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Abstract

The problem of inferring a grammar for a set of symbol strings

1

is considered and a number of new decidability resulis obtained.
Several notions of grammatical complexity and their properties are
studied. The question of learning the least complex grammar for a
set of strings is investigated leading to a variety of positive and
negative results. This work is part of a continuing effort to study
the problems of representation and jeneralization through the gram-
matical inference question. Appendices A and B and Section 2a.0

are primarily the work of Reder, Sections 2b and 34 of Horning,

Sectior 4 and Appendix C of Gips, and the remainder the responsibility

of Feldman.
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la., Intrsduction

R o = - S a4 3 £ Lyt 2 - - + I 3y -
The problem of generalization {inducticn, oncept formation) huas

interesced workers from a wide range of Tields. 1In ihis Paper, a particular
form of Eeneralizatiion, grammatical inference, is discussed. The noction
of grammatical complexiiy is introdured %o help measure which grammar 1is
the best one for a given set of strings.

The grammatical inference problem is easy to state; one is interested
in algcrithms for choosing the best grammar from a given clasg for a

Sequence of symbol strings. For example, we would like to disccver that

the sequence of strings
car, cdr, caar, cdadr, cddadadr, ete,

can be described by the rule: each string is a 'c!' followed by eny

sequence o 'a's and 'd's followed by 'r' . Or in Backus-Haur Form

<string> ::= ¢ <seq> r

<se@> ::= a ‘ d | <seg> g | <seg> d

The guestion of how to infer g grammar and te messure how well you've
dore it will be the main topics of this paper,

The grammatical inference problem has received relatively littie
attention. The¢ main theoretical formulation to date has been that of
Gold [67] which will be discussed in Section 3. Solomonoff [64] considers
the rrnblem as a special case of sequence extrapolation; we have argued
against this notion [Feldman 67] but arec indebted to Solomonoff for some
of the basic ideas on grammatical complexity in Section 2, There has

also becen some related work in Computer Science [Amarel €2, London 44] and

ny




atetaib "t

Psychology [Miller 6, Suppes 56]. There is, of covxse, a vast literature

on pattern recognition [Uhr 66}, but it has been exclusively concerned

with pattern descriptions which are st wturally simpler than srammars.

e lis

Early studies of grammatical inference referred to it as a form of 9

Laduction. The term "induction" has been used as a desceription of 0

T

it has also -en used in dozens

generalization processes. Unfortunately,

of cther ways and is threatening 4o beconme meaningless., We

Favor

.:‘"'

restricting the term "inducticn" to statistical modes of inference

FREA
as those of Sclomonoff [6A4] as is done currently in Pnilosophy. The :

particular model which we found most appropriate is the hypothetico-deducti i

U CLVE =~

empirical (HDE) mode of inference, An HDE inference consisis of Torming

5

hypotheses, deducing conclusions about the data and testing *hese conclusions

for validity. This characterizes the scientifie methed and is quite close

]

e

to the "soientifisc

e

nduction” of Lederberg and Feigenbaum [68]. In our
case a hypothesis is a grammar rule, a deduction is a derivation, and the s

data ave the sample strings.

P-3]\

‘he results of this paper are one part of a many-pronged attack on
the grammatical inference problem [Feldman 67]. The results here are largely

theoretical, but include a heurictic program to inter grammars. Other

efforts involve psychological study of human grammatical inference. ¥e It

':‘!" h

pe te able to relate theoretical results with the heuristics

(]
-
L))
o
by
]
7

of the program and tc consider how these relate to human learning of
ther theories., 7o the extent that e.g. pictures [Miller

resented by grammars, the rammatical inference
rep g 3

¥OTK may be of some practical use in pattern recognition. 3
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=S Ib. Detfinitions, Notation

I

This paper makes use of ideas from several research areas, and it is

t;

We deviate from

[
i

impossible to agree with all their notational conventions.

'

the usual formulation of context fre: grammars in requiring all

fi

vocabularies to be subsets of a fixed collection of symbols. There is

o

s i no loss of generality in doing this, but many results in the literature

Il
0

would require careful consideration of substitution rules [ecf., Church 56].

.
o

The universal terminal alphabet T is the set of symbols {a,al,32 ces} .

L]
"

The universal variable alphabet W 1s the set of symbols {X = Z,Z],ZQ aool] o

"
it

£ We will also use the following notational conventions. The string of

ot

zero symbols is denoted bv < , une empty set by P . If S is any set

= of symbols, S% is the set of Zinifte strings of symbols from § and

: st ag¥-e .

W

TSI

A context free grammar (cfg) is a quadruple G = (V,T,X,P) where

V,T are finite sets , VCWBUT, T=TNV, XeV-T, and P is a

finite set of productions (rules) of the form Z = w , with 2¢V-T ,

weV# . In such a production, Z 1is called the left side and w the

Pl

right side. We will abbreviate a set of productions Z - wl,Z b Vo,

Z 4w, _ with the same left side as Zw, | v, P oeee w

k
If G is a ecfg, and w,ysV¥ wve write w 3 ¥y if there exists

K

Bl

¥y = WltW2

it

teV¥ , ZeV-T and Wys¥y in V¥ such that w = wlZwE 5

@~

and the rule Z =+t is in P . The string y 1is called an intermediate

Bl

*
string. The transitive closure of 6 is written 3 . In either case

may be omitted 1f there is only one grammar under

i

the subscript "G"

:unu

consideration,

wlllllllunnw

%wwww
-
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If w=ay, ¥T , we also say there is a derivation of y from w
(o4

in G . 1In this case, ‘herc is also a derivation of y from w in which
each rule has as its left side, the lofimost ZeV-T of the preceding

intermediate string [Ginsburg 66, p. 30}, This leftmcst derivation is

denoted d(y,w,G) , and when W = X will be abbreviated to (y,G) .

We will be exclusively concerned with leftmost derivations. If

d{y,w,G) = <p eeuyD, > With 7p,eP we define the derivation length
Wy, AI;PE: FRS By

I

ot
-
.

Ed = K . The length I{(y) is the number of symbols i:

Th- language L(G) generated by a c¢fg G = (V,7,X,P) is defined
by
L) = {y | et and x % 7.
T
We will sometimes omit mention of the grammar. The definition {mplies that

we will be dealing 1ith only e-free languages. With this restriction
and some well-known resulis on cfg we can signiticantly consirain the
form of ofg to be studied here.

