[ <EXPRESSINN>® AND NOT Y<EXPRESSION>
JCEXPRESSIUND'='<FXPRESSTOND>
I <EXPRESSICN>*~="<EXPRESSI!IN>
| CEXPRESSION>*> tCEXPRESSIOND
I<EXPRFSSIOND Y ¢LEXFRESS TIND
FCEAPRESSIOND 'S =1 CEXPRESST IN>
JCEXPRESSIONDT 220 JEXIRFSSIIND
2-%
CCUNCATENATIR>:: = (*CEXPRESSIUN LIST> )0
2-6=2
CCONDITIONED STATHACNT> 1 2=0[F V€ £3RESSINND Y, Y<STATEMENT>
FIF *<EXPRESSTOND® THEN *CSTATEMENT SFQUENCE>
<Y IF SEYQUFNCEDCOTHERWYL 3~ PHRASEDVENDIF e o
3=2-5-1
COFFING STATVR™ii»: sz NEFINEG ¢KVARTABLE NAME LIST>CTYPE PHRASE>
<yHLPE PHRASEDCSTIZE PHRASE» 0

3-2=4=4
COIGIT st )sjejsjeanjugeiagujogujentjegejege|esqe
1-2
COIGIT STRENG»I - OMGTITICOIGIT STRINGOCDIGI T
1-3
CDOME] ¢ [Tt =t (P CEXPRESSICND Y yone o "CEXPRESSIOND> )
2=6=1
CEXFUON NT o0 o 2 1T STRINGD
JP et et TIGET STRINGY
et oI G]T ST NG
2-2-1
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7(2)
1 RESUME OF DEFINITIAONS (CONTINUED)

CEXPRESSTION>: 2=t (YCEXPRESSIOND>® )
| <NUMBER >
| *TRUE®| *FLASE"
| *NULL?
| Y *CCHARACTER STRING>' ¢
|<VARTABLE>
| <PROCEDURE CALL>
I <COMPUTATTOMAL EXPRESSION>
[<COMAIN TTEMD
I KCNNCATENATORD
| CARR Y CUNSTRUCTNRD
I<SURSET SPECIFIER>
2
CEXPRESSION LIST>::=<CEXPRESSIOND| <EXPRESSION LIST>?, *<EXPRESSINN>
=4
CFOR PHRASE>::='FOR 1<KVARIAILE NAME>®* N '<EXPRESSION>
| *FNR *<VARTABLE NAMF>' IN *CEXPRESSIIND?| '<KEX2RESSIOND
1 *FJR 'CVARTARLE NAMED Y e ='CEXPRESSION>® STEP ¢
CEXPRESSIONDY UNTIL *<EXPRESSIOND
3-2-5-2
<G Ti) STATEMENT>::='GN TO '<LABEL>*;!
3=2-4-2
CITERATED STATEMENT>::=<FOR PHRASF>Y ,1<STATEMENT>
| <FOR PHRASED® NO *<STATEMENT SEQUENCE>*ENDFORY ¢3¢
3-2-5-2
CKEYWIRD STATEMENT>::=CLET STATEMENT>
<52 TO STAGEMENTS
|KRETURN STATEMENT>
I KOEFINE STATEMENT>
| CRELEASE STATEMENTD
ICCONDITIONED STATEMENT>
| CITERATEN STATEMENT>
I<ALNCK STATEMENT>
3-2-4
<LAAFL>::=CVARTABLE NAMEDX| ' (*INIGIT STRING>*)?
3-2-1
CLET STATENEMTHI:='LET *<CSYMR{L SUBSTITUTER>® !
[ oSaMt LOCATION ¢ (*<VAPTARLE NAMED>® , *CVARTABLE NAMED>' e ¢
3=2-6-1
CLETTERDss=tpv|vqejecojepejepojacojecojopyojrpofe jejogejogs
{rasjoecjofegojopejeqejoperjoegejorojegyeloyejogesjoxsjoyrjere

1=-2
CNULL PHRASED T T2 v CNUL L PHRIASEDY ¢
1-3
CNUIMHF D1 D sKNUMRER BASFD [KNUMAER BASEYCEXPONFNTD
2=2-1

KN PHER GASEDS Tt aCDGIT STRINGD
FAOTGLT STRINGHY Y,
Pe, el {7 STRINGD
POt STRINGO L CUIGIT STRINGD
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7 RESUME OF DEFINITIONS (CONTINUED)

