AD 690446

N

NWL Technical Report No. 2281
April 1969

A HEURISTIC PROGRAMMING SYSTEM

by
David K. Jefferson

Warfare Analysis Department

Distribution of this document is unlimited.

s

A T

13
F

FOREWORD

This work was conducted in the Programming Systems Branch of the Compute.

Programming Division. The project was supported by the Independent Exploratory

Development Program in Computer Based Information Processing. This paper is the first of

several reports to be presented concerning a computei-aided research tool called “A

Heuristic Programming System™. This report discusses the philosophy, structure and use of

the System. Future reports will describe the implementation, application, and evaluation of

the System.

The report has been submitted to the University of Michigan, Ann Arbor, in partial

fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and

Communications Sciences.

RELEASED BY:

ysis Department

3
{
i
%

[RPRE TR

PR S YRR

s Ealalhs .1 0

Sund'd

SRR it sl I i b it AU el) U B M

-

IR LT A BT Nt

R TR

L

Vo b DI T e

AR e

RIS

ABSTRACT

The Heunistic Programming System is a tool for research in many areas of
artificial intelligence, particularly pattern recognition and adaptive systems. It provides
the arithmetic capabilities and recursive structure of ALGOL plus flexible and
efficient facilities for representing and manipulating complex hicerarchically structured
objects. Objects may be created, modified, destroyed, or described by other,
descriptive, objects. A search operation can retrieve ohiscts or collections of objects
which are specified by arbitrarily complex descriptions. Another search operation can
not only retrieve objects, but can construct them according to the specifications of
previously created descriptive objects; this greatly facilitates the implementation of
self-improving pattern recognition schemes, which are basic to advanced work in
artificial intelligence.

The report contains a discussion of the programming facilities required for
artificial intelligence, an informai introduction to the Sys.em, a formal programmer’s
manual with numerous examples, a sample program which plays thc game of
Go-Moku, and a discussion of a proposed implementation.

ii

el R,

T s T R T R

RO TTH

R R e

TABLE OF CONTENTS

INTRODUCTION e e e e s e s e

CHAPTER I PROBLEM SOLVING
Representation of objects; control of program flow;
improvement; overview of the System; facilities for
representation; control mechanisms; facility for improvement

CHAPTERII. THE HEURISTIC PROGRAMMING SYSTEM: 1

The Class Language, representation; control:l; the Problem
Solving Executive; control: II; improvement

CHAPTER I1l. A SAMPLE PROGRAM

Description of Go-Moku; description of the Go-Moku program;
the Go-Moku program

CHAPTER1V. THE HEURISTIC PROGRAMMING SYSTEM: I

Data structures and Data Management; more about the Problem
Solving Executive; the Communicator; system procedures

CHAPTER V. IMPLEMENTATION
CHAPTER VI. CONCLUSION
BIBLIOGRAPHY

..

APPENDIX
A. Distribution

iii

3
]
3
5
£
3
’2:'
ki
g
3
S
3
E |

...n,‘,,m,rnrl‘—q-m'lv'v;mmn‘ll‘m

T

n ‘Ml‘

PRSI T SRL IR LT

e v

a——

g

Wt oWy« B

LIST OF TABLES

Table
1. Standard Properties

2. System Procedutes

v

Y

'
%Ei,
i;

LIST OF ILLUSTRATIONS

Page

Figu ¢

1. Various Go-Moku Positionst 36
'y 2. The Best Laid SChemesoouurr e 40

3. Main Flow and Legend iiiiiiniiiiiiii.. 64
N 4. Detailed Flow i 65

5. COMPSTRUCT PROCEDURE i, 66

6. More COMPSTRUCTttt e e e 67
4

v

o -

koo it b e A A A i U AR A LA MR s SN

1 o S T

e —

g A

INTRODUCTION

The Heurstic Programming System is an attempt to construct a high-level
language within which a problem solver may, as naturally as possible, express his
ideas to thc computer. The purpose is not to converse with the computer in a
natural language, but rather in a problem-solving language; just as the mathematician
uses a highly specialized and formalized language in expressing his mathematical
ideas, so should the problem solver have i. s own specialized language. Unforfunately.
the problem solver is concerned not only with the solution, but with efficiency as
well; thus, he must express a great many different kinds of information to the
computer. This fact considerably complicates the language, which would be
complicated enough anyway. The present attempt - the Heuristic Programming
System - is still rather far from the standards of conciseness and clarity set by
matheinatical notation, but it is, hopefully, a considerable advance in terms of what
can be expressed within the language.

The presentation of the System is divided into six Chapters. Chapter 1 begins
with an introductory discussion of the general requirements which a problem solving
system must meet. These include flexible and efficient representations of objects and
descriptions of objects, a flexible means of searching for desired objects, and a
means of creating objects and descriptions of objects. Chapter | also discusses the
types of problems which may be or should be solved with the System; briefly, the
System is most approptiate to situations in which cbjccts with extremely complex
hierarchical descriptions must be created, destroyed, discovered, or described. Chapter
I concludes with an introduction to the System. Chapter Il consists of a detailed
presentation of the programming language. Chapter 111 consists of a sample program,
which plays the game of Go-Moku. Chapter IV contains a discussion of the
“background” components of the System - the Problem Solving Exccutive. data
management, communication with the user, and system procedures. Chapter 1V also
continues the discussion begun in Chapter 1 of the manner in which objects are
described by the system. Chapter V is a discussion of a proposed experimental

implementation of the System. Chapter VI contains a few concluding remarks.

"2

Chapter I can be read rather quickly to grasp the general philosophy of the
System. The deoscriptive material in Chapter 11 should be read carefully, with
occasional reference to the sample program in Chapter Il; the detailed syntax in
Chapter Il is intended as reference material, so it need not be studied closely during
the initial investigation of the sytem. Points which remain unclear after Chapters 11
and Il may be clarified in Chapter 1V, particularly within the area of data
management. Chapter V need not be read at all, unless the reader is concerned with

the feasibility of the System or with actually implementing it himself,

W ey

. e e

. mmesgm (e

L A Tt

TART = Ty

gy~

mmw—m.: anae d o g

CHAPTER 1
PROBLEM SOLVING

Discussion of the Heuristic Programming System will be organized around three
somewhat overlapping topics: representation, control, and improvement. Bricfly,
“representation” refers not only to what can be stored within an information
processing system, but the manner in which it is stored and accessed. Thus,
representation influences both the theoretical and practical limitations of a system.
“Control” refers to the mannesr in which operations and operands are chosen.
“Improvement” refers to improvement of the choice mechanism. These topics and
their interrelations will be discussed both in terms of this Heuristic Programming

System and in terms of previous heuristic programs.
Representation of Gbject.

In the following discussion, the term ‘‘object” will be used to denotc any data
which might be pertinent to the solution of a problem. The term includes those
data which are used to describe the problem (e.g., the location of a piece in 2
game-playing problem, or the end-point coordinates of a line in a pattern recognition
problem), those data which are derived from data defined by the problem and
which may be relevant to its solution (e.g., a subgoal which has been recognized.
but whose reliability as an indicator of progress is questionable), and those data
which represent descriptions of other objects (e.g., a description of a subgoal.
Flexibility

The most important step toward the solution of a complex problem is easily
and efficiently representing all that is known or guessed about it. If a problem is
simple, almost any solution method may suffice; added data may even hamper the
solution. However, if the problem is complex it p-obably will not be solved at all
unless all available data arc utilized. Minsky (1961) makes the point that simplc
problems are qualitatively quite different from complex problems: simple problcms
can be solved by trying out all possible actions, while it may be impossible to try
out even the most promising actions in solving a complex problem (indeed. it may

be impossible even to find all the promising actions). Amarel (1908) discusses

NIVITINY

Mol Vit

U SN s) % .uwwumww‘mm.mlmmmm R o BRI b i

various ways of representing the missionary and cannibals problem, and how the
representation effects the efficiency of the solution, The point is not that there are
ways to find a good representation, but that, if one is known, it should be used:
many of the present difficulties v-ith heuristic programs arise because of
inappropriate and inflexible representation of the problem, while the notable
successes have occurred because (by chance or design) the available structure fit the
“natural” structure of the problem. Emst and Newell (1967) discuss these difficulties
in describing the drastic changes necessary to enabie GPS (Newell, Shaw, Simon,
1960a) to solve a wider class of problems. Basically, the original GPS was designed
around a certain type of problem; the heuristic power which it brought to bear on
theorem proving, while sufficient to solve other types of problems, could not be
used because of severc problems of representation. (Although the new version of
GPS is greatly suverior to the old version in terms of the goals, operators, and
differences which can be represented within GPS, it still suffers from a lack of
flexibility in terms of the munrer in which these objects are represented. Hence,
because of time and memory limitations, GPS cannot in practice solve problems
which are solvable in principle.)

The concept formation problem described by Amarel (1961) is an even more
striking example of the power to be gained by proper representation of a problem.
Amarel's scheme is fairly compiex - it actually involves two levels of language - but
he gains the tremendous advantage of being able to represent program schemata
which enables hini to make “sabroutines” out of c mplex sequences of operators.
The important point is not that Amarel's representation is generai - it is not - but
that it, to 2 great extent, determines the power of his system.

The system devised by Hormann (described in its latest form in 1965;
additional details of development are found in 1962 and 1964) involves not only
problem solving of a fairly sophisticated degree but planning and induction as well.
The adequacy of the representation becomes vitally important in her Induction
Mechanistn, which is a general pattern recognizer and conjecture generator. Cleariy, if

the pattems which are recognized have nothing to do with the solution of the

1o kB b 4

)

wn
(LRSI

problem, then the Induction Mechanism must fail. The regularities of the problem

T R (R T N o

must, then, be representable to the various problem solving and learning mechanisms.
Pl This is accomplished by special routines which abstract and characterize a particular
problem. The result s similar to the differencing scheme of GPS, with the

important addition of a subroutine feature somewhat like that of Amarel’'s schemc.

P

A final example of the power of a well-chosen representation is the
\ game-playing program of Koffman (1967, 1968). Koffman reprc.ents a position in a
simple class of games (which includes Qubic, Hex, Bridge-it, and a simplified version
of Go-Moku) in terms of lines of pieces and intersections of lines. This enables the
pr sam to easily describe a subgoal (a board configuration from which a win can
be fcrced) in terms of lines with specified numbers of empty places and
intersections with each other. Representation of the various symmetric or
translational images of such a subgoal is automatic, because the representation is
unchanged by such transformations.

The Heuristic Programming System is designed to enable the user to easily and
efficiently represent hierarchical, or tree-structured. objects - i.e., objects which
consist of subobjects, which consist of subsubobjects, and so on. Objects of this sort
are obviously essential to pattern recognition. which is an important area in itself as
weil as a major subproblem in the solution of any complex problem. Hierarchical
objects are of fundamental value for two additional reasons: such objects form a
basis for subdividing thc problem into simpler problems, which are solved more or
less separately, and such objects are essential to the human programmer, so that he i
can easily write, debug. and alter his program. For proolems in which the majority
of the objects are hierarchical, the System offers the user tremendous ease znd
{lexibility of representation: an object may be described (by another object), created
(by explicit specification in the progrem, or by a reference to a descriptive object),
altered, or destroyed. An object may contain an arbitrary collection of objects, and

may possess an arbitrary colicction of numeric or Boolean properties.

Efficiency

"

The question of how to represent a collection of objects centers about the

st e e G
e D e

PP i [I FUUNSPE P PR ST ST Y - O e . - ~

6

necessity to compromise among the three conflicting requirements of representation:
ease of programming, efficiency in terms of storage, and efficiency in terms of time.
Ease of programming requires, primarily, that the representation should be similar to
the mental representation of the problem soiver, and that it should be easily
alterable (especially with respect to adding detail as the user learns more and more
about the problem or problem area). Storage efficiency requires that objects which
must be present all the time should be represented in the most compact form
possible and that objects which are needed only temporarily exist only while they
are needed. Efficiency in time requires that objects should be quickly created,
retrieved, modified, and destroyed, and that the effects of these operations should
be easily propagited to other, dependent, objects. Note that in any problem solving
program of reasonable sophistication, especially a prograii which involves learmng or
improvement, it is necessary to represent many objects (such as subgoais) implicitly -
ie, by rules for constructing these objects from classes of other objects. The
retrieval of such an object may involve a great amount of searching for compenents
which sre in complex relationships to each other; once it has been retrieved, it may
either be made explicit so that it can be rapidly retrieved for future use, or it may
remain implicit, so that it will require no storage.

Some of the decisions necessary in choosing a proper representation have been
made in the design of the Heuristic Programming System; others are left open to
the user. The decisions which have been made will now be outlined; the purpose is
not so much to justify them as to implicitly define the class of problems for which
the System is appropriaste. No claims will be made that the System is a good
symbol manipulator or list processor. It is neither; the philesophy of the system is
that symbols as such do not even exist, and that lists are useful primarily to the
system and, therefore, the user is not encouraged to manipulate them directly.

One of the major decisions made in the internal representation of objects in
the System is that all objects which are composed of other objects or which are
contained in other objects must have explicit pointers tc those objects. This is to

facilitate searches for objects and modifications to objects: it is frequently necessary

s

s it 01" AL, e NSl b EAl e S

i s o

P o cdatig s L o

—— o s -

ey et TR

B Rt T

L g e

w g b a

P——

[P -

HITPT 5 TR ———

=

to look for an object contained in or containing another object, cither so that some
decision can be made (for example, when trying to find an instance of a compiex
subgoal) or so that modifications tc one object may properly propagate to
dependent objects (for example, when a move is made ir a game, many comjplex
objects must be altered or destroyed). The necessity for these pointers does,
however, create a problem of storage efficiency: twice as many pointers must be
used for objects as in, for example, LISP 1.5 (McCarthy er al., 1965), since for
every pointer to a contained objeci there must be a corresponding pointer from the
contained object. To somewhat compensate for this, the System allows the user to
represent objects as blocks of contiguous storage, rather than as lists; this saves time
as well as storage. An object can, of course, be represented as a block only if it
nas some properties which are assigned at .its creation, and whose storage
requirements cannot increase thereafter. For example, in a pattern recognition
problem, 'a polygon might be represented as a contiguous block composed of the
coordinates of the center of gravity, the number of sides, the color, and a pointer
to a list of objects within which it is contained (the list might be of any length,
since it might be possible to recognize any number of objects containing the
polygor)

The description above applies as well to graphic data structures as to problem
solving structures (ct. Roberts, 1965, Ross 1967a, 1967b, 1968, and Sutherland,
1963). This is not surprising, since the aim in either case is the efficient modeling
of complex and changing situations. The differences between graphic manipulations
and problem solving lie in the control and improvement facilities: this is due to the
fact that the graphic facilities are algorithmic (hence a process will terminate by
itself), while the problem solving facilities are heuristic (and hence a process will

need supervision to make sure that it wili not conatinue sndlessly).
Conirol of Program Flow

As stated earlier, “control” refers to the manner in which operatiuns and
operands arc chosen. Two processes are important: ‘“‘understanding” the current

situation, and deciding how to achieve a ‘“better” one. This section wili attempt tc

L2 0 SRR]

present the major issues irivolved in these two processes, how they are implemented

in the System, and their relation to representation.
Allocation of effort

Understanding a complex situation rather clearly implies the need for describing
and recognizing complex objects. In simple problems, one may be able to explicitly
represcnt each relevant object, so recognition is simple. This is not possible for
ccmplex problems; it is necessary to search for objects which are represented
implicitly (i.e., by descriptions of how they are constructed), since storage
limitations prohibit explicit representaticn of all but a s:nall fraction of the possibly
relevant objects. Furthermore, it might be impossible to generate all such objects
within a reasonable length of time even if storage were unlimited. Searching for
objects which are represented implicitly may take an indefinitely large amount of
time; hence, it should be possible to specify how much effort is to be allocated to
each search.