7

Def 1Bl A cfg, G = {(V,T7,X,P) is said tc be totally reduced and we

a) P contains no rule of the form Z — e

o
v’
by

contains no rule of the form Zi —aZj
s . + q *
w , WweV¥ , there is a yeT such that w= y
d) Hach ZeV-T , =ael , and peP is used in at least one
4{y,G) , where y is in L{(G) .
It iz well-known that any e-free language derivable from
some oiz can be derived froma efg in R . ¥We will restrict

curzeives to Gefl unless otherwise mentioned.
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Lemma 1b2 For any GeR and any yel(G) the derivation length

1y(y) g2 2(y) .

Prcof Consider any derivation of y , d(y,G) = <pl 500 pk> . Each
p; must either (a) add to the length of the in.ermediate
string or (b) replace a variable by one or more términal symbols.
Since no peP can reduce the length of an intermediate siring,
there are at most £(y) instances of (a). In addition, there
can be at most [£(y) wvariables in an intermediate string and

thus I(y) instances of (b).

There is an extension of the notion of ordered sequence whicn will

be useful. A sequence <yl,y2,...> is said to be approximately ordered

by a funetion f£(y) iff for each k > 1 there is an integer 7 >k

ruch that t > 1 implies
Lemma 1b5 If Vs> is a sequence which is approximutely ordered

by £ and if <f(yi)> is positive and bounded then there is a

C such that

lim ©(y.) =¢C .
i e 1
Proof  We Know <f(yi)> has a finite 1lim sup , call it € . If
there is a J such that f(yj) = C , then by approximate ordering
here is a 1 such that % > 1 implies f(yt) = C and the

lemma is proved.,

B



Suppose the 1lim sup C

be given, then there is a 3 such that
g ’ Yy

EaY

C 1is a cluster point.

t > Ty implies

C-e < r(y_) .

£

Further, there are at most a finite mumber

f(yi) >C because C is the 1im sup of

Let 5 be the maximum index of these and
then for ail t > 1 we have
C-e <f(y,)<cC,

and the lemma is proved.

cases where (k)

Finally, we must introduce a number of definitions relating

of languages.

sequence of symbols from the set

{47 | ye1} U {-v | yer'-1} .

is not atlained. lLet ¢
LY
C-c > £{y,)

But then there must

We will k2 especially

An information seguence of a language

because

be a T uch that

~

of i such that

a bounded sequence.

let 7 = max\rl,tg)
interested in

is effectively computable.

to enumerazions

L, I{(t) isa

A -cositive information sequence I+(L is an information sequeac
of L containing only strings of the form +y . Notice that if we beound
the number of occurences of any string y in I(L) then I(L) it

LHy) .

is denoted (d,)9 .

approximetely ordersd by

g - +
sequences foo LG T
the set of text

Let I{L) bue a

In Gold [&7],

The set of all hositive) information

J+ was called

presentations and § the set of informant presentations.

{poiizive) infoumation sequence, we define a (positive)
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Additional Notation

n(¥): if X is g finite set of objects (e.g. strings), then n(X)
is the number of objects in X ; n{X) is the cardinality measure

for finite sets.

r: r =n(T) = the number of terminal symbols in the alphabet T .

Lk(k = 0,1,2,...): Lk =LN Tk; Lk is the subset of the language L

which contains only strings of length k .

. { = N ooy : 3 3 . 3 .
Lﬂ‘?)' Lka) =L Nar*, Lk(a) is that subset of L, which is

prefixed by a € T* ; Lk(e) = L.

T0): T(a) = ar*n o<
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2. Grammatical Complexity
2a.0 Introductory Measures

There are a number of ways in which one could measure the complexity
or information content of an abstract language. Une traditional way is to
consider the reiative sizes of various subsets of the language and develop
size measures for languazes. Examples of size measures will be considered
shortly. Other types of complexity measures can be developeu in terms of
time and space bounds on the automata associated with a language; studies
of this type are currently gquite popular (2.g. Hartmanis [68]). Other
possible complexity measures could be based on the complexity of algebraic
decomposi..on of the automata associated ~“ith a language.

At this point a distinction should be made between complexity measures
of & language and complexity measures of a grammar. To be independent of
the various grammar(s) for L, a language measure of L should be sensitive

only to the content of the subsets of L, nct to the structural form of

the elements of these subsets. Measures based on the grammars or sutomata
associated with a language often do not characterize the language, since
the value of the measure can vary among weakly eguivalent grammars (automata)

of the language. The class of size measures of languages is one example

of language measures which proves useful in studies of complexity. We

consider briefly iwo particular size measures for arbitrary languages L C T*.

|
ﬁ“
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First-order (density) size measure

. k) : . .
Consider the sequence <d( '> , where d(k) is the preoportion of strings

of length k which are in the language 1. being measured:

d(k)‘ _ n(Lk) = n(Lk) : Suppose the sequence <d(k)> couverges
h k. =k
n(T) r
1m RI) -
to a limit 4 , so that 4 = K — e -5} then we would like to define

d‘ as the density of the language L , which can assume values in the unit
interval 0 < d< 1 . The density is intuitively the limiting p oportion of
strings in the language.

There are often, however, languages which seem to contain .a well-defined
limiting proportion of strings, yet for which the sequence <d(k)> does not
converge. As a trivial example, consider the language which consists of
precisely those strings of even length; in some sense it seems that half
of the strings are in the language, but the sequence <d(k> > =<...,1,0,1,0,1,..>

does not converge to any limit, let alone the desired limit of 8. The

k o
gequence <s(k)> =< i— S d(1)> does, however,

= (x) r 5 k even
converge to the desired limit of %, since s = ’

\g-r-i-, k odd

Ak . .
The sequence <d( )> is said %o be Cese‘aro—s:mable to # (see, for example,

Kemeny, Snell and Knapp [66]). Since s(k) is the arithmetic mean of the
first k proportious, it seems reasonable to interpret the (unique) value
to which the sequence <d(k)> is summable as the density. This example

motivates the following definition of density:

11

S



If the sequence <d<x%> iz Cesér&-summable toc 4, then
is defined as the first-order (density) size measure
of the language. If the sequence iz not Ceséro-summable,
then the measure is und=fined.
Clearly if <d(kz> converges to a limit d, ther it must also be Cesarc-
summable to d. Cesaro-summability is well-known to be equivalent to
other types of sequence summability (e.g. Fuler-summability) in the sense
that, if the sequence sums tc a value by one method, then it must also

sum to the s me value by the other methods. lthough ocecasionally useful,

we will not discuss other typzs of summabiliiy.
(k). . . Ui . .
Suppose that <dk z> is an ultimately periodic sequence with periocd p,

so that 1im  alkPra) 4y> @ = 0,...,p-1. Then it can be shown
Koo

p-1

i ok mend
= qg()dq’ which again

that <d(kz> is Cesiro-summable to 4 =

illustrates the usefulness of ailcwing Cesaro-summsbility as a more general

convergence criterion than the commonly used simple "limit" . We shall
. NS . (kl>
adopt the notation b = ¢lim b to indicate that the sequence <b
K->

is Ces¥iro-summable 0 b.

