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ABSTRACT

Recursion equations are developed for solution of transient tem-
perature distributions in an infinite hollow cylinder with nonsteady
boundary conditions. The solution is shown to be applicable to any
imposed boundary condition and is also shown to be able to handle the
special case of the solid cylinder. A computer program is written
and applied to two examples. A comparison of the numerical results
with classical exact solutions reveals close agreement between the
two types of solutions for the particular cases considered.
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NOMENCLATURE
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SECTION |
INTRODUCTION

The design of industrial processes frequently requires a knowledge
of the transient heat-transfer phenomena within infinite cylinders. The
heat treatment of solid, long steel billets, or the analysis of thermal
stresses in pipelines carrying hot or cold fluids and subject to nonsteady
flow conditions are examples where an analysis of transient heat trans-
fer is desired.

The derivation of the governing differential equation for transient
heat flow in a cylinder is well known and can be found in texts such as
Schneider (Ref. 1) or Eckert and Drake (Ref. 2). In the most general
case, the cylinder is hollow, has an arbitrary internal distribution of
temperature, and is subject to nonsteady environments, not necessarily
the same, at both the inside and outside surfaces. Appendix I contains
the derivation of the governing differential equation, together with a
formal statement of this general set of boundary conditions.

Solutions to the general equation subject to a more restrictive set
of boundary conditions have been developed by several authors. Schneider
(Ref. 1) develops solutions for solid cylinders with arbitrarily specified
initial radial temperature distribution and with a temperature, To, sud-
denly applied to the outside face. Schneider also develops solutions for
the solid cylinder subject to a uniform initial temperature and suddenly
immersed in a fluid at temperature Tg. Boelter, Cherry, et al. (Ref. 3)
also present solutions for transient temperature distributions in solid
cylinders, with arbitrary initial temperature distributions, that are sud-
denly immersed in a constant temperature fluid. However, analytical
solutions of the differential equation subject to the boundary conditions of
Appendix I do not appear to be available in the literature.

This document addresses itself to the problem of developing a
numerical technique for solving the general differential equation subject
to the general set of boundary conditions.

SECTION I
DERIVATION OF THE RECURSION EQUATIONS

The recursive technique is introduced by dividing the cylinder into
N cylindrical shells, each of equal thickness, 2AR. Next the assumption
> . - .
is made that, for sufficiently small increments of time, the problem
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approaches a quasi-steady state process for each of the incremental
elements. Consequently, by making successive energy balances on
small elements of the pipe for small time periods, a steady-state ap-
proximation of the actual process can be made.

Figure 1 (Appendix II) shows a unit length of cylinder divided into
N concentric elements of equal thickness. Choosing N large enough
allows each elemental shell to be considered isothermal. If the cylinder
is considered a-composite of N isothermal shells, each at its own
specific temperature, then over short periods of time the temperature
change of any element will be a function only of the temperature of that
element and the temperature of adjacent elements.

Referring to Fig. 1, the geometrical aspects of the pipe indicate
that the thickness, t, of each shell is given by Eq. (1)
gL See L.

= Ry - R) + N = 2AR (1)

where Rj and Rg are the inside and outside pipe radii, respectively, and
N is the chosen number of concentric shells.

An energy balance is now made on the first cylindrical shell:

Rate of Energy In (from Gas) -~ Rate of Energy Out (to Element 2) = Time Rate of
Change in Energy Stored in Element 1.

Expressed mathematically the energy balance becomes

27 K(T, ~ T,) AT , (T{-T,)
{0) A; (T -T,) + 2L . CpV,—=CpV, —t—~ 17
h;(0) Ai(T¢i(6) ) fn R,/R, P Af P Af
2nK(T,—T) T—T)
i{(0) 27 R; (T,pi(0) ~ T — — * Y- Cpnl(R{ + 2ARY - Rf] ——~
hi(6) 27 R; (Ti(6) W o+ RR, pm LRy 1 2 (2)

Here Ti is taken to represent the new temperature of Element 1
after exchanging energy with adjacent elements during the time period
Af. C is the pipe metal specific heat, K is the pipe metal thermal con-
ductivity, p is the pipe metal density, V1 is the volume per unit length
of the first (inside) cylindrical shell, and Aj is the inside area of the
cylinder per unit length.

