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I. INTRODUCTION

The research project proposed in the original contract was to
investigate the physical mechanisms responsible for the many anomalous
effects associated with the stimulated Raman scattering in various media.
In the early stage of the investigation, we scon realized that an in*tense
laser beam propagating in liquid tends to self-focus into hot filaments.
Self'-focusing is apparently responsible for most of the anomalsus
effects observed in stimulated Raman scattering. It was then clear that
one must first understand self-focusing before u'" mysteries about
stimulated Raman scatteriné can be solved.

We studied both theoretically and experimentally th: physical
mechanisms for the inteusity-dependent refractive index and hence for
self-focusing. Ov: results showed that in most liquids, the optical Kerr
effect-is the dominant mechanism, but in some liquids, the electrostrictive
effect also plays a non-negligible role. Both stimulated Raman and
Brillouin scattering are initiated and ~nhanced by self-focusing and
the formation of hot filaments.

It was believed by most people that the observed hot filaments of
few microns in diameter are Jjust the self-trapped filaments predicted
by Chiso, Garmire,and Townes. In our recent experiments, however, we
showed that by using a single-mode laser, the observed hot filaments
are in fact tracks of moving focal spots resulting from self-focusing.
This result has important far-reaching consequences on many effects
connected with self-focusing.

We also constructed a set-up with two simultaneously Q-switched

lasers at different frequencies. We used the set-up to generate
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far-infrared radiation by beating the two laser beams in a nonlinear
crystal. We were able to demonstrate for the first time the feasibility
of obtaining an intense, tunable far-infrared pulse from difference-~
frequency generatioa.
II. RESEARCH ACCOMPLISHMENTS
A. BSelf-Focusing and Stimulated Scattering

Results of early investigation on stimulated Raman scattering in
liquids showed that the Raman gain was two orders of magnitude larger
than the theoretical prediction. It was conceived by us that this
anomalous gain could be explained if the laser beam propagating in the
liquid was inhomogenecus or contained hot filaments. By using a two-cell
metilod, we showed that this is indeed the case. (See Appendix I). As
a result of intensity-dependent refractive index of the liquid, the
laser beam tends to self-focus into hot filaments in the liquid. We
then investigated the physicel mechanisms responsible for the intensity-
dependent change of refractive index. From the variation of the self-
focusing strength with temperature, we concluded that in most liquids,
the optical Kerr effect is the dominant mechanism for self-focusing, but
in some liquids, the electrostrictive effect is also important
(Appendices II and III). By assuming that the laser beam breasks into
filaments after self-focusing, some qualitative features of the observed
stimulated Raman and Brillouin scattering were explained (Appendix III);
however, no quantitative agreement was achieved.

Tt was believed for some time that the observed hot filaments of
a few microns were the demonstration of self-trapping predicted by Chiswo,

Garmire, and Townes. Nevertheless, the small size and bigh intensity
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of tie filaments received no explanation. Recently, we made careful
megsurements on the duration, the intensity, and the spectrum of light
in the filaments (Avpendix IV). The results obtained from a single-
mode laser indicated that it was not likely that the self-trépped
filaments existed in our experiments. Closer investigation on the
filaments and related effects showed that the filaments are sctually
composed of continuous series of moving focal points (Appendix V). This
discovery clearly chsnges the current status of research on self-
ficusing and self-trapping.
B. Far-Infrared Différence-Fréquency Generation

It was suggested earlier by several people that using two temperature-
tuned ruby lasers can provide a tunable source of coherent far-infrared
radiation. Many research workers tried, but failed. Only recently, we
were able to demonstrate for the first time that such a tunable far-
infrared source can indeed be achieved. In our experiments, we used
two temperature-tuned Q-switched ruby lasers. The main difficulty which
we had overcome was to synchronize the two laser pulses. We were able
to obtain 1 mW of far-infrared radiation out of a 1/2 mm crystal of
LiNb03. (See Appendix VI). By varying the ruby temperature from room
to liquid N2 temperature, we can obtain a tuning range of 0 - 22 cm—l
for the far-infrared output. In addition, we were able to make the
laser lase at either R, or R2 line. This extends the possible tuning
range from 0 - 51 cmOl. The device would be extremely useful for the
investigation of trenscient or lifetime measurements on the low-lying

resonance excitations.
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C. Theoretical Calculations

1) On Self-Trapped Filameuts. (Appendix VII) We showed from

steady-state thermodynamic consideration that the assumption of possible
field-induced phase transition can lead to the formution of self-trapped
filaments of light in liquids. The model is an analog of Abrikosor
vortex state in superconductors.

2) On Optical Nonlinearities of a Plasma. (Appendix VIII) Second-

harmeonic generation and stimulated Raman effects in a plasma were discussed.

The second-harmonic generation from a solid-state plasma boundary was
investigated. It was shown that second-harmonic generation from metals

is dominated by the contribution from bcocund electrons in the surface

layer. The prediction has been verified by N. Bloembergen et al Phys. Rev. LTk,

813 (1968).
3) On Photon-Magnon Interaction. (Appendices IX and X) It was

predicted that light scattefing from megnons in ferro-, ferri-, and anti-
ferro-magnets can be oﬁserved. The similarity between the spin-Raman
effect and the vibrational Ramen effect was emphasized and the possibility
of stimulated Raman scattering from magnons was discussed., It was also
suggested that the magron-phonon coupling can enhance light scattering
intensity. The results were presented as an invited talk in the 1967
Annual Conference on Magnetism and Magnetic Materials. The prediction

was verified by P. A. Fleury et al. (Phys. Rev. Letters 17, 84 (1966)).

4) On Quantum Statistics of Nonlinear Optics. (Appendix XI) Non-

linear interaction of light with matter was discussed from the quantum
statistical soint of view. It was shown that the rate of nonlinear
interaction depends on the mode structure of the light fields and measure-

ments of the statistical properties of the output fields can yield infor-
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mation about statistics of the input fields and the properties of the

medium. The psper was given as an invited talk in the 1967 Enrico Fermi

Summmer Institute.

5) On Permutation Symustry ol Nonlinear Susceptibilities. (Appendix ¥II)

Permutation symmetry of nonlinear susceptibiiities was derived from the
microscipic theory. It was shown that the permutation symmetry is essential

for the existence of a time-averaged free energy.
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APPENDIX I

BEAM DETERIORATION AND STIMULATED RAMAN EFFECT*

Y. R. Shen and Y. J. Shaham

Physics Department, University of California, Berkeley, California
(Received 11 Cctober 1965; revised manuscript received 10 November 1965)

The most Important fundamental discrepan-
¢y between theory and experiments in the stim-
ulated Raman effect is that the observed Raman
gain is one to two orders of magnitude larger
than the theoretical value.! The latter is given

by*
= 2 2 L2313 2
g (ans /kszc)lxs | l"

where wg 18 the Stokes frequency, kg the Stokes
wave vectur, E; the laser field amplitude, and
Xg'’ the resonant Raman susceptlbiiity whose
magnitude can be obtained from the spontane-
ous Raman-scattering data. It was suggested
that the observed anomalous gain might be the
result of the multimode structure (or hot fila-
ments) of the laser (pumping} beam,® but Mc-
Clung, Wagner, anc¢ Welner, using a neariy
single-mode laser beam in the experiments,
still found the presence of such an anomalous
gain.! This, however, does not eliminate the
posslbility of deterioration of the laser beam
into muitimodes ac the beam interacis with the
medlum. In this paper, experimentai evidence
is presented to suggest that scattering mecha-
nisme in a medlum can produce inhomogene-
ities or fllamentary structure in an initlally
homogeneous beam. We believe that these hot
fllaments are resgonsibi. for the many anom-
alous effects prevlously observed.

A lascr beam, @ switched by cryptocyanine
solution and llmited In cross sectlon by an aper-
ture in the cavlty, was used to generate Stokes
radlation In a 20-zm toluene cell (ceil A}, The

1008

laser intenslty was varled by a Polarold prism
outslde the laser cavity. Another cell (cell B)
of variable length, fllled wlth water, benzene,
acetophenone, or nltrobenzene, was inseried
between the laser and the toluene cell. The
threshold of the stimuiated Raman scattering
was then measured as a function of the length
of cell B. The results are shown in Flg. 1.
The curves ciearly show that the medium in
cell B can distort the laser beam In such a
way as to help slgnificantly the Raman genera-
tion In toluene. Here, the Raman threshold

of toluene first Increases and then decreases
sharply as the length of cell B is Increised.

sC

Relative threshold of
ing in tol

020 -1

[ 1 ] 1
0 25 50 7.5 10.0
Length of scattering liquid in front of the toluene cell, «m

FIG. 1. Raman threshold in toluene versus the cell
fength of a scattering cell in front of the toluene cell.
The scattering cell was (illed with water, benzene,
acetoshenone, or nitrobenzene.
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This suggests that the distortion of the beam
is due to some kind of stimulated scattering

in ceil B, The initiai rise of the threshold is
Ltelieved to be the result of insertion foss in
cell B. No Raman radiation was generated in
cell B, except for the case of nitrobenzeue or
acetophencne with the ceil fonger than 3.5 cm,
It is therefore reasonabie to assert that the
beam distortion is due to forward scattering
through generation of acoustic and thermal
strain (Briliouin and Rayleigh scattering). The
maxima and the slopes of these curves show
that if forward scattering is responsibie for
the beam distortion, nitrobenzene shouid have
the largest scattering cross section, foilowed
by acetophenone, benzene, and water. The ex-
isting data on incoherent light scattering give
the following scaitering intensity ratio*:

INB: IAC:IB:’water =10.88:5.66:3.15:0.17,

Above threshold, the intensity of the toluene
Stokes emission was found to increase appre-
ciably when a 7.5-cm nitrobenzene cell is in-
serted between the laser and the toluene ceil,
even though the laser power is somewhat de-
pleted by the generatior of Raman emission
in nitrobenzene. It was aiso noticed thai the
laser beam coming out from a Raman cell was
generally less homogeneous than the original
beam. Hot, thin laser filaments formed in
Raman-active media have been vbserved by
ather workers.®

That the forward scattering may be respon-
sible for the anomalous Raman gain is alsc re-
flerted in the temperature effect of the Raman
emissjon. Fig. 2 shows the Raman threshold
in nitrobenzene and toluene in a2 15-cm cell
as a function of temperature. The observed
effect is too large to be attributed to the change
in the Raman scattering itself, This is con-
firmed by the fact that when a 7.5-cm nitro-
benzene cell was inserted in front of the toluene,
the toluene Raman threshold remained more
or less constant with temperature. If the tem-
perzture of the nitrubenzene cell was varied
instead, appreciable change in the toluene Ra-
man threshold was again observed. The curves
indicate less beam distortion for higher tem-
perature. This suggests that the forward stim-
ulated Brillouin effect may be the dominating
mechanism for beam distortion, since the ef-
fect would then be s:ronger for smaller acous-
tic damping, and hence for lower temperature.

Theoreticaiiy, a faser beam can be distort-
ed or deterjorated into multimodes through
noniinear interaction between light waves and
pressure (acoustic) and thermai waves in the
medium. The interaction is governed by the
set of coupled electromagnetic and acoustie
wave equations and the heat diffusion equation.
In the limitirg case where only the static pres-
sure and thermal strain {electrostriction) are
considered, this wouid lead to the beam-trap-
ping phenomenon propesed by Chiac, Garmire,
and Townes.® More generally, the initiai la-
ser intensity distributic. in the frequency and
wave-vector space would be broadened a great
deal by this mechanism, In other words, a
single-mode laser be2am can be spoiied into
many coherent spatial and temporal modes,
which then give, rise to hot filaments in the beam
and intense spikes in the laser pulse. Usually,
*he thermal effect is negligible compared to
{he pressure effect. The forward Brillouin
scattering {which includes electrostriction) is
possibly responsible for the distortion of the
beam, It would have a threshold much lower
than the Raman threshold in many media, as
seen from the estimate for the case of beam
trapping.* z

Most of the anomalous Raman effects can
be explained by the multimode theory.? Ia par-
ticular, N cohere.'t laser modes of comparable
intensities would give 2 maximum Stokes gain
wich 15 aboat N times targer than the aver-
age gain.” The details of the theory will be -
reported elsewhere.
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FIG. 2. Raman threshold of toluene and aiteobenzenc
as a function of temperature.
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ELEC "ROSTRICTION, OP1I1CAL KERR EFFECT
ANO SELF-FOCUSING OF LASER BEAMS™*

Y.R. SHEN
Physics Department, University of California, Berkeley, California

Received 26 Janusry 1966

Electrostrictive coefficients and optizal Kerr constants for liquids are derived. Their relative importance
in the self-focusing of a giant-puise lager beam is discussed.

A laser beam propagating in an isotropic,
transparent medium induces an increase in the
refractive index proportional to the laser inten-
sity through electrostriction and optical Kerr ef-
fect. The .ntensity-dependent index of refraction
can lead to self-focusing of the laser beam, as
first envisaged by Arkaryan [1] and by Chiao et
al. [2], and recently computed by Kelley [2]. Ex-
perimentally, it kas been observed that the beam
does get highly inhomcgeneous after traversing
through a liquid mediura [4,5]. The self-fccusing
action, with the result of hot-filament for:.iation,
gives rise to the anomalous gain in the stimulated
Raman scaitering. Therefore, knowledge about
electrostrictive coefficients and optical Kerr con-
stants for various liquids is now extremely help-

378

ful in work on stimul2ted scattering in liquids.
The optical Kerr effects in some liquids have been
measured by Gires and Mayer [6], and the inten-
sity-dependent refractive indices by Maker et al.
{7). In this note, they are derived in terms of re-
fractive indices, dielectric constants, isothermal
compressibilities and d.c. Kexr constants. Their
relative importance in self-focusing of a giant-
pulse laser beam is discusgsed.

‘fhe Clausius- Mosotti relation gives the change
of the refractive index in terms of the variations
in density and in polarizability, Ap and Aa.

* This research is supported by the U.S. Office of
Naval Resgearch under Contract Nonr-3656(32),
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an = (An) ot (an), = 1)
(2 - 12 + 2[(3p/py) + (da/ )/ Bn,, .

In the presence of an optical field E(r. ). Ap obeys
the driven acoustic wave 2quation
2 . :

(_V2+._1_.a_ - .Z_E_a_)a,):_l_l(szZ)' 2)
: v2 atz 87 v

Here, v = (1/p,A)? is the acoustic velocity. 38 the
isothermal compressibility, I' the acoustic danip-
ing, and y = 2n,p,(3n/2p) = v}(ng s 1)(;1(?; +2). Siuce
Ap cannot foliow the driven force at optical fre-
quencies, only the low-{requency compcnents cf
Ap should be considered. In the case of a m:ono-
chromatic field E(r.t) = £(r) cos(k-r-wi), one
finds

(an)p = Kpr 1e2 3)

with K, = VZB/GMOA dcfined as the electrostric-
tive coefficient. The electrostrictive coefficients
calculated are shown in table 1 for a few liguids *.
The change of the polarizability is assumed to
come entireiy from the orientationzl variation of
the arisotropic molecules. Let the orientational
distribution function be f(?, ¢,¥), where #,¢ and
¥ determine the orientation of a particular mole-
cule. The change of the polarizabiiity can then be
calculated from the theory of Lengevin [8]. We
have )

Aa = | p(Af)sin8¢6dodV/E [ fsinfdidody .

Here, p is the induced dipole moment, and Af =
I - fo obeys the equation

(@730 + @/T)Af = (&) /7
(Af), =Clexp (-U/2T) - 1},

where T = 47a3v/ kT is the relaxation time, a the
dimension of molecules, v the viscosity coeffi-
cient, C the normalization constant, and U..c
potential energy of the anisotropic molecule in
the E field. Again, since Af cannct follow vari-
ations at optical frequencies, only the low-{re-
guency part should be taken into account. In the
first crder, one finds, for a linearly polarized
monochromatic fieid,

(an), = K A€ (6)

()

* The electrostrictive coefficlents are about 4 times
larger than those calcuiated in ref. 2. The error can
be traced back to the smaller values of 3 they used
and the missing of a factor 2. Their values oi optical
Kerr constants should also be smaller by a factor of 2

(8].

Table 1

Flectrostrictive cocfficients. Kp. optical Kerr con-
.* nts, ky. and the d.c. Kerr constants. (Ky)g.. cal-
culated at the wavelength of the sedium D linc for vari-
ous liquids. In calculating thcse constants, 74 is ob-
tained from the international Critical Tables and 3 and
5 from the Handbook of Chemistry and Physics, All

physical constants are taken at 209C if possiblc.

; P . Q
Kp=lo' Kgx10% (Kpgo = 1o®

Carbon-

tetrachioride 1.21 0,67 0.74
Carbon-

disulphide 2,53 32.6 32.26
Hexane 1.06 .49 .45
Cyclohexane 1.06 0.7¢ 0.74
m-xylene 1.20 7.89 838
Benzene 1.33 3.73 3.93
Tolucne 1.23 6.33 T.00
Chlorobenzence 1.20 9,93 91
Bromobenzcne 1.59 14.35 o1
Nitrobenzene 0.92 26.4 2360
Aniline 1.00 3.22 -12.3
Chlgeroform 1.03 1.70 .33.2
Acetone 0.75 1.u3 163
Methylalcohol 0.5 6.17 9.7
Etivlaicohol 0.66 .21 7.68
Butyialcohol 0.64 041 -36.5

and for a circutariy polarized field

(An)g = Ry A (e?) M
with Ko = [(22+ 2)(12 - 1)(e + 2)/ (6 + 2)2(6 - D}(K g
defined as the optical Kerr constant. Here. 6 is

the dielectric constant, and ¢ is given by the
Debye relation

(6-1)/(6+2) = [(c- 1)/ (€ +2) + 3upgu2/9mkT} ,

i being the permanent dipole moment of the
molecules. (K{)qe is the part of the d.c. Kerr
constant originated from the induced dipole mo-
ments only and is always positive. For non-polar
moiecules, one finds K, =~ (Ky)4,- For polar
moiecules with large i, the opticai Kerr constant
can be much smaller than the d.c. Kerr censtant
in absolute magnitude. The nptical Kerr con-
stants, for various iwquids, obtained with (Ky)4.
caiculated by Raman and Krishnan [9]. are given
a1 table 1. The d.c. Kerr constants are also
g:ven for comparison.

For a giant laser pulse of puise width 4, it
can easily be shown that if 7 <« A, eq. (6) is stiil
valid, but (A%)y is now proportional to ¢/, f) 12,
which veries with time. For most liquids, this is
true since T< 10-10 sec. The density variation
Ap, however, cannot follow the giant pulsc. As-
suming the distribntion of laser intensity over
the cross section and time to be
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€lr, 02 =4 SxpiG 027‘2) (-;+ 20) :g: ; ; ;t (3)
one can get a rough estimate of the density vari-
ation by neglecting V2(Ap) in eq. (2). Thisisa
good aporoximation for o < 100 and » < /. The
result, together with the optical Kerr effect,
gives a total change of the index of refraction

an = [Kyv?a®(1- o713 + K t] 1A exp(-a2r2)
for t <A
202(1 - 2r2)(23 - 6 42 23
={va a“(l - d“r<)2AY - 6A“t+ 6AL“-19) 4
+ Ko (2A-6]3r Aexp(-a2r?) fort= A

Eq. (9) shows that at { = A, the ratio (3n),/(an),
is about 102K,/ Kq for v = 1.5 x 105 cm/sec,
A=2x10-8 sec, and @ = 30 em-1. This ratio
becomes larger at later times.

The increase of refractive index with the iaser
intensitv leads to self-focusing of laser beams in
liquids. Experiments [4,5, 10] show that the self-
focusing action is very strong in CSy, folloved
in decreasing order by nitrobenzene, bromoben-
zene, toluene. benzene, chloroform. CCly, hex-
ane and methylalcohol. Table 1 shows that the
magnitudes of the optical Kerr constants of these
liquids follow exactly the same order. We have
also seen a large reduction of self-focusging action
in these liquids when a circularly polarized laser
beam is used [10]. This makes one believe that
the optical Kerr effect is responsible for self-
focusing. However, for liquids with small optical
Kerr constants, electrostriction may also be im-
portant. If one uses eq. (8), one would find at
t=A, (An)p/(_w)a ~0.4 in CCly. The electro-

strictive coefficients have a strong positive tem-
perature dependence, while the optical Kerr con-
stants have a weaker negative temperature de-
pendence. Temperature measurements [10] in-
deed show that in all liquids with large optical
Kerr constants, the seli-focusing action de-
creases with increase of temperature, but in
CCl, and hexane, it increases with increase of
temperature. The optical Kerr effect is also re-
sponsible for spectral broadening in the stimu-
lated Raman scattering {11}, when the laser radi-
ation has two or more modes separated by about
1 cm-1. The eclectrostriction, however, should
have very little effect on spectral broadening,
since the component of Ap at the beat frequencies
of the laser modes would be extremely small.
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Self-Focusing and Stimulated Raman and Brillouin Scattering
in Liquids*

Y. R. SuExt anp Y. J. SHAuAM
Physics Department, Uniersity of California, Berkeley, California
(Received 20 April 1967)

Experimental results on the self-focusing of a laser bearn in many liquids are reported. It is shown that
the optical Kerr cffect and electrostriction cannot explain the temperature variation of self-focusing in
some liquids. Forward stimulated Brillovin scattering seems inportant in such cases. Measurements on
the generation of stimulated Raman and Brillouin radiation in liqnids are presented. The effect of self-
focusing and sclf-trapping on the forward-backward asymmetry in the Sitokes generation is discussed.
Other qualitative features in the stimulated Raman and Brillouin scattering are explained.

I. INTRODUCTION

HEN a high-intensity laser pulse traverses a

certain distancc in a liquid, the beam cross-section
often reduces, and in some liquids, thin filanients of
extremely high intensity appear. This phenomenon,
which is generally known as self-foc _‘ng and self-
trapping of light beams, has been the subject of intense
theoretical™™? and experimental™" investigation re-
cently. It is self-focusing and self-trapping that give
rise to the many anomalies observed in stimulated
Raman and Brillouin scattering in liquids. Physically,
self-focusing arises because the refractive index (real
part) of the medium increases with the heam intensity
{a coherent elastic-scattering process), and because
stimulated Brillouin and Rayleigh scattering near the
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forward direction occur via acoustic and orientational
excitations in the medium (a coherent inelastic-scat-
tering process). An alternative way of describing
self-focusing is that the width of tbe beam intensity
distribution over its spatial Fourier components in-
creases with distance.

The intensity dependence of refractive indices has
been investigated by many authors.” In a nonabsorbing
medium, it is due to optical Kerr effect, electrostriction,
and nonlinear electronic polarizability? For ordinary
Q-switched laser intensity, the steady-state refractive
index can be written in the form

n=nt (Meat+n,+n)3 | E,

where E is the laser field strength. and the coefficients
e, M, and n, are associated with Kerr effect, electro-
striction, and nonlinear electronic polarizability, respec-
tivelv. For most liquids which have been subject to
investigation, n,, ranges from 10~ to 107! esu, while
#3, is of the order of 10-" esu. In the normal dispersion
region, n., is about 10718 or 10~ esu as estimated from
the nonlinear polarizability for third-harmonic genera-
tion,*® and should be negligible compared with #,, and
tt2,. Jt is, however, believed that the Kerr effect gives
the dominant contribution to the intensity-dependent
part of the refractive index in liquids. The reason is
simple. The Kerr effect, arising from molecular re-
oricntation® and molecular redistribution,?® responds
almost instantaneously to the Q-switcbed pulse, but
the electrostrictive effect, wbich involves mass transfer
to a region of high beam intensity, cannot follow the
rapid intensity variation of the pulse. One can actually
show that for a 10~*sec pulse, the electrostrictive
contribution to the refractive index would be negligible

® P, D, Maker, R. W, Terhune, and C. M. Savage, Phys. Rev.
Letters 12, 612 (1904); F. Gires and G. Maycer, Compt. Rend.
258, 2039 (1964).

2 P.D.Maker, R. W, Terhune, and (.M. Savage, in Proceedings
of the Third Ixternational Congress on Quantum Electronics, edited
by P. Grivet and N. Bloembergen (Columbia University Press,
New York, 1964), p. 1559,

U P, Dehye, Marx's Handbuch der Rudiologei, VI (Academisehe
Verlagsgeselkchaft, Leipzig. Germany, 1925), Chap. V, p. 768;
Polar Molecules {Dover Publications, Inc., New Vork, 1929),

2§, Kielich, Mol. Phys. 6, 49 (1963); R. W. Hellwarth, Phys.
Rev. 152, 155 (1966),
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225 RAMAN AND BRILLOUIN
compared with the Kerr effect in most liquids. (See
Sec. ITI for more detail.)

Beam components propagating in the off-axis direc-
tions can also grow in intensity through stimulated
Brillouin and Rayleigh scattering. This also leads to
self-focusing phenomenon. Self-focusing by this mecha-
nism has so far received little attention. In fact, the
gain of stimulated Brillouin scattering near the forward
direction is rather high even for a short Q-switched
pulse. For self-focusing of the laser pulse in liquids with
small Kerr constants, stimulated Brillouin scattering
could be as important as the Kerr effect. Tn this paper,
we show, from our measurements on the temperature
variation of self-focusing action in different liquids,
that this is indeed the case. The relative importance of
the Kerr effect and stimulated Brillouin scattering to
self-focusing can be obtained from: these measurements
since the Kerr effect is inversely proportional to tem-
perature, but stunulated Brillouin gain increases as
temperature increases.

While self-focusing in liquids seems to be qualitatively
understood, the dynamics with which a beam, after
being self-focused, breaks into self-trapped filaments
(known as smal!-scale trapping®®) is not vet under-

o L Fic. 1. Experimental set-
% $ up of the two-cel method
= P LETT BT for measuring self-focusing
[E"ejf f- TN S B strength of a liquid.
Peiterze:

stood,® although the size of the filaments seems to be
connected to the Kerr constant of the mediumn.! As one
would expect, both self-focusing and self-trapping
affect dramatically the nonlinear optical processes in
liquids, in particular, stiniulated Raman scattering and
backward stimulated Brillouin scattering. Seli-focusing
gives rise to the observed threshold in stimulated
Raman and Brillouin scattering,' and the presence of
intense illaments is responsible for the anomalously
high Raman and Brillouin gain apove threshold.*¢
Without knowing the dynamics of filament formation,
it is, howevel, difficult to calculate qualitatively the
effect of self-focusing on the stimulated scattering. In
this paper, we present some experimental results on
first-order Stokes and Brillouin generation, and discuss
qualitatively how their characteristics, the forward-
backward asymmetry of the Stokes radiation, the
temperature cffect, etc., are dominated by self-focusing
and self-trapping. Experimental results will be shown in
Sec. I1, followed by discussion in Sec. II1.

II. EXPERIMENTS

A 3in. ruby laser, Q-switched by cryptocyanine
sclution, was used in the experiments. The beam was
limited (o a diameter of 2 mm. The average peak
power of the 15-nsec Q-switched pulses was about
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Fi6. 2. Temperalure variation of self-focusing in different
liquids. A longer threshold length of nitrobenzene indicates
weaker self-focusing action. See the text.

75-100 MW/cm?, depending on the cavity paranicters.
The self-focusing action of the beam in a liquid was
investigated by the two-cell scheme.® (Figure 1.) Here.
the laser beam was passed through two celis in series.
They were separated by a distance of 2 ¢m to allow
for windows and a beam splitter when the back-scattered
radiation was monitored. The first ceil was filled with
the liquid under investigation, and the second cell with
liquid of low Raman threshold or strong self-focusing
action, such as nitrobenzene or carbon disulfide. Self-
focusing of the beam in the first cell was then easily
detected by the decrease of Raman threshold for liquid
in the second cell. To avoid complication, the length of
the first cell was always kept below its own Raman
threshold. This method has much higher sensitivity
than the single-cell method in which the self-focusing
action is measured by the cbserved Raman threshold
for liquid in the same cell.” It is sensitive in the sense
that relativcly weak self-focusing action in liquids such
as hexane and water can now be measured.” One can
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F16. 3. Effect of a nitrobenzene self-focusing cell on the temper-

ature variation of the Raman threshold of a 15-cm toluene cell.
Length of the nitrobenzene cell: (a) 0, (b} 1.3, (¢} 2.5,and(d) 5.0
cm,

9 In liquid with weak seif-fucusing strength, stimmulaled Ra.nan
and Bril?ouin scattering may appear before the beam ic self.
focused to a minimum cress section, Cousequently, Raman an:|
Brillouin thresholds of the liquid are no longer a measure of the
self-focusing strength. Hexane is a good example,
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TasLe 1. The relative self-focusing strengths in different L

measured in terms of the cell length of the liquid which reduces

the Raman threshold of 15-cm toluene by 5% when insertea 1n 1ront of the toluene cell. For nonpolar liquids, n. are obtained from
the dc Kerr constants in Ref. 30. For polar liquids, #., are either obtained from the expsrimental vaﬁues of M. Paillette [Comnt. Rend.
262, 261 {1966)] or from 1lhe calculated values of Y. R. Shen [Phys. Letters 20, 378 (1966)]. gx is calculated from Eq. (10) with
kee=2/d and d=0.1 cm for a 100-MW/cm? ruby-laser beam. gy is calculated from Eq. (16} with k., =2/d, d =0.1 cm, Aw=T, and

5=2X10"% sec for a 100-MW/cm? ruby-laser beam.

OFserved self-
focusing strength (gn/gn)

(in.) 101 pieq 10 g 10% 28 10 (gr+gs) (%)
Carbon disuifide 3 11.3 6.8 7.4 7.5 10,9
Nitrobenzene L4 8.6 6.1 4.1 6.51 6.7
Bromobenzene 1 4.7 4.5 3.0 4.80 6.7
m-xylene 13 3.0 3.7 4.8 4.18 13.0
Benzene 1} 2.3 3.2 5.0 3.70 15.6
Aniline 4 1.1 2.2 4.0 2.60 18.2
Chioroform 5 0.53 1.57 2.6 1.83 16.6
Carbon tetrachloride 54 0.33 1.24 2.5 1.49 20.2
Hexane 5} 0.23 1.06 3.5 1.4: 33.0
Acetone 6 .23 1.07 2.7 1.34 25.2

easily determine the relative self-focusing strength of
different liquids using this method. With the laser peak
intensity at about 100 MW/cm?, we measured the cell
lengths of liquids required to reduce the Raman thresh-
old of toluene in the second cell by §%. The results,
together with 1, are given in Table 1. Note that the
self-focusing strengths of various liquids, except perhaps
acetone and hexane, follow the same order as their
optical Kerr constants.