Attempting to achieve a better situation involves deciding what to do next,
doing it, and then, as above, evaluating the result to see if progress has been made.
In problems where actions are not irrevocable it may be as important to decide
how much of the available resources of time and/or storage are to be devoted to
each alternative as to decide which is to be attempted first. Deciding what
alternatives are to be considered may itself be a non-trivial task, requiring a special
allocation of resources, as in the generatemove proccdure of the Go-Moku program
in Chapter IIl. There are various well-known strategies for choosing amcng
alternatives and allocating resources: for example, trying to reduce the most
imporiant difference between the present situation and a goal (Newell, Shaw, .and
Simon, 1960), trying to attain locally maximal results, concentrating effort on the
most sensitive regions, and equalization of effort among altematives (Amarel, 1962).

From this discussion it is clear that allocation of effort is a major issue in
solving complex problems. The Heuristic Programming System provides two methods
of searching for ¢2,c.: one is a straightforward search down a list to see if an

object exists, the ot.er is a search for ar implicitly represented object. The latter

B T

o

At o,

da}

9
search is limited to a program-specified amount of time, which greatly simplifies the
coding of complex resource-allocation schemes. This search mechanism may attempt
to combine objects to form an object (or class of objects) which is specified either
by the progmmmer or by a previously created description (cf. the discussion of
improvement); this facility, of being able to describe how an object is to be

constructed, also greatly simplifies the coding of a complex program.
Search strategies

In solving complex problems, it is frequently necessary to be able to try many
different alternative actions from a given situation: therefore, it is necessary to
decide first what situation to start from, and second what action tc attempt. Three
common strategies are breadth-first (i.e., sinultaneously try all possible actions from
all current situations, as in the Logic Theory Machine, Newell, Shaw, Simon, 1967),
depth-first (i.e., pursue one series of actions to a terminal point, then go back tc
the nearest untried alternative, try that, etc., as in GPS, Newell, Shaw, Simon,
1960), or maximum payoff (i.e., choose the situation and action which are m ost
promising, as in Slagle and Bursky, 1968). The first strategy is rather uninteresting:
storage and time requirements are too high. The two other strategies both require
the preservation of intermediate situations: that is because, in order to attempt an
action from a situation, the objects which make up that situation must be present
in storage and must be distinguished from the objects of other situations. lence, it
is necessary either to preserve all objects simultaneously (difficult even for some of
the simple problems qf GPS, as noted in Ernst and Newell, 1967; impossible for
comrplex problems involving thousands of highly interacting objects) or to reconstruct
the desired situation (either by reversing actions or by repeating actions from the
initial situation or from somc intermediate situation which has been preserved). Note
that the maximum payoff strategy will in general explore fewer . --matives than the
depth-first strategy, but it will consume more time in reconstruct.. -iuations. A
reasonable compromise between the two wouid be to weight each alternative

according to how cheap it would be to attempt it; this would lead to a somewhat

‘*stubborn’ maximum payoff strategy, which might be of great interest

£ ey ol et e

10

psycho ogically. Such a strategy would be fairly easy to implement using the
Heuristic Programming System.

The search technique used in the Go-Moku program is alpha-beta minimax, a
fairly common strategy in game playing. The minimex is used to evaluate 2 given
position by evaluating the positions which could result from it: the value of a
position is defined as either the value of some evaluation function if the position is
“terminal” (e.g., if a maximum search depth has been reached, or if the position is
relatively stable), or as the “best” choice among the values of the successor
positions. The “best’” choice clearly depends upon whose move it is. Not quite so
clearly, it is possible to avoid evaluating certain positions if it can be shown that
they will never be reached in rational play. For example, assume that the program
has found that, from a given position, it can attain a position of value at least
elpha, despite best play by the opponent. Assume now that the program is
evaluating ia possible move, M, and that one of the opponent’s replics, R, proves to
have value less than alpha. Then it is not necessary to evaluate any more replies: if
move M is made, then the opponent can make a reply at ieast as powerful as R,
30 the result will have value less than alpha. Search can therefore be terminated by
an “alpha cutoff” (a more lengthy discussion is given by Slagle and Bursky, 1968).
A ‘“beta cutoff’ is obtained if the positions of the program and opponen: are
reversed in the above example. If the possible moves are ordered so that the most
promising are evaluated first, then a great deal of time will be saved by such
alpha-beta cutcffs; hence, a very important part of the Go-Moku program is the
generatemove pocedure; which chooses feasible moves and orders them according to
estimated value. The program can be expected to make more cutoifs with practice,
since the ordering of moves will become more accurate.

This sort of strategy was chosen for the Go-Moku program because it is fairly
easy to implement, reasonably efficient (at least, after experience has generated
useful subgoals), and requires much less construction and reconstruction of objects

than the maximum payoff strategy. Since the strategy is rather simple, it was

possible to use some specialized but efficient techniques to minimize the time

S

TR

ol o

AP T AR

TR ToETOm P

S T

11

required to reconsiruct objects; see the discussion in Chapter III.

Improvement

As stated earlier, "improvement” refers to the improvement of the mechanism
by which operations and operands are chosen. The fact that this definition is
equivalent to common definitions of learning and adaptation follows from the
previous discussion of control. In the Heuristic Progrmnming System, objects may be
constructed according to other, descriptive, otjects, and may then be used to
evaluate a situstion and decide upon the next action. Facilities for creating,
modifying, and destroying descriptive objects are provided by the System: this
section will present some of the issues mvolved in using these facilities to implement
a self-improving problem solving prcgram.

A basic technique for finding a subprogram which successfully solves a problem
is to search in neighborhoods of partially successful subprograms: this implies that
partial success must be recognizable, and that neighborhoods must be definable such
that the degree of success does not vary too greatly within a neighborhood.
Improvement then consists of fairly straightforward hillclimbing (Minsky, 1963).
However, it is frequently impossible to recognize partial success or to define
neighborhoods, so the original problem area mus* be transformed into a new area,
or model, in which these things can be done. In that case, trials in the old area
indicate the degree of success in the model; neighborhoods in the model indicate
where trials should be conducted in the old area. For example, Samuel (1959)
transforms th: oroblem of choosing a good checker move into the problem of
finding an optimal n-tuple of weights of features of positions, Holland (1962)
transforms the problem of constructing problem solving programs in an iterative
circuit computer into a scheme for the differential selection of “supervisory
programs’’, and Newell, Shaw, and Simon (1960b) transform classes of
symbol-manipulation problems into the construction of sets of differences and the
determination of which operators reduce which differences.

Obviously, the utility of this technique depends critically upon the degree to

whick success in the old area corresponds to success in the new. Thus, Samuel’s

- ——

e oo Lt Sk

A DTN Ry

12

program can improve its performance only to a certain degree. Further progress
requires the recognition of new features and dependencies between features; in cther
words, a more complex model. The improvement facilities of the Heuristic
Programming System might be used in either of two ways: to produce descriotions
of sets of features, so that dependencies could be detected, and to produce
descriptions of board configurations, in order to recognize abnormal situations in
which feature evaluation is unreliable,

An inportant consideration in solving practical problems is being able to utilize
specialized knowledge to reduce search time. This is difficult in Holland's scheme
because such knowledge must be introduced very carefully in order not to disrupt
the general improvement scheme; programs which enjoy great initial advantages must
not cause the premature rejection of programs whose potential is great but not
easily achieved.

A related difficulty arises in the Newell, Shaw, and Simon scheme, which is
limited by the fact that the operators which recognize differences are completely
distinct from the operators which manipulate objects (and which therefore generate
and remove differences). Hence, it may be very difficult to introduce differences
whose values are known to be great. It may also be quite difficult to utilize
specialized operators, because the program may not be able to learn when to apply
them.

The Heuristic Progremming System provides facilities for describing and
recognizing situations in which specialized krowledge might be used, and it also
provides facilities for improving such descriptions. Hence, as a program’s generalized
knowledge grew, it could continually change its methods of integrating this
knowledge with the specialized knowledge.

Finally, the System provides a framework within which one could construct a
hierarchical control scheme with a growing number of levels (unlike the limited
number of Jevels in the above-mentioned schemes); this is rather critical to really

advanced self-improving programs, because thest must be able to cope with the

“aha! phenomenon” - the sudden integration of a number of facts on one level into

PP TEv P}

S

DRt s it

o

WP TN

rprep—

13

a new concept on a higher level. The System provides a facility for constructing a
description of any object, including another description, so “all*' the user need do is
to program criteria for deciding when to make new descriptions, and when to search

for instances of the newly described objects.
Overview of the System

The Heuristic Programming System consists of the following major sections:

1. The lass Language (CL),

2. The Problem Solving Executive (PSE),

3. The Data Management Routine,

4. The Translator, and

5. The Communicator.

CL is the programming language in which the user describes the structure of a
problem area: it is a considerably extended ALGOL which enables the user to
create, manipulate, and destroy sets and classes of sets. The external form of the
language has been greatly influenced by LEAP, the Language for the Expression of
Associative Procedures (Rovner and Feldman, 1967), which is an ALGOL based
language with facilities for manipulating sets and associative data. However, both the

purpose and internal structure of CL differ greatly from LEAP.
Facilities for Representation
Set, class, goal, description, and property

The basic non-ALGOL structure in CL is the set. Sets with common properties
may be combined together into a class; the properties may have different values for
different sets in the class. Class members may be created or destroyed during a
computation. A class may be declared to be a goal class or a descriptive class: the
PSE may construct members of a goal class from other sets, using members of a
descriptive class as descriptions of the goal class.

A set may be accessed in various ways: by name, by reference from a set
contained within it, or by reference from a set within which it is contained. If a
set js a member of a class, then its name is the name of the class followed by an

index (i.e., a subscript). The user may insert a series of integer-valued expressions

14
between the name and index, indicating subclasses.
Creation and destruction

Any set which is declared within a block is created upon entering the block,
just as a local variable in ALGOL; sets are created empty. The members of a class
are created when entering a block if the class has a fixed cardinality (i.z., number
of members); otherwise members are created by the create procedure. Sets are
destroyed when exiting from the block in which they are declared: class members
may also be destroyed by the destroy procedure. The destruction of a set means
that all properties of the set become undefined. Further, class members which
contain a destroyed member are also destroyed; all references from sets contained in
the destroyed member arc deleted. Numeric or Bo_olean properties may be defined in
any of three ways: a constant initial value may be assigned during the compilation
of the block in which a set is defined, or an expression may be assigned at
compilation time and then cvaluated at the creation of the set, or the value may be

assigned within the block, overriding any previously assigned value.
The Data Management Routine

The Data Management Routine has two primary functions: to create data
structures within the frec storage area, and to return destroyed data structures to
free storage. For each class, there is a block of contiguous storage, called the class
header, which contains information relevant to the class as a whole: the class name,
the names of the properties, initial values of properties (or pointers to expressions
for determining the initial values), and the method of ordering the members. The
class has either a fixed number of members (in which case the header contains a
block of class members), or 2 variable number of members (in which case the class
header contains, for each subclass, the number of members, the highest index, tne
index of the most recently accessed member, and pointers to the most recently
accessed member, the member with lowest index and the member with highest
index). Each class member consists of a block of contiguous storage which contains

the values of the member's properties, the member’s index and a pointer to the

member with next higher index, either a pointer to a list of contained elements or

o ve AT e

e

PR,

—

T2 - B ot 5

TR Ak B e o i o2

15

a block of pointers to each contained element, and either a vointer to a list of
containing elements or & block of pointers to each containing element. Sets are
comparatively simple: each consists of a set header containing the set name, the
number of members, the mecthod of ordering, the property values, and either blocks
of pointers to the contained and containing elements, or pointers to lists which
contain pointers to the contained and containing elements.

Thus the data are seen to fall into two categories: blocks of contiguous storage
of various sizes, and simple lists linking the blocks together: both types of data are
sufficiently simple to be manageable by a relatively unsophisticated routine which,
on demand, obtains storage or returns blocks or lists to free storage. A discussion
of a more general system, which influenced this design, is given by Ross (1967s,
1967b). The primary advantage of this sort of data structure over, for example, 2
pure list structure, is that the tighter grouping of data (by means of contiguous
storage or' maaqy pointers) greatly reduces the amount of time to search from one
item of information to another. In some cases, contiguous storage saves space; the
“line” in the Go-Moku program, for example, always contains exactly five “points”,
so that the structure can be represented by a block of five pointers, rather than a
list with five elements.

A useful feature of the Heuristic Programming System is that it is easy for the
user to write a specialized storage reclamation routine: thus, he can delete less
valuable sets, or sets of certain types, or even, by means of the destroy statement,

all sets whose existence depends upon a given set.
Control Mechanisms

There are three basic types of control mechanisms in the Heuristic ngramn{ing
System: basic ALGOL (which will not be discussed further), the CL for (a search

mechanism), and the PCE (a descriptive and constructive mechanism).
The CL for
The CL for is a sophisticated search facility. The user writes a template which

is basically the specification of the class name of an object, its structure {or various

possible structures), and its properties The class name, and any of the class names

el TR

An

16
appearing in the structural description, may be followed by a “defined” index or by

an “‘undefined” varizble. The dJdefined index refers to a specitic class member, while
the undefined variable refers tc a member which is to be found by the search.
When the desired member is found, its index is assigned to the variable, the
member then can be manipulated by reference to its class name and index.

Thus, the basic orientation of the Class Language is toward explicit specification
and search; the user is spared the task of choosing and identifying objects. This
tends to make CL code reflect the user's mental representation of objects, which
facilitates coding and debugging. '

The CL for has been influenced by both LEAP (Rovner and Feldman, 1967)
and SNOBOL (Farber, Griswold, and lolonsky,1964, and Forte,1967).

The PSE

A CL for is used to search for objects which exist, i.., which have been
constructed previously; a PSE statement may not only search for objects, but it
may also combine objects, according to templates, in order to construct members of
goal classes (after a goal object has been constructed, it can .be manipulated by
ordinary CL code). The PSE is, therefore, goal-directed, like the productions of the
COGENT programming system (Reynclds, 1965) and other syntax-directed translating
systems (Feldman and Gries, 1968). Unlike other systems, however, the PSE can
construct more than one object, or it may not be able to construct any at all.
Each invocation of the PSE must, therefore, specify the maximum amount of time

to be spent, and whether one or many objects are desired.
Facility for Improvement

The most important control features of the Heuristic Programming System are
its methods for searching for specified objects; therefore, improvement consists of
creating, destroying, and altering descriptions of objects. Members of descriptive
classes may be created and destroyed just as members of other types of classes, but
the facilities for alteration are unique. Basically, new descriptions are produced in
the following manner: 2 goal cluss member is created, then a descriptive member is

created which contains the goal clnss member, the descriptive member may be edited

B LS A Ul il L0 s AL 11

[

A et A b

5
‘,
|

ey TE

o o e s = o n

W e e e gt (v XY

17

and then the descriptive member is absiracted.

Editing is a process by which & description is rhanged without changing the
thing described; each set which is to be changed is copied, then the copy is
changed. All references to the original set within the description are changed into
references to the copy. Abstracting is a process of copying all sets, as above, and
then changing the set names into undefined names. Thus, the result jis just a

template.
Other Sections of the System

The Translator translates the CL program into a legitimate ALGOL program.
Procedure calls are inserted at appropriate places in the code to call the PSE and
Data Management. More details on the operation of the Translator are given in
Chapter V, in the discussion of implementation.