Recalling the definition of AR allows Ri and Ry to be expressed as
follows:

Rl R1+AR R.]_“'(l:lo""'R-)/2V (2\{_1)“]"‘_ 0

R, + 3AR = Rj + 3(R9—R) (2N—3)Rl+_R° (3)

R,
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Substituting Egs. (1) and (3) into Eq. (2) gives:

Ry + — (H"_ Ri \{
hi(6) 27R; (Tgi@) - Ti) + 27K (T, - T,)/tn 21 — A \
T( N )
= Cpn[(Bi + —R°—r:i)z - RiEI(T" - T)

Expanding the squared terms and simplifying yields

o [(28 - 3) R; + 3 R, ]
2 7h;(A)R; (Tgl(o) - Tl) + 27K (T, - T‘)/en L(2N -1} R; + R, _I Af

Ry - 2N-2)R, R, + (1 = 2N) RP] (T; - Ty
=Cpn N

(4)

It now becomes convenient to redefine certain parameters into

groups. Let B = Ro/K, let r represent the ratio of inside radius to out-
side radius (Rij/Rg), and let ¢ be as defined below:

o = 2KN*A 2N Afa

CpR R,?
where a is the thermal diffusivity.

Substituting these parameters into Eq. (4) and solving for the new
element temperature, Ti, gives

(2N = 1r + 1
5 (1 =[N =D r+1]

, rB hl(a) [Tgl(a) - Tl] < (Tz - T,)/Zn (2N = 3)r + 3]
e (5)

Liooking now at the inner elements of the cylinder and writing an
energy balance for Element 2 gives

2rK(T,-T,) 27 K (T, - T,)
T T e T A = CpV, (TS - T
€n (R,/R}) fn (Ry/R;)

(6)
Generalizing Eq. (6) to the kth cylindrical element gives
27 K (Ty ) - Ty) 27 K (T4 - Ty)
Af = CopVip(T%-Ty) (7)
[ bn (Re/Rim)) (R /Ry ] PRI
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Solving for Tlé gives

Tx = Tx +

A0k [ Ty, - T Te-q- Tk
(8)

CpVy LZn (Re/Rp— 1) i en Ry 4+ 1/Ry)

Substitution for Vi, In (Rx/Ri-1), In(Rg+1/Rgk), and applying the
definition of ¢ gives

Tk—1—Tk Tk+1~Tk

g, [L2k=1) - (2N ~ 2k + 1):‘]‘ en’(zk + 1) + (2N = 2k — 1)r]
T+ T + ¥ [ {2k ~ 3) + (2N — 2k + 3} [(2k — 1) + (2N = 2k + 1)r] 9)
S k (1-n[(2N =2k + Dr+ (2k = 1] (

Next a look is taken at the outermost cylindrical element. The
energy balance gives

N

27K (TN_]_—-T\)

-ART
R —3An

I
g 217K {Tn — 1 - Tn)

R, (2N = 1) + R; ]
| R, (2N = 3) + 3 R;

+ 27 ho(e) Ro (Tgo(a) - TN) A = CpVN(TN’ - TN) (10)

+ 2rho(6) R, (Tyolf) ~ Tx)S A6 =

cpn{w - l:Ro - (ﬁ-;—'i-ijla (Ty - TN)}
(11)

Solving for Tl\’T gives

TN=1-Tx

2.\]_1+ + Bho(e) [Tgo(e) -— TN]
KI\ & r

2N~3+3r
Q=0 (c+2N=1]

TN = TN + ¢ (12)

i

Equations (5), (9), and (12) will yield the new temperature of the
inner element, the middle elements, and the outer element, respec-
tively, after a given time interval A8. The information required to
solve for the new element temperatures is as follows:
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1. The previous element temperature as well as previous tem-
peratures of adjacent elements.

2., Time-dependent functions for inside and outside surface film
coefficients (if applicable).

3. A specification of the outside radius of the cylinder and the
radius ratio.

4, A specification of the material properties of the cylinder.

