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Linear and Nonlinear Theory of Grid Excitation 

of Low-Frequency Waves in a Plasma 

George L. Johnston 

Department of Physics, University of California, 

Los Angeles, California,    9Ö024 

ABSTRACT 

The steady-state excitation of longitudinal waves by a pair of 

idealized grids immersed in a collisionlcss plasma and driven at a 

frequency small compared with the ion plasma frequency is investigated 

theoretically.    In linear theory the Fourier-inversion integral which 

determine the spatial behavior of the potential in the plasma is expressed 

as a sum of two integrals which embody the interactions of phase-velocity 

components of the wave with ions and electrons.    An appropriate choice 

of the deformed contour of integration permits evaluation of the response 

as the sum of the reside of the dominant "ion-acoustic" pole and of the two 

• 
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brunch-cut integrals,    A perturbation-series expansion of the potential and 

the species distribution functions in the  (nonlinear) Vlasov equation yields 

a hierarchy of equations.    In each order the equations are linear in the 

perturbation quantities of that order and have driving terns composed of 

quadratic combinations of lower-order quantities.    For sufficiently small 

amplitude of excitation the principal contributions to the response come 

from the first-order (linearized Vlasov) equation and the second-order equa- 

tion, . In second order the steady-state response consists of zero-frequency 

and double-frequency components.    The second-order equations are Laplace- 

Fourier transformed and resulting velocity integrals are expressed in terms 

o* plasma dispersion functions.    By approximating the driving terms by 

their dominant-pole component, one can express the steady-state double- 

frequency response as a single Fourier-inversion integral.    As in the linear 

problem, the integral can be evaluated as the sum of a residue and of "ion 

like" and "electron-like** branch-cut integrals.    Numerical results are 

presented for the linear and nonlinear cases. 

mm 
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I. INTRODUCTION 

The calculation by Gould of the steady-state response in linear 

theory of a collisionless plasma to grid excitation of longitudinal waves 

at frequencies below the ion plasma frequency exhibits good agreement 

2 
with the experiment of Wong, D'Angelo, and Motley, and supports the inter- 

pretation that spatial damping of the wave is due to Landau damping. The 

importance of understanding the nature of the damping and of studying non- 

linear processes in plasmas suggest the desirability of extending the 

theory into the nonlinear regime. As the amplitude of excitation is increased, 

one expects the steady-state response to include harmonics of the applied 

frequency. If the amplitude is sufficiently small, only zero-frequency and 

double-frequency harmonics are significantly excited, and a perturbation 

procedure should yield this nonlinear response. 

In Section II the response in linear theory is determined by a method 

which possesses certain advantages over that of Gould, The response is ex- 

pressed as the sum of two branch-cut integrals which contain the velocity 

derivatives of the ion and the electron distribution functions and give in- 

sight into the role of the two species in the Landau damping of the wave. 

The response may also be expressed as the sum of the residue of the ion- 

acoustic pole and of the two integrals evaluated along deformed contours 

which are well-suited for obtaining high accuracy. Calculations are per- 

formed both for the case of negligible grid spacing (dipolc limit) considered 

by Gould and for the case of finite spacing between the grids; the compari- 

son illuminates the role of the model of the grid in determining the char- 

acter of the response. In Section 111 perturbation-scries expansions of 

:1 
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electric field and species distribution functions ore introduced into the 

Vlasov equation; the equations for lowest-order nonlinear response arc oh- 

tained. Performing the appropriate Laplace-Fourier transforms, analyt- 

3 
ically continuing (in the manner of Landau ) functims of two complex vari- 

ables defined by velocity integrals which occur in the formulation, and re- 

lating these functions to the plasma dispersion function, a double Fourier- 

inversion integral for the lowest-order nonlinear response in the plasma is 

obtained. This integral contains a quadratic combination of the electric 

field in linear theory as a driving term. In Section IV reduction of the 

double integral for the double-frequency component to a single Fourier-inver- 

sion integral is achieved by approximating the electric field in linear theory 

by its dominant-pole component. The nonlinear response is expressed as the 

sum of a residue and of ion-like and electron-like integrals, as in the 

linear problem. In Section V the branch-cut integrals and the residue arc 

considerably simplified by utilizing the square root of the mass ratio as a 

smallness parameter. Calculations are performed for a range of values of 

the electron-to-ion temperature ratio. In Section VI the zero-frequency 

component of the nonlinear response is shown to consist of a polarization of 

the plasma, with no species current densities. 