KOR IF SEQUENCED>:2:=<NULL PHRASE>
IKOR IF SEQUENCE>*OR IF *<EXPRESSIOND>' THEN °*
CSTATEMENT SEQUENCE>
3=2-5-1
COTHERWISE PHRASE>:s=f(JTHERWISE *<STATEMENT SEQUENCT)
I<KNULL PHRASE>
3-2-5-1
CPROCEDURE CALLD>:2=<VARTABLE NAME>
I KVARTABLE NAMED*( '<EXPRESSION LIST>*)?
2-4
<PROCEDURE CALL STATEMENTD>::=¢PRNCFDURE CALL>';*
3~2-3
<PROCEDURE IDENTIFIERD>::=CVARIARLE NAME>
| CVARIABLE NAME>* (*<VARIABLE NAME LIST>*)?
2-4
<PROGRAMY: :=* PROCENURE *<PRNCEDURF IDENTIFIERD>
STATEMENT SEQUENCE>'FINJ 30
] <PROGRAM> *PROCEDURE *<PROCENURE IDENTIFIER)>
CSTATEMENT SEQUENCED*FINIt® ;0

3
CRELEASE STATEMENT>::='RELEASE '<VARIABLE NAME LIST>*;?
3-2-4=5
CRETURN STATEMENT>::=0RETURN® ;¢
3-2-4-3

CSHAPE PHRASE>::=? RECTANGULAR®*|* NIAGONAL'|* UPPER TRIANGULAR?
{* LOWER TRIANGULAR®*|®* ROW'|' COLUMN®'|* SPARSE WITH °*
<EXPRESSION>* NONZERCS®|<KNULL PHRASED

3=2-4-~4

<SIZE PHRASE>::=<CEXPRESSICN>' BY *<EXPRESSIUN>
ICEXPRESSION> I<NULL PHRASE>

3-2-4-4

CSPECIAL CHARACTERD tz=s (o) e|ogrfrpe|e vje vfjrge]rotjoge]rye

'l:"l,..'l!‘l*llol||l‘€’la||0!|l'&li!?!'l"

1-2
CSTATEAENTD>: t aCLABELD Yt Y CSTATFMENT>
| CASSTGNMENT STATEMENTD
{<PRINCEVDURE CALL STATEMENT>
| CKEYWORN STATEMENTD
3-2
CSTATE 4ENT SEQUENCE>: : xCSTATEMENTD [CSTATEMENT SEQUENCEDCSTATEMENTD
3-1
CSUBSCRIPT ELEMENT>::=va?| CEXPRESSIONY
2-3=2

CSUBSCRIPT LIST>::=CSUBSCRI“T ELEMENT>
| CSUBSCRIPT LISTI> ,*CSURSCRIPT ELEMENT>
2-3=2
CSUHSET SPECIFIFR>sxt (CCVALTABLE NAMED>Y IN YCEXPRESSIOND
VJECEXDRFSSIUNDY )Y
2-6~4
CSYMAIDL SUnSTITUTERD s uC¢VARTARLE NAMED 1= CCHARACTER STRING>
JCVARTARLE NAMEDY{YCVARTARLE NAME LISTOY 100220 ¢CHARACTER STRINGD
3=2-4-]
CTIVPE OHIASEd: :=® ARITHMETIC*|* LOGICAL*I® SEV*|® CHARALTER?®
JCNULL PHRASED
3=2-4-4
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7 RESUME OF DEFINITINANS (CONTINUED)
CVARITABLED>::2<VARTABLE NAMED>|<VARIABLE>* (?<SUBSCRIPT LIST> )¢
2-3
CVARTABLE NAMED>::=2<LETTERD>
| CVARTABLE NAMEDCLETTERD
| <VARTABLF NAMEDCDIGITY
| KVARTABLE NAMED_
I<CVARIABLE NAMED® ¢
2=3-1
CVARTABLE NAME LIST>::=¢VARIABLE NAME>|
CVARIABLE NAMF LISTD','CVARIABLE NAME>
3

THIS STATEMENT IS NOT FART QOF THE FURMAL DEFINITION, BUT IS
INCLUDED FOR REFERENCEs

CKEYWI)RDD> 2 2=t AQRITHMETIC®
j'BLOCK ¢
|0 Ry ¢
|* CHARACTER?
| * COLUMN®
| YDEF INE ¢
I* NDIAGONAL®
1* Do ¢
| *ENDBLOCK?
| YENDIF
| * ENDFOR?
| *FALSE?
f*FINL®
|'FOR *
160 10
[olF ¢
v IN®
LOLET
e LOGICAL?®
{* LOWER TRIAMGULAR?
JeNULLY
I* NONZERODS?
NP [F @
| *)THERWISE ¢
Fe20CEDURE 0
J ¢ RECTANGULAR?
| *RELEASF ¢
I+ ROW?
| *SAME LOCATION ®