The Communicator is both the outermost block of the user’s program, which
contains declarations for the system variables and the code for system procedures,
and a collection of procedures for communication with the user. The user may
request the creation, destruction, or display of any object within his program.
Objects may be described explicitly by, for example, name and index, or implicitly
by means of a template, just as in ordimary CL code. The comespondence between
the internal and external ﬁames of classes and sets is provided by the symbol table
produced during translation, and by the names which appear in the class and set

hcaders.

A T -

Lt e

CHAPTER I
THE HEURISTIC PROGRAMMING SYSTEM:I
The Class Languspe

The detailed presentation of CL will assume a moderate knowledge of ALGOL
and the metalinguistic formulae used to describe ALGOL. In particular, the revised
ALGOL report (Naur ef al.,, 1963) defines formally various metalinguistic variables
which are used here; these are, for the most part, self-explanatory. Both the
metalinguistic variables used to describe ALGOL and those used to describe the
additional cor;stmcts of CL are indicated in this Chapter by the bmckefs “C' and
*)’; generally there will be no difﬁculty in distinguishing ALGOL from the new
constructs.

Reptesentatioh
Declaring sets and classes

A name may be declared to be a set name by the declarator set or a class
name by the declarators class, goal clisss, or descriptive class. Sets are normally
ordered, but may be declared to be unordered, rankhi (high member first), or
ranklo. an may be on the basis of any property of the members, or, in the
absence of any contrary specification, by value, which is a standard property (ses
Table 1). The members of a class mgy be declared to be uncrdered, rankki or
ranklo in the class declaration (the ciass, itself, is always ordered). The cardinality
of a class may be established at the time that the classs is declared, as in the
following example:

class class [100]
This class is not empty initially; it consists of as many members ac are declared,
although these members need not have any defined properties.

A class may be subdivided into subclasses, subsubclasses, and so on, to any
desired extent. This is indicated in the declaration as, e.g.,

cless subclasses [10,5);
Here, there are 10 sibclasses, each with five members.

18

AU 1 GRS Aot

[T P — e SR TR AR R

Name Posible values
structure a list of sets
cover minval-maxval,;
value minval is default
cost " any real number

i9

TABLE 1
STANDARD PROPERTIES

Explanation

The structure of a set is a list of the elements
coniained in it: this is not the same as the set
itself: if A contains B, and C contains the structure
of A, then C contains B but not A.

The sets containing a given set.

The Communicator sets minval to 0. and maxval to
l.; these may be altered in the program. The value
property is standard only for goal or descriptive
classes. The PSE uses values to decide which goal to
attempt.

This is either the estimated cost of constructing 2

member of a goal class, or the actual cost of having
constructed 2 goal object. This is used by the PSE.

“n i“

ety

SR ORI 00 . LA TR |

20

Hf a cardinslity is not declared, then a class may have any number of members.
This flexibility may be purchased at a cost in processing time, since an array
structure is used for a class of fixed cardinality, while a list structure is necessary
in the general case. A specific ¢lement of a class of fixed cardinality is accessed by
“pointing” to it; otherwise the list o.f members must be searched to find it. The
search time is, however, quite small in many cases, because a record is kept of the
location (on the list) of the most recently accessed member of each class; this
greatly facilitates operations which sequence through the class or which repeatedly
refer to the same member.

Note that if a class has a declared cardinality, then any member may be
referred to (eg., may have values assigned to its properties) without explicitly
creating it. If a class has ariable cardinality, on the other hand, each member must
be explicitly created by a create statement before referring to it. Thus. the two
types of classes are quite different.

A class may be declared to have subclasses even though it has no fixed
cor inality. Thus,

class manymember {5.};
declares a class which has 5 subclasses, each with any number of members.
Declaring properties

The standard properties structure and cover are automatically declared whenever
a sel or class is declared (see Table 1). The number of elements in cither the
structure or the cover may be declared. For example,

class triangle (integer structure:=3, cover:=5);
declares a class of triangles, each member of which contazins at most three eloments
and is contained in at most five elements. Such a declaration means that the
pointers to the elements of the structure and cover may be placed in a contiguous
block in each class member, rather than in lists. The value and cost properties are
'automatically declared for goal and descriptive classes.

Norstandard properties must be declared explicitly, and may be assigned initial
values. Thus

sl b s

Yot 4

waiind, e el Rl e

srw AP

!
el

21 B

e BT T T

class box (real length, width:=2., height:= p + q);
specifies that each member of the “box"™ class has a length. a width (with value 2.

© R . A

when the member is created), and a height (with value p + q when the member is

b Dl

created, for the then current values of p and q).
2 Syntax of declarations
The syntax of declarations will now be given. This defines not only the special
CL constructs, but their relation to ALGOL as well.
(declaration) ::= (type declaration) |(array declaration) |
{ switch declaration) | (procedure declaration) | (set
declaration) | (class declaration) | (goal declaration) |
(descriptive declaration) | (standard test)
Syntax of set declarations
(set name) ::= (identifier)
(proberty name) ::= (identifier)
{ short property assignment) ::= (property name) := (arithmetic
expression) | (property name):= (Boolean expression)
(property item) ::= (property name) | (short property assignment)
{ property list) ::= {(property item) | (property item) , (property list)
! (typed property list) ::= {type) (property list) | (type) (property
list), (typed property list)
(property declaration) ::= {empty) | ((typed property list))
{ set declaration item) ::= (set name) (property declaration)
4 {set declaration list) ::= (set declaration item) | (set
declaration item),(set declaration list)
{rank) ::= rankhiranklo

(modifier) ::= unordered | (empty) | (rank) |(rank) 1
by ({variable)

(set declaration) ::= (modifier) set (set declaration list)

n P AUV o

LU At
M

&l ez W

22

Syntax of class declarations
{ basic class name} ::= (identifier ’
(subclass and cardinality list) ::= (arithmetic expression) |
{ arithmetic expression’ , (subclass and cardinality list)
(subclass and cardinality declaration? ::= { empty) | { (subclass and
cardinality list) } I[(subclass and cardinality list) ,]
{ ciass declaration item) ::=(basic class name) (subclass and
cardinality declaration) (property declaration)
{ class declaration list) ::= { class declarstion item) {{ class
declaration item} , (class declaraticn list)
{ class declaration) ::= (modifier) class {class declaration
list)
Syntax of goal declarations
(gbal class name) ::= { identifier)
(goal declaration item) := (goal class name) {subclass and
cardinality declaration } (property declaration)
{ goal declaration list) ::={ goal declaration item) |{ goal
declaration item) , (goal declaration list)
(goal declaration) ::= (modifier) goal class(goal declaration
list)
Syntax of descriptive declarations
{ descriptor name) ::= (identifier)
{ descriptor item') ::= (descriptor name) { subclass and cardinality
declaration) { property declaration)
(descriptor list) ::= (descriptor item) | (descriptor item),
{ descriptor list)
(descriptive declaration) ::= (modifier) descriptive class
{ descriptor list)

(class namne) ::= (basic class name) | (goal class name) I descriptor

name)

T TTNI

e g W Wl e

e Bl 1 e e

e M R . ol i (1 s

v Ll ol b,

et e e 4 b R e

P NI

e

I, T TR a3, o T O Ot O 1

R T e

A

23

Syntax of procedure declarations
{procedure declaration} ::= procedure (procedure heading)
(procedure body) | (type) procedure (procedure
heading) (procedure body) | set procedure (procedure
heading) { procedure body ?
Syntax of standsrd tests
(standard test)::= standsrd test(property name) |{ standard
test), (property name)
This is a simple way to avoid writing the same condition in many
(template)’s. A (temiplate) contains lists of class members and Boolean conditions
on those members (2 more complete discussion is given later). Each (property
name) (which must be a Boolean v.iable) in the (standard test) is added as an
additional condition to each member with that property, provided that no condition
involving the (property name) is already present.
Referring to members of sets and classes
Merﬁbers of a set or class are referred to by index and subclass indicators as,
eg.,
setname.l
classname.)
subclasses.l.J
wherc 1 and J (here and in subsequent examples) may be arbitrary (primary)’s and
setname is any set (in particular, it could be classname.J). .
Members of classes may be referred to by subclass indicators and indexes which
are either *“defined” or *‘undefined™; a period before a ¢ primary) indicates that it
is defined, as in the .I of
classname.l
while a slash before a (simple variable) indicates that it is undefined, as in the /K
of
classnaine/K
The defined values are used to indicate a specific class member, The undefined

variables are used to indicate that an index or subclass indicator is not known, as,

~

TN LN TR R

L YT WRTHE i NN

b A

24

for example, when scarching for some member with specific properties or when creating a
new class member. When the desired member is found or created, its index and subclass
indicators are assigned to the previously undefined variables. Similarly, a set name followed
by a slash indicates an undefined set, to which structure is to be assigned; a set name not
followed by a slash represents a previously defined set of elements. An asterisk followed by
a period and an { unsigned integer) represents a variable to which structure has been
assigned during a searching operation. This will be discussed in more detail in the section on
(template) 's.
QOperations on sets
Sets are combined by means of the binary operators +, X, and -, which are interpreted
as concatenation (with subsequent deletion of duplicated elements, if the result is assigned
to an unordered set), intersection, and subtraction. The precedence order is X first and -
last, as indicated in the syntax. Association is from the left in a sequence of identical
operators, or may be indicated by parentheses. Note that brackets may be used to construct
sets from lists of arbitrary expressions; hence, numeric or Boolean quantities may be put
into sets. hrackets are removed Sy the structure function so that, e.g.,
F:={structure({A, B,C, D 1),[E] |;
is equivalent to
F:=[AB,C,D,[E1]);
Syntax of seis, expressions, and sssignments
(expression) ::=.(arithmetic expression) | (Boolean expression) |
{ designational expression } I{ structural expression)
(assignment statement) ::= (left part list) := { arithmetic expression) |
(left part list) := (Boolean expression) | { structural assignment)
(index) ::=.{ primary)
(simple set) ::= (set name) |(class name) | ((structural expression))
i(function designator) | *. (unsigned integer) | (simple set }

{ index)

peR——— AT T it L b

25

(sct)::= (simple set) [(set list }) | empty

{set list) ::= (expression) | {expression), (et list)

(set factor) ::= (set) | {set) X ({set factor’

(set term) = (set factor) I(set factor } + (set term?

(set phrase) ::= (set term) | (set term) - (set phrase)

(structural expression) ::= (set phrase) | Gf clause > (set phrase’
else (structural expression)

(structural assignment) ::= (simple set):= (structural expression) |
(procedure identifier) := (structural expression)

Crestion of class members .

A class member may hawve values assigned to any of its propertics by the
statement which creates it; these values override values given in the clas declaration.
Values assigned to a member’s structure are indicated as in the following:

create. (triangle/I(area:=10, line.l, line.J, line.K));
This indicates that a triangle is to be constructed which consists of (Le., whose
structure §s) the three lines, and whose area is defined to be 10. Any class member
indicated in the structure may also be created, if its index i5 undefined, as in the
following:
create. (intersection/K(line/L{point.I,point.J)line/M(point.I point.N)}));
This procéss may be continued to any degree of nesting; during exccution the effect
is to create the leftmost member whose structure has already been created, then to
repeat, urtil all members have been created. Any of the members being created may
have values assigned to any of its properties.
Syntax of create
(undefined index) ::=/(variable)
{ defined member) ::= (class name) | (defined member) (index)
(undefined member} ::= <{(defined member) (undefined index) |
(undefined member } {undefined index) | (undefined member) (index)
{new member) ;= (undefined member) | (undefined member? ({new

TSNS SRR

S mem o — —

L LU

-Syniax of destroy

26

description list))
(description) ::= (set) |(short property assignment) | (now member)
{ new description list) ::= { description) | (description),

(new description list)
(creation) ::= create. ((new member))

Each of the (new member)’s is created by the gingle statement.

(destruction) ::= destroy.((set))
Recall that sets which contain a destroyed set are also destroyed, and that
references to a destroyed set from a contained set are deleted from the contained

sot’s cover.
Manipulstion of properties

A (property name) alone is used to indicate a property where the set or
class member i3 known by context, that is, within a (class declaration) or (new
description list) or within a (temgate) (to be described later). Otherwise, the
class member in parentheses follows the property name. Thus,

cless box [1] (real area :=2);
totalarea :=2. X area (box.1);
area (box.1):= .5 X totalarea;

A singie identifier may be the name for properties of many different ciasses
(as, for example, cover and structure) since the class member is always made clear
either explicitly or from context.

Syntax of properties and variables
{variable) := (simple variable) | (subscripted variable) | (property

variable)

(property variable) ::= (property name) | (property name) ({simple set})
Control:1
Templates

A (template) is a dexcription of a collection of sets. It consis's of a list of

{set variables)’s (each one a (set name) followed by a' slash, or an asterisk, an

e — e —— e —————— - RPN

s
v T = 4 T T N

sy b Ay T T

e

27

asterisk followed by a slash and an (unsigned integer), or an (undefined
member), (set)’s, and (Boolean expression)’s. The (set variable)’s are assigned
values such that the structurai conditions implied by the (set)’s and the Boolean
conditions of the { Boolean expression }'s are satisfied. For example,
triangle/L(arca = 10Aright, line.l, line/K, line.J)

indicates a right triangle (or collection of right triangles) whose area is 10 and
which consists of line, & line (or collection of lines) whose index is unknown, and
line.J. No properties are specifiea for the lines (in particular, their structures are not
specified).

If part of the structure of a set is irrelevant or unknown, an asierisk may be
used in its place in a(tempiate}. The asterisk signifies that its place could be
occupied by any string of symbols which represent structure (including the *‘empty”
structure). Thus,

object/L (*, linel, *)
specifies any ‘“‘object” which contains line.l. One example of such an otject is
' object.1 (line.1, triangle.2 (line.2, line.2, line.I))

An asterisk followed by a slash and an (unsigned integer)is similar to a (set
name) followed by a slash; the structure which is &ssigned to it may be referred to
elsewhere by an asterisk followed by a period and the (unsigned integer). Thus,

for each line/K (*/1, point.], */2) do

begin create. (line/L (*.1, *.2)); destroy. (line.K) end;
creates a collection of new lines not containing point.J. For further details
concerning the asterisk, see the discussion of the{ CL for) in Chapter IV.

The functions “and”, “or”, and “not” may be used within a (template) to
indicate, respectively, structural conditions which must be simultancously satisfied, or
are alternatives, or are forbidden. For example,

inside/L (or {[circle/K, triangle/M], |triangle/M, circle/K]))
specifies an object which consists of & circle “inside” a triangle, or a triangle

“inside” a circle. For further details, see the discussion of the (CL for) in Chapter
Iv.

Sostdprlle [o g Lt Gl

28

Recall that Boolean corditions may be inserted into a (template) by means
of a (standard test). For example, if the following declarations are made

stanviard test active;

ouss triangle (real arca, Boolean active);
then

triangle/L (area

10)

and

triangle/L (area
specity the same collection of members, but

tiiangle/L {area = 10A7] active)

10 Aactive)

specifies a disjoint collection. Refer to the save and restore procedures in Chapter
Il for a detailed example.
Tae CL for

The (CL for) is used to assign vslues to the (set variable)’s which appear in
a (template); structure is assigned to the (set name)’s which are followed by
slashes and to the asterisks, and values are assigned to the undefined subclass
indicators and indexes of the (undefined member)'s. Thus, the (CL for) is
essentially a sophisticated search procedure. For example,

for each object/K (triangle/L (*, line.l.*} square/M (*, line.l,*)) do (statement)
searches for any object which consists of a triangle and a square with line.l in
common. Many additianal exampies may be found ir the Go-Moku program.

In the example above, the each specified that all possible assignments of values
to L, K, and M were to be made which satisficd the {template); first could have
been used instead, with the obvious significance. If the first is used, then clearly the
results may depend upor the order in which assignments are made. Note also that
the (statement)could create, modify, or destroy class members; since the search
locates one after unother of the examples of the (template), the results of the for
each may also depend upon this order.