II.  LINEAR PROBLEM 

The steady-state oscillatory potential produced in a uniform and in- 

finite collisionic's plasma by excitation at a frequency w0 of a pair of 

closely-spaced, idealized grids, which produces an external oscillating 

charge density but intercepts no particles, is fjiven by <}»(x,t) = $(x)oxp(-iu0t) 

+ complex conjugate, in which 

f»W*v~ 
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<|>w=- 
rrO 

1 exp(ih/:>clh      t] exp(ikx)cifc 
CD 

Here    ofi    is the amplitude of the surface-charge density on either grid 

and    xQ    is the separation between the j^rids;  the dipolc limit,    xQ + 0, 

°0 xo = const» *s considered,     (""he  effect of finite spacing between the 

grids is examined below.)    The "plus" and "minus" dielectric functions are 

given by 

ß 

in which the corresponding plasma dispersion functions are defined by 

(2) 

Z(f)= 
' exp C-i )dt (3) 

when Im{c) is positive and negative, respectively, and by the analytic 

continuation of these integrals elsewhere. The functions Z+(c) have a 

branch-cut along the real axis; the situation may be understood by consider- 

ing the integral to be the limit of an integral over the finite range -c to 

c, as c •* «. Branch points occur at x,  ■ ±c. The mapping of the branch- 

cut and branch points onto the k plane for w = wQ + ic is shown in Fig, la, 

along with the primitive Fourier inversion contour. The first step in evalu- 

ating the integral is to fold the left half of the primitive contour in the 

upper half-plane (for x positive) over onto the right half of the primitive 

contour, as shown in Fig, lb .  (A residue contribution at k" ik^, where 

k^ c 2 [w2 a"2 ♦ w2. a2] - , nav be neglected except for very snail values 
D l pc c   pi iJ  ' i l J       ' 

of x . There is a pole at k=0 which gives a contribution to the potential 

f 
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which is proportional to sign {x}  and therefore has no physical signifi- 

cance.) This is the contour used by Gould for numerical evaluation of the 

Fourier inversion integral. It has the disadvantages that accuracy is re- 

duced as x increases, because of the rapid oscillatory behavior of the factor 

exp(ikx), and that it does not provide for separate determination, as a 

residue, of the contribution to the response arising from the ion-acoustic 

pole at k. , which is dominant mithin a considerable range of x . 

The method used here avoids these disadvantages. It provides some 

additional physical insight into the damping of the wave and leads to a 

method of dealing with the branch-cut integrals which is useful in the 

vastly more complicated nonlinear case. 

The physical understanding of Landau damping of a weakly damped wave 

involves an interaction between the wave and particles with velocities very 

4 
near the phase velocity of the wave.  Presumably the case of strong damp- 

ing considered here involves interactions between the wave, which consists 

of a superposition of phase-velocity components, and particles in the cor- 

responding band of phase velocities. Therefore a transformation of variable 

of integration from k to the dimensionlcss complex phase velocity 

C e w0/ka., which is considered a more "natural" variable, is introduced. 

The usual dimensionlcss variables z = w0x/a. , f = u>0/io . , 4> =• "co^/°nxO ' 

and T * T./T  arc introduced. The mass ratio is y = m /m. . "Making use 
1  C v   1 

of the relation 

Zl(Q-Zl&=4^iC*M-C% ('D 

»y 
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the following separation into an "ion-like" and an r,elcctron-like"  integral 

is achieved: 

/-CO 

o 
(Since the factor exp(iz;" ) has an essential singularity at    C=0 , giving 

z    a small positive imaginary part assures the existence of the integral.) 

The dielectric functions are here and henceforth indicated as functions of 

the alternative arguments    C    and    t    .    The form of Eq.   (5) displays 

clearly the role of ion and electron distribution functions in determining 

the character of the response.    The usual factor   K~      is modulated in each 

integral by the velocity derivative of the distribution function, which 

indicates the range of particle velocities which interact with each phase- 

velocity component of the wave.    The ion-like integral, which is strongly 

affected by the ion-acoustic root of the dispersion relation at    C.  s wnAai  » 

principally determines the response from the £rid to the beginning of the inter- 

ference region.    See the dashed curve of Fig.  2.    In this region    electrons 

easily follow the low-frequency ion motion ond, as is well known, neutralize 

the ion charge density quite effectively.    In the region where the ion-like 

and electron-like integrals are of comparable magnitude    the interference is 

obtained.    At large distances    the response is principally determined by 

the electron-like integral; the phase-mixing factor exp(izc" )    limits the 

phase velocities involved to values greater than those of most ions so that 

only an electron charge density arises.    This part of the response corresponds 

• 
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to electron shielding of the disturbance produced by tbe grid. 

