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ABSTRACT 

Recursion equations are developed for solution of transient tem- 
perature distributions in an infinite hollow cylinder with nonsteady 
boundary conditions.    The solution is shown to be applicable to any 
imposed boundary condition and is also shown to be able to handle the 
special case of the solid cylinder.    A computer program is written 
and applied to two examples.   A comparison of the numerical results 
with classical exact solutions reveals close agreement between the 
two types of solutions for the particular cases considered. 
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NOMENCLATURE 

A Area 

A Convergence indicator 

C Specific heat of pipe metal 

cp Gas specific heat at constant pressure 

D Diameter 

h Convection heat-transfer film coefficient 

K Thermal conductivity 

k Element index number 

M Mass flow rate 

N Number of elements 

P Pressure 

R Radius 
r Radius ratio - Ri/R0 

T Temperature 

t Thickness of elemental cylindrical shell 

V Volume 

z . Axial coordinate 

a Thermal diffus ivity 

ß Ro/K 

e Time 

M Viscosity 

P Density 

0 Azimuthal angle 

4> 2N2 A0o/Ro
2 

SUBSCRIPTS 

1, 2. ..k Element index number 

g Gas 

i Inside pipe 

N Number of elements 

o Outside pipe 

VI 
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SECTION I 
INTRODUCTION 

The design of industrial processes frequently requires a knowledge 
of the transient heat-transfer phenomena within infinite cylinders.   The 
heat treatment of solid, long steel billets,  or the analysis of thermal 
stresses in pipelines carrying hot or cold fluids and subject to nonsteady 
flow conditions are examples where an analysis of transient heat trans- 
fer is desired. 

The derivation of the governing differential equation for transient 
heat flow in a cylinder is well known and can be found in texts such as 
Schneider (Ref.   1) or Eckert and Drake (Ref.   2).    In the most general 
case, the cylinder is hollow, has an arbitrary internal distribution of 
temperature,  and is subject to nonsteady environments, not necessarily 
the same, at both the inside and outside surfaces.   Appendix I contains 
the derivation of the governing differential equation, together with a 
formal statement of this general set of boundary conditions. 

Solutions to the general equation subject to a more restrictive set 
of boundary conditions have been developed by several authors.   Schneider 
(Ref.  1) develops solutions for solid cylinders with arbitrarily specified 
initial radial temperature distribution and with a temperature, T0,  sud- 
denly applied to the outside face.   Schneider also develops solutions for 
the solid cylinder subject to a uniform initial temperature and suddenly 
immersed in a fluid at temperature Tg.    Boelter,  Cherry, et al. (Ref. 3) 
also present solutions for transient temperature distributions in solid 
cylinders, with arbitrary initial temperature distributions, that are sud- 
denly immersed in a constant temperature fluid.    However,  analytical 
solutions of the differential equation subject to the boundary conditions of 
Appendix I do not appear to be available in the literature. 

This document addresses itself to the problem of developing a 
numerical technique for solving the general differential equation subject 
to the general set of boundary conditions. 

SECTION II 
DERIVATION OF THE RECURSION EQUATIONS 

The recursive technique is introduced by dividing the cylinder into 
N cylindrical shells,  each of equal thickness,  2AR.   Next the assumption 
is made that,  for sufficiently small increments of time, the problem 
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approaches a quasi-steady state process for each of the incremental 
elements.    Consequently,  by making successive energy balances on 
small elements of the pipe for small time periods,  a steady-state ap- 
proximation of the actual process can be made. 

Figure 1 (Appendix II) shows a unit length of cylinder divided into 
N concentric elements of equal thickness.    Choosing N large enough 
allows each elemental shell to be considered isothermal.   If the cylinder 
is considered a composite of N isothermal shells,  each at its own 
specific temperature, then over short periods of time the temperature 
change of any element will be a function only of the temperature of that 
element and the temperature of adjacent elements. 

Referring to Fig.   1, the geometrical aspects of the pipe indicate 
that the thickness, t,  of each shell is given by Eq.  (1) 

t = (R0 - Ri) + N =• 2 A R {1) 

where Ri and RQ are the inside and outside pipe radii, respectively,  and 
N is the chosen number of concentric shells. 

An energy balance is now made on the first cylindrical shell: 

Rate of Energy In (from Gas)   -  Rate of Energy Out (to Element 2)   =  Time Rate of 
Change in Energy Stored in Element 1. 