The temperature dependence of self-focusing wrs
investigated hy varving the temperature of the first
cell (15 cm in length). The sccond cell was filled with
niirobenzene in this case, The results for a few liquids
are shown ia Fig. 2, It is seer that the self-focusing
action in toluene decreases with increase of tempera-
ture. This holds for all liquids with large Kerr constants.
The temperature variation is similar to that of Raman
and Brillouin threshold of liquid in a single cell.® This
supports the idea that stimulated Raman and Brillouin
scattering in these liquids are initiated by strong self-
focusing of the beam into hot filaments. However, in
acetone, hexane, and carbon tetrachloride, self-focusing
zets stvonger with increasing temperature, suggesting
that besides the Kerr effect, some other mechanism
now comes into play. As we shall show in the next
section, the contribution of forward stimulated Brillouin
scattering to self-focusing is indeed non-negligible in
these liquids. The question also arises on whether self-
focusing in the first cell would eliminate the tempera-
ture dependence of Raman threshold in the second cell.
This was tested by using a 15-cm toluene cell with
varisble temperature proceded by a nitrobenzene
focusing cell. As shown in Fig. 3. the temperature
variation of Raman threshold in toluene changes only
slightly with the focusing cell. The reason is that a
major part of self-focusing of the beam actually happens
not in the first cell but in the second cell. The filaments
have not yet been formed in the first cell. The tempera-

ture variation in toluene did nearly vanish when the
nitrobenzene cell was above its own threshold, but the
results become less meaningful because of the possi-
bility of depletion of laser power by stimulated Raman
and backward Brillouin scattering in the nitroben.ne
cell.

Wang!? has shown that for a single cell, the inverse
Raman threshold length varies linearly with the square
root of the laser power.? We found the same result in
CS. and nitrobenzene at relatively low power level.
as shown in Fig. 4. As the laser power increases, the
curves start to deviate from the straight line. This
suggests that another mechanism for self-focusing may
have set in at higher laser intensity.

We are also interested in the generation of stimulated
Raman and backward Brillouin scattering ia liquid with
strong self-focusing properties. A toluene cell was used
in the measurements. One of the interesting anomalies
resulting from self-focusing and self-trapping is the
forward-backward asymmetry in stimulated Raman
process. Figure 5 shows the variation of the first-order
Stokes power as a function of the cell length at three
different laser powers. Note that the forward-backward
asymmetry varies with the cell length, altiough the
backward Stokes power is always higher just above

we
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F16. 4. Variativn of the square root of Raman threshold power asa
function of inverse of the cell length in CSy and niteobenzene.
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threshold. The forward Stokes b2comes mere intensc at
long cell lengths. Care was taken to insure that the
asymmetry was not induced by reflection from windows.
In Fig. 6, the variarion of Stokes power, generated from
a 20-cm toluene cell, as a function of laser power is
given. The set of curves on the left corresponds to the
case where a 2.5-cm nitrobenzene cell was inserted in
front of the toluene cell. As expected, the curves look
similar to those of Fig. 5. The variation of backward
Brillouta power with laser power is also incorporated
in Fig. 6.
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Fic. 6. Variation of Stokes and Brillouin power generated in a
20-cm toluene cell as a function of laser power, with and without
8 2.5-cm nitrobenzene self-focusing cell.

f.aser power (MW)

Fic. 7. Variation of Stckes and Brillouin power with laser power
in 15-cm toluene at two different 1emperatures.

Figures 7 and 8 give the variation of Stokes and
backward Brillouin power with the laser power in
toluene and hexane, respectively, at two different
temperatures. It is seen that at the higher temperature,
the Raman and Brillouin threshold for toluenc is
higher, but as the laser power increases, the Brillouin
radiation finally becomes more intense than the one at
the lower temperature. In hexane, the Brillouin radia-
tion has lower threshold and higher power at the higher
temperature. Ne stimulated Raman radiation from
kexane was observed.
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The above ineasurements of intensities were made by
using silicon photodiodes and a Tektronix 533 oscillo-
scope. The intensity values correspond to the peak
values of th¢ integrated pulses. The temporal structure
of the gencrated Stokes and backward Brillouin radia-
tion was investigated by using an FW-114 photodiode
and a Tektronix 519 oscilloscope. Both the forward and
the backward Stokes radiation from toluene were com-
posed of short pulses of about 10? scc long, in partial
agreeinent with obscrvations of other workers.'®:2
The Brillouin radiation also contzined short pulses,
somewhat similar to what was observed by Maier ef al.,®
but they are not as sharp as the pulses in the Stokes
radiation. Near threshold, both Stokes and Brillouin
radiation consists of a single short pulse. Because of the
short cclls we used in our expcriments, the depletion of
total laser power in the Raman and Brillouin generation
was not nearly as much as in the casc of Maier ef al*

III. CALCULATION AND DISCUSSION

Generally speaking, sclf-focusing arises as a result of
interaction of the light beam with the density variation
and molecular reorientation and redistribution in the
medium. The propagation of the light beam in liquid is
described by the wave equation

Xk 47 9?
=V = = JE(r, ) =~ — — P*L(r,1).

( +c2ar-') (ni==Zg" i
In this case, the polarization of the medium can be
wriiten as

(1)

P=x, E(r, t,

2 prom,

mel 2,000

xX= (2)
where terms with m>1 arise because of correlation
between molecules.® The nonlinear polarization P¥L

appears as a result of change in p and o induced by the
light fields.

PNL(r, 1) =[(dx/dp) Ap(r, 1)
+ 3 (0x/dcn) Bom(r, D IE(T, ). (3)

The density variation Ap obeys the acoustic wave
equation

10% 2o ¥ .
=Vt T o =— —— %2 kR ).
( Vi 2o 2 (”) Lp(r, 1) 3t LE 3, 1)

#)

Here, v=(1/p8)"? is the acoustic velocity, 8 is the
isothermal compressibility, I' is the acoustic damping,
v is defined as y=p(de/dp), and | K [3(x, #) is the slowly

)M, Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev.
Letters 17, 1275 (19656).

B M. Maicer, W. Rother, and W. Kaizser, Appl. P'hys, Letters 10,
80 (1907).
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varying part of J*(r, ). The change Aoy, reflecting
variation in the orientational distribution, is governed
by the equation®

(@/0t1/7) san(r, ) =(A/7) | L(x, 1), (5)

where A4 is a constant inversely proportional to tem-
peraturc, and r is the orientational relaxation time.
Similar equations probably govern Aa, which are
changes induced by molecular redistribution. The
relaxation time for molecular reorientation and redis-
tribution is usually cather short (~5X10-"" scc).26 if
we limit ourselves to the low-frequency variation of
12(r, 1),7 then Ae..(1, t) would respond almost instan-
taneously to | /< 12(r, t). To the first order, we can write

> (0x/0etn) Dam= (/20110 £ | E 12(x, 1), (6)

Self-focusing should thercfore be described by the
solution of Eqs. (1), (3), (4), and (6). 1f both Ap and
{ £ [* are Fourier-analyzed, then cach Fourier com-
ponent of Ap consists of twu parts. Tl.e part in phase
with the driving -omponent leads to change in the
(real) refractive index: This is known as clectrostriction.
The part 90° out of vhase with the driving component
lcads to stimulated Brillouin scattering. From Eq. (4),
we find that the electrostrictive part is given approxi-
mately by

Ap;(!’, l)

=j’d=r’(§_-7r—:§)v=uzx2(r',:— ":r'l)/mr—r'h
(N

It can easily be shown that for a Gaussian beam of
radius 7¢ and pulse duration §, the first-order solution
of Eq. (7) with 18<r, yields at the peak of the laser
pulse,

(9x/9p) Ap (n128/darst) s, | E 2, (8)

where
12, =7?3/8xn.

This is because the spatial density variation cannot
follow the rapid change in the laser intensity, so that
the — V2 term is small compared with the 6%/ term in
Eq. (4). For liquids under investigation, m,, is about
1 to 10 times #zq. With vA210° cm/sec, 810~ sec, and
r¢0.1 cm, onc sees immediately from Egs. (6) and
(8) that the clectrostrictive effect is negligihle com-
pared with the Kerr effect, and hence is not responsible
for the temperature variation of sclf-focusing in
liquids.

Even if the clecirostrictive effect is neglected, it is
still difficult to find an analytical solution from the

®C. W. Cho, N. D, Foltz, . 1I. Rank, and T. A, Wiggins,
Phys. Rev. Letters 18, 107 (1967).

% Stimulated Ravleigh scattering with a large frequency shift
may be less important for self-focusing, since it is cssentially
initiated at the noise level.
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229 RAMAN AND BRILLOUIN
above equations to describe self-focusing. However, as
we mentioned earlier, self-focusing can be described by
the amplificatior. of Fourier components propagating
in the off-axis direction.

Let us assume a plane wave
Eo=1] & exp[ike: —iwyf] (9)

as the pump field propagating in the medium along the
z direction. We are interested in the amplification of a
weak wave E, with wave vector k, and frequency w,.
Bespalov and Talanov* and Chiao ef al.*® show that the
change of refractive index (essentially due to Kerr
effect) actually induces an exponential gain for the
amplification of E,.

R= ku[_ (ku/kﬂ) 2+ 2 ( "2/”0) 802.-.]1”’

assuming (wo—¢,)<<1/r. It turns out that the e-folding
length for the giowth of E, with k,;=2/d is just the
self-focusing distance 21, 0f 2 beam with a diameter
4, if (ku/ ko) *<K2(na/no) &% ¥

(10)

5100 =0/ 2L 2(na/16) & 12 (11)
The optimum gain is
(8r) opt = ko( 12/ 10) 66 (12)

which occurs at (Fu)ope=hol (112/10) 8212 As & in-
creases, (gg)opt Would firally become muci larger than
the gain at k,=2/d. Then, one may find that in a
distance less than 2. the wave E, with (kus)ope
becomes stronger than E, with k,.=2/d, although
initially the former is much weaker than the latter.
The actual self-focusing distance would then become
smaller than %g.,* and would depend on &% with
3 <n<1. This is likely to happen in liquids with large
Kerr constants. As an example, we have ns=1.13X10™"
for CS,. For a 100-MW/cm? beam with d=0.1 cm, and
&2 =8X 10? esu, we find (gr)opt=0.92 and (gr)s,.mzra=
0.067. This probably explains why in Fig. 4 the inverse
of the self-focusing distance depends on the laser
intensity as Pr« 8" with #>4 at high intensity. For
liquids with small Kerr constants, (gr)opt is not very
different from (gr)s,,=274 €ven at an intensity of 100
MW/cm?.

The weak wave E, can also be amplified through
forward stimulated Brillouin scattering, governed by
the coupled equations

(= V= wle/c?) E,=(dmwt/c*) (v/4mp) Ecbp*,
(= VP waed /12— i2u00o1'/1%) Ap* = — (v/819%) V*( ER* E,),
(13)

with w,+wse=wp. For scattering in the near-forward

# R, Y. Chiao, . Kelley, and E, Garmire, Phys. Rev.

P. L
Letters 17, 1158 (1966).

SCATTERING IN LIQUIDS 163

direction, k,+K,.=ks, the Brillouin powe:i gain 1s*

gr= (5.7 /vky) + [ AT /vh) 24 (0B /3 2mc?) ]2,
(14)

Ordinary liquids have y~1 and 8~10~", Therefo:<, at
the same laser intensity, gs would be much greater
than gg, if the laser beam were continuous.

In practice, hewever, the Q-switched laser generates
a short pulse of pulse width §. The amplification of E,
due to Kerr effect is stil! given by Eq. (10) with &
replaced by &?(7), since the response of Kerr effect to
&?!) is almost instantaneous. The Brillouin gain, on
the other hand, is greatly reduced. To estimate the
reduction, let us assume that E, and E, are infinite
plane waves which can be represented by

N/
E;=AAw i expli (wo+mAw) (mokoeT/c—10)], (15)

muw—N/[2

Na .
E,= i Aum(2) Aw exp[i{wtmAw, uk, r/c— 1],
m=—N/2

where NAw=1/8 and ApAw=(8)max/N. Then, the
driving term for Ap in Eq. (13) with wave vector
Kao= (wnttgko—watk,) /¢ and frequency wae=wo—w, is

+ (7 8av?) koo % AoAen(Aw)? expliKae: I — iyl ]
(]

me—N/2

for sufficiently large Aw. The coupling of Ap with the
N frequency modes A,m of F, leads to (N+1) coupled
equations, whose solution is of the form

Aem(3) = l:, Ciexp(ga),

where g; are the eigenvalues. The maximum g; gives
the reduced Brillouin gain, which can be shown to be

§B=" (kll‘/f'kno) +[(k.1'/vk.c)’
+ (w9B0Aw/327¢%) Banazt ]2 (16)
2 (wy*Bvkecd Aw/ ATk, T) Bomaxd.

This gain would remain roughly unchanged for a beam
of finite cross-section (&>>\). Obviously, for gg ST/v,
we should take Aw~T'. Then, with a 100-MW/cm? laser
beam of d=0.1 cm and §=2%10"* sec, the Brillouin
gain at k..=2/d in CS;(y=2.2, 8=0.0"X10"1) is
ge~4.6X10~2. This gain is small compared with the
gain gg due to Kerr effect in CS;, but in media with
small Ferr constants, it can be important. We believe
that this forward-stimulated Brillouin scattering is
responsible for the temperature dependence of self-
focusing in chloroform, CCl,, hexane, and acetone as
shown in Fig. 2.

8Y. R. Shen and N. Bloembhergen, Phys. Rev. 137, A1787

(1965). Here, the solution is actually valid only for scattering at
a sufficiently large angle such that ke./k>gs/Rae.
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Since the total gain for E, is g=Ygr+gn, the tem-
perature dependence of g at k,.=2/d 1s

dg/dT~~ gn/2T+gndB/BdT. (17)

assuming that the temperaturc dependence of quanti-
ties other than ns, and 8 in g can be neglected. Figure 2
shows dg/dT=0 for chloroform at about 100 MW/cm?
With gr=1.57X10"? and JdB/8dT=0.01% for chloro-
form at T'=300°K, we should have gg=2.62X102,
Equation (16) with ¥=1.27, and $=10"" for chloro-
form gives g5 =1.7X10"% In Table I, we calculated gz
and g.; at k,;==2/d for various liquids, using the experi-
mental g for chloroform as relerence and assuming the
same dependence of gz on ¥, 8 and n (Ref. 30) asin Eq.
(16). Then, with Eq. (17), one can easily show that
for CCly, hexane, and acetone, dg/dT>>0, and for other
liquids in the table besides chloruform, dg/dT<0
agreement with our observation.

Experiments on stimulated Raman scattering in
liquids show many anomalous effects, such as the
anomalous gain,® spectral broadening?® class-IT anti-
Stokes radiation,® etc. Most of the anomalous effects
can now be explained by self-focusing and self-trapping.
Nevertheless, the anomalous forward-backward asym-
metry in the Stokes radiation has not yet received a
satisfactory explanation, although it 1s believed that
this must also be a conscquence of self-focusing and
self-trapping.

In the self-trapped region essentiaily all the Stokes
radiation is generated in the self-trapped filaments.
Aswuame Ueel ircdividos] hldorntd wme iwolate! brom the
surrounding, and the Stokes generation in each filament
can be described by the steady-state equations™:

aA\",r/aZ = UI\’[(."\‘,""' 1 ) ’
ON,5/92=—o NN+ 1),
AN/ z=—o (N Np+.N1N.p), (18)

with N,r(0)=N,z(L) =0, where Ny(2), N,r(z), and
N.p(2) are the average photon numbers per unit length
for laser, forward, and backward Stokes fields, respec-
tively, and o is the scattering coefficient. Then, the
solution of Eq. (18) is

N (L) =N.u(0)

L
=exp [/ u.\';(z)dz]—- 1 (19)

0

® Iuternalional Critical Tables, Nativnal Research Council,
(McGraw-Hill Book Co., New York, 1930). Handbook of Chemis-
Iry, edited by N. A, Lange (Handbook Publishers, Inc., Sandusky,
Ohio, 1956.

8 See, for example, B. P, Stoicheff, Phvs. Letters 7, 186 (1963).

7§, . McClung, W. G. Wagner, and D, Weiner, Phys. Rev.
Lelters 15, 96 (1965).

# 1. Garmire, Phys. Letters 17, 251 (1965).

% R.\V. Hellwarth, Phys. Rev. 130, 1850 (1963).
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which shows that the forward-backward symmetry in
the Stokes generation would persist.

The observed forward-backward asymmetry suggests
tl.at the filaments are not isolated. The Stokes radiation
generated elsewhere in the medium is expected to self-
focus together with the laser beain into the self-trapped
filaments. Generally, this would increase the rate of
forward Stokes generation in the filaments. In fact, the
Stokes generation in the Slaments is perhaps a transient
rather than a steadv-state phenomenon. As we men-
tioned earlier, the Stokes radiation appears as a series
of sharp pulses. It was suggested that each filament
lasts not much longer than 107" sec."® The Stokes
generation in a filament is therefore described by

(8/0s+nd/cat) N1= —aN(Nyr+Nus),
(8/0z-+n,8/cot) Nep=o N 1(Nwp+1),
(8/92—n,9/cOl) Nog=—aN(Ns+1), (20)

neglecting other nonlinear processes in the filament.
The solution of Eq. (20) is difficult, but it can be shown
that when the laser peak power is highly depleted in
the Stokes generation, and N,p{2=0) is not 100 much
larger than A,p(2=L), where L is the length of the
Elament, the peak ntensity of Vg cant Lo many tiiies
higher than that of N'r.?¢ This would then enhance the
bac™- urd Siokes radiation. Of course, the reverse will
be trueif N.r(3=0) is sufficiently larger than N,z(z=L).
Because of our lack of knowledge on how the self-
trajiimd filaments are formed, and because of other
nonlinear processes in the filaments, it is quite im-
possible to describe the analytical details of stimulated
Raman scattering in liquids. However, rn the basis of
what we have just discussed, we can explain qualita-
tively the observed forward-backward Stokes asym-
metry (Fig. 5). After the laser traverses a distance 3
(the self-focusing length) in tle liquid, filaments start
to show up. The average number of filaments W(z)
increases with distance 2 rapidly, say

W(z) = exp[ f(s—2) ]

and the laser input into individual filaments is nearly
a constant depending only on the properties of the
liquid. Because of self-focusing of Stokes radiaiion, we
would expect that N.p(z=2)>N.p(z=2+L) for a
filament initiated at 2, and that N p(z=2) increases
with z and the laser intensity in the nontrapped region.
Thus, when the < -l length is increased above 2, both
forward and backward Stokes radiation begin to be
generated in the filaments with extremely high gain
before saturation in the Stokes generation sets in. This
appears as a sharp threshold for the stimulated scat-
tering. After saturation sets in, the backward Stokes
radiation would become more intense than the forward
as a result of transients, if N,p(3=2) is not too much

i




231 RAMAX AND BRILLOUIN
Mrger than N.p(z=2-} L}. As the cell length is in-
creased further, more filaments show up, and the in-
crease of N,p(2=2) with g enhances the forward
Stokes generation in these filaments. The Stokes
intensity in the forward direction now grows [aster
than in the backward direction. Eventually, for a
sufficiently long ccll, the forward Stokes radiation will
become more intense than the backward Stokes, al-
though the reverse is true near thc threshold. This
expiains the crossover of the forward and the backward
Stokes curves in Fig. 3.3 Since N,p(5=13y) also increases
with the intensity of the laser beam, the crossover
would appear closer to the threshold length for higher
laser intensity as we have observed. A similar argument
explains the quar .tive behavior of the Stokes curves
in Figs. 6 and 7, if we remember that the self-focusing
distance z; in toluene is mearly proportiona! to the
square root of leser intensity.” In Fig. 6, the nitro-
benzene focusing cell helps the self-focusing action in
toluene, enhances siightly the forward Stokes intensity
with respect to the backward Stokes, and hence brings
the crossover point closer to threshold. Since most of
the Stokes amplification comes from the self-trapped
regicn,® the slight change in the threshold would not
affect greatly the Stokes gencration above threshold.
The two sets of Stokes curves, with and without the
focusing cell, look very much alike except that one is
shifted from the other. The Stokes curwves in Fig. 7,
however, seem to indicate the fact that the Stokes
amplifici.tion is greater at lower ten.perature hecause
of a smaller Raman linewidth.

The sharp ris¢ of the Brillouin curves near Raman
threshold in Figs. 6 and 7 show that the stimulated
Brillouin scattering in toluene is also initiated by tb~
appearance of self-trapped filaments. Nevertheless,

% The qualitalive fealures of ¥ig. 3 can be oblained if we assume
that the Stohes radiation ceneraled in each filament is approxi-
mated by

Norleot L) = Nor(zo) explgL} ‘ r<r<l
IS LL L,

Noplze) =Nplao+ LY explg'L) f’
Nl LY = Nop 2t Nio TN p (20) +/ N 50+ LY
Noglzd = C,
Lwe=(1/g) IIN o/ TN, plz0) +/N (20 + L]0,
g =(1/Lut) IN[C/N,p(ze+ L33
and N,r{ze), Noplzet L}, g, f, and C arc numerical constants
properly chosen.

#The Stokes gain in the nontrapped tegion is only ahoul
0.25 em™ even for a 0 MW/cm? laser beam. See Ref. 29.
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since the lifetivie of tive filaments is short, the Brillouin
generation in these fila nents is greatly reduced. Thus,
relatively, the Brillouin mmplification in the nontrapped
1egion is much more important than in the Stokes case.
It has a steady state gain of 0.7 em™ for a 100 MW/cm?
laser bean.¥ This large gain is presumably responsible
for the higher Briflouin intensity than the Stokes. T1.-
Briltouin amplification in the nontrapped region could
explain the cross over of the two Brillouin curves in
Fig. 6 with and without a focusing cell. At sufhicientiy
high laser intensity, the Brillouin amplification in the
nontrapped region would dominate over the Brillouin
generation in the filaments. Since the Brillouin ampli-
fication depends positively on the isothermal com-
pressibility 3, which increases sharply with tempera-
tute, the Brillouin intensity is expected to be higher
at higher remperature, just as shown in Fig. 7, although
the threshold it toluene at higher temperature is higher.
In hexane, there is no evidence of the prescnce of
filamenis, The Brillouin curves in Fig. 8 also give no
indication of sharp threshold. It is believed that in
hexane the effect of self-fecusing and self-trapping on
stimulated Brillouin sciitering should be negligible.
Then, since the Brillouin amplification increases with
temporature, the Brillouin raciation should have higher
intensity and hence a lower apparent threshold at
higher temperature, as shown in Fig. 8.

IV. CONCLUSION

In most organic liquids, the optical Kerr effect is the
donmunant mechanizsm for self-focusing. However, the
Kerr eiect fails to explain the fact that the self-focusing
strength increases with temperature in liquids such as
CCl,, hexane and acctone. For a Q-switched laser pulse,
the electrostrictive contribution to self-focusing is often
neglivible. It is concluded that forward stimulated
Briliouin scattering should be responsible for the tem-
perature effect in these liquids. Seli-focusing and self-
trapping aflect drastically the stimulated Raman and
Brillouin seattering in liquids. The increase of number
of self-trapped filaments with cell length and laser
ntensity, together with self-focusing and transient
cficcts, cxplains qualitatively the observed forward-
backward asymumietry in the Stokes generation. Other
qualitative features in the stimulated Raman and
Brillouin scattering can also be explained.

7 See Ref. 29. The acoustic damping used to calculate the zain
is taken from R. Y. Chiao and P. \. Fiuery, in Preceedings of Con-
Jerence on Physics of Quamtum  Elcctrowics, Puerte Rico, 1965,

edited by P. L. Kediey, ef al. (McGraw-ITill Book Co., New York,
19601, p. 24t.
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APPENDIX IV

MEASUREMENTS OF SUBNANOSECOND "FILAMENT™ PULSES

; »
TSING THE CONVOLUTICN TECHNIQUE

Michael M. T, Loy and Y. R. Shent
Department of Physics
U'nivérsity of California

Berkeley, Califcrnia

ABSTRACT
The .well-lmown- convolution -t;echn:lq_ue \ra..‘s used
to méa.sure subna.nos.ec.;ond pulses générated from
"filaments" in a selr—focus;.-d beam. The results
r,howed. that in tolueng. the pu;.ae width vari;e&
from 200 to 100 psec or lésa, and thé p;eak pover
vas about 39 kwvatts,

Research supported by the U, S. Office of Naval Research under
contract Na. Nonr-3656(32).
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Self-focusing of an intense light beam; in & nonlinear medium has

recently attracted much attention. In some liquids, direct time-integrated

photographs show that a self-focused beam would break into small-scale

3.4 Brewver et als

"2ilament" in CS, has a lifetime less than 10720 gec. and a peck intensity

"filaments" of few microns in dlsmeter. found that a
,lﬁwge; than 10 KW. TFor theoretical iht;rprétation more accurate infor-
mation about the duration and the 1ntensity of a "filument" is ol
_prime 1mportance.. Bowever, nnst of the common techniques tor subnanosecond
‘pulse neasurémgnts are not easily applicable to the mgasurements of .
'tilnmznt pulses, The combination of A fast diode and a Tekfronix 519.
’ oséillo;cOpe has a limited time con;tant of 300 pséc or more.’ The
twu-photpn tluorescence techniqpes reqnires an intense beam-of fairly
1:rg° cross-section. The eecond-harmonic correlatign tgchn‘qpeT needs,
in eddition, a large number of roughly identical pulses. In this letter,
_ we would like to 1ntrodnce the vall-known convnlution technique for
subnanosecond pulse measurements. Hb ulso present results of the first
sccurate measurements on the durttion of filament pulses.
If the ‘response of a linear system to ¢ v:function is g(t), hen
the response 10 an arbitrary function s(t) is given by the convolution
1ntegral '

-B(tj - ft_,'_g('r) s(t-1) &t (1).

-

-

Knowing R(t) and g{t) one can,’in principle, determine s(t) from the
integral. This convolution technique is similar to that used in
specfroscppy to recover 1e true spectral lineshape from the obgerved

spectrum, In our case, the linear system consisted of an ITT FL018 .

il
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photodiode in connection with a Tektronix 519 ¢. illoszops. A nuliz ...
amount of load resistancé and'capacitancé was inserted in the photodicde
housing to make the s&stem véakly und;r&amp;d: Th;-ovérali system ha§
a time constant of sbout 400 psec; To appro;imaté the G-function, ve
used the mode«locked pulsés from a Nd-glass laser. Two-photon fluorescenc?
measurements on thesé pulses yie]déd 3 vglﬁ? of 8 ¢ 3 psec. fﬁr-the
pulse width, The re ,ons; function glt), obtained directly frcm the
oscilloscope trace of the system response to such a mode-locked pulse,
is shown in Fig. le, h

A1l OSQilloscope tr;ces-?ere taken at a sweep rate of 2 nsec/div,
(j mm/div. on the polaroid picturés). The lin;arity of‘the sweep rate
was calibrated to within 1.5%. Thé oscilloscopé traces were measured .
by & ctoss-féeé manipulétOt;aiﬁitﬁ an accﬁracy of 1 ﬁ in bofh coordinates,
However, tﬁe major sodrcé'of error in th; m;asurements still came from
reading the traces from th; pictures. Th; unc;rta;nty was typically
tO.dS to 10.15 mm for different parts of the trace'depeﬁding on its slope.
Computer calculation of Eq. (1) was then performed t6 metch the obsarvel
resanse function R(t) by'ﬁsiﬁg g(f) of Fig. la and by adjusting the wi~--
and the shape pé\é(t) using a Voigt function.?
We spplied this technique to the ﬁeasurements of "filament" pulses.

A bgam of 0.75-mm diemeter from a single-mode Q-switched ruby laser was.

.sent.through & 33-cm toluene cell., For laser powérlabo§e~£he self-focusing

threshold, photographs of thQ_béam cross-section at @hé end of the cell
showved an intense bright spot of 10.1 2 ﬁ.iﬁ diemeter. Diffracted light
from the spot wvas detected by the fast photodiode. Figure 1b shows an

oia;lloléopa.truce of & iybic;l "tilament” pulse obtaincd at laser power

close to the self-focusing threshold. We found, from computer calculation

B




of Eq. (1), that the corresponding true pulsé s(t) has a full width at
Balf mexima of 190 # 30 psec, with an asymmetric pulse shape fairly well

¢ termined as shown in the insert of Fig. lbl At highér input power, the
osciiloscOpe trace of a typical "filamént" pulsé is shown 1In Fig. 1lc.

We found in this case that s(t) has a full width of 100 * 60 psec. Here,
the inaccuracy arose : ..inly b?causé of ﬁnéert;inty in the pulsé zhape of
s(ti.. The same difficﬁlty éxists in tuﬁ;phétgn fluorescénce and second-

T The insert in Fig. lc shows that s(t)

harmonic correlation techn;qu;s:
assumes vefy differént widths aep;ndiné on whethér it 15 Gaussian or
Lorentzian.' If the shapé of s(t) wéré kﬁown: tié accuracy in determining
th; pulse widtﬁ would bé as 500& a§ t 15 pséct Thé obsérvéd "filament"
-pulse width would app;ar to décregs; with incfegsing input power if we
agsumed that th§ pulsé shapé r;mainéd_rdﬁéhly ﬁnchangéd. Thé peak povers
# a1l "filament" puls?s: estimated from the énerg§ content in the pulses,
were about 30 ¥ withiy a factor of 2. M;asﬁr;ménts on "filaments” in
c8, &ielded essentiaily th; sine r;sﬁltg with peak'powér at around 8 KW.
As an 1ndep§ndent ch?ci on dﬁratién and iﬁténsity of the "filaments”
we used thé'méthod sﬁggést;d by M;yer.lo Lét IZM(E;t) te the intensity
of second harmonics genérated from & thin KDP.cryatal by a nearly parailel
bean of in£enaity Iu(g,t). Then, the energy in the fundamental and tke

geconi-harmonic pulses are given respectively by

P = I (r,t)aAdt
e w'E (2)
Pow

3

= J1, (x.t)anas = /1 2(r, b anat

vhere the constant coefficient C is obtained from the known effeciancy

of the second-harmonic generetion process. Simultaneous measurements of

-
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P, 8nd P, weuld determine both the pulse width and the peak intensity if
the functional form of Iw(;;t) is known. In our experiments, the constant
C was determined by measuring the second;harmonic generation from a ¥DP
erystal using the input laser beamt Applicatiors of the above method

to the "filament" pulses general ly yielded fbr the pulse W1dth a value
uhich is within a fz ‘or of two compared vith that obtained from the
convelution technique: This method is inhemently much less accurate

than the convolution technique.