A second type of (CL for) is used to assign esch element, one after the

DL

29

other, (or the first element, or the last element) from a specified (set) to a (set
name). The process is simply one of renaming sets. Thus, for example, the
statement

for each A in (B, C, D, E] do A:=A+F,;
is equivalent to the sequence of statements

B:=B+F;

C:=C+F;

D:=D+F;

E:=E+F;

In both of the forms of the (CL for), as in the ALGOL (for statement),
the (statement){ollowing the do is not executed at all, if the conditions of the
(CL for) cannot be satisfied. Thus, the (CL for) may be used to determine
whether certain class members exist.

Syntax of the for statement
(for statement) ::= (for clause) (statement) |{ label): (for
statement) |(CL for) (statement

{ set variable) ::= (undefined member) | (set name) /|*|®/ (unsignd
integer)

{ basic structure) ::= (set vanable) | (set)

{ template) ::= (basic structure) | (basic structure) ((condition
list »)

(condition item) ::= (Boolean expression) | (template)
(condition list) ::
list)

{ for adjective) ::

{ condition item) | (condition item), (condition

each |first
each Ifirst |1ast

{ set adjective) ::

(CL for) ::= for (for adjective) (template) do Ifor (set adjective)
{set name) in (set) do

The Problem Solving Executive
Control:11

An invocation of the PSE is, as discussed earlier, similar to a (CL for), with

30

the important addition that the PSE can not only search for specified objects, but
may also construct them. This construction is limited to the construction of
members of goal classes from other class members. Thus, members of nonsgoal
cissses must be created by declaration or explicit create statements; this is necessary
since the nongoal classes are the objects of the problem and are manipulated by
the rules of the problem, rather than by the PSE. The goal classes, on the other
hand, represent hypotheses about the problem, and hence are subject only to rules
defined by the problem solver.
The desired goal members are described to the PSE by means of a ({ten piate)

andf/or members of one or moi: descriptive classes. For example,

for firsi subgoal/I (object.J, objectK) during time do (statement)
specifies that a “subgoal” is to be constructed from the two “‘objects” if they exist
and can be found within the time limit, “time”. In this case, the (template)
completely describes the desired subgoal, so no descriptive member is referenced. On
the other hand,

for .each subgoal/K (object.), *) during time (o (statement)
incompletely specifies the desired subgoals: the structure implied by both the
{ template) and by some descriptive member must be satisfied by cach subgoal.
Finaily,

fof each subgoal/K during time do (statement)
and

for each subgoal/K(value > bestval) during time do (statemcnt)
do not make any structural restrictions on the desired subgoals: structure must be
supplied by descriptions which were created earlier.

If it is desirable that the goals be described by members of a specific class, or

by a specific member, this can be indicated in the (template). For example.

for esch description/K (subgoal/L) during time do{ statement)

for esch description.l (subgeal/L) during time do (statement)
In each of the above examples, time is initially set to the time allowed;

- ———— .

TP PN T

e

v —

3]

whenever control leaves the PSE, time is equal to the remaining amount of time.
Thus, it is rather easy to devise quite complex ways of atlocating search effort. For
example, the following code scarches for “moves” which will achieve “subgoals” of
increasing value. After N moves have been found and placed in moveset, the
remaining time is devoted to finding *traps” (presumably very high-valuc goals). This
might be a section of a game player.
moveset:= empty; bestval:=0; M:=0;
for each subgoal/K (move/L.*value > bestval) during time de
begin moveset:=[move.L] + moveset;
bestval:= value (subgoal.K);
M:=M+1;
if M = N then go to exit end;
exit: for each trap/K (move/L, *, value > bestval) during time do
begin moveset:=[move.L]+ moveset;
bestval:= value (trap.K)
end;
Syntax of the PSE statement

(PSE statement) ::= for (for adjective) (template) during (variable)
do (statement }

Improvemeat

The basic operations of improvement in the Heuristic Programming System are
the construction. destruction, and alteration of members of descriptive classes. The
construction of a new descriptive member consists of the following steps: first,
recognition of a new goal member; sccond, creation of a descriptive member whose
structure consists of this goal; third, editing of the descriptive member to aiter
structure or properties; fourth, abstraction of the descriptive member.

Editing, as noted carlier, is 2 process by which a description is changed without
changing the thing described. An (edit stotement) consiscs of the name of the
description and either a single (replacement) u a block of (replacement)’s. Each

¢ replacement) either assigns & new value to each instance in the description of a

VYNNG, o ol T

i -

32

property, or replaces each instance of a given (template) in the description by
new structure and property values. A (template) is deleted from a description if it
is replaced by null. Each (replacement) replaces part of the description by a
reference to something which is strictly local to the description; in this way
arbitrary replacements may be made without any effect upon any “‘external” objects,
but it is still possible to refer to *‘local” objects by the names of the corresponding
external objects. '

Abstraction is a process of changing a (possibly edited) description into.an
“abstract” object, in which all indexes are undefined. All pointers to external
objects are replaced by pointers to local blocks, which represent the objects and all
their properties (including subclass indicators). Essentially, this is just the process of
changing a class member into a (template) which contains only (undefined
member) ’s.

The improvement process will be illustrated by a somewhat detailed example,
the generation of a subgoal description in a tic-tac-toe program. Although the
application is trivial, the idea behind this example is quite powerful; indeed, it
forms the basis of the improvement section of the Go-Moku program of Chapter I.

Assume that the data structures of the program are ‘‘'squares”, ‘‘lines”,
“subgoals”’, and “descriptions”. Each square has an integer-valued property called
“occupant”™ with values “X”, “O’ or “unoccupied™. Each line has an integer-valued
property called “occupant” with values “X”, “O", “unoccupied”, or “blocked”, and
an integer-valued property ‘‘number” which may have any value from zero to three
(zero if the line is blocked, otherwise the number of occupants). Each line consists
of three squares. A description of a subgoal consists of an unoccupied square, a list
of lines and the squares which they contain, and the properties of the lines and
squares. Each subgoal has two properties, its “side” (“X"” or “O”) and its
“subgoalvalue”, with a value of 1/2" for somc n. The interpretation is that if the
present configuration should contain the specified lines and squares and if the player
with the proper side should occupy the square, then the resulting configuration would

lead to three in a line in n moves or less regardless of the moves made by the

TSP IR RTTRIAK

33

opponent (although if he has a more valuable subgoal, he might be able to achieve
threc in a line first, and therefore win).

Assume now that the opponent, X, has just moved to square] and that his
move has created two subgoals, subgoal.) and subgoal.X, with values 1/2™and 1/2%,
which cannot be simultaneously blocked. Evidently his previous move occupied the
square of a subgoal with subgoalvalue equal to the minimum of llz‘ml'l am n/2nﬂ.
The problem is to create a description of this subgoal. ’

The first step has already been done: the relevant objects, square.l, subgoall),
and subgoal K, have been found. The second step is to create 3 description of these
abjects:

create.(description/L (subgoal/M (subgoalvalue:=if subgoalvalue
(subgoal.l) > subgoalvajue (subgoal.J) then subgoalvalue (subgoal.)/2.
else subgoalvalue (subgoal.l)/2., side:=X, square.l, structure
(subgoal J), structure (subgoal.K))));
(Note the ﬁse of “structure’”: the subgoal will consist of lines and squares, not of
other subgoals.) This object is a description of the situation after, rather than

before, the move has been made. Thus, the occupant of squarel, and its effects,
must be removed:

edit description.L do
begin occupant (square.l):=unoccupied; line/N (*/1, square.l,*/2):=
line N (number:=number (line.N)-1, ®.1, square.]l, *.2)
end;
Now the description s abstracted:
abstract (description.L);
This is a complete description of a subgoal which the opponent can achieve. A
subgoal which the program car achieve is produced by the following:
create.(description/M(structure (description.L)}));
edit descriptionM do
begin side (subgoai/N):=Q;

¥

BABB

s

s o ALl skl

Y

34

occupant (line/N):=if occupant (line.N) =X then O che if
occupant (line.N) = O then X else occupart(line.N);
occupant (square/N):= if occupant (square.N)=X then O eke if
nccupant (square.N) = O then X else unoccupied
end
Syntax of editing

{member) ::= (defined member) | (undefined membcr)

{ property replaceinent) ::= (property name) ({member)):=
(Boolean expression) |(property name) ((member)):=
{arithmetic expression)

(structural replacement)::= (template) :=null | (template) :=
{ new description list)

(replacement)::= (propcrty replacement) | (structural replacement)

(combound replacement) ::= (replacecment) | (replacement) ;
{compound replacement)

(edit block) ::= (replacement) begin { compound replacement) end

(descriptive member) ::= (descriptor name) (index) | (descriptive
member) (index)

(edit statement) ::= edit (descriptive member) do (edit block)

Syntax cf statements

(staternent) ::= { uncondiijonal siatement) | (conditional statement) |
(for statement) ! (PSE statement) | (creation) | (destruction) |

(edit statement)

M TS |

[

e e et e i el s i

o @ ey

TP 0TI P

CHAPTER 111
A SAMPLE PROGRAM

The Go-Mcku program is a compromise between the conflicting objectives of
simplicity, so that the program will be readily understandable, and complexity, so
that it will be a significant demonstration of the power of the System. The program
tends rather strongly toward complexity: this is more & reflection of the complexity
of the ideas behind the program than of the difficulties in expressing those ideas. A
brief description of Go-Moku is given below, followed by the dw.:riptior_l and text
of the program. More details of Go-Moku may be found in Lasker (1960).

Description of Go-Moku

Go-Moku is played on a standard Go board, ie., on the intersections of a 19
x 19 grid (see figure |, in which many game segments are superirnposed). Black and
white pieces, called stones, are placed alternately until one player has attained a
winning combination, which cci.sists of precisely five stones in a row (horizontal,
diagonal, or vertical). Pieces may not be moved, and all pieces are equal, which
makes the game somewhat ecasier to program than chess or checkers. Certain
elemcntafy strategies are rather obvious. For example, even if white has the move in
the game illustrated in the upper left, black has a certain win: if white occupies
B18, then black occupies G13, and vice versa. Similarly, if black has the move in
the iower left, he can force a win by occupying either C4 or G4; he is said to
have produced an “opsn four” (i.e., four pieces in a line which can be extended in
either direction to a winning “five”) from the “three”. A third simple example is
shown in the middle of the disgram. Here, if black has the move, he can og¢cupy
H8; white cannot block both four’s simultaneously, so black must win. A slightly
more complicated example is shown in the lower right. If black occupies P3,
creating 2 four-three, then white will be forced to occupy P2; black can then
produce an open four by playing R3.

The game player tests for each of the above mentioned winning combinations
in the evaluate procedure. The only complication which arises in the coding is due
to the necessity for determining whether the four produced according to the final

35

OO . o A A

v ——

gh-8 C 0 € F G M I X L MNOFPLORS T,
18 18
() 4 ‘ ‘ 7
18 16
I8 L)
14 —i4
3 13
2 <J 12
" "
10 10
9 9
(] 8
7 dEPeN 7
¢ 6
5 s
4 4
3 —‘-—3
e 2

‘A6 COEFGHIKLMNGP GRS T

VARIOUS GO-MOKU POSITIONS

Figure

o na—

et e e e ptsi St

o e e

e

37

example is, in fact, open; reference to the diagram and experimentation on a beard
or with pencil and paper will undoubtedly make the coding easier tc follow.

One special rule of the game, which adds greatly to the complexity of the
play, is illustrated in the upper right: two three’s which could become open four's
cannot be produced by a single play, unless that play is necessary to block the
formation of a five on the opponent's next move. Thus, black cannot occupy P1S.
If white were to occupy P16, P17, P18, and P19, then it would be permissible for
black to occupy P15. This rule is necesary in advanced playing, since otherwise
black - the first to move - would very quickly be able to develop two-two

combinations which would eventually become open four’s.
Description of the Go-Moku Program

The simplest data structure in the game' player is the point, i.e., the
intersection of two grid lines. This is too simple a structure to manipulate directly;
the line - five points, at least one of which is occupied, which could develop into a
winning combination - is much more useful. Lines are, in turn, combined to form
intersections - two lines which intersect in an empty point. Both lines and
intersections are further classified according to the number of occupied points. For
example, again referring to figure 1, (B4, C4, D4, E4, F4) and (C4, D4, E4, F4,
G4) are both objects of type line.3; they form an intersection with the empty point
C4. The intersection object is, then, described as intersection.3.3.1 (C4, line.3. (B4,
C4, D4, E4, F4), line.3. K (C4, D4, Ed4. F4, G4)), where I, J, and K are the
indexes of the objects within their classes, and the B4, C4, ... represent the
appropriate points (actu‘al coding would, of course, refer to point.L, for some L,
rather than to the grid coordinates, but this would be rather lengthy and oonfusfng
in these examples). Similarly, in the lower right of the diagram, there is the object
intersection.3.2.1 (P3, line.3.J (P6, PS5, P4, P3, P2), line.2.K (P3, Q3, R3, S3, T3)).

A subgoal consists of an unoccupied point and a number of lines and
intersections; occupying the point will either produce a configuration which is,
supposedly, desirable, or it will block the opponent’s attainment of that

configuration, depending the “side” of the subgoal. Descriptions of new subgoals are

T :"Wh"f"”'"“‘"“vm'ﬂ

ol D TE

38

produced whenever the opponent makes an unexpected move which results in the
attainment of a favoravle position for him.

The major procedures of the program are analyze, which updates the data
structure when a move is made, evaluate, which checks for the presence of certain
obvious traps, generatemove, whch gencrates a set of plausible moves, and minimax,
which produces a minimaxed value for a proposed move. The main piogram invokes
generatemove to produce a set of moves, invokes minimax for each move to obtain
its value, makes the best movs, obtains the opponent’s reply, and, if necessary,
constructs a new subgoal description. '

The generatemove procedure constructs subgoals, each of which indicates a
plausible move and its cstimated value. The minimax procedure either invokes
generatemove to aobtain a set of continuations or constructs subgoals to determine
the value of a terminal position. Both generatemove and minimax are given time
limits witﬁin which to do their searching and construction; this is necessary for
realistic operation of the program, since subgoal descriptions can involve arbitrarily
large numbers of lines and intersections, with many relaticns between them, so that
the time involved in searching for possible instances of subgoals could be very large.
The minimax procedure allocates time to the exploration of each continuation in
proportion to its estimated value; the time spent in generating the move sets also
decreasts with increasing depth of exploration of the tree of possible moves. This
has the foliowing advantages: there is more chance of immediately recognizing a
valuable but rare or compiex position; searches further down in the tree can take
advantage of subgoals constructed at earlier positions; the alpha-beta cutoff is more
efficient since move. sre more accurately ordered; and, finally, the most time is
spent on those positior = which are mc i likely to arise in the actual play of the
game.

The goal of this program was, of course, to demonstratc the Heuristic
Programmirg System, so a brici comment on its powet is appropriate. First, the
flexibility and efficiency of representatiun of board positions and subgoals is a major

advantage of the System. The fact that lines and intersections can be represented as

o —— 1o

~ = v——

39

blocks of pointers, rather than as lists, represents a storage savings of about fifty
perceni. The fact that complex entities, such as intersections, can be¢ readily
represented explicitly leads to great savings in time: the entities are created once,
but each may be referrcd to many times while searching for subgoals. Koffmsan’s
program (1967) and Murray and Elcock's program (1968) involve complex subgoal
descriptions, but each represents intersections implicitly (points and lines are the
only explicit entities), so that, for example, searching for instances of the
configuration in the kwer right of figure 1 is a non-trivial operation. Second, the
distribution of playing time within the program is very easily and flexibly
controlled; the rather complex scheme discussed above was implemented by means
of only a few lines of code. Other schemes might be substituted with very little
effort. Third, the relatively simple implementation of improvement within the
program is due in part to the facilities provided by the system, and in part to the
representation. The method of improvement is similar to that used in Koffman's
program (1967) and Elcock and Murray’s programs (Elcock and Murray, 1967, and
Murray and Elcock, 1968).