Expressed mathematically the energy balance becomes 

h,<ff AiCTgrffl - T») +    ""I'J^y    " C P W £& - C p V,    ilLlIli 

hi(0) 2„Ri (Tgi(0) - T.)  +    2irK(T»-T')_ Cp/rKRi +  2AR)J  - Rfl   (T'~T,)     ,„. 

f 

Here Tj  is taken to represent the new temperature of Element 1 
after exchanging energy with adjacent elements during the time period 
A6.   C is the pipe metal specific heat, K is the pipe metal thermal con- 
ductivity,  p is the pipe metal density,  Vi is the volume per unit length 
of the first (inside) cylindrical shell,  and Aj is the inside area of the 
cylinder per unit length. 

Recalling the definition of AR allows Ri and R2 to be expressed as 
follows: 

Rt = Ri + A R = Ri + (R0 - Rj) /2N = (—^Ri + -55  Ro 
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Substituting Eqs. (1) and (3) into Eq. (2) gives 

(hi(ö) 2nRi (TBi(0)  -  Tj)  +   2 n K (Ta   - T,)/&, A0 

= CpTrj^Ri  + -°-^$ -  Ri] 0",  - T.) 

Expanding the squared terms and simplifying yields 

2*hi(0)Ri(T6i(0)  - T|)  +  2rrK(T,  - T,)/fc.  [^ I l! R*, I R^jj   AÖ 

= C P * 
[R0

2   -   (2N - 2) R0 R, + (1 - 2N> Rj2] (T { - Tt) 
(4) 

It now becomes convenient to redefine certain parameters into 
groups.   Let ß - R0/K, let r represent the ratio of inside radius to out- 
side radius (Ri/R0),  and let <p be as defined below: 

.         2 K N2 A0            2 N2 A0 a 
<&  =  

C p Re* R0
2 

where a is the thermal diffusivity. 

Substituting these parameters into Eq. (4) and solving for the new 
element temperature,  T'I,  gives 

T; = T2 + + 
(rß hi(0) [Tgi(0) - T,]   *   (T2 - T,)/£n 

(1  - r)[(2.N - 1) r+ l' 

(2N - 3) r + 3J 
(2N - l)r + l] 

(5) 

Looking now at the inner elements of the cylinder and writing an 
energy balance for Element 2 gives 

2ff K (T, - T2)        lit K (Tj - T2) 
+ 

in (R2/R,) in. (Rj/R3) 
A e = c p v2 (T; - T2) (6) 

Generalizing Eq. (6) to the kth cylindrical element gives 

2ff K <Tk_] - Tk)        2rK{Tk+1-Tk) 

£n(Rk/Rk_!) &x(Rk+1/Rk) 
40 = CpVt(T'k-Tk) (7) 
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Solving for T^ gives 

2wA0K 
T'k = Tk + 

CpVk 

Tk- 1 - Tk Tk-i-Tk 

&ilRk/Rk_l> fn(Rk+1/Rk) (8) 

Substitution for Vjj, In (R^/R^-i),  lntRjj+i/Rk),  and applying the 
definition of *p gives 

Tk-i-Tk Tk-t- i-Tfc 

in 

T'k  =  Tk +  \ft 

(2k- 1) - (2N - 2k +   l)r 

(2k -^ 3) + (2N - 2k + 3)r 
in 

(2k 

(2k 

*■ 1) + (2N - 2k - l)r~| 

- 1) + (2N - 2k + l)rj 

(1 - r) [<2N - 2k + l)r+ (2k- 1)] (9) 

Next a look is taken at the outermost cylindrical element.    The 
energy balance gives 

/ V 

lrt      17     irr* »r»       \ W 

\—rR
N IAR-|

N
   

+ 2n ho(e) Ro (Tß°(0) " TNY A e = c p VN(TN
 ' " TN)

    (io) 
I        |_R0-3ARJ \ 

,, rr.»-'.':»?'i+ *-kMR°(T'-w - ™ 4s ■ 
|_R0  (2N - 3) + 3 Hi J ) 

C^{ROJ-[R0-(^|(TN'-TN)|      (II) 