It is difficult to develop useful existence conditions for the density
measure of an arbitrary language IFT¥*, since L clearly can be chosen in

Y

£
such a way that the sequence <d‘ﬁ%> fails to exhibit any stationary behavior.

Existence conditions become more tractable when L is assumed to be associated
with a certain class of grammars cr suic-mata. For example, it is shown in

Apvendix B that the density measure exists for all finite-state languages

by

LY ~ ET B . - - - s L0
(if Cesaro-summability is allowed tc be a condition for conversence).

'...J
n

.1
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The density measure can be useful as a means of comparing the relative
size of languages. But relative size discrimination by means of density
breaks down if the languages have eithar zero or unity density. Most
languages we have occasion to investigate have zero density; accordingly,
~ more sensitive size measure is required for comparison of the relative sizes
of zero-density languages (which could be used tc compare unity density

langunges by comparing their zero density complements.)

Second-Order (logarithmic density) size measure

When the densities of two languages are zero, a more sensitive measure

is needed to compare their relative sizes. Consider transforming tae

sequence <d(k)> into a logxlc(:g §caled sequence )
log n 1 log n (
<h(k)>, where h(k) = ——i-‘k— : —-——-—I—‘k-—

log n (TK) log r k

(log n (Lk)'is taken as zero if L= #). We define the second-order

(logarithmic density) size measure h of L as

h = clim h(k)

ko=
(h is undefined if <h(k)> is not Cesiro-summable). The quantity C = {log r) h

is the femiliar measure termed the channel (codine) capacity of L

(we have extended the standard definition of C by permitting Cesaro-summability
log n (L) (k)
m > = log r <h' ‘> rather than just strict

convergence). When it exists » logarithmic density satisfies O < h< 1.

of the sequence <

Furthermore, it can be shown that

*
(i) YLc®", if d exists and d > O, then h exists and h = 1

13




- (ii) if both d and h exist and h

1, thend> 0

(1ii) if both d and h exist and d = 0, then h< 1
We thus see that logarithmic density is a useful size measure among
minimal (zero) density languages, while density is a useful size measure

i among meximal (unity) logarithmic density languages.

The logarithmic density (and thus the channel capacity) of a language
— is strictly a size measure, and is not essentially an information-theoretic
B8 language measure as the name channel capacity seems to suggest. The
Channel capacity is the maximum possible (1imiting) mean rate of infor-
mation transmitted/symbol across a discrete noiseless channel. Several

guthors have termed the quantity C (or h) the entropy (or relative

eutropy) of the language, a somewhat misleading terminology; in terms

l

Mk

of classical inform.tion theory, C is the maximum rate (per symbol)

o

of entropy for possible "stochastie grammars" of the ianguage. There

Wit

are, at least for some classes of languages, stochastic representations

i

of grammars for the language which achieve this maximum entropy rate

B

(channel capacity). In terms of "selective information theory" (Luce 60,

‘u!..,.-n-uiim

Chomsky and Miller 6%b), C is indeed the entropy rate of the language.

We emphasize that several stochastic grammars (automata) for a given

o

d
1

language may have different entropy rates, but C is an upper tound

il

for them.

it
W

o]

L

f&wmmlmlia

I

Mmmuumﬁ

14




Other size measures

The first and second-order size measures of a language L can be

generalized as functions o1 a given string @ € T .

a@) - o B ae)
¢1i = clim
K = o a(T8(a)) k> pFEQ)

il

log n(n, (@) log n (1, ()

= clim -
kKoo lcg n(Tk(oz)) logr s k-2(a)

h(a;)

]
(¢!
et
foe
=]

(Note: where Cesﬁro-summability is used, it is understood that summation
begins with k = £(@)+1 rather than with k=1).

Note that substituting a=e into d(*) and h(:) yields the size measures
d and h, respectively. Discussion of d(a) and h(a) with respect to stochastic
grammars and selective information theory is an interesting topic, but un-
fortuvnately exceeds the scope of this presentation.
Rexarks:

Chomsky and Miller {58) claimed that the probability of a randomly
chosen string of length k being in any given regular language converges
to either zero or one as k increases without bound. This claim is equivalent
to stating that the density of any regular language is either zero or unity. g

To our surprise we have encountered restatement of this claim by later

authors (e.g. Kuich and Walk 65). The claim is false, as is shown in
Appendix B. There appears to be two sources of error in Chomsky and Miller's
development. First, there seems to be some confusion between first and
second order size measure with respect to probability; Chomsky and

Miller's argument was based on channel capacity ({second-order measure)

15




rather than on first-order density; density is equivalent to the limiting

proportion of strings in the language. Second, a mutrix or "equational"
representation of finite-state grammars was used by Chomsky and Miller —
indeed, has been used extensively in the literature — which is inadequate
for the class of all finite-state grammars; where are regular languages

which cannot be generated by any grammar associated with the mstrix repre-

sentation. The interested reader is referred to Appendix A for examples

of regular languages for which the representation is not adequate, and
for a suggested matrix representation which is adequate for all finite-

state languages.

2a. Introductory Definitions and Wxamples

The concern here is with a representational measure of complexity.
We will be interested in the following questions. How well does a given
grammar fit a sample? How complicated is a grammar? What is the most
satisfactory grammar from a given class for some sample set of strings?
The results of this section are of some intrinsic interest and will be
very valuable in the grasmatical inference problem considered in Section 3.
The techniques described here, although discussed in terms of grammars,
seem applicable to a broad class cof problems invelving the fitting of a
model to data, [cf. Feldman 67]. The particular measures studied here

are related to Bayes Theorem and to the measures of Solomonoff [64].

W

i

il
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Def 2al Let G = (V,T,X,P) 1 cfg; the alternative set A(p) of a

production peP of the form Z + w is the set of productions

in P with the same left side, 2, i.e., A(Z a+w) ={(z - x)€ F}.