This convolution technique can. of course, be applied to measure~
ments of other subnanosecond pulses, such as stimulated Raman pulses,
From the experience in our computer calculation we noticed that rough
measurements over a few key points (including the two maxima, the minimum
etc,) are usually sufticient to determine the pulse shape ani width with
an accuracy somewhat less than what we gtated earlier. This technique is
especially sensitive tq the variation in the pulse wing., For instance,
ve raund that it was very useful to have this technique supplement the

two-photon fluorescence technique to assure thr* the mode~locked pulses

were "clean" without appreciable ripples at tle wings.
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Fig. 1

FIGURE CAPTION

« Oscilloscope traces of the system response to various light
pulses. The system was composed of an ITT FL018 photodlode in

¢onnection with a Tekt?ouix 519 oscilloscope.
&) A mode-locked pulse of § 3 psec in_pulse wvidth fror e
:‘!a-glsss Jager. ‘
®) A "filament” pulse with a pulse vidth of 190 t 30 psec and an
asymmetric pulse shape as shown in the insert.
e) A "tilament” pulse with a pulse wldth of lOO * 60 psec, fhe
1nsecuracy is due to uncertainty in the pulse shape. The
.insert shows that tre pulse width could be very difficult
depending on whether the pulse 1s Jaussian or lorentzian.
The circles indicate results of computer cslculatlon of Eq. (1),
taking the mode—locked pulse a8 an G-runction.
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SMALL-SCALE FILAMENTS IN LIQUIDS AND TRACKS OF MOVING FOC1*

Michael M. T. Loy and Y. R. Shent
Physies Departmoent, University of California, Borkeley, California 94920
(Received 13 March 1969)

Experimental results show that the small-scale fllaments in liquid, obtalned with a
single-nmode laser, are composcd of continuous scrics of focal spots. Many related ok~
scrvations arc shown to be consistent with the picture of moving foci.

Experimental observation on self-focusing of
laser light in liquids has shown that the self-fo-
cused beam would eventually break into intense
filaments a few microns in diameter.»* The ex-
istence of these filaments has recently atlracted
much attention. They have been attribuiead to
self-trapping predicted by Chiao, Garmire, and
Townes.® Recent experime«nts® on spectral broad-
ening in filaments, obtained by using an inhomo-
geneous, multimode laser, seem to support this
assertion, Lugovoi and Prokhorov® however sug-
gest that in some situations filaments are simply
tracks ol moving foci, in accordance with time
variation of the input laser intensity. In this pa-
per, we would like to present some experimental
evidence that filaments obtained witk a single-~
mode laser are actually composed of a continu-
ous time series of focal spots. We also show
that many effecis inkerently related to self-focus-
ing are consistent with the picture predicted by
Lugovoi and Prokhorov.

A single-mode ruby laser, @ switched b cryp-
tocyanine, was used in the experiments., The
bears was passed through a 0.75-mm pirhole be-
fore propagating into the liquid cell in order to
assure maximum spatial homogeneity. A typical
oscilloscope trace of input pulses is shown in
Fig. 1(a) together with the Fabry-Perot pattern
in Fig. 1(b). “Filaments” or moving focal spots
were observed by focusing 2 camera at the end
of the cell. In most cases only one “filament” ap-
peared [Fig. 1(c)]; occasionally, there were two,
when the input laser power was exceptionally
high. This is in clear contrast to the results ob-
tained with a multimode laser, where tens or
even hundreds of filaments are [requently ob-
served on each picture.* As the laser power was
increased from below to above the self-focusing
threshold, the photograph first showed a bright
spot of about 50 ¢ in diameter, which gradually
became more intense and shrank to a more or
less limlting *“filament” size (101 2 4 in dianmeter
in toluene and 521 4 in CS,;). The pulse emitted
from the filament was detected by an ITT 74018
photodiode in combination with a Tektronix Model

994

No. 519 oscilloscope. A 1-mm disk was inserted
soniewhere in front of the photodiode to block ofi
the background of non-self -focused laser light.'
The pulse duration was then measured by the cor-
volution techuique,® The results on toluene
showed that with increasing input laser power,
as the bright spot shrank from 50 u to the limit-
ing 10-p “filament” size, the pulse duration
changed from 1 nsec to 200 psec, and then as
the “filament” size remained unchanged, the
pulse duration continued to shorten to less than
100 psec. While the pulse became shorter, the
energy content in the pulse decreased according-
1y, but the peak intensity in the limiting “fila -
ment” remained roughly constant at 30 GW,’cm?.
Spectral analysis with spectograph and Fabiy-
Perot on the “filament” pulses yielded a line-
width of less than 1 cm™},

These results are consistent with the picture
of “filaments” formed by moving foci. On the
other hand, it wouid be rather difficult to ex-
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FIG. 1. () A typical oscilloscope trace (5 nsce/div)
of an Input lascr pulse. () A Fabry-DPesot pattern
(1.25-cm spacing hetween plates) of an input laser
pulse. {c) A typlcal “filament” In toluene. The pic-
ture was taken by focusing the camera at the end of
the cell with a 125x magnification.
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plain how a self-trapped filament of such high ln-
tensity could last for more than a few millime-
ters without showing appreciable spectral broad-
ening.,” A way to help distingnish the two cases
is to focus the camera inside rather thau at the
enu of the liquid cell. If the “filament” were in-
deed a self-trapped filament which terminates at
the end of the cell, we would expect to see a
hlurred defocused image of the filament; other-
wise, as the laser power is increascd above the
self-focusing threshold, we should always sce a
clear image of the focal spot extended radually
further inside the cell, In our experiments, we
took sinwltaneous photographs with two cameras,
one focused at the end of the cell and the other
up to a few centimeters inside the cell. For la-
ser power above the self-focusing threshold, we
found on both photographs at equivalent positions
a bright focal spot of about the same size (1012
» in tolucne), consistent with the picture of mov-
ing foei. The focal spot appeared deeper inside
the cell for higher laser power, but not.up to the
point at which the peak of the laser pulse would
self-focus, presumably because stimulated back-
ward Raman and Brillouin scattering effectively
terminated self-focusing through depletion of the
incoming laser power (see explanation below).
One might think that these results could also be
interpreted as a self-trapped filament moving
along a line. We rule out such a possibility on
the following grounds: (1) Calculation® shows
that a trapped filament of 30-GW/cm? peak inten-
sity without appreciable spectral broadening
should be depleted by Raman scattering in less
than a few millimeters. (2) Focal spots were ob-
served within 1 em of the point at which the peak
of the input pulse should self-focus, when thie in-
put peak power was not toc far above the self-fo-
cusing threshold. This showed that the trapped
filaments, if existing, could not be longer than 1
or possibly 0.5 cm. The limit was set by the ex-
perimental inaccuracy in determlng the self-fo-
cusing threshold, assuming the worst case that
self-focusing was not terminated by stimulated
scattering. Physical results would of course be
essentially the same, whether it is a moving fo-
cal spot of finite focal region or a moving, short,
trapped filament. We also focused the camera
up to a few millimeters outside the cell. The ob-
served image was almost an order of magnitude
smaller than one would expect from diffraction
of a self-trapped fllament, indicating some focus-
ing action of the beam extended outside the cell,
Theoretically, knowing the time variation of

the inpul laser power, we can calculite how the
focal spot moves along the line, We assume that
for a certain laser power P the focal spot ap-
pears ai the self-focusing distance®

z i K/ l(I’/I’m‘)”’-I], (1)
where Py is the critical power for self-trap-
ping® and K is a constant depending on the geo-
metric factors of the input beam and the nonlin-
ear rcfractive index of the medium. By mecasur-
ing the threshold power for sclf-focusing at vari-
ous cell lengths we can find K and P;. The mo-
tion of the focal spot can then be dclermined
from Eq. (1), knowing the time variztion of the
input laser power and taking into account the fact
that light propagates with finite velocity. Figure
2 shows the position of the focal spot in toluene
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FIG. 2. Theoreticzl curves indicating the position of
the focal spot inside toluene as a function of relative
tiine At for gseveral peak powers of a Gausslan laser
pulse with 7.6-nscc full width at half-maxinium, Here
&2 =0 refers to the instant the first focal spot is
formed. Curves are calculated using Eq. (1) and ex~
perimceutal values of sclf-focusing threshold at differ-
ent cell lemgths, Note that sinee light travels with fi-
nlte velnclty, peak of the laser pulse would focus carl-
fer with shorter self-focusing distances than the lead-
ing part of the pulse focusing with Tonger sclf-foeusing
distances. This also explains why, at a given af, two
focal distinces can he obtained from Eq. ().
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as & function of time for @ sct of inputl Gaussian
pulses with various peak powers,' These pulses
were chosen to mateh approximately the observed
laser pulscs in the experiments. However,
therc could be some residaal spatial inhomogene -
Ity in our laser beains; so the curves in Fig, 2
only describe approximately the actual experi-
ments,

One consequence is immediately obvious from
the picture of moving foci shown In Fig, 2. For
a given cell length, the fccal spot would spend
more tinie at the end of the cell when the input la-
ser power Is just al the self-focusing threshold
than in the case where thc input power is consid-
erably above the self-focusing threshold. In the
former case, we would expect to sec a brighter
focal spot at the end of the ccll. This is ir fact
what was obscrved. We noticed in addition, with
the aid of motion pictures, that whenever the in-
put power was near the self-focusing threslold,
there appear«d a bubble of about 100-¢ diam out
of the focal region at the cnd of the cell. Rough
estimate shows that while an intense field is nec-
essary to lnitiate the bubble, an energy of a few
ergs is needed to create the bubble. This can
therefore happen only if the focal spot stays at a
local 10 -4 region for more than 10 psec. Most
of our experiments were done on toluene with a
cell leugth of 33 cm and an input laser pulse of
peak power between 6P¢p and 12P.,. From Fig.
2, we expect that the focal spot would first ap-
pear in the liquid medium at the end of the cel:
and then move inward. For higher input power,
smaller pulse width, and longer cells the focal
spot could first appear inside the cell and then
split into two focal spots, one moving towards
the frcnt and the other towards the end of the cell.
This would happen only at P> 100 P., for thc 33-
cm toluene cell we used. Then the focal spot
could also move with a speed greater than the ve-
locity of light,

Figure 2 shows that for input power larger
than the self-focusing threshold, if sclf-focusing
were not terminated by other processes, then
the duration of a “filament” pulse would bc much
longer (>1 nsec for P >7P;) than what was ob-
served (~150 psec) and would increase with In-
crease of input power, opposite to what was ob-
served. However, various stinwlated scattering
processes can he Initiated at the focal region,
The backwzrd stimulated Raman and Brillouln
scattering would deplete cffectively the Incoming
laser power' and consequently terminate the “fil-
ament” by depleting the later part of the input la-
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scr pulse to a level below the sell-focusing thres-
hold, The self-focused lizht dilfracted from the
focal spots could also be depleted by forward Re -
man scatlering. Because of longer interaction
length, depletion would of course be more appre -
ciable for focal spots deep Inside the cell, In alt
respects, the jocal spots near the end of the cell
should bc less affected by etimvlated scattering.
Photographs lndeed showed that focal spots in-
slde the cell were much less intense than these
close to the end of the cell, From Fig. 2, we
conclude that to yleld the observed “filament”
pulse duration, the major part of the pulse mus:
be emltted from a short sectlon of the “filament”
presumably withln 1 em towards the end of the
cell, This also explains why the pulses were
shorter and weaker for higher input power,

In concluslon, we believe that under conditions
simllar to ours, the so-called “filaments” are ac-
tually the result of moving foci. The size of a
“filament” should then be the size of the focal
spot. Machine calculations,” with a simple mod-
el of saturable-refractive index, indicate that a
sclf-focused beam would defocus and then refo-
cus again, If the laser power Is being deplated
by stimulated scattering in the focusing process,
then the self-focused beam after defocusing
would not have enough seli-focusing strength to
refocus. For an input laser pulse “hich is non-
homogeneous and multimoded, self-trapped fila-
ments may still exist* because of very different
propagation conditions, However, a question ye¢!
to be answered is why the slze of the observed
“filaments” in a glven liquid secems to remain
rcughly constant irrespective of the Input pulses,

We are indebted to Dr. P. L. Kelly for numer-
ous dlscussions and valuable comments on the
manuscript. We would alsn like to thank Profes -
sor R, Y. Chiac and Professor C, H, Townes for
helpful discusslons.

*Research supported by the U, S, Office of Naval Re-
szarch under Contraet No. Nonr-3656(32).
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SIMPLE MODYL FOL CTMICONDUCTOR-METAL TRANSITIONS:
SmB; AND TRANSITION-METAL OXILES

L. M. Falicov*
Jepartment of Physics, University of California, Berkeley, California 94720

and

J. C. Kimballt

Department of Physics, and The James Franck Institute, tUniversity of Chicago, Chicago, Ilinois 60637
(Received 12 March 1969)

We propose a simple model for a semiconductor-mctal transition, bascd on the exis-
tence of both localized (ionic) and band (j3loch) states. It diffcrs from other theories in
that we assume the onc-electron states to be essentially unchanged by the transition,
The elcctron-hole interaction is responsible for the anomaioucs temperature dependence
of the number of conduction elcctrons. For interactions larger than a critical value, a
first-order semiconductor-metal phase transition takes glace.

Many substances, including SmB,! and a num-
ber of transition-metal oxides,? exhibit semicon-
ductor-metai transitions.® The transitions are
in many cases first-order phase transitions (e.g.,
in V,0,); however, they can also result from a
gradual but anomalo:isly large increase in con-
ductivity over a range of temperatures {e.g., in
SmB, and T1,0,). In addition, ineasurements of
large magnetic susceptibilities with ancmalous
tenmperature dagendences suggest that in many of
these materials localized magnetic muinents ex-
ist and that they are intimately connected with
the transition. As an exam: e, it has been hy-
pothesized® that in SmB, the conduction eiectrons
and the localized moments are produced si.aui-
taneously by the promotion of a single localized
eiectron from tlie spherically symmetric Sm*+
ion (J = 0) into a conduction band. The Sm*** jon
left behind {J = }) acts as a localized moment.

We presert here a simple theary of the semi-
conductor-metal transition basea on a model hav-
ing both localized and itinerant inters cting quasi-
particle states. The relevant single-electron
states concist of (a) b 1ds of extended Bloch func-

tions and (b) a set of localized states centered at
the sites of the metallic ions in the crystal. As
T -- 0 the Incalized states are lower in energy
than the band states and are fully c - :upied by ’
electrons. Therefore the quasiparticle excita-
ticns are either localized holes or itinerant elec-
trons. In the language of second quantization and
in the spirit of the Landau theo~y of Fermi liq-
ulds, we write the one-particle terms as

”0 i Z" ev(k)avﬁotgvﬁa +ZEbioTb:’o’ )

vka o

where ayEoT creates an electron in state k, band
v, with spin g, and bioy creates a hole with spin
¢ at site §. The energies ey(l.:) and E are positive
definite and such that

A=minlE + cy(ﬁ)]> 0 )
is the encrgy gap for the formation of an elec-
tron-hoie pair. We further assume that the qua-
siparticle interaction is screcuned, and its range
short enough so that only intra-atomic terms
need be considered. In this case the interaction
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Tunable Far-lufrarcd Radiation Generated from tne Difference
Frequency between Two Ruby Lasers

D.w.

Faries®

Deportment of Physics, University of Culifornia, Berkeley, California 99720

AND

K. A Gramn ,f Pt Ricnakos, aNp Y. R, Suest
Imorganic Matesials ¥ Ssearch Division, Lawtence Radiation Laberatory,

Liepartment of Phiysics Unitenity of

California, Berkeley, Colifornia 94720

\Reeeived 20 December t968)

Fur infrarcd radiation gencrated from the difference frequency between two lemperalure-tuned ruby-
lasers has been observed over the frequency range om 1.2 10 8.t ™t Lithium niobate and quartz were
used as mining erysials. The couversion efficiency was measured as a funciion of angle around the phase.
matched divection, The exprected spectral enntent 2nd frevquency of the far-infrared radiation has been veri-

ficd using a4 far-infrarcd Fabry-Perat interferometer.

OON after optical second-harmnnic generation was
discovered, it was suggested by several persons!
that diference frequency generation in a norlincar
cryvstal using two temperature-tuned lasers would pro-
vide a tunabic source of coherent far-infrared radiation.
In this paper we describe the first observation of this
tunable narrow-band far-infrared radiation. Fixed-
frequency far-nfrared radistion has been reported by
two groups: Zernihe and Bermagn? detected broadband
radiation near 160 cm™¢ resulting foue the miving
of an unlnown number of modes from a pulsed nea-
dymiuni-glass Liser. Yajima and Inoue’ used the R,
amd K. lines of - single ruby laser to gencrate a fived
ditference frequency. »=29 enr'. In neither case was a
spectral analysiz cerosted. We have used two, simul-
tancously {-switched, temperature-tuned ruby lusers to
generale radiation between 1.2 and 8.1 cmv~!. By using
sun.-frequency generation to normalize the pulse-to-
pulse variations, we have measured the far-infrared
frequency directly and found it to be in agreement with
the known temperature coefficient® of the ruby-laser
frequency. We have also measured the variation of the
far-infrared power with orientation of the LiNbO,
erystal near the phase-matching angle. Difference-fre-
quency generation was abserved in quartz and LiNbO;
and a compurison is made of their electro-opticai
coellicients as calculated from their relative efficiencies.
Consider two cylindrically syaunetric beams of finite
transverse radius a lraversing a crystal of length £ The

¢ Rescarch supj.orted by the Office of Naval Rescarch under
Contract No. Nonz-3656(32).
I Prescat acilress: Tne Clarendon taboratory, Oszfond, England.
A. P. Sloan Research Lellow,
$ See, for example, D. C. Laine, Mature 191, 795 (}961); J. R.
Foatana and R. H. Pantell, Proc. IRE 50, t796 (1962).
“;g‘s. Zernike, Jr., aud P. R. Berman, Phys. Rev. Letters 15, 999
3T. Yaiima and K. Inoue, Phys. Letters 264, 281 (1968);
1EEE J. Quantum Flectron. (to be published).
(l:)él') . Abella and 1. Z. Cummins, J. Appl. Phys. 32, t77
1}).
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field intensities of the beams (i=1, 2} are
Ei{r,)=4[8; exp(ik.z— i) +c.c.].

A nonlirear polarization of frequency w=w—w; will be
produced in the cylinder of length ! and radius a by the
interaction of the two electric fields with the medium.

P(r,l) = % (X mg, &temut)a— ftd c.c.) R

where by~ k:=k4-ak= (w/c)n+ Ak and where u is the
index of refruction at the difference frequency w. By
integrating over the contributions of the cylindrical
polurization wave in the far-field approximation, we
obtain the total far-infrared power 11” collected in the
detection system. We neglect th eff=ct of the boundary
by assuming that the detector is buster} in the dielectric
medium.

it

¥
W= |X®|2| &,|2] 6] P(xe)?
1

éa H 2 2_]
X / sing do[sﬂ [——-im],. (1)
om0 ] {

where n= k(14 Ak/k— cosp), t = ka sing, # is the angle
between the incoming hear. and the generated radia-
tion, and @, is the maximum angle collected in the
detection system.

Equation (1) is valid for single-mode lusers. A beam
with divergence @ and area {4 contains V= AR/
modes. Under the condition of small diticrence fre-
quencies and limited collection angle (which existed in
our experiments), the measured signal arises only from
each mode of one laser interacting with one inode from
the other laser. Therefore:, the detected power is reduced
by a factor of 1,V from that preditted by Eq. (1).

In our experiment, the two lasers were simultaneously
Q-switched by using the sume rotating mirror in both
eptical cavities.’ The mode puzity was centrolled by
using a resonant retlector as the output mirror and by

$D. W. Faries and Y. R. Shen (1o be published).
363
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using a saturable dyecell (Fastman 10220). One of the
lasers was cooled by circulating ethyl aicohol at
T2>-40°C and the other was operated at room tem-
peratute. The two laser beams were made coincident
and accurately parallel (within 1 min of arc) by careful
adjustment of a beam splitter. No focusing lens was
used. The polarizations of the lascrs were made acen-
rately perpendicular (vertica! and horizontal} by the
use of external polarizers. Euch laser typically delivers
a power of 1 MW over an area of 0.2 em?® with an angular
divergence of 1.5 mrad and a pulse duraticn of 3X 103
sec. The power is usually distributed iuto two frequency
modes separated by 0.2 ciu™',

The far-infrared signal was detected using a crystal
of n-type InSb (Putley® detector) at T=1.3°K in a
magnetic field of 5500 Qe. It was biased with a constant
voltage of 0.25 V and the current was measured using
an operatioral amplifier with a feedback resistor
Rr=205 kQ. The response time of this system is 2 uS.
The sensitivity of the detector was measured using a
blackbody at 200°C and a filter passing 0-50 cni—l.
This shnwed the average noise equivalent power in a
5X 10°-Hz bandwidth to be 10-® W. However, since the
sensitivity is certainly not uniform in this energy
region® and since therc are inevitable local system
resonances at these long wavelengths, the absolute
values of the infrared power may be in error by more
than an order of magnitnde. For this reason, emphasis
was on relative powers in our measurements.

The nonlinear crystal was mounted on a rotatable
table directly in front of the light pipe leading to the
detector. A black polyethylene filter was used to reject
unwanted radiation. :

The infrared power generated is proportional to the
integrated overlap in space and time of the two lascr
beams. Since this overlap varies from shot to shot, it
is desirable to obtain an independent measurement of
it for use as normalization.” This was done by nonitor-
ing the intensity of the sum frequenrcy generated in a
ceystal of potassium dinydrogen pliosphate {KDP).
The discriniination of the sum frequeney from the
second-harmonic signal was achieved by using the
scheme of Maier ¢ ¢l.% and Armstroag? A discrimina-
tion factor better than 50 against second-harmionic
radiation was obtained. Because of the small ¢ vector
of the {ar-infrared radiation, fluctuations in beam align-
ment and angular-mode distributicn are expected to be
more critical for difference-frequency than for sum-
frequency generation. The far-infra.ed differ~nce-fre-
qttency signals were found to be proportional to the
sum-frequency signal within a factor of 2.

¢ E. H. Putley and D. H. Martin, in Spectroscopic Techniques,
edited by ). H. Martin (North-Holland Publishing Co., Amster-
dam, 1967),p. 113.
( 1 J. Ducuing and N. Blocmbergen, Phys. Rev. 133, A1493

1964).

* M. Majer, \V. Kaiser, and J. A. Gicrdmaine, Phys. Rev.
Letters 17, 1275 (1966).

* J. A. Armstsong, Appl. Pbys. Letters 10, 16 (1967).

RICHARDS,

AND SHEN 18¢

ARREEEE et
.L..Ul..:l L.—l‘ T! :1:7;:.:1 :J: Ll:::.‘

Fic. 1. Typical oscilloscope traces showing correlation between
the time overlap of laser pulses and the strength of sum- and
differeuce frequency signals. The laser signals are displayed on a
single trace (a) at a sweep rate of 50 nsec,/div, with the coolec
laser signal delayed by 125 nsec. Difference-frequency signals (b}
and sum-frequency signals {c) are displayved at a sweep rale o
5 psec/div. The pulse widths of (b) and {c} are characteristic of
the time :_sponse of the derectors used. When there is consideralile
time overlap fas on the right), the sum- and difference-frequency
signals are clearly much larger.

Typical infrared siguals are shown in Fig. 1, where
they are compared with the suni-frequency siznal and
the signals from the individual lasers. Satisfactory
correlation is observed between the difference-frequency
signal, the sum-frequency signal, and the laser timing.

The variation of the far-infrared power as the 1.5-cm
LiNbO, crysta! is rotated through the phase-matched
direction is shown in Fig. 2. The experimental points
are compared with the theoretical curve plotted assum-
ing that the output of each laser is split equally between
two frequencies separated by 0.2 cm~!. The position of
the peak in Fig. 2 agrees within experimental accuracy
v/ith the phase-matching angle of 0.53° from the optic
uxis computed using n,=2.189 and ne=2.273 (at the
laser frequencies)® and np=6.55 (at 8.1 cn?)."
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Fic. 2. Variation uf the power of the difference-frequency signa!
2s a function of the angular deviation from the phasc-matched
sngle. The angles refer to the inside of the 1.5-cm LiNbO.
crystal used.
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The measured far-infrared power from a 0.047-cm
LiNbO; crystal at the phase-matching peak is about
1 mW. This is in order sf-magnitude agreement with
the value calculated from Eq. (1) with a coliection
half-angle of 30°. For the 1.5-cm crystal, the nieasured
peak power is 2X10~? W, which is two orders of magni-
tude lower than what is expected. This discrepancy is
most likely due to crystal inhomnogeneity,® which would
reduce the efficiency of optical mixing in long crystals.
All the long crysta’s we used suffered damage after
several hundred shots. The wvalidity of quantitative
comparisons with Eq. (1) is also limited by the un-
realistic boundary conditions used in its derivation.
Neglected effects include radiation from the edges of the
crystal and multiple reflections at the faces.

The far-infrared wavelength was measured using a
Fabry-Perot interferometer with electroformed metal
mesh mirrors.®® Typical transmission curves are shown
in Fig. 3. The solid curve is obtained from the Airy
formuli: by integrating over the finite collection angle
so as to fit the decrease in Q with increasing order
number. The wavelengths used were 39, [Fig. 3(a)]
and 5% [Fig. 3(b)] smaller than those predicted from
the known temperature dependence of the ruby-laser
frequency. The finesse was coniputed from the geometry
of the mesh. The fit shows unambiguously that we are
observing a difference frequency with a bandwidth less
than the ~1 cm~! resolution of our interferometer. The
linewidth of the two frequency modes (separated by
0.2 cm™) from each laser is less than 0.02 ecm™, leading
to a predicted linewidth of less than 0.04 cm~ for each
of the three far-infrared frequencies produced.

We also compard * the far-infrared power generated
from a 0.047-cm-thick crystal of LINLO; with that from
a 1-cm-thick crystal of quartz. Using Eq. (1), the ratic
of the electro-optic coefficients rz:(LiNbO;)/rs:{quartz)
is estimated to be 8.5. According to other measure-

B A, Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A
Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Letters 9,
72 (1966).

B R, Ulrich, K. F. Renk, and L. Genzel, IEEE Trans. Micro-
wave Theory Teck. MTT-11, 363 (1963).
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Fic. 3. Fabry-Perol scan of the difference-frequency output.
The upper scan (a} is fer a temperature difference AT =60°C of
the two lasers. For the lower scan (b). AT =47°C. The theoretical
curves are Airy functions calculated from the geomeirical prop-
ecties of the Fabry-Percl reflectors and averaged to account for
the 30° collection half-angle.

ments,!* the ratio is 3.7. Because of the uncertainties in
our measurement, this agreement must be considered
satisfactory.

The tuning range was limited tu frequencies less than
8.1 cm™ by the cooling system used. This range could
be extended to ~20 cm™! by using lignia nitrogen as a
coolant. If the warmer laser were operated on the R,
line, then the range could be extended to ~30 ecm™.
The use of a tunable dye laser, stimulated Rzman
radiation, or parametric sources would, of course, extend
this range throughout the infrared.

We would like to thank D. Woody for computing the
theoretical interferometer curves and Dr. E. Washwell
for furnishing samples of LINDO;. )

YA Jariv, Quantun Electronies (Wiley-Interscience, Inc., New
York, 1967}, p. 351.
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THEORY OF SELF-TRAPPED FILAMENTS OF LIGHT

Y. R. Shen,*t M. Y. Au Yang,{ and Marvin L. Cohent}
Department of Physics, University of California, Berkeley, California
(Received 30 August 1367)

We present a calculation modeled after the theory of phase transitions to explain the
observations on self-trapped filaments of laser light in liquids. The resulting state is
shown to be similar to the Abrikosov vortex state in superconductors.

Self-focusing and self-trapping of intense
light beams have recently become one of the
most important and interesting subjects in non-
linear optics. While self-focusing as a result
of intensity -dependent changes of the refrac-
tive index is now more or less understood both
theoretically! and experimentally,? the forma-
tion of intense filaments arising from self-trap-
ping® still remains a mystery. It is believed
that the filament formation is also a consequence
of the change of refractive index with intensi-
ty.? However, experimental results indicate
that the change in the refractive index of a fil-
ament, calculated from the observed intensi-
ty in the filament under Kerr effect assumptions,
is not sufficient to account for the observed
filament size.* In addition, a number of other
experimental facts have received no satisfac-
tory explanation.

In this paper, we present a calculation which
enables us to explain most of the experimental
observations on self-trapped filaments. The
calculation is based on the assumptior of a field-
induced phase transition in the medium and is
similar to that of vortex formation in Type-II
superconductors. Preliminary results of the
calculation yield the following predictions:

(1) The splitting of an intense beam into small-
scale circular filaments is energetically favor-
able; (2) aside from iluctuations, all filaments
have the same size and the same power densi-
ty; {(3) the filament size and the power coniained

in each filament are characteristics of the me-
dium independent of the input beam intensity.

In the calculation, we will assume that 4 crit-
ical field exists and that aside from the inton-
sity-dependent dielectric constant €¢(w) = ¢,(w)
+€,(w) |E(w)i?, to produce this field, other non-
linear optical processes can be neglected be-
fore the filaments are formed.

Grob and Wagner® have also suggested the
analog of vortex lines in superconductors to
the filaments in this problem. However, they
assume that the filament formation is a result
of coupling between light fields and density fluc-
tuations in the medium. Their results are es-
sentially the same as those obtained by Chiao,
Gamire, and Townes,?