Solving for T-pj gives 

TJJ = TN + ^ 

TN-I-TN- 

tn 
2N- 1 + r 

T   +   /8h0{ö)[Tg0(ö)   -   TN] 

2N-^3 + 3r 
(1- r)[r+ 2N - l] 

(12) 

Equations (5),  (9),  and (12) will yield the new temperature of the 
inner element, the middle elements,  and the outer element,  respec- 
tively,  after a given time interval A0.    The information required to 
solve for the new element temperatures is as follows: 



v^—/$A AEDC-TR-69-87 

1. The previous element temperature as well as previous tem- 
peratures of adjacent elements. 

2. Time-dependent functions for inside and outside surface film 
coefficients (if applicable). 

3. A specification of the outside radius of the cylinder and the 
radius ratio. 

4. A specification of the material properties of the cylinder. 

SECTION III 
CONVERGENCE AND STABILITY 

.3.1 CONVERGENCE 

In a qualitative sense, convergence is a measure of the ability of 
the numerical approach to yield results which agree with those results 
that could hypothetic ally be determined from an exact solution.   If in 
Eqs.  (5),  (9),  and (12) the value of A0 was allowed to approach zero and 
the value of N was allowed to approach infinity,  then the numerical solu- 
tion would converge to exactly the same results as the exact solution. 
However,  it is impossible to allow the limiting cases for A0 ,and N to 
exist or even to be realistically approached.    Hence,  convergence is the 
measure of how close the exact solution can be approached using finite 
values of A0 and N.   In the interest of time,  it behooves us to use the 
largest value of A0 and the smallest value of N that will give convergent 
results. 

Convergence is difficult to study analytically.   However,  a simpli- 
fied approach can lead to criteria for establishing limits to the con- 
stants A0 and N beyond which the solution will begin to diverge. 

Equation (5) may be rewritten as follows: 

T; = T,   <1 - * 

r fl h-tf)\ -i- 
1                 ™ 

rp n,vc7j + 
~(2N-3)r-3"] 
_<2N- Dr+lJ 

(l-r)L 2N- ])r+ 1Q 

r/9hi(0)Tgi(0)  + 
,   , L(2N - Drt 1 
¥\     (l-r)L(2N- 1) r+ lj 

(2N - 3)r + 3 

(13) 
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Inspection of Eq. (13) indicates that it can be expressed in the following 
form: 

T; = Tx(l - AJ + B (14) 

where the terms Aj and B are complicated terms involving the param- 
eters <P,  r, ß, hjie), Tgi(e), T2,  and N.   It is evident that the term B 
in Eq. (14) will always be positive while the term (1 - Ai) can be either 
positive or negative depending on the value of A\.   If A^ is greater than 
unity, then (1 - A^) becomes negative,  and the solution diverges.    Solu- 
tion divergence occurs because for (1 - A\) < 0,  with the value of B 
fixed,  any new estimate of Tj is inversely related to T^.    Hence, higher 
values of Tj call for lower values of T\ and vice versa, which is a 
violation of intuitive reasoning and in some instances could entail a 
violation of the second law of thermodynamics.    Thus,  for the first in- 
cremental element, a convergence criterion would restrict values of Aj 
to Ai ^ 1.    Equation (15) is the formal statement of convergence criterion 
based upon the first element. 

( r/8hi(0) H ^ = \ 

\ (1 -r) [(2N - ])r+ l] (' ^   1 (15) 

Following similar reasoning,  convergence criteria can be devel- 
oped for the kth and Nth elements.   Equations (16) and (17) are formal 
statements of the convergence criteria for the kth and Nth elements, 
respectively. 

l l 
r-T + I   J^     (Zk -  1) + (ZIN  - 2k +  llf (^   tZk +  1) + (2W  - 2k -  1 )r     I 

4,     _   ,/,    1 _(2k - 3) + (2N - 2k + 3)fJ (2k -  1) + (2N - 2k + l)r_    I      <   i k   •"   ^   \ (l-r)L(2N-2k+l)r+(2k-l)] (     = (16) 

(2k + I) + (2N - 2k -TTT7 

( \ =.    -!,0ho(0)    \ 

AN   =   * T.-V«K1-1) (*l (17) 

Figure 2 shows a typical application of the convergence criteria. 
The recursion equations of Section II were applied to a situation where 
a solid cylinder was suddenly immersed in a fluid at a constant tempera- 
ture Tg.    The film coefficient was held constant.    For this particular 
application, the inside radius in the recursion equations,  along with the 
inside film coefficient,  were simply set equal to zero.    Plotted on Fig. 2 
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is the exact solution of the problem along with the results of two recur- 
sive solutions — one in which the convergence criteria is satisfied and 
one in which the convergence criteria is not satisfied.   Inspection of 
Fig.  2 indicates that the recursive solution in which the convergence 
criteria is satisfied converges to the exact solution.    However,  for the 
case of nonsatisfaction of the convergence criteria, the recursive solu- 
tion is highly divergent. 