SECTION Il
CONVERGENCE AND STABILITY

3.1 CONVERGENCE

In a qualitative sense, convergence is a measure of the ability of
the numerical approach to yield results which agree with those results
that could hypothetically be determined from an exact solution. If in
Egs. (5), (9), and (12) the value of A8 was allowed to approach zero and
the value of N was allowed to approach infinity, then the numerical solu-
tion would converge to exactly the same results as the exact solution.
However, it is impossible to allow the limiting cases for A6 and N to
exist or even to be realistically approached. Hence, convergence is the
measure of how close the exact solution can be approached using finite
values of AB and N. In the interest of time, it behooves us to use the
largest value of A6 and the smallest value of N that will give convergent
results.

Convergence is difficult to study analytically. However, a simpli-
fied approach can lead to criteria for establishing limits to the con-
stants A6 and N beyond which the solution will begin to diverge.

Equation (5) may be rewritten as follows:

g rBhi(0) + (2N—l3)r—3
bl zv=oert] |

T, =T, 21 - II’L (-n[eN-Dr+ ll]J

T,

rﬁ h;(6) Tgi(o) + 7 .-(ZN — 3)r + 38
i (2N - D)r + 1
a-nleN-Dr+1]

(13)
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Inspection of Eq. (13) indicates that it can be expressed in the following
form:

T, =T,(1 ~-~A) +B (14)

where the terms Aq and B are complicated terms involving the param-
eters ¢, r, B, hy(8), Tgi(e), Tg, and N. It is evident that the term B
in Eq. (14) will always be positive while the term (1 - A1) can be either
positive or negative depending on the value of Aj. If Ay is greater than
unity, then (1 - A1) becomes negative, and the solution diverges. Solu-
tion divergence occurs because for (1 - Aj) < 0, with the value of B
fixed, any new estimate of Ti is inversely related to Ty. Hence, higher
values of T3 call for lower values of Ti and vice versa, which is a

violation of intuitive reasoning and in some instances could entail a
violation of the second law of thermodynamics. Thus, for the first in-
cremental element, a convergence criterion would restrict values of Ay
to A1 < 1. Equation (15) is the formal statement of convergence criterion
based_upon the first element.

{O) 4 1

Srﬁhl(oh Bn[(zN—a)wa' ?
A=¢, (2N—l)r+l_,§1
! 2 (1 -nleN-Drs 1]\ (15)

:
4

Following similar reasoning, convergence criteria can be devel-
oped for the kth and Nth elements. Equations (16) and (17) are formal
statements of the convergence criteria for the kth and Nth elements,
respectively. .

1 N 1

P [12k = 13 + (2N = 2k + 1)r ¢af 2k + 1) + (N ~ 2k — I)r
¥ (2k - 3) + (2N — 2k + 3)¢ (2k — 1) + (2N ~ 2k + 1)« 1

A

= (1-0L(2N ~ 2k + Lr + (2k - 10] = (16)
(En 2\+r—1 _\€h°(e) [
2\—3l’-3 <
AN = ¢ } -n @8 +r=D (=1 (17)
\ i

Figure 2 shows a typical application of the convergence criteria,
The recursion equations of Section II were applied to a situation where
a solid cylinder was suddenly immersed in a fluid at a constant tempera-
ture Tg. The film coefficient was held constant. For this particular

application, the inside radius in the recursion equations, along with the
inside film coefficient, were simply set equal to zero. Plotted on Fig. 2
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is the exact solution of the problem along with the results of two recur-
sive solutions — one in which the convergence criteria is satisfied and
one in which the convergence criteria is not satisfied. Inspection of
Fig. 2 indicates that the recursive solution in which the convergence
criteria is satisfied converges to the exact solution. However, for the
case of nonsatisfaction of the convergence criteria, the recursive solu-
tion is highly divergent.

3.2 STABILITY

Stability is a measure of the ability of the numerical system to ab-
sorb systematic errors caused by roundoff and by the finite element
assumption. A stable system damps out errors and distributes them
evenly throughout the system. Like convergence, stability is not easy
to analyze. However, Smith (Ref. 4) gives a well-developed analysis
of stability for certain classes of numerical problems. Smith indicates
that one method of gaining insight into the stability of a numerical solu-
tion is to apply the numerical equations to the errors themselves.
Hence, by assuming, for example, a unit error somewhere in the sys-
tem and watching the propagation of this error as the solution progresses,
an indication of system stability becomes available. Table I (Appen-
dix IV) is a tabulation of the propagation of a unit error that is assumed
to occur at time equal zero, in the tenth element, of a twenty-element
system.