By deforming the contours so that they proceed from the origin in the 

direction of  icgative imaginary values, pass beloM the pole at    £,   » and that 

K>le only, and approach infinity well within the range    -TT/4 < arg(c) < tf/4 , 

one expresses the response as the sum of the residue of the pole at    £.    and 

of the two integrals. 

The ion-like integral may be evaluated along the path of steepest 

-1        2 descents for the function    exp(iz£     - C )  > shown in Fig.  lc, or along the 

simpler contour shown in Fig.  Id, which is independent of   z .    The path of 

the steepest descents is the archetype of desirable contours in that it 

transforms the dominant exponential behavior of the integrand into a gaussian; 

for the simpler contour considered, the exponential becomes predominantly 

damped (as opposed to oscillatory) as    £   approaches the origin and infinity. 

Thus the oscillatory behavior »;üch plagues an integration along the real 

axis for large    x   is avoided here. 

The evaluation of the electron-like integral requires a somewhat 

different treatment.    Since its integrand decreases slowly as    |c|    increases, 

the dimensionless wave number is an appropriate variable and the contour of 

Fig.  le is a suitable contour.    The practical difference between using one 

variable and the other is that in the numerical integration one treats the 

Variable chosen as having a distribution of discrete values which is not 

radically different from a uniform distribution.    The path of steepest descents 

for the function    exp(iz£~    - ul'C )    or a contour which bears the same 

relation to it as Fig.   Id bears to Fig.  lc is unsatisfactory because a large 

number of roots of the dispersion relation arc swept past in goin^ to such 

a contour from the positive real axis. 

m 
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Computations were performed both for the dipole grid sodel and for the 

model of the double grid with finite spacing.    The latter case was considered 

in order to gain an appreciation of the importance of the assumed theoretical 

model of the grid excitation in determining the character of the response. 

The factor    [sin(kx0/2)/(kx0/2)]    introduced into the integrand of Eq.   (1) 

gives the integral for the case of spacing between the grids equal to    xQ . 

The potential for points    x > xQ/2    is    <f>(x) = x "  [$j(x ♦ y xQ) - d.(x - y xQ)]  , 

in which 

CXO 

(fcjMsr- 

rOTj 

£nx£o J KMfi   KJMJ 
(6) 

(Tlic pole at   k=0    gives unimportant contributions to    $(x)    as in the 

dipole limit.) 

Computations were performed on the Culler On-Line Computer of TRW 

Systems,  Inc., Redondo Beach, California.    Figure 2 shows the results for 

the dipole limit and the finite-spacing case  (with    zfl = w x /2a.  = 4 ) 

when   T-I    and    r « 1 .     (in the limit    F « 1    one has 

f2K±(C,f2)->f2K±(C) = -C2[Z;(0 ♦ TZ»(U1/2 T1/2 O]).    Comparison of the 

curves suggests that the general character of the response is unaffected 

by a choice of reasonable models of the grid excitation, but that fine 

details such as the precise character of the interference between ion and 

electron waves should not be taken very seriously. 
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I 1 
III.  FORMULATION OF THE NONLINEAR PROBLEM 

Examination of the (nonlinear) Vlasov equation indicates that the steady 

state response to time-harmonic grid excitation at frequency uQ    involves 

frequency components w^O, w , 2u ,.... Strong nonlinearity involves sub- 

stantial contributions from a large number of harmonics and a coupled system 

which is probably difficult, if not impossible, to solve. Accordingly a 

solution is sought for the case of weak nonlinearity by introducing a per- 

turbation-series expansion of the potential and species distribution func- 

tions.  (This is equivalent to the procedure used by Montgomery and Goii?.a:i 

to study the initial-value problem.) Introducing for convenience the par- 

meter X , which is finally to be set to unity, one obtains the following 

expansions to order X2 of the potential in the plasma and the species dis- 

tribution functions: 