Our calcuiation is mudeled after the theory
of phase transitions and the theory of vortex
formation in superconductivity.® We acsume
that the molecules in a liquid are correlated,
and at temperature T, the state of the liquid
can be described by a dielectric function. We
further assume that in the presence of an in-
tense optical field greater than the critical field
E_, the molecular interactions in the liquid
can be changed, and the system can experience
a phase transition. (Field-induced phase tran-
sitions have been observed in ferroelectrics.)

We s.2all begin by discussing the energy of
an arbitrary two-phase configuration of the
liquid and then go on to discuss a liquid with
trapped light filaments. In both cases we as-
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sume that the system can exist in two states
described by the dielectric constants ¢, and
€,. As will be clearer later, thn states ¢ and
b will be analogous to the supercouducting and
normal states, respectively. The energy dif-
ference between these states (or the condensa-
tion energy) is Ae1E1%/8n, where Ac=¢€p-¢,,.
We now consider the case of a light beam of
uniform intensity c|E,|*/8» propagating into
the liquid medium where both @ and * phases
exist simultaneously. After the light beam has
traveled some distance along the Z direction,
the field distribution in the beam should become
stable and invariant with respect to 2. We can
then conclude that from the minimization of
the Gibbs free energy, the fields will concen-
trate in the high-dielectric-constant b region
with field penetration of distance X mto the a
reglon. For simplicity, we assume that the
field Ej, is constant in the b region and the A
penetration region.” The free energy of the
system is (assuming a dispersionless medium),

= Ry =1 2 2 1 4
F F0+\8ﬂ) {Ab(EC A€+ |E, 1%, (4318, 1%, )
2 oly 4
+Alb(lEbl ea0 z'Eb' eaz)
3 2 1
+§Ib(EC 'Ae+ IEbl Ac);, (1)

with
2= 12
(Ab+)db)lEbl AlEou )

where F, is the free energy arising from all
sources other than those we are considering,
Ap and A are the cross-sectional areas of the
b region and of the beam, respectively, /, is
the perimeter length of the ¢, reglon, £ is the
characteristic length over which the transition
from €, to ¢, takes place,” and it is assumed
for simplicity that €,5= €, 5= €3. Comparison
of Eq. (1) with the free energy for a uniphase
in A shows that a two-phase system ie ener-
getically favorable if lEol >E.and A>£. The
medium wants to form new wazlls between the
phases. From arguments similar to those used
to describe the formation of vortex lines in
superconductivity,® it is energetically faver-
able to form circular filaments of radius ¢
(tield filaments of radius A).

For the case of n filaments, the free ener-
gy of the system can be written as

= -1 2; H 1 4
F F0+(8n) {nmxr \!Ebl eao+2lEb| ez)
+mr5=(:Eb I2a€ +EC’A£)}, 2)
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with the constraint #n7A?{ L) 12=4 !Eol’, where
E, is the field in the filament. For a given
|E,!2, the above free energy can be minimized
to yield the number of filaments. Thus, 3F/
an =0, and we find that

_ AlE %,V

" 'nerC(er)* Eh @)

Note that the minimum » we can have is at Eg
=E.. From Eq. (3), the ficld intensity in each
filament can be obtained:

R 2 . A )12
clEbl -(£EC(2A£)

87 8mAg,t?

4)

which is independent of the applied field if A
is only dependent on the characteristics of the
medium. The total power contained in each
filament is a constant:

CALE (2a€)V?
c
Q=—Tezm__' (5)

The above equations relate the field in a fil-
ament to the size of the filament, and these
can be solved if the quantity ¢E .(a€)"2 is known.
This quantity is a characteristic of the phase
transition in the medium. It is possible to ob-
tain a numeriecal estimate of EEC(As)”2 by mak-
ing the simplifying assumption that the phase
transition we are considering is a2 second-or-
der phase transition. This allows the use of
the Landau-Ginzburg equation,®

(N/2m)[(h/i)V —(e*/ R + o + 81413 =0, (6)

where ¢ is a complex, position-dependent or-
der paramet=r describing the additional induced
correlated polarization respensible for the ae
change. We assume that the induced polariza-
tion arises from electronic interactions and
N, m, and e* refer to the density, mass, and
effective charge of the electron (assuming one
interacting electron per molecule). In deriv-
ing Eq. (2} we assume a square well approxi-
mation for § and Ey; ¢¥=1for r>§, ¥ <¢,* and
E =Ej for r <), where r is the radial position
measured from the center of the filament.
From the equilibrium condition in the absence
of the fields, we find® that

as-g= -EC’A €/4n. 7N
If the fields are independent of z, then ¢ is al-

so independent of z, and both the fields and
¥ can be taken to have cylindrical symmetry.
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We can use Eq. (6) to give the characteristic
-»laxation length ¢ to describe the variation
of 4 from zero at the center of the filament
to unity outside:

&= [2a0N/mA EEC’]W. (8)

For CS,, N=10® cm~? and we find that EEC(Ae)"’
=8.7x 1073 esu. Using this value and the ex-
perimental values A=2 u and €,=1.8x10™
esu in Egs. (4) and (5) gives the field intensi-
ty ciEp1%3/85=1.8x10°* W/cm?, and the power
contained in each filament, @ =220 W. These
estimates agree weil with experiment.* To
find §, E_., and A€ separately, a microscopic
calcuiation which considers the moiecuiar in-
teractions in detail is necessary.

It is possible to compute A€ if A i5 known
by using the Maxwell wave equation

{Vr’—kz’-r (w’/c’)[cb 0
-Ae(w:’)Av+e2ms’]}E(r)=o, 9)

where (1#1%),, represents the average vaiue of
f¥(r}i%. 1f we made the simplification ()2 ay
=iq® for r <&, (ld(r)lz)Av= 1 for y>¢, and E@)
=E), for r <£ (since the macroscopic field will
not vary appreciabiy over a dimension less

than a wavelength),

= - B 23472
kz (w/c)(cb0 A(¢0’+€2lEbl) . (10)

Fer €, €,1E |2, €,|E|? can be neglected in Egs.
(9) and (10) in first order. The solution of Eq.
(9) for » > £ is the zeroth-order modified Bes-
sel function K (r/A), with a characteristic de-
cay length

A=(c/w)ae(i~y,2) 712, (11)

For CS,, A=2 u, and at ruby laser frequency
we estimate that typically Ae >3x1073, which
is much larger than €3|Ey 13(=2Xx107*). We
expect that typica! values shouid be Ae~ 1072,
E.~2%10% e3u, and §~0.4 u. A more rigor-
ous treatment of this problem should account
for the variation of E and ¢ across the phase
boundary by solving the coupied equations (6)
and (9). This should yield a functional repre-
sentation for the » stable filaments as gbtained
from energy considerations. This would be
equivalent to the Abrikosov calculation for vor-
tex lines in superconductors.®

In the abuve discussion, the dynamic process
to reach the final stable field distribution in

the beam has not been considered. It is ciear-
ly not important as far as the stabie configu-
uration of filaments is concerned. This is anal-
ogous to the growing of a crystal, where we
are only interested in the final crystai struc-
ture and not in the dynamic process of crys~
tal formation. In actual experiments, the in-
coming beam intensity is often much less than
E_.. However, through self-focusing, the beam
cross section reduces and the fieid intensity
finaily exceeds E.. The field distribution in
the beam then becomes unstable, and filaments
would be nucle. .ed by fluctuations in the me-
dium. The intensity in each filamen( is so high
that stimulated scattering processes set in and
deplete the laser power . the filament very
rapidly.* Fluctuatior and stimulated scatter-
ing processes would probably prevent the field
distribution from reaching a stable configura-
tion of filaments, but each filament already
formed should have the characteristics of fil-
aments in the final-state configuration,
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Optical Nonlinearities of a Plasma*

N. Broemsercent anp Y. R. SHEN
Depariment of Physics, University of California, Berkeley, California
{Received 6 August 1955)

Second-harmonic generaticn and stimulated Raman effects for a plasma are calculated by the same
methods that have been used for bound electrons. The nonlincar susceptibility describing the stimulated
Raman effect in a gaseous or rietallic plasma is 6 to 10 orders of magnitude smaller than the corresponding
efiect in liquids, This process in a plasma can also be described as the parametric interaction between a
damped plasma wave and two light waves. The second-harmonic generation trom a plasma boundary is
dominated by a surface term which originates from the discontinuity in the normal component of the
electric ficld. It is shown that the observed second-armenic generatien from metailic silver probably stems
from bound ion cores in the surface layer rather than from a plasma surface term.

1. INTRODUCTION

HE basic nonlinearity in the interaction between
a free electron and an electromagnetic wave is
cuused by the Lorentz force. Additional nonlinearities
may result from convective density fluctuations in the
plasma. The nonlinearities in gaseous plasmas have been
studied extensively in the microwave region of the
electromagnetic spectrum.!? Recently much attention
has been given to optical nonlinearities of a plasma,
although they are by their very nature rather small.3-!
In this paper hydrodynamic terms and convection will
be ignored.

* This rescarch was supported by the U. S. Office of Naval
Research. An abbreviated version of this work was presented at
the Physics of Quantum Elcctronics Conference, Puerto Rico,
1963 (unpublished).

t On leave from Harvard University.
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2R, ¥, Whitmer and E. B. Barrett, Phys. Rev. 121, 661 (1961);
ibid. 125, 1473 (1962).

3 N. Bloemberger, Prec. IEEE 51, 124 (1963).

4R, Kronig and J. I. Poukema, Proc. Koninkl. Ned. Akad.
Wetenscaap. 66B, 8 (1963).

$H. Cheng and P. B. Miller, Phys. Rev. 134, A633 (1964).

¢ P. M. Platzman, 3. J. Buchsbaum, and N, Tzoar, Phys. Rev.
Letters 12, 573 (1964); P. M. Platzman and N. Tzoar, Phys. Rev.
136, A1l (1961).

1D. F. Dubois and V. Gilinsky, Phys. Rev. 135, A995 (1964).

$N. Kroll, A. Ron, and N. Rostoker, Phys. Rev. Letters 13,
83 (1964).
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1 D. F. Dubois, Phys. Rev. Letters 14, 818 (1965).
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The same basic formalism can be used to describe the
nonlinearities for bound and free electrons, This is par-
ticularly evident in the formulation of Cheng and Miller®
and of Pine,? who emphasized the self-consisteni-field
description of the nonlinear susceptibilities, In Sec. 1I
of this peper, the second-harmonic volume polarization
for a plasma is rederived. The self-consistent-field cor-
rectiont on this longitudinal polarization is explicitly
exhibited in the same manner as has been done by
Ehrenreich and Cohen®™ for the longitudinal linear
dielectric constant. In Sec. ITI, it ic skown that surface
terms are actually more important than the volume
effect for the second-harmonic generation (SHG) from
a metallic surface. Jha'* has first called attention to
these plasma surface terms. Qur results are somewhat
different from Jha’s and in better agreement with
recent experimental observations. We show furthermore
that the dominant contribution to the SHG may come
from bound eiectrons in the ion cores at the surface
rather than from the conduction electrons,

The next higher crder nonlinearity describes the
Raman-type effects in a plasma. If, for example, a
laser beam at frequency w; is incident on a plasma, the
plasma will present exponential gain for a light beam

I A. Pine, Phys. Rev. 139, A%01 (1965). The authors are indebted
to Dr, Pine for making his manuscript available before publication.

1 H. Ehrenrcich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

M S, S. Jha, Phys. Rev, 140, A2020 (1965). The authors are
indebted to Dr. Jha for receiving a copy of this paper prier to
publication,
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at 0, =wi—wp,q;-q, Where wp q,..q, is the frequency of a
plasma wuve with wave vector qz—q,. If both beams
at wr and w, are incident, generation of the antistokes
frequency at 2w,—w, is possible, etc. All these effects
are derived in a straightforward manner in Sec. IV by
a simple extension of the SHG calculation of Sec. IL
The same numerical results are obtained as from more
complex calculations.’ ! The stimulated Raman effect
is so small that it will be of little use as a probe for
gaseous plasmas, although the Raman-type nonlinearity
may be important in semiconductor plasmas in the far
infrared. In Sec. V the same Raman effect is described
as the parametric interaction between two light waves
and a plasma wave, This illustrates again the paralle]
treatment for free and bound electrons. The Raman
effect in a plasma is quite analogous to the Raman
effect in liquids and solids," if the optical phionons are
replaced by plasmons,

II. SELF-CONSISTENT-FIELD CALCULATION OF
THE LONGITUDINAL SECOND-HARMONIC
POLARIZATION IN A PLASMA

General expressions for the lowest order nonlinear
susceptibility have been given by Cheng and Miller
[Eq. (13) of Ref. 5] and by Pine [Eq. (18) of Ref, 12].
Their results are valid for Blech one-electron wave
functions in a periodic lattice potential and can be
specialized for the case of free electrons. Because of the
complexity of the expressions, it seems worthwhile to
rederive the result for free electrons in a special gauge,
which will clearly and explicitly exhibit the seli-
consistent-field corrections. Ehrenreich and Cohen first
utilized this method to get physical insight in the lincar
self-consistent dielectric constant. They also pointed
out that the one-electron Hamiltonian approach is
equivalent to the random-phase approximation in the
exact many-body problem.

The zero-order or equilibrium density matrix for an
ensemble of free electrons with eigenstates,

k)= exp(ik-r),
where © is a volume of normalization, is given by
p@ k)= folew) | k).

Here fy is the Fermi-Dirac distribution function and
ex=Hh%?/2m is the unperturbed (kinetic) energy in the
state | k). The equation of motion for the density matrix
must now be solved in successive approximation, when
the perturbation by the transverse electromagnetic
wave and the self-consistent Coulomb screening poten-
tial is admitted. Since general expressions have already
appeared elsewkhere,'® here only the paysically dominant

BY.R, Shen and N, Bloembergen, Phys. Rev. 137, 1787 (1965).
18 See, for example, Refs. 5 and 12, or N. Bloembergen, Non-
linear Optics (W. A. Benjamin, Inc., New York, 1965).
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terms will be retained. The perturbation may be
written as

TCpert= (€3/2mc?) A®+-e . (1

1t can be shown by explicit calculation that for free
electrons the contributions from the linear term,
— (¢/2mc){p- A+ A- p},aresmallerby a factor (fuo/mc?),
where w is the light frequency. The transverse vector
potential A describes the light wave inside the plasma.
It is not the incident field, but the transmitted wave
into the plasma,

A=Ay exp(iq- r—iwt)+ Ag* exp(—iq-r+iwt). (2)

The complex amplitude A, has twice the value of the
1nore conventional definition.

With the perturbation given by Egs. (1) and (2), the
lowest order nonvanishing density-matrix elements at
the harmonic frequency 2w are given by

— (2hw)(k|p® | k—2q)= (ex— ex-2q)(k|p®=' | k—2q)
+ (k] (¢¢/2mc?) A+ a | k—2g)( folex) — fo(ex—1q)}
+i(k|p®) | k—2q). (3)

The last term is a phenomenological damping term to
represent the effect of collisions and Landau damping,
The screening potential is related to the induced charge
density by Poisson’s equation. Using the Fourier series
expansion for the screening potential,

ei(f)=Lg paget™,
and for the charge density,
n@e=e 3 et¥r L (k' |p® | k'~ q'),
one finds
(kleg, | k—2q)
= (4re/4g") Tk’ | o | k' —2q). (4)

When Eq. (4) is substituted back into Eq. (3), the solu-
tion can, after some manipulation, be written_in the
form

(k|p® | k—2q)
_ Jolsa) = foles) €47 1
€x-2q— €x+2hw+iT 2mc? escr(20,2q) '

)

where escr(2w,2q) is the longitudinal, frequency- and
wave-vector-dependent, self-consistent linear dielectric
constant calculated by Ehrenreich and Cohen,

dret _ folex-o)— folex)
escr(w,q)= 1_? g “_q_m.

The Fourier transforms of the current density opera-
tor are given by
j9(9,0)= (ke/2im)e= (—iq+2V),
19(g)=—(¢"/mc)Ao.
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The expectation value of the nonlinear second-harmonic
cur:ent density is

(G 2w20)= Tufl=2al 0|kl p k-20)
= (he/m) T (kg) (k| o[ k=2q).

The nonlinear current density given by Eqgs. (5) and
(7) creates the second-harmonic field. At optical fre-
quencies the change in electron energy and the damping
rate are small compared to the photon energy. If the
denominator in Eq. () is thus approximated by 2hw,
one finds immediately from the refations Yk J(ex)=0,
2_4f(ex)=Nq, where N is the number of electrons per
unit volume, that the current density is given by

VM (rt) = [Ne*qA ¢/ 2miuctesc r(2w,2q) ]
Xexp(2iq- r—2iwt),

The corresponding nonlinear susceptibility is obtained
by replacing j(2w) by —2iwP(2w) and the vector po-
tential A by (ic/w)E. One finds

PNLS— o NL(2y) :E?= [ — iNe3Eq/dmuiesc F(2w,2q)]
Xexp(2iq-1—2iut). (8)

This resuit for the longitudinal second-harmonic po-
larization could also have been obtained more directly
from the relation that the divergence of this polariza-
tion equals the second-harmonic charge density:

divP(2w)=¢ T u(k|p@ | k—2q)
PNL8=[2ieq/{2g)] 3 u(k]| o | k—2g).

Substitution of Eq. (5) and expansion of its denomina-
tor in the approximation, #2/2m{2k-. (2q)+ (29)%) << 2k,
again yields Eq. (8). In the limit of low electron density,
2u>wp and escr~1, and substituting ¢/w=c"!, one
fines the same nonlinear susceptibility (—iVe?/4m?cw?)
as was first found by very elementary considerations.”
The occurrence of escr in the denominator was not
explicitly noted before, but its physical origin is evident
from the present calculation. Since the polarization is
longitudinal there is no second-harmonic power radiated
in the plasma. There is, however, a reflected harmonic
wave with the electric vector in the plane of reflection.
The reflected-harmonic amplitude has been expressed
in terms of the nonlinear volume polarization by Bloem-
bergen and Pershan.®® Equation (4.12) or (4.13) of
their paper with a=0 gives,

Ep o1 (2w
ot(2) 4x PNLB112 () sing,

- €7 Q2uw){1— € (2w) sin%;} 2+ ¢(2w) cosa.'.

®

Here 6; is the angle of incidence of the fundamental

17 See Ref. 3, or N. Bloembergen, Nenlinear Optics (W. A. Ben-
jamin and Company, New York, 1965),

1 N. Bloembergen and P. S, Pershan, Ph}y;s. Rev. 128, 606
(1962). There is a misprint in Eq. (4.12) of this paper. The de-
nominator of the iast term should read “er' '3 cosdp-ter cosfg”
instead of “¢r!es!® cosfr+er cosdr.”

wave on the plane plasma boundary, ¢{w) is the trans-
verse linecr dielectric constant of the plasma. PNLS jg
given by Eq. (8) and it should be remembered that E,
in that expression is the electric field after refraction
just inside the plasma. This E. should be computed
from the incident amplitude with the appropriate linear
Fresnel equation. For a metallic reflector this implies
a considerable reduction in its numerical value, A
quantitative discussion will be postponed until the
next section. There it will be shown that there are
surface terms which may contribute more than the
volume polarization. This is perhaps not too surprising,
since the volume term is essentially a magnetic dipole
term which vanishes, for constant w, in the limit ¢—0.

When the incident electric vector is normal to th-
plane of incidencs, there is, however, no surface con
tribution. In this case the reflected amplitude Ep(2w)
from Eqs. (8) and (9) and Fresnel's equation may be
expressed in terms of the incident amplitude E® as
follows:

Ea(te)=— TNE
dmicwd(1—1a?)
sinf;
L(cos8i— {212+ (1—12%) cost;]
4 cos¥;

X
[costi4- (cosig;— 22) 12 p

X

EDY. (10)

Here x=w,/w, and w?=47Ne'/m is the plasma fre-
quency. The dielectric constants have been taken in
the limit ¢— 0,

()= I—wpl/u?,
€(2w) = escr(2w,0)= 1—wg/4a?.

Except for the factor egcr, noted above, this result
agrees with a calculation by Jha' on the basis of the
Boltzmann transport equation for a fres-electren gas,

III. THE SECOND-HARMONIC SURFACE
POLARIZATION

Jha called attention to the importance of surface
terms which are connected -with the discontinuity of
the normal component of the electric. . 1d at the bound-
ary. For these terms it is essentia! that the incident
field has a component in the plane of incidence, Choose
a coordinate system where this plane is the xz plane
and let 2 be the direction normal to the. boundary.
According to the macroscopic equations the discon-
tinuity in the normal component is described by

OE,/3z=[1— € (w)]E,.,8(z),

¥ See Ref. 4. The authors are indebted to Dr. Jha for a helpful
discussion.

HHHN

HATHH V4

i

o



301

where E,_, ¢ is the normal component of the transmitted
wave just outside the plasma. It consists of the sum
of the normal components of the incident and retlected
waves and is e{w) times larger than the ncrnal compo-
nent just inside ihe plasma.

In a microscopic picture therc iz of course no strict
discontinuity. The normal component E, varics rapidly
over about one Thomas-Fermi screening length in the
case of a metal. In the case of semiconductors, insulators
or any other medium one can still ~~mect th:t the field
component charges rapidly over about one interatomic
distance. Ior a detailec calculation a precise knowledge
of the surface potential and the surface-state wave
function would be rcquired.

Fortunately, the radiaticn field of a thin slab of
polarization. 0 =<}, does not depend sensitively on
the distribution of the polarization as a function of 2,
bat only oa the integral / Pdz. The sccond-harmonic
surface polarization may therefore be calculated in the
following manner: The discontinuity in the normal cam-
ponent of the fundamental frequency induces a free
charge depsity at the surfaze

p(rw)= (1/4xe)[1— ¢} (w) JEmpod(c)ei=-r—tt. (11)

For z free-electron gas the current density induced by
2 field A (r,w) for an electron density p® (r)=\ is

{CD)=10(rw)®
= (Net/mc)A(rw)= (Net/imw) E(r,e).

In the same manner the second-harinonic current den-
sitv corresponding to the oscillaiing free charge density
{111 a? the surface is

Q-9 2wy = e/t wimw)[1— e 1{w)]
K E(W)E —yolw) exp(2ikx). (12)

For the normal component of this surface current
deusity there is some ambiguity in Eq. (12) whether
one should take the norma! component of E(w) juct
outside or inside the plasma. If one takes half the sum
of these values, the nonnal surface current density
becomes

j.(mﬂ (r,26) = (¢/4mima)[1— 1 (w)]
XU+ @) L Eamrol) P exp(2ika).  (13)

It should be noted that this normal component will
make the dorninant contribution to the reflected har-
monic intensity from highly reflecting materials. It
follows from the Fresnel equations that the tangential
corzponents of the incident and reflected waves at w
neariy cancel cach other, while the normal component
just outside the surface is aimost twice the nor 1al
component of the incident field. The normal component
E. .o is expressed in terms of the incident clectric field
amplitude E® which makes an angle ¢ with the plane
of incideice and the direction of the incident beam
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makes an angle of incidence §; with the normal,
2 cosf; sing,

cosfi+ €1 w) (1 — e Hw) sin?g, )72

F9 cose,
(14)

IFrom Egs. (13) and (14) it follows that the second-
harmonic intensity generated by this surface term is
proportional to cos®e. This dependence has recently
been observed by Brown and co-workers® for second-
harmonic generation Jrom metallic silver, It is therefore
of interest to compare the intensity produced by the
surface term with the volume tems of the preceding
section. The radiation from a thin slab-source distrilwu-
tion has been given by Bloembergen and Pershan?
Their Eq. (0.22) may be used with the following sub-
stitutions, —2fwPNLS=j" g=x—0, =)
(y"”: sinOAu: sin(?.-, (_u=((w). The result is

E. s i0)=

2xe (@) singc !
E”surl‘(zw) -
cosdi+e 12 (20){(1—- ¢ 12w, sind, )2

Xj,'“”(?.w) .

(15}

When 8; approaches zero, this field rapidly becomes
very small, because j,(2w) itsell approaches zero, as
well as the factor sing,. In that case the tangential com-
ponents of the surface source in Eq. (12) should be
taken into account. The radiation field can quite
generally be calculated with Ecs. /6.i. and (6.22) of
Ref. 18. The resulting harmonic amplitudes should be
added to those chtained from the volume polarization
and subsequently squared to obtain the second-harmonic
intensity. The resulting equations for arbitrary polariza-
tior direction ¢ ar:l arbitrary angle of incidence 8; of
the fundamental field are cumbersome and will not be
reproduced here. The detailed results are essentially
the same as those of jha?

It is, however, of interest to compar~ the order of
magnitude of the volums2 term given by E¢s. (8) and
(9} with the surface term given by Ers. (12), (14), and
(15) near angles 8,= ¢==/4, where the angular factors
do not have zero's, Leaving vut all ansular factor , the
ratic of the second-harmonic amplitudes resulting from
the s.-face contribution given by Eq. (15) and the
volume contribution given by Er. (10; has the order of
magnitude (2/wy)e(w), or abeut unity for w<w, On
the basis of these calculations, it is doubtful that the
observed SHG from metallic silver by Brown ef al. has
its origin in a plasma effect. When the experimental
value® w,/w=:2.2, instead of ¥, is used in Jha's equa-
tions, an observable volume effect should remain, v.hen

= ¥, Brown, R. F.. Parks, and A. M- Sleeper, Phys. Rev, Letlers
14, 1029 (1965).

A8, 8 I, Phys. Rev. Letiers 15, 412 (1965). This paper
appeared afics our manuscript had been submitted. The experi-
mental points should he compared with a thesrdical calculatior
for wp/e0=2.2 rather than S.

B I{. Ebrenreich and H. R. Phillip, Phys. Rev, 128, 1622 (1962).




141 N,

the incident field is polarized normal to the plane of
incidence.

It has been sugeested that the silver ion cores® of
the surface layer pliy a dominant role in the SHG.
Further support that one does not deal with a plasma
effect comes from the observation by Bloembergen and
Chang® that silicon, germanium and other insulating
material with bulk inversion symmetry also show a
refiected second-harmonic intensity with a cos'y de-
pendence on the angle hetween the incident electric
field and the plane of incidence. The ate.ns in the sur-
face layer are not at positions of inversion symmetry,
and if the incident electric field ras a component
normal to the surface, large harmenic dipole moments
can be induced in these atoms,

The dominant term for these bound electrons in the
interaction 1Iamiltonian is the term

W= —(e/2mc)(p-A+p-A)
mr— (eh/2ime) (0A./3z+2A- V).

It should be kept in mind that A, varies rapidly in the
first atomic layer and that 04,/0z there is so large
that the “quadrupole-like” contribution from this term
has the same order of magnitude as an electric dipole
contribution. The detailed matrix elements of JW,
which is very inhomogeneous over the sutface orbital
funct’sn ¢,, are diflicult to evaluate. Because both
M and ¢, have even and odd terms in z, the following
nonlinear current density is induced in the surface
atoms,

Jrouna (2w, 1)
vo5 (W (re) [FO () L (o) Yo L300 [ )" [ D (o)
=Ny 2,
r.n’ (W, =1 k) (1, =T 0o 200}

+other terms which differ in the order of the
operators and in the frequency denominators. (16)

The number of atoms per unit volume is Vo. The cur-
rent density operator is defined by

FOND) =8(1— o) (he/2im)V+ (he/2im)VE(r— 1),  (17)
For media with inversion symmetry, the second har-
rmonic source density given by Eq. (16) is appreciable
only in a surface laver of thickness d, where d is about
one interatomic distance, or the Thomas-Fermi screen-
ing distance in a metal.

A rough estimate of the bound surface states can be
obtained as follews. 1t is known that the core polariza-
Lility of silver ions contributes appreciably to the
dielectric corstant of the me*al in the near ultraviolet.®*
It is therefore not unreasonable to assume the same
nonlinear polarizalility for a silver ion at the surface
as for a GaSb or ToAs molecule in the bulk of those

¥ "z paper by N. Bl~embergea anl R. K. Chang in Ref. 11.
¥ See Ref. 22.
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piezoelectric crystals. The current density iniegrated
over a layer of tnickness d gives therefore a surface
source 2iwxNLE. . ¢, where xNL~10% esu as for
GaSh, and d~2X10-* cm. This should be compared
with the plasma-surface scurce of magnitude (¢/4rmw)
X E,myo? according to Eq. (13). One finds for the ratio
of bound-surface to plasma-surface contribution 8xmw?
X x¥tde =8 in our numerical example. For the second-
harmonic intensity this ratio must be squared, and the
bound electron in the surface layer could easily con-
tribute one or two orders of magnitude more than the
total plasma contribution. For the bound-surface slec-
trons the same symmetry considerations hold as for the
plasma effect. The surface layer is amorphous and
essentially isotropic for directions in the plane of the
boundary. The current density has tengential com-
ponent j. proportional to E.E, and §, proportional to
E,E.. The normal component f, proportional te E?
will be dominant for goed reflectors since the normal
component E, is much larger than the tangential com-
ponents in that case. The second-harmonic intensity is
consequently proportional to §2 or cos'e, and the elec-
tric field Ez(2w) should lic in the plane of reflection.
The effect should occur quite generally at th= surface
of dense polarizable media, including liquids. The SHG
should not depend strongly on the plasma density. The
available observations on silver, silicon, and germanium
are in agreement with th’s picture.

IV. TIHHE RAMAN SUSCEPTIBILITY
OF A PLASMA

he next higher order nonlinearities may be calcu-
lated in a simiiar manner. In prindple, again volume
and surface terms should be con' .ered. The most
important case is the volume effect, which occurs when
two electromagnetic waves traverse the plasma, with a
difference in frequency close to the plasma frequency.
The vector potential in Eq. (2) now consists of four
terms with amplitudes A;, 4.* 4,, and 4,* and fre-
quencies wz, —wr, w,, and ~a,, respectively. The
dominant term in the density-matrix quadratic in the
field amplitudes results from the resonance which occurs
when wy—w, is near the plasma frequency. In analogy
with Eq. (5) one finds immediately,

(klpterep | k+q.—qr)

Jolexs qumqr) — foles) 2e24,4 *
Ferqegr— et lw, ) HT  2met

Xescrlor—w, qz—a,).