Table I reveals that errors in the system do indeed tend to distribute
themselves and to diminish with time. Although a check of this sort is
not an all-conclusive proof of stability, it does indicate that the system
tends to be stable, provided roundoff error is not excessive and can be
expected to be random with regard to sign.

SECTION IV
COMPUTER PROGRAM

Equations (5), (9), and (12) were programmed for solution on the
IBM 360/50 computer. Programming was carried out in G Level
FORTRAN.

The program is set up to take any type of boundary condition or
initial condition. The program is expected to be called on to solve the
problem for two general types of boundary conditions:
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1. Typel boundary conditions involve an arbitrary specification
of initial temperature distribution within the cylinder wall,
together with the specification of a suddenly applied tempera-
ture to either or both the inside and outside cylindrical sur-
faces. The initial temperature distribution is input as data,
while the suddenly applied surface temperature is included in
the program as an arithmetic statement function. The sud-

denly applied surface temperature can, in the general case,
be time variant.

2, Type Il boundary conditions also involve an arbitrary specifi-
cation of initial temperature distribution within the cylinder.
However, Type Il problems differ from Type I problems in
that the boundary conditions are specified in terms of a time-
varying surface film coefficient and fluid temperatures adja-
cent to each surface of the cylinder. Both the inside and out-
side surface film coefficients are included in the program as
time-dependent arithmetic statement functions. Likewise, the
inside and outside fluid temperatures are included as time-
dependent arithmetic statement functions. Film coefficients
and fluid temperatures can, as a special case, be considered
constant. The surface film coefficients can also be considered
as functions of other parameters such as fluid temperature
and the thermodynamic and transport properties of the fluid, if
desirable. The thermodynamic and transport properties of the
fluid must then be specified and included in the program as
functions of time or temperature.

A combination of Type I and Type II boundary conditions can also
be handled by the program.

The special case of the solid cylinder is handled readily by the
program if the radius ratio is simply set equal to zero.

Appendix III gives a FORTRAN listing of the program as applied to
Sample Problem Two of the following section.

SECTION V
APPLICATION OF THE RECURSIVE METHOD

The application of the numerical method will be illustrated by two
sample problems. Sample Problem One involves transient heat transfer
in a solid cylinder with Type II boundary conditions at the outside surface.
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The results of the recursive solution are compared with exact solutions
from the literature for the same problem.

Sample Problem Two is a typical example of the application of the
method to a hollow cylinder with time-dependent, Type II, boundary con-
ditions on both the inside and outside surfaces.

5.1 SAMPLE PROBLEM ONE

Schneider (Ref, 1) develops the exact solution for the transient tem-
perature distribution in a solid cylinder with Type II boundary conditions
and with a uniform initial temperature. Schneider's solution is devel-
oped in terms of zero and first order Bessel Functions of the first kind.
The results are expressed as dimensionless temperature ratios with the
Fourier modulus, 06/R02, and the Biot modulus, hRq/K, as parameters.

The present method was used to generate comparative results that
were then nondimensionalized and compared with Schneider's results,

The outside surface film coefficient, ho(6), and outside fluid tem-
perature, Tgo(e), were specified as arithmetic statement functions in
the program. The outside film coefficient was held constant for a given
run but was varied between runs so as to allow variations in the dimen-
sionless Biot modulus, hRqy/K. A constant fluid temperature of 800°R
was used in the calculations.

A comparison of the present method with the exact method is pre-
sented in Table II. The results of Schneider's analysis for selected
values of the Biot and Fourier moduli are presented along with the re-
sults of the present numerical solution. It is apparent from Table II
that, for the cases studied, a close degree of correspondence exists
between the exact and the recursive solutions,

5.2 SAMPLE PROBLEM TWO

In Sample Problem Two application is made to an interesting prob-
lem which occurs in a pipeline carrying gas that is being discharged
from a pressurized storage vessel. For a gas stored at high pressure,
for example, P = 2500 psia, and at ambient temperature and with the
pipeline existing initially at ambient temperature, it is possible to in-
duce severe temperature gradients in the pipeline because of the cool-
ing effect the drawdown process has on the stored gas. The combined
conditions of high pressure and severe thermal gradients could cause
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serious stress problems within the pipe wall. Therefore, the unsteady
thermal gradients which would exist in the pipe wall become significant.