%i 

§>(*>*> = \4>fct) + V£#ycH • • • (7) 

tow« =tJyU \ iJp>*&+KNj*&) + - .. o 
(8) 

Substituting these expressions into the Vlasov equation and collecting 

like powers of X one obtains in first order the linearized Vlasov equation 

and in second order the set 

pwa ■ ■ 
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-^^-V^^   pr  J, 
3X~   .    z_   £-0 j      A, 

--ÖC 

(9) 

(10) 

in which E = -3$/3x.    By proceeding to higher orders one obtains a hierarchy 

of pairs of equations for higher-order quantities.    In each order the equation 

corresponding to Eq.   (9) differs in having a different sum of quadratic 

combinations of lower-order terms on the right-hand side; the structure of 

the other equation is the same as that of Eq.   (10).    For sufficiently small 

amplitude of excitation only the first-order and second-order components of 

the response need be considered. 

The second-order equations are Laplace-Fourier transformed;  the trans- 

form operator is 

- 

T= 
ceo 

'0 

&s 

j 

p {-I KX / (11) 

The transform-inversion operator is denoted by T* .  (Primed and. double- 

primed transform variables, w* , »" , kf , and k" , are used below; the cor- 

responding operators arc denoted by T1, V"  ,    T" , and Tn" .) The dis- 

tribution functions 6f (w#k,v) are eliminated from Eqs.(
(J) and (10) and the 

resulting equation is solved for 6*$(w,k), The electric field and species' 
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distribution functions in linear theory are expressed as inversions of the 

transforms E(iü",k") and 

(12) 

in which E(o)f,k') is the transform of the external field of the grid divided 

by the dielectric function. Here w' initially has a positive imaginary 

part. The velocity integrals which arise (see Eq. (10)) are analytically 

continued into the entire w/k and wf/V    planes. The deformation of 

the contour of integration in the velocity piano around the pole at v ~u/k 

is the same as that in K(to,k); the deformation around the pole at v s=iufA! 

is the same as that in K(w',k'). The Laplace-Fourier inversion of 6<Kw>k) 

is performed. The result of these operations is 

S<j>< v^-v-i i 

lk3K(w;^ CTE< \T£\- (m'-'&^/dv). 

■A 
CV-cok"*) 

~cv (13) 

in which   E   and   f     arc Laplaco-Fourier transforms of the field and dis- 

tribution-function perturbations in linear theory, and    A    denotes the contour 

in the velocity plane deformed as described above.    Making use of the no- 

tation    U   = q u)   /ma     and a       'a pa    a a 

\/!r  r'\ -a ''■ \ 1 9 l^k^y cv (14) 



in which t = w/ka  and c ' = u'/h'a  one may express the response as 

fo=1 
„.* -i 

_K3K(w,k)tr ■EOT T^EEK «HT[E^»'"-
1
 Wkp] (IS) 

For a plasma corcposcd of electrons and of one species of singly-charged 

ions,    l) /i}. ■ -f   .    Performing an integration by parts and making a par- 

tial fraction expansion in Eq.   (14), one obtains 

1/(^0: [z'oro-z'CT ,  z'to 
(c-ff';e 

(£-£')' 
(16) 

IV.  DOMINANT-POLK APPROXIMATION 

The practical impossibility of evaluating 6$(x,t) without introducing 

e  further simplification is now apparent. Application of the convolution 

theorem to T{ } in Hq. (15) results in a single integration with respect to 

k1 which contains a quadratic combination of a function of k1 and a func- 

tion of (k-k'). The inversion k-*x lcr.ds to an integration with respect 

to k . In addition to the requirement of evaluating a double Fourier inte- 

gral is the further complication that the functions of k* and  (k-k1) 

within the double integral have branch-point pairs in the k and k' plar.es 

when kf=0 and (k-kf)=0# just, as there is a branch-point pair at k=--0 in 

the linear problem« An escape from this impasse is provided by the dominance 
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of the exponentially damped contribution of the residue of the ion-acoustic 

pole over a wide range of x in the linear problem.  The deviation from 

this response near the grid is so strongly damped that its contribution to 

the nonlinear response is probably highly localized; the deviation due to the 

electron wave at large distances is at such a low level that it may be 

neglected. 