* SFET

SPARSE WITH ¢
StED []

¢ OUNTIL
I PPFR TRIANGULAR?®
o wWMpRE
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8 SAMPLE MPL PROGRAMS

PROCEUURE REVISED SIMPLEX(MATRIX,COSTSRHSyBASIC_VARTIABLES,
UNBOUNDED,DRJECTIVE_VALUE, ITERATIONS)

DEFINE l¢Js "THESE ARE INDICES LATER ON®

UNBOUNDED := FALSE; [TERATINNS ¢= C3

LET P = MATRIX;

LET C ¢= COSTS;

LET Q := RHS:

LET BV = BASIC_VARIABLES:

LET M := ROWDIM(P);

LET N 2= COLDINMIP);

"WE ASSUME THAT BV CONSTITUTES A FEASIBLE SFT
NF BASIC VARIABLES GIVEN BY THEIR INDICES,
WE WISH TO FIND X >= O SUCH THAT P#*X = Q
WHICH MINIMIZES C*X = OBJECTIVE_VALUEe FIRSY
WE CALCULATE THE INVERSE NF THE RASES."™
OEFINF INV_B M BY M;
INV_B:=INVERSE(P(*,RV} )3

"THE CURRENT RIGHT HAND SIDE [S"™
Q:=INV_B=Q3

"THE CORRESPONDING COST VECTOR IS®
DEFINE CB M ROW;
CB:=C(BV);

S IS THE INDEX OF THE INCOMING COLUMN
R IS THE INDEX OF THE OUTGOING COLUMN,*
OEFINE S4R;

PRICING:BLOCK
ITERATIONS = TERAT [ONS 1 3

"FIND THE STMPLEX MULTIPLIERS *SMn
DEFINE SM ¥ pNw;
SM:sCA®INV_B3

“AND THE SMALLEST RELATIVE COST FACTOR®
31zARGMIN(C-SMep) ;

“TEST FOR OPTIMALITY UF THE CURRENT BASIS™
IF CtSI>asSMep(e,S) THEN
“WE HAVE FOUND THE OPTIMAL BASISY
ORJECTIVE_VALUE: sl ReQ;
RETURN:
ENNLEF
ENDALQCK 3

*NOW COLUMN S IS INTRODUCEN INTO THME BASIS.
P3 1S YHE REPRESENTATIONN QF PLe,3) IN TERNS NF
THE CURRENT HASIS®

DEFINE OR M COLUMN:

PRia !NV_Rep(es,S):

R:20;

RI=ARGHINIAUTII/PEL oS ECP T IN (loeeoae™M) | PE1,S020);
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SaMPLE MPL PROGRAM (CONTINUED)

“IF ALL P(1,S)<=0, THEN WE STIiLL HAVE R=Q AND
A CLASS NF SOLUTIONS APPRNACHING MINUS INFINITY
EXISTS®
IF R=0 THEN
UNRGUNDED := TRUE;
RETURN?
ENDIF3

“NOW UPDATE THC BASIC VARTIAALE LIST BV, THE COST
ASSOCIATED WITH THE BASIS L
VECTOR CB ASSOCIATED WITH YHE BASIS, THE VALUES
" OF THE BASIC VARIABLES, AN" THE [NVERSE
INV_B OF THE BASIS."

BVI(R) =S

CBIR):=C{S);

“UPNATE Q"
FOR J IN (lyeees oMl | J~=Ry QUJIz= N(IN)-PBRLQIRI/P(RyS )}
ARIL=Q(RI/PB(R,S)

“NUOW UPDATE THE BAS!S [INVERSE®™
PIVOTUINV_Re PB4R)S

“NOW THE CYCLE IS COMPLETE AND WE RETURN TO
CHECK THE OPTIMALITY OF YHE NEW BASIS."

GO TO PRICING:

FINIS:

PROCEDURE PIVOT(MATRIX,PIVAOT_COL,PIVAT,ROW)

LET M = MATRIX;

LET P = PIVOY_COL;

LET R :x PIVOY_ROW:

FOR | IN ROWDOM(M) | [-~=R, 4(1,%):aM(R,®)s{P([)/P(R))}
MER,®):aM(R,®)/P(R);

RETURN:

FINIS:

T SR
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