A foqrth pcint involves the point that use of a minimax strategy greatly
increases the power of a game player. The above mentioned programs suffer from
the fact that the subgoals which determine their moves are descriptions of
configurations for only one side (cf. Koffiman, 1967, pp. 76-78). For example, in
the configuration in the lower left in figure 2, assume that black, the program, is
to play. If the move is chosen by considering each side's stones in isolation, hlarl
would, presumably, place a stone at E6; white would reply at E2 and win on the
next move. Such a foolish move on the part of black would, of course, be avoided
by even 2 novice human player - not because his list of subgoals is more complete,
but because it is supplemented by minimax. Rather clearly it is impractical to make
use of subgoals which include constraints on both sides; the subgoals would be far
too numercus and complex. Therefore, the claim that minimax greatly increases the
power of the program seems fairly reasonable. More to the present point is the fact

that the minimax was very easily, yet efficiently, implemented using the facilities of

MRS SSNISTRLREC SRNER TR AN - g i

gh-B € O E F G M T~ Xx L MNOFPLORST,
| A
8 l o
).
7) ;
. 16
] .
‘4 .
. 13
; 12
" .
10 N
: 9
POINT .y

8 ! .
?) ¢
€ ! .
% N LINE .2.L LINE .2.K .
d ~

: —1— :4
{1 , /

> /| POIMT .M LNE 3P []3
2 , X
‘ t

THE BEST LAID SCHEMES

Figure 2

A B C D'E/F G HI KL MNUOUPI QHRST

Tt T T T R A= - A

a4 b e i

1t sl

[EIE TRt

L6 e b et

b B it i it T R R Wbl o

PERSTING!

B L DT W TS

per—

T it gt St

e ——— 0 4t St i w e

a7 TR L

T Y . o g €S RPTIRINOS 42T (IR e

TR WP R P VTS L Y S e Y oo ¥ 14 4

the Heuristic Programming System. When a point is occupied, all class members
which depended upcn it being unoccupied have their “active” property made false;
this property is checked in all templates, and “inactive” class members are rejected.
When the point is agai: unoccupied (by backing up in the minimax) these members
are made “‘active”; if it were not for the pointers from each object to the objects
which contain it, this would be extremely time consuming.

The most interesting parts of the program are presented in the last few pages
of coding, which involve the choice of moves and the generation of new subgoal
descriptions. The coding of the rest ..f the program, with the possible exception of
generatemove, is rether dull.

A final note on the storage requirements of the program: each move can create
at most 20 lines and 1,200 intersections, which would require roughly 16,000
pointers; this is assuming many stones of the same side in the vicinity, and none of
the opponent’s stones. On a computer with 250,000 available pointers (an IBM 360
with 1,000,000 bytes, or 3 CDC 6600 with i31,000 words) this would allow a
minimax up (o 15 deep, which is quite adequate. (Actual moves tend to destroy
roughly as many pointers as they create, so that the oniy space consuming

opergtion is the minimax, which can orly inactivate stiuctures.}

o Ao

- 1, el

-~

[SO P e

42

The Go-Moku Program

begin comment the complete Go-Moku program, except for inputfoutput routines
(input, nextmove, displaymove, victory, defeat, tie), is given below.

class line [4,)(integer direction:=direc,ct:=0, occupant:=present, structure:=5Boolean
active:=true),

point [441] (integer occupant:=empty, ct:=0,structure:=0, real subgoalvilue, Boolean

active:=true);

unordered class intersection [4,4,) (integer structure:=3, ct:=0, owner:=present,

Boolean parallel, active:=true);

b

goal class subgoal (integer side, ct:=0, Boolean backedup:=false, active:=true); !
descriptive class description; g
standard test active: %
set tempset, set, pushdown; i
rankhi by subgoalvalue set moveset: ‘
integer I, J, K, L, M, N, P, Q, base, empty, mine, his, border. present, :
other, direc, west, nw, north, ne, maxdepth. maxbreadth; ‘;
real R, S, T, U, V, alpha, beta, C. maxcust, mintuas, learningcost, testcost,
switch Sl:=force, force, lose, select; g
comment thc parametcis maxdepth, maxbrewith, €, maexcost end mintime coatrol %
the minimax procedure by determuning, respecitvely, the raaximur depth of search f
{forced moves are not coused). she rmaximur breadth, the fraction of the avdilable g .
time to be spent on ihe gencration of wmoves, the meximum amount of time for q

each move, and the minimun amount of tume during which further exploration’ is

SJeasitlo. The pa meters learmingcost and testcost determine the amoumt of tirme to

[P L P

be :penr after each move in analyzing the opponrent’s move and, if necessary,
constrvcting a new subgoal All the preceding parameters ‘are read in by the irput

procedwe.,

Bonlean procedure legal (move, play);
value move, play: integer move, play;
Begin imeger I

AT TN G, ettt | T O

i, 7 TR Aot Ao T AP €S et A T S W 7Y IR 1

Y PO T p—-

NPTRIERM Y, P S

g

TRV S WD ey

[Y ELF

43

comment this procedure returas the value true if move Is a legal move for the
player whose side is play. A move Is illegal if and only if it would create two
threes, each .of which could become an open four, and it does not black rhe
formotion of a five on the opponeni’s next move.,

legal:= true;

for first line.4/l{occupant#play,® point.move,*) do go to exit;

for first intersection.2.2/I(owner=playA™] parallel,point.move,*)do

legal: =false;

exic-end legal;

integer procedure evaluate (M}; integer M;
begin integer I, J, K, L, N, P, Q, R, §, T;
comment evaiuate will determine whether a forced win is possible, or a blocking
move is necessary, or a loss is inevitable, ov if there Is no odviously forced move.
The value returned will be 1, 2, 3, or 4, respectively. M will be set equai to the
index of the forced move, if there is ore. First evaluate checks to see if there is a
Jour., _
evaluate:=4;
for first line.4/1 (side = present.”, point/M (cccupant=empty}),?) do
begin evaluate:=1; go to exit end;
cerument now sce if he has any immediate wins.;
for firsi line.4/1 {* point/M(occupant=empty),*) do
begin evaluate:=2;
conument see if he has other fours.;

for first line.d/J (* point/K(occupant=empty).* M# K) do evaluate:=3;
ge {0 exit
end;
comment now see if a win can be forced on the next move. This is done by first
sc rching for intersectionis with three occupled points. If the lines in such an
intersection are in the same dircction then occupying the empty point must produ.ce

an open four. !f the lines are not in the same direction, then occupying the empty

G S SO,)

e LT

44

point must produce two fours. See the upper vight and upper left examples In figure
2.
for exch intersection.3.3/i (owner = present, point/M,?) do if legal (M, present) then
begin evaluate:=1; go to exit end;
comment now block any such move that he might make;
for each intersection.3.3/1 (point/M,*) do if legal (M, other) then
begin evaluate:=2; go to exit end;
comment the finai forced win 10 be considered involves a three-two intersection. If
the lines are not in the same direction, thenm occupying the intersection will produce
@ four and a three. If, in bIocking the four, the opponent does not create a four
of his own, then the three can become another four which wiil lead to a win if it
is open. Hence, two conditions are necessary for a forced win: the opponent’s move
does not create an immediate threat, and the fcur which is ultimately produced
musi be open. A preceding comment dealt with the second condition: an open four
can be produced by occupying the intersection of two three's in the same direction.
Hence, if there are two two's in the same direction which intersect a three in one
point and each other in another point, then the second condition is satisfied. See
the e..ample in the lower right of figure 2.;
for each intersection.2.2/1 (owner=presentAparallel,point/J, line.2/K, line.2/L) do
for esch infersection.3.2/N (point/M, line.3/P (*, point/Q (occupant=empty),
"~ *, point/R {occupant=empty), *), line.2. K, M) do

begin for first intersection.3.2/S (point.M, line.3.P, line.2.L) dc

begin comment check to see if he will have an immediate :hreat.;

for first line.3/T (occupant=his, *, or ({point.Q], [point.R}]). *) do

go to next

end;
evaluate:=1; go to exit;
next: end;
exit: end evaluate;

s o R o s o

|
i
|
i
H

e e 10

argnn

e e ——

e e S ——— TP

TG

45

Boolean procedurs analyze;
comment base is the index of the position which has just been occupied by a
present piece (where present is determined outside the procedure to be either mine
or his) The procedure saves ali classes within which peint.base previously appeared
and then, if the game is not over, finds all sets of four points which can be
combined with base to form lines of one, iwo, three, or four points. A check is
made for the edge of the board and, because a winning combination is precisely
five in a row. a check is made to ensure that there is not an adjoining piece which
would form a six. Analyze constructs all the intersections containing the newly
created lines, where an intersection is defined to be a class consisting of an
unoccupied point and two distinct lines which contain it. The lines may have other
points in common, in which case parallel is true. Analyze has the value wue if a
five in a row has been found (in this case the lines and interscctions are not
created). and the value false otherwise.;
begin integer I, J, K, L, M, count; set tempset;
comment sqgve the cover (ie., agll the containing objects) of point.base. Refer to the
save pmcedyre for a detailed explanantion.,
save,
occupant (point.base):=present;
comment iterate over the four directions in which straight lines can be formed;
for direc:=west, nw, north, ne do

begin comment now iterate over the five lines through point.base in the current

direction,

¥:=base;

for 1:=] step 1 » 5 do

begin if occupi.. (point.(J-direc))* present A occupant (point.(J + S X direc))

present then
begin comment the ends of the current line are not occupied by present,

50 a winning line might be possible. . Now look at each point of the

R e ML) g e

rFr - 3

T ——- s—

46

five in the line,
tempset:= empty;
count:=0;
K:=J;
for L:=] step 1 until 5 do
beginM:=occupant(point.K); if M=presentthen count:=count + 1
else if M # empty then
begin comment current point is either an edge or an other piece.
Go to L? if all the other lines will include this point, otherwise
go to Ll
if L>1
then go to L1
ebe go to L2
end;
tempset:=tempset + [point.K};
comment add to set of points and go to next point;
~ K=K + direc
end L;
if count=5 then begin analyze:=true; go to finish end ;
create.(line.count/L{structure(tempset)));
comment now see {f any of the points In the line are in other
lines. If so, create new classes which represent intersections of
lines in unoccupied points;
for each tempset (*, point/M(occupant=empty),*) do
begin integer N, P, Q;
for each line/N/P (P£L,occupant=present,® point.M,*) do
bogin comment create a new intersection. The first two
indexes represent the number of occupied points in each
of the two directions. -The first component is the point

ar the intersection, the nex: two are the intersecting

DR

o

A e

47

lines. If the lines are in the same direction, parailel is
true.;
if N > count then
create.(intersection.N.count/Q(parailel:=
direction(line.count.L)=direction(line.N.P),
point M, line.N.P, line.count.L))
else
create.(intersection.count. N/Q(parallel: =
direction(line.count.L)=direction(line.N.P),
pointM, line.count.L, line N.P))
end creation of intersection
end current intersecting line
end current line, so shift line in current direction.;
L1 J=T - direc;
end I;
L2 : end direction;
analyze:=false,
finish:end analyze;
procedure save;
begin set A, temp; integer I, J;
comment save will inactivate the data structures which depend upon point.base being
unoccupied. A slight complication is introduced by the rule that a winning line
consist of precisely five stones in a row - it is necessary 1o inactivate all lnes
occupied by the present player which would become sixes if pointbase were
occupied. This is accomplished by adding these lines io the cover of point base, so
that they will be properly reactivated by restore.;
for I:=west, nw, north, ne do
for each line/J(owner=present, direction=I, or ({*.point.(base+1])],

{point.(base-1),*])) do cover (point.base):=cover (point.base) + [line.J];

\

%
s

%
s
;

|

e A -

48

comment save point.base in pushdowi- . that its cover may be retrieved by
restore.;
pushdown:=pushdown + [point.base];
comment now inactivate thke cover, to prevent the objects containing point.base from
satisfying a template. This amounts to the temporary destruction of the objects. The
reference count, ct. is increased, so that ci will be the number of times each object
was inactivated. It must be restored the same number of rimes to again become
active.;
temp:=cover (point.base);
for each A in temp do
begin temp:=temp + cover (A) - [A];

active (A):=false;

ct{A):=ct (A) + | end

end save;

procedure restore;
begin set A, temp; integer I;
comment restore will remove the last point from pushdown, destroy the active
objects which include it, ard then reactivate the structures which it inactivated, thus
essentiaily reversing the most recent save operation.,
for first pushdown (*, point/I) do
pushdown:=pushdown - [point.I];
temp =cover (point.l); .
for each temp(*/l, A/ ,*) do destroy(A);
for each temp(*/1, A/ (Thctive),*) do
begin ten.p:=temp + cover (A) - {[A];
ct {A):=ct(A)-];
if ct (A) = 0 then active (A):<true end

end restore:

e A o e £ Al e, 0 it 4 2 A

e RIS

bl

ey T | A

gy L

s AR P

o

L

49

procedure generatemove (limit, set, number, totai);
rankhi by subgoalvalue set set;
real limit, total; integer number,
begin comment generatemove finds moves and places them in set. The number of
moves is returmed as number, and the sum of their subgoalvalues as total. The
available search time, limit, is divided among five ranges of values o) subgoals. Each
subgoal has the value ussigned to it when it was described, or a value detormined
by minimax. In the latter case. backedup is true The subgoalvalue of a move is
cither the value of the subgoal within which ir appears (if trie value is miﬁimax or
if the move appears in no other subgoals) or the sum of the values of the two
most valuable subgoals within which it appears. This laiter process gives a better
estimate of the value of a dual purpose move than simply choosirg ihe highest
value. eg., if two subgoals are each k moves from victory, and hence have value
112k and 'cannot be simultaneously blocked, then fogether they force a position k-1
moves from victory, with value I/Zk + 1/2k = I/Zk-',.'
integer 1, J, K; Boolean duplicatefound;
real time, maxtime, minimum;
rankhi set tempset;
number:=0; total:=0.;
time:=limit X.2;
for minimum:=.0001,.001,.01,.05 do
begin comment look for subgoals with valies at lzast minimum.;
maxtime:=time;
for each subgoal/l {point/J, *, value > minimum) during maxtime do
begin if legcl (J, present) thea
tempset:=[subgoal.I] + tempset end;
limit:=limit - time + maxtime
end;
comment generate less valuable goals, until either time runs out or the number of
moves becomes large.,

v

T T)

