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FOREWORD

This work was conducted in the Programming Systems Branch of the Compute.

Programming Division. The project was supported by the Independent Exploratory

Development Program in Computer Based Information Processing. This paper is the first of

several reports to be prsented concerning a computer-aided research tool called "A

tHeuristic Programming System". This report discusses the philosophy, structure and use of
the System. Future reports will describe the implementation, application, and evaluation of

r!

the System.

The report has been submitted to the University of Michigan, Ann Arbor, in partial!

fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and

Communications Sciences.
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ABSTRACT

The Heuristic Programming System is a tool for research in many areas of

artificial intelligence, particularly pattern recognition and adaptive systems. It provides

the arithmetic capabilities and recursive structure of ALGOL plus flexible and

efficient facilities for representing and manipulating complex hierarchically structured

objects. Objects may be created, modified, destroyed, or described by other,

descriptive, objects. A search operation can retrieve o1'.';cts or collections of objects

which are specified by arbitrarily complex descriptions. Another search operation can

not only retrieve objects, but can construct them a(;cordtng to the specifications of

previously created descriptive objects; this greatly facilitates the implementation of

self-improving pattern recognition schemes, which are basic to advanced work in

artificial intelligence.

The report contains a discussion of the programming facilities required for

artificial intelligence, an informal introduction to the Sy,.em, a formal programmer's

manual with numerous examples, a sample program which plays the game of

Go-Moku, and a discussion of a proposed implementation.
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I!I
INTRODUCTIONI i ,

7he Heuristic Programming System is an attempt to construct a high-level

language within which a problem solver may, as naturally as possible, express his

ideas to the computer. The purpose is not to converse with the computer in a

natural language, but rather in a problem-solving language; just as the mathematician

uses a highly specialized and formalized language in expressing his mathematical

ideas, so should the problem solver have i, s own specialized language. Unfortunately.

the poblem solver is concerned not only with the solution, but with efficiency as
well; thus, he must express a great many different kinds of information to the
computer. This fact considerably complicates the language, which would be

complicated enough anyway. The present attempt the Heuristic Programming

System - is still rather far from the standards of conciseness and clarity set by

mathematical notation, but it is, hopefully, a considerable advance in terms of what

can be expressed within the language.

" !The presentation of the System is divided into six Chapters. Chapter 1 begins

with an introductory discussion of the general requirements which a problem solving

i system must meet. These include flexible and efficient representations of objects and

descriptions of objects, a flexible means of searching for desired objects, and a

means of creating objects and descriptions of objects. Chapter I also discusses the

types of problems which may be or should be solved with the System; briefly, the

System is most appropriate to situations in, which objects with extremely complex
hierarchical descriptions must be created, destroyed, discovered, or described. Chapter

I concludes with an introduction to the System. Chapter 11 consists of a detailed

presentation of the programming language. Chapter III consists of a sample program.

which plays the game of Go-Moku. Chapter IV contains a discussion of the

"background" components of the System - the Problem Solving Executive. data

management, communication with the user, and system procedures. Chapter IV also

continues the discussion begun in Chapter I of the manner in which objects are

£ described by the system. Chapter V is a discussion of a proposed experimental

hinplementation of the System. Chapter VI contains a few concluding remarks. I
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Chapter 1 can be read rather quickly to grasp the general philosophy of the

System. The descriptive material in Chapter 1I should be read carefully, with

occasional reference to the sample program in Chapter I11; the detailed syntax in

Chapter 11 is intended as reference material, so it need not be studied closely during

the initial investigation of the sytem. Points which remain unclear after Chapters 11

and Il may be clarified in Chapter IV, particularly within the area of data

management. Chapter V need not be read at all, unless the reader is concerned with

the feasibility of the System or with actually implementing it himself.

Ii
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CHAPTER I

PROBLEM SOLVING

Discussion of the Heuristic Programming System will be organized around three

somewhat overlapping topics: representation, control, and improvement. Briefly,

"representation" refers not only to what can be stored within an information

processing system, but the manner in which it is stored and accessed. Thus.

representation influences both the theoretical and practical limitations of a system.

"Control" refers to the manner in which operations and operands are chosen.

"Improvcment" refers to improvement of the choice mechanism. These topics and

their interrelations will be discussed both in terms of this Heuristic Programming

System and in terms of previous heuristic programs.

Representation of ObjecL

In the following discussion, the term "object" will be used to denote any data

which might be pertinent to the solution of a problem. The terni includes those

data which are used to describe the problem (e.g., the location of a piece in

game-playing problem, or the end-point coordinates of a line in a pattern recognition

problem), those data which are derived from data defined by the problem and

which may be relevant to its solution (e.g., a subgoal which has been recognized.

but whose reliability as an indicator of progress is questionable), and those data

which represent descriptions of other obiects (e.g., a description of i subgol)

F lexibiity

1he most important step toward the solution of a complex problem is easily

and efficiently representing all that is known or guessed about it. If a problem is j
simple, almost any solution method may suffice; added data may even hamper the

solution. However, if the problem is complex it probably will not be solved at all

unless all available data arc utilized. Minsky (1961) makes the point that simple
problems are qualitatively quite different from complex problems: simple Problems

can be solved by trying out all possible actions, while it may be impossible to try

out even the most promising actions in solving a complex problem (indeed it may

be impossible even to find all the promising actions). Amarel (1908) discusses

I
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various ways of representing the missionary and cannibals problem, and how the

representation effects the efficiency of the solution. The point is not that there are P

ways to find a good representation, but that, if one is known, it should be used:

many of the present difficulties v.'ith heuristic programs arise because of

inappropriate and inflexible representation of the problem, while the notable

successes have occurred because (by chance or design) the available structure fit the

"natural" structure of the problem. Ernst and Newell (1967) discuss these difficulties

in describing the drastic changes necessary to enable GPS (Newell, Shaw, Simon,

1960a) to solve a wider class of problems. Basicaly, the original GPS was designed

around a cerlain type of problem, the heuristic power which it brought to bear on

theorem proving, while sufficient to solve other types of problems, could not be

used because of severe problems of representation. (Although the new version of 4

GPS is greatly superior to the old version in terms of the goals, operators, and

differences which can be represented within GPS, it still suffers from a lack of

flexibility in terms of the mauner in which these objects are represented. Hence,

because of time and memory limitations, GPS cannot in practice solve problems

which are solvable in principle.)

The concept formation problem described by Amarel (1961) is an even more

striking example of the power to be gained by proper representation of a problem.

Amarel's scheme is fairly complex - it actually involves two levels of language - but

he gains the tremendous advantage of being able to represent program schemata,

which enables him, to make ".-abroutines" out of c, -uplex sequences of operators.

The important point is not thit Amarel's representation is general - it is not - but

that it, to a great extent, determines the power of his system.

The system devised by Hormann (described in its latest form in 1965;

additional details of development are found in 1962 and 1964) involves not only

problem solving of a fairly sophisticated degree but planning and induction as well.

The adequacy of the representation becomes vitally important in her Induction

Mechanism, which is a general pattern recognizer and conjecture generator. Clearly, if

the patterns which are recognized have nothing to do with the solution of the
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problem, then the Induction Mechanism must fail. The regularities of the problem

must, then, be representable to the various problem solving and learning mechanisms.

This is accomplished by special routines which abstract and characterize a particular

problem. The result is similar to the differencing scheme of GPS, with the

important addition of a subroutine feature somewhat like that of Amarel's schemt

A final example of the power of a well-chosen representation is the

game-playing program of Koffman (1967, 1968). Koffman repm znts a position in a

simple class of games (which includes Qubic, Hex, Bridge-it, and a simplified version

of Go-Moku) in terms of lines of pieces and intersections of lines. This enables the

pr ram to easily describe a subgoal (a 'board configuration from which a win can

be forced) in terms of lines with specified numbers of empty places and

intersections with each other. Representation of the various symmetric or

translational images of such a subgoal is automatic, because the representation is
unchanged by such transformations.

The Heuristic Programming System is designed to enable the user to easily and

efficiently represent hierarchical, or tree-structured, objects - i.e., objects which

consist of subobjects. which consist of subsubobjects, and so on. Objects of this sort

are obviou-!y essential to pattern recognition, which is an important area in itself as

well as a major subproblem in the solution of any complex problem. Hierarchical

objects are of fundamental value for two additional reasons: such objects form a
[- basis for subdividing the problem into simpler problems, which ame solved more or

less separately, and such objects are essential to the human programmer, so that he

can easily write, debug, and alter his program. For problems in which the majority

of the objects are hierarchical, the System offers the user tremendous ease and

flexibility of representation: an object may be described (by another object), created_

(by explicit specification in the program, or by a reference to a descriptive object),

altered, or destroyed. An object may contain an arbitrary collection of objects, and

may possess an arbitra-y colkction of numeric or Boolean properties.

Efficiency

The question of how to represent a collection of objects centers about the
I1 ---

m
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necessity to compromise among the three conflicting requirements of representation:

ease of prograrming, efficiency in terms of storage, and efficiency in terms of time.
Ease of programming requires, primarily, that the representation should be similar tot

the mental representation of the problem solver, and that it should be easily

alterable (especially with respect to adding detail as the user learns more and more

about the problem or problem area). Storage efficiency requires that objects which

must be present all the time should be represented in the most compact form

possible and that objects which are needed only temporarily exist only while theyare needed. Efficiency in time requires that objects should be quickly created, A

retrieved, modified, and destroyed, and that the effects of these operations should

be easily propagated to other, dependent, objects. Note that in any problem solving

program of reasonable sophistication, especially a prograia, which involves learning or

improvement, it is necessary to represent many objects (such as subgoals) implicitly -

ie., by rules for constructing these objects from classes of other objects. The
retrieval of such an object may involve a great amount of searching for components

which are in complex relationships to each other; once it has been retrieved, it may

either be. made explicit so that it can be rapidly retrieved for future use, or it may

remain implicit, so that it will require no storage.

Some of the decisions necessary in choosing a proper representation have been

made in the design of the Heuristic Programming System; others are left open to I

the user. The decisions which have been made will now be outlined; the purpose is

not so much to justify them as to implicitly define the class of problems for which
the System is appropriate. No claims will be made that the System is a good

symbol manipulator or list processor. It is neither; the philosophy of the system is

that symbols as such do not even exist, and that lists are useful primarily to the
system and, therefore, the user is not encouraged to manipulate them directly.

One of the major decisions made in the internal representation of objects in
the System is that all objects which are composed of other objects or which are

contained in other objects must have explicit pointers to those objects. This is to

facilitate searches for objects and modifications to objects: it is frequently necessary
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to look for an object contained in or containing another object, either so that some

decision can be made (for example, when trying to find an instance of a complex

subgoal) or so that modifications to one object may properly propagate to
dependent objects (for example, when a move is made ir a game, many complex

objects must be altered or destroyed). The necessity for these pointers does,

however, create a problem of storage efficiency: twice as many pointers must be

used for objects as in, for example, LISP 1.5 (McCarthy et al., 1965), since for

every pointer to a contained object there must be a corresponding pointer frGm the

contained object. To somewhat compensate for this, the System allows the user to

represent objects as blocks of contiguous storage, rather than as lists; this saves time

as well as storage. An object can, of course, be represented as a block only if it

nas some properties which are assigned at its creation, and whose storage

requirements cannot increase thereafter. For example, in a pattern recognition

problem, a polygon might be represented as a contiguous block composed of the

coordinates of the center of gravity, the number of sides, the col)r, and a pointer

to a list of objects within which it is contained (the list might be of any length,

since it might be possible to recognize any number of objects contain~ng the

polygor

The description above applies as well to graphic data structures as to problem

solving structures (ct. Roberts, 1965, Ross 1967a, 1967b, 1968, and Sutherland,

1963). This is not surprising, since the aim in either case is the efficient modeling

of complex and changing situations. The differences between graphic manipulationsIand problem solving lie in the control and improvement facilities: this is due to the
fact that the graphic facilities are algorithmic (hence a process will terminate by

itself), while the problem solving facilities are heuristic (and hence a process will

need supervision to make sure that it will not continue endlessly).

Control of Program Flow

As stated earlier, "control" refers to the manner in which operations and

operands are chosen. Two processes are important: "unidrstandinZ" the current

situation, and deciding how to achieve a "better" one. This section vii attempt to

_ .

_____
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present the major issues involved in these two processes, how they are implemented

in the System, and their relation to representation.

Allocation of effort

Understanding a complex situation rather clearly implies the need for describing

and recognizing complex objects. In simple problems, one may be able to explicitly

represent each relevant object, so recognition is simple. This is not possible for

complex problems; it is necessary to search for objects which are represented

implicitly (i.e., by descriptions of how they are constructed), since. storage

limitations prohibit explicit representation of all but a small fraction of the possibly

relevant objects. Furthermore, it might be impossible to generate all such objects

within a reasonable length of time even if storage were unlimited. Searching for

objects which are represented implicitly may take an indefinitely large amount of

time; hence, it should be possible to specify how much effort is to be allocated to

each search.

Attempting to achieve a better situation involves deciding what to do next,

doing it, and then, as above, evaluating the result to see if progress has been made.

In problems where actions are not irrevocable it may be as important to decide

how much of the available resources of time and/or storage are to be devoted to

each alternative as to decide which is to be attempted first. Deciding what

alternatives are to be considered may itself be a non-trivial task, requiring a special

allocation of resources, as in the generatemove proccdure of the Go-Moku program

in Chapter Ill. There are various well-known strategies for choosing amcng

alternatives and allocating resources: for example, trying to reduce the most

impoitant difference between the present situation and a goal (Newell, Shaw, and

Simon, 1960), trying to attain locally maximal results, concentrating effort on the

most sensitive regions, and equalization of effort among alternatives (Amarel, 1962).