We will be interested in measures which depend on the alternative
set, and for most of the discussion will be concerned with a very restricted

class of such functions,

Def 2a2 A function p(p) 1is a density iff

1) p 1is defined for all peP for any GeR

2) O0<p<e

3) For each peP s 2:: E'D(p') =1.

p'eA(p)

A density is intended to describe how precisely a grammar "fits" g
set of strings. The description of a set of strings in terms of a grammar
will be more complex if the grammar generates many strings besides those
in the set. Fach step in a derivation will be considered more complex
in a grammar which allows many derivations from that non-terminal (has a
large alternative set)., It is also possible to consider o from an
information-theoretic point of view; p(p) is a measure of the information :
required to select p from the set of productions with the same 1eft side,
i.e., 20 (p) is the probability oi a particular alternative.

It is this information theoretic approach which gives rise to the
specific density used here. If we assume that all productions with the

Same left part are equally likely, we get a local mea sure
a(p) = log,(b(p))
where b(p) is the cardinality or Alp) .

17
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Another possibility is to assign some a priori likelihoods to each
production p . This could be based on some complexity measure on p
itself (such as its length). We will concentrate on proving properties of
the general density p s but will use o in the samples. Before presenting
examples, we must extend the notion of density to a complexity measure for

derivations.,

Let d(y,G) = <Pyye-+Pp> b. & derivation of y and let p(p) be
a density, we define
h
n(d,y,G) =ZD(P-) .
g=1 Y

We can now define the compiexity of a string relative to a'grammar.

Def 2a3 Let yeT+ . If yf1(G) we define the complexity u(y,g)
tobe = . If yeL(G) and the derivations of y are

dl(y,G),...,dk(y,G) we define

1
“(y,G) =X M(di,y,G) .

k
i=1

Def 2ali ILet S = {yl,...,yn} crt the complexity of the set S

relative to G, u(S,G) is defined by

n
1(5,6) = 20 u(y,,0) .

i=1

Thus the complexity of a string is the average of the complexity of
its derivations; the complexity of a set is the sum of the complexities

of its members.

18




If S is a finite subset of T'  ,.(5,C) =« irf S-LiG) £ P .
The value of p(y,G) is a measure of the complexity of a derivetion of y
from G and might be usable as a measure of grammatical complexity. We
defer the discussion of the relative merits of various complexity measures

until Section 3a.

Example 2a5 Let G = ({X},{a,b},X,{X=+a | b | ax | ©x}) .
This is the universal grammar cver {a,b} . For this grammar,
any string of length n requires a sequerce of n preoductions in
its unique derivation. If wr use the density o as p , eac:

preduction p has p(p) = logz(h) =2, Thus each ye{a,t}* has

w(y,G) =2 - £(v) .

Let H = ({X,Zl},{&,b},x,{x -+ b l &Zl ' bx! 2‘1 *a l eX l bzl}) .

Tnis is the "even numb: - of a's" grammar. Similar reasoning to the

above will show that for any string y with an even number of a's:

u(y,H) = 1og,(3) « £{y) .

The example indicutes that u corresponds to our intuition in
declaring the universal grammar to have more complex derivations of strings
having only an even number of a's., There is, however, a potential problem
in the fact that H itself seems more complex than G . We have, so [1r,
considered only the complexity of derivations. If, as in the grammatical
inference problem, only a finite set of strings is available for testing,

a very complex grammar may yield the lowest value ¢f u . For example,

the grammar which simply lists the sample set (ad hoc grammar) will have

19
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a very low measure. In the next scction we will expand the notion of

o

grammatical complexity to include a measure of the oo omplexity of the

€b. Grammar-grammar, Complexity of Grammars

- . s MRS L4, o - — I et e) 3 b
we will define the complexity of a grammar as the ~omplexity of

under consideration.

n
ubclass of

Y

tles.

P . ! (RS é P=X ¥ o g
torm, anG grammare regiricied to a fixed number of varia

,}) on the terminal “.abet

where b Is tne universe of variatle symbols and "," 1is used

ssible,

t-free G ,

here 15 the additional provlem that ¥V must be finite sc a ziven §

will only generate a class of languages wiih a fixed number of variables.

table Tor cur purposes. It is also convenient to have *he

”"n ”

production arrow

(o

is

chelice of G will determi:e

¥pical subelassss “nclude the linear grammars, grammars in some standard

3

itble to sharpen this definition, e.g. to allow only

I

oty



Def 2b2 A sequence of grammar-grammars © =

31,“”,...} is a

r"-\

collection iff. There is a J such that for each g
SEECSEELE

Toaen 7 2 7 e 2
l) & = (.nn l t.«l l s &i-l &l ui .
2) Z appears in no other lert sides.
3) Ko Zel appears in any cther rule,
%) The §, are identical except for the rule described in W o

s
<
i

The intent here is that £ 1is the variable in all G. which

i,
produces the 1 wvariables of the G, .

Def Zb3 A representation class ¢ is defined as

where C Is a ccllection. Thus, C is a oot of srammars
defined by 2 collection € such “hat for any GeC s there is

a GeC such that GeL(G) N R .

This definition allows subfamilies of ¢fz with an unbounded number of
variables to constitute s represeniation class. For arn- GeR and any
class C it is decidable whether 5eC . More frequently we will be

interesied in studying a1l the grammars in some class C . ¥Wewill

G{k} for GeC such that Ge;\uz‘ nNR.

#H

The intrinsic complexity of a grammar G can now be defined as the

complexify of its derivation from an appropriate srammar-grammar, uiG,G)
using p =5 2s density. The choice of the grammar-grammar G will

depend on the sei of grammars being compared. We now derive expressions

for u{S,G} Tfor a number of interesting subclasses C of R on a fixed
terminal alphabet T = {a3 ""am—l}
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The general n variables can bo derived {rom the collection

C = {CFn} . The productions P orf CF arc

W
5
l
"

* 2 7
.

o= 4 ! cee L :
c HLFY

B e m | me | orm

nolls d S I AU 4
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T ee n t e}

L= 2 e B
o) Ti=L

For = grammar § in L(CFW) which has k productions, whose right
<

sides have a totz] of & variakbles and kg terminals we have

£~ IR’ e Nave Hom B ~ Q
{G,CF ) = k {log.(n} + logz(a)) + ko (logg(h) + loge(n))

. R 71, ¢
* By 0 (logy (k) + logy(m)) .