Te

e e ds—— r————y] o~ 5 I

50

for each subgoal/l (point/J, *, value < .0001, number < 2 X maxbreadth) during
limit do
if legal (J, present) then
begin number:=number + 1; tempset:=tempset + [subgoall] end:
comment now compute the subgoalvalue of each point and put the point in set.;
set:= empty; number:=0;
for each tempset (subgoal/l (point/},*), * number < maxbreadth) do
begin duplicatefound: =false;
findval: tempset:=tempset - [subgoal.l];
subgoalvalue {point.J):=value (subgoal.i);
if backedup (subgoal.l) then
for each tempset (*, subgoal/K (point.J, *), *) do destroy. (subgoal K)
else f(_)r each tempset (*, subgoal/l (point.J, *), *) do
begin if bockedup (subgoall) then
go (o findval
else if 71duplicatefound then
begin duplicatefound:= true;
subgoalvalue (point.J):=subgoalvalue (point.J} + value(subgcal.l)
end,
destroy. (subgoall)
end;
set:=set + [point.}J];
number:=number + 1.
total:=total + subgcalvalve (point.J)
end

end generatemove;

procedure minimax (bestval, depth, cost);

valve depth, cost. real bestval, cost; integer depth; -

begin comment munimax is a minimax procedure modified by alphabeta cutoff (see
discussion of search) The value of the move which occupies pointbase wili be

returned as bestval The maximum depth and cost are depth and cost, respectively.;

o bt gAY,

[N,

o

B e iaia

i p e

T T T R S R

renkhi by subgoalvalue set moveset;

integer I, J, K, L; real Q, R, newcost;

switch S1:=win, block, lose, more;

comment save the index of the move.,

L:=base;

comment make the move and switch sides.,

analyze,

I:=present; present:=other; other:=Il;

comment sce if the next move is forced.,

go to S1 [evaluate (base));

win: bestval:=if present = mine then 1. else 0.:

go to exit;

lose:bestval:=if present = mine then Q. else 1.;

go to exit,

comment if the next move is a forced block, then get the value of the besi reply.
Note that depth is not decremented.;

block:minimax (bestval, depth, cost); go to exit;

comment the next move is not forced, so ckeck to see if the maximum depth has
been artained or if there is insufficient time to explore maore deeply..

more:if depth # 0 A cost >mintime then

begin comment generate a ser of feasible moves. The global parameter C determines
the fraction of the total time to be spent in generating the moves. I is the number
of moves generated. Q is the sum of the values of the moves.;

R:=cost X C;

generatemove (R, moveset, I, Q);

comment compute the time remaining divided by the total value of the generated
moves.,

R:=(cost X (1.-C))/Q;

comment now determine the minimax value of each generated move, allocating time

to each move in proportion to its value.;

MG - CRAARBIRI A, e bl = A g 4

D AR N it 017

L4

if 1 = 0 then bestval:= 0. else
begin if present = mine then
begin bestval:=0.;
for each moveset (*, point/base,*) do
begin minimax (Q, depth-, R X sutguuivalue (point.base));
if Q > bestval t*-n bestval:=Q;
if Q@ 2 beta then 10 to exit

end;
beta:=bestval
end
else
begin bestval:=1.;
for each moveset (*, point/base,*) do
begin minimax (Q, depth - 1, R X subgoalvalue (point.base));
if Q < bestval then bestval:=Q;
if Q < alpha then go to exit
end;
alpha:=bestval
end
end
end
else

begin comment the maximum depth has been attained, so evalucie the present
position. :
generatemove (cost, moveset, I, Q);
if 1 = 0 then bestval:=.5 else
begin for first moveset (point/I,*} do
bestval:=subgoalvalue (point.l);

comment if there are two subgoals of equal value but opposite side,

PG e A

T OO, BTIMPIMOS T0 Y AT e

ciearly the one beionging to the side with the move is the one which should
determine the value of the position. The following codc ensures this..
moveset:=moveset - {pointl];
check: for first subgnal/] (point.1*) do
K:=side (subgoal.J).
if K # present then
for first moveset (point/1,*) do
if subgoalvalue (point.l) = bestval then go to check;
comment the value now may vary frem 0. to l. It must be adjusted ro
indicate the value to the program’s side.;
bestval:=if K = his then
.5 - bestval X .5 else
.5 + bestval X .5
end
end evaluation for depth = 0
comment now the minimaxed value has been A-termined. Restore the previous board
configuration and side.;
exit: restore;
I:=present; present:=other; other:=i:
comment aftach the minimax value to the subgoal which contains point.L, so that
the improved value may be used if ihis subgoal is referred to later.;
for first subgoal/l (peoint.L, *) do
Viiue (subgoald):=ahs(2. X bestval - 1);
backedup (subgoal.l).=true

end munimax;

comment *his is the initialization section of the player. It creates the initial board
configuration of occupicd points, sels various constants, and then goes ta the move
section to make the choice of move. The board is considered to be 21 X 21,

which includes a border of points occupied by a special piece. Points are numbered

it e T ——

[P —

L ivkettae W

TETTNE Y OTT'Y™M

- T e T

O ————

54

from 1 v 441, starting from the southwest (lower left) corner and increusing from
left to right and bortoin to top First read in the paramcters maxdeprh,
maxbreadth, C, maxcost, mintime, leamingcost, and testcost, and initial subgoal
descriptions.;
input;
comment s¢: the directions of possible lines;
west:=-1:nw:=20;north:=21;ne:=22;
empty:=0;comment point unoccupied,
mine:=1;comment [occupy it,
his:=2;comment the opponent occupies it,
border:=3; comment off the board,
comment sei the borders (interior initialized to empty by declaration);
for 1:=1 step 1 untii 21 do occupant (point.1):=border;
for 1:=42] step 1 untd 441 do occupant (point.]):=border:
for 1:=22 step 21 until 40C do occupant (point.l).=border;
for 1:=42 step 2! wuntil 429 do occupant (point.]):=border;
comment nextmove will obtain the next move in the initial configuration. It will set
base to the index of the pcint, present to the side that moved, other to the
opposite side, and return with the value true. If there are no moves, it will return
with the value false, present will be set to the side which moves next, and other
will be sct 10 the opyosite side.:
next: if nextmove then
begin analyze; displaymove;
comment analyze will create a data structure representing the lines and
intersections which are formed by the move just made. Displaymove will display
the move.;
go to next
end;
comment ar rthis point the initial data structures - ie., the lines which have at least

one occupant and which may develop into winning combinations, and the

BT ORT]

.

s -

FXRIOWTIIPONY ST MY, | TR SR - DTN IRT T o (4o

55

intersections of these lines on empty poings - have been constructed. The following
code playvs the game..
if picsent = his then go to hismove;
comment evaluate returns a 1 if a win is ccrtain, o 2 if a blocking move s
stecessary, a4 3 i a loss is certain, and a 4 otherwise. The switch gues to force,
torce, lose, and select, respectively, If a move is forced, base will be set to ils
index.;
loop: go to S1 [evaluate (base)):
cemment mvoke defear if a luss s inevitable .
lose: defeat:
comment How generate feasible moves. Procedure generatemove returns the moves in
moveser, and their number in K. R is the time limir and T is the sum of the
values of the moves.;
select: R:=maxcost X C;
generatemove (R. moveset, K, T):
if K = 0 then tie:
comment now use minimax 10 choose the best move. The time to be spent on
evaluating each move, T. is proportional to its estimated value. The scarch depth is
maxdeprh. The minimax value afier occupying each point is returned as V. V
represents the value of the position to the program, with 0. as worst (ie, he has a
sure win) and 1 as best (the program has a sure win). A subgoal value for a
position is the value for the side which can, in onc move, achieve the subgoal If
the mosi valuable subgoal has the value SV then V:=5 - 5§ X SV if he achicves it
and V:=5 + .5 XSV if the program achieves it. Alpha and beta are the cutoff
values (see discussion of minimax in Chanter [},
T:=(maxcost X (1.-C))/T:
alpha:=0.; beta:=1.; R:=0;
for each moveset (*, point/base. *) do

begin M:=base;

minimax (V, maxdepth, T X subgoalvalue (point.base));

e R At B e o o e A S 08 A

W o

e e

I, T —————

56

if V > R then begin R:=V; K:=M end
end;
base:=K;
comment display the move. The proccdure uses base and present to dercrmine
the point and side.,
force: displaymove;
comment now update the data structure and invoke victory if the game is
over.,
if analyze then victory;
comment ge! his reply and display it;
hismove: if "1 nextmove then tie;
displaymove;
comment generate a list of his expected replies.;
R:=iea.mingcost;
generatemove (R, moveset, K, T);
comment see i” the actugl reply was expected.;
for fust moveset (*, point.base, *) do
begin comment yes, so prepare for the next move.,

go to cleanup

-l

£
:
:r
[,
o
=

Was unéxpecied, so decide whether he Is about to ackieve
an unforeseen subgoal. This will be the case if, in making this move, he
prepares for two subgoals, both of which cannot be avoided by the program.
Ctherwise, his move was either a mistake or was part of a subgoal which

cannot be foreseen even after his move. In the latter case, the subgoal will be
discovered later.

First, make his move.;

analyze,

present:=mine;

other:=his;

R:=testcost;

generatemove (R, moveset, K, T),

R

e WAL L

§ T

57

comment now find the two subgoals. if they cxisit.;
J.=0:;
for each subgoal/l (side = his, *, point.basc. *) do

if I # 0 then go to both else 1:=];
comment if control reachies this peint, the two subgoals could not be found. so go
on to the next move.,
go to release;
comment 1wo subgoals containing point base were found. with indexes 1 and J,
which were evidently tie componeni: «f the new subgoal which must now be
described. To visualize the present situation and subsequent operations, consider the
contral configuration in figure 1. There arc two threes which intersect ar HS.
Assume that the omy subgoal description consists simply of a four. Then, if the
opnponent is black and he has moved to HS (ie., pointbase is H8), the program
finds that his move was not on the list of generated maoves, but two subgeals have
now heen formed (ie., the two four's) The subgoals are subgoal.l (linc.4.X) and
subgoalJ (line4 Y), jer suitable X and Y (ignoring points for the sake of brevity).
The objective is 1o create a subgoal consisting of the intersection of two three’s.
The first (){Jem;i()rz is to create an intersection for each linc of subgoull which
intersects a line of subgualJt in point.base. Note that point basc will be unoccupicd
in the completed subgoal description, so that lines consisting of point.base and four
unoccupicd points must be deleted.,
both: tcmpsct:=empiy:
for each subgoal.l (*line/K/L(*,point.basc. *), *. K > 1) do

for each subgoalJ (*, line/M/N(* pointbase, *), *. M > I,LL# NUK # M)

do

if K >2 M then

begin create. (intersection.K.M/P (point.base, linc. K.L. lineM. N |,
parailel:=direction (line.K.L)=direction (linc.M.N))):
tempset: stempset + |intersection. K.M.P}

end

TIPTE N EPYQNTPR

el

AT

T ————_

e o———" 144 % 4 AR <L

!

T | T

58

else

parallel:=direction (line.K.L)=direction (line.M.N)));
tempsct:=tempset + [intersection.M.K.P]

end;

comment (o confinue the exammple, intersection.4.4.P (point. base, line. 4. X, linc.4.Y}

has been created and put into tempset. Now create the new description.:

occupant (point.base):=cmpty;

create. (description/Q (subgoal/N (side:=his, point.base, structure (subgoal.l), structure

then value (subgoal.l) X.5 else value (subgoal}) X.5)));

edited to reflect the facr that, in the desired description, point.base will be

unoccupied.;
edit description.Q do

begin comment fix up intersections.,

intersection/K/L/M (*/1, line /L/J (*, point. base, *), L > 1):=

intersection.K.(L-1).M(*.1 line (L-1).J;
intersection/K/I./M(*/1,line/K/J (*,point.base, *),*/2 K>L):=
intersection (V-1YEL Mre Y tine (K-11.3,0.2);
intersection/K/L/M(*/1 line/K/J(* point.base,*),*/2 K>1):=
intersection.L (K-1). M(*.1,*.2, line.(K-1).J));
intersection/K/L/M(* point.base,*):=null;

comument now delete extraneous lines.,

line/K/L(* point.base,*):=null:

comment the example is now description.Q (subgoal N (point.base,

intersection.4.4.P (point.base, line.3.X, line.3.Y)}), with all other points removed

from the description,;

begin create. (intersection. M.K/P (point.base, ineMN, line. XL,

{subgoal J), structure (tempset), value:=if value (subgoall) < value (subgoal.))

comment the resulr now is description.Q (subgoal N (point.buse, line.4.X, lined.Y,

intersection.4.4.P (point.base, lined4. X, line4.Y)) Now the description

T

TPt

59

end;

comment abstract the description. Copy it. then use the original for a description of

his subgoal and the copy jor a description of mine.;
abstract (description.QQ);
create. (description/I(structure (description.Q))):
edit description.] do
begin
owner (intersection/J/K/L):=mine;
occupant (line/1/K).=mine
end;
comment everything has been done except for destroying
for each set in tempset do destroy.(set):
occupant (point.base):=his;
go to release;
comment now update the data structure for his move.;
cleanup: analyze.

present:=mine; other:=his;

comment the structures whicht were inactivated by analyze will no longer be necded.

50 release their storage.,

releasc: for each set in pushdown do destroy.(set);

g0 to loop;

end Go-Moku program

temporary structurcs

B o

CHAPTER 1V
THE HEURISTIC PROGRAMMING SYSTEM:1I

Chanter 1 presented a gener:l description of the System: this Chapter contains
morc detailed informaiion. which might be of use in program optimization, or in
the implementation or altcration of the System. Since this is intended for the
knowledgeable user. the presentation is fairly brief.

Deta Structurcs and Data Management

The deas presented in this section are applications of the facilitics of a general
system described by Ross (1967b).

Recall from Chapter 1 that there arc two types of structures within the
System: blocks of contiguous storage of various sizes (representing class headers,
class members, and set headers), and simple lists linking the blocks together. In
addition, there are blocks, similar to class members, representing the results of the
“and”. “or”, and “not’ functions. Blocks have fixed structures which are determined
at compiation time. List elements are simple in structure: each consists of a flag
telling whether the clement is the last of the list, a pointer to the next clement (if
the clementl is not last) or to the block containing the list (if the element is last),
and a pointer to a block. Note that lists do not point to other lists; thus. there is
never any problem in determining whether 8 list element can be returned to free
storage. Neither a “garbage collection” routine nor a reference counter is neccssary
in the System, which greatly simplifies Data Management (@bid., p. 485). List
clements ar¢ obtained .from, or returned to, a number of “zones” (blocks of
contiguous storage) containing only list elements, as in the “SPEC™ strategy of Ross
(ibid.) . This increases the spced of Data Management without causing a scrious
problem of storage fragmentation. Blocks of various sizes arc obtained from a
number of zones containng lists of blocks of various sizes, as in the “REG”
stratcgy of Ross (ibid). This tends to minimize storage fragmentaticn at some cost
in time. However, list elements will generally be obtainca from, or returned 1o, free

storage much more often than blocks will be created or destroyed, so that the time

60

6l

spent should not be significart.

In the event that free storage hias been exhausted, the Data Manaxement
Routine invokes the rectimation procedure. This procedure aborts the program with
an crror miessage; the user may substitute his own procedure and tahe any desired
action. tor example, the procedure might destioy all sobpoal members and

desenptive members with value less than some constani. For further detals on

reclamation, see the scction on <ystem procedures.

More About the
Probizm Solving Executive
The PSE and the first formm of the CL for (involving the template) are
exceedingly complex search mechanisins, which are implemented via a single
procedure with multiple entry points, as shown in the flowcharts of figures 3-0. The
purposc of the precedure is to find an object (or collection of objects) mautching a
temiplate. The template may be produced by the compiler, or it may be a

descriptive member, or it may be produced by the conjunction of a

compiler-produced template and a descriptive member (cf. the discussion of the PSE
in Chapter). In any case, a template is simply a description of a collection of
objects, it consists of linked blocks, each containing a description of some element.
The scarch procedure matches an object to the template simply by trar-ling through
R the blocks and the structure of the object. assigning values to set variables and

checking to sec that each condition is satisfied.

v

Du. the floilowing description of the search procedure, the object and
template will sometimes be referred to as if they were in their original

onc-dimensional string represcntation. and sometimes as il they were in

e g g = e

two-dimensional trec representation. There should be no confusion as to what s
meant.
The gencral plan of the search is 1o proceed from the left end (of the string
representation) of the template te the right end. Each time a decision has to be
. made (cg., what index to assign to an undefined member. or what value to assign

to an asterisk), pointers to the dccision poini in the template are put into twe

: g
-
]
3
4
i

02

stacks. called “pushdown™ and *“‘set” in the flowcharts. Each time a mismatch is
discovered, the search begins again from the topmost decision point in pushdown,
or, if there is none, the search procedure exits with an indication of failure.
Pushdown is local to the search procedure, which calls itself recursively. Set is
external to the procedure, so that when a match is finally found, it contains the
Incation of all the decisions that were made; set is used by the foreach to make all
the other possible decisions.