From this discussion it is clear that allocation of effort is a major issue in

solving complex problems. The Heuristic Programming System provides two methods

of searching for bz.' one is a straightforward search down a list to see if an

object exists, the ocher is a search for an implicitly represented object. The latter
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search is limit.d to a program-specified amount of time, which greatly simplifies the

coding of complex resource-allocation schemes. This search mechanism may attempt

to combine objects to form an object (or class of objects) which is specified either

by the programmer or by a previously created description (cf. the discussion of

improvement); this facility, of being able to describe how an object is to be

constructed, also greatly simplifies the coding of a complex program.

Search strategies

In solving complex problems, it is frequently necessary to be able to try many

different alternative actions from a given situation: therefore, it is necessary to

decide ftm-t what situation to start from, and second what action to attempt. Three

common strategies are breadth-fast (i.e., simultaneously try all possible actions from

all current situations, as in the Logic Theory Machine, Newell, Shaw, Simon, 1967),

depth-first (i.e., pursue one series of actions to a terminal point, then go back to

the nearest untried alternative, try that, etc., as in GPS, Newell, Shaw, Simon,

1960), or maximum payoff (i.e., choose the situation and action which are it ost

promising, as in Slagle and Bursky, 1968). The first strategy is rather uninteresting:

storage and time requirements are too high. The two other strategies both require

the preservation of intermediate situations: that is because, in order to attempt an

action from a situation, the objects which make up that situation must be present

in storage and must be distinguished from the objects of other situations. lenice, it
is necessary either to preserve all objects simultaneously (difficult even for some ofIthe simple problems of GPS, as noted in Ernst and Newell, 1967; impossible for
complex problems involving thousands of highly interacting objects) or to reconstruct

the desi-ed situation (either by reversing actions or by repeating actions from the

initial situation or from somc intermediate situation which has been preserved). Note

that the maximum payoff strategy will in general explore fewer . --natives than the

depth-first strategy, but it will consume more time in reconstruLt). ,iuations. A

reasonable compromise between the two wouid be to weight each alternative

according to how cheap it would be to attempt it; this would lead to a somewhat
'stubborn" maximum payoff strategy, which might be of great interest /
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psycho':gically. Such a strategy would be fairly easy to implement using the

Heuristic Programming System.

The search technique used in the Go-Moku program is alpha-beta minimax, a

fairly common strategy in game playing. The minimax is used to evaluate a given

position by evaluating the positions which could result from it. the value of a

position is defined as either the value of some evaluation function if the position is

"terminal" (e.g., if a maximum search depth has been reached, or if the position is

relatively stable), or as the "best" choice among the values of the successor

positions. The "best" choice clearly depends upon whose move it is. Not quite so

clearly, it is possible to avoid evaluating certain positions if it can be shown that

they will never be reached in rational play. For example, assume that the program

has found that, from a given position, it can attain a position of value at least

alpha, despite best play by the opponent. Assume now that the program Ls

evaluating a possible move, M, and that one of the opponent's replies, R, proves to

have value less than alpha. Then it is not necessary to evaluate any more replies: if

move M is made, then the opponent can make a reply at least as powerful as R,

3o the result will have value less than alpha. Search can therefore be terminated by

an "alpha cutoff' (a more lengthy discussion is given by Slagle and Bursky, 1968).

A "beta cutoff' is obtained if the positions of the program and opponen, are

reversed in the above example. If the possible moves are ordered so that the most

promising are evaluated first, then a great deal of time will be saved by such

alpha-beta cutc'ffs; hence, a very important part of the Go-Moku program is the!

generatemove p ocedure; which chooses feasible moves and orders them according to

estimated value. The program can be expected to make more cutoffs with practice,

since the ordering of moves will become more accurate.

This sort of strategy was chosen for the Go-Moku program because it is fairly

easy to implement, reasonably efficient (at least, after experience has generatel l
useful subgoals), and requires much less construction and reconstruction of objects

than the maximum payoff strategy. Since the strategy is rather simple, it was

possible to use some specialized but efficient techniques to minimize the time

*=1==.
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required to reconstruct objects; see the discussion in Chapter 11I.

Improvement

jAs stated earlier, "improvement" refers to the improvement of the mechanism

by which operations and operands are chosen. The fact that this definition is

equivalent to common definitions of learning and adaptation follows from the

previous discussion of control. In the Heuristic Programming System, objects may be

constructed according to other, descriptive, objects, and may then be used to

evaluate a situation and decide upon the next action. Facilities for creating,

modifying, and destroying descriptive objects are provided by the System. this

section will present some of the issues hnvolved in using these facilities to implement

a self-improving problem solving program.

A basic technique for finding a subprogram which successfully solves a problem

is to search in neighborhoods of partialy successful subprograms: this implies that

partial success must be recognizable, and that neighborhoods must be definable such

that the degree of success does not vary too greatly within a neighborhood.

Improvement then consists of fairly straightforward hill-climbing (Minsky, 1963).

However, it is frequently impossible to recognize partial success or to define

neighborhoods, so the original problem area must be transformed into a new area,

or model, in which these things can be done. In that case, trials in the old area

indicate the degree of success in the model; neighborhoods in the model indicate

where trials should be conducted in the old area. For example, Samuel (1959)

transforms the problem of choosing a good checker move into the problem of

finding an optimal n-tuple of weights of features of positions,. Holland (1962)

transforms the problem of constructing problem solving programs in an iterative

circuit computer into a scheme for the differential selection of "supervisory

programs", and Newell, Shaw, and Simon (1960b) transform classes of

symbol-manipulation problems into the construction of sets of differences and the

determination of which operators reduce which differences.

Obviously, the utility of this technique depends critically upon the degree to

which success in the old area corresponds to success in the new. Thus, Samuel'siI"
z
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program can improve its performance only to a certain degree. Further progress

requires the recognition of new features and dependencies between features; in other
words, a more complex model. The improvement facilities of the Heuristic
Programming System might be used in either of two ways: to produce descriptions
of sets of features, so that dependencies could be detected, and to produce
descriptions of board configurations, in order to recognize abnormal situations in
which feature evaluation is unreliable.

An important consideration in solving practical problems is being able to utilize
specialized knowledge to reduce search time. This is difficult in Holland's scheme

because such knowledge must be introduced very carefully in order not to disrupt
the general improvement scheme; programs which enjoy great initial advantages must
not cause the premature rejection of programs whose potential is great but not

easily achieved.

A related difficulty arises in the Newell, Shaw, and Simon scheme, which is j
limited by the fact that the operators which recognize differences are completely

distinct from the operators which manipulate objects (and which therefore generate
and remove differences). Hence, it may be very difficult to introduce differences
whose values are known to be great. It may also be quite difficudt to utilize

specialized operators, because the program may not be able to learn when to apply

them.

The. Heuristic Programning System povides facilities for describing and I
recognizing situations in which specialized knowledge might be used, and it also I
provides facilities for improving such descrip'ions. Hence, as a program's generalized
knowledge grew, it could continually change its methods of integrating this

knowledge with the specialized knowledge.
Finally, the System provides a framework within which one could construct a

hierarchical control scheme with a growing number of levels (unlike the limited
number of levels in the above-mentioned schemes); this is rather critical to really
advanced self-improving programs, because these must be able to cope with the
"aha! phenomenon" - the sudden integration of a number of facts on one level into
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a new concept on a higher level. The System provides a facility for constructing a

description of any object, including another description, so "all" the user need do is

to program critcria for deciding when to make new descriptions, and when to search

for instances of the newly described objects.

Overview of the System

The Heuristic Programming System consists of the following major sections:

I. The class Language (CL),

2. The Problem Solving Executive (PSE),
3. The Data Management Routine,

4. The Translator, and

5. The Communicator.

CL is the programming language in which the user describes the structure of a

problem area: it is a considerably extended ALGOL which enables the user to

create, manipulate, and destroy sets and classes of sets. The external form of the

language has been greatly influenced by LEAP, the Language for the Expression of

Associative Procedures (Rovner and Feldman, 1967), which is an ALGOL based

language with facilities for manipulating sets and associative data. However, both the

purpose and internal structure of CL differ greatly from LEAP.

Facilities for Representation

Set, class, goal, description, and property

|The basic non-ALGOL structure in CL is the set. Sets with common properties

may be combined together into a class,; the properties may have different values for

different sets in the class. Class members may be created or destroyed during a
computation. A class may be declared to be a goal class or a descriptive class: the

PSE may construct members of a goal class from other sets, using members of a
descriptive class as descriptions of the goal class.

A set may be accessed in various ways: by name, by reference from a set

contained within it, or by reference from a set within which it is contained. If a

set is a member of a class, then its name is the name of the class followed by an

index (i.e., a subscript). The user may insert a series of integer-valued expressions

• i
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between the name and index, indicating subclasses.

Creation and destruction

Any set which is declared within a block is created upon entering the block,

just as a local variable in ALGOL; sets are created empty. The members .of a class

are created when entering a block if the class has a fixed cardinality (i.e., number

of members); otherwise members are created by the create procedure. Sets are

destroyed when exiting from the block in which they are declared: class members

may also be destroyed by the destroy procedure. The destruction of a set means

that all properties of the set become undefined. Further, class members which

contain a destroyed member are also destroyed. all references from sets contained in

the destroyed member arc deleted. Numeric or Boolean properties may be defined in

any of three ways: a constant initial value may be assigned during the compilation

of the block in which a set is defined, or an expression may be assigned at II
compilation time and then evaluated at the creation of the set, or the value may be

assigned within the block, overriding any previously assigned value. I
The Data Management Routine

I
The Data Management Routine has two primary functions: to create data

structures within the free storage area, and to return destroyed data structures to Ii
free storage. For each class, there is a block of contiguous storage, called the class

header, which contains information relevant to the class as a whole: the class name,

the names of the properties, initial values of properties (or pointers to expressions -

for determining the iniitial values), and the method of ordering the members. The i
class has either a fixed number of members (in which case the header contains a

block of class members), or a variable number of members (in which case the class

header contains, for each subclass, the number of members, the highest index, the

index of the most recently accessed member, and pointers to the most recently I
accessed member, the member with lowest index and the member with highest

index). Each class member consists of a block of contiguous storage which contains

the values of the member's properties, the member's index and a pointer to the

member with next higher index, either a pointer to a list of contained elements or
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a block of pointers to each contained element, and either a pointer to a list of

containing elements or a block of pointers to each containing element. Sets are

comparatively simple: each consists of a set header containing the set name, the

number of members, the method of ordering, the property values, and either blocks

of pointers to the contained and containing elements, or pointers to lists which

contain pointers to the contained and containing elements.
Thus the data are see~n to fail into two categories: blocks of contiguous storage

of various sizes, and simple lists linking the blocks together: both types of data are

sufficiently simple to be manageable by a relatively unsophisticated routine which,

on demand, obtains storage or returns blocks or lists to free storage. A discussion

of a more general system, which influenced this design, is given by Ross (1967a,

1967b). The primary advantage of this sort of data structure over, for example, a

pure list structure, is that the tighter grouping of data (by means of contiguous

storage or many pointers) greatly reduces the amount of time to search from one

item of information to another. In some cases, contiguous storage saves space; the
"line" in the Go-Moku program, for example, always contains exactly ive "points",

so that the structure can be represented by a block of five pointers, rather than a

list with five elements.

A useful feature of the Heuristic Programming System is that it is easy for the

user to write a specialized storage reclamation routine: thus, he can delete less

valuable sets, or sets of certain types, or even, by means of the destroy statement,

Sall sets whose existence depends upon a given set.

I Control Mechanisms

There are three basrc types of control mechanisms in the Heuristic Programming

System: basic ALGOl (which will not be discussed further), the CL for (a search

mechanism), and the P'E (a descriptive and constructive mechanism).I!
The CL for

The CL for is a sophisticated search facility. The user writes a template which

*is basically the specification of the class name of an object, its structure (or various

possible structures), and its properties. The class name, and any of the class names

i s l e c a o e s m a b is t ( a
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appearing in the structural description, may be followed by a "defined" index or by

an "undefined" variable. The defined index refers to a specific class member, while

the undefined variable refers to a member which is to be found by the search.

When the desired member is found, its index is assigned to the variable; the

member then can be manipulated by reference to its class name and index.

Thus, the basic orientation of the Class Language is toward explicit specification

and search; the user is spared the task of choosing and Identifying objects- This

tends to make CL code reflect the user's mental representation of objects, which

facilitates coding and debugging.

The CL for has been influenced by both LEAP (Rovner and Feldman, 1967)

and SNOBOL (Farber, Griswold, and rolonsky,1964, and Forte,1967).

The PSE

A CL for is used to search for objects which exist, i.e., which have been

constructed previously; a PSE statement may not only search for objects, but it

may also combine objects, according to templates, in order to construct members of

goal classes (after a goal object has been constructed, it can be manipulated by

ordinary CL code). The PSE is, therefore, goal-directed, like the productions of the

COGENT programming system (Reynolds, 1965) and other syntax-directed translating

systems (Feldman and Gries, 1968). Unlike other systems, however, the PSE can

construct mom than one object, or it may not be able to construct any at all.

Each invocation of the PSE must, therefore, specify the maximum amount of time
to be spent, and whether one or many objects are desired.