The problem of determining the transient thermal gradients was in-
vestigated using the current numerical method for the case of a 14-in, -
diam steel pipe carrying air that was being discharged from a storage
vessel at a constant mass flow rate.

5.2.1 Program Inputs

The initial storage pressure and temperature of the air was 3600
psia and 576°R, respectively. The temperature of the air was found to
be a function of the vessel volume, initial storage temperature, rate of
mass withdrawal from the tank, and the time lapse since initiation of
drawdown. Assuming the air in the tank expanded isentropically \gave a
relationship for the air temperature is a function of time as follows:

- Tgil® = 576[1 - .006179 6]-¢ °R (18)

The derivation of Eq. (18) assumes that the section of pipeline to be
investigated is located immediately downstream of the storage vessel at
a point where the gas has not had time to exchange heat with the pipeline.
The air temperature surrounding the pipe was assumed to remain con- -
stant at 560°R, The inside film coefficient was assumed to follow the
relationship given by Eq. (19).

J9
’ P A . 8 /0p i35 Btu

hi(6) = 0.0279( X )( ¥ ) ( P“) (19)

Y ! 2rRy \2pr R/ 1\ k _sec-°

{v, ' pr e/ L ft°~sec~"R
For the particular blowdown rate (M = 805 lbp, /sec), Eq. (19) becomes

- - .35 Bt
hi(6) = 1.6919 (rRo)1-® (K)'63 (0745 (Cp)*® —eer (20)

For the particular temperature range of interest, 300 to 800°R, the
specific heat, viscosity, and thermal conductivity of the air have been
found to obey the following relationships:

Specific Heat

Cp = 0.2431 - .00001919T + .0000000244T* (—Bt ) (T = R) (21)

1b,—°R

Viscosity ol MWM p’?
N

7.3026, T3/ 2

g g M
p=——" . x 10 (T = °R) MY .
(T + 198.6) sec—it Nﬁcﬁ' 13 (22)

V> 4

10
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Thermal Conductivity

{
K = 0.003716 + .00001676T + 0.000000008T% i—o"

Tener 07 CR (29)

The outside film coefficient is assumed to correspond to natural
convection from a horizontal cylinder and is given by Eq. (24).

= v _ pon1/3 __ Btu
ho(O) = 0.(_)0005 (.’1 go Tn ) flz—sec—oﬂ (24)
Equations (18) through (24) were input into the computer program as
arithmetic statement functions. Figure 3 shows the input cards for the
program constants, while Fig. 4 shows the input cards for the initial
temperature distribution. Tj corresponds to the innermost element.

5.2.2 Results

The results of the study are shown in Fig. 5, where the tempera-
ture as a function of location within the pipe wall is plotted for selected
time intervals.

SECTION VI
DISCUSSION

The preceding sections have presented the development of the re-
cursive method, its application, and a comparison of typical results
with a corresponding exact solution. The comparison indicated close
agreement between the recursive method and the exact solution for the
particular cases that were investigated.

The recursive technique presented is particularly useful in cases
involving complicated or noncontinuous boundary conditions, since the
technique will handle any boundary condition that can be expressed as
either a function of time or a function of the surface temperature. The
technique also allows any type of initial temperature distribution to be
specified.

Computer time required is not excessive. On the average, a nom-
inal time of 0. 15 sec was required to compute the temperature distribu-

tion over a single time increment in a system composed of ten elements.

Since the recursive technique is designed to step through the solu-
tion in discrete time intervals, a certain inaccuracy is inherent in the

11



AEDC.TR-69-87

early stages of the solution. These inaccuracies disappear as the solu-
tion progresses. In general, accurate results can be expected at any
time, 0, provided the condition of Eq. (25) is met.

6 2 NAG (25)
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APPENDIX |
DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATION

Figure 6 shows the geometrical aspects of the mathematical model.
The differential equation of the problem is developed by making an
energy balance on a typical differential volume element of the pipe wall.