The dominant-pole approximation is obtained by representing the steady- 

state electric field in linear theory by the residue contribution 

Eßeit)==f8Aexp[i(kilxhw0t)]+ c.c (17) 

in which 

A 
10. •> ftUfiAfl 

e^-i CLW1CQ + 
(18) 

and   kj = WQ/C^ . 

To obtain the double-frequency response, it is sufficient to consider 

the partial linear response given by the first term of F.q. (17). The cor- 

responding nonlinear response plus its cor/.plex conjugate is the real double- 

frequency response. The Laplace-Fourier transform of the partial excitation 

is 

E ■ft,\! r_ i  A (19) 
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Examining Eqs. (1) and (5) one notes that the first term of this expression 

comes from K+(w #k) and that the second term comes from K_(w fk). Because 

of the replacement of the dielectric function in the transform of the response 

in linear theory by its dominant-pole component it is necessary to indicate 

whether the plasma dispersion functions in V(c $V)     (see Eqs. (15) and (16)) 

are plus or minus functions. This is accomplished by the notation 

V  i(C .?')  . in which s and s1 are plus or minus; the first subscript S s1 v or cr  ' r • i 

is associated with the first argument and the second subscript with the 

second argument. 

As the first step in determining the explicit form of Eq. (15) in the 

dominant-pole approximation with the partial excitation described above, 

one obtains the inversion 

T/-^EV,i'/)k/"iV(^JÖ]=-r-eAoico0'-i tL expEiklxVo^a 
(20) 

Here    O(x')    is the unit step function;    rt.      equals    C,    for   a=i 

and u        T /  C,    for   a»c .    The subscripted parentheses indicate that plasma 

dispersion functions of argument    c     way be plus or minus functions.    The 

further steps indicated in Eq.   (15)  are performed; one obtains    6<j> (x,t) 

c cxp(-2iw t)6<{>+(x)   , in which 
U , r* ■       ,i 

r- 

,00 

X oxotfU) 
(21) 

Here    w   bar. been set equal to    2wn    so that    C    B2wn/kar.  .    The definiti 
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' 

of t-  is unchanged. 

The folding of the primitive contour in the k plane and the trans forma- 

tion of the variable of integration from k to £ , which is now defined to 

be equal to 2u>0/ka. , are performed. The contour in the £ plane is nov: 

deformed so that it proceeds from the origin in the direction of negative 

imaginar>  lues, passes below the pole at £. ,  and approaches infinity 

well withi the range -ii/4<arg{t}<iT/4 . Such a contour is denoted by C . 

As in the linear problem there is a simple pole at k«0 , which has no physi- 

cal significance. For the case f^«l (f = WQ/W., as before), to which con- 

sideration is now limited, f K+(2ü)Q,k) •* j f2K+(C) . For purpose of com- 

parison with integrals in the linearized problem it is convenient to consider 

[64>*(x)/f6 (-2*10.)], in which C. = Cj^. and 

c=.if^) 
r 

**   iS'ii €o   ■ 
1 

^PK+@] 
(22) 

One obtains 

..£ .-in A n-Srt Ci)W<M=I«+I«+R (23) 

•*"**"«w»^ I 



....     ,«■—.,,,„„ ,.        M.I.M,,,,,,    „„^^—■■■^.-^r 

-17- 
" 

in which 
i«= <)£exp(eigS-A) 

)c^,-.i)4:-e&£K+(a][^K(ca 

(*-5) X 

(24) 

(25) 

-  (r+r,) 
and   R    is the residue contribution, which will be discussed and evaluated 

1/2-1/2 1/2  1/2 
below.    For compactness the notation    ? = p ' T '  C    and    ^ * V     T '  Cj 

has been introduced.    The definition of   z    remains unchanged,    z = w
0
x/a;   • 

Expression of   P1J    and    P J    as sums of ion-like and electron-like 

integrals, that is integrals whose integrands have the exponential behavior 

-1        2 -1-2 exp(izC     - 5 )    and   exp(iz£     - yTC )   , respectively, is achieved by 

manipulations which are here described briefly.    By expressing    Z"(c)    in 

terms of   Z'(C)    in Eq.   (16), one obtains 
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In I^1J and I^e' only the C dependence of the V's remains. To 

indicate the structure of the manipulations one may denote the Vfs by 

*W " V*±«a'*Cla>  •   W - V.±(C„,±Cla)  , in which 

(27) 

. 