Facility for Improvement 5

The most important control features of the Heuristic Programming System are
its methods for searching for specified objects; therefore, improvement consists of

creating, destroying, and altering descriptions of objects. Members of descriptive

classes may be created and destroyed just as members of other types of classes, but

the facilities for alteration are unique. Basically, new descriptions are produced in

the following manner: a goal clas member is created, then a descriptive member is
created which contains the goal cI-ss member, the descriptive member may be edited
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and then the descriptive member is abstracted.

Editing is a process by which a description is changed without changing the

thing described; each set which is to be changed is copied, then the copy is

changed. All references to the original set within the description are changed into

references to the copy. Abstracting is a process of copying all sets, as above, and

then changing the set names into undefined names. Thus, the result is just a

template.

Other Sections of the System

The Translator translates the CL program into a legitimate ALGOL program.

Procedure calls are inserted at appropriate places in the code to call the PSE and

Data Management. More details on the operation of the Translator are given in

Chapter V, in the discussion of implementation.

The Communicator is both the outermost block of the user's program, which

contains declarations for the system variables and the code for system procedures.

* and a collection of procedures for communication with the user. The user may

request the creation, destruction, or display of any object within his program.

Objects may be described explicitly by, for example, name and index, or implicitly

by means of a template, just as in ordinary CL code. The correspondence between

the internal and external names of classes and sets is provided by the symbol table

produced during translation, and b, the names which appear in the clam and set .

headers.
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The detailed presentation of CL will assume a moderate knowledge of ALGOL

and the metalinguistic formulae used to describe ALGOL. In particular, the revised

ALGOL report (Naur et at., 1963) defines formally various metainguistic variables

which are used here; these are, for the most part, self-explanatory. Both the

metaliuistic variables utsed to describe ALGOL and those used to describe the

additional constructs of CL are indicated in this Chapter by the brackets "C' and

>),;generally there will be no difficulty in distinguishing ALGOL from the new I
consftrcts.

Representation

Declaring sets and clases

A name may be declared to be a set name by the declarator set or a class

name by the declarators clan, goal claw, or descriptive clas. Sets are normally

ordered, but may be declared to be unordered, rankhl (high member first), or

rzn o. Ranking may be on the basis of any property of the members, or, in the

absence of any contrary specification, by value, which is a standard property (see

Table 1). The members of a class may be declared to be unordered, rankhi or

wrddo in the clas declaration (the class, itself, is always ordered). The cardinality

of a class may be established at the time that the clas is declared, as in the
following example:

cdass class [100f
This class is not empty initially; it consists of as many members az are declared,

although these members need not have any defined properties.

A class may be subdivided into subclasses, subsubclasses, and so on, to any

desired extent. This is indicated in the declaration as, e.g.,

ch subclasses [10,5];

Here, there are 10 vibclasses, each with five members.

181
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t TABLE I

STANDARD PROPERTIES

Name Posible values Explanation

structure a list of sets The structure of a set is a fit of the elements

contained in it: this is not the same as the set

itself: if A contains B, and C contains the structure

of A, then C contains B but not A.

cover minval-maxval; The sets containing a given set.

value minval is default The Communicator sets minval to 0. and maxval to

1.; these may be altered in the program. The value

property is standard only for goal or descriptive

classes. The PSE uses values to decide which goal to

attempt.

cost any real number This is either the estimated cost of constructing a

member of a goal class, or the actual cost of having

constructed q goal object. This is used by the PSE.

[ F
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If a cardmality is not declared, then a class may have any number of members.

This flexibility may be purchased at a cost in processing time, since an array

structure is used for a class of fixed cardinality, while a list structure is necessary

in the general case. A specific element of a class of fixed cardinality is accessed by

"pointing" to it; otherwise the list of members must be searched to find it. The

search time is, however, quite small in many cases, because a record is kept of the

location (on the list) of the most recently accessed member of each class; this

greatly facilitates operations which sequence through the class or which repeatedly

refer to the same member.

Note that if a class has a declared cardinality, then any member may be

referred to (e.g., may have values assigned to its properties) without explicitly

creating it. If a class has ariable cardinality, on the other hand, each member must

be explicitly created by a create statement before referring to it. Thus. the two

types of classes are quite different.

A class may be declared to have subclasses even though it has no fixed

cadinality. Thus,

class manymember [5,1

declares a class which has 5 subclasses, each with any number of members.

Declaring properties

The standard properties structure and cover are automatically declared whenever

a set or class is declared (see Table 1). The number of elements in either the

structure or the cover may be declared. For example,

clad triangle (integer structure:=3, cover:-5);

declares a class of triangles, each member of which contains at most three elements

and is contained in at most five elements. Such a declaration means that the

pointers to the elements of the structure and cover may be placed in a contiguous
block in each class member, rather than in lists. The value and cost properties are

automatically declared for goal and descriptive classes.

Nonstandard properties must be declared explicitly, and may be assigned initial

values. Thus
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class box (real length, width:=2., height:= p + q);,

specifies that each member of the "box" class has a length, a width (with value 2.

when the member is created), and a height (with value p + q when the member is

created, for the then current values of p and q).
Syntax of declarations

The syntax of declarations will now be given. This defines not only the special

CL constructs, but their relation to ALGOL as well.

( declaration ) :: (type declaration ) I (array declaration ) I

switch declaration) I (procedure declaration) I (set

declaration) I (dLass declaration) I (goal declaration) I

descriptive declaration ) I (standard test)

Syntax of set declarations

(set name) :: (identifier)

(property name ) :: (identifier

(short property assignment)::= ( property name ) (arithmetic

expression) I (property name) (Boolean expression)

( property item) :: (property name) I (short property assignment)

(property list)::= (property item) I (property item), (property list>

(typed property list) ::= (type) (property list) I (type) (property

list),(tyed property list>

( property declaration) :: (empty) I ((typed property list)

(set declaration item) ::= ( set name) ( property declaration )

(set declaration list) ::= ( set declaration item) I (set

declaration item) ,(set declaration list)

(rank) ::= rnkhilranklo

(modifier )::= unordered I (empty) I rank) I(rank) 4.

. ~by ( variable )

(set declaration) :: (modifier) set (set declaration list )

n

I"i "
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Syntax of class declarations

< basic class name ) ( identifier)

(subclass and cardinality list) ( arithmetic expression) I

( arithmetic expression), (subclass and cardinality list )

subclass and cardinality declaration) : (empty) I [ (subclass and

cardinality list) I[ (subclass and cardinality list),]

(class declaration item) (basic class name) ( subclass and

cardinality declaration) ( property declaration)

( class declaration list) ( class declaration item) I( class

declaration item>, (class declaration list)

(class declaration) : modifier) class (class declaration

list)

Syntax of goal declarations

( goal class name) : identifier)

( goal declaration item) ( goal class name) (subclass and

cardinality declaration) (property declaration)

( goal declaration list) ( goal declaration item) I ( goal

declaration item), (goal declaration list)

( goal declaration) ::= (modifier) goal class( goal declaration

list)

Syntax of decriptive declarations

( descriptor name) (identifier)

( descriptor item') (descriptor name) ( subclass and cardinality

declaration ) ( property declaration)

( descriptor list) ( descriptor item) I ( descriptor item),

( descriptor list)

( descriptive declaration) < modifier) descriptive class

descriptor list)

( class name) ( basic class name) I( goal class name) I( descriptor

name)
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Syntax of procedure declarations

(procedure declaration) ::= procedure (procedure heading)

(procedure body) I (type) procedure (procedure

heading ) ( procedure body ) I set procedure (procedure

heading) (procedure body )

Syntax of standard tests

( standard test )::= standard test ( property name) I ( standard
test ), (property name)

This is a simple way to avoid writing the same condition in many

(template) 's. A (template) contains lists of class members and Boolean conditions

on those members (a more complete discussion is given later). Each ( property

name ) (which must be a Boolean v-.able) in the (standard test ) is added as an

additional condition to each member with that property, provided that no condition

involvng the ( property name ) is already present.

Referring to members of sets and classes

Members of a set or class are referred to by index and subclass indicators as,

e.g.,

setname.!

classname.i

t subclasses.l.J

where I and J (here and in subsequent examples) may be arbitrary (p, imary) 's and

setname is any set (in particular, it could be classname.J).

Members of classes may be referred to by subclass indicators and indexes which

are either "defined" or "undefined"; a period before a ( primary ) indicates that it

is defined, as in the .1 of

classname.l

while a slash before a ( simple variable ) indicates that it is undefined, as in the /K

of
classnaime/K •

The defined values are used to indicate a specific class member. The undefined

variables are used to indicate that an index or subclass indicator is not known, as,
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for example, when searching for some member with specific properties or when creating a

new class member. When the desired member is found or created, its index and subclass

indicators are assigned to the previously undefined variables. Similarly, a set name followed

by a slash indicates an undefined set, to which structure is to be assigned; a set name not

followed by a slash represents a previously defined set of elements. An asterisk followed by

a period and an ( unsigned integer ) represents a variable to which structure has been

maigned during a searching operation. This will be discussed in more detail in the section on

( template )'s.

Operations on sets

Sets are combined by means of the binary operators +, X, and -, which are interpreted

as concatenation (with subsequent deletion of duplicated elements, if the result is assigned

to an unordered set), intersection, and subtraction. The precedence order is X first and -

last, as indicated in the syntax. Association is from the left in a sequence of identical

operators, or may be indicated by parentheses. Note that brackets may be used to construct

sets from lists of arbitrary expressions; hence, numeric or Boolean quantities may be put

into sets. Brackets are removed by the structure function so that, e.g.,

F:=[structure([A, B, C, D I),JEJ I;

is equivalent to

F:=A,B,CD,E I],

Syntax of =0i, expressions, and asignments

( expression> . (arithmetic expression) I( Boolean expression ) I
(designational expression) I( structural expression)

( assignment statement) (left part list) :-. arithmetic expreaion) I

(left part list) :( Boolean expression) I( structural asignment)

(index) ::=.( primary)

simple set) ::= (set name) I ( class name ) I ( (structural expression))

function designator) I . (nsigned integer) 1 ( simple set)

(index)

il
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(set )::' (simple set 11 (set list) I empty

( set list> ::> (expression) I (expression ), (set list)

t (set factor> :: (set) I (set) X (set factor)

(set term (set factor > I(set factor ) + (set term

(set phrase) :: (set term ) I (set term >. (set phrase>

(structural expression> :: (set phrase ) I (if clause> (set phrase)

else (structural expression)

(structural assignment) :: (simple set):" (structural expression )

(procedure identifier) : (structural expression>
Orestion of cl a members

A class member may have values assigned to any of its properties by the

statement which creates it; these values override values given in the clas declaration.I

Values assigned to a member's structure are indicated as in the following:

create. (triangle/L(area:=10, line.1, lineJ, line.K));

This indi-ates that a triangle is to be constructed which consists of (ie., whose

structure is) the three lines, and whose area is defined to be 10. Any class member

indicated in the structure may also be created, if its index is undefined, as in the

following:

create. (intersection/K(line/lpoint.l,point.J),ine/M(point.l,point.N)));

This process may be continued to any degree of nesting; during execution the effect

is to create the leftmost member whose structure has already been created, then to

repeat, until all members have been created. Any of the members being created may
have values assigned to any of its properties.

Syntax of create

( undefined index) ::=/( variable)

(defined member) ::= (class name) I (defined member) (index

(undefined member) (defined member) (undefined index ) I

(undefined member ) (undefined index) I (undefined member) (index)

(new member) ::= (undefimed member I (undefined member) ((new
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description list))

(description) :: (set) I(short property assignment) I (now member

(new description list) :: (description) I (description),

(new description list)

(creation) :: create. ((new member))

Each of the (new member )'s is created by the single statement.

Sylat of destroy

(destruction) ::- destroy.( (set))

Recall that sets which contain a destroyed set are also destroyed, and that

references to a destroyed set from a contained set are deleted from the contained

set's cover.

Manipulation of properties

A (property name ) alone is used to indicate a property where the set or

class member is known by context, that is, within a (class cieclaration ) or (new

description list) or within a (temolate) (to be described later). Otherwise, the

class member in parentheses follows the property name. Thus,

las box [I I (real area :-2.);

totalarea :-2. X area (box.1);

area (box.l):= .5 X totalarea;

A singie identifier may be the name for properties of mny different classes

(as, for example, cover and structure) since the class member is always made clear

either explicitly or from context.

Syntax of properties and variables

(variable) ::a (simple variable) I (subscripted variable) I (property

variable )I

(property variable) ::- (property name) I (property name) ((simple set))

Control:I

Templates

A (template) is a description of a collection of sets. It consis.s of a list of

(set variables )'s (each one a ( set name) followed by a' slash, or an asterisk, an
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asterisk followed by a Wlash and an (unsigned Inteer), or an (undefined

member>), (set )'s, and (Boolean expression )'s. The ( set var.able )'s are assigned
values such that the structural conditions implied by the (set )'s and the Boolean

conditions of the ( Boolean expression )'s are satisfied. For example,

triangle/L(area - lOAright, line.l, line/K, line.J)

indicates a right triangle (or collection of right triangles) whose area is 10 and
which consists of line.l, a line (or collection of lines) whose index is unknown, and

line.J. No properties are specifiea for the lines (in particular, their structures are not

specified).