The following assumptions are made concerning the problem:

1, All energy transport occurs through thermal conduction except
at the boundaries.

2. Energy transport occurs in the radial direction only.

3. Pipe thermal conductivity is constant.

The energy balance is expressed in simple terms as

Energy In ~ Energy Out = Energy Stored

The energy conducted into the volume element is given by

i = - 9T\ _ _ (K o7 -
Conduction In = (KA aﬁ) (dequZ 8R> (I-1)
The energy conducted out of the volume element is given by
aT 9 [ aT] -
- (KA &= + — |KA -—|dR
( R 3R aR )

- (KquSdZ T , 0 [KquSdZ _dT dR)
JR JR dR

Conduction Out

_ - KRd¢dZ T _ KdgdZ __a_[R ﬂ]dn
IR o L oR

(1-2)
Combining Egs. (I-1) and (I-2) gives 2
Conduction In - Conduction Out = KdgdZdR [n g’n’; + —3-;-] (I-3)
The energy stored is given by
Energy Stored = p VC 3% - p RdgdzdRc 9T (I-4)

15
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Equating Eqgs. (I-3) and (I-4) gives the governing differential equa-
tion:

Fr_ .1 9T _ 191
JR? R dR a d6 (1-5)

where o = %{a and is known as the thermal diffusivity.

Associated with Eq. (I-5) are the following initial and boundary con-
ditions:

(1) Initial Condition
atd = 0, T(R,0) = T(R,0)

(2) Boundary Condition 1 (Inside the Pipe)

. 0T(R,H) - K 2T(R;.0)

R - R
at K5 R

10 (T (R0 - Tgl6)

Here hj(6) and Tgi(6) are the time-dependent inside fluid heat-trans-
fer coefficient and inside fluid temperature, respectively. Rewriting
this boundary condition gives:

8T(R,, ) hi(®) . h; () .
.0 5O rge - - BEO 1

(3) Boundary Condition 2 (Outside the Pipe)

Ry, K ITRO) (o TRy, 0

dR dR

at R

ho(g) ('1‘80(6) - T(Ro, 6)

Here hg(6) and Tgo(6) are the time-dependent outside fluid heat-
transfer coefficient and outside fluid temperature, respectively. Re-
writing this boundary condition gives

dT(R,, ) + hy ()
oR K

T (Ro,0) =

h°f’ Tgol6)

Inspection of the boundary conditions reveals that they are not
homogeneous; consequently, the path to an exact solution does not
readily present itself. Recourse must therefore be made to approxi-
mate numerical techniques.
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Exact Solution (Ref. 1)
4.0 - O Numerical Sclution Case I
=<«0r= Numerical Solution : 45.63 Case I

Case II Convergence Criteria Satisfied
N=20

A8 = 0,001 sec

R =1

=1

0.728

0.764

= 0,799

A = 0.799

= 0.410

Case Il
Convergence Criteria Not Satisfied

N - 20

A5 = 0.01 sec
R =1

-1

= 7.28

= 7.64
510 = 7.99
519 - 7.99

A20 = 4.10

(T = T )/ Ty - Ty)
Q

=1.0 |-

A
A

N = RO

-3.0 -

-4.0
0 0.01 0.02 0.03 0.04 0.05 0.06

Fig. 2 Effects of Convergence Criteria on the Convergence of the Numerical Solution
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APPENDIX Il}
COMPUTER PROGRAM FORTRAN LISTING