For w;—w,~w,, Reescr=0, a resonance occurs. Large
density fluctuations are induced at the difference fre-
quency, which beat again with the incident laser field
at wz. In th' manner a curren density at the Stokes
frequency - is induced, which is cubic in the field
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amplitudes,
JRaman (@a, @) =T x(k| ot @ o k4 q,— q: }{k+q,— q.]
—(e/m)A L k+q,)
—etlA g,
=m’c Sesor™ (Wi—w., 42— G.)
5 Jolextarmqu)— foler)

k €enpq-qr— et (@ —aw)—ill

(18)

When the plasmon energy is vonsidered to be the lead-
ing term in the denominator, J(wr—w.)>>(M?/2m)
X (gz—q.}-kr and wi—w, >, an expansion of the
denominator yields for Eq. (I18) the simple expression,

ilhmm(wuqz)
—~Net]ALPA, (9.—q.)?
- ' = (19)
miccescy (wi—w., g2—q.) (wr—w.f

For forward Raman scattering the last {actor may be
replaced by ¢2 It should be noted that the picture of
resonance with a plasma wave only h-s validity for
lqz—q.1<<Lp™" where Lp is the Debve length of the
plasma. For larger values the real part of ezcr{s, q2— q.)
cannot be made equal to rero. For gaseous plasmas,
the rescnance occurs only near the forward direction.
At th- plasma resonance escy® is negative imaginary
£.u has 3 value —#(w,r)~!, here the decay time for
the power is determined by the Landau daniping rate
and the collision raie 7 '=7p 00+ 7ot ! One may
again replace the current density by an equivalent
polarization and the vector potentials by the corre-
sponding electric field umplitudes. In this manner the
Raman susceptibility for a plasma is intreduced. For
resonant scattering in the forward direction one finds

P(“’nqa)=xmmlnlELPE'
—iVet L
=1 E, L.,
ko 2m¥ (eyT)

Off resonance, where escp~ 1, one should replace fw,r
by unity in Eq. (20). In that cuse the same formula
could have been obtained from a very clementary inde-
pendent electron model.

The Raman polarization given by Eq. (20; is 9G°
out of phase with the Stokes field E,. The susceptibnity
is negative imaginary and produces an exponential
gain at the frequency w,. If onc tokes a plasma char-
acterized by the same parameters as the case con-
sidr.ed by Kroll, Ron, and Rostoker,™ my= 10" em3,
wpr=10, and wz=w,Fw,=2r(4 X107, one finds
xB3 ™2 102 esu. This is about ten orders of mag-
nitude smaller than the Raman susceptibility of liqids
ordinarilv used in Raman lasers. Since the plasma

% See Ref. 8.
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frequency is very small compared to the light frequency
in this example, the susceptibility can be considerably
enhanced by introducing a soull angle between the
Stokes and the laser beam, In that case one should
return to the more general expression Eq. (193, The
ontimum value of

EQéCFN (wb_ Wiy Qr— q-)]ﬁl ((IL"' q.)z (“)L_wa)—!

can be made about a factor 104 larger in this example
than (wpr)e® which it assumes in the forward direc-
tion. The nonlincar suscepitbitity for this optimum
dircction, occurring at angle of about 10-? radien be-
tween the two light beaws, is still six orders of magni-
tude smaller than that in ordinary Raman liouids. It is
doubtful that the stimulated Raman effect in a plasma
will lead to observable effects.

Since Kroll and co-workers arrived at a more opti-
mistic couclusion, it is of interest to show that our
result can be reconcited numericadly with their equation
for u scattering cross section per unit solid angle. They,
and other workers, considered a scattering process
involving four lizht quanta with frequencies wy, we, w3,
and wy, satisfying the energy and momentum conserva-
tion relationships wy—wi=we—wi=w;, and  qe—qy
= qz— q:. Althoughi the caleulation for this cross section
is considerably more complicated in scattering theory
thai the caiculation of an inelastic Raman scattering
involving only the two quanta «; and «,, the calcnla-
tion of the corresponding complex nonlinear suscepti-
bility s straightforward ard essentially the same as
for the Raman process. The complex susceptibilities
automatically take account of all questions of phase
coherence and elastic and inelustic scattering processes.
Tn dirert analozy to Eq. (20), one fiuds a polarization
at wy,

PNy = wptrieg )

— et (qa—qu)? B
= - [0 11 .

w,wgw,omng(mz——w;)’e SCF° (a'z—‘a'x, Gz q:
(21)

Forws=«;==wy, w4 represents, of course, the anti-Stokes
frequency.

Consider a homogencous interaction region in the
plasma of volume V=4I, where 4 is the cross-sectional
area of the three beams Ky, Fa, and E;and !is tne length,
The iteld strength F, of the phase inatched wave at w,,
which is parametrically gererat~d in the volume ¥,
is  ven Ly

:4'-“-lz’[’""“(w.==::-;-{-w;-—u-|)w.6"l. (23)
The total power radiated at wyis
e Srnged| |7 B3 Es®
I.'——:)-.fi [Edt= ; AR, (23)
o

mSctw o] escrl?

a

# See Ref. 17.
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A factor 2r rather than & is used in the denominator
of the Poynting vector because our amplitudes are
defined in Eq. (2) as twice the conventional ones. In
this form the result may be compared with the scatter-
ing cross section per electron for a four-photon collision,
watws — ey 4wy, given by Kroll, Ron, and Rostoker,

do  (&&/mc)AE; |2 E.|?

s(k—-ak), (24)

dQ@ 320 PP dws? | escr|?

where k'=w2/?=dmnee?/mct and §(k—Ak)~V, and
the amplitudes pow have the conventional definition.
The total cross section for the volume V, intesrated
over the solid angle 49, which is detcrmined by the
diffraction limit from an area 4, Q= (dn%c?/wye ) A,
is obtained by multiplying Eq. (24) by w4149,

1"’102‘,‘8.‘1[2‘ E; P: E2!2

Ttotal = .
0w Pwdtn s | escr |

The number of incident quanta in the beam at w3 per
second is ¢|F3}24/%7de;. The number of scattered
quanta at wyis

c I E; i zotota[/‘q'r’l" '3
and the total scattered intensity at w4 is

1= (w‘/w:,)c} Es P"'total/s"' (20)

When Eq. (23) is substituted into Eq. (26), a result is
obtained that is a factor 2% smaller than given by Eq.
(23). This difference may be ascribed to the difference
in definition of the field amplitudes. The amplitudes
defined by Eq. (2) and used in Eq. {23) are a factor
2 smaller than the conventional amplitudes used in
Eqs. (24-26).

Althougl there is formal agreement between the
two results, the ruther more optimistic estimate of de-
tectability by Kroll and co-workers can be traced to
their usc of the scattering cross section per unit solid
angle. For a diifraction limited beam the total available
solid angle is quite small, and the total scattered in-
tensity is probably more significant from an experi-
mental point of view. Baym and Hellwarth have inde-
pendently arrived at a similar conclusion.?

In a metal plasma tne electron density can be higler
by eight orders of magnitude than in the preceding
example, while the quality factor w,r of ilie plasma
resonance in silver can be taken as 1(®. The nonlincar
susceptibiliby for two ultraviolet beams could thus be
substantially higher than a gaseous piasma. Unfor-
tunatcly the transparency of metals for frequencies
w>wp i3 far from perfect due fo excitation of core
electrons. The absorption from powerful ultraviolet
beams, if these were available, would probably be
prohibitive. The best possibility to detect the stimu-

1 Paper by G. Baym and R. W, Hcllwarth in Ref. 11,
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lated Raman effect in a plasma would appear to be for
infrared beams in a semiconductor plasma. Spontaneous
inelastic or Raman scattering should be easier to detect

than the stimulated effects.

V. THE INTERACTION BETWEEN TWO LIGHT
WAVES ARD A PLASMA WAVE

The Raman and Brillouin effect in liquids and solids
can be described as the parametric interaction between
two light waves and a vibrational wave. When the
optical or acoustical phonon wave is heavily damped,
this description is equivalent to one in terms of Raman
susceptibilities.® In this section the Raman effect in a
plasma will be described in terms of a parametric inter-
action between two light waves and a plasma wave,
An equivalent discussion with detailed numerical ex-
amples has independently bean given by Cosimar.®®

Consider a small volume element at the point r. Let
the average deviation of the electrons from their equi-
librium position in this volume eclement be u(r).
Introduce normal coordinates Qx as the Fourier trans-
form of this average deviation or local strain of the
electron gas,

Q= [u(r)c“'"’d"’r.

The canonical conjugate to this variable is Pyx. The
Hamiltenian density for the plasma waves then takes
the form ¥

Hpiasma =—;' :1((1/.\'”1) Py P—k+ak2Qk : Q‘k
+4x3%0:- Q).  (27)

Here N is the average number of electrons per unit
volume and «a is the bulk medulus of the electron gas.
The fluctuation in the electron density {rom the average
due to the presence of plasma waves is

sp(n)=N divu=iN Ty k- Qre™~.

The change in the interaction of the two light waves
with the elections in a un’t volurie due to the presence
of the plasma waves is consequently

3Cine= (e2/2mc?) A2p (1),
where
A= ALeiQL-r—fau_'. A‘ciq.-r-s’u.t_'_c_c_

When all nonresonant parturbations are truncated, the
interaction Hamiltoniaa density between the two linear
parallel polarized light waves and the longitudinal
plasma waves (Q; k) becomes,

Bine= (INE/me?) T x kAL AFQr e @R s cc, (23)

 Sec Ref. 13,

B G, C. Cosimar (private communication). The authors are
indebted to Dr. Cosimar for recciving 2 copy of a forthcoming
paper.

® See, for example, C. Kittel, Quantum Theory of Solids (John
Wiley & Sone, Inc., New York, 1963) p. 35.
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The equations of motion for the plasma coordinte are

Pk-_- -8(3(:11]_\3"):\-*-3(:1"!)/6(2" y
Qk= +a(scplasma+scin')/61)k :

These eqations of motion can be combined into a
wave equation for ;. Because of the presence of 30y,
a driving term proportional to the light amplitudes
A414.* is added to the plasma wzve equation. Landau
damping and damping by collisions may be taken into
account by a phenomenoclogical damping term,

OrtaViQutw0s
= (iek/m* A LA *+ Qiwn/ 7 )0k

The exponential factor

(29)

exP{i(llL'— q.— k) r—i a‘L—w,—-mk)l}

can be dropped from the inhomogeneous driving
term, because the efi=ct of coupling between the light
waven and plasma wave will be small unless the condi-
tions of conservation of energy and momentum are
satisfied, w;—w,=wk and g;—q,=k. The plasma wave
concept only has validity, if its wavelength is long
compared to the characteristic Debye length. For the
most important case of forwerd scattering with
parallel l2ser and stokes beamis this condition will
usually be satisfied. One may then write k=¢q,—q,
=wp/c, because the dispersion in the plasma frequency
will then be negligible since {a/N'm)(gL— q.)%w,?. The
characteristic time 7’ in Eq. (29) refers to the decay
time for the amplitude. The decay rate for the power is
related to the imaginary part of the longitudinal di-
electric constant by 27'-1= escr’w;.

The wave equations for the light amplitudes 4, and 4,
are also augmented by a n~nlinear term, because the
interaction Hamiltonian gives rise to a nonlinear cur-
rent density,

FUw)) = — c03Cint/dA L*= (+iNE/mkALQ*  (30)

and a similar expression for j¥L{w;). The wave equa-
tions for 1ne two light waves become, consequently,

— X V= (4miN/m)kA,Qx, @Y
— A V2= (dniNe/m)kA 104", 2)

The set of three coupled nonlinear wave equations is
familiar from the Briliouin and Raman effect in other
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media. If the laser amplitude can be taken as a constant
parameter, a set of two linear coupled equations (29)
and (32) for A, and Q results. An exact solution can
readily be written down, but the following approximate
solution will be adequate for our purposes. Since the
plasma wave is heavily damped its amplitude is essen-
tially the driven steady state value, when the right-
hand side of Eq. (29) is separately put equal to zero.
When the value of Q so obtained is substituted back
into Eq. (30), one obtains for forward scattering,
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This is identical to the result of Eq. (19) taken at
resonance, escr =0. The equivaience of the two dif-
ferent way's to describe the interaction between photons
and plasmons is thus established. When the value of Q
is substituted into the wave equation (32), one obtains
the exponential gain =t the Stokes frequency. Coupling
with anti-Stokes waves in the plasma, etc, can of
course be treated in the same manner.

VI. CONCLUSION

The optical nonlinearities of a plasma can be treated
by the same methods that have been used to describe
the nonlinear optical properties of other media. The
nonlinearities of the plasmas are generally smaller by
many orders of magnitude, because they would vanish
altogether for free electrons in the electric dipole
approximation.

Although spontaneous nonlinear scattering processes
in certain plasmas may be detectable, stimulated Raman
cffects would hardly be accessible to experimental ob-
servation at optical frequencies. The situation is of
course much mote favorable in the far infrared and
microwave region. Even the lower order nonlinear
prozess of second-harmonic generation from a plasma
has not been established experimentally at optical fre-
quencies. The second-ha*monic radiation obzerved from
a silver surface is shown to have its origin in the non-
linearity of bound electrons in the ion cores of a mona-
tomic surface layer.
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Optical Nonlinearities in a Plasma, N. BLueM-
BERGEN AND Y. R. Suex [Phys. Rev. 141, 298
(1966)]. The factor escr'= (1—1x?)~ should be
omitted from the right-hand side of Eq. (10}). Al-
though the straightforward substitution of Eq. (8)
into Eq. (9) includes this factor, this procedure is
incorrect. The reaso is that the self-coasistent non-
linear longitudinal polarization given by Eq. (8)
includes a part corresponding to the linear polariza-
tion induced by the sclf-consistent longitudinal com-
ponent of the field. This part must be subtracted
before the substitution into Eq. (9), derived by
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Bloembergen and Pershan, is made. In their deriva-
tion of Eq. (9) a different gauge, with ¢,=0, was
used, while Eq. (8) in this paper is derived in a
gauge with a nonvanishing ¢,. The result is that
the factor escr™ must be dropped and our Eq. (10)
becomes identical with the volume term derived by
Jha. The authors are indebted to Dr. S. S. Jh4 and
Dr. A, Pine for clarifying discussions.

The name in Ref. 29 is misspelled. Reference 29
should now read: G. C. Comisar, Phys. Rev. 141,
200 (1966).
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‘The coupling of photons and magnons can be reated by the same methods developed for the coupling
Lietween photons and phonons. The coupled wave equations are derived directly from the Hamiltonian
density for the quantized fields with the density-matriz formalism. The similarity between the spin Raman
effect and the vibrati~na] Raman effect is emphasized and it i« snown that the spin Raman effect will usually
be one or two orders of magnitude smaller than the vibrational efect in Raman liguids. The possibility of
exiciting spin-wave modes by light in ferro-, ferri-, and antiferromagnetic materials is discussed. The com-
bined coupling of meynetic, vibrational, and light waves is also analyzed and a magnon excitation may be
induced by the stimulated Brillorin eflect on a magnetoelastic mode.

1. INTRODUCTION

HE Raman effect can be described as a second-
order inelastic scattering of light, ir which the
scattering system makes a transition to an excited
state.! Originally the spontaneous Raman scattering was
almost exclusively employed to study vibrational and

* This research was supported by the U. S. Office of Naval
Research.

t On lcave from Harvard University.
“"){‘7. A. M. Dirac, Proc. Rey. Soc. (Lomlon) All4, 710
! )

rotational excitations of molecules.? Loudon?® suggested
that electronic excitations of transition-metal ions
should be observable in the Raman effect. Hougen and
Singh! independently succeeded in finding this purely
electronic Raman effect for Pr** tons in LaF;.

It is also possible for the excitation to be of a purely

1 See, for example, G. Placzek, Marx Handbuch der Radiologie,
cdited by E. Marx (Academische Verlagsgesellschaft, Leipzig,
Germany, 1934), 2nd ed., Vol. VI, part 11, p. 209.

'R. ]. Elliott and R. Loudon, Phys. lLetters 3, 189 (1964);
R. Loudon, Advar. Phys. 13, 423 (1964),

¢ J. 'T. lHougen and S. Singh, Phys. Rev Letters 10, 406 (1963),
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magnetic naturc. In this case the excited state differs
from the ground state in the spin magnetic quantum
nunmber. Such two-photon processes are well known in
magnetic resonance.* The Raman susceptibility for the
purely magnetic dipole transitions in a two-level system
[ Fig. 1(a)] has been reviewed by the present authors.?
The final state with a different magnetic quantum
number may also be reached with electric dipole transi-
tions via a virtual electronic excited state, as shown in
Fig. 1(b). It is of course necessary in this case to invoke
spin-orbit coupling to change the spin quantum number.
This process was also snggested by Loudon.? In the
siniplest case, the transition from the state m,=~—1} to
m,= 4} in a Kramers ground-state doublet of 225}z ion
would take place with a virtual optical transition to the
2Py or *Py2 manifold. Although the optical electric
dipole matrix elements cannot change the spin magnetic
quantum number, it is possible to reach the final state
with Am,= -1 by invoking the spin-orbit coupling, as
indicated in Fig. 1(b). More generally, for transition
metal ions with spin-orbit coupling in crystalline fields
of arbitrary strength, different magnetic sublevels of the
ground -state multiplet could be reached via a two-
photon process with electric dipole matrix elements,
provided the initial and final states have components
whose magnetic quantum numbers differ by Am,=9,
%1 or £2, as shown in Fig. 1(c}.

In ferro-, ferri-, and antiferromagnetic materials, the
spin excitation is not localized and the elementary
excitation is described as a spin wave. It is the purpose
of this paper to present the formalisin which describes
the conpling of light waves to these spin-wave excita-
tions and to discuss the possibility of observing the
slimitlited spin Raman effect in magnetic media.

The same formulism that was developed”-* to describe

$ A. Javan, J. Phys, Radium 19, £36 (1958); J. M. Winier, ibid.
19, 534 (1958).

§ N. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37 (1964).

TE. Garmine, F. Pandarese, and C. H. Townes, Phys. Rev.
Lelters 11, 160 (1963); R. W. Hellwarth, Current Sci. India 33,
t29 (1964).

8 N. Blocmbergen and Y. R. Shen, Phys. Rev. Letters 12, 504
8%; Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787

the coupling of light waves with acoustical waves
(stimulated Brillouin effect) and with optical phonons
(stimulated Raman effect) can be adapted to the case of
magnetic excitations. In Sec. 1I, the general quantum
mechanical fornwlation for coupled boson fields is
applied to the coupling of electromagnetic fields and
vibrations. The wave equations for the expectation
values of the fields and the nonlinear coupling cunstants
are derived directly from a Hamiltonian. Although
localized electronic states are used, as would be ap-
propriate for insulators, the considerations could readily
be extended to conductors by using itinerant Bloch
wave functions.

In Sec. 111 this same procedure is applied to magnons.
The expenential gain for the Stokes wave in the spin
Raman effect is derived from the coupled wave equa-
tions. The result reduces to that derived irom a spin
Raman susceptibility for isolated magnetic ions, which
would be appropriate in the paramagnetic case.

The possibility of detecting the spin Raman effect in
various magnetic systems is discussed in Sec. IV. Some
explicit equations are given for the two-sublattice model
for ferri- and antiferromagnetic materials. The spin
Ranan effect is roughly 1 or 2 orders of magnitude
smaller than the ordinary Raman effect in liquids, be-
cause the oscillator strengths of the electronic transi-
tions involved in the magnetic ions are smaller than
those involved in the molecules. In Sec. V, the general
case of coupling between laser, Stokes, and infrared
electromagnetic waves with phonon and magnon waves
is discussed. A magnetic excitation could be induced by
the combination of the stimulated Brillouin and the
spin Raman effect.

1I. COUPLING OF LIGHT WITH PHONONS

A detailed calculation of the ordinary stimulated
Raman and Brillcuin scattering has been given earlier.®
In this section, a brief review of the subject is given in
order to develop notations convenient for the later
discussion of conpling of light with magnons. This also
affords the opportunity to generalize the formalism so

(
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that both the light and the other coupled boson fields
are quantized. The wave equations together with the
coupling constants are derived directly from the total
Hamiltonian of the system

M=Km+3cphonun+sceim+3clnt- (1)

The Hamiltonian for the radiation field can be quantized
in the usual way,® as well as the phonon Hamiltonian in
its harmonic approximation.!®

3Cnd=z‘hwk.i(dn'aki+§),
k.

2
scphnnun= Z h‘"l.i(au’aﬂfi—i) . ( )
9.J
a, o' ard g, a' are the annihilation and creation opera-
tors for photons and phonons, respectively. Their
operations on the number states yield a}»)=n'?|n—1)
ande!{n)= (n+1)"2}n+1). The photon and the phonon
wave vectors are indicated by k and q, respectively. The
particular phonon branich under consideration is labeled
by j.
The interaction Hamiltonian consists of two parts,
the electron-phonon irteraction and the electron-radia-
tion interaction, which may be written in theform

Jclnt'-' 3co-p+3ce-r ]

Hor=— Z (er)ms- Emy s
m, b

3)

with

4)
Kop= 2 VMmiUms fms.
m.b

In a nonpolar inedium the phonon-radiation interaction
can be neglected. The Raman effect in polar media has
been discussed elsewhere.! In Eq. (4), er, E, M, U,and {
are the electric dipole, the electric field, the atomic mass,
the atomic displacement, and the generalized force on
the atom, respectively. The indices m and b refer to the
bth aiem in the mth unit cell of the lattice. Both
operators E and U can be expanded in terms of annihi-
lation and creation operators. In the Schridinger
representation,

Eny= T [E# (et Ret B- (e % 2],
E+ (k)= i(2xhwy/ V) 22ay,
E-(k) =i (2nhwy/ V) 28%;!

where the fields are normalized with respect to a
volume V;

U"‘b=z [U+ (q’b’j)e‘tlm+U—(q'b’j)e- """ﬂ] ,
1J

Ut(a,0,5)= (h/2M N w ;) % (q,b,)aq;,
U- (q’brf) = (h/zuﬁ\vw Ci)”ze‘ (q»b»j)aﬁ' ’

{e(abi) - le(@b ) =Treab,i) e (adj)=1.

¥ See, for example, W. Heitler, Quantum Theory of Radiation
(Oxford University Press, New York, 1954).

W See, for example, J M. Ziman, Elecirons and Phonons
(Clarendon Press, Oxford, 1960).

Y. R. Shen, Phys. Rev. 137, A1741 (1965).

(5a)

(5b)
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Here N is the number of unit cells in the lattice, R, the
position of the mth unit cell, & the vnit vector indicating
polarization of the ’ iield, and {e} a set of b vectors
with e(q,b,7) denatiaig the relative displacement of the
bth atom in a unit cell corresponding to the phonon
mode specified by q and j.

The wave equations for photons and phonrons can be
derived using the density-matrix formalisn- Let p be the
density-matrix operator for the entire system. The
deusity-matrix operator for the radiation system alone
is obtained by taking the trace over electron and phonon
systems, such that p,=Tr(p. From the equation of
motion for p, we find

9%
(_.g_wki)((n+i)klpr(t)lﬂk)
ar

0
o)

at

X (1718} Treep{(3+1)u| [Re0p (D]l md,  (6)

where (nx| is the photon number state for n photons in
the mode k. With (E,(R,0))=Tro()E+(k)exp(ik-R)
and wx= k¢, and with the aid of Egs. (2)~(5), the above
equation yields the wave equation for (E, (R,/)). In first
approximation with p(f)= p,(£)p.5(¢), one finds

(1 62+k’)(E (R,1) hid ai(P R,0) 7
—_——— g))=——— K ,t ,
o o 3 ar ) )

c2

where (P\(R,£))="Trp(t)er is proportional to exp(ik-R
—iwyt). In summing over all Fourier components, one
can replace the factor k2 by —¥?; Eq. (7) then reduces
to the classical wave equation for (E(R,¢)).

The radiation density as measured by photosensitive
detectors is, however, proportional to {| £2|)=TrpE+E-,
The differential equation for (i £*|) can also be readily
derived from the equation of motion tor p. As expected,
the spontaneous emission noise, if present will turn out
in this full quantum-mechanical treatment. The noise
problem in parametric cuantuin oscillators and ampli-
fiers has been discussed by other authors in the Heisen-
berg representation.? In the classical trcatment, the
spontaneous emission noise caa usually be taken wito
account in an ad roc manner by inserting in the field
amplitude equation a noise term with a random phase.
In the following discussion, we are mainly iuterested in
the parametric amplification of a coherent in; * field.
The spoutancous noise will not be considered. The
radiation fields will be treated classically, since the
quantized field treatment yields exactly the same results
as loag as the approximation p(!)= p,(Np, (1) is made.

1 W. H. Louisell, A. Yariv, and A. I'. Siegman, Phys. Rev. 124,
1646 {1961).
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We shall assume the presence of only twe em modes, The phenon wave equation can be obtained from the

such that equation of motion for p,,. For simplicity, we assume

) ) . only two electronic states for each atom, the ground

E(R,)= & expliki- R~ iwif]+ &5 explliks: R—iwsf] state (glmy and the excited state (i[ms. Let G|
+complex conjugate.  =JTm.s(gms|. The equation of raotion for Pep yields

& a a
(572"‘2[‘5“*'“12)((""‘1)1‘ GIPGP(“) g ny,Gleiet= (— l/")(“’q'*'i;;)((n"*'l)q- G| [JC..,,p,,]("’In,,G)e""", (8)

where w= w,—wg, n, denotes the number of phenons with wave vector g and frequency w,, and I' is the phenomeno-

logical damping constant. The matrix clement of [3C...,0.5 ] can be calculated by a perturbation expansion, The
lowest order nonvanishing result is

((1+1)g, G| [ rp 19| 10 Gy = X

m, !

[((u-!-l)., 81X s(en)o- Es* [ IXI| T len)s: &1lnq,g)
hwi~wr, ony)
((n41)q, BI X s (en)s 84 INI| Zaler)s- £5*mq,g)
,t(w5+wl. an‘)

Here (pa,"— piny1),") is the average population difference between the phonon number states (ne| and ((n+1),]
al an arbitrary temperature and (/| is the intermediate state with arbitrary mixing of electronic and vibrational
character. The states ((s+1),] and i#g) in the square bracket yield a factor exp(—~iq: Ru) in the explicit calcula-
tion. The zbove matrix element is therefore nonvanishing only if the momentum matching condition q=k,— kg is
satisfied, since otherwise 3~ exp[i{k,— ks—@)-Rn]=0. The matrix element would vanish if the electron-phonon

interaction were absent, as the electron-radiation interaction cannot chauge the occupation number of phonons,
In the long-wavelength limit, the dispersion of the phonon modes has the form

qu=wnz+ﬁ9’ .

For acoustic phonons, § is positive and wo=0. The phonon wave of wave vector q attached to the ground electronic
state (g| can be defined in terms of a dirnension]ess normal coordinate,

(Qu(8.R,)=(G| £ 4(2M yoy/A)" Tr 51,510+ (g, ) exp(iq- R— it} |G)
=(Q(a.w)) exp(ia R—iwf). (10)
Equations (9) and (10) lead to the phoron wave equation

](pn‘o—p(ﬂ-fl)‘a) eXp[i(kl—ks) . R-‘]_ (9)

a? 0
[a—p+2r5+wo’—ﬂWJ<Q‘ (g,R,l»= K:EyE.g‘ exp(iq- R—wl) y

where A is & third-rauk tensor:
A= (2‘-"1/”)an("+l)qt(ﬁn‘o_P(nH)‘o)»
((1)q, gl Zaler)as| IXT| (er)oi| nyrg)
WI—wi, gng (11)
_((”'H)q» glZb(ﬂ)u“)(ﬂzo(er)aslne,g)

wstwr, ga,

E={e(q,0)} (/T (n+ l)q—l'zA\'x.!n[

]ew(iq- R.).

The square bracket in the expression for § is likely to be proportional to (n4-1)4'"2, since the states ((n+1),! and
Iny) must be connected implicitly by the operator U+ (9,5) or a,. The factor NV2 i § arises as a normalization factor
attached to the states ((n+1),| and |4) because of the definition of U,(¢.8) in Eq. (5). The quantity ¥, which has
the dimension of an atomic polarizability, is then independent of ny, and since

Z"‘(n+2)1{”"10*9("“}10): an Pry=1,

A= (2wo/R)E. (11a)

Eq. (11) gives
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This can be shown explicitly for the case where the electron-phonon intzraction is small so that it can be treated as
a small perturbation, mixing the states. The intermediate state can he written as (/| =((n+1),, ¢|, and

(i]er|g)

((n+1)y, i|¢r|'=u8)=——h;—-[((n+1)q- i[Bep| e} ((n+1)q, £]3p|ne8)],

L}

(glerld)

((n+1)q, gler|nyi)=

(12)

o [((”'I'i)u i|3c~p| nyi)—{(n+1), glxe-v | "m§>]-

With .., given by Eq. {4}, and substituting the above expression into Eq. (11), one finds

E={e(q,0)) (/M| L s(er)ss] I T s (er) il )G o(f- 8%) 0] 8)— (gI L o (f- %) 6] £)) 1 (4 /004) (13)
4 =[("’8_“’uv)_l‘— (‘i’l_“’nv)-l‘l' ("’S+“’nv)_l_ (Wl‘l'wnv)—l]/h ’

where f is the generalized force in Eq. (4). The phonon
wave is coupled to the laser and Stokes fields (E;) and
{Es) to give rise to the stimulated Raman and Brillouin
effects. The wave equation for (E;) and (Es) is

VHE:1s)+ (wi,.s*e1.s/¢(Ews)
=— (-lrwg,s’/cz)(Pz_sN L, (14)

where (P, sV &) i obtained from the usual iterative pro-
cedure in the densit: matrix formalism. In particular,

(Ps"L(R,0))=TE'ed Qs (gR,1)), (15)

where 3 is the nuraber of unit cells per unit volume. The
Boltzmanu factors p.® disappear in the nonlinear
coupling terms of both Eq. (11) and Eq. (15). There-
fore, the stimulated Raman gain, obtained from the
solution of the coupled wave equations for (Es) and
(Q,) would be independent of the average thermal
excitations of phonons.