The P's and Q's depend on the species a and on the suppressed ± index 

associated with the arguments ± 5.  . But they do not contain V   (5 \ 

and hence are independent of the ± index associated with 5 . Appropriate 

elements of the integrands of Iv *    and Iv '    are expressed as 

BeK-(r)v/+te)-fEK+(^)MQ] 

=K(fJ[fsK«-fBK+®]+Q(^CZ-(d-2+'fe)]. 
(28) 

The desired expression of   I^1J    and    I^CJ    as sums of ion-like and 

electron-like integrals is achieved by making use of Bq.   (4). 

Defining, for   n = 2,3,    the functions 

(29) 

and making use of the relation Z\(-C) s  Z' (c),  one obtains finally 

for a « i,c 

fa)        (v": *   -1- fa * *0    -r^ • • ^     T- rv -k 9 N I ■ =1^    +J.(--')^J;-':-- +lCafeÄ' (30) 

*MM I 
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in which 

j(«P*) 

The func  'ns    G(aßn)    are 

(31) 

G(ii2k e,P (-rt r8[z;&) +f zÄfe)] D3( r)       m 

G**- eXp(-rtc2Ce-f(i-g^)Z+(9]Ck(y     <»> 

.(iesi    i <f= fi%m^^d-zM^) (34) 

GM->4Tfiexp(-« rtS+-(l»8^Zifeg^®    (35) 

G-    -^fexp(-^c3[z+fö-Z/©] Ds©       (36) 

.- 
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'■   t 

. 

.(ei2)_ "fc\ Q^as-H.«T%1cp(-rt ^ Z+"£) Dfeft) 
(37) 

<fes>=-p T *.xpfr1 s3[f Z^+Zä(ö (38) 

G(MS,=-tr*r*exp(-^eB [BT_ (i-ei^ö]a(c).c») 

In Eqs. (36) and (38) the relation D3(£) = u"
3/2T~3/2D3(C) has been 

-1«-1 
used; in Eqs. (37) and (39) the relation D2(£) = u T D2(C) has been 

used. 

- : I 
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V. SIMPLIFICATION AND NUMERICAL RESULTS 

The numerical evaluation of the branch-cut integrals nay be simplified 

considerably by the introduction of approximations and an ordering of terms 

based on the smallness of u   . In lowest order I*1' may be neglected. 

In next order cne element of I^1' , namely I*11 *  , makes a contribution 

to the result which, although small, is enhanced by the character of its 

integrand above that indicated by the ordering. 

The relation [Z'^C.) ♦ ^Z1^.)] c 0 implied by the dispersion 

relation facilitates the comparison of the relative magnitudes of the 

corresponding elements of I ^ and I^ej which contain D- . Using 

this relation one obtains [G(il3)/C(ei3)] = p and [G(ie5VG(ee3)] = uf"1 . 

The corresponding elements of I* ' and I* * which contain D~ are 

(ie2)       fee2} now compared. Consider first I     and I  "  . In the small-argument 

region of the contour C ,  |tj 2 4 , the factor [2 ♦ (l-2£ )Z»+(C)] , 

which appears in G^ie ' , and the factor [2T - (1-2£2)Z' (£)] , which 

appears in G (ee2) , are both of order urity. Thus the ratio of the 

absolute value of the small-argument part of I*le ' to that of Pee * 

is approximately p . In the asymptotic region |c| - 4 the two factors 

have the behavior [2 + (1-2C2)Z' + (C)] [= CZ« + ( )] *v - 2c"2 and 

[27 - (1-2? )Zf + (0] % 2T . Thus the ratio of the absolute value of the 

fie2) fce2) asymptotic part of r    to that of r    is less than u . 

The last comparison to be ma?le is that of I^112^ and I ^ex2^ .  In 

the range Ul ~ 4 over which numerical evaluation of ion-like integrals 

is performed, the corresponding factors  [2 - T(]-2£ )V   (£)] , which 

appears in G*112' , and £Z"+(Ö , which appears in cScl2^   , arc both of 

• 
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order unity. Therefore the ratio of the absolute value of 1 
(Ü2) to 

that of   I^ci2^    is    Oftl ' )  •    It will be seen that, due to the absence 

of inverse powers of    (C-Cj)    in the lowest order of an expansion of the 

integrand of the sum    [l(ei3) + X(ei2)]  ,    I(ll2;    contributes more 

importantly to the total response than the ordering indicates.    Therefore 

it is retained. 