C##*###***#*#**#***#***#****#*#*#***#####****#***#****##***
_Qig}****####t##*#******###**#*#******#t#*#tt*f**#*itf*!f?f*_
CaekprdErrdkfhthhkkkhkykkkkiktokk kbkkkdkkhkrkkkkkkkkgkkerik
C_FORTRAN LISTING OF PROGRAM AS APPLIED TO SAMPLE PROBLEM
C TWO. SEE SECTION Iv.
C************************************************f‘**fiﬁffi“
% % s e deaik e oo o o e e o o e ol ok o et i e e e e ofealeole 3 Aol e kol gk ke ol o ko ok e ik o o 3 o ek e kXK
C_ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION [N A HOLLOW
C CYLINDER WITH NON-STEADY BOUNDARY CONDITIONS.
CREEFhEEE AR ERXR XXX ERE KRR X R RS XXk xk
C INSIDE FILM COEFFICIENT (HI) IS FOR AIR- TURBULENT FORCED
C CONVECTION WITH VARIABLE PROPERTIES. e
C#**#*###*#*##***#ﬁ****##***#*****************#*****#******
C QUTSIDE FILM COEFFICIENY (HO) IS FOR AIR —=NATURAL
C TURBULENT CONVECTION QVER A HORIZONTAL CYLINDER.
2 3k 3 oo o o o e e e e e 3 o o o e ofe ofe ofe o e o aeote e K sk ik e o o e oo ek e ok ok ofe e ke ek Sk ok
(C % o o e e e e e ale e o e e e o e ek ok ook ek o e e ade o el e Sl ik o e sl e ke e ade e e o o ook o o ok ok K
DIMENSION A(20),B(20),TIYLE(20) .
TGU(E)= 560.+1.%E~1.*E
S TGI(E)= 576.%((1,-.006179%E)**.4) = _ _4n (€ _
viststy CCPGASITGI) =0 2431-.00001919*TGI+.0000000244* (TG [*%2)
AMO(TGI)=7.3026%(TGI*%(3./2.))%.0000001/(TGI+198.6) — £§n 2%
AKGAS (TGI)=(.003716+.00001676%TGI+.00008%( TGI*%2 )%k -4, » 3
1.0001)/3600, . ——
—>HI(CPGAS AMUyAKGAS)={ 16919/ {{R*R0O) *%1.8) ) *(AKGAS** agem 2
1.65)*%(CPGAS**,35) /{AMU**.45) e
ywruud4_7>H0(tGO.TN)=.00005*((ABS(th-tN))**(1./3.))eeﬂ ty
FL{UsV)I=(U=V)I/ALDGL{{2.*¥K+1o )#(2.¥N=2 . *¥K—1o ) *R}/( (2. *K
1-1 ™ )+( ZO*N_Z.*K+1.,*R’ ’
F2(UsV)=C(U~V)/ALDOGI{ (2e*K=1o )+ {2 ¥N-2oK+1 o) *R)/{ (24 %K
1’30)"‘( 2-*N'20*K+30)*R)’
F3{U)=(1o=U)*{{2.¥N-2.%K+1e ) ¥R +{2.%¥K=1,}) _
READ(5,41) TITLE
1 FORMAT(20A4%)
WRITE (6,1) TITLE
READ(5,2)BETA,D,F,ALP,Ry RO,N
2 FORMAT(6F10.0,12)
ARITE(6,3)D4F, ALPBETA,R4,RO,N o
3 FORMAT(//7/7/* INPUT CONSTANTS'///' DELTA TIME = *F6.3
.1' SEC.'/' TOTAL RUN TIME = 'F7.3°'SEC.'/*' THERMAL DIFF!
'24USIVITY = 'F10.8'SQ.FT./SEC."'/"* BETA = *Fl0.4"' SQ. "
3'FT,~SEC.~R/BTU'/* RADIUS RATIO (RI/RO) = 'F5.3/ .
4" QUTSIDE RADIUS (RO) = 'F6.3'FT.'/' THE NUMBER OF',
S5' EL EMENTAL CYLINDRICAL SHELLS 1S t*12')1*///)
READ(S44) {A{J) +J=1yN)
4 FORMAT{S5F10.0)
WRITE (645)
5 FORMAT(3X'TIME'4X'T(1) '4X ' T(2)*4X"'T(3) '4X'T(4)'4X
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10 T(o) 74X TU6) P 4X TLT) ' aX T(S3) *4X T{9) 14X IT(1C) F4X
LYTGAST! 3X* TGASOY)

CHI=2.%(N*%2)%D%kALP/ (RO*%*2)

E=0.0
6 TGASO=TGO(F)
_TGASI=TGI(E)

TWRTITE(6,7) Es (AT, J=1,N),TSAST, TGASO
LT FOEMAT(/13F8.2)

K=1
BUL)=CHI*({ (R*BE
it

A¥HI(CPGASITGI(E}) JAMUCTGI(E)) 4 AKGAS(

ET
E)-ACIYII#FI(A(2), AT /F3TRY + A1)