3.2 STABILITY 

Stability is a measure of the ability of the numerical system to ab- 
sorb systematic errors caused by roundoff and by the finite element 
assumption.    A stable system damps out errors and distributes them 
evenly throughout the system.   Like convergence, stability is not easy 
to analyze.   However, Smith (Ref. 4) gives a well-developed analysis 
of stability for certain classes of numerical problems.   Smith indicates 
that one method of gaining insight into the stability of a numerical solu- 
tion is to apply the numerical equations to the errors themselves. 
Hence, by assuming,  for example, a unit error somewhere in the sys- 
tem and watching the propagation of this error as the solution progresses, 
an indication of system stability becomes available.    Table I (Appen- 
dix IV) is a tabulation of the propagation of a unit error that is assumed 
to occur at time equal zero,  in the tenth element,  of a twenty-element 
system. 

Table I reveals that errors in the system do indeed tend to distribute 
themselves and to diminish with time.   Although a check of this sort is 
not an all-conclusive proof of stability,  it does indicate that the system 
tends to be stable, provided roundoff error is not excessive and can be 
expected to be random with regard to sign. 

SECTION IV 
COMPUTER PROGRAM 

Equations (5),  (9),  and (12) were programmed for solution on the 
IBM 360/50 computer.    Programming was carried out in G Level 
FORTRAN. 

The program is set up to take any type of boundary condition or 
initial condition.    The program is expected to be called on to solve the 
problem for two general types of boundary conditions: 
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1. Type I boundary conditions involve an arbitrary specification 
of initial temperature distribution within the cylinder wall, 
together with the specification of a suddenly applied tempera- 
ture to either or both the inside and outside cylindrical sur- 
faces.    The initial temperature distribution is input as data, 
while the suddenly applied surface temperature is included in 
the program as an arithmetic statement function.    The sud- 
denly applied surface temperature can, in the general case, 
be time variant. 

2. Type II boundary conditions also involve an arbitrary specifi- 
cation of initial temperature distribution within the cylinder. 
However,  Type II problems differ from Type I problems in 
that the boundary conditions are specified in terms of a time- 
varying surface film coefficient and fluid temperatures adja- 
cent to each surface of the cylinder.    Both the inside and out- 
side surface film coefficients are included in the program, as 
time-dependent arithmetic statement functions.    Likewise,  the 
inside and outside fluid temperatures are included as time- 
dependent arithmetic statement functions.    Film coefficients 
and fluid temperatures can,  as a special case,  be considered 
constant.    The surface film coefficients can also be considered 
as functions of other parameters such as fluid temperature 
and the thermodynamic and transport properties of the fluid,  if 
desirable.    The thermodynamic and transport properties of the 
fluid must then be specified and included in the program as 
functions of time or temperature. 

A combination of Type I and Type II boundary conditions can also 
be handled by the program. 

The special case of the solid cylinder is handled readily by the 
program if the radius ratio is simply set equal to zero. 

Appendix III gives a FORTRAN listing of the program as applied to 
Sample Problem Two of the following section. 

SECTION V 
APPLICATION OF THE RECURSIVE METHOD 

The application of the numerical method will be illustrated by two 
sample problems.    Sample Problem One involves transient heat transfer 
in a solid cylinder with Type II boundary conditions at the outside surface. 
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The results of the recursive solution are compared with exact solutions 
from the literature for the same problem. 

Sample Problem Two is a typical example of the application of the 
method to a hollow cylinder with time-dependent, Type II, boundary con- 
ditions on both the inside and outside surfaces. 