N el e e e el D e e G e e
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T
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For ofg in Greibach Standard 2-form {S2) and in modified Operator

= . IAasy ey, Py o hatre wrors $ e =0 3 13 s
2-form (02, *he measures have very similar expressions. The produclions
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and if a grammar G has k productions and kl""lz
sides are of length 1, 2, 3 respectively, then

u(G,82 ) = k(logg(n)+loggii)+lcgg{m)+lcgg§?}} + (k, + EJE)
n(G,02 j = k(1022{n)+logg€h)+legg(m}+lcgz{2)) + (k, + 2k,)

Similarly, the linear grammars (IN) and finite sinte grammars

have nearly identical & . The productions arc:
IN FS
X::=0] %,q X =01 %,q
Qi:=N=R Q ;= N-R
Ni:i:=2Z .o 2 N =2 ves 4
o I “n-l ! “a | n-1
¥
Tiimma | ...8 T =12 ees 8
Q m-l O ‘ ;u'l
R::=T | TN | NT Rii=1 | TH
and if a grammar G has k productions and kl’kE

sides are of length 1, 2 respectively, then

o

Pt
(W]

.

k

e
]

= k(logg(n)+log2(5)+log2(m)+log2(2)) + kylog,(n)

n(G,78 ) = L(logg(n}+logo(2)+1og2(m)+loge(2)) N

+ kﬁloge(n) .

(F8)

rules whose right

Finally, the productions and measures for Chomsky normal form (C2) are:

q = § *R

Fe=2 | ..oz

R::=7 ] My )

T 1= & f cee A o

u(G,Cén} = k(loggin))+10“2(2)+?k2(log2(n)+log2(2))*kl(logg(m)) .



Gowl Gl et el el el el el el el el e e e el el e el

Example 2bl  Returning *o cur example of the universal cammar on strings

(Example 2a5) with ar even number of a's, we can now measure the
complexity of the grammars G , H . We must first determine the
appropriate class of grammars and parameters {n,m) %o use in the
comparison. We have assumed that the terminal alphabet (and thus m )
is known. GSince both grammars are finite.state, the C called FS

even a's" grammar) has two

non~-terminals., We use n =2 for it and get the resuls:

m=2, n=2, k=6, k =k
;(H,FSEE = 6{1052(2)+10g2{2}+log2(2)+1052(2}) + b e log2(2) =28 .

For tne universal grammar G which reguires only one non-terminal

&}

we could use n =1 or

]
|
n

. The results are:

w{G,FS.) = 18 .

n

Although G 1is cimpler than H by either measure, there is a gquestion

[

of which measure ic choose. We can see from the formulas derived
above for u(G,G) that choosing the smallest possible n produces
& bias in favor cof grammars wiih few non-terminals. This seems desirable

A

and has been adopted for use in this paper.

We will need the following lemma ich deals with

).‘l ]
bou
[ 72]
(34}
o
ot
}-I-
(o]
&3
A
=
:.J
I» Ao

lemma 205 Let CCR be defined by a grammar-grammar & in Standard

3

)

-form (82) , then there is an cnumeration S of € which is

o

poroximately ordered by u(G,G) in an effective manner

™y

Je.

I

P



Proof If C is finite the problem is trivial, If € is infinite
u(G,G) is unbounded on € . Given vhe frammar-grammar G , one
can define a generating algorithm which will approximately order

s

L(G) by the length of its sirings {(srammars). Tet & be the
1= = Ly
restriction of this approximate order to GeR , & is an enumeration

of C . How if g in & is given we must show there is an

effective way to find k such that J >k implies

Let r= the minimuz density of peP and let h be such that

o -

Lie P i T as ] 1 PUES S 5
#we can erifectively Tind % such that

»

>k

[N
%

implies £{G,) >k ,
s/ 2

because & is approximately ordered by I{G}) . Als~ for 52 we

I

have td(Gi) £{G.) and thus

=

3
;

[1]]

2

T
i

u(G,F) >n - r>ufc

The two complexity measures developed here (the intrinsie complexity

1

of a gramnar and the complexity of a set of

strings relative to a grammar)

)

can be combined to form an overall measure of how well some grammar fits

a set of strings. The problem of what combination of u(G,G) and u(s,q)

to use in an overall measure will be discussed in Section 5¢. For the

bresent we will be content with an exanple.

Def 2b6 Let G be a grammar in = class C defined by €. Let §
%3 'ﬂ+ R L: <
be a subset of T | then we define the measure W%(S,G) by

).

%(S)G) = 1(5,G) + U(G)



We can now reconsider Example 2bk using Wb

G is simpler than H , but leads to more complex derivations,
2 33

then investigate which sets

grammar for

fdp]
e
bed,
.
4
-
g
ﬁ
et
[41]

Using Def. 2b% and the intrinsic complexities computed for H,Q

£(8,6) - uls,H) > 15

‘rom the resulis of 2a5 this is

satisfying
Z: y) >39 .
yes
Although it involves ge

congider this example more closely.

S will cause one tg prefer 4 to §

The universal grammar
We can

as a

this is

~
+ 1

satisfied by any set of strin s S

ting ahead of ourselves somewhat, we should

In general, WE{S,G) will depend

on the nature of § rather than some simple property as in this case,

Here we have shown that any sample including

with an even

aving only strings

S ] +hn+
Kotice that a

micht be better than both

grammatical i

]

number of a's
single string wi
The result above says nothing
G and H

iference problem and is the sy bject of Section 3.

39 or more symbols and
makes H preferable

th an odd number of a's will make
abcut other grammars which

on some set S5 ; this is the

We first

1Ly measures which plays a major role in

C grammatical inference.

o

b
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|
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2¢., HNormalized Complexity Measures
The complexity measures introduced in the last section increase without
bound with the length of strings. To overcome this difficulty we introduce
a normalized complexity measure; this measurc is bounded so we may also
study its limiting behavior as the sample set of sirings approaches the

langiage.

q . A T + .
Def 2c1  The normalized complexity 7{¥,G) of a siring y<T relative

Ri

to a grammar G is defined by
1(¥,6) = w(y,6)/1(y)

where u(y,G) is defined in 2a3 and 2(y) is the length of v .

The definition of is extended tc sets, S, of strines b
’ » Y

n(8,6) = u(s,6)/ L ly) .

yes

Lemma 2c2  For any GeR , yeS C L(G) there are constants r,g >0 such
that
() r<n(y,6) <aq

(®) r<a(s6) <a .

Proof (a) By 1b2 the derivation length td(y} is not greater than 2 * I(y) .
If B 1is the maximum p(p) in G then
g=2"'8B
satisfies the right half of (a) because if there nwe k derivations

of a string y , we have:




el

e S o DR e B L T T TR ™ s ra— R ot

g 44lyy)
L :
1({y,6) iy ent §1 § ﬂ(PlJ)
=1 i=

[
'i
fro}
(8
]
=

foure

L

et k(p} be the number of terminal symbols appearing in production P .

gl

€t r be the minimum over G of p{p)/k(p) , then r satisfies the

lefv side of (a). The proof of (b) follows by straightforward analysis

from (a) and the definitions.