The proceaure is reasonably straightforward; the flowcharts appear complex
becaus: of the many differeat cases which arise. Set names followed by slashes, or
asterisks followed by slashes, or unpaired asterisks, are initially assigned a null
structure, which is then increased by onc set after another. Thus, given the template

A/K (*.B/L)

and the object

Al (CJ (BM), BK)
the asterisk is initially assigned the empty string, which leads to a mismatch
between B/L and C.J. Then CJ is assigned to the asterisk, and K to L, which is
successful. Paired asterisks - j.e., pairs such ‘hat parentheses between ihem are
balanced - are treated differently, sibicc they may represent strings which are not
parenthelically balanced. Thus, given the template

A/K (*, B/L, *)

and the object

Al (C1 (B.M), BK)
the result is to eventually assign “C.J{" to the first asterisk, *),B.K” to the second,
and M to L. Thus, the left member of a pair of asterisks is assigned progressively
longer strings, without regard to parenthesis level, the earlier mentioned set variables
are assigned strings with regard to parenthesis level. Undefined members are assigned
indexes and/or subclass indicators as shown above.

A small complication arises if the PSE has been invoked and an undefined
member which is a subgoal is enccuntered in the template. If a suitable subgoal has

previously been constructed, it is assigned to the undefined subgoal. If not. then a

o Mg o

1 AMETer (<1 1 sy

oy

a4

63

subgoal must be constructed - ie., a class member must be created and must be
assigned structure. Structure can be assigned only if there is a complcte description
of it; hence, it may be necessarv either to refer to some descriptive member or to
form the conjunction of a descriptive member and the template. In the latter casc,
the scarch procedurc is called to ensure that the result will not impose any
contradictory conditions upon the subgoal being constructed. Descriptive members are
chosen with the least costly first, and so on. Tics are resolved by choosing the
most valuable first. Remaining ties arc resolved by chioosing iiic lowest subclass and
index first. (Non-descriptive members are chosen starting from the lowest subclass
and index.) Cost is determined from the complexity of the structure; value must be
assigned by the user’s program.

The “or” function produces a block of a special type, which informs the
search procedure that a decision point must be put in the stacks. The “or” function
is invoked whenever unordered sets are referred to in a template. The “and”
function also produces a special block, which informs the search procedure that the
next element in the object must satisfy two conditions. The ‘“not” function
establishes @ condition which must not be satisfied. Note that these functions, and
all others, are evaluated tefore the search begins.

The compiler arranges the Boolean conditions so that each is evaluated as soon
as possible. This tends to save time: it also means that therc may be conditions
within the template which can be evaluated bcfore search begins, which is
occasionaliv quite convenient.

As an aid in readihg the flowcharts, note the following remarks. The arguments
tc the COMPSTRUCT (compare structure) procedure are pointers to structure lists
of the template (PT) and object (PO). The notation “OBJECT (pointer)” is
occasionally used to rcfer to the object pointed to by the pointer; “STRUCTURE
(OBJECT)” is the object’s structure. The abbreviations “OBJ” and “STR™ are also
used. “SUCCESSOR”™ refers to the next element on the list currently being
followed. Finally, note the legend at the bottom of the first flowchart, figure 3.

b et ae e ——— e s

HRED i e

e Tl M AN e s U P St 4 R st
R ’

4

64

FISUAR X BAIN FLEv 8nD LECHENC Al

..... eeee "
ry

s . »
ol .
. .

.

tecseonsssensaccs esevmeseveecervre

ik T

reeses

e, cenesprsseservne.
y® F | 134 i

o lgarte. .
N R L H N
L [1ot ELCRRPETTRI LN AL AL LI AL S PRV PP LN
. L. : H .
P . . H .
.o e ssnsernereorrandy
L] 3

Lty

H
LTYY TYYITYTYTHY 14

Y T

ﬁﬁiﬁéﬂ: il n"'“ R

e ——————- i e o e

P

= yortudappusuniine

1

—

tpn - - 3 -

AR e

e e

SlGust a. CITAILED FLEV Exy

secegyessrcrese
.

. .
L T . . [3%
. . .

cae »e
Fatiyst

sreas

tae
Faluet
I TYIYY

[IEZYRN
LYTYY

. . aetbse L
Hrin iy LRI

PILYYRYY

Faiat

ok

66

PIGUAE 1. (s TaL(T PRACECLAE (1Y

3

[}
ecEss :
veesencesevrere

.
§ ceersrauct
Serrrcensenans

espissssscees

.
wmg .
essses

.,
. 'MSA .
veanel” stlbsden
.. «

SLECESY .
.

st ou| e

.:u!";

L

2,

e

.
»

.
H
H

H :
:

: § : :

PN | § SN Treenneent

1
!

————— T TS W (4

I e o e =

P N T

N ..
I TR

el e e
siclssee
. B

.
Lesy .
sesnace

1

[
i
syen

» weoee “
I3 . ..
ne.e

’
o
.

67

soneee
1oyl e
"in o

n el
T YRR

Y
JSTLCiuaes

ik

68

The Communicator

The Communicator contains a relatively small number of specialized procedures
for communicating between the uscr and program - it is intended that these should
be supplemented by general purpuse input and output routines whose characteristics
would be installation - dependent.

The procedures are designed for use with a graphic display console cquipped
with function buttons, keyboard, and light pen. The function buttons arc used to
indicate the desired operation, the keyboard to enter statements and parameters. and
the light pen to indicate which statement is to be executed or which paramcters are
to be used in the current operation. In the lollowing. capital italics are used to
indicate the namves of function buttons, and small italics to indicate statements
(which may be arbitrury CL statements) and parameter lists {which are parameters

separated by comma’s and terminated by a semicolon).

ENTER any stutement or paramicrer list - the tunction button s pushed and
then dany statcinent or parameter hist quay be entered from e keyboard.

ERASE unv starement, perameter Lst, or display obicor - the tuccte i ogiton -
pushed and then the cniity indicated by the light pen o reiaoved from the display

DISPLAY procedure name - the Isting ol the indicated provcd, o s lisplayad

LABEL any character w1 a procedure dsting. by any alpigiaee e st
cnddosed in quotation mark, the button is pushed, the character o indicated by
the light pen, and then the string is typed in ti- m the hevboard This provides a
way of labelirg a biock for later reference, see the display and halt opeiations
beiow.

DISPLAY sariables or sct namies - the indicated variabies of sets (cach of which
must be followcd by a label it the name is not unique) are displayed. The stracture
and numieric and Boolcan properties ot a set are displayed. The meinbers of o class
may be displaved by pointing to the class name.

DiSI'L 1Y COVER variapics or set names - as above except that the cover of a

sel 15 abo displayed.

—

69

HALT - halt at the current location, which is then identified.

HALT AT label - halt on entering the block with the indicated label.

CONTINUL - resume exccution of the program after a halt.

EXECUTE statement - the indicated statement is cxecuted. This is valid only if program
exccution has been halted.

UP. DOWN, RIGHT, LEFT, MAGNIFY, REDUCE, STOP - the display is a view from a
telescope pointed at an extremely large piec: of paper. These commands initiate or
terminate motion of the telsscope, so that, for example, one can go from page to page of a
long listing. Newly displayed matenal displaces old material upward, so that one can retum
to a previcus display by pushing the UP button.

SLOWER, FASTER - these buttons govern the rate at which the telescope is moved.

The display, displaycover, and halt procedures may also be invoked from the program.

See Table 2 for more details.
System Procedures

Table 2 summarizes the characteristics of the system procedures which have been
introduced in this and earlier Chapters. The procedures copy, destroy I, and destroy 0,

which are referred to in Chapter V, are also presented.

TABLE 2

SYSTEM PROGCEDURES
Name Parameter list Explanation
create. set The value of the procedure is the set which is

created

copy set The value of the procedure is the copy
destroy. set Destroys a set and all the sets containing it
destroy | set Retumns a set, and all the pointers from it or

to it, to free storage

£ TSR

ELAEY

—_——

destroy 0

reclamation

and

or

not

foreach
forfirst

PSt:

COMPSTRUCT

COMPARENEW

halt

displav

displaycover

sct

{templatc] [temiplate)

| condition list] ,

{condition list]

(template]

pointer to template

pointers to object

and template

»

"

message

set

70

Retums a set, and all the pointers from it, to

free storage «

Aborts the program

Sce earlier section on CL for and PSE

Value is true or false

L1]

Halis with message to user
Display . tae current vulue of the set to the
user. Numeric and Boolean properties and

structure are displayed where apprepriate

As above, but cover 15 also displayed

B R T

.

R U TR PP

WAL A 0

G e

o

s ki

e g

-y

- e meEaos ot T

CHAPTER V
IMPFLEMENTATION

The Class Language has becn designed to be a fairly easily implemented
extension of ALGOL. The syntax may appear (o be gquite formidable, but could be
very much simplified without cffecting anything cxcept the diagnostic capabilities of
the compiler and the intelligibility of the programmer's manual. Even as presented,
though, it should present no particular problems; 1 large amount of work in recent
vears has provided quite adequate tools for constructing syntax analyzers (sec the
excellent review by Feldman and Grics, 1968). Hence this Chapter will concentrate
upon the more critical arca of semar.dcs.

Most of the new constructs in CL result in the production of data structures,
code to inutialize data structures, and ALGOL code to check Boolean conditions, set
the values of variables. or to invoke various CL proceduses. Relatively little other
code is produced. This has the following advantages: the System will be easily
implemented by mcans of a pre-proccssor to produce ALGOL; the Systemn will be
casily altered (such major sections as the PSE are independent procedures, as
discussed in Chapter IV and below);the size of program code is limited as much as
possible (this is important, since very simple CL constructs can involve extremely
large amounts of processing, as shown in the flowcharts of Chapter 1V). Loss of
time. the wsual disadvantage of systems implemented via procedure calls, is relatively
unimportant, because the overhead involved is small compared with the total
processing performed.

The nnplcmentutioﬁ of each of the parts of the System will now be discussed.
The aim is prmarily to show feasibility, so the discussions will be rather brief.

Declarations have the following effects: an entry is made in a symbol table and
an appropriate data structure is constructed, or a standard condition is established
for later relerence.

Strictural expressions will result in the production of actual code sequences,
since these sequences are relatively short and should be as fast as possible. A

promising approach is to alter ah ALGOL compiler somewhat to accept a new data

71

Wt R

s bt U g 0

Foee

-

20 IR B 1 - B Y

7.2

type, the set, and produce the appropriate code for structural cxpressions. No
particular difficulty is anticipated in thus, since the operations are simple (or are
ALGOL - like combinations of simple operations) and have c¢losc ALGOL parallels.

The create. procedure is described below in terms of a simpler procedure called
copy, which is called with an undefined mcember as its paramceter; copy’s value is a
member which has a defined index, and s otherwise a copy of the paramecter. Note
that creale. s recursive.

set procedure create.(set); set set,

begin set A, B;

if type (set) = undefinedmenber then

begin comment the fype of a set is a built-in properry with the obvious

significance;

B:= copy (sct};
for each A in structure (sct) do

structure (U).= structure «B) + [create. (A)];

B

create.:

~nd

else
create. .= et

end create.

The destroy. procedure is implemented using a simpler procedure, desiroy O,
which was described in Table 2. The destroy | procedure may be used instead of
destroy. in certain applications where the objects cuntaining the destroyed object are
nut to be destroyed. The destroy. and destroy 1 procedures use free storuge, so i

may be necessary to re-code them if the reclamation procedure is altered.

procedure dustroy. (set); set set,
begin set A, B;

A= cover teel);

73

destroy 0 (sc);

comment - v destroy the sets conlaining the sct..

for each B in A do

begin A= A + cover (B) - (B]:

destroy (B) end

end destroy.;

procedure destroy 1 (set); set set;

begin set A;

comment (/ic proccdurc returns set. and all the pointers from it or to it,
to frec storage.;

for earh A in structurce (set) do

cover (A):= cover (A) - {set]:

comment now refurn set, and all the pointers from it, to
free storage.;

destroy Ofsct)

end destroy 1,

Various schemes could be used to implement the feiching or storing of
property values. The simplest would be to code two procedures, say fetch and
store, which would have as arguments the set and the property. A more
cfficient approach would be to have two sets of fetch/store procedures. one to
handle sets and classes of declired cardinality (which require no searching). and
one to handle classes without declared cardinality (the required member must
be found on a list). A still better approach would be to produce a specialized
fetch/store for each set and/or property. Present plans call for either the first
or second approach in the initial implementation of the System.

The PSE and one form of the CL for are discussed at length in Chapter
1V. The other form of the CL for, involving the assignment of one set after
another to a given set name, is comparatively simple - all that is required is a
single pointer to the current position in a structure list.

Edit statements are, basically, only abbreviations of CL for statements, so

e eV =

0 i (W Wit AR don ke B bl U8 Al 4 e ™

e

R SN

AT U

e

wina i b

w ARERGNE I IPERAL

74

should be readily wnplemanted. The construction of local blocks, necessary for
edit.ng and abstraction, is readily accomplished by a slight variation of the
¢opy procedure.

Finally, the Communicator presents special problems in its irnplementation.
Display of information should not be difficult, since the structures to be
displayed are alrezdy in forms suitable for processing by display procedures.
Execution of a statement entered from the graphic keyboard requires, however,
the abilities to call the compiler during the running of a program and to pass
a symbol table from one invocation of the compiler tc another. The difficulties
involved seem great, but not irsurmountable; the advantages of such an
interactive system are sufficient to far offset them. Further, although the rest
of the System is desipned to permit graceful improvement, the interactive
features will have to be built in from the beginning if the System is not to be
completely redone to add them.

The foregoing demonstrates, hopefully, that the implementation of the

System, while not a trivial task, is at Jeast reasonably well-defined and feasible.

Praesy. . ua-SASuina

PV VULy WGP

10— AT TR T

S A —"

I

e mee o =

SR s e A T Kk o e —— f s e e e———— e e e a at e e e e

CHAPTER VI
CONCLUSION

This Chapter begins with a discussion of vaious problems for which the
Heuristic Programming System might be used. Experiments with the Go-Moku
program are suggested, related problem areas are discussed, and then a rathey
unrelated area is discussed. Next, a problem area for which the System is
unsuitable is discussed. The Chapter concludes with a discussio. of features
which might be added to the System. 7

The Go-Moku program has various parameters which undoubtedly greatly
effec its performance. Playing time, the distribution of plaving time between

move generation and evaluation, the initial subgoal descriptions, the initial board

configuration, and the strategy used againsf it, may all be varied by an
experimente:. The extent to which the program's performance is sensitive to
small variations in these parameters would be of great interest, especially in the
design of similar programs. Further experimentation could be carried out by
altering the generatemove and minimax procedures. The way in which the
available search time is ailocated in generatemove might, for example, be made
to depend upon the total amount of seaich time available, the number of
goals, and so on. The procedure might also save time by checking first for
goals which might reasonably be present - eg., those with values close to the
evaluation of the previous move - and then spending any extra time looking for
unlikely conﬁguratigns of high value. Alsc, it may soon bocomc necessary, as
more and more descriptions are created, to attempt tc generalize so as to
reduce their number, or to destroy those which are less valuable. The minimax
procedure might be improved considerably, since at present, for simplicity, it
uses generatemove and one class of goals to generate feasible moves and to
evaluate the terminal positions - better play might result from two procedures
and/or two classes of goais. More complex criteria might also be used to
determine terminal positions - e.g., the evaluate procedure might be extended to

look for more forcing positions. An improvement with potentially great effects

75

ST

o LA L

-

e

W Lt sl PR "l

76

would be the re-writing of the section of code which generates descriptions of
new subgoals. It would be especially desirabie to be able to incorporate the
relevant pieces (stones) of both sides into the descriptions, so that the depth of
minimax scarching necessarv for a given level of play could be substantially
decreased. The problem. of course, is in deciding which pieces, and which
unoccupied points, are really relevant. However, this is primarily a problem in
analysis and experimentation. not in programming - experience with the System
has so far shown that, once a process is thoroughly understood, it can be
readily programmed. 7

As a rather important aside, note the very considerable modularity of the
Go-Moku program - alterations could be madce independently in the procedures
mentioned above and in the improvement code. Furthermore, the minimax and
generatemove procedures are rather independent of Go-Moku as well! This is of
tremendous importance to the user of the System, since he can readily divide a
complex problem like Go-Moku into a number of simpler parts, whose
interactions are readily apparent to him. This is not an accidental property of
this particuiar program, but a part of the very nature of the Heuristic
Programming System - the hierarchical organization of objects leads rather easily
to the hierarchical organization of the programs which manipulate them.