The integrands which have been retained are now simplified.    Consider 

first the sum of ion-like integrals,    [l(ei3) ♦ i<el2) + i(ll2)j  .    Expanding 

the factor    lz\(Z{) - Z' + (?)l    which appears in   G(ei    ■   in powers of 

{£-£,)    and approximating   Z"+(£)    in   G^ei '    by    Z"+(£.)  , one obtains 

in lowest order 

[Gfe^)+G(eia)] = ^^eyp(_^^[eCiZ;yfr._rjf        (40) 

The reason for retaining    I*"1*" '    should nov/ be apparent.    Although    G^11 J 

is formally smaller than    [G(ei3) ♦ G(ei2)]    by the factor   p1/2 , the 
„2 

presence of a factor    (£-£,)        in the former and the absence of negative 

powers of    (C-C.)    in the latter result in a contribution of   r       . 

substantially larger than that indicated by the ordering.     (The next order 

of the expansion of    [G^ei J ♦ G^ei J]    makes a negligible  :-.-.• tributior to 

the result, despite the fact that one of two terms contains a factor 

-1 1 '2 (C-CJ    •)    Since only lowest order terms in   u '      are retained (with the 

exception of the anomalously large contribution    1^      ' )  the approximations 

ZM
+(51) * -2ir1/2i    and    V\{Q * -2   may be made in Eqs.   (33)  and (40), 

respectively. 

fee3)   (002) 
Consider now the sum of electron-like integrals, [Iv '  * Iv J)  . 
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TTiey are evaluated as the sum of two parts: a small-arguinent component 

evaluated along the same contour as the ion-like integrals and a large- 

argument component evaluated along a contour in the complex phase velocity 

plane of the same general character as that of Fig. le but with an upper 

limit which is the reciprocal of the upper limit of integration in the 

1/2 C plane. In the small-argument region an expansion in u '  gives 

1/2 
The term of order u   makes an anomalously large contribution to the 

integral because f2f+(c) - 21] vanishes at a point with a distance of 
1/2 

order u    from i"  and is therefore retained. In the large-argument 

region Zf+(5) is represented by a suitable number of terms of its 

asyjnptotic expansion. 

The residue contribution to Eq. (23) is 

R«R« 
f   p 

(12) 
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One expands the factors of Eq.   (42) in powers of    (£-£,)    to obtain an 

explicit expression for the residue. . To develop an approximate expression 

which is convenient for computational purposes one expands the residue in 

1/2 powers of   y'     .    The final result is 

in which    sQ = -  (ir1/2/2)i + 0(u1/2)    and    s, = u1/2 T"3/2(-i/2) [Z'^fq) 

1/2 -^2 ♦ 2ir   T i] . The term proportional to z is retained even though it 

1/2 
is formally of order p   because it can make a substantial contribution 

to the result at large values of z which are within the probable range 

of validity of the dominant-pole approximation for 1 Tge values of the 

ratio T /T. . 
e l 

The results of numerical calculations are shown in Figs. 3 and 4 for the 

cases T * 1, .5, and .25 . It is difficult to estimate the 

range of z over which the dominant-pole approximation is valid. If the 

dominant-pole component of the linear response, Eq. (17), is cenridered 

to be mixed with itself in the absence of further dispersion or  damping, 

the double-frequency harmonic is attenuated as exp[-21m(: ,;-\j . The change 

in x dependence x * 2x is adopted as the basis for choosing a maximum 

value of z. For the equal temperature case the deviation of the linear 

response from the dominant-pole approximation is small (except very near 

the grid) until z - 22 . Thus, z - 11 is chosen j.s the maximum value 

for the calculation of the double-frequency.response.  For the case T /T. ~ 2 

the corresponding maximum value for the linear response is z = 38.  (See 

the results of Gould, Fig. 6 of Ref. 1.) Accordingly, z = 19 is selected 

as the maximum value for the calculation of the double-frequency response. 
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For this and higher values of the temperature ratio the double-frequency 