5.1   SAMPLE PROBLEM ONE 

Schneider (Ref.  1) develops the exact solution for the transient tem- 
perature distribution in a solid cylinder with Type II boundary conditions 
and with a uniform initial temperature.   Schneider's solution is devel- 
oped in terms of zero and first order Bess el Functions of the first kind. 
The results are expressed as dimensionless temperature ratios with the 
Fourier modulus,  ad/RQ2, and the Biot modulus, hR0/K, as parameters. 

The present method was used to generate comparative results that 
were then nondimensionalized and compared with Schneider's results. 

The outside surface film coefficient,  ho(0),  and outside fluid tem- 
perature,  TgO(0), were specified as arithmetic statement functions in 
the program.    The outside film coefficient was held constant for a given 
run but was varied between runs so as to allow variations in the dimen- 
sionless Biot modulus, hR0/K.   A constant fluid temperature of 800°R 
was used in the calculations. 

A comparison of the present method with the exact method is pre- 
sented in Table II.    The results of Schneider's analysis for selected 
values of the Biot and Fourier moduli are presented along with the re- 
sults of the present numerical solution.    It is apparent from Table II 
that, for the cases studied, a close degree of correspondence exists 
between the exact and the recursive solutions. 

5.2  SAMPLE PROBLEM TWO 

In Sample Problem Two application is made to an interesting prob- 
lem which occurs in a pipeline carrying gas that is being discharged 
from a pressurized storage vessel.    For a gas stored at high pressure, 
for example,  P = 2500 psia,  and at ambient temperature and with the 
pipeline existing initially at ambient temperature, it is possible to in- 
duce severe temperature gradients in the pipeline because of the cool- 
ing effect the drawdown process has on the stored gas.   The combined 
conditions of high pressure and severe thermal'gradients could cause 
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serious stress problems within the pipe wall.    Therefore, the unsteady 
thermal gradients which would exist in the pipe wall become significant. 

The problem of determining the transient thermal gradients was in- 
vestigated using the current numerical method for the case of a 14-in. - 
diam steel pipe carrying air that was being discharged from a storage 
vessel at a constant mass flow rate. 

5.2.1   Program Inputs 

The initial storage pressure and temperature of the air was 3600 
psia and 576°R,  respectively.    The temperature of the air was found to 
be a function of the vessel volume, initial storage temperature,  rate of 
mass withdrawal from the tank,  and the time lapse since initiation of 
drawdown.   Assuming the air in the tank expanded isentropically gave a 
relationship for the air temperature is a function of time as follows: 

. Tgi(ö) = 576[1 - .006179 0]-4 °R (18) 

The derivation of Eq. (18) assumes that the section of pipeline to be 
investigated is located immediately downstream of the storage vessel at 
a point where the gas has not had time to exchange heat with the pipeline. 
The air temperature surrounding the pipe was assumed to remain con- 
stant at 560CR.    The inside film coefficient was assumed to follow the 
relationship given by Eq. (19). 

For the particular blowdown rate (M = 805 lbm/sec), Eq.  (19) becomes 

hi(0)  =   1.6919 (rRo)"1-8 (KV65   (/x)-45 (Cp)"35      . Bt" _ (20) 
ft —sec— a 

For the particular temperature range of interest,   300 to 800°R,  the 
specific heat, viscosity,  and thermal conductivity of the air have been 
found to obey the following relationships: 

Specific Heat 

Cp  = 0.2431 - .00001919T + .O0000Ö0244T2   (    Btu
c -) {T =  °R) (21) 

Viscosity _ „oMhAT+^l 
m    7.8026. T"»   ,   x   1Q-,   _ibE_ m pM^rl 

(T+198.6) sec-ft jsjftUM** 

10 



AEDC-TR-69-87 

Thermal Conductivity 
i 

K = 0.003716 +  .00001676T +  0.0000000081*   -'. , B|" 0n— (T =  °R) (23) 
hr— II— n 

The outside film coefficient is assumed to correspond to natural 
convection from a horizontal cylinder and is given by Eq. (24). 

ho(0) = 0.00005 (,Tgo -  TV)1'3      5  
Btu      - (24) 

Equations (18) through (24) were input into the computer program as 
arithmetic statement functions.    Figure 3 shows the input cards for the 
program constants, while Fig. 4 shows the input cards for the initial 
temperature distribution.    Ti corresponds to the innermost element. 