The introduction of the normalized complexity measure n(St,G)
enables us to study the behavior of T as the setg St approach L(G) ,

“hen the limit exists we will write

The following example will show that the 1imit may not exist,

Example 2¢3  Iet G = ({a,c,X,Zl},{X,Zl},X,P) where P contains

X+ a]axlczllc

Z, = czl]c
and let the density o = ¢ . The language L(G) is the set of all
strings containing a finite number of a's followed by a finite

number of c¢'s , We will show that there are information sequences

for which n(ST,G) does rot converge,

0o
@3]



n . - ; m :
Let a be a string of a's of lengthk n and ¢ be a string

of c¢'s of length m . Then

H(an:G)

1

n . loge(h)

H(Cm:G)

loge(h) + (m-l)logg(é) .

On a sequence of strings of the form at , we have 1(S,G) con-
verging to 2 and on a sequence of ci , n(8,G) converges to 1 . We
will now show how to choose an information sequence which includes every
string in L(G) exactly once and for which q(St,G) fails f.o converge.
The first string is "a" and the subsequent strings are chosen as follows.

After choosing a string a® we choose all sirings of L(G) of

length up to i and compute n(S_,G) on this set S, of strings. There
[ (%)

is a string Y

which, if chosen as the (t+l)st element ¢f I , will
cause q(St+l,G) to be less than 1.4 . For example, if 8§, = (a},
then 82 = {a,c} and J rmust be such that

logeh + log, b + logeh + (3-1)
2+]

< 1.h

which is satisfied by j =7 and S5 = {a,c,cceeece} . We then select

all new strings of length up to j and compute r)(SJr 4G) . There is an
2
integer 32 such that

Iz
q(st +{a ©},8) > 1.6 .
2

By continuing this process one can produce an information sequence
on which 7(8,G) fails to converge,
In the example above, the failure of 7(S5,G) %o converge depended

on three factors: the density o , the derivation length ld and the

Iy
0




information sequence (L) . By restricting these factors in various

ways, one can show that there are cases where n(S,G) 1is known to

converge. Ve first examine the case where p(p) 1is cunstant; this
amounts %o using the length of a derivation as a complexity measure,
We will use the notation fd(y) to denote the average derivation length

of a string y .

Theorem 2el  ILet Gef be such that p(p) = r, a constant for all peP ,

then for any I(G) for which

. Z?d(yi) =,
-] Z[(yi)
the limit of 1(3,,G) exists, and

lim 4(8,,G) = rC. .
AR 1

Proof By definition

£, ky £4(354)
2= p (P 5)
_i=l i h=l j=1
EE: Ig;l)

30
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He= ((Z,a},{u},7,{7+ alai|sal) .

Since we defined 0.(S ,G) 1in terms of ‘he avera-c number of uses of v
3\7y, ERAET

the value of k; has essentially no errect on g Fer ¢,(8,) . however,

the total number of uses of a production is used. Consider <he grammar

of Example 2c¢3 with one addit

o+
poctn
e
B
'-J
3
]
o]
FL
]
v
pte
v
o3
21
o
p—
o

X+ Xa
In this grammar, each string k "a"'s haz o derivations, By meihods

like those of 2¢3 it is easy to show *here is an irnformntion seguence

for which ¢ (St) converges and 7,(5,,G)

Cods

Theorem 2c3 for ambigucus grammars.

Tre choice of q§3+,G) as a funciion of the average complexity of
the derivations of a string is cpen *o questio.n. Oiker possible cheoices
wouwld be the sum, raximum, minimum ard a weighied sum. The choice of
definition of 17 has important implications
complexity problem. This issue is touched on in Section 2d and will be

further discussed in Horning's dissertation
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3. Grammatical I

3a. Introduc.ion,

The problem

3 a

of grammatical in

Inference

Basic Model and Terminology

of inferring a grammar for a set of strings is Just

V7]

ive sericus attention. Our purpose here is to establish
a0ility results as a foundation for the heuristic methods

ference now being programmed. These results are extensions

of the work of [Gold 471 who describes his study as follows:

efi of learnability are UOSSlblE, bt

cnly the following is considered here: Time is quantized
and has a finite starting time. At each time the learner
receives a unit of information and is to make a guess as to the
identity of the unknown language on the basis of the information
received sc far. Thic procesc continues forever. The class of
languages will be considered learnable with regpect to the
specified methed of informatio nopresentation 1f there is an
algorithm that the learner can use to make his guesses, the
algorithm having the following property: Given any language
cf the cl; 5, there is gome finite time after which the guesses

will all bSe the same and they will be correct.

Gold's dzfin

GL ew ones.

1

ition of learnability derives from his earlier work on

ion [Gold €5]. We will present some new results using this

iow that by relaxing some of itz condit tions, one can greatly

solvable cases of the grammatical inference problem,
to the concepts previcusly defined, we will need a number

assume time is quanstized and is expressed by

1 inference device D is a function from samples St

rammars {G} in somec class C . ‘The grammatical inference

N
s

-1llf



problem is modelled as follows: An information seguence is prosented to

the device D at the rate of one element per fime stoep. At eachh time, U,
we compute
rd ’
A, = D\St\I),C) o
We say that a class of languages, L{C) , iz identiZiable in the limit, ir

there is a function D such that for any GaC and any intoraation

sequence I(L(G))ed there exists 2 T such that t > 71 implizc boih

a) A, = A

+
-3

b) L(AT) = L{G) .

This diffurs from the function D being recursive in .ue tfollowing way.
A recursive function D would, at scme 1 , be able to ignore ail further
information, i.e., would be able to stop and demonsirate the right answer.
Since we have allowed an information seguen~e to contain repetitions of a
string, not even the class of finite languages is recursively identifiablce.
Before considering the properties cf inference devices, let us look

at the notion of information sequence., Gold [Gold 67 has shown that t

an ordered (e.g. by length) I and a random one for Ied . He also shows
that in this case allowing the device D *o select the next string y to

+ q o e q s R . L
appear as - y inr I does nct change things. While these different msthods
of informing (teaching) ihe device do not affect the learnavility of languages
in the limit, they do have powerful effccis on the heuristics of efficient
learning. Sclomonoff [6L] considers the grammatical interencc problem a
special case of sequence extrapolation ana his methods rely heavily on the

order of presentat’on of examples. Another crucial consid

{2

ration iz

v

31



whether the information sequence contains complete information., The

effects of complete samples is the subjeci of the nexi seclion,

3b. New Results on Grammatical Inference
The main results of [Gold 67] deal with the great difference in
learnability efiected by allowing information seguences with negative

instances, Ied , {informant presentation) _ather than just positive

instances, Ied+ , (text presentation). UWe will informaliy outline certain

e el el e ek el e

key proofs and then extend them in various ways.