For acoustic phonons the harmonic approximation on
which the linear expression for the displacement opera-
tor U is based, is nearly always valid. The effect of
anharmonic terms may be taken into account as a
damping term, caused by collisions between the acoustic
waves. The temperature dependence of the stimulated
Brillouin effect is entirely contained in the temperature
dependence of the damping constant T'. Even though the
concept of elementary excitations breaks down at high
temperature, the classical acoustic wave can still be
described in the same manner, even in liquids.

The situation is different for optical phonons. In this
case the anharmonicity of the molecular vibrations
limits the validity of the harmonic collective excitations
to the low-temperature regime, where the probability to
have an excitation at a particular localized site is small
compared to unity.

The dispersion law for optical phonons is very differ-
eat from that of acoustic phonons. The contribution of
the collective motion to the wavelength-dependent part
of the energy is small and the damping is relatively
large, 8¢*&w,I". Under these circumstances it is ap-
propriate to consider the localized vit.rationalexcitations
of individual molecules.® Since the vibrations are
strongly anharmonic, only the ground state and the first

vibrational level need be considered. It is a well-known
result for this case of individual molecules that the
Raman susceptibility is proportional to the population
difference in these two states, p -~ p,°. This temperature
depcndence through the Boltzmann factors does not
appear in the calculation with collective elementary
excitation waves, which is strictly valid only at absolute
zero. The case of optical phorons derived for a lattice
array of molecules with two vibrationai levels is analo-
gous to the case of spin waves derived from a lattice of
spins with S=3}. The representation by elementary
excitations with boson characteristics is a low-tempera-
ture approximation.

The formalism of tl.e coupling of light with optical
phonons may be taken over to the case of spin waves.
The coupling of light with plasma waves has been
discussed elsewhere.”?

III. COUPLING OF LIGHT WITH MAGNONS

The electronic Hamiltonian for a magnetic systen
consists of spin and orbital parts. The cpin part, with
exchange interaction among spins, forms the magnon
system. The radiation field is treated classically and is
again assumed to consist of two waves, E; and Es. The
total Hamiltonian is written as

x""‘l’!cmunon'!'scwb"}'scim- (16)

The nuclear vibrational part is omitted in this section.
The interaction Hamiltonian consists of spin-orbit, spin-
radiation, and orbit-radiation interactions,

Hint=Hs.L+¥H1r+IHs.,. (17}
These interactions have the familiar bilinear form

ICp.r= Z )\nblaub' Sm. 3
m.b
K., =— Z [Cl'.w‘ Eqb'*'#[lnl' }{n.] ] (18)
L]
3pr=— X 2uSms' Hus,
m.b

9 N. Bloembergen and Y. R. Shen, Phys. Rev., 141, 298 (1966).
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where A and u are the spin-orbit coupling constant and
the Bohr magneton, respectively. The electric and
magnetic fields of the radiation at the bth atom in the
mth unit cell cre designated by Enp aud H . The terms
uL-H and 24S- H correspond to magnetic-dipole transi-
tions, Javan and Winter first suggested the stimulated
Raman maser action in a paramagnetic two-level spin
system [compare Fig. 1(a)]. In the optical spin Raman

The magnon Hamiltonian is

scmunon—_ Z -,ml—mb'slnb S b‘—‘y‘HO Zsmh (19)

bb'

where J is the exchange coupling constant and He the dn
magnetic field. In the harmonic approximation, 3Cmegmon
can be quantized as'*

transitions, shown in Figs. 1(b) and 1{c), the inter-
mediate states can be connected by the electric-dipole
interaction er: E. The magnetic-dipole terms uL-H and
2uS-H are negligible in comparison. The interaction
Hamiltonian reduces in these cases to a form similar to The spin component is expressed in terms of creation
the one in the previous section. The role of 3,.; is taken  and annihilation operators a,,!, ay; from the linearized
over by 3Ca.1. Holstein-Primakoff transformation'®

Jc'“"l‘”“‘z_ LT OIS o ) (20
W

Smv* = (Smp)eti(Sma)y = (250/N)'* L €(a,8,7)ay; exp(ig- Ra)
0.2

= 2 S(q;j) CXp(iq' Rl'l) ’ (21)

L1
(Smp)t=5s(Ss+1).

The magnon modes wq; are obtained by solving the set of linearized Bloch equations of motion for Snt for the
magnetically inequivalent atoms in a unit coll,* just as in the case of phonons. The number of magnon branches is
of couirse equal to the number of magnetically ineyuivalent atoms in each unit cell. In the long-wavelength limit,

wy=wo(Ho, /) +8())¢. (22)

In particular, when there is only one magnetic sublattice with one maygnetic atom per unit cell, there is only one
magnon branch with wy=2uH ¢ and 3= J5a%, where a is the lattice constant.

The magnon wave equation can now be derived from the density matrix formalism. Let p be the density matrix
operator for the material system. We shall again assume only two states for the orbital part of ezch atom, (i} ms
and (g| ms and (G| =] m.» (g| ms. Consider the equation for {(#+1)q, G|p|7,G), where (n| denotes the excitation
of the inagnon wavelength wave vector g=k;—ks. From the equation of motion for p and Egs. (16)-(20), we
find

8 1
( ib-t—w.+i1‘)<(n+l).,Glp‘“’lnq.G)r""'=;((ﬂ+l)q.GI[JC..r,pE‘"’In..G)e""‘, (23)

where w=w;—ws. The lowest order nonvanishing result in the perturbation expansion of [3Ce.r,~ 1 gives

((n+1)q, gl Zoler- €s*)] TN | Lnler: €1)s| nq,8)

h(“’l"‘"l.an)

(2 1)g Gl TR 0] | 1 G) = 21[

1), <&1)sll /\I -8s* ’
(1), g1 Taler- 80sl DI Taer ~*’°""g)] =Py explia-Ru). (24)

Awgtwr, gn)

Here, the intermedinte state with arhitrary toixing of spisn and arlital charactar is desated by (], aind wg 0 it 1he
frequency sepurition hetween (7] and {ng,g | Sine e 3¢, cannot change the aeenpidtion mmber of magnons, Fay. (24)
would vanish if the spin-orbit interaction 3 s.», were not present. When 3. i8 small, it enn be treated as a pertirba.

" See, for cxample, C. Kittel, Quantum Theory cf Sclids (John Wiley & §ons. Inc., New York, 1964).
T. Hoblein and H. Primakofl, Phys. Rev. 58, 1098 (1940).
¥ See, 1or example, 3. Harris, Phys. Rev. 132, 2398 (1963).
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tion in mixing the states. With the intermediatz state written as (7] = (s¢,f{, one find«

{(n41)q, 1]3Cu. L] ne,#')(ng, ' | er| nq,0)

(k) lerlng)=E

AW ins), itn
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J_(("'*'l)q, iier] (o + 1) N (n+1)q, i'isc“,! n,8)
Ll ?
B gn, (a1
(25)

(("'*'Um g! er! (nt1)q, i')(.("+1)lv i'!ﬂCs.Li"q,:')

((ﬂ+1)q»s'~"!”m")=§[

kain, it (nt )

-+

J_< ("+1)l’ g ! SCS- L! nﬂri')(”bil ! CI'! )11,1.)]

# gat 1), i n

The se equations may apply for certain iron-group ions. If (g] and (i{ denote eigenstates in the crystalline field
potential, the quenching of the orbital angulir momentum implies that the diigonal elements of the spin-orbit

interaction 1 anish

(it D), i]8a g, =((n+1)q, g]Ku1lng,g)=0.
This is different from the phonon case described by Ea. (12).

The spin wave is defined as

(SR =(GITr Ls(1/254)'2pS s* (q,w) | G) exp(iq- R—iwt).

Equation (23) then leads to the equation for the spin wave

(26)

a
[ia"wo-*-ir +ﬁV’:|(S‘ (R))=25:8:8:* exp(iq- R—iuwt),

ag=ht an (il+1)q£s (Pn‘o—'P(nH)qo) )

{(n+1)q, gl Zslen)os| T Lsler)n] ne,ed

(27)

£s= (1/R){e@B)) K1 ¥ uz(n+1).—u=[

WI=Wys gn

_((n+1).. gl X sler) ] DU s ler)os)ng,)

Note the similarity of this expressiuvn and the corre-
spondiug Eq. (11) for the phonen case. The expression
in square brackets can be evaluated explicitly in the case
of weak spin-orbit coupling with Eq. (25). It is seen to
be proportional to (n+41)4%. This result has probably
more general validity, as the term in square brackets
conaects two boson eigenstates differing by one unit of
excitation. The factor N'' in the expressicn again arises
asanormalization factor attached to the states {(n+1),|
and |ng). The expression for Ag is independent of the
pag in this case by the same arguments which led to
Eq. (11a) and, in fact As= Es/k. The coupling constant
is therefore independent of temperature in this harmonic
approximatio.. This result can only be expected to have
validity for ‘emperatures well below the Curie or Néel
temperature. When T becomes an appreciable fraction
of T. higher order terms in the spin-wave variables can
no longer be ignored in the Holstein-Primakoff trans-
formation. This is the usual restriction on the validity
of spin-wave theories.

] exp(iq-R..).

w3twyr gn

The spin wave is coupled to the two light waves E,
and Es to give rise to the spin-Raman effect. The wave
equation for the Stokes wave is

V'Es(R,I)-*-(wszts_/cz)i‘.s('R,l)
=— (4!(05’_/6’)(]’3“'"(]‘,1)) . (28)

The aonlinear polarization in Eq. (28) can be found by
the usual perturbation calculation,

Ps¥E(R,1)=NEser(S(qw))* explig- R—iwt), (29)

where 9 is the number of unit spin cells per unit volume.

The above derivation is very similar to that in the
coupled photon-phonon case. If the spin-orbit coupling
and the crystalline-field interaction are large, a pure spin
wave of course does not exist. The formal derivation
remains valid in this case, which is represcnted by
Fig. 1(c).

The gaimn coefficient for the stimulated spin Raman
effect®® can now be solved from the set of coupled wave
equations (2¢) and (28) with Ag replaced by . For
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infinite plane waves with linear polarization in a
medium of plane boundaries, the Stokes wave vector is
found to be

1
ks¢= k.<°+' £ {‘2‘(135 - D/2Bq'o)

l)* 237.#005%52&51&2 '2
+f (artion) - 1 o
283¢.° / c’@k 54 q.°h

where
bt wszes'/c2 ’
as=wstes” /2ks,
*=w—wo— B¢ —il's, (31)
q0= kl"kso 3
q’==k,’—k5' and ks- —q <
"The laser field &;is assumed to be a coaistant paraimeter
and the unit vector £ is normal to the bonndaries of the

Raman cell. The imaginary part of ks is the gain or loss
coefficient. The corresponding waves are given by

Es={Cs. exp(iksy 1)+Cs_expliks_ 1) Jei*st,
(§)=[Cs,' exp(iqs- 1)+Cs-’ explig--1)Je~*,
Cs3/Csy = Nimws/ctkgO)bsb/ (ks— ks +ia).
If the spin wave is highly daniped, such that
{D*/28q. +ias)>2rwsts?| 8:12/c*Bq.0k s.lh,

the square root in Eq. (30) can be expanded into a power
series to give a gain coefficient

imws?ts?] 8|2
——} (32)

Ii\lk_g+=as+lm’
ks D*h

The gain is a maximum when both linear momentum

and energy matching conditions are satisfied, i.e.,

kg—k +q and w;=ws+w.

This is indicated by the resonance point R in Fig. 2.
Curves 2 and 3 in this figure are given by

= [ki—ks*| = [wilnibi—nsk ) PP +wsnsks ¢l/e

for the forward ~nd backward scattering, respectively.
Here, n's are the indices of refraction, and &'s the unit
vectors. The Raman susceptibility correspending to the
Ramar gain of Eq. (32) assunies the very siniple form,®

anum.Mn": mfﬂz‘ s, (;3)

where £g is given by Eq. (27) and lias the dimension of
an atomic polarizability, and I's is the dumping con-
stant for the spin wave,

When the probability for spin excitation at a localized
site is not very small compared to unity, this harmonic
approximztion of the spin waves loses its validity. In the
opposite limit of very high temperature, above the

a AN

Fig. 2. Dispersion curves describing the spin Raman effect.
Curve 1 is the dispersion curve for an acoustic magnon wave,
Curves 2 and 3 describe the linear-momentum and energy-
matching condition given by

¢=1k—ks| =[w;('=1£n—-nsﬁs°) ~q°+un35s‘~§°]/:

for the forward and backward Stokes scatturing, respectively. The
resonant points are denoted by R.

Curie or Néel point, it is clearly more appropriate to
consider the energy levels of localized spins. In this
paramagnetic case, the Boltzmann factor p,®—p,® ap-
pears. The effect is proportivnal to the difference in
population of the two magnetic levels concerned. If
these levels form a Kramer's doublet, the temperature
dependence is the same as the paramagnetic magneti-
zation arising from these two levels. This suggests that
the temperature dependence of the spin Raman transi-
tions in a ferremagnet is similar to, although not
necessarily identical to, the temperature dependence of
the magnetization M (7).

IV. THE SPIN RAMAN EFFECT IN PARA-,
FERRO-, FERRI-, AND ANTIFERRO-
MAGNETIC MATERIALS

The possibility of observing the Raman effect in
magnetic systems was described in the introduction.
Hough and Singh* observed the spontaneous Raman
transitions between two electronic levels of PPt in a
LaF; crystal. The Raman scattering due to spin excita-
tions, bowever, has not yvet been observed.

Both the spontaneous and the stimulated Raman
scattering depend on the coupling constant fs. The
Raman transition probability increases as |fs] in-
creases. As shown in Eq. (27), the magnitude of &g be-
comes large if (1) the frequency w; or ws {or bosh)
approaches a resonance, and (2) the matrix elements are
large. In some simple cases, there are also selection rules
governing the Ramun transitions,

Consider first a paramagnetic system with a small
crystalline field, so that m is still a goad magnetic
quantum number. The localized spin model applies to
this case. The Raman transition probability is pro-
portinnal to 9| £s|2] 8112 (p—pi®)/ T, where Es is given
by Eq. (27) with the magnon states replaced by the
local paramagnetic states. The degeneracy of the mag-
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netic states is of course hited by the applied dc magnetic
field Tn order to have the initial and the final magnetic
states, (g| and {f|, in the normal Raman transitions
connected by the elertric-dipole operator, the magnetic
quantuin nuniber must change by Am=m;—m,=1or 2.
With Am=1 [see Fig. 1(b)] the selection rule reqaires
the iaser polarization to have a circular component
around, and the Stokes polarization to have a linear
component along, the niagnetic field, or vice versa. The
exciting beam bropagating along the maguetic field
cannut excite Stokes scattering in the forward directjon.
In the spontaneous Raman emission, one ohserves
preferably at right angles to the incoming heam. One
would find a linearly polarized Stokes light if the ex-
citing beam is prepagating in the direction of the
magnetization, and a circularly polasized Stokes light if
the exciting beam is propagating in the direction per-
pendicular to the magnetization. In the stimulated
Raman eflect, it is best to have the laser and the Stokes
parallel to each other. They may then propagate at 45°
with respect to the magnetic field, The geometry used
by Dennis and Tennanwald" with the lassr beam at an
angle to the Stoke. beam would also be possible. With
Am=2, the selection rules require the polarizations of
the laser and the Stokes to have components circulating
in the same sense around the magnetic field. Again, the
polarization prop.rties depend in an interesting way on
the direction of the magnetization and on the directions
of propagation of the two beams. If the crystalline field
is s0 large that m is no longer a good quantum number,
the above selection rules in general break down.

Consider next a simple ferromnagnet with a single
sublattice, and assume the spin waves originating from
individual ion states with pure magnetic quantum
numbers m==}. Only the acoustic magnon brarch
exists. The states corresponding to zero- and owe-
magnon excitation can be written as

<0Q1=H (+I 1y

, (34)
{1q] =(l/‘\‘)”’Z(<—l;‘H ([ exp(iq-Ry),

2

where (4- |, and {— |, are the two spin states for the ith
spir. Substituting Eq. (34) into Eq. (27), one finds that
§s is nonvanishing only if the product of matrix ele-
ments of the type (g, —|er|/){I|erig, +) is ditierent
from zero. This requires that the magnetic quantum
numbers of the initial and the final states ir. the Raman
transitions differ by Am= 1. The selection rule governing
the polariza‘ion properties for the laser and the Stokes
discussed prev-usly for the paramagnetic case again
applies. .i the crystalline field is large, the spin wave i3
no longer composed of pure spin states. Then, in general,
the selection rule bieaks down.

¥ - H. Dennis and P. E. Tannenwald, Appl. Phys. Letters 5, 58
(1963).
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In ferromagnets with more than one sublattice, and
in ferri- and antiferromagnets, the cublattices are
coupled together through exchange coupling to give
different magnon branches. The eigenmodc. and the
eigenvectors are obtained from the coupiei’ Bloch equa-
tions for the magnetizations of the sublattices. Assume
a ferrite with two sublattices A and B, the corresponding
spins being S, and 3p, respectively, with pure spin
staies (4| for each spin. Since the spins are pointing in
oppusite directions, we write S4,=S, and Sy, = -8,
and S;t|5),= |+)a and Spt|=)p=|F)p Also as-
sume that the exchange coupling exists only between
spins on different sublattices. The coupled Bloch equa-
tions for Sut and Sp* yield the magnon exchange
eigenfrequency, or optical magnon mode at g=01

0= §{wentwWaa —wes —wa8) 3 (Weat-wen
Fwaatwap)? — 4w, w2,

(ch’}"wc.d).::- (U¢A+waﬂ) »

where w4, o1en, wes, 4nd wep are the exchznge and
anisotropic freaucncies for the twn spins, respectively.
The corresponding eigenmode is

(Sa¥)/(Sh*)=—ar/as,
ar=w.4/D, (36)
= (weptwi—wo)/D,
D={woa+ (Wentwea—wo) 2.

The states with zero- and one-magnon excitation can be
written as

{OQI =Ht'<_p +|ix
Aol =/ 5 La(+, +]j—as(—, —|;)

. 37
X 4#1.(—, +ldexplig-R)),
)
wheie (4, +|; are the comb’ned spin states for the
spins in the jth unit cell. We have Sail—+)=4++);
and Sg;l —+4-)=|~ =), A typical term in Eq. (24
which contributes to the value of zs is

a(g, +, -+ | (erat+ers®) | INI | (er o+ 8% g —, +)
—axg, —, —|(era*+er. )| 1)
X{ | (era*+erst)ig, —, +), (38)

or with the superscripts 4 and Z interchang.d. This
again requires that tle polarization of one bearm, the
laser or the Stokes, has a civculur component around and
the polarization of the other beam has a linear com-
pouent along the direction of magnetization. The situa-
tion here is very similar to that in the direct infrared
excitation discussed by Tinkham for the case of rare-
earth garnets.”® There, the absorption coefficient is

“'!Sg‘). HNagamiya, K. Yosida, and R. Kubo, Advan. Phys. 4, 14
955).

" M. Tinkbam, Phys. Rev. 124, 311 (1961); A. J. Sievers and
M. Tinkham, sbid. 124, 321 (1961).
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proportivnal to the square of the matrix elunerts

[CYI(g' +) "i’ } (AIA++-AIR+)’31 = +)
—'a?<g1 T l (A[-4++5!H‘)%gx ™ +)]-

Because of the antiparalle! exchange coupling between
the two suplattices, the two terms tend to cancel each
other, so that the infrared absorption coetncient (and
the Raman transition probability) becomes smaller
when the exchange coupling increases relative to the
anisotropy energy. The above analysis also applies to
the case of antiferromagnets if one puts S.=35,,
wai=wsp, and w.4=w,s The direct far-infrared excita-
tion of racgoons in the » tiferromagnet Fel'y has also
Leen investigated by T! « am® The eigenfrequencies
and the eigenmodes given in Eqs. (35) and (36) should
be slightly modified in the presence of a de applied
mugnetic ficld. M the crystalline ficld is large, the
selection rule governing the polarizations of the beams
agaia breaks down.

The magnitude of the spin Raman effect may be
estimated as follows. Comparison of Eqs. (15) and (27)
shows that the two coupling constants ¢ and s are
comparable in magnitude. In the case of optical pho-
nons, ¢ would be zero if the electron-phonon interaction
were absent, ii therefore suffers a reduction factor
Hep/ (vibrational energy). In the case of magaons, s
would be zero if there were no spin-orbit interaction; the
reduction factor is 315/ (crystal tield). The two coupling
constants would be of the saine order of magnitude if the
matrix elements involved were the same. In practice, the
uitraviolet oscillator strength for organic molecules is
close to 1, but for magnetic ions it is usually less than
0.1.2V If the reduction factors and the damping constants
for the two cases are approximately the same, the spin
Raman effect would be about 2 orders of magnitude
smaller than the ordinary Raman process in liuids. The
linewidth of the spin excitation at low temiperatures
seem to be comparable to the optical phonon linewidth
which is about 1 um~t. For example, the antiferromag-
netic resonance in Fel; has a width of 0.1 cm™! at 1°K
which increases with temperature as 7% The damping
constant for the ferromagnetic spin excitations at room
ten:perature, lies in the range T'g~10°~— 10 sec=!. The
narrowest ferromagnetic linewidth in a garnet is about
0.5 G or Ty~ 107 sec! at low temperatures.®

An alternative way to estimate the order of magni-
tude of the spin Raman effect is by comparison with the
optical rotatory power of the magnetic system.?®
Physically, the spin Raman effect and the Faraday
rotation are closely related magneto-opstical efTects. The
former is derivable from a thermod;nainical potential
connected with the coupling between light w:ves

® R. C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (t961).
1 Estimated from optical absorption data in rare-carth and iron-
groug ions. Sce, for cxample, B. R. Judd, Phys. Rev, 127, 750
(1962).
Y. R. Shen, Phys. Rev. 133, AStl (1964),
u A M. Clogston, J. Phys. Radium 20, 151 (1959).

and a spin wave. The coupling eneigy ner ion is
EsEEs*(S(w—wg))*. The Faraday rotation is derivable
from a potential that gives the difference in coupling
energy of a right-circular- and a left-circular-polarized
light wave with a longitudinal dc magnetization. This
time-averaged encrgy per ion is Erard | £1 12— | Er|?)
X{S{0)), where 2¢F,, is the difference of the right and
ihe left circular polarizabilities. Both effects would
vanish in the absence of spin-orbit coupling, and the
coupling constants in the two cases are qnite similar.
The constant £s has the same order of magnitude as the
circular polarizability, und so has ¢r.., if the two
circular polarizabilities do not accidentally cancel each
other. This is the case of some iron-group ions, such as
Mn?, etc. Such a relationship was also noted by
Persh~ . and coworkers.® They were only concerned
with light polarizations perpendicular to the magnetiza-
tion. Thus, only Am=0 or Am=£2 Raman transitions
occur in their geometry. For th= excitation of magnetic
spin waves, the Am=z£1 transitions are significant.
They require the presence of a light component parallel
to the magnetization. The ratio {r../¢s depends o
course on the detailed geometry, crystal field splitting
and mixing of the magnetic states.

The rotary power at magnetic saturation is related to
the Faraday susceptibiiity by?®

¢=4rMN¢r, (w/nc) tad/cm,

where 37 is the number of magnetic ions per ¢c and n is
the index of refraction. For Eu*t the rotary power per
.on has been determined experimentally.®® For light at
the ruby wavelength one finds £p,,=5X 10 esu.

If we take N=5X10* in Eq. (33) and Fg= 10¥ sec™!
for a typical ferromagnet, one finds Xgpypen*?n= 10—1
esu, This is about two orders of magnitude smaller than
the Raman susceptibility of several liquids in which
stimulated Raman emission has been observed.

In principle, all magnon branches can be excited
through the Raman process. In a spin Raman laser,
however, the mode with the highest gain would be
domirant. The stimulated Ramuan process would also
have to compete with the ordinary stimulated Raman
and Briilouin scattering.

For a single magnetic lattice, the acoustic ferromag-
netic spin wave is of course the only magnon mode. It
is interesting tc compare the Raman excitation of this
magnon mode with the Brillouin scattering. In both
cases, the dispersion of the mode frequency is quite
strong so that the Stokes radiation in different directions
has different fiequencies. The Stokes radiation in the
spin Raman scattering cin a'so ge in the forward direc-
tion. If a strong dc magnetic field is applicd, the mode
frequency for ¢= 0 is stiil different from zero. The fre-
quency of the spin waves in the forward direction would

¥ 1. P. van der Ziel, P.S. Pershan, 2nd L. D. Malmstrom, Phys.
Rev. Letters 15, 190 (19¢5).
¥ Y, R.Sher and N, Bloemvergen, Phys. Rev. 133, A515 (1964).
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be low in small extern.! fields. Themomentum r-atching
condition becomes unimportant if the length of the
sample ! is se small that g/ <1, as the uncertainty in the
wave vector ~1/1 exceeds the wave vector g itself.

Since stimulated Brillouin scattering has a threshold
which is comparable to that of the crdinary Raman
effect in liquids, it will often domwinate the spin Ranan
effect. The dispersion law is more favorable for spin
waves in the forward direction. Note that the frequency
of «he magnon mode can also be tuned by the applied dc
magnetic field.

In using giant-pulse lasers, one nay still use the
steady-state solution of the coupled wave equutions, if
the group velocity (or §172) is small. This is the case for
ordinary Raman effect ar ~ shovid ulse be vilid for
optical spin waves (or exchange rodes’ and fer acoustic
spin waves in very high ficlds. Otherwise, the transient
solutien of the type developed by Kroll** for the
Brillouin case must be used.

The more interesting aspect of the spin Ramar. etfect
lies in the optical magnon branches. This includes the
antiferromagnetic spin waves. Polarization properties of
the beams should be investigated to see whether the
simple selection rules break down or not. Experiments
on Fel’s with a Stokes shift of 55 cm™! would be quite
interesting. The large Stokes sinft makes optical detec-
tion relutively easy. Various garnets are also suitable for
investigation, cspecially yttrium iron garnet which is
quite transparent in the near infrared.

In paramagnetic materials, the spin Raman effect
arises from isolated ions. The Raman effect between two
magnu.ic sublevels of the ground state and the Raman
effect between two clectronic levels have thesa me
nature. The latter process was found by Hougen and
Singh* in LaF;:Prit. Their experimental results give
assurance that the spin Raman process and the Briliouin
process might have the same order of magnitude.
Although the concentration of magnetic ions in para
magnetic salts would be low, the linewidth could be as
narrow as 10-% or even 10~* an™!, corresponding to a few
gauss. The gain is nroportional to the average popula-
tion difference betw_en the magnetic sublevels. {f only
these two sublevels are populated, the paramagnetic
spin Raman gain wouid be proportional to the magnet-
ization. This effect could be observed in the forward
direction and could be tuned by the dc magnetic ficld, as
distinguished {rom the Brillouin effect.

It appears worthwhile to search experimentally both
for the spontancouvs and the stimulated spin Raman
effect. For the {ormer, a gas laser focused into c1ystals
at low temperature would be appropriate to observe a
scattered radiation with a small Stokes shift?” For the
latter, a resonant cavity with a different feedback factor
for spin Stokes and Brillouin-shifted radiation would be
useful.

# N. Krofl, J. Appl. Phys. 36, 34 (1963).

7 R. Y. Chiao and B. P. Sioichefl, J. Opt. Soc, Anv. 54, 1286
(1964; T. C. Daman, R. C. C. Leits, and $. P. S. Porto, Phys.
Rev. Leuers 14, 9 (1965).
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V. COUPLING OT LIGHT WITH
PHONONS ANLD MAGNONS

in discussing the spin Raman etfect, we have neg-
lected the term u(L4-2S)-H in the Hamiltonian. This
term would add to each clectric-dipole matrix element a
magnetic-dipole ccunterpart. In addition, if the em
mode at the magnon frequency is present, there is a
direct coupling between this em wave and the spin
wave. It is this direct coupling that gives rise to mag-
netic resonance and far-infrared magnon excitation. We
have also neglected the nuclear motion which is re-
sponsible for the phonon waves.

In principle, all waves existing in the medium can be
coupled together either linearly or nonlinearly. The
coupling is, however, effective oniy when both linear

romentum and energy matching conditions are satis-
lied. Consider the case where five waves are present in
the mediun, the laser and the Stokes waves at w; and
wg, and the infrared (or micro-} wave, the acoustic
magnon wave, and the acoustic phonon wave at w with
w=w;—ws. The laser and the Stokes waves can be
coupled to the phonon und the magnon waves through
the nonlinear Raman-type coupling, and to the infrared
(or micro-) wave through a nonlinear susceptibility of
mixed electric and magnetic dipole character. This
coupling constant 1s given by Az or A; in Egs. (39) and
(40). The magnon wave can be coupled linearly to the
phonon wave through the nragnetoelastic coupling,?®
and to the infrured (or micro-) wave magnetic field
through the magnetic-dipole interaction. The coupling
coiistants As and Ay between the acoustic phonon and the
infrared (or micro-) wave is negligibly small since the
waves cannot be matched simultaneously in energy and
momentuni. If the laser field is treated as a constant
parameter, the remaining four waves are linearly
coupled. The coupled wuve equations can be written as

VEs+ (wstes/®)Es= ME(S)*+ 0LEE *+%EA,*,
V:iE, *+ (w%e,*/c)E, * = MEEs+ 26(S)™-F %A, *,
VA + (pow?/Co)A, *—i{p/Ca) 2wl A * (39)

=N5E*Es+25(S)*+ ME,*,
VS *+ (1/8) (w—we—1T'g) ¥
=%0E,*+21A,*+2E*E5,

where A, denotes the acoustic vibrational wave. The
coupling constants are either related to physical con-
stants or can be derived explicitly.

A=—0 (4rw52/cz)fs' 0
PYRS (41I'w52,/(,',)
(en)on(en) g [ue?(L+28)X ¢
X o
(w5 =wng) (Wtwyrp)

This coupling between three em waves in a medium
with inversion symmetry is about 4 to 6 orders of

{(40a)

1 C, Kittel, Phys. Rev. 110, 836 (1958).
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magnitude smaller than the coupling parameter for the
secon<l-harn.onic generation in piezoelectric crystals.
The masnetic-dipole term r. akes this term negligioly
simull compared to the other types of coupling.