5.2.2  Results 

The results of the study are shown in Fig.  5, where the tempera- 
ture as a function of location within the pipe wall is plotted for selected 
time intervals. 

SECTION VI 

DISCUSSION 

The preceding sections have presented the development of the re- 
cursive method,  its application,  and a comparison of typical results 
with a corresponding exact solution.    The comparison indicated close 
agreement between the recursive method and the exact solution for the 
particular cases that were investigated. 

The recursive technique presented is particularly useful in cases 
involving complicated or noncontinuous boundary conditions,  since the 
technique will handle any boundary condition that can be expressed as 
either a function of time or a function of the surface temperature.    The 
technique also allows any type of initial temperature distribution to be 
specified. 

Computer time required is not excessive.   On the average,  a nom- 
inal time of 0. 15 sec was required to compute the temperature distribu- 

/» tion over a single time increment in a system composed of ten elements. 

Since the recursive technique is designed to step through the solu- 
tion in discrete time intervals,  a certain inaccuracy is inherent in the 

11 

\ 
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early stages of the solution.   These inaccuracies disappear as the solu- 
tion progresses.    In general,  accurate results can be expected at any 
time, 0, provided the condition of Eq. (25) is met. 

6 Z NA0 (25) 
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APPENDIX I 
DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATION 

Figure 6 shows the geometrical aspects of the mathematical model. 
The differential equation of the problem is developed by making an 
energy balance on a typical differential volume element of the pipe wall. 

The following assumptions are made concerning the problem: 

1. All energy transport occurs through thermal conduction except 
at the boundaries. 

2. Energy transport occurs in the radial direction only. 

3. Pipe thermal conductivity is constant. 

The energy balance is expressed in simple terms as 

Energy In —  Energy Out  =   Energy Stored 

The energy conducted into the volume element is given by 

Conduction In  =  - (t£A -|0 =   -  (K.Rd0dZ  -2l) (1-1) 

The energy conducted out of the volume element is given by 

Conduction Out =  - (KA -£L +   JL TRA  ^"M 
V     dR        <?R  L       <9RJ    / 

= - (KRd^dZ Ü- +  -ä— (KRd<£dZ -!üldR) 

= - KRd^dZ   -21 - Kd0dZ -iXR-^lldR ,_   „x 

Combining Eqs.  (1-1) and (1-2) gives 

Conduction In  -  Conduction Out  =   Kd<£dZdR  |R ^- +   -^-| (i_3) 

The energy stored is given by 

Energy Stored  =  pVC— =   p Rd^dZdRC   — (1-4) 

15 
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Equating Eqs. (1-3) and (1-4) gives the governing differential equa- 
tion: 

d2T 1      dT 1     ÖT + (1-5) dR2 R     (?R        a     dd 

where a = — and is known as the thermal diffusivity. 

Associated with Eq. (1-5) are the following initial and boundary con- 
ditions : 

(1) Initial Condition 

at 6 = 0, T(R,0) = T(R,0) 

(2) Boundary Condition 1 (Inside the Pipe) 

0R <?R 

= hi(0)(T(Ri,0)  - TgiWJ) 

Here hi(0) and Tgi<0) are the time-dependent inside fluid heat-trans- 
fer coefficient and inside fluid temperature,   respectively.    Rewriting 
this boundary condition gives: 

0T<RIF0)       M0)     T(Rj>ö) = _ _hi(£)_   T m 
<?R K v   1,w   ~   ~       K lB» 

(3)    Boundary Condition 2 (Outside the Pipe) 

atR = R    K 0T(R, g)  _  uT(Ro,0 
0R dR 

=  M0) (Tgo(0)  - T(R0, 0) 

Here ho(0) and TgO(0) are the time-dependent outside fluid heat- 
transfer coefficient and outside fluid temperature,  respectively.    Re- 
writing this boundary condition gives 

3T(R»' d) + J^i-T(Ro,0) = -^- TBO(0) 
0R K K e 

Inspection of the boundary conditions reveals that they are not 
homogeneous; consequently, the path to an exact solution does not 
readily present itself.    Recourse must therefore be made to approxi- 
mate numerical techniques. 