If part of the structure of a set is irrelevant or unknown, an asterisk may be

used in its place in a ( template). The asterisk signifies that its place could be

occupied by any string of symbols which represent structure (including the "empty"

structure). Thus,
object/L (*, line.I, *

specifies any "object" which contains line.I. One example of such an object is

object. (line.I, triangle.2 (line.2, line.2, ine.l))

An asterisk followed by a slash and an ( unsigned integer )is similar to a (set

name ) followed by a slash; the structure which is assigned to it may be referred to

elsewhere by an asterisk followed by a period and the ( unsigned integer). Thus,

for each line/K (*/1, point.I, */2) do

begin create. (ine/L (0.1, *.2)); destroy. (line.K) end;

creates a collection of new lines not containing point.J. For further details

concerning the asterisk, see the discussion of the ( CL for ) in Chapter IV.

The functions "and", "or", and "not" may be used within a (template) to

indicate, respectively, structural conditions which must be simultaneously satisfied, or

are alternatives, or are forbidden. For example,

inside/L (or ( [circle/K, triangle/M], [triangle/M, circle/K]))

specifies an object which consists of a circle "inside" a triangle, or a triangle

"inside" a circle. For further details, see the discussion of the ( CL for) in Chapter

IV.



28

Recall that Boolean conditions may be inserted into a (template> by means

of a (standard test .for example, if the following declarations are made

$W-smtard test active;

cass triangle (real ara, Boolean active);

then
triangle/L (area 10)

and

triangle/L (area = 10 Aactive)

specity the same collection of members, but

ti-angle/L (area = (1A-1 active)

speif es a disjoint collection. Refer to the save and restore procedures in Chapter

Il for a detailed exanple.

The CL for

The (CL for) is used to assign vlues to the (set varable)'s which appear in

a (template); structure is asigned to the (set name 's which are followed by

slashes and to the asterisks, and values are assigned to the undefined subclass

indicators and indexes of the (undefined membe, )'s. Thus, the (CL for) is

mentially a sophisticated search procedure. For example,

for each object/K (triangle/L (0, line.l.*),Auare/M (0, line.l,*)) do (statement

seaches for any object which consists of a triangle and a square with line.I in

common. Many additianal exarnpies may be found in the Go-Moku program.

In the example above, the each specified that all possible assignments of values

to L, K, and M were to be made which satsfid the (template) ; first could have

been used instead, with the obvious significance. If the first is used, then clearly the

results may depend upoi, the order in which assignnents are made. Note also that

the statement ) could create, modify, or destroy class members; since the search

locates one after another of the examples of the (template) , the results of the for

each may also depend upon this order.

A second type of (CL for) is used to assign each element, one after the I
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other, (or the firt element, or the lat element) from a specified (set) to a <set

name ). The process is simply one of renaming sets. Thus, for example, the

statement

fo- each A in (B. C, D, El do A'=A+F;

is equivalent to the sequence of statements
B:=B+F;

C:=C+F;

D:=D+F;

E:=E+F;

In both of the forms of the (CL for), as in the ALGOL (for statement),

the (statement) following the do is not executed at all, if the conditions of the
(CL for) cannot be satisfied. Thus, the (CL for) may be used to determine

whether certain class members exist.

Syntax of the for statement

(for statement) (for clause) (statement) I( label): (for

statement ) I (CL for) (statement

set variable) ::= (undefined member) I(set name)/ i'I/< unsignAJ

integer)

( basic structure) ::= (set variable, I (set)

template) ::= (basic structure) I (basic structure)( (condition
fist ))

( condition item) (Boolean expression) I (template)

(condition list) : = (condition item) I (condition item), (condition

list)

for adjective ) : each Ifirst

(set adjective ) :: each Ifust Ilast
(CL for ) ::= for (for adjective> (template) do Ifor ( set adjective)

(set name) in (set) do

The Problem Solving Executive

Control: If

An invocation of the PSE is, as discussed earlier, siniflar to a (CL for), with

____ ___ __ ______ ______________________
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the important addition that the PSE can not only search for specified objects, but

may also construct them. This construction is limited to the construction of . -

members of goal classes from other class members. Thus, members of non-goal

a zaes must be created by declaration or explicit create statements; this is necessary -

snce the non-goal classes are the objects of the problem and are manipulated by I
the rules of the problem, rather than by the PSE. The goal classes, on the other

hand, represent hypotheses about the problem, and hence are subject only to rules I
defined by the problem solver. I

The desired goal members are described to the PSE by means of a (ten plate)

and/or members of one or moi -descriptive classes, For example, I
for firsg subgoal/I (object.J, object.K) during time do (statement)

specifies that a "subgoa" is to be constructed from the two "objects" if they exist

and can be found within the time limit, "time". In this case, the (template) f
completely describes the desired subgoal, so no descriptive member is referenced. On I
tht other hand,

for eadh subgoal/K (object.J, 0) during time ('o ( statement) I
incompletely specifies the desired subgoals: the structure implied by both the
(template) and by some descriptive member must be satisfied by each subgoal.

Finally,

for each subgoal/K during time do ( statement)

and

for each subgoal/K(value > bestval) during time do ( statemcrnt

do not make any structural restrictions on the desired subgoals; structure must be

supplied by descriptions which were createa earlier.

If it is desirable that the goals be described by members of a specific class, or
by a specific member, this can be indicated in the <template). For example.

for each description/K (subgoal/L) during tune do( statement -

or

for each description.l (subgoal/L) during time do (statement)

In each of the above examples, time is initially set to the time allowed;
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L whenever control leaves the PSE, time is equal to the remaining amount of time.

Thus, it is rather easy to devise quite complex ways of allocating search effort. For

example, the following code searches for "moves" which will achieve "subgoals" of

increasing value. After N moves have been found and placed in moveset, the

remaining time is devoted to finding "traps" (presumably very high-value goals). This

might be a section of a game player.

moveset:= empty; bestval:-O; M:=O;

for each subgoal/K (move/L,*,value > bestval) during time do

begin moveset:=[move.LJ + moveset;

bestval:= value (subgoal.K);

M:=M+I;

if M = N then go to exit end; I
exit: for each trap/K (move/L, *, value > bestval) durinh time do

begin moveset:=[move.L]+ moveset;

bestval:= value (trap.K)

end;'

Syntax of the PSE statement

(PSE statement) ::= for (for adjective) (template) during (variable)

do (statement)

Improvement

The basic operations of improvement in the Heuristic Programming System are

the construction. destruction, and alteration of members of descriptive classes. the

construction of a new descriptive member consists of the following steps: first,
recognition of a new goal member, second, creation of a descriptive member whose
structure consists of this goal; third, editing of the descriptive member to alter

structure or properties; fourth, abstraction of the descriptive member.

Editing, as noted earlier, is a process by which a description is changed without

changing the thing described. An (edit sttement ) consius of the name of the

description and either a single (replacement ) %A a block of (replacement) 's. Each t
( replacement) either assigns a new value to each instance in the description of a

I
• . {- -
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property, or replaces each instance of a given (template) in the descrption by

new structure and property values. A ( template) is deleted from a desciption if it

is replaced by null. Each ( replacement) replaces part of the description by a

reference to something which is strictly local to the description; in this way

arbitrary replacements may be made without any effect upon any "external" objects,I

but it is still possible to refer to "local" objects by the names of the corresponding

external objects.I

Abstraction is a process of changing a (possibly edited) description into an

I

"abstract" object, in which all indexes are undefined. All pointers to external
objects are replaced by pointers to local blocks, which represent the objects arnd all

IA

their properties (including subclass indicators). Essentially, this is just the process of

charngwPg a class member into a ( template> which contains only ( undefined

member) 's.

The improvement process will be illustrated by a somewhat detailed example,

the generation of a subgoal description in a tic-tac-toe program. Although the

forms the basis of the improvement section of the Go-Moku program of Chapter Ill.

Assume that the data structures of the program are "squares",' "lines",

"subgoals", and "descriptions". Each square has an integer-valued property called

"occupant" with values -X", "0" or "unoccupied". Each line has an integer-valued

property called "occupant" with values -X", "01" "unoccupied", or "blocked", and

an integes-valued properly "number" which may have any value from zero to three

(zeo, if the line is blocked, otherwise the number of occupants). Each line consists

of three squares. A description of a subgoal consists of an unoccupied square, a list

of lines and the squares which they contain, and the properties of the lines and

squares. Each subgoal has two properties, its "side" ("'X" or "0") and its

"subgoalvalue", with a value of 1!2" for somec n. The interpretation is that if the

present configuration should contain the specified lines and squares and if the playerI

with the proper side should occupy the square, then the resulting configuration ivtid

lead to three in a line in n moves or less regardless of the moves made by thek
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opponent (although if he has a more valuable subgoal, he might be able to achieve

three in a line first, and therefore win).

Assume now that the opponent, X, has just moved to square.! and that his

move has created two subgoals, subgoal.J and subgoal.K, with values 1/2 m and 1/2 n,

F which canot be simultaneously blocked. Evidently his previous move occupied the

square of a subgoal with subgoalvalue equal to the minimum of 1/2001 an, / n

The problem is to create a description of this subgoal.

The first step has already been done: the relevant objects, ,quare.i, subgoal.J,

and subgoal.K, have beei, found. The second step is to create a desciption of these

objects:

create.(description/L (subgoal/M (subgoalvalue:-if subgoalvalue

(subgoal.l) > subgoalvalue (subgoal.J) then subgoalvalue (subgoal.J)/2.

else subgoalvalue (subgoal.i)/2., side:=X, square.1, structure

(subgoal.)), st-cture (subgoal.K))));

(Note the use of "structure": the subgoal will consist of lines and squares, not of

other subgoals.) This object is a description of the situation after, rather than

before, the move has been made. Thus, the occupant of square.!, and its effects,

must be removed: /
edit description.L do

begin occupant (square.l):=unoccupied; line/N (*/I, square.,*/2):=

line.N (number:=number (line.N)-l, 0.l, square.!, *.2)

end;

Now the description is abstracted:

abstract (description.L);

This is a complete description of a subgoal which the opponer.t can achieve. A

subgoal which the program car. achieve is produced by the foowing:

create.(description/M(structure (description.L)));

edit description.M do t
begin side (subgoai/N):=O;
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occupant (line/N):uif occupant (line.N) =X then 0 eke if

occupant (lineN) a 0 then X else occupant(line.N);

occupant (square/N):- if occupant (square.N)-X then 0 else if

occupant (square.N) - 0 then X ele unoccupied

end

Syntax of ediltin

(member ) ::= (defined member) I (undefined membcr)

(property replacement ) ::= ( property name ) ( member)):=

(Boolean expression) I (property name) ((member))::

(arithmetic expression

(structural replacement )::- (template) :-null I(template):=

(new description list)

(replacement )::- (property replacement ) I (structural replacement )

(compound replacement ):: (replacement ) I (replacement >;

(compound replacement)

(edit block) ::= (replacement> begin (compound replacement) end

(descriptive member) ::= (descriptor name> (index) I (descriptive

member) (index)

(edit statement) :: edit (descriptive member) do (edit block)

Syntax of statements

(statement) ::- (unconditional statement) (conditional statement) I

(for statement) I (PSE statement) I (creation) I (destruction) I

(edit statement)



CHAPTER WII
A SAMPLE PROGRAM

The Go-Moku program is a compromise between the conflicting objectives of

simplicity, so that the program will be readily understandable, and complexity, so

that it will be a significant demonstration of the power of the System. The program

tends rather strongly toward complexity; this is more a reflection of the complexity

of the ideas behind the program than of the difficulties in expressing those ideas. A

brief description of Go-Moku is given below, followed by the description and text

of the program. More details of Go-Moku may be found in Lasker (1960).

* D-scriptlon of Go-Moku

Go-Moku is played on a st.ndard Go board, i.e., on the intersections of a 19

x 19 grid (see figure i, in which many game segments are superimposed). Black and

white pieces, called stones, are placed alternately until one player has attained a

winning combination, which cc;, sists of precisely five stones in a row (horizontal,

diagonal, or vertical). Pieces may not be moved, and all pieces are equal, which

makes the game somewhat easier to program than chess or checkers. Certain

elementary strategies are rather obvious- For example, even if white has the move in

the game illustrated in the upper left, black has a certain win: if white occupies

B18, then black occupies G13, and vice versa. Similarly, if black has the move in

the iower left, he can force a win by occupying either C4 or G4; he is said to

have produced an "op ru four" (i.e., four pieces in a line which can be extended in

either direction to a. winning "five") from the "three". A third simple example is

shown in the middle of the diagram. Here, if black has the move, he can occupy

H8; white cannot block both four's simultaneously, so black must win. A slightly
more complicated example is shown in the lower right, If black occupies P3,

creating a four-three, then white will be forced to occupy P2; black can then

produce an open four by playing R3.

The game player tests for each of the above mentioned winning combinations

in the evaluate procedure. The only complication which arises in the coding is due

to the necessity for determining whether the four produced according to the fimal

35
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example is, in fact, open; reference to the diagram and experimentation on a board

or with pencil and paper will undoubtedly make the coding easier to follow.

One special rule of the game, which adds greatly to the complexity of the

play, is illustrated in the upper right: two three's which could become open four's

cannot be produced by a single play, unless that play is necessary to block the

formation of a five on the opponent's next move. Thus, black cannot occupy P15.

If white were to occupy P16, P17, P18, and P19, then it would be permissible for

black to occupy PIS. This rule is necessary in advanced playing, since otherwise

black - the first to move - would very quickly be able to develop two-two

combinations which would eventually become open four's.