Ge-Moku appears to be a rather promising vehicle for investigating human
problem-solving abilities - the game is easy to learn yet the play can become
quite complex, and the possibilities for pattern recognition and description are
numerous and apparent to even novice players. Particularily in the fields of
learning and pattern recognition, Go-Moku seems considerably richer than any
of the probiem domains explored by GPS (Newell, Shaw, Simon, 1960a, and
Emnst and Newell, 1967). Thes preceding comments have presented the
parameters and procedures which might be modified in attempting to make the
program eitner more or less human. A particularly interesting series of
experiments might be conducted to try to'improve the similarity to human

play at various levels of experience by adjusting the number of subgoals, the

b by

s .

e

N 41—l otoa e ko s UMY M O Mo o

L Vg b

yma

p—

77

amount of search time, and the depth of minimax. The results might be
indicative of the relative importance of pattern recognition and planning, on the
one hand, and mental experimentation, on the other, in human play.

The Go-Moku program has been discussed in great detail above because it
illustrates the use of the Heuristic Programming System in programming some
of the tools necessary for artificial intelligence: search, pattern recognition, and
learning. Each of these exists as a prcblem area in its own right, so the
application of the System to each will ncw be discussed.

The search technique ussd in the program was a very specialized >type of
hill<iimbing, implemented by means of the generation of feasible moves and
the minimax procedure. As indicated in Chapter I, other search techniques
might also be wused: all that js required, basically, is a means for choosing
among various possibilities. and then keeping records of the effects «f each
trial. Various mathematical techniques for finding lccal minima or maxima -
such as the method of steepest descent or the simplex method - may be easily
used if applicable, since ALGOL is a subset of the System. Record keeping is
greatly facilitated by the non-ALGOL features of the System. Note that a pure
list system such as LISP 1.5 (McCarthy er al, 1965) would be inefficient in
problems requiring large amounts of arithmetic, while a mathematical language
would be at least inconvenient, and possibly very inefTicient, at record-keeping.
Noie further the important interactions between pattern recognition and search -
the former may be used, for example, to choose a technique to be used by
the latter. ’

Pattern recognition, as an independent area of interest, also profits from
the mixture of numeric and non-numeric processing made convenient by the
System. For example, one might construct a photo-interpretation scheme in
which a two-dimensional correlation technique would be used to locate objects
of possible interest, these objects would be further claszified according to
complex relationships among them, and, f‘maliy, combined hierarchically to form

a general interpretation of the entire scene. The block structures of the System

w
i,

bl TNl (]

I

L4

AN AURIUEAS DU AR U0 Lovms O

— m - e e e s oo - - ———

78

provide a convenient and efficient means for storing all of the various data
necessary for such a scheme. Mote also the possibility of constructing the
scheme in such a way that if ambiguous or nonsensical results were generated
at any level, then a previous level could be retumed to for reprocessing. This
sort of thing is difficult to foresee when first constructing a program so is
usually added later, if at all. The interactive features of the System should aid
the user in recognizing when program modification should occur, a.d the
modularity of programming should aid in implementing the modification. Note
that the ability to declare initial property values and standard tests contributes
greatly to the ease with which afterthoughts may be added to a program. The
flexibility of pattern matching provided by the PSE facilitates both the original
programming and the modifications.

The third area, learning, may be very close o pattern recognition. as in
the genecration of new descriptions in the Go-Moku program. Other forms of
leaming might also be implemented using the System - in fact, assigning
mininax values to moves to increase the number of cutoffs demonstrates
short-term learning of a rather useful sort. However, the major emphasis of the
System is toward pattern description and recognition, which rather obviously lie
at the heart of any advanced learning systomi. Also rfathier obviously, the
Go-Moku program represents only a very small application of a general process:
recognition of an - interesting situation, isolation of the relevant objects, and
formation of a description of them. As noted in Chapter I, the ease with
which this process may be camed out is very dependent upon the
representation being used. In the Go-Moku program, for example, the process
was rather simple because the relevant oojects were easily isolated and
described;, more complex programs, possibly involving a great amount of
interaction with the humar wuecer, will be tequired in other games, such as
checkers or chess. While tue amount of effort to be expended is apt to be

quite large, the resuits should be much superior to those obtainable by

pararneter-adjustment programs such as Samue!’s ck>cker player (1959).

- AL I At 1 10 5

Sttt ca

e B S 11 iy b s NS gt AT LB ol B A

vl gt i ol <a i il

Ao w7

POPITIN

gt bk g

P

L
{
i
£
;

e L Ty

R

v ALY T A

79

The Traveling Salesman problem and various resource allocation problems in
integer programming are examples of problems rather unrelated to Go-Moku but
suitable for solution using the System. These problems typically involve large
amounts of data, various trial and error proccdures which are efficient in some
cases and inefficient in others, and a rather intimate mix of numeric and
non-numeric data processing. Interaction with the user may also be important.
The Sysiem could be very profitably used for such preblems: the pattem
recognition features might be used to choose among possible solution methods,
the block structure of the data to record various solution attempts, and the
ALGOL base to do the numeric processing.

In contrast to preceding problem areas, the standard problems of symbol
manipulation {thecrem proving and symbolic integration, for example) seem
illsuited to the System: the difficulty is that the System has no built-in
relation representing concatenation. Thus, the fact that one symbol is to the
rnight of another must be represented by a special class member containing both
symbols. This is inefficient in both time and storage, and extremely
inconvenient to the programmer. Input and output would doubtless alsc be
inconveniel;t and inefficient. Symbol manipulation tmight be attempted if part of
a mote suitable problem, but should definitely be discouraged in general,

Possible additions 2nd modifications to the System include the refinement
of the CL for and the PSE to make their searches more efficient; a more
flexible mechanism in the PSE to choose the descriptive member to be used in
constructing a goal; a more general and convenient improvement mechanism; the
implementation of some automatic improvement features (such as keeping a
record of the results of using each descriptive member); and additic~-' macro
facilities to case the burden of propagating changes from one object to .- - “we/.
More flexibility in the structure of data blocks would be desirable. Kor
examplc, structure and cover might be optional, or new types of pointers might
be used to link objects together, or to order objects in various ways.

Other changes might be considered, but should not detract from the

b .

it i Gl % -

wb ST

80

Ve o AT st o e T AIIOANT T

»

present convenience, flexibility, and efficiency of the System.

L

g

et i om gL R E T

BIBLIOGRAPHY

The Communications of the Association for Computing Machinery is abbreviatced as

CACM. The Journal of the Association for Computing Machinery is abbreviated as JACM.

Amarel, S., 1962. **On the automatic formation of a compuier program that represents a
theory.” Self-Organizing Systems - 1962. Edited by M. Yovits, G. Jacobi, and G.
Goldstein. Washington: Spartan Books.

Amarel, S., 1968. “On representations of problems of reasoning about actions.” Machins

Intelligence 3. Edited by D. Michie. New York:American Elsevier Publishing

Company, Inc.

Elcock, E. and Murray, A., 1967. “Experiments with a learning component in a Go-Moku
playing program.” Machine Intelligence 1. Edited by N. Collins and D. Michie. New
York:American Elsevier Publishing Company.

Ernst, G. and Newell. A., 1967. “*Some issues of representation in a gencral problem solver.”

Proc. Spring Joint Computer Conference30:583-600.

Farber, D., Griswold, R., and Polonsky, J., 1964, “SNOBOL, A string manipulation
language,” JACM, 11(2):21-30.

Feldman, J. A. and Gries, D., 1968. “Translator writing systems,”CACM, 11(2):77-11 3.
Forte, A.. 1967. SNOBOL 3 Primer. Cambridge: The MIT Press.

Holland, J., 1962, “Outline for a logical theory of adaptive systems,” JACM, 9(3):297-314.

81

v -

U itk o ¢

o R TRRERE

ol L A S TN rai: ARt
e

rd

82

Hommann, A., 1962. “Programs for machine learning. Part 1, Information and Control,
>(4):347-367.

Hormann, A., 1962. “Programs for machine learning. Part 11,”’ Information and Control,
7(1):55-77.

Hommann, A., 1965. “Gaku: an artificial student,” Behavioral Science, 10:88-107.

Koffman, E., 1967. “Leaming through pattern recognition applied to a class of games,”
Case-Western Reserve University, Cleveland, Ohio, Systems Research Center Report
SRC 107-A-6745, 1967.

Koffman, E., 1968. “Learning games through pattern recognition,” 1IEEE Transactions on
Systems Science and Cybernetics, SSC-4(1):12-16.

Lasker, E., 1960. Go and Go-Moku. New York:Dover Publications, Inc.
McCarthy, 3., et al., 1965. LISP 1.5 Progranuner’s Manual, Cambridge: The 1T Press.

Minsky, M., 1361 *“Descriptive lznguages and pivbiem sojving,” Proc. Western Joint

Computer Conference, 19;215-218.

Minsky, M., 1963. “Steps Toward Artificial Intelligence.” Computers and Thought. Edited
by E. Feigenbaum and J. Feldman. New York:McGraw-Hill Book Company.

Murray, A. and Elcock, E., 1968, “Avtomatic description and recognition of board patterns
in Go-Moku.” Machine Intelligence 2. Edited by E. Dale and D. Michie. New
York:American Elsevier Publishing Company, Inc.

83

Nauar, P., ¢/ al.. 1963. “Revised report on the algorithmic language ALGOL 60,
. CACM. 6(1):1-17,

Newell, A.. Shaw, J.. and Simon, H., 1957. “Empirical explorations of the logic

theory machine,” Proc. Western JYoint Computer Conference, 11:218-239.

{Also in Computers and Thought. Edited by E. Feigenbaum and J. Feldman.
New York:McGraw-Hill Book Company. 1963))

Newell, A., Shaw.)., and Simon, H., 1960a. “Report on a general problem solving
program.” Information Processing: Precedings of the International Conference

on Information Processing. UNESCO, Paris, 15-20 June 1959. Paris:UNESCO. ;

Newell, A.. Shaw, J.- and Simon. H.. 1960b. “A variety of intelligent learning in a

general problem solver.™ Self-Organizing Systems. Edited by M. Yovits and S.
Cameron. New York:Pergamon Press.

|
|
|
i
5
g
|
;
|

Reynolds. J.. 1965 “An Introduction to the COGENT programming system.” Proc :

20th National Conference. Association for Computing Machinery:422-436.

; Roberts, L.. 1965. “Graphical communication and coutiol languages.” Second

Congress on the Information System Sciences. Washington:Spartan Books.

i Ross. D.. 1967a. "“The AED approach to generalized computer-aided design,” Proc.
V
. 12nd National Conference, Association for Computing Machkinery:367-385.

Ross, D, 1967h “TIr AED free storage package.”” CACM 10{8):481-491,

A e

Ross, D.. 1968. AED-0 Programmer’s Guide. Computer-Aided Design Project,

F Electionic Svstems Laboratory, Massachusetts Institute of Technology. ,
AY
Cambridge. Mass. ’

M,‘," TR

- e M R

84

Rovner, P., and Feldman, J. A., 1967. “An associative processing system for conventional
digital computers,” Technical Note 1967-19, Lincoln Laboratory, Massachusetts

Institute of Technology, Lexington, Mass,

Samuel, A., 1959, “Some studies in machine learning. using the game of cleckers,” 1BM
Journal of Rescarch end Development, 3(3):210-229. (Also in Computers and
Thought. Edited by E. Feigenbaum and J. Feldman. New York:McGraw-Hill Rook
Company, 1963.)

Slagle, J., and Bursky, P., 1968. “Experiments with a mulitipurpose, theorem-proving
heuristic program.” JACM, 15(1):85-99.

Sutherland, I., 1963. “*Sketchpad: 2 man machine graphical communication system,” Proc.

Spring Joint Computer Conference, 23:329-346.

APPENDIX

s o T

E
UNCLASSIFIED ?

Security Classilication 3
DOQCUMENT CONTROL DATA - R&D E4

(Securrty classification of titte, body of aSstract and indexing mnnotation n:ust be entered when the averali report is classified) g

1. ORIGINATING ACTIVITY (Corporate author) ia, REFPORT SEUCLR:TY CLASSIFICATION g
U. S. Navgl Weapons Laboratory UNCLASSIFIED 3
Dahlgren, Virginia 2b. GROULP ;

’ 3 REPQRT YIYL: -;
A HEURISTIC PRCGRAMMING SYSTEM 2

4. DESCRIPYTIVE NOTES (Type of report and, incfusive daies)

8. AUTHOR(S) 7First nams, midoic (nitisl, laat nems)

Devid K. Jefferson

W vt M 84

ER

10. DUISTRIBUTICH STATEMUNT

Distributicn of this document is unlimited,

¢ REPORT DATE 7@ TOTAL NO. OF PAGES 7b. NG. OF REFS B

» - s

April 1969 :

8. CONTRACY OR GRANT NG $6. ORUGINATOR'Y REFPORT KUMBERIS) i

3

5. PROJECT NO. TR«2281

§

c. o5, OTHER REPOAT NO(3) (Any other numbders (hat may bo assignsd B

this report) :

d. 1
—- B

2

13, SUPPLEMENTARY NOTES i2. SPONSORING MILITARY ACTIVITY

PR T———

13. ABSTRAC

The Heuristic Programming Svstem is a tool for research in many areas of
artificial inteiligence, particuigzly pattern recognition and adaptive systems.
It provides th= aritmwmetic capabilities and recursive structure of ALGOL plus
flexible and efficient facilities for representing and manipuleting complex
hierarchicaily structured objects. Ohjects may be cveated, modified, destrcyed,
or described by other, descriptive, objects, A cearch operation can retrieve
objects or collections of cbjects which are specified by zrbitrarily complex
descrintions. Another search operation can not only retrieve objects, but can
construct them according to the siecificatiors of previcusly created descriptive
objects; this greatly facilitates the implementation of self-improving pattern

The renort contains a discussion of the programming lacilities required for
srtificial intelligence, an informal introduction to the System, 2 formal
programmer’'s manual with numerous examples, & sample program which plays the
| game of Go-Moku, and a discussion of & preposed implementation.

recognition schemes, which are basic to advanced work in artificial intelligence.

e 0 e

WL YT g AN ZARP I S i

DD.5..1473 (raceE D) UNCLASSIFIED

RIS S WD 37 X Vol 9 -3 N Wy U S U GRS PEPPEY I &I PV P FOSF Ty