I~ (rwt/e) (—ig-p). (ith)

p 5 the photoelastic tensor, whose elements are of
order unity

)q: 12 s
A= :T([ucm(lrl‘2S)XQJM'VIS°/SN+' (40c)

"This 1s the magnetic resonance term, that couples the
magnetic field at the resonance frequency to the anin
Wave.

)\5’\‘0 1y
Sq~(ig- p)/ Gt

Here ¢ is the photoelastic teusor and C, is the elastic
iodulus tensor;

(0d)

da=14b,/C,. (40e)

‘T'his magnetoclastic coupling isderived i, om the inter-
~tion Humiltonian
Ko = lb“'[ (‘S‘J/S)a't =+ (SU/S)‘TVZ y
where

o ye= (1/2)(04,/35+04,/ay)

= (ks*~wsles/c?) —Mé;
'—')-1:81* —q2+ (w—wo—i.rs)/ﬁ
—‘k48,“ —)\5
—-M8 —As

The imaginary part of ks gives the Stokes gain.

It is quite diflicult to find the solution of Eq. (42).
However, the dispersion relations of the waves are such
that in general only three waves can be effectively
coupled, sine the infrared wave £, is always decoupled
from the aco istic wave 4.

Consider first the coupling of Es, 4., and (S). The
problem is essentially the same as the problem of the
Raman efiect in a polar medium! where the Stokes
wave is coupled to the infrared and the optical phonon
waves, That calculation can be carried over to the
present case, bet

k,s; ks" }' (A K)2 ) (ks")." = w,qu’/lfz s

k" l(,»;l"' (;’ g .lf_s"‘ q" s (";)

k"_ k,\'"-} (]".
We arc interested m the solution ANk, &, 2 In this
case B, (12) reduces to
(— AR+ i) (AKFF 2k, Y (AR 4 Fo/2k,.0

ALK 1720, — AAAK+F /24,
’i"Ag(—' 'XK'!‘las)— An;-‘—' 0 ) (44)

and
oy:=(1/2)(8 * ‘9x+04./9z)

are the shear strain comr .ients. The static magnetiza-
tion is along tne g direction. This is the only magneto-
elastic coupling term in a cubic crystal which is linear in
the spin variable. For a normal ferromagnet, the
magnetoelastic constant b, has the magnitude of the
order of 5X10~7 erg/cm?.?®

a9~0 ’
1
;N:_;'D“u:(uZS)XQJ,-aSM'*/ﬁ, (40f)

An= ‘I:Qb-,ySob/hp .

In this elastomagnetic coupling constant b is the volume
of a unit cell.

= —Es/hB. (40g)

A and Az are the spin-light coupling constants de-

scribed in Sec. I11. Here, with Ey= 8, exp[ik:- r—iwi], a

solution of the set of coupled equations (39) takes the
form

Es~exp[iks- r—iwst],

41
E,, 4,, (S)~expliq- r—iwt]. 1)

‘The complex wave vectors ks and q=k,—kg* are ob-
tained from the determinant

-6, —X3b;
=M =M B
— PHawte/c 0 0. (42)
0 _qﬂ+ (Pa/ca) (w?~— 'Zwr)
where

-’“1'_- (w--wo_ﬁ(q")’—il‘s)/ﬁ.
Fy= (po/ca) (*—i2uT)— (),
Av=—MDa]| 84}/ dksq,
Ae=Nahr| &1/ 4ksgs0,
As=—xr1/4(gs)?,
A= — - Adeh )| 811/ 8ksa(g,0)2.
The solution of Eq. (44) is shown diagrammatically
in Fig. 3. Curves t and 2 are the dispersion curves

for the acoustic wave A, and the acoustic spin wave
{($). The mamentumm-cnergy matching relation for Ejg,

q-= [k~ ky] =[wz("1kl""-'iks)"r'*"""‘\‘kﬁ'gh.v‘l

is given by curve 3. For sinall coupling constants, the
curves simply cross one another instead of forming
gaps.?® Two waves can be coupled effectively o.ly near
the point whe re the corresponding curves meet. Thus,
in the parametric approximation stimulated Brillouin

¥ No gap appears al lhe junclion of phouon and magnon
dispersion curves, if Ay (pa/caliel Tajne % See Ref. 11,
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and spin Raman effects will occur essentially inde-
pendently near the points R, and R;, respectively,"
where the correspording stimulated gain would be
maximum. The three waves can be effectivily coupled
together only when the thiee waves can be made to
meet one another at a single point, (R;). This can be
done by selecting the Stokes direction or by tuning the
magnon frequency with the applied dc magnetic field.
At thispoint, the gain for the mixed stimulated Brillouin
and spin Raman effect would be close to maximum.
Thus, the magnon can be excited indirectly by the
Brillouin effect or conversely, the acoustic wave can be
excited indirectly by the spin Raman effect. This has
practical importance in exciting the .magnon wave.
Individually, the spin Raman efiect may have a higher
threshold than the Brillouin effect. However, by coupling
the magnhon waves to the acoustic waves, they can now
be excited with a lower threshold via the Brillouin effect.
The excited magnon frequency can be tuned by the dc
magnetic field, but the direction of the Stokes radiation
wil! also be changed. The exact solution for the case of
three waves tightly coupled together should be obtained
directly from Eq. (44). Further algebraic details may be
found with the methods of Ref. 1.

The coupling of Es, [L,, and (S} can in principle be
discussed in the same manner. The nonlinear coupling
between Eg and E, is often small in magnetic media
whicl: are nonpiezoelectric. The mixed spin and infrared

Fi6. 3. Dispersion curves describing the mixed spin Raman and
Brillouin effect. Curves 1 and 2 are the dispersion curves for
the acoustlc phonon an:d the acoustic magnon waves. Curves 3
and 3’ satisfy the linear momentum and energy maiching
condillon

= k=] = [k - nshs®)  P+amsks P/

for two different directions of Stckes scattering. The resonant
goints Ry and R, denole almost pure Brillouin effect and spin

eman effecl, respectively. The resonani point &3 corresponds to
the mixed stimulated Brillouin and spin Raman effect.

Y. R. SHEN AND N. BLOEMBERGEN
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F16. 4. Dispersion curves describing the simultancous coupling
of the acouslic magnon, the infrared, and the Sioxes waves in an
anisotropic medium. Curves 1 and 2 arc 1he dispersion curves
for the acoustic magnon and the infrared waves, respectively.
Curve 3 describes the linear energy and momeitum maiching
condition

@=lki—ks|= f_'u;(mE;-—-n.gEs’) ‘a°+“"'5£3°'§°]/‘

in a particular direction of scattering. The resonant point R
denotes simultaneous coupling of 1he three waves.

excitation is more easily excited through the spin
Raman coupling. In isotropic media, the dispersion
curves for the acoustic magnon and the infrared waves
(curves 1 and 2, respectively, in Fig. 4) could not
intersect the curve satisfying the linear momentum and
energy matching relatiou at the same point. Therefore,
the waves Eg, E,, and (S) cannot be effectively coupled
simultaneously. In anisotropic media with indices of
refraction satisfying the inequality n;<ns, this is how-
ever, possible as indicated by the resonant point R in
Fig. 4. The problem is similar to the Raman effect in
polar media discussed by Loudon.®

VI. CONCLUSION

There is a ciose paralle! between the coupling of light
with optical phonons and the coupling of light with
magnons. The spin Raman process appears to be two
orders of magni.ude smaller than the ordinary Raman
process in liquids. Both the spontaneous and the stimu-
lated spin Raman scattering may be observable in
suitable magnetic substances, such as paramagnetic
materials at low temperature, insulating antiferro-
magnets or ferrimagnetic garnets. Magnetic excitations
may also be induced by light through the stimulated
Brillouin effect and magnetoelastic coupling.

¥ R. Loudon, Proc. Phys. Soc. (London) A82, 393 (1963).
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Scattering of Light by Magaons*

Y, R. SuEn'
Pirysics Department, University of Catifernia, Berkeley, California

Scattering of light by magnons has recently been predicted by calculations, and subsequently veri-
fied by experiments. In this paper, theoretical aspects of the problem are reviewed briefly. The spin-
Raman effect is treated along the same line as ordinary Raman scattcring by phonons. The order of
magnitude of one-magnon Raman scattering is estimated from the rutatory power of the magnetic
ions. The effect is smaller in antiferromagnets because of opposite spins in different sublattices. In
ferrites and antiferromagnets, two-magnen Raman scattering can occur through excliange-type inter-
action. Raman scattering by magnetoelastic modes should also be observable. The possibility of con-

structing a tunable light oscillator is discussed.

I. INTRODUCTION

RabdiAN process can be defined as a two-photon

process in which one photon is absorbed and the
other emitted, while the material system is cither ex-
cited (the Stokes process) or de-excited (the anti-
Stok = process). Raman scattering has long been a
useful tool for investigating the vibrational or phonon
characteristic of a medium. In principle, it should be
vequally useful for investigating other kinds of localized
or cooperative excitations in a medium, Raman scatter-
ing in magnetic media was first suggesied by Bass and
Kaganov,! and by Elliot and Loudon,? and has recently
been treated in detail by Shen and Bloembergen® In
this paper, light scattertng by magnons is discussed.

* This rescarch was supported by the U.S, Office of “Taval
Researcl under Contract Nonr 3656{32).

t Alired P. Sloan rellow.

1T, G. Bass and 1. Kaganov, Zh, Eksperia, i Teor, V.., 37,
23’)0 )(31959) [Lnglish transl.: Soviet Phys—JIZTP 10, 986
1960} .

1 R. J. Eliot and R. Loudon, Phys, Letters 3, 189(1963).

#Y, R, Shen and N. Bloembergen, Phys, Rev, 143, 312 (1966).

The problem is treated along the same line as that of
scattering by phonons. Emphasis is on Raman scatter-
ing in ferro-, ferri-, and antiferromagnets. Magnetic
excitations in paramagnets can be treated in the limiting
sense as localized spin waves,® and will not be discussed.
Here, it is shown that in MnF; and Fel’, theoretical
calculation agrees satisfactorily with experimental re-
sults recently obtained by Fleury ef ¢l 'The spin-Raman
effect could also be obscrved on a magnetnelastic mode.
In this latter case, the Raman scatiering cross section
may be enhanced through the combined coupling of
photons, phonons, and magnons, Since the magnon
frequency can be tuned by temperature and by an
applicd magnetic field, this leads to the possibility of
constructing a tunable light oscillator,

II. SPIN RAMAN EFFECT IN FERROMAGNETS

For a Stokes process in which the material system is
cxcited from the initial state | 1) to the final state | f)

“PA, .l"luef)', S. P. 8. Porto, L, E. Cheesman, and . J.
Guggenheim, Phys. Rev. Letters 17, 84 (1966).
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SCATTERING OF

LIGHT BY MAGNONS

I; - absorbing a photon at frequency we and emitting a photon at «,. the Raman transition probability per uni:
volume per it tiiae as obtained from the second-order perturbation calenlation is given by

W= Qu/RN | K |

K= z:{(f, (= )kg, (D, | Do 303K, )] 1, (2= Digy 10, YT, (= Dy 15, | 20 30 (Ko, wod | 4, iy i, )
1

h (Eo—wl .'\

_ {f, (n= 1y, (n4+1)s, | Zb 3C.2(Ke. wo); 1, Hg, (M 1) Y, i, (n+ 1), | Zb 3CE (K., wi) | 1, Haghti, )

Fi(w,oors)

pie=k2g(w,)dQdw,/ (2n)%,

w0=w.+w,.-,

where #;, and s, are the initial numbers of photons in
the incident (k) and the scattered (k,) modes, (1, =0
for spontaneous Raman scattering), V is the aumber
of unit cells in the unit volume, | I ) is the intermediate
states of the material system, and g(w,), the line-shape
function. The interaction between the radiation field
and the bth atom in a unit cel’ is denoted by the
Hamiltonian 3C.%. In the electric-dipole approsimation,
it beromes

304 (K, w) = —er Ey(k, w), 2)

the sum over electrons in the atom being omitted.

For one-phonon Stokes scattering process, one has
|1)=1G,ne)and |/)=|G, (14-1)¢) with |G)=TT.| g},
where | g} is the ground clutromc state of the dth
atom, and i, is the number of phonons with a wave
vector q=ky—-k,. It iy readily scen from Eq. (1) that
K would vanish if there were no electron-phonon inter-
action in the system, since the Hamiltonian C., cannot
vonnect states with different phonon occupation num-
bers.? Eleetron-phonon interaction 3¢, operates on both
ground and excited electronic states and mixes states
{ #g) and |[(#+1),). Corsequently, the transition prob-
ability Iy no longer vanishes, but suffers a reduction
factor of the order of | 3¢,,/fiw, |2

A similar situation arises in the case of the one-
magnon Stokes process. Here, an eigenstate of the
miaterial system consists of spin and orbital parts. The
spin part connected with the ground orbital state
(whieh, for simplicity, is assumed to be quenched) is
specilied by the magnon oecupation number. So, again
the initial and the final states can be written as | i)=
1G, n,) and [f)=]G, (n+1),) with {G)=Ts ]2,
where | g) is the ground orbital state of & magnetic ion
and #, is the number of magnons with wave vector
q=k,—k, and frequency w, given by the magnon dis-
persion relation for the magnetic medium. Also, since
3C.» cannot change the magnon oceupation number, the
Raman transition probability in Eq. (1) would be zero,
if there were no ¢pin-orbit coupling in ground and
5 Here, we have neglected the Harallionian 3, for the inter-
action between radiation fields and the lattice. Inclusion of X,
leads to two other mechanisms for ene-phonon Raman scattering,
See R, Loudon, Proc, I’hys. Soc. (London) 82, 393 (19G3).

(1

excited states. The term AI,~S* in the spin-orbit inter-
action 3C;s mixes states | ng) and |(#+41),), so that
the transition probability 11", no longer vanishes, but
suffers a reduction factor of the order of | 3Crs/Veess |
where Ve is the erystal field interaction.? Bass and
Kaganov? suggested that the one-magnon Raman tran-
sition could become allowed if only the magnetic-dipole
interaction is included in 5C.,, a5 was first proposed by
Winter and javar® for the microwave Raman proc -ss
in paramagnetic crystals, However, for visible fre-
quencies, this mechanism leads to a Raman transition
propability six to eight orders of magnitude smaller
than the one induced by spin-orbit coupling.

There is a definite sclection rule governing the one-
magnon Raman transitions. In arder to compensate the
change of magnetic quantum number Am=1 due to the
excitation of a magnon, the ineident field should have a
right circular polarization around, and the scattered
Stokes Held a linear polarization along the magneti-
zation, or vice versa. As a result, the Raman scattering
depends in an interesting way on the relative directions
of magnetization and propagation of the two beams. If
the ground orbital state is not completely quenched,
and the crystal field is large, the above selection rule
in general Lreaks dewn.

The order of magnitude for the spin-Raman sciatter-
ing cross section can be )btained by comparing with
the nermal Raman scattering cross section in organic
liquids using Eq. (1). First, the uv oscillator strength
of electric-dipole transitions for orgiani¢ molecules is
close to 1, but is usually less than 0.1 for magnetic ions.
Then the reduction factor | 3C.,/fiw, |* is about 10-2 for
molecules, and |35/ Veeys [* 1s about 1072 to 104 for
magnetic ions. Therefore, at visible frequencies, the
spin-Raman effect would be about 1072 to 104 times
smaller thun the ordinarv Raman effect in lquids.
Magnetic ions with unquenched orbital states should
have larger spin Raman effect. For ferrites and anii-
ferromagnets, because of oppesite spins on different
sublattices, the Raman scattering intensity may be
reduced further (see Sec. III).

A more accurate estimate of the spin Raman effect

. ,{" M. \\mter,] Phys. Radium 19, 834 (1958); A. Javan,
i
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can often be obtained from the low-temperature optical
rotatory power ¢ of individual magnetic fons.?

d=dr(w/nc)ay

ay= -}‘I[, A (w—awri 34D (otern) ')
X[ ery LDE={G e[ )E] (3)

For quenched orbital states, ey would be zero if there
were no spin-orbit coupling.” Thus, a? ulso suffers a
reduction factor of | 35/ s |2 One sees readily from
Eq. (1) that ay has the same order of magnitude as
[ K/ {n=1) 1, | Elwed] n.) ((n4D, | Ew)ng, )] in
the spin. Raman etfect. Conseqriently, the differential
spin Raman scattering cross scction is given by do/dQ~
(wo/¢)%ar®. As an example, Eu*t in CaT% has a rotatory
power with arRz5X10-% in the red. This would yieid
do/dQ=2.52107% ecm2/(Eu?* ion) (sr) which is about
three orders of magnitude smaller than that of the
992 em™! vibrational mode of benzenel (do/dQ=
3.3X107® cm?/sr at 4880 A). Ferromagnetic Eu*
comp- unds could have arx10~2 in the visible® and
hence da/dO~1002 ¢m?/sr. This nomalously large
rotatory power and spin Raman effect of Eu*t arise
as a result of w, approaching wy; in the resonant de-
nominator. It is also interesting to note that Gd*f,
being isoelectronic with Eu?*, hac nevertheless ex-
tremely smaii rotatory power in the visible. This is
because wg is so {ar away from wy, that the set of excited
P; multiplets can be considered as degenerate,®” and
hence the net cffect of spin—orbit coupling on optical
rotatery power fre™ the degenerate multiplets is zero.
The same argument should also apply to spin Raman
eifeet,

Both the Faraday eTect and the spin Raman effect
can be deseribed in terms of spin Hamiltonians, From
Eq (1), with the perturbation of spin-orbit inter-
action, we find

K= {(n41)q, (n—1)sy, (n+1, | Hine | 2g, Mgy M, ),

where the spin Hamiltonian for the Raman interaction
is

Horne= 3 Ao St (w,) [ Ei (wo) Fy*(we)
b

+ Ey(we) 15 (wn) J+adjoint,  (4)

Ay being a coefficient independent of che spin S and
the fiekds . The spin Hamiltonian for the Faraday
effect in the smme magnetic material is found to bed!!

ap= 3 BuSi (O[] Est(wo) =] B (w) 2] (5)
b

The coeflicients 4 and B in Eqs. (4) and (5) have the

1 Y. R. Shen, Phys. Rev, 133, AStt (1964).

4], G. Skinner and W. G. Nilsen, Annual Meeting of the
Optical Society of America in San Frascisco, 1966, Paper WE-1t,

9 J. C. Suits {private communication).

w1, Rosenfeld, Z. Physik 57, 835 (1929),

P, S, Pershan, J. P. van der Zicl, and L. D). Malmstrom,
I’hys. Rev, 143, 574 (1960).

same order of magiitude as ox/.S both vanishing in
the absence of spin-orbit coupling. Sclection rules for
the two effects ore seen explicitly from the expressions
of the spin iIamiltonians,

There are » magnon branches corresponding to u
magnetic jons in a unit cell.” For each branch in the
long-wavelength limit, one has

eg=uP 4B (6)

Here, o and 8 depend upon magnetizations, anisotropy,
and the applied magnetic field on different sublattices.
In general, w, decreases as the magaetizations and
anisotropy encrgy decrease. With increasing lemper-
atuie, both magnetizations and anisotropy decrease;
one would then tind that the Stokes frequency shifts
to the short-wavelength side. Measurements of w, could
vield information abeut exchange coupling between
magretic jons and the anisotropy field in the luttice.

At finite temperatures, the integrated Stokes scatter-
ing intensity should be propoitional to {(n,(T) )41,
while the integrated anti-Stckes scattering intensity
should be proportional to {(n,{7) ). Thus, the anti-
Stokes scattering intensity would grow with increasing
temperature, but the Stokes scattering intensity would
remain more or less unchanged until the therma! exci-
tations of magnons become so high that (1, ) is a non-
negligible fraction of 1. The linewidth, as determined
kv the relaxation of magnor excitations, is also u strong
fun<tion of temperature. While no satisfactory theory
exists for the magnon rclaxation, the linewidth can
possibly be accounted for by fluctuations in the mo-
lecular field.”® Generally, the linewidth would increase
strongiy with temperature. The magnon spectrum dis-
appears eventually as temperature approaches the Curie
point Akove the Curie temperature Ramun scatiering
from individual paramagnetic ions results.

In principle, the two-magnon Raman scattering proc-
ess, analogous to two-phonon Raman scattering, also
exists. For ferromagnets with quenched orbital states,
spin-orbit coupling has to be used twice in the pertur-
bation in order to rhange the magnon occupation rum-
ber by 2. The corresponding two-magnon Raman cffect
suffers a reduction factor of | Kys/Vera | For ferrites
and antiferromagnets, two-magnon Reman scattering
can in fact occur withoui the help of spin-orbit conpling,
as we shall discuss in the following section.

III. SPIN RAMAN EFFECT IN
ANTIFERROMAGNETS

Recently, Fleury ef al' reported observation of
Raman scattering by magnons in antiferromagnets Fel's
and Mnl,. In this section, we shall show that their
results agree satisfactorily with theoretical caleulation.

Consider a ferrite with two sublattices A and B.

12 Sce, for exampie, B. Harris, Phys. Rev, 132, 2398 { 1963).
( 1317 M. Johnson and A. 11. Nethercot, Phys. Rev. 114, 703
1959).
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1403 SCATTERING OF LIGHT BY MAGNONS

Assume that exchange coupling exists onlv between spins on different sublattices. This gives rise to two magnon
4 4 A

branches. The optical magnon mode at g=01is*

W= (wnteas—wa—wn) F 1 (watententos) = deawn]?, (N

whers oy, wos, wer. and wyp are the exchange and anisotropic frequencics Tor spins in the two sublattices, The

zero- and the one-magnon states are?

!()“>=H % T +>u

[gy=(1/N) Z[(m] o+ = =, - ‘},:)II_‘ —, 4+ Jexp(ig-R),

m=wei’ D, gp={wprwa—™ /D

D={w. s+ (wptoa—ae®) ]2,

(8)

| %, & ), being the spin states for the jth unit cell. The spin operators in ferrites are defined as S1.= S,, Sp.=— 5
and S+ =13 )4 and Spt | £ )p=| F e From Eq. (1), with the help of Eqs. (4) and (8}, we lind

K= (A a—ped ) {(n— Urgy (e, \TE (w) Foz{e) + 07 {wor 1o {e0) 3 1, 1k 3 {9)

Here, 45 and Ap have the same order of magnitude
as the Faraday cocificients ap/§ for ions in the two
sublattices. The sclection rule manifests itself i Eq.
(9}. Similar to the case of direct infrared excitation,®
the one-magron Raman transition probability for for-
rites suffers a reduction factor of

12(uda—ped ) { A+ AP

as compared with the case where spins on the two sub-
lattices were aligned in the same Cirection.

For antiferromagnets FeFs, MnF,, etc., we have
A 4= A g~ap. Then, the one-mugnon differential Raman
scattering cross section is do/dQ~ (uy—pa}?(we'/¢)or®.
In the case of FeF,, the exchange field w/y and the
anjsotropy field w,/y, with y=ge/2me, arc 540 and
200 kOe respectively.'* One gets, from Eq. (8), m=
0.905 and u,=0.406, If we assume that the rotatory
power of Fe?* is the same as that of Ev*, then the
one-magnon Raman scatiering n FeFa 7 -« da/dO~
6 103 cn?/sr, which is about four orders of magnitude
smaller than that of benzene, and agrees with experi-
mental observation® It shoul:l be noticed that if the
anisotropy fickd were zero, u. would be equal te g, and
the Raman cfiect would ai:appesr. In MnFs, the ani-
sotropy fivid w,y=7.2 kOe is indeed smali compared
with the exchinge field w./y=392 kO¢.” We find py=
0.771 and £,=0.537. In addition, the rotatory power
of Mn* is perhaps at least one order of magnitude
smaller than that of Ewt, Therefore, do/d2<3X107%
em?/sr. Experimentally, no onc-magnon Raman scatter-
ing has been observed.*

The Raman scatiering experiments also show that
the magnon mode w,-s decreases with increasing temper-

T, Nagamiya, K. Yosida, and R. Kubo, Advan. Phys, 4
14 {1955).

% M. Tinkham, Ihys. Rev, 124, 311 {1961).

([:;6‘[{)‘ C. Ohlmann and M. Tinkkam, Phys. Rev, 123, 425

2 J, Kanamori and F. Minatone, J. Phys. Soc. Japan 17,
1759 {1962}.

ature. The results agree qualitatively with the caleu-
lation by Ohlmann and Tinkham'™® using the mo-
lecular-fild approximation. They also found a T de-
pendence of the linewidih of the magnon mode. Broad-
ening of the Stokes component with temperature has
indeed Deen observed,! although the T dependence has
not been checked carefully, The peak of the Stokes
component should be inversely proportional to the
linewidth. The anti-Stokes component was observed at
temperatures above 30°.

With an external magnetic feld /7 along the preferred
anis, the degeneracy of the magnon mode is lift=d"

@y U =0 (0) £y I+ O (11 (10)

The splitiing i3 about 4 cm! for /=20 kQe. This
should be observable in Ransan scattering at sufhciently
low temperature.

Fleury ef al.* also reported the ob:ervation of two-
magnon Raman scattering in FeF: and MnF.. The
two-magnon lines apprar to be somewhat more intense
than the one-magnon line in FeF,. This climinates the
possibility that they atise us a resuit of second-order
perturbation of spin-orbit interaetion on the states.
In lact, exchange-type interaction between magnetic
ions on opposite sublaitices is possibly responsible for
the two-magnon Raman scattering as suggested by
Loudon##® The same mechanism has been used to
explain the magnon side band of optical absorption
lines” and the two-magnon infrared absorption.”® Here,
the exchange type interactior Vpn=JmSntS.t be-

BT, Ouguchi, Phys, Rev. 111, 1063 (1938). 8. Fonor, Phys.
Rev. 107, 683 (1957),

W C, Kittel, Quanium Theory of Solids (John Wiley & Sons,
Inc., New York, 1963).

2 R, toudon (unpublished).

#R. L. Greene, 11 D, Se., W. 1. Yen, A, L. Schawiow,
and R. M. White, Phys. Rev. Letters 15, 656 (1965); P, . Russel,
D. S. McClure, and J. W. Stout, #bid. 16, 176 (1966).

2 Y. Tanabe, T. Moriya, and 8. Suzano, Phys. Rev. Let.ers
15, 1023 (1965}. J. W. llatley and L. Silvera, 10d,, p. 654; §, J.
Allen, R, Loudon. and P, L, Richards, 7bid. 16, 463 (1206).
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tween ions m and » connects the states | ga, —; is, + )
and | 7,s, +; g2, — ) and creates two magnons by flippirg
the spins on both lons simultaneously. The corresponc!-
ing matrix element product for the Raman transitions is

{@ns ~ ; gy +| €Fn | gy — 5 7n, + )
X (gmg -3 in, +| Vmu | im; +; §ny — )
X (im, ey —: €, % Em, '*"; g’l) == )

More generally, regardless of the detailed mechanisms,
one ¢»n derive a spin Hamiltonian for the two-magnon
Raman transitions

Hini= 3 (En®? Ay E,*¥@0) (5,4 5,%) +adjoint.

W n

(11)

Transformation of the above expression into momentum
space vields

Hi= D, (B« A E*ew) §, 48, +4adjoint, (12)
9

where we assume that the wave vectors of the radiation
fields are negligible compared with ¢. Thus, the two
magnons must have approsimately equal and oppesite
wave vectors 4-q, and the corresponding Stokes fre-
quency is @.=w;— 2w, Not all components of A in Egs.
(11) and (12) are indcpendent since the spin Hamil-
tonian must be invariant under the operations of the
crystal symmetry group. The two-magnon Raman spec-
trum can then be calculated if both A and the magnon
density of states are known. Matching of the theoretical
curve to the experiirental spectrum vields information
about the magnitudes of A and the exchange coupling
Ve between spins. A similar approach was used by
Allen, Losdon, 2ad Richards™ to interpret the observed
two-tnagnon absorption spectrum. Thus, Loudon was
able to explain the observed two-magnon Raman
spectra in FeF, and MnF,® There arc (wo peaks in
both spectra?® The one at higher frequency arises
because of the singularity in the magnon density of
states at the center of the (100} face in the Brillouin
zone. It has a selection rule which requires both the
laser and the Stokes pelarizations perpendicular to the
¢ axis {or z axis), but at right angles to each other.®
The one at lower frequency arises because of the singu-
larity in the magnon density of siates at the {111}
corner of the Brillouin zone. The associated selection
rule requires the laser polarization parallel and the
Stokes polarization perpendicular to the ¢ axis, or vice
versa®

The intensity ratio of two-magnon to one-magnon
Raman scattering is

;(ﬂy’?mn/zwq)/(xr" S:‘/L!cr)‘a\ (ul—#i\ l'.”

B P, A, Fleury and 8, P. S. Porto, Annual Meeting of the Oy~
tical Society of America in San Francisco, 1966, Paper WE-17,
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where 2 is the number of nearest neighbors, For Felbs,
(nVi/2w,)~(1/48), S=2, |AL:8/V... I~1/10, and
hence the intensity ratio is of the order of 1, as ob-
servea experimentally, A similar result was also found
by Loudon.®

With an external magnetic field along the preferred
axis, the degeneracy of the magnon branch is litted as
given by Eq. (10). Since the two-magnon Ramar
process we have described preserves the total spin
magnetization along the field, the two magnons must
come from the two Zeeman branches respectively.®
Thus, to the lowest order n H, there would be no
magretic field effect on the two-magnon Raman spec-
trum since w,’ H) +w_,(H) = 2w, (0).5

The two-magnon Raman spectrum indicates that
the magnon frequencies at the edges of the Brillouin
zone also decrease with increasing temperature. Silvera
and Halley® Lave calculated the temperature variation
of (7T}, using the molecular held approximation of
Ohlmann and Tinkham.® Their results agree quali-
tatively with experiments. From the above discussion,
it is seen that the observed Raman spectra in FeF:
and MnF; can indeed be described satisfactorily by
the theory.