All of *the methods are based on the denumerability ot various classes

L

of' grammars; the primitive recursive, context-sensitive, context-free, and

+3 Y

any other class we might be concerned wiih here can be enumerated. Let

= {Gl, ...} Dbe an enumeration of such a class, Also let &8 = [I] be

the set of all complete information sequences over some alphabet T
a + + q q
(each yeT occurs as -y in every I ). A class C of grammars is

+
admissible iff C 1is denumerable and for all GeC , yeT  the relation

Py

veL{G) is effectively computable. A grammar G is compatible with a

set of strings S =5 US_ iff 5 cL(G) and §_cT - L(G)

Y

Thecrem 3bl (Gold) For any admissible C there is a device D(S,C)

uch that for any GeC and any I(L(G))ed, L(G) is identifiable

in the limit through I .

Proof The device D simply sequences ithrough the enumeration & ot C .

]
b
™)
5]
0
pes
[
e
£
&
e
©
Ho

A+ ecach time, T , therc is a s compatible with

5.{I}, it is the guess A, of D at time t . At some time T,

4
(e

A3
o




A'r will be such that L(AT) = L{G) . Then A_ will te compatible

with the remairder o the information and will be the constant resul+

of D.

Thus with informant presentation, a very wide class of grammars can
be learned in the limit, By restricting the information ‘o only IeJ+
we give up learnability in the limit almost entirely. ILet everything
be as before except that the set of information gequences J+ = (1)

contains only seguences of the form <+yl,+y?,...> .

Theorem 3b2 (Gold) T'inder these condi‘ions any ©lass C generating all
——cti e
finite languages and any one infinite language QD is not learnatle

in the limit.

Proof We show that for any D, there is a sequence I s which will
make D change its value At an infinite number of times for
Since D must infer all finite languazes there is a sample which
causes it ‘o yield some G(Ll) such that I, < L . Now consider
an information sequence which then precents some string xegn - Ll s

repeatedly. At some time ¢ , D(St,C) mist yleld a grammar of

Ll U {x} = 12 because all finite lanmuages are inferred. This

construction can be repeated indefinitely, yielding an information

sequence I which will change the value of I an infinite number

of times.

This unlearnability result is so strong that we were led g try to
consider it further. The remainder of this section is devoted %o the study

of conditions under which learnability from pesitive sequences only is
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attainable. Let us first consider the repeated occurrence of a string y ,
in an information sequence 1 . The proof above is based on the possibillit)

of having some string occur indefinitely often; it d

C

1ot seenm unreasonable

e85

»

to bound the number of occurrences of any siring in an information sequence
and thus restrict our attention to y+ .

By restricting consideration to bounded information sequences, we

7

have made the problem of identifying finite languages trivizl. The
classes of grammars which are now identifiable in the limit can be

characterized by the following tws lemmas.

Lemma b3 Any class of ofg CC R which contains only a Tinite number

of crammars which generate infinite languages is identifiable in the
g L) =

limit from any I(L(G))ef, -

Proof The device D(S,,C) which will identify C in the limit will
te defined. Iet % be an enumeration of the grammars of € which
generate infinite languages. AL each time 1 , the device D will

form a guess A, as follows. A, is the rirst grammar in & which
19 G
is compatible with S, and which generates the minimum number of

[

strings of length less than or egual to k , where X 1is the

length of ithe longest strain

g

S, . If the language L(G) is

finite then I(L(G)) terminates at some t and a grammar

for L{G) can be picked out of C - & ; we will now corsider

. o

intte, ITf HeC 1is any language such

the case where L(G) is int

».

that L(G) - LK) = {y} #0 , then after the first appearance of

a v in I(L{G)) , H will never be guessed by D . If HeC

is such thai L{(G) € L{H) there is z lensih ky such that for all

A
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K>k ivgs than or equal

ol =) . - =) i 3 3i.r . PR
H generates more sirings o jen

[¢

l ’

tec k than G and thus H will et obe guessed by D, Thus D
will eventually guess only the first rvanpar Acd such that

L(G) = L(A) and the lomma is proved,

Thus requiring an information sequencs Lo be bouanded has produced a
somewhat larger class of inferrable languages, Althoush some infinlte
sets of inf'inite languages can be identifiod in ‘he limit, ihe following
lemma shows that there are some very simple clagses which cannol Le

identified in the 1imi: from Ieg .
"

Lemma 3blk The finite state Languaces are no identifiakle in the limit
e ———— ey > o >

from Ie§+ .

o e By oo

Proof The proof is an adaptation of Gold's proot of lemma Zv2. Ye
form a subclass of the finite ginte languages for which D will
change its value an infinite number of times. Leb iLhis class
C = {Hi} be defined as follows.
L(HO) = a¥b* {any sequence of »'s followed by any sequence of b's)
and

i
for 1>0, L(H,) = y a'yL#

The languages o 1 >0 ull bave finite state crammars. Ae will

i
S,FS) which will identiiy in the 1imit all the 1. 9

ety

show that for any I
1>0 there is an I{ wonich will cause D 1o change its guess an

infinite number of times, The geguence I{HO) staris with cnough

ycL(Hl) to cause D to guess H. ; the assumpiion that D  infers i)
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guarantees the existence of such s sample. Then I(it.) continues with
enough yeL(HE) to cause D to guess H, , stc. Any I(ﬁo) uf this
nature would cause D +*o change its guess an intinite mumber of times.
The class of languages learnablie trom positive information sequences
will now be extended by introducing a weaker notion of learnability. The
comparison of the two definitions of learnability will be deferred until

aiter the theorems. For the remainder of Section 5 we will resirict

ourselves to bounded information seguences and 1o the class R of completely

recuced contexi-frec grammars. Several of the results could be made more
genoral, but these are sufficien* “or our purpcses and allow of simpler

treatment.

Def 255 A language L{G) 1in a class C is approachable from above

1y a device D iff for each HeC such that L(G) © L{H) and
ench information sequence I(1{G)) , there is a 1 such that

% > 1 implies

Thus a language is approachable from avove 1If' every grammar

prodicing a larger language is eventually reiecied., We can define

approichable from below in a somewhat similar manner;

poe)

Y

Def %vé [ language L{(G) in a class C 1is approacnable from below iff

for cach HeC such that L(G) - L) # § and each I{L(G)) there

i




Thet is, any grammar H » Whese lansuase dues nos

is eventually rejected. Thig condiiion is triv

reasonable device for positive

any yeL(G) -

Def 367 A languace

end below. A «

a device D(S,C) wunder which e

LD
€y
(o

through any I(L(G§)6J+ .