Description of the Go-Moku Program

The simplest data structure in the game player is the point, i.e., the

intersection of two grid lines. This is too simple a structure to manipulate directly;

the line - five points, at least one of which is occupied, which could develop into a

winning combination - is much more useful. Lines are, in turn, combined to form

intersections - two lines which intersect in an empty point. Both lines and

intersections are further classified according to the number of occupied points. For

example, again referring to figure 1, (B4. C4, D4, E4, F4) and (C4, D4, E4, F4,

G4) are both objects of type line.3; they form an intersection with the empty point
C4. The intersection object is, then, described as intersection.3.3.1 (C4, line.3.J (B4,

C4, D4, E4, F4), line.3.K (C4, D4, E4. F4, G4)), where I, J, and K are the
indexes of the objects within their classes, and the B4. C4, ... represent theL/
appropriate points (actual coding would, of course, refer to point.L, for some L,
rather than to the grid coordinates, but this would be rather lengthy and confusing

in these examples). Similarly, in the lower right of the diagram, there is the object

intersection.3.2.1 (P3, line.3.J (P6, PS, P4, P3, P2). line.2.K (P3, Q3, R3, S3, T3)).

A subgoal consists of an unoccupied point and a number of lines and

intersections; occupying the point will either produce a configuration which is,

supposedly, desirable, or it will block the opponent's attainment of that -
configuration, depending the "side" of the subgoal. Descriptions of new subgoals art

1* ____ _ _"1

_ _ _ _ _
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produced whenever the opponent makes an unexpected move which results in the

attainment of a favorable position for him.
The mAjor procedures of the program are analyze, which updates the data

structure when a move is made, evaluate, which checks for the presence of certain

obvious traps, generatemove, whch generates a set of plausible moves, and minimax,

which produces a ninimaxed value for a proposed move. The main pligram invokes

generatemove to produce a set of moves, invokes minimax for each move to obtain

its value, makes the best move, obtains the opponent's reply, and, if necessary,

constructs a new subgoal description.

The generatemove procedure constructs subgoals, each of which indicates a

plausible move and its estimated value. The minimax procedure either invokes

generatemove to obtain a set of continuations or constructs subgoals to determine I
the value of a terminal position. Both generatemove and minimax are given time

limits within which to do their searching and construction; this is necessary for

realistic operation of the program, since subgoal descriptions can involve arbitrarily

large numbers of lines and intersections, with many relations between them, so that

the time involved in searching for possible instances of subgoals could be very large.

The minimax procedure allocates time to the exploration of each continuation in

proportion to its estimated value; the time spent in generating the move sets also

decreases with increasing depth of exploration of the tree of possible moves. This

has the following advantages: there is more chance of immediately recognizing a

valuable but rare or complex position; searches further down in the tree can take I

advantage of subgoals constructed at earlier positions; the alpha-beta cutoff is more

efficient since move. are more accurately ordered; and, finally, the most time- is J

spent on those positioi - which are mc i likely to arise in the actual play of the

game.

The goal of this program was, of course, to demonstrate the Heuristic

Programming System, so a bri f comment on its power is appropriate. First, the

flexibility and efficiency of representatiLn of board positions and subgoals is a major

advantage of the System. The fact that lines and intersections can be represented as
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blocks of pointers, rather than as lists, represents a storage savings of about fifty

percent The fact that complex entities, such as intersections, can be readily

represented explicitly leads to great savings in time: th- entities are created once,

but each may be referred to many times while searching for subgoals. Koffman's

program (1967) and Murray and Elcock's program (1968) involve complex subgoal

descriptions, but each represents intersections implcitly (points and lines are the

only explicit entities), so that, for example, searching for instances of the
t[ configuration in the i, wer right of figure 1 is a non-trivial operation. Second, the

distribution of playing time within the program is very easily and flexibly

controlled; the rather complex scheme discussed above was implemented by means

of only a few lines of code. Other schemes might be substituted with very little

effort. Third, the relatively simple implementation of improvement within the

program is due in part to the facilities provided by the system, and in part to the

representation. The method of improvement is similar to that used in Koffman's

program (1967) and Elcock and Murray's programs (Elcock and Murray, 1967, and

Murray and FIcock, 1968).

A fourth peint involves the point that use of a minimax strategy greatly

increases the power of a game player. The above mentioned programs suffer from

the fact that the subgoals which determine their moves are descriptions of
configurations for only one side (cf. Koffman, 1967, pp. 76-78). For example, in

the configuration in the lower left in figure 2, assume that black, the program, is

to play. If the move is chosen by considering each side's stones in isolation, hla',

would, presumably, place a stone at E6; white would reply at E2 and win on the

next move. Such a foolish move on the part of black would, of course, be avoided
by even a novice human player - not because his list of subgoals is more complete,

but because it is supplemented by minimax. Rather clearly it is impractical to make

use of subgoals which ,nclude constraints on both sides; the subgoals would be far

too numerous and complex. Therefore, the claim that minimax greatly increases the

power of the program seems fairly reasonable. More to the present point is the fact

that the minimax was very easily, yet efficiently, implemented using the facilities of

I'
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the Heuristic Programming System. When a point is occupied, all class members

which depended upcn it being unoccupied have their "active" property made false;

this property is checked in all templates, and "inactive" 7lass members are rejected.

When the point is agaii unoccupied (by backing up in the minimax) these members

are made "active"; if it were not for the pointers from each object to the objects

which contain it, this would be extremely time consuming.

The most interesting parts of the program are presented in the last few pages

of coding, which involve the choice of moves and the generation of new subgoal

descriptions. The coding of the rest .,f the program, with the possible exception of

generatemove, is rather dull.

A final note on the storage requirements of the program: each move can create

-t most 20 lines and 1,200 intersections, which wou:d require roughly 16,000

pointers; this is assuming many stones of the same side in the vicinity, and none of

the opponent's stones. On a computer with 250,000 available pointers (an IBM 360

with !,000,000 bytes, or 3 CDC 6600 with 31,000 words) this would allow a

minimax up to 15 deep, which is quite adequate. (Actual moves tend to destroy

roughly as many pointers as they ireate, so that the only space consuming

operation is the minimax, which can orJy inactivate structures.)

\ _j

I I-
I I
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The Go-Moku Program

begin comment the complete Go-Moku program, except for input/output routines

(input, nextmove, displaymove, victor, defeat, tie), is given below.

dss line 14,](integer direction: =direc,ct: =0, occupant: =present, structure: =5,Boolemn

active: =true),

point [441](integer occupant:=empty, ct:=0,structure:=0, real subgoaivlue, Boolean

active. =true);

unordered class intersection [4,4,] (integer structure:=3, ct:=O, owner:=present,

Boolean parallel, activc:true);

goal class subgoal (integer side, ct:=O, Boolean backedup:=false, active:=true);

descriptive class description;

standard test active:

set tempset, set, pushdown;

zankhi by subgoalvalue set moveset:

integer i, J, K, L, M, N, P, Q, base, empty, mine, his, border. present,

other, direc, west, nw, north, ne, maxdepth, maxbreadth;

real R, S, T, U, V, alpha, beta, C. maxcfvt, rni;*,in , learningcost, testcost;

switch Sl:=force, force, lose, select;

comment the pararne. madepi, maxbra-dh, C, maxncost eand mnitme control .

the minimax proceduee by determning, respecttvely, the maximum, depth of search

(forced moves are not coup.led). the maximum breadth, the fractin of the available

time to be spent on he generation of yr ove, tho maximum aenotont of time for

each move, and the minimu-n amount of time dur~ng which further exploration, is

feasible. The pa- ;meters learningcost and tesicost determine the amount of tirne to

be -pent after each rvwve in analyzine the opponent's move and, if neces;ary,

constivcting a new subgoa?. All the preceding parameters are read in by the irput

procedwe.;

Bookan procedure legal (move, play);:

value move, play, integer move, play;

begin integer 1;
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comment this procedure returas the value true if move is a legal move for the

player whose side is play A move is illegal if and only if It would create two

threes, each of which could become an open fbur, and it does not block the

forruoion of a five on the opponent's next move.;

legal:= true;

for first line.4/I(occuspant*play,*,point.move,*) do go to exit;

for first intersection.2.2/(owner=playA1 parallel,point.move,O)do

legal: --falw;

exi-end legal;

integer procedure evaluate (M); integc- M;

begin integer 1, J, K, L, N, P, Q, R, S, T;

comment evaluate will determine whether a forced win is possible, or a blocking

move is necessary, or a loss is inevitable, or If there is no o3viously forced move.
I

The value returned will be 1, 2. 3, or 4, respectivey. M will be set equai to the
index of the forced move, if there is one. First evaluate checks to see if there is a

; Jour.;•

evaluate:=4;

for first li.,e.4/1 (side present.*, point/M (occupant=empty),*) do

begin evaluate:=l; go to exit end,;

cotmment now see if he has any immediate wins.;
f

for first line.4/l (*,pont/M(occupant=empty),*) do

begin evaluate:=2;I comment see if he has other foum.;

for first line.4/J (*.pintK(occupast=empty),*,M*: K) do evaluate:=3;

Lgo 40 exit

end;

comment now see if a win can be forced on the next move. Thiy is done by first
s( rching for intersections with three occupied points. If the lines in such an

Intersection are in the same direction then occupying the empty point must produwe

an open four. ff the lines are not in the same direction, then occupying the empty %
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point must produce two fours. See the upper right and upper left examples in figure~~2.;"'

for each intersection.3.3/l (owner = present, point/M,O) do if legai (M, present) then

begin evaluate:=i; go to exit end;

comment now block any such move that he might make;

for each intersection.3.3/i (point/M,*) do if legal (M, other) then

boon evaluate:=2; go to exit end;

comment the final forced win to be considered involves a three-two intersection. If

the lines are not in the same direction, then occupying the intersection will produce

a four and a three. If, in blocking the four, the opponent does not create a four

of his own, then the three can become another four which will lead to a win .f it

is open. Hence, two conditions are necessary for a forced win. the opponent's move

does not create an immediate threat, and the four which is ultimately produced

must be open. A preceding comment dealt with the second condition: an open four

can be produced by occupying the intersection of two three's in the same direction.

Hence. if there are two two's in the same direction which intersect a three in one

,.oint an4 each other in another point, then the second condition is satisfied. See

the e.-ample in the lower right of figure 2.;

for ewi intersection.2.2/I (owner-presentApa,,allel,poiwt/J, line.2/K, line.2/L) do

for each intersection.3.2/N (point/M, line.3/P (*, point/Q (occupant=empty),

, point/R (occupant-empty), *), line.2.K, J*M) do

begin for first intersectin.3.2/S (point.M, line.3.P, line.2.L) dc

begin comment check to see if he will have an immediate :hrea.;

for first Une.3/T (occupant=his, , or ([point.QJ, (point.g]). ) do

go to next

end;

evaluate:=l; go to exit;

next: end;

exit: end evaluate;

___ ___- 1
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Boolean procedure analyze;

comment base is the index of the position which has just been occupied by a

present piece (where present is determined outside the procedure to be either mine
or his). Tht: procedure saves ah' classes within which point.base previously appeared

and then, if the game is not over, finds all sets of four points which can be

combined with base to form lines of one, two, three, or four points. A check is

made for the edge of the board and, because a winning combination is precisely

five in a row, a check is made to ensure that there is not an adjoining piece which

would form a six. Analyze constructs all the intersections containing the newly
t

created lines, where an intersection is defined to be a class consisting of an

unoccupied point and two distinct lines which contain it The lines may have other

points in common, in which case parallel is true Analyze has the value true if a

five in a row has been found (in this case the lines and intersections are not

created), and the value false otherwise.:
begin integer I, J, K, L, M, count; set tempset;

comment save the cover (ie., all the containing objects) of point.base. Refer to the

save procedure for a detailed explanantion.;

save;

occupant (point. base): =present;

comment iterate over the four directions in which straight lines can be formed;

for direc:=west, nw, north, ne do

begin comment now iterate over the five lines through point.base in the current

direction;

J:=base;

T for 1:=1 step I r 5 do

begin if occupt..,, (point.(J-direc))f present A occupant (point.(J + 5 X direc))

0 present then

begin comment the ends of the current line are not occupied by present.

so a winning line might be possible.. Now look at each point of the

I'I
___ _ .~
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flve in the line:

tempset:- empty.

count:O;

K:-J;

for L:=I step I until 5 do

beginM:=occupant(point.K); if M=presentthen count:=count + 1

else if M * empty then

begin comment current point is either an edge or an other piece-

Go to L2 if all the other lines will include this point, otherwise

go to LI;

if L> I

then go to LI

ese go to L2

end;

tempset:=tempset + Ipoint.K l;

comment add to set of points and go to next point;

K:=K + direc

end L;

if count=5 then begin analyze:=true; go to frish end

create.(line.count/L(structure(tempset)));

comment now see (f any of the points In the line are in other

lines. If so, create new classes which represent intersections of

lines In unoccupied points;

for each tempset (4, point/M(occupant=empty),*) do

begin integer N, P, Q;

for each line/N/P (P-L,occupant=present,*,point.M,*) do

b.gin comment create a new intersection. The first two

i!ndexes represent the number of occupied points in each

of the two directions. .The first component is the point

at the Intersection, the next two are the intersecting
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lines. If the lines are in the same direction, parallel is

if N> count then

create.(iatersection.N.count/Q(paralel: =

direction(line.count.L)mdirction(line.N.P),

pointM, line.N.P, line.count.L))

else

create.(intersection.count.N/Q(parallel :

direction(line.count.L)=direction(ine.N.P),

point.M, line.count.L, line.N.P))

end creation of intersection

end current mtersecting line

end current line, so shift line in current direction.:

LI: J:=J - direc;

end 1;

L2 " end direction;

analyze:=flse;

finish:end analyze;

procedure save;

begin set A, temp; integer 1, J;

comment save will inactivate the data strmctures which depend upon point base being

unoccupied. A slight complication is Introduced by the rule that a winning linej consist of precisely five stones In a row - it is necessary to inactivate all lines

occupied by the present player which would become sxes if point.base were
[ occupied. Thjis is accomplished by adding these lines to the cover of point.base, so

that they will be properly reactivated by restore.;

for l:=west, nw, north, ne do

for each Iine/J(owner=present, direction=l, or ((*.point .(base+I)),

ipoint.(base-),l)) do cover (point.base):=cover (point.base) + tline.Jl;

.
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comment save point.base in pushdowi .i, that Its cover may be retrieved by

restore.;

pushdown:=pushdown + [point.base];

comment now inactivate the cover, to prevent the objects containing point.base from

satisfying a template. This amounts to the temporary destruction of the objects. The

reference count. ct. is increased, so that c will be the number of times each object

was inactivated. It mnust be restored the same number of times to again become

active.;

temp:=cover (point.base);

for each A in temp do

begin temp:ftemp + cover (A) - (A);

active (A):ffalse;

ct(A):=ct. (A) + 1 end

end save;

procedure restore;

begin set A, temp; integer I;

comment restore will remove the last point from pushdown, destroy the active

objects which include it. ard then reactivate the structures which it inactivated, thus

essentially reversing the most recent save operation.;

for first pushdown (*, point/I) do

pushdown:=pushdown - [point. ;

temp'cover (point.1);

for each temp(*/I, A/ ,I) do destroy.(A);

for each temp(*/I, A/ (hctive),*) do

begin ten.p:-temp + cover (A) - [A];

ct (A):=ct(A)-I;

if ct (A) 0 then active (A):=true end
end restore:
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procedure generatemove (limit, set, number, total);

- I rankhi by subgoalvalue set set;

real limit, total; integer number;

begin comment generatemove finds moves and places them in set. The aumber of

moves is returned as number, and the sum of their subgoalvalues as total, The

available search time, limit, is divided among five ranges of values of subgoals. Each

subgoal has the value ussigned to It when It was described, or a value deter,ned

b' minimax. In the latter case. backedup Is true The subgoalvalue of a move Is

either she value of the subgoal within which it appears (if the value Is minimax or

if the move appears in no other subgoals), or the sum of the values of the two

most valuable subgoals within which it appears. This latter process gives a better

estimawte of the value of a dual purpose move than simply choosing ;he highest

value: e.g., if two subgoals are each k moves from victory, and hence have value

1/2 . and cannot be simultaneously blocked, then Kogether they force a position k-I

moves from victory, with value 1 12 k + 1 12 k 1 12 k-1.

integer 1, I, K; Boolean duplicatefound;

real time, maxtime, minimum;

rankhi set tempset;I number: =O; total:=O.:

time =limit X.2;

for minimum:=.O00l,,O0l,.Ol,.05 do

begin comment look for subgoals with values at least minimum.,-

maxtime:-time;

for each subgoal/l (point/J, *, value >" minimum) during maxtime do

begin if leg.l (1, present) then

temset:=subgoal.Il + tempset end;

limit:-limit - time + imxtimn

end;

comment generate levs valuable goals, until either time runs out or the number of

moves becomes large.;

__ _ _ 1



50

for each slibgoal/I (point/i, value < .0001, number < 2 X maxbreadth) during

limit do

if legal (J, present) then

begin numbcr:=nurnber + 1; tempset:=tempset + [subgoal.IJ end;

comment now compute the subgoalvalue of each point and put the point in set.;

set:= empty; number:0O;

for each tempset (subgoal/I (point/i,, *, number < maxbreadth) do

begin duplicatefound:=false;

findval: ternpset:=tcmpset - [subgoal.I];

subgoalvalue (point.A): value (~subgoa.',);

if backedup (subgoal.I) then

for each ternpset (*, subgoal/K (point.], )')do destroy. (subgoal.K)

else for each tempset (*, subgoal/I (point.J, ),)do

begin if b-ickedup (subgoal-l) then

go to 1findyal

else if -1 duplicatefound then

bggin duplicatefound:= true;

subgoalvalue (point .1): =subgoalvalue (point.J) + value( subgoal.I)

end,

dcwtoy- (subgoal.1)

end;

set:=set + (point.J];

number:=number + 1:

total:=total + subgoalvalue (point.J)

end

end generatemove;

procedure minirnax (bestval, depth, cost);

valtme depth, cost, real bustval, c~ost; integer depth;

begin comment mtninax is a minimax procedure modified by alpha-beta cutoff (see

discussion of search. Thr value of the mov~e which occupies pointbase wils' be

returned as bestial t- maximumn depth and cost are depth and cost, respectively.;
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rankhi by subgoalvalue set moveset;

integer 1, J, K, L; real Q, R, newcost;

switch $1:=win, block, lose, more;

comment save the index of the move..

L:=base;

comment make the move and switch sides.;

analyze;
i! l:=present; present- =other; other:=;

comment see if the next move is forced.;

go to SI [evaluate (base)l;

win: bestva:--if present = mine then I. else 0.:

go to exit;

lose:bestval:if present mine then 0. else 1.;

go to exit,

comment if the next move is a forced block, then get the value of the best reply.

Note that depth is not decremented.;

block:minimax (bestval, depth, cost); go to exit;

comment the next move is not forced, so check to see If the maximum depth has

been a!tained or if there is insufficient time to explore more deeply..

nmore:if depth 0; 0 A cost >mintime then

begin comment generate a set of feasible moves. The global parameter C determines

the fraction of the total time to be spent in generating the moves. I is the number

of moves generated. Q is the sum of the values of the moves.;

R:-cost X C;
~generatemove (R, moveset, I, Q);

comment compute the time remaining divided by the total value of the generated

moves..,

R:=(cost X (|.-C))/Q;

comment now determine the minimax value of each generated move, allocating time

to each move In proportion to its value.:
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if 1 0 then bestval:= 0. else

begin if present = mine then

begin bestva :=0.;

for each rnoveset (*, point/base,*) do

begin minimax (Q, depth-I, R X sub,,Avalue (point.base));

if Q > bestval tl'-n bestval:=Q;

if Q > beta thcn {o to exit

end;

beta:=bestval

end

else
begin bestval:=l "

for each moveset (*, point/base,*) do
begin minimax (Q, depth - 1, R X subgoalvalue (pohit.base));

if Q < bestval then bestval:=Q;

if Q < alpha then go to exit

end;

alpha: =bestval

end

end

end eniei iia Q et , ugavle(on~ae)
else

begin comment the kaximum depth has been attained, so evaluce the present

position.:

generatemove (cost, moveset, I, Q);

if I = 0 then bestval:=.5 else

begin for first moveset (point-/,*) do

bestval:=subgoalvalue (point.i);

comment if there are two subgoals of equal value but opposite side,
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cicarlY the one bejonging to the side with the move is the one which should

determine the value of the position. The following code ensures this..

movcset:=moveset - point.lI;

check: for first subgoai/J (poixlt.l,*) do

K:=sidc (subgoai.J).

if K *A present then

for first moveset (pointll,*) do

if subgoalvalue (point.!) = bestval then go to check;

comment the value now may' vary from 0. to L.. It must be adjusted to

indicate the value to the program's side.;

bestval:-if K =his then.

.5 - bestval X .5 else

.5 + bestval X .5

end

end evaluation for depth = 0.;

comment now the minimaxed value has been d -terrnined. Restore the previous board

configuration and side.,-

exit: restore-,

l:=present; present:=other; other:

comment attach the Ininimax value to the subgoal which contains point. L, so that

the imp~roved value may be used if ihis subgoal is referred to later.;

for first subgoaM/ (point.L, *) do

v-'.-. (subgud.)-.'gs2. X bestyal 1.-

backedup (subgoal J):=true

end minimax,

comment fh~s is the initializ-ation section of the player It creates the initial board

configuration of occupted points, set., various constants, and then goes to the move

seciontomake the choice of move. The board' is considered to be 21 X 21,

which includes a border of points occupied by a special piece Points are numbered
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from 1 ru 441, 4arting from the southwest (lower left) corner and increasing from

left to right and bottom to top First read in the parameters ,naxdepth.

nax breadth. C. mnaxcost, mintime. learn ingcost, and testcost. and initial subgoal

descript io ns..,

input;

comment svt the directions of possible lines:

west:=-1 ;nw:=.20;north:=2l ne:=22;

empty: 0O;commuent point unoccupied:

niine:1 ;commecnt I occupy, it,

his:=2;conient the opponent occupies it;

border:=3; commnent off the board;

comment set the borders (interior initialized to empty by declaration),

for [=1 step I until 21 do occupant (point.l1): =border;

for L:=421 step I until 441 do occupant (point.I): =border;

for I:=22 step 21 until 400 do occupant (point.1): border;

for L:=42 step "I until 420 do occupant (point.]): =border;

comment next move will obtain the next move in the initial configuration. It wvill set

base to the index of the point, present to the side that moved, other to the

opposite side, and return with the value true If there are no -moves, it will return

with the value false, present will be set to the side which moves next, and other

will bc set to the-S opli-osite SidE.;

next: if nextmove then

begin analyze, displaymove-;

comnment analyze will create a data structure representing the lines and

intersections which are formed by the move just made. Displaymoi'e will display,

the move.:

go to next

end;

comment at this point the initial data structures ie., the lines which have at least

one occupant and which may develop into winning combinations, and the
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inicrsecti-tvn f these lines on emrpty points have been constructed. Th following

(od:. plays the game..

if picscnt = hib then .o to hismove;

comment cvaluat' returns a I if a win is crtaiaj, a 2 if a blockirg tnwc is

Mcccssart, a .3 ij o !oss is certain, and a 4 otherwise The switch g:es to force.

f1rcc, lose. and select, respIctIl'ely, If a move is forced. base will be set to its

index..

loop: go to SI levaluate (base)):

comment invoke defeat if a loss is inevitable.:

lose: defeat:

comment now generate feasible moves. Procedure generatemove returns the moves in

moresct. and their number in K. R is the time limit and T is the sum of the

values of the moves.;

select: R:=maxcost X C;

generatemove (R. moveset, K, T);

if K = 0 then tie;

comment now use minimax to choose the best move. The time to be spent on

craluating each move, T. is proportional to its estimated value. The search depth is

maxdeprh The minimax value after occupying each point is returned as V V

represents the value of the position to the program, with 0. as tiorst (i.e, he has a

, sure win) and I as best (the program has a sure win). A subgoal value for a

position is the value for the side which can, in one move, achieve the s f

the mosi valuable subgoal has the value SV then V.5 - .5 X SV if he achie'es it
and K= .5 + .5 XSV if the program achieves it. Alpha and beta are the cutoff

values (see discussion of minimax in Ghaoter I).,

T:=(maxcost X (I.-C))/T;
~~alpha:---.. beta:=l.; R:=0.;

lor each moeset (*, point/base. *) do

begin M:=base;

minimax (V, maxdepth, f X subgoalvalue (point.base));' _I
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if V > R then begin R:-V; K:=M end

end;

base:=K;

comment display the move. The procedure uses base and present to determine

the poinit and side.;

force: displaymove;

comment now update the data structure and invoke victory if the gamc is

over.,

d analyze then victory;

comment get his reply and display it;

hismove: if -1 nextmove then tie;

display move;

comment generate a list of his expected replies.;

R :learningcost;

generatemove (R, moveset, K, T);

conment see V' the actual eeply was expected.;

for fust moveset (*, point.base, *) do

begin comment yes, so prepare for the next move.,

go to cleanup

end;

eom"a.cn hi -reply- wai i hexptc'Id, so decide whether he is about to acdieve

an unforeseen subgoal. This will be the case if in making this move. he

prepares for two- subgoals, both of which cannot be avoided by the program.

Otherwise, his move was either a mistake or was part of a subgoal which

cannot be foreseen even after his move. In the latter case, the subgoal wilt be

discovered later.

First, make his move.,

analyze,

present:=mine;

other:=his;

R:=testcost;

generatemove (R, moveset, K, T);
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comment nowt find the two) suhgaals. if theY exist.

J.=0.

for each subgoal/I (side =his, *, point.base, 0) do

if j zf 0 then go to both else JA;,

comment ij control i-caches this point, the two subgoals could not be found. so go

ont to the ?i('xt mnove.,

go to release;

comment two subgoals containing /)ufit. base were found, with indexes Iand J,

which wvere evidently the comnponen.. of- thc newt subgoal which inust now- he

describcd. To visualize the present situation and subsequent operations, consider the

central confliguration in figure 1. Thcre are two threes: which intersect at 118,

Alssume' that the onty subgoal description consists simnply of a four, Then, if the

oltionent Ls black and he has moved to HS8 (i.e.. point base is 1H8), the program

finds that his move was not on the list of generated nioves, but two subgoals have

notw been formed (i.e.. the two four's) The subgoals are subgoal.I (linc.4-X) anid

su4bgoal.J (line4 Y,. for suitable X and Y (ignoring points for the sake of brevit.

The oblectir vTe to create a subgoal consisting of the intersection of two thre .