16 
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Elemental Cylindrical Shells 

Fig. 1   Numerical Model 
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Exact Solution (Ref. 1) 

Numerical Solution Case I 

Solution 

-4.0 

45.63 Case I 
Convergence Criteria Satisfied 

N = 20 

ae = 0.001 sec 
Bo = 

"1 =1 

1 

1 

AT = 0.728 
A2 = 0.764 

A10 = 

A19 = 

A20 = 

0.799 

0.799 

0.410 

Case II 
Convergence Criteria Not Satisfied 

N - 20 
&S = 0.01 
Ro 
a n 

1 

1 

A! = 7.28 
A?, = 7.64 

10 

19 - 

7.99 

7.99 

4.10 

I J 
o.oi 0.02 0.03 

0,   sec 
0.04 0.05 0.06 

Fi g. 2   Effects of Convergence Criteria on the Convergence of the Numerical Solution 
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Fig. 4   Sample Problem Two - Initial Temperature Distribution 
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Fig. 5   Transient Temperature Distributions in a Pipe with Nonsteady 

Boundary Conditions 
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Fig. 6   Exact Mathematical Model 
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APPENDIX III 
COMPUTER PROGRAM FORTRAN LISTING 

C********************************************************** 
_£* *_* ******* ******♦»****♦*****♦*♦** ****** *«»»»* ***** ***** * * * 
C********************************************************** 
C FORTRAN LISTING OF PROGRAM AS APPLIED TO SAMPLE PROBLEM 
C TWO.  SEE SECTION IV. 
C*******»***»*»*******»»»*»»»»♦***♦******»»*»*»*»»♦*♦****** 
c********************************************************** 
C   ANALYSIS   OF   TRANSIENT   TEMPERATURE  DISTRIBUTION   IN   A   HOLLOW 
C   CYLINDER   WITH   NON-STEADY   BOUNDARY  CONDITIONS. 
C*************************************»»»»***»**»*»*»**»*»* 
C INSIDE FILM COEFFICIENT (HI) IS FOR AIR- TURBULENT FORCED 
C CONVECTION WITH VARIABLE PROPERTIES.   
C********************************************************** 
C   OUTSIDE   FILM   COEFFICIENT   (HO)    IS   FOR   AIR   -NATURAL  
C   TURBULENT   CONVECTION   OVER   A   HORIZONTAL  CYLINDER. 
Q**»**»»»»*****»**»»»«**»*»»**»»***»***»»*»*»*»»»♦********* 
C********************************************************** 

DIMENSION   A(2Q)»B(20).TITLE{20)   
TGU(E)=   560.+l.*E-I.*E 

^ TGI(E)=   576.*( (1.-.006179*E)**.4)       _ _j4y\  lK 
vl3^*VCpGASl TGI) =.24 31-. 00001919*TGI+.00ÖÖÖbO244*(TG 1**2) 

^Mg.(TGI) = 7.3026*(TGI**(3./2. ))*.0000001/(TGI+198.6)  -   *-$*   *■*■ 
AKGAS(TGI) = ( .003716+. 00001676*TGI + . 00008*( TG I **2 )*  - *i~  *• * 

 1.0001)73600.  
—^HI (CPGAS,AVU,AKGÄS) = ( 1.6919/ U R*RO) **1.8 I l*( AKGAS**   «31 *° 

1.65)*ICPGAS**.35)/(AMU**.45)    
„,* .vijt.*«/ _^H0 (TGO,TN)=. 00005* (( ABS (TGO-TN) ) **< 1. /3. ) ) «f»   VV 

'FlfUtV)»(U-V)/ALOG((<2.«K»l.)-H2 .*N-2.*K-1.)*R)/((2.*K 
1-1.)+(2.*N-2.*K+1.)*R)J 
F2(U«V) = (U-V)/AL0GK ( 2.*K-1. ) + ( 2 .*N-2.»K+1,.|*RJ./.JI (_?•_*£ 

l-3.)+(2.*N-2.*K+3.)*R)) 
F3(U)=(1.-U)*( (2.»N-2.*K»1. ) *R   +(2.*K-1..)) 
READ(5,1)    TITLE 

1   F0RMAT(20A4)  
WRITE   (6,1)   TITLE 
READ(5.2)BFTA,D.F,ALP.R,RO.N     
F0RMAT(6F10.0,12) 
WRITE(6,3)0.F,ALPiBETA,R,R0,N 