response has a characteristic repetitive pattern; accordingly, in the 

interest of conserving computer time the corresponding increases in the 

maxima« values of z are not made beyond T /T. * 2 . e    x 

The principal features of the numerical results are three:    a 

repetitive modulation of the spatially damped behavior of the logarithm 

of the absolute value of the potential perturbation; a reduction in spatial 

damping as the electron-to-ion temperature ratio increases; and a transition 

in the overall spatial rate of change of phase with temperature ratio 

increase, from a small rate characteristic of a non-wave-like disturbance 

similar to the "electron wave" at large distances in the linear problem, 

to a large linear rate characteristic of the mixing of the dominant-pole 

component with itself and similar to the behavior of the phase of the ion- 

acoustic wave in the linear problem.    The modulation of the amplitude of 

the response and the non-wave-like character of the response for values of 

the electron-to-ion temperature ratio close to unity are consequences of 

the fact that the electron-like integral in the double-frequency response 

is not diminished relative to the ion-like integral by the presence of a 

1/2 factor   p        , as is the case in the linear response. 

VI.     ZERO-FIIEQUENCY RESPONSE 

The nonlinear response at zero frequency is now shown 

polarization of the plasma with no associated current der. 

result is established in the context of the assumptions e 

excitation, uniform snd stationary distribution function 

be a 

;..    This 

11-amplitude 

hsence 
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of excitation, and one-dimensionality. There are a number of conditions 

in the experiments which are inconsistent with these assumptions; the 

inclusion of these complcations v/ould make the analysis vastly more difficult, 

The zero-frequency component of potential in the plasma must be an even 

function of x because there is no preferred direction in space when an 

average over one cycle of the excitation is considered. The only possible- 

source of a zero-frequency component of potential in this theory is the 

inequality of the charge-to-mass ratio for the two species, which would 

give a potential which is an even function of x . 

The Ylasov equation implies species continuity equations 

at   * + d* Lx 0 (44) 

in which T     is the particle current density of species a . For the 

zero-frequency component this equation states that the species particle 

current densities are divergenceless. The spatial symmetry of the zero- 

frequency component of the potential implies that species particle current 

densities are zero at x ■ 0 ; hence they must be zero everywhere. 

The zero-frequency component of the lowest order nonlinear contribution 

to the potential was determined in Ref. 6. Since the zero-frequency 

component is probably difficult to detect in an experiment, that development 

is not included here. 

I 
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VII.    CONCLUSIONS 

The double-frequency response produced by the nonlinear interaction of 

a grid-excited ion-acoustic wave with itself exhibits complicated behavior 

for values of the electron-to-ion temperature ratio near unity.    The electron- 

wave component of the response is not diminished by the presence of a factor 

1/2 p        , as occurs in the linear case.    This indicates the operation of an 

electron shielding mechanism in the double frequency response.    As the 

temperature ratio approaches a value of four, the response comes closer to 

displaying exponentially damped behavior. 

The complications involved in determining nonlinear response to grid 

excitation are reduced considerably by expressing the Fourier inversion 

integrals which result as sums of "ion-like" and "electron-like" integrals. 

Physical interpretation of the results of a nonlinear grid excitation problem, 

is rendered somewhat less difficult by such a representation. 
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Figure Ca])tions 

Fig.   1.      Integration contours  for Fourier inversion integrals. 

(a) Primitive Fourier inversion contour    in k plane and mapping 

of branch-cut and branch points of Z+(Cj  for o) = w   + ie . 

(b) Folding of left half of primitive contour onto right half of 

primitive contour in k plane.    First few members of infinite set 

of roots of dispersion relation K+ = 0 are indicated. 

-1   2 
(c) Path of steepest descents for function exp(iz£  - £ ) and 

mapping of roots of dispersion relation shown in (b) in £ plane. 

(d) Simple contour for evaluation of ion-like integrals. 

(e) Contour in k plane for evaluation of electron-like integrals 

which reduces oscillatory behavior of integrand. 

Fig. 2.  Numerical results in linear theory (cesium plasma). 

Fig. 3.  Numerical results in nonlinear theory (cesium plasma): natural 

logarithm of absolute value of [1^ '" + I ^e' + R] as a function of 

z for temperature ratios T = 1, .5, .25 . 

Fig. 4.  Numerical results in nonlinear theory (cesium plasma): argument 

of [r J + I   + R] as a function of z for temperature ratios 

T * 1, .5, .25 . 
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