The first operation is to create an intersection for each line of subgoal. I which

intrsct a line of subgo)al.J in point, base. Note that point base will be unoccutiled

in the completed subgoal description, so that lines consisting of point.busc and four

unoccupied points mnust be deleted.;

both: tcrnpsct:=einpiy,

for each subgoal.1 ( Iine/K/L4 *point. base. ), K > I) do

for each subgoal.i (*. linc/M/ N(*,poin t. base, ),,NI > 1, L *N U KC M)]
do

if K IsM then4Ibegin create. (intersection. K.M/P (point.base, Iine.K.L. line.M. N
para1ie): =direction (Iine.K.L)=direction (lin.M.N))):

tempsct:=temnpset + I intersection.K.M.P)

end
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else

begin create. (intcrsection.M.K/P (poinit base ,line.M.N, line. X.L,

paralel: =direction (line.K. L)=direction (line.MN)));

tempset:=tempset + (intersection.M.K.P]

end;

comment to continue the example, intersection.4.4.1' (point.base. line.4.X linc.4. ')

has been created and put into tempset. Now create the new description.:

occupawt (point.base): =cmpty;

create. (description/Q (subgoal/N (side:is, point.base, structure (subgoal-l), structure

(subgoal.3), structure (tempset), value:=if value (subgoal.l) < value (subgoal.J)

then value (subgoal.l) X.5 else value (subjpal.Y) X.5)));

comment the result now is description.Q (subgoal-N (point.base, line.4.A, line.4. Y,

intersection.4.4.P (point.base. line.4.X, line 4. Y))). Now the description must be

edited to reflect the fitt that, in the desired description, point.base will be

unoccupied..

edit description.Q do

begin comment fix up intersections.,

intersection/K/L/M (1/1, line /L/J (4, point, base, *), L > 1):=

intersection.K.(L-l).M(*. I ,line (L-1 ).J;

intersection/K/l./M(*/1,line/K/J (*,point.base, *),*/2,K>L):=

intersection/K/ L/M( / ,line/ K/J(*,point.base,* ),*/ 2,K> ):-

intersection.L.(K-l).M(*. 1,0.2, line.(K-l).J));

intersection/K/L/M(* ,point.base,*):-nuU;

comment now delete extraneous lines.,

line/K/L( ,point. base,*) -null;

comment the example is now description. Q (subgoal. N (point.base,

intersection.44P (point.base, line.3.X, line.3. Y))), with all other points removed

fron the description.;
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end;

comment abstract the description. Copy it. then use the original for a description of

his subgoal and the copy for a description of mine.;

abstract (description.Q);

create. (dcscription/l(struct urc (description.Q))).

edit description.l do

begin

owner (intersection/ h/K/L): =mine;

occupant (line/J/K):=mine

end;

comment everything has been done except for destroying temporanr structures:

for each set in tempset do destroy.(set):

occupant (point.base):=his;

go to release;

comment now update the data structure for his movc.:

cleanup: analyze.

present:=mine; other:=his;

comment the structures which wc,-e inactivated by analyze will no longer be needed.

so i lcase their storage.:

release: for each set in pushdown do destroy.(set);

go to loop;

end Go-Moku program

L
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CHAPTER IV

THE lHEURISTIC PROGRAMMING SYSTENI:I

(h;'"tcr II piescited a geicird description of the Systci-. this Chapter contains

more detailed infonua;io,. which might be of use in program optimization, or in

the implementation or alteration of the System. Since ths is intended for the

knowledgeable user, the presentation is fairly brief.

Dhta Structures and Data Managenent

1he Ideas presented in this section are applications of the facilities of a general

system described by Ross (1967b)-

Recall from Chapter 1 that there are two types of structures within the

System: blocks of contiguous storage of various sizes (representing class headers,

class members, and set headers), and simple lists linking the blocks together. In

addition, thtre are blocks, similar to class members, represcnting the results of the

"and", "or", and "not" functions. Blocks have fixed structures which are determined

at compilation time. List elements are simple in structure: each consists of a flag

telling whether the element is the last of the list, a point'r to the next element (if

the clement is not last) or to the block containing the list (if the element is last),

and a pointer to a block. Note that lists do not point to other lists: thus. there is

never any problem in determining whether a list eleiment can be returned to free

storage. Neither a "garbage collection" routine nor a refertice counter is necc-cs's','

in the System, which greatly simplifies Data Management (ibid., p. 485). List

elements are obtained .from, or returned to, a number of "zones" (blocks of

contiguous storage) containing only list elements, as in the "SPEC" strategy of Ross

(ibid,) . This increases the speed of Data Management without causing a serious

problem of storage fragmentation. Blocks of various sizes are obtained from a

number of zones containing lists of blocks of various sizes, as in the "REG"

strategy of Ross (ibid)- This tends to minimize storage fragmentation at some cost

in time. However, list elements will generally be obtainea from, or returned to, free

storage much more often than blocks will be created or destroyed, so that the time

60
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spent should not be signifi.-art.

Ili the escni that free storage his been exhausted. the Dita Mani~xenicnit

Routine invokes thic irecl-nntion drocedurc. This procedure aborts the programn with

anl error niessagc; 1hi user may substitutc his own proccdure, and takc any desired

at ion. I 'or example. the proced ure niiyght destroy Al %tsuboal itivintuers and

descriptivc members with value less thin somec constan'. For fort her details onl

reclamnation. see the section onl -ystem pzvccduxes.

Muore About the

Probilam Solying Executlvr

The PS L and Ohe first forin of the CL for (involving the template) arc

exceedingly complex scaich niect'nisrns, which are implemented via a single

procedure with multiple entry points, a~s shown in the flowcharts of figulres 3-(). The

purpose of the pr(-Ccdure is to find in object (or collection of' objects) mnatching a

template. The tenipl3te may be produced by the compiler, or it mnay be a

decscriptivc iniinbef, or it may be prodoced by the conjunction ofa
coinpiler-prod uced template and a descriptive member (cf. the discussion o' the PSI:
in Chapter 11). In anry case, a ternplate is simply ii descrirtion of a collection of

objects. it consists of linked blocks, each containing a description of some vilent-n

The search procedlure matches an object to thle template simply by tra''hing through

the blocks and thle structure of the object, assigning values to set variables and

checking to see that eachi condition is satisfied.

DU thle following description of the seaxch procedure, the object and

tvimplate wi.1l sometimes be referred to as if they were in their original

one-dimensional string representation- and sometimies as if they were in

two-dimensional tree representation- There should be no confusion as to what is

mecan!.

The general plan of the search is to proceed from the left end (of the string

representation) of the template to the right end. Each time a decision has to he

made (eg., what index to assign to an undefined member, or what value to assign
to an asterisk), pointers to the decision pointi in the template are put into two
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stacks. callcd "pushdown" and "set" in the flowcharts. Each :ime a mismatch is

discovered, ttc search begins again from the topmost decision point in pushdown,

or, if the,-e is none, the search procedure exits with an indication of failure.

Pushdown is local to the search procedure, which calls itself recursively. Set is

external to the p-ocedure, so that when a match is finally found, it contains the

location of all the decisions that were made; set is used by the foreach to make all

the other possible decisions.

The proceoure is reasonably straightforward; the flowcharts appear complex

because of the many differet cases which arise. Set names followed by slashes, or

asterisks followed by slashes, or unpaired asterisks, are initially assigned a null

structure. which is then increased by one set after another. Thus, given the template

A/K (*,B/L)

and the object

A.l (C.J (B.M), B.K)

the asterisk is initially assigned the empty string, which leads to a mismatch

between B/L and C.J. Then C.J is assigned to the asterisk, and K to L, which is

successful. Paired asterisks i.e., pairs such '.hat parentheses between ihem are

balanced - are treated differently, shc., they may represent strings which are not

parenthetically balanced. Thus, given the template

A/K (*, B/L, )

and the object

A.I (CJ (B.M), B.K)

the result is to eventually assign "C.J(" to the first asterisk, -),B.K" to the second,

and M to L. Tht.s, the left member of a pair of asterisks is assigned progressively

longer strings, without regard to parenthesis level, the earlier mentioned set variables

are assigned strings with regard to parenthesis level. Undefined members are assigned

indexes and/or subclass indicators as shown above.

A small complication arises if the PSE has been invoked and an undefined

member which is a subgoal is enccuntered in the template. If a suitable subgoal has

previously been constructed, it is assigned to the undefined subgoal. If not, then a
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subgoal must be constructed - i.e., a class member must be created and must be

assigned structure. Structure can be assigned only if there is a complete description

of it: hence, it may be necess,-v either to refer to some descriptive member or to

form the conjunction of a descriptive member and the template. In the latter case,

the search procedure is called to ensure that the result will not impose any

contradictor) conditions upon the subgoal being constructed. Descriptive members are

chosen with the least costly first, and so on. Tics are resolved by choosing the
I

most valuable first. Remaining ties are resolved by chioosing tih lowest subclass and

index first. (Non-descriptive members are chosen starting from the lowest subclass

and index.) Cost is determined from the complexity of the structure; value must be

assigned by the user's program.

The "or" function produces a block of a special type, which informs the

search procedure that a decision point must be put in the stacks. The "or" function

is invoked whenever unordered sets are referred to in a template. The "and"

function also produces a special block, which informs the search procedure that the

next element in the object must satisfy two conditions. The "not" function

establishes a condition which must not be satisfied. Note that these functions, and

all others, are evaluated before the search begins.

The compiler arranges the Boolean conditions so that each is evaluated as soon

as possible. This tends to save time: it also means that there may be conditions

within the template which can be evaluated before search begins, which is _

occa.ionialy quite convenient.
As an aid in reading the flowcharts, note the following remarks. The arguments

to the COMPSTRUCT (compare structure) procedure are pointers to structure lists

of the template (PT) and object (PO). The notation "OBJECT (pointer)" is

occasionally used to refer to the object pointed to by the pointer; "STRUCTURE

(OBJECT)" is the object's structure. The abbreviations "OBJ" and "STR" are also

used. "SUCCESSOR" refers to the next element on the list currently being

followed. Finally, note the legend at the bottom of the first flowchart, figure 3.

|I:. ,
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The Cominunicaloi

The Communicator contains a relatively small number of specialized procedures

for communicating between the ust r and program - it is intended that these should

be supplemented by general purpobc input and output routines whose characteristics

would be installation - dependent.

The procedures arc designed for use with a graphic display console equipped

with function buttons, keyboard, and light pen. The function buttons are used to

indicate the desired operation, the keyboard to enter statements and parameters, and

the light pen to indicate which statement is to be executed or which parameters are

to be used in the current operation. In the following. cipital italics are used to

indicate the names of function buttons, and small italics to indicate statements

(which may be arbitrary CL statements) and parameter lists (which are parameters

separated by comma's and terminated by a semicolon).

LNTER any stait'incii ,r paruamc,'r list - the function button Is pushed and

Invch any statmm:mctt or parameter lisL ::iay be etleted from tlf, keyhomd

ERASE n i taiutnenzt. P..ratetci list, o r display ubti 'i - the I -W I !IUMi!

pushed and th.n the cnLity indicated by the light pen i ru :.ived ho.,n tic display

DISPLA ) Jruc'aur(! naut - i li .' Sting ol the imdll-d..Cd ,. I iplaL

L-iIAL an)' character it a pr t 'dure lhaing. 1i t a al apiwta:n 4 ,, ic . l,t

cat tust'd in qtotatwn tnark:, the button is pushed, the characlcr i. intdicatcd b.

tie light pen, and then the ,timng is typed in ii. in the keyboard This provides a

way of labelir.g a bhock for !ater reference, see tht. display and halt ojp.,.tivns

below.

DISPLAY variablcs or tl tiaiiw3 - the indicate,] variables or sets (ea,;h of which

must be follu,*,,d by a label il the name is not unique) are displayed. Tht strtcturc

and numeric amid Boulein properties ul a set aic displa)ed. The nicmlbers of a class

may be displayed by pointitg to the class name.

DISJL-I -'ER r'artuOies or set names - as above except that the cover of a

",t is also dibpla¢d.
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HALT- halt at the current location, which is then identified.

HA L T AT label - halt on entering the block with the indicated label.

CONTINUE - resume execution of the program after a halt.

EXECUTE stateenw - the indicated statement is executed. This is valid only if program

execution has been halted.

UP. DOWN, RIGHT, LEFT. MAGNIFY, REDUCE, STOP - the display is a view from a

telescope pointed at an extremely large piec, of paper. These commands initiate or

terminate motion of the tce'.scope, so that, for example, one can go from page to page of a

long listing. Newly displayed matenal displaces old material upward, so that one can return

to a previous display by pushing the UP button.

SLOWER. FASTER - these buttons govern the rate at which the telescope is moved.

The display, displaycover, and halt procedures may also be invoked from the program.

See Table 2 for more details.

System Procedures

Table 2 summarizes the characteristics of the system procedures which have been

introduced in this and earlier Chaptc-s. The proccd-vres copy, destroy 1, and destroy 0,

which are referred to in Chapter V, are also presented.