Theorem 3b8 For any alrissatle olass of =
Sl il

N Ui

device D(S,C) such that for any G-

i- approachable through I .

Proof For L(G) Tfini*ec the problem iz

. , .
Let I(Li{G)) = Y ppFoasee>xd L Let

+

for cach G in & defire nk{"r} s

k generated by ihe grummar 4 =nd

Ead + g pn e +* a3
o e o6 Sirings of lengih
Yt At anoh tim Fs
40¥E. AL eath tine, Ty

The device E(St’c) rroceeds as iol
D wili ' ioose the nexi zrammar G,

v, €I{G} forming the sample
19

it will also compute £, = max{i(y))
alsc form the st of pos.ible fuesse

. = [Gle{Gl,... GT} and

o
N

Il
i

. S
[ly incorporated in any

from aboyve

(S0

= - + Ry . e Y
= o
asgume LAG;, 1is infinite,
2 1 . N ) | -
& 0o oan emmmeration of € and

over yes_ . The deviee will
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If @, 1is empty, the device wili chocse more grarmmars from &

is non-empty.

The fact that o is effective follows easily from textbook

results., We now show ‘hat A approaches G fror above. That is,
q - q 8. ap <: . ap . 24
if HeC is such thet L(Q) 7 LH (E) there is =z %ime + such that
¥

(1) t > 1 implies A, £ :

el -fnx":,’m A s s L ] !

It LG} i LAH; there iz an integer h  such that k > h

i

implies

Tt
e Tl

st value of %

The procedure

-

PR + vy
nore ellicient in a numter of Ways.,

L3S of

ik

Pl

has a finite

[N

+

ies Tor A,
(%)

~

such a5 those of Ze

ornation sequerce

=0 grammars which prodiced infinite languages.

be the first valve of % for which I =h and s
9

for which G appears in & . Then
is a finite value of time for which {1) nholds.
is always spproachable from below through any complete

ation sequence, the theorem : proved.

used by the device D in the proof above can be made

Bince 2 i.nite ian Zuage necessarily

ver §+ » D could resirict its guesses

In practice, oue would break

Ll

by choosinz the best grammar relative to scme complexity measgure

otlion 2. The question of inferring "good" gr1- mars will

be discussed in Sectien 3c,

i
e

|




There ig a progrossive ue

intuitive concept of "learn:

limiting identifiable to appro

identify a class of lang..gzos

but will not know that it has done so. 1T

of languages, it may not ever setils on =

progressively closer as the sarple thiz is the
bast kind of result possible in inTermation.

The device D used in the

negative sirings to reduce the sel

ot
3]
5
1]
[
1 4]

One might conjecture ©

in an information seguence withoul

(that is, whether all or only some

g £l

achieve the tehavior of

ST

incomplete cnes. This conjecture is

of Lemma 3bk will show that:

Corollary 3@ If © is a

= fm - ) L o S th s miand
language L'\'u’) for any 1z o Tinite 3laie i
grammar ¥ aid an informatlion seguence se

I +to chance its guess arn infini

intuitively, the device of

strategy; it chooses the first grammar whioh is compatible with the cample.

"

I+ succeeds because the nesative

S -

that any incorrect grammar will ultimately be incompatible. The drvire of
33

Theorer 5tf does not hove

consiantly loor for

5
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"petter" grammars and thus cannot be gu.ranteed ic eventually remain at the

same value., The question of learning good grammars and making good guesses

is the subject of ithe next section,

3¢, Learning Good Grammars

The preceding discussion has established the solvability of the
grammatical inference problenr under a variety of conditions. ¥We now
extend these results by ccnsidering when a good grammar (in the sense of

Section 2) can be learned.

There are several properties which would be desirable in an overall

measure which was an increasing funciicon of both intrinsic complexity,

n{5,3) and derivational complexity, u(G,G) For a fixed grammar, the

complexity cf a sample shiculd be bcunded so that the convergence results
of Section £¢ are applicable, Finally, the relative weight given to the
components of the measure should be able fo be specified in advance.
Ancther important property of a measure, effectiveness, is actually a
consequence of the other requirements and the general conditions of the

problem as the fiollowinz lemma and theorem will show.

Lemma 3¢1 Iet & = {G,} bve any enumeration of a class CCR

which is approximetiely ordered by length and let S, be a
sample of some I(L(G)) , Ged . Then there is a computable

index k suchk that 2 >k implies there is a

e
o

o1

that
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L
(A3

Y



:

Proof The proof is based on the fact thai if a srazmar is oo
A —

3

iarge, there must he some edundant rul et

Jer

u(s,) = = 2{y.) .

pode
i}
e}

From Lemma 1b2 we know that the total mumber of uses of productions
in deriving S, 15 less than U(S ) . Therefore, if one chooses an index

k such that

[

>k implies the numoer of producticns in 4, 1s greater
(7]
than U(St) » the condition of the lemma is satisfied, Sugh a k  is

computable since § is effectively approximazely ordered Ty ithe lengih of

grammars.

Theorem 3¢2 Iet Cc R and &= ,=;} be an re approXimate

ordering of € by n(G,5) . Also let £{y{g,3) ,ui5,51) be any

monotonic functicn of bath its arguments. Then for any GeC ,

ds

St C I{(G) there is a computzble index & suvh thas any grammar &
such that

f(q(S&,J 3,u(G,,G}) is minimal

<

.L

ry

has an index i <k in & .

Proof By lemma Zcl above, thers isa k Siieh

minimizing 17(5,,G) occur before kK, - Let M be the largest

g

by

value of u(G,,5) ocecurring vefore k., , i.e.,

M= -':-‘" (L’-( _)a}} .
1 <4<k, -

= 4

Now, by lemma 2b5 there is an index k suchk that 3 > k implies

1w(G,,G) > M.
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The minimum value of f(q{S+,Gi);;(

index less than k . since for each

such that both q(St,Gh) < (s, ,aG

The requirement that a gocdness measure be an increasing func*tion

of both intrinsic complexity u(G,G) and derivational complexity n(S,G)

seenm to be a natural one. The particular choice of a2 goodness ruaction is

less clear. Consider a device I which enu

erates the class C of

candidate grammars by generating them in order of

lengtn from G .

1({S,G) is a normalized complexity measure and is

tounded for a fixed

grammar, the bound increases approximately as ihe

length of grammars.

Although wuf{G,3) also increases with lengt
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