TITGI(EINNI#(TE
NN=N-1
N 8 K= dek
3(K)= CHI*(F2(A(K=L) yA(K))+ FL{A(K+1)4A(K) )} /F3(R)
1+A 1K)

8 CONT INUF

P, SS— T

K=N
CB(N)=CHI*{F2(AIN-1) 4 AIN) J+BZTARHCITGO(E) JA{N) )& (TGO(E)
1-A{N)))/F3(R)+AIN)

M} 9 J=14,N _
ALJ)=B(J)
9 CONT INUE

IF(E-F1646,10
10 STHP
_END-
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TABLE 1
ERROR PROPAGATION IN A TWENTY-ELEMENT NUMERICAL SYSTEM

Element No. 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (sec)
0.0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0
0.001 0 0.01)0.02)0,05]0.09 0,14 |0.16 |0.18 |0.15 |0.12 | 0.06 | 0.03| 0.01 0
0. 002 0.02 j0.03 10.04|0.05]|0,07|0,08 0,10 0,11 [O.11 |0,11 [(0.10 |0.09 | 0.07 |0.05] 0.04]|0.02|0.01]0.01
0. 004 0.07 10.07 |0.07{0.08 |0,08 | 0,08 .0. 08 (0.08 [0.08 /0,08 0.07 |0,07)0.06)]0.05|0.04{0.03[0.03]0.021]0,02]|0.02
0. 008 0.07 | 0.07 10.07 | 0,07 0,07 ]0.07 |0.07 |0.06 [0.06 |0.06 |0.06 |0.05{0.05)0.04(0.04|0.04/[0.03}[0.03|0.03]0.03
0.015 0.06 10.06 |0,06 | 0,06 0,06 |0.05 |0.05|0.05 {0.05}0.0% |0.05|0.04)10.04|0.01{0.04|0.04[0,04|0.03]0.03]0.03
0,030 0.04 }0.04 |0.04]|0.04}0.04]0.04 [0.04 {0.04 |0.04 |0.04 |0.04 {0.03|0.03}0,03]|0.03}|0,03[0.03[0.03)0.03]0.03
0, 045 0.03 |0.03 {0.03]|0,03|0,03]/0.03(0.03{0.03 |0.03)|0.03 [0.03|0.03]0.03]0.03]0.03|]0.02/0.02)0.02)0.02])0.02
0.060 0.02 10.02 10.02{0.02}0,02]0.02 (0.02]|0.02 |0.02|0.02]|0.02 |0.02|0.02]0.02(|0.02]0,02(/0.02]|0.02]0.02]0,02
0.080 0.02 |0.02 |0.02}0.020,02(0,02 {0.02]0,02 |0.02/0,021}0.02(0.02)0.02]0.01]10.01{0,01{0.01|0.01]0.01]0.01
0. 100 0.01 |0,01 |0.01]|0.01|0,01/0.01 (0.01]0.01)0.01|0.01(0.01|0.01({0.01{0.01}0.01|0.01[0.01]0.01]0.01]0.01

Af =.,001 sec
N =20

L8°69-d1-2Q3V



9¢

TABLE Il

COMPARISON OF RECURSIVE SOLUTION WITH EXACT SOLUTION
FOR TRANSIENT TEMPERATURE DISTRIBUTION IN A SOLID CYLINDER

Dimensionless
Biot Modulus, IFourier Modulus, Radius Ratio, Temperature Ratio,
hRo ad R/Ro T/Tinitial
K Ro2 — .
Exact Solution Recursive Solution
0.1 0.1 0 1.00088 1. 00085
0.1 0.1 1 1.01352 1.012767
0.1 1.0 0 1.05234 1, 05227
0.1 1.0 1 1.06588 1,06518
1.0 0.1 0 1.00798 1.00803
1.0 0.1 1 1.10515 1.10202
1,0 1.0 0 1. 25021 1. 25238
1.0 1.0 1 1.27989 1. 28050
10.0 0.1 0 1.03331 1,03618
10.0 0.1 1 1. 28946 1, 28987
10.0 1.0 0 1. 32881 1.32967
10.0 1.0 1 1.33278 1.33288
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