TABLE 2

SYSTEM PROCEDURES

Name Parameter list Explanation

create. set The value of the procedure is the set which is

created

copy set The value of the procedure is the copy

destroy. set Destroys a set and all the sets containing it 1

destroy I set Returns a set, and all the pointers from it or !

to it, to free storage

! -
4
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destroy 0 set Returns a set, and all the pointers from it, to

free storage

reclamation - Aborts the program

and Itemplat,] ,Itemplate) Sec earlier section on CL for and PSE

or tcondition list]

(condition list)

not (template]

foreachi - Value is true or false
forfirst pointer to template

PS L pointers to object

and template

(OMPSTRUCT

COMPARENEW

halt message Halts with message to user

di,,pIav set Displa - t~Ic current ,alue of the set to the

user. Numeric and Boolean properties and

structure are displayed where appropriate

diJLaycovcr set As above, but cover is also displayed

L*



CHAPTER V

IMPLEMENTATION

The Class Language has been designed to be a fairly easily implemented

extension of ALGOL. The syntax may appear to be quite formidable, but could be

very much simplified without effecting anything except the diagnostic capabilities of

the compiler and the intelligibility of the programmer's manual. Even as presented,

though, it should present no particular problems; a large amount of work in recent

years has provided quite adequate tools for constructing syntax analyzers (see the

exLcellent review by Feldman and Gries, 1968). Hence this Chapter will concentrate

upon the more critical area of semar.ics.

Most of the new constructs in CL. result in the production of data structures,

codc to initialize data structures, and ALGOL code to check Boolean conditions, set

the values of variables. or to invoke various CL procedures. Relatively little other

code is produced. 1 Iis has the following advantages: the System will be easily

implemented by means of a pre-proccssor to produce ALGOL; the System will be

easily altered (such major sections as the PSE are independent procedures, as

discussed in Chapter IV and below);thc size of program code is limited as much as

pos~iblc (this is important, since very simple CL constructs can involve extremely

large amounts of processing. as shown in the flowcharts of Chapter IV). Loss of

time. the usual disadvantage of systems, implemented via procedure calls, is relatively

unimportant, because the overhead involved is small compared with the total

processing performed.

The implementation of each of the parts of the System will now be discussed.

The aim is primarily to show feasibility, so the discussions will be rather brief.

Declarations have the following effects: an entry is made in a symbol table and

an appropriate data structure is constructed, or a standard condition is established

for later relerence.

tn;Jural expressions will result in the production of actual code sequences,

sinc these sequences are relati,,ely short and should be as fast as possible. A

promuisinp approach is tn alter an ALGOL compiler somewhat to accept a new data
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type, the set, and produce the appropriate code for structural expressions. No

particular difficulty is anticipated in this, since the operations arc simple (or arc

ALGOL - like combinations of simple operations) and have close ALGOL parallels.

The create. procedure is described below in terms of a simpler procedure called

copy, which is called with an undefimed member as its parameter; copy's value is a

meimber which has a defined index, and is otherwise a copy of the parameter. Note

that create. is rccursivc.

set procedure crcate.(sct); set set;

begin set A, B;

if type (set) = undelinednicinber then

begin comment the tYpic of a set is a built-in property with the obvious

signijicance ;

B: = copy (scti;

for each A in structure (set) do

structure (B).- structure 1B) + Icreate. (A)]

create.:= B

else

create.:= set

end create.

The destroy. procedure is implemented using a simpler proc:.dure, deiroy 0. M

which was described in Table 2. The destroy I procedure may be used instead of

destroy. in certain applications where the objects containing the destro~ed object arc

hit to be destroyed. The destroy, and destroy I procedures use free storaie, so it

may be necessary to re-tode them if the reclaniatioi, procedure is altered.

procedure destroy. (set); set set,

begin set N, B;

A: = covet i.,ct);

b
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destroy 0 (set);

comment V '' de'stroy the sets containing the set.,

for each B in A do

begin A:= A + cover (B) - (1

destroy O(B) cid

end destroy.;

procedure destroy (set); set set;

begin set A;

comment the procedure returns set. and all the pointers froth it or to it,

to free storage.,

for each A in structure (set) do

covi-r (A):= cover (A) - [set):

comment now return set, and all the pointers from it, to

free storage.,

destroy Oket) I

end destroy 1,

Various schemes could be used to implement the fetching or storing of

property values. The simplest would be to code two procedures, say fetch and

store, which would have as arguments the set and the property. A more

efficient approach would be to have two sets of fetch/store procedures. one to
handle sets and classes of dechred cardinality (which require no searching). and

a+ one to handle classes without declared cardinality (the required member must

be found on a list). A still better approach would be to produce a specialized

fetch/store for each set and!or property. Present plans call for either the first

or second approach in the initial implementation of the System.

The PSE and one form of the CL for are discussed at length in Chapter

IV. The other form of the CL for, involving the assignment of one set after

another to a given set name, is comparatively simple - all that is required is a

single pointer to the current position in a structure list.1': Edit statements are, basically, only abbreviations of CL for statements, so

-- "-
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should be readily implernrted. The construction of local blocks, necessary for

edaitag and abstraction, is readily accomplished by a slight variation of the

copy procedure.

Finally, the Communicator presents special problems in its implementation.

Display of information should not bt difficult, since the structures to be

displayed are alrezdy in forms suitable for processing by display procedures.

Execution of a statement entered from the graphic keyboard requires, however,

the abilities to call the compiler during the running of a program and to pass

a symbol table from one invocation of the compiler tc another. The difficulties

involved seem great, but not ir.sunnountable; the advantages of such an

interactive system are sufficient to far offset them. Further, although the rest

of the System is designed to permit graceful improvement, the interactive

features will have to be built in from the beginning if the System is not to be

completely redone to add them.

The foregoing demonstrates, hopefully, that the implementation of the

System, while not a trivial task, is at least reasonably well-defined and feasible.
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CHAPTER VI

CONCLUSION

This Chapter begins with a discussion of vaious problems for which the

Heuristic Programming System might be used. Experiments with the Go-Moku

program are suggested, related problem areas are discussed, and then a rather

* unrelated area is discussed. Next, a problem area for which the System is

unsuitable is discussed. The Chapter concludes with a discussio of features

which might be added to the System.

The Go-Moku program has various parameters which undoubtedly greatly

effec its performance. Playing time, the distribution of playing time between

move generation and evaluation, the initial subgoal descriptions, the initial board

configuration, and the strategy used against it, may all be varied by an

experimente:. The extent to which the program's performance is sensitive to

small variations in these parameters would be of great interest, especially in the

design of similar programs. Further experimentation could be carried out by

altering the generatemove and minimax procedures. The way in which the

available search time is allocated in generatemove might, for example, be made

to depend upon the total amount of seaich time available, the number of

goals, and so on. The procedure mig. also save time by checking first for

goals which might reasonably be present - e.g., those with values close to the

evaluation of the previous move - and then spending any extra time looking for

'I, unikely configurations of high value. Also, it may soor becomic necessary, as

more and more descriptions are created, to attempt to generalize so as to

reduce their number, or to destroy those which are less valuable. The minimax
procedure might be improved considerably, since at present, for simplicity, it

uses generatemove and one Alass of goals to generate feasible moves and to

evaluate the terminal positions - better play might re-ult from two procedures

and/or two classes of goals. More complex. criteria might also be used to

determine terminal positions - e.g., the evaluate procedure might be extended to

look for more forcing positions. An improvement with potentially great effects
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would be the re-writing of the section of code which generates descriptions of

new subgoals. It would be especially desirable to be able to incorporate the

relevant pieces (stones) of both sides into the descriptions, so that the depth of

minimax searching necessa,-y for a given level of play could be substantially

decreased. The problem. of course, is in deciding which pieces, and which

unoccupied points, are really relevant. However, this is prim3rily a problem in

analysis and experimentation, not in programming - experience with the System

has so far shown that, once a process is thoroughly understood, it can be

readily programmed.

As a rather important aside, note the very considerable modularity of the

Go-Moku program - alterations could be made independently in the procedures

mentioned above and in the improvement code. Furthermore, the minimax and

generatemove procedures are rather independent of Go-Moku as well! This is of

tremendous importance to the user of the System, since he can readily divide a

complex problem like Go-Moku into a number of simpler parts, whose

interactions are readily apparent to him. This is not an accidental property of

this particular program, but a part of the very nature of the Heuristic

Programming System - the hierarchical organization of objects leads rather easily

to the hierarchical organization of the programs which manipulate them.

Ge-Moku appears to be a rather promising vehicle for investigating human

problem-solving abilities - the game is easy to learn yet the play can become

quite complex, and the possibilities for pattern recognition and description are

numerous and apparent to even novice players. Particularily in the fields of

learning and pattern recognition, Go-Moku seems considerably richer than any

of the problem domains explored by GPS (Newell, Shaw, Simon, 1960a, and

Ernst and Newell, 1967). The preceding comments have presented the

parameters and procedures which might be modified in attempting to make the

program either more or less human. A particularly interesting series of

experiments might be conducted to try to improve the similarity to human

play at various levels of experience by adjusting the number of subgoals, the
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I
amount of search time, and the depth of inimax. The results might be

one hand, and mental experimentation, on the other, in human play.

The Go-Moku program has been discussed in great detail above because it

illustrates the use of the Heuristic Programming System in programming some
of the tools necessary for artificial intelligence: search, pattern recognition, and

learning. Each of these exists as a problem area in its own right, so the

application of the System to each will now be discussed.

The search technique used in the program was a very specialized type of

hill-climbing, implemented by means of the generation of feasible moves and

the minimax procedure. As indicated in Chapter 1, other search techniques

might also be used: all that is required, basically, is a means for choosing

among various possibilities, and then keeping records of the effects ,f each

trial. Various mathematical techniques for finding local minima or maxima -

such as the method of steepest descent or the simplex method - may be easily

used if appliable, since ALGOL is a sobset of the System. Record keeping is

greatly facilitated by the non-ALGOL features of the System. Note that a pure

list system such as LISP 1.5 (McCarthy et a., 1965) would be inefficient in

problems requiring large amounts of arithmetic, while a mathematical language

would be at least inconvenient, and possibly very inefficient, at record-keeping.

Note further the important interactions between pattern recognition and search

the former may be used, for example. to choose a technique to be used by

the latter.

Pattern recognition, as an independent area of interest, also profits from

the mixture of numeric and non-numeric processing made convenient by the

System. For example, one might construct a photo-interpretation scheme in

which a two-dimensional correlation technique would be uced to locate objects

of possible interest, these objects would be further clasaifled according to i

complex relationships among them, and, finally, combined hierarchically to form

a general interpretation of the entire scene. The block structures of the System 3i-
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provide a convenient and efficient means for storing all of the various data

necessary for such a scheme. Note also the possibility of constructing the

scheme in such a way that if ambiguous or nonsensical results were generated

at any level, then a previous level could be returned to for reprocessing. This

sort of thing is difficult to foresee when first constructing a program so is

usually added later, if at all. The interactive features of the System should aid

the user in recognizing when program modification should occur, a,.d the

modularity of programming should aid in implementing the modification. Note

that the ability to declare initiai property values and standard tests contributes

greatly to the ease with which afterthoughts may be added to a program. The

flexibility of pattern matching provided by the PSE facilitates both the original I
programming and the modifications.

The third area, learning, may be very close to pattern recognition, as in I
the generation of new descriptions in the Go-Moku program. Other forms of

learing might also be implemented using the System - in fact, assigning I
minjinax values to moves to increase the number of cutoffs demonstrates

short-term learning of a rather useful sort. However, the major emphasis of the

System is toward pattern description and recognition, which rather obviously lie

at the heart of any advanced learning systcm. Also father obviously, the

Go-Moku program represents only a very small application of a general process:

recognition of an -interesting situation, isolation of the relevant objects, and

formation of a description of them. As noted in Chapter I, the ease with

which this process may be carried out is very dependent upon the

representation being used. In the Go-Moku program, for example, the process

was rather simple because the relevant oojects were easily isolated and

described; more complex programs, possibly involving a great amount of

interaction with the huma, u-er, will be iequired in other games, such as

checkers or chess. While tie amount of effort to be expended is apt to be

quite large, the results should be much superior to those obtainable by

parameter-adjustment programs such as Samue's checker player (1959).
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The Traveling Salesman problem and various resource allocation problems in

integer programming are examples of problems rather unrelated to Go-Moku but

suitable for solution using the System. These problems typically involve large
amounts of data, various trial and error procedures which are efficient in some

cases and inefficient in others, and a rather intimate mix of numeric and

non-numeric data processing. Interaction with the user may also be important.

The System could be very profitably used for such problems: the pattern

recognition features might be used to choose among possible solution methods,

the block structure of the data to record various solution attempts, and the

ALGOL base to do the numeric processing.

In contrast to preceding problem areas, the standard problems of symbol

manipulation (theorem proving and symbolic integration, for example) seem

ill-suited to the System: th difficulty is that the System has no built-in

relation representing concatenation. Thus, the fact that one symbol is to the

right of another must be represented by a special class member containing both

symbols. This is inefficient in both time and storage, and extremely

inconvenient to the programmer. Input and output would doubtless also be

inconvenient and inefficient. Symbol manipulation might be attempted if part of

a mote suitable problem, but should definitely be discouraged in general.

Possible additions and modifications to the System include the refinement

of !he CL for and the PSE to make their searches more efficient; a more

flexible mechanism in the PSE to choose the descriptive member to be used in

constructing a goal; a more general and convenient improvement mechanism; the

implementation of some automatic improvement features (such as keeping a

record of the results of using each descriptive member); and additi-1 macro

facilities to ease the burden of propagating changes from one object to .- lp-.

More flexibility in the structure of data blocks would be desirable. For

examplc, structure and cover might be optional, or new types of pointers might

be used to link objects together, or to order objects in various ways.

Other changes might be considered, but should not detract from the

- ll
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present convenience, flexibility, and efficiency of the System.
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