3 FORMAT!/////'    INPUT   CONSTANTS'///'   DELTA   TIME   =    «F6.3 
1'   SEC.'/'   TOTAL   RUN   TIME  =   ?F7.3'SEC.'/'   THERMAL   DIFF« 
2,'USIVITY   =   fF10.8»SQ.FT./SEC.'/'   BETA=   «F10.4'    SO.», 
3«FT.-SEC.-R/BTU'/'   RADIUS RATIO   (RI/RO)   =   'F5.3/ _ 
4»   OUTSIDE   RADIUS    IRO)   =   'F6.3'FT.«/'   THE   NUMBER  OF', 
5'   ELEMENTAL  CYLINDRICAL   SHELLS   IS   (' 12')»///)  

READ(5,4)(A(J),J=l,N) 
4 FfrRMAT(5F10.0)  

WRITE   (6,5) 
5 FORMAT nX'TIME^X'H 1) *4X«T( 2) '4X' T( 3) '4X«T(4) '4X 
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L,T(b),4X'T{6),4X,Tm,^X«nö),'tX'T<:J)«4X,niO),4X 
2*I.QAS.I.,.««TGAS0I ) 

CHI=2.*(N**2)*D*4LP/(RJ**2) 
E = 0.0 

6 TGASO=TGO<F) 
TGASI = TGME) 
**RITE(6,7)    Ef ( A( j), J=l,N),TGASi , TGASO 

7 FgFM4T(/r*f=8.2J 
k = i 
b( L)=CHI*( (R*BEfA*HHCPGAS( FGIIE )) ,A"1U( TGI (E ) ) , AKGAS ( 

1TGKE) ))*( rGI(E)-A(l»))+FKA(2),M I) J >/F3IK)   +   A(1J 
NN=N-l 
00   B   K=2iNN 
31K) =   CHI*(F2(A(K-L) ,A(K)) +   Fl{A(K+lI,A{K))>/F3IR) 

i+A(K) 
8   CONTINUE   

*=N 
B(N)=CHI*(F2(A(N-1), A(N) ) * 6 2 rA*HC( TGÜ ( E i ,A<N ) )*(TGHtE) 
L-AtN)) )/F3(R)*A(N) 
00 9 J=ltN 
A(JJ=H(J> 

_9 CO NT IN U E  
E-E+f")  
IF(E-F|6,6,10 

10 STOP 
ENfl- 
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TABLE I 
ERROR PROPAGATION IN A TWENTY-ELEMENT NUMERICAL SYSTEM 

Element No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Time (sec) 

0.0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 

U. 001 0 0 0 0.01 0.02 0.05 0.09 0. 14 0. 16 0. 18 0. 15 0.12 0.06 0.03 0.01 0 0 0 0 0 

0.002 0.02 0.03 0.04 0.05 0.07 0.08 0.10 0. 11 0. 11 0. 11 0.10 0.09 0.07 0.05 0.04 0.02 0.01 0.01 0 0 

0. 004 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.02 

0.008 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0. Ofi 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 

o. oir» 0. 06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 

0.030 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

0.045 0.03 0.03 0.03 0. 03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 

0.060 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

0.080 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0.100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

A0 = . 001 8PC 
N = 20 

> 
m 

n 

■ 
09 
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TABLE II 
COMPARISON OF RECURSIVE SOLUTION WITH EXACT SOLUTION 

FOR TRANSIENT TEMPERATURE DISTRIBUTION IN A SOLID CYLINDER 

o 
«o 
I 
OS 

CO 
OS 

Dimensionless 
Biot Modulus, Fourier Modulus, Radius Ratio, Temperature Ratio, 

hRQ «0 

R0
2 

R/R0 T/Tinitial 
K 

Exact Solution Recursive Solution 

0.1 0.1 0 1.00088 1. 00085 
0. 1 0.1 1 1.01352 1.012767 
0.1 1.0 0 1.05234 1.05227 
0. 1 1.0 1 1.06588 1.06518 
1.0 0.1 0 1.00798 1.00803 
1.0 0.1 1 1.10515 1. 10202 
1.0 1.0 0 1.25021 1. 25238 
1.0 1.0 1 1.27989 1.28050 

10.0 0. 1 0 1.03331 1.03618 
10.0 0. 1 1 1.28946 1.28987 
10.0 1.0 0 1.32881 1.32967 
10.0 1.0 1 1.33278 1.33288 
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