I'7. RAMAN SCATTERING FROM
MAGNETOELASTIC MODES

In a magnetic crystal, the spin wave can also couple
linearly with the phonon wave through the magneto-
elastic coupling.?® This happens if the dispersion curves
of magnons and phonons would intersect (Fig. 1).
The coupling is most effective in the region near the
intersection. If the coupling energy is large compared
with the linewidth, there would be a splitting of the

//
&, 7 //
///
—-—"// lll
7
7,
2
V.
0
0 ~ q

F16. 1. Dispersion curves describing spin Raman scattering
fromt magnetoelastic modes. The dashed and the solid curves
correspend to the cases of small and large magnetoelastic coupling
respectively. The heavy fine describes thc‘ energy and mementum
matching condition g=| k-, [=[we (nako— 1k, - § Lembye § c.
‘The intersecting points Ry, K. and R; denote the magneto-
clastic modes contributing to the Raman scattering.

* Similar situation arises in the magnon side band of optical
absorption and in the tweo-magnon infrared absorption. R. M.
Whit: (privaie communications).

# [ Silvera and W. Halley, Phys. Rev, 149, 415 (1966).

# (, Kittel, Phys. Rev. 110, 836 {1958},
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dispersion curves at the intersection, (Fig. 1), Other-
wise, no splitting exists. A new mode, with mived
character of magnons and phonons, now arises because
of the coupling. This is known as the magnetoelastic
mode. Both the dispersion curves and the amount of
mixture in the magnetoelastic mode can be determined
by solving the coupled equations of motion for magnons
and phonons. Thus, the state corresnonding to a single
excitation of the magnetoelastic mode is

l 1q>me=al l 1q>phmmn+a2‘ lq)mwnnm (13)
where | ey '+ g P=1.

Raman scattering by a magnetoelastic mode would
certainly occur if the energy and momentum matching
conditions can be satisfied,

7= ko—k, |=[wo(noko—nk.) -G+ -q)c.

From Egs. (1) and (13), this Raman transition prob-
ability is given by

IV.'/-_- (Zr/h) N l a;K,.h-{—a,Km.. l’pg, (14)

where Kpn and Ko, are the Raman scattering ampli-
tudes by cne phonon and one magnon at «g, respec-
tively. If "oy |=] ez |, and | Kon D] K |, then 1V~
(2x/R)N | ;K %5, Therefore, the probability of ex-
citing a magnon through the Raman process can be
enhanced by the magnetoelastic coupling. This is par-
ticularly important in the consideration of generating
magnon waves by the stimulated Raman process.?

Different magnetoelastic inodes are excited by Stokes
scattering at different angles. Since ay/a; is different
for different modes, it is interesting to see how the
intensity and the polarization property of the Stokes
change as the angle changes. The results could yield
information about the magnetoelastic coupling in the
crystal.

Since the magnon frequency varies with temperature
T and the external magnetic field H, the intersection
of the dispersion curves of phonons and magnons can
be tuned over a limited range by adjusting T and /.
The Stokes scattering will be changed correspondingly
in a predictable way.

V. TUNABLE SPIN RAMAN OSCILLATOR

We have seen in the preceding sections that the
Stokes frequency in the one-magnon Raman scattering

LIGHT BY MAGNONS

can be tuned by temperature, hy applicd magnetic
field, or by angle of scattering. Thus, a tunable light
oscillator could be achieved if the Raman process can
be made into a stimulated one.

The stimulated Raman gain can be calculated from
the Raman transition probability 1,2 In particular,
if the magnon damping is sufficiently strong, the gain
is directly proportional to IV;,.22

Glw) = (4rc hudwe)| B BN (do/dD) glw).  (15)

With V=35X10" em™?, do/dQ2=10"% em?, | I |=450
est for a 100-MW/cm? laser beam, and a maznon
linewidth of X101 sec™!, the maximum gain at reso-
nance is Guax=2.5X10"? e, Stimulated Raman
scattering can occur if G is larger than the Stokes
loss per centimeter in the medium. This gain Guae is
ahout two orders of magnitude smaller than that of
benzene. However, the scattering cross section in some
magnetic materials can be much larger, or the linewidth
smaller. The gain can also be enhanced by the magneto-
elastic coupling as we mentioned earlier.

Stimulated Raman scattering has been observed in
benzene in a cell with or without reflecting end mirrors,
In the former case, the complication of self-focusing™®
could be avoided. For the spin Raman effect, one would
also expect to see stimumlated scattering in such a
resonant cavity if the laser intenc™y is sufficiently high
and the loss in the medium sufficiently low. The laser
and the Stokes radiation are nsnally made parallel to
each other to achieve the maximum interaction length.
However, sometimes it is more advantageous to have
the laser at an angle to the Stokes radiation. Then,
the cavity geometry of Dennis and Tannenwald? should
be used. This applies to the case of Raman scattering
by the magnetoclastic modes. Here in order to obtain
the maxitnum gain one would like to have the Stokes
radiation in the dircction corresponding to a mode
with maximum phonon-magnon coupling. This di-
rection changes as the made frequency is tuned by
cither the temperature or the external magnetic field.
The tuning range of such a light oscillator is about a
few reciprocal centimeters.

7Y, R, Shen and N. Bloembergen, Phys. Rev. 137, A1787
{1965). R. \V, Hellwarth, i5id. 130, 1850 (t963).

 Sce, for example, E. Garmire, R. Y. Chian, and C. I, Townes,
Phys. Rev. Letters 16, 347 (1966).

#* J. H. Dennis and P. E, Tannenwald, Appl. Phys. Tetters
S, 58 (1964).
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Reprinted from Tne Puyswan Review, Vol 135, No. 3, 921-931, 15 March 1967
Printed in U, S, A,

Quantum Statistics of Nonlinear Optics*

Y. K. Suent
Physics Department, University of California, Berkeley, California
(Reccived 30 September 1966)

Nonlincar interaction of light with matter is described from the quantum-statistical point of view. The
cases of two-photon absorption, Raman transition, sum-frequency generation, parametric amplification,
and incoherent scattering are discussed. It is shown that the uonlinear optical effects depend strongly on the
statistical properties of the light fields. The rate of nonlinear absorption, generatior, and amplification is
higher for chaotic than for coherent, and also higher for multimoede than for single-mode pump fields. Meas-
urements of the statistics of the output delds may yicld information ahout the statistics of the input fields

and the properties of the medium.

I. INTRODUCTION

HE quantum statistical properties of light from

various sources have recently been extensively
investigated.':? However, the question whether inter-
action of light with matter would change statistical
properties of light fields has seldom: been raised. The
purpose of this paper is to extend the quantum-
stalistical description to the case of light ficlds after
interacling with a medium. Emphasis is on the cffert
of nonlincar interaction of light with the medi .m.

It is usually assumed in tne literature that < atistical
properties of a light beam remain unchanged .n travers-
ing 2 medium if the response of the medium to the light
ficlds is linear. This assumption is certainly a valid one
for a nonabserbing medium, since the linear interaction
of light with the medium cannot disturb the probability
distribution of photons in their number states (if the
disturbance due to incoherent scattering can be
neglected. See Sec. 111). Only their spatial distribution
is changed through the interaction. Let the vector
potential be written in the usval form?

Alr,)=c Y 2xh/w)?
Iy

X{a(r) expliwa)+as'u* (1) exp(—iwd)}, (1)

where at and @ are the creation and the snnihilation
operators, respectively, for the kth mode. (The sub-
indices indicating the polarization of the fields are being
omitted.) The spalial function uy(r) is a normalized
cigenfunction of the differential equation

[V+wtel(r)/c]on(r)=0, (2)

where «(r) is the linear diclectric constant at frequency

* Rescarch was supported by the U, S. Office of Navai Research
under Contract Nonr 3656(32). Prelimirary results of 1his paper
were reported in the Second Rochester Conference on Cokcerence
and Quantum Optics, Rochester, New York, fune, 1966,

t Alfred P. Sloan Research Fellow.

' R. Glauher, Quunium Optics and Flectronics, edited by C.

ieWitt e al. (Gordon and Breach Science Publishers, Inc., New
York, 196S),

1 See, for example, Absiracls on Second Rochester Conference
on Coherence and Quantum Optics, Rochester (unpublished).

“ Sce, for example, W. Heitler, Quantum Theory of Radiativn
{Clarendon I'ress, Oxford, England, 1954), p. 34.
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w;.* From Sturm-Louivelle theory, the orthonormality
condition gives

/ (ece) Pufr)u™ =&y *®

‘Then, the Hamiltonian of the fields in the preseiice of
the linear nonabsorbing medium reduces to the familiar
form

= )_';', hun(artae+1). 4)

Thus, the photon statistics of the fields is not changed
except that the spatial distribution, described by
u,(r), is now different from the vacuum case.

This is not quite true if the medium is lossy. An
obvious example is the case where originally there are
exactly », photons present in such a medium. After
the ubsorption has been ewitched on for a finite length
of time, the photon system has finite probabilities in
the occupation number states |#.), | (n— 1)), | (n—2)4),
ctc. The statistical properties of the photon system have
clearly been changed. Assume that the medium has an
clectric-dipole transition between atomic states |¥1)
and |¢,) with frequency se..ration ws, which coincides
with the photon frequency of the k&th mode. The single-
photon absorption can be described by the interaction
Hamiltonian

Hiny= Z {tealonBe )+ e B (). (5)

Here, ¢, c2i, €1ty and ¢ are creation and annthilation
operators for the ith atom in states 1 and 2, respectively.
£ is the eleciric-dipole matrix element for the transition.
The positive-frequency part of the electric field at the
ith atom is given by

EiiH(r) =B (r)' = i2rhan) Vus*(r)ast . (6)

In the interaction representation, the equation of

Tn geaeral the coherent linear response of a medium to the
fields can be described completely by a generalized linear dielectric
1ensor £:(r); see Y. R. Shen, Phys. Rev. 133, AS11 (1964). In 1his
raper, we shall assume that 4(r) is a scalar, and that all tields are
inearly polarized.
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motion for the density matrix p of the composite system
is

ihdp/dl=[Hin(t),0(1)]. M

Tteration of p for small increment of ¢ in the above
equation gives®

3p(tot1), 3= (1/i)[3Kinilto+1),0(to)]
tote
+{— 1I.'h2)f [(®inltot1),
b

X[Kinel) () 4+ (8)

We now assume that the thermai equilibrium of the
atomic system is not disturbed by photon fields. The
density matrix can then be written as p(f)=pe(l)
XITipai0), where pr and pa: arc density matrix
operators for the photon systern and for the ith atom,
respectively. This is known as the irreversible approxi-
mation.® We have, with the same approximation as
used in the ordinary time-dependent perturbation
calculation,? namely, #/|3Cint] > £>1/(linewidth),

dpr/8t=Try (8p/ 1)
=—p{(a:'aupi —2arpras’+praitar)pia®
+(acai' pr— 20 orar+prasait)p:4?], (9)

where

B=2 wil £l %|wi(rs)| 2g(ws)/ 44
= [wun| £ g() /4] f a0 ()| 2V ().
v

Here glw,) is the line shape function, N (r) is the density
of atoms at the position r, and p14° and p24° are the
thermal populations {~r the two atomic states. The
integration extends over the volume of the medium.
The constant 8 is related to the absorption coefficient.
If pp(t) is known, statistical properties of the fields,
such as temporal and spatial coherence, can readily be
determined. From Eq. (9), one obtains

a(‘"r)/ al= —5(m.i°—pu°)<ak) ’
d{ar'ar)/ 8= —2B(p14°— p24°){astar}+28p24®. (10)

The last ter  in the above equation corresponds to
spontaneous eniission.

Equation (9) governs the change of statistical prop-
erties of the photon system in the single-photon
absorption process. In particular, at zero temperature,
if initially the photon system is in a coherent state,!

¢ C. P. Slichter, Principles of Magnetic Resanance (Harper and
Row Publishers Inc., New York, lgﬁl) p. 127.

' F. Bloch, Phys. Rev. 102, 104 (1950).

7 See, for example, L. 1. Shifl, Quantum M echanics (McGraw-
Hill Book Company, Inc., New York, 1955), p. 189.

pr(le) = las){as|, then it is easily shown that

pr(lot- A ={Y [1-B8AIm— |ap] ) Jau? x/ n, )12
Xexp(—Hae|D|m)} T (mal

X[ 1=BAm.— || D™/ mi )12
Xexp(—}|ai|?)} — | exp(—par)
At-0

X {as exp(—BA1)| ;
pr(tot1)= | ar exp(—81)Xaw exp(—p81)]| . (11)

This shows that a coherent photon system remains
coherent although the field amplitude decreases ex-
ponentially with time. More generally, if the initial
photon field can be described by the P representation,’

pr(te)= j dPoPlon) |aw)(ea]

onc would get

prliet)= f PP (o) aw exp(—B)
X{ou exp(—BD)] . (12)

The statistical propertics o .he fields are being changed
in a rather trivial way, since it is simply a translation
of the distribution P{a;) in the a, space.

No such simple solution exists if the equilibrium tem-
perature of the atomic system is finite, since the spon-
tanecus emissien now comes into play. Consequently,
the coherent properties of a beam will be disturbed in
passing through the absorbing medium. The disturb-
ance is, of course, sruall if the spontancous emission
process can be neglected in comparison with cither the
stimulated absorption ot emission. This is certainly
true for light beams in a medium at room temperature.

The same approach can be applied to the case of
multiphoton transitions. Again, since the photon dis-
tribution can be disturbed by the transitions, statistical
properties of the photon system are changed. The case
of two-photon transitions, which includes Raman
transitions, will be discussed in Sec. II. In general,
even if the medium is not lossy, statistical propertics
of light arc changed by nonlinear interaction of light
with a medium, although the disturbance might be
small for weak interaction. The nouhnear interaction
couples different photon modes and leads to energy
transfer between the modes. Photons in some modes
may be annihilated, while those in other modes created,
and hence the photon distribution is distu.rbed. Often-
times the rute of energy transfer between the modes
depends on the statistical properties of the light fields,
usually higher for chaotic than for coherent sources.

For investigation of properties of a medium, in-
coherent scattering has long been & useful tool. Statistics

bl T
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is particulariy important in this case for analyzing the
results of experiments. In Scc. 114, linear and nonlinear
incoherent scattering are discussed. As is expected, the
scattered radiation depends on the statistical nature
of both the incident beam and the fluctuations in the
medium. For nonlinear optics, one s perhaps inore
interested in coherent scattering. We shall discuss in
Secs. IV end V two important cases, sum-frequency
generation and parametric amplification, rcspectively.
In all cases, there arc one or more pump fields present.
We shali not concern ourselves too much about how the
statistical propertics of the pump uodes change.
Instead, we are interested in finding the statistical prop-
erties of the generated modes, and the rate of genera-
tion as a function of the statistical nature of the punip
modes. Conversely, fr .m the statistical properties of the
generated modes or the rate of generation, one could
obtain some information about the statistical nature
of the pump modes.

It must be noted that in our discussion of single-
photon abscrption, we have assuiued a bounded syvstem
for the photon fields. This {ype of treatment is most
conveniently applied to the case of a cavity; photons
are neither coming into nor going out of the cavity. In
principle, the same treatment can be applied to prob-
lems of light propagation in a mediuni. In practice, it
is indeed successful in dealing with incoherent scattering
(see Sec, 11I), but for coherent scattering, it becomes
extremely difficult. Rigorously, the latter case should
perhaps be treated by the method of many-body trans-
port theory.® However, imagine an infinite medium and
a gz of finite volume in which the photon fields are
quantized.® This box of photons interacts with the
medium for a time ¢, as its center modes in the 5 direc-
tion from z; to 31+¢/, where ¢ is the light velocity in the
medium. The resultant change of statistical properties
of fields in the box can now be calculated usin the
cavity treatment. A more general treatinent ot the
propagation problens is given in the Appendix. For
sleady-state propagation, it is shown that the results are
cssentially the same as in the cavity case with ¢ replaced
by —3/¢, as one would expect.

II. TWO-PHOTON ABSORPTION AND
RAMAN TRANSITIONS

The calculation for two-photon absorption is essen-
tially similar to that for single-photon absorption, except
that the mathematics becomes more complicated. Here,
an atom makes transition from the state |y,) to the
state |y) by absorbing one photon in the kth mode ana
another in the /th mode. The interaciion Hamiltonian is

Xim=2 {nezileriBi () E )+ adjoint), (13)
i
§ See, for example, D). Ter Haar, Rept. Progr, 'hys. 24, 304
{1961).

? The length of the hox can be 1aken as the product of 1he ligh
velocily and 1he response time of 1he photon detector.

STATISTICS OF

NONLINEAR OoPTICS 923

where 5 is the matrix element for the two-photon
transitions.!®! Using the same procedure as in the case
of single-photon absorption, one can find that the
density matrix pr for the photon systemm obeys the
equation

dpr/ = — RV (ata asaipr— 2a1a:pra4ar!
+praatai'axa:1)p1 4%+ (81010t a1t pr— 2841, praay

+ praxaiac'art)p24"], (14)
with

BO=[2ntww| n] g (wetwi)] / d¥r
v

XN uilr) |2 ur)] 2.

The above equation governs the change of statistical
properties of the photon system in the two-photon
absorption process. The solution of Eq. (14) is difficult.
However, it is clear that if the absorption is large,
tie statistical properties of the fields will be appreciably
disturbed. A coherent beam will no longer be coherent
after interacting with the medium.
¥From Eq. (14), we obtain

a{ai})/ 3= —BY(p14°— p24°)(asa:%a;)
+8®p:4%as), (152)
a(ak’ak)/al= a(a;'a;)/al ’
= =28 (p1.4°— p24")as' ar0:tar)
+28®p04%(artar+atar+1)).  (15b)

In Eq. (15) the last term, which is proportional to the
population pz24° in the excited state, arises because a'
and ¢ do not commute, It can be regarded as the
spontaneous emission term in the two-photon absorption
process. Assume that the two photon modes are in-
dependent initially. Then, as long as the photon dis-

tribution is not appreciably disturbed by the absorp-

tion, we can write
(etarata)={astar ' a1} = (m:)(n)).

The average rate of two-photon absorption depends
on the avarage numbers of photons in the kth and the
Ith modes, However, if k=1, one would find

9(as}/9t=—28(p14°~ p24°){(a1' 010s)
+48 (”P?Ao(al') ’
d(axtar)/ 9= —48¥(p, " p24°)(a:ta asas)
+48%p:4%(2(as'as)+1). (16)

Here the absorption rate with p;4°=0 is twice as much
as that of Eq. (15b) with k={, since two photons in the
same mode are being absorbed simultaneously. With the
spontaneous-emission term being neglected, the average
ahsorption rate is now proportionai to the sccond-order
correlation function (gi'aitasas), and therefore depends

' M. Goppert-Mayer, Ann. 'hysik 9, 273 (1931),
"' 1%, Lambropoulos, C. Kikuchi, and R. K. Osborn, *hys. Rev.,
144, 1081 (1966).
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on the statistical nature of the ficlds.!! It is two times
higher for chaotic than for coherent sources, since!

(a'a'aa)chactio=2((a'a))?,
{070700>wherent= (<l1'a)_)2. (l 7)

Physically, a chaotic source has more irregularities in
its intensity distribution than a coherent source, In a
noulinear response praportional to higher-order cor-
relation functions of a' and ¢, the peaks in the irregulari-
ties are weighted more strongly than the valleys. Con-
sequently, the average nonlincar response from a source
of more irregularitics appears to be greater. It must
be noted that if the absorption is appreciable, then
(axtarate)(t) in Eq. (15) also depends on higher-order
correiation functions of the initinl field, as is scen by
iteraion on Eq. (15). A similar discussion can be given
to the case where the fields contain many modes.

Assume that at each frequency there is a set of spatial
modes, and for simplicity the fields consist of only two
frequencies, wy and wi. The 2lectric field at the position
r is now given by

E() =Eu(n+Er),
(18)

Ei(n)=E. (0 =i2rh) 2 3 un,*(Dux,!.
A

By carrying out similar caleulations as in the single-
mode case, one would find at zero temperature

H Y anlary/ot= 27/ d%r
S v
XN (WL B o))
v={lnl%lo+w) 267], (19)

assuming, for simplicity, that all ficlds are polarized in
the same dircction. If wy=wy, Eq. (19) becomes

A 2 aitan,) = —47/ d?r
A

v

XN (W ESOESDECE D). (20)

Using Glauber’s P representation and the guasiprob-
ability distribution for the field mmplitude &;,' we can
write for =0

(EeE W, 5,0
=/ V(8D Sl [, (200)

Then, if X(r)=constaat, and 1§¥(8)20, one would
have a higher initial absorptien rate in the multimode
case than in the single-mode case since

o 4 3
/ A& ()|t 1 >[/ 43| a2 l'] .
0 .
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The discussion on two-photon absorptions can he
applied with slight madification to Raman transitions
between localized states. Here, instead of two photons
being absorbed in wa transition, one photon is now
emitted, while the other is absorbed. Thus, for Raman
transitions, the interaction Hamiltonian in Eq. (13)
should be changed into the form

K= 2 {nece o Ed )R (n)Fadjoint) . (21)
%

In the single-made case, the density matrix for the
photon system becomes

dpr/dt=—pr[(uta,arator—= 20, prail .
Frraiteat o1+ (aataste.pr—2u a,prusa,’
+PrllAli-7ka’Ja)P=4"], (22)

where 85 has the same form as in Eq. (14). From the
above equation, we find the average rate of Stokes
photon generation or the pump photon absorption'?;

&a,ta,)/ot=—d{a,tas)/ 0t
=28r(p1a"—p2a") {0010, 0.)
+28rl(aitai)pra®—= (et )paa®]. (23)

The first term in Eq. (23) corresponds to stimulated
Stokes emission, whereas the last term corresponds to
spontaneous emis¢ion. The latter appears as a noise
source and is responsible for the self-generation of the
Stokes field. If the pump ficld is of high intensity and is
not depleted appreciably in the Stokes generation, we
can treat ¢; and ai! as ¢ nunbers in the approximation
and pp(f)=pi(0)p.(f), where pi and p. are the density
matrices for the pump and the Stokes ficlds, respec-
tively. From Eq. (22), we get

aTr.[p.(D)a,ta,]/ 0t
=28, (p11"— p2a") i i — p2a"]
XTrlpate ]+ 28kataipra®. (24)

The solution of the above equation gives

(@'a)(t) = Trpu(O){[Tr.(p.(0)a,'a,) 44/ 5]
Xexp[Blata)]—A/8),

Ba',a) =L(p14"= pra®artas= p2a"] 28, (25)
Mata) = Zﬂkdk'mpun.

By expanding exp(BI) into power series, it is seen that
(afa)(®) 1s a function of the nth order correlation
functions of a;' and ay. Therefore, the Stokes generution
must depend strongly on the statistical properiies of
the pump field. In particular, for a coherent pumyp field
we have, assuming p24"&(p14"— pz1Maitux,

(a,'a)O) = [{a,'(0)a.(0))+ (1= p2a%/p11") ]
Xexpl2pulpra®— pealastacdt ]~ (1= p2a"/ /014",

7 ROW. Hellwarth, Phys, Rev. 130, 1852 {([903).
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but for a chaotic prunp field, since

((a)"(@)") =n'({as'ai))",
we have
(G,T(l,)(/) = {[(ll,f(ﬂ)d.(o>>+(1—p2A0,!p|40)]/
[1—=28.(p14%—p2a"){ar'ai) T} — (1= p24%/ p14").

Clearly, the average Stokes generation by chaotic pumps
is much more efiective than that by colierent pumps.

The multimode case in Raman transitions is some-
what complicated. For simplicity, we assume a uniform
medinm which fills up the entire volume of quantiza-
tion. Assume also a set of spatial modes associgted with
each frequency, or a band of frequencies with a band-
width much smalier than the Ramun linewidth. Then,
if the pump field is not highly depleted, we can
skow, for p24°=0,

O Tr[p(NEOE ] ot
= 2yi{ e P EeO[Trp () E, D)
+ (hw./2) g 127}, (26)
ve=[rNw,|n|glwr—w.)/i],

assuming all fields to be pclarized in the same direction.
In deriving Eq. (26), we have used the approximation

Z "h‘(l‘)uh(r):-.- 5([_. r’) ,
A

where the summation is over modcs at the frequency w;.
This approximation is equivalent to relaxation of the
mementunt matching condition in the Raman transi-
tions.” The solution of Eq. (26) gives

(E.PES) ) =[(EMESNr0)+5(n)]
X (expyrlc L NY~S(r) ,
S(r)=(h, ') T {u.,(r)]2.
y

(27)

If the quantity ir the square brackets js independent of
y, then (K, E,C2)(#) can be regarded as the average
Stokes intensity in the volume. Since the magnitude of
(exp(2yx Ex P E ) is usually larger for multimodes
than for a single mode, the average Stokes intensity
should be higher for the multimode case. In the quasi-
probability distribntion, we have

expyrFs P EMN) = | d®8(8:) exp(2yr| &1 .

For stationary fields with large numbers of modes,!

W (&) =exp[— | &/ (Es P E)/w

X ), (28)

BN, Blsembergen and Y. R. Shen, Phys, Rev. Letters 13, 720
(1964).
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Such a distribution gives
/d’é‘.w (8:)] 81‘ n=p !(l’:ﬂ“l‘:ﬂ")" o

Therefore, we would get

(ESDEOY ()= [(ESENO)+SY/
X[~ 2yp(Ee P E N ]-S.  (29)

Equation (28) also leads to the conclusion that the
probability of having at least (1/N) part of the en-
senibles with a gain coefficient 2yz| &,}? larger than the
average gain 2yp(E ) by a factor InN is 1—e!
=0.63, where ¥ is the number of modas.!* However, if
the fields are nonstationary or there is phase correla-
tion between modes, the factor InV would be replaced
by a much larger value, of the order of N for full phase
correlation.

The statistical properties of the Stokes output in the
Raman transitions are difficult to describe quantita-
tively. Qualitatively, they depend strongly on the
initial statistical nature of both the pump and the
Stokes field. If the pump is coherent and not appreciably
disturbed, then the statistical properties of the Stokes
output would be the same as those of a quantum
oscillator.’ In particular, if initially there is no Stokes
input, the medium would appear as a Stokes noise
generator.

III. INCOHERENT LINEAR AND NONLINEAR
SCATTERING

Rayleigh and Briliouin scattering are often regarded
as linear scattering processes. Nevertheless, they helong
to the class of nonlincar optics in the sense that ex-
citational waves in the medium actually play the
equivalent role of light waves. Incoheren: Rayleigh and
Brillouin scattering are most frequently discussed in
the classical language.®* The transformation from
classical to quantum terms is, however, straightforward.

Consider scattering due to density fluctuations in
a dilute medium. The total Hamiltonian is

H=3o+Kint,

where J3Co, given by Eq. (4), includes the cokerent in-
teraction of light with the medium, and 3C;,, describes
solely the incoherent part of the interaction. In first
order, with the trace taken over the atomic system,
JCiny can be written as

Him=—2 [Ec®(r) p- B, (1)
0.k

+E, () p B 9007, (30)

W1 P Gordon, L. R, Walker, and W, 3. Louiseli, Phys. Kev.
120, 806 (1963, .

B See, for example, Lo D, Landau and E. M. Lifskile, Fler-
trodviamics of Continnons Medin (Pergamon Peess, Tur,, New
York, 106);, o 377,
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where p is the atornic polarizability in the electric-
dipole approximation, %, is the pump mode, and £ is
the mode of the scattered radiation. By assuming
running modes with

ue=2:(1/L%,)"* exp(ik-1),
Eq. (30) takes the form
Kin=2. [aeiDare(t) fe*+artOan(t) fi], (31)
¥

where in the Heizenberg representation

fi= =5 (b g 13 e LY p*-dig

Xexplitk—ko-r.],
the equation of motion is
da () /dt=1wa ()— (i/%) f*a. (). (32)

1f the pump field is of high intensity, and is not dis-
turbed appreciably by the incoherent scattering, we
can treat a, and @i, as ¢ numbers. This is actually
equivalent to treating the pump field in the classical
limit. Then, Eq. (32) can be solved readily. In fact, the
problem reduces to the one of radiation by a prescribed
current distribution discussed by Glauber.! The solu-
tion of Eq. (32) leads to the expression of an electric
field at a point r for the scattered radiation,

E. (0= —(1/0)0A(r,1)/t

—a il 0 2x¢c 12
-GG e Ga)
col 8x? . hk € L3
X fi*an (') explik—r—iw(t—1)]

<+ complex conjugutel .

The integrat~n in the above equation can be carried
out explicitly.’® At a point r sufficiently far from the
scattering region, the electric field is approximately
given Ly

E. M r)=a: F(rt) exp(iky 1)
X [ dN (') explilio—k) 1], (33)
v

F(r,)=(k xip-&:,) x (k/|r— R| )(2x o/ 1.9}
Yexp(ik-r—~iwg),

where ¥ is the volume of interaction and R is the center
of V. The calculation now follows essentially the same
as the classical treatment.! Clearly, if the scattering
medium is uniform and stationary, so that the density

W, Fermi, Rev. Ml Phys 4, 87 (17 1),
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of atoms A(r)) is constant, the integral Svd% in
Eq. (33) would vanish if ko=k, and, consequently,
there is no scattering in the direction kaky. Thus, in-
coherent scattering appears as a result of density
fluctuations. If we consiger only one Fourier component
of the total density fluctuations,

N =2, ¥, explig r—iwg),

then we obtain from Eq. {33) the first-order cor: .ation
function

(Eoe®(r,n) Eao ™ r12)) = | F(r)| 87 (aselane)
XNV L) Vo(t)*)A(ko—ktq)
Xexp[ —i(wotwy)(h—12)]
Alko—kq) — 5(ko—k+q). (34)

For N{r,f)=constant, the scattered radiation in the
direction k> ko+ko vanishes. Thke Fourier transform of
(E ™ (r,h) EW(r,12)) gives the power spectral density
of the scattered radiation. Higher-order correlation
tunctions can also be obtained from Eq. (33), and,
hence the statistical properties of the scattered radiation
can be described completely.

It is, however, intercsting to note that for this case,
an explicit expression of the density matrix for the
scattered radiation can be written down immediately,
following Glauber’s treatment for the radiation by a
prescribed current distribution.! If we assume P repre-
sentaticn for both the pump field and the density
fluctuations, such that

{(aee!)™(ar)™) = [ ey P(ctio) (oo *) ™(cts0)*
(35)
{VI™N. )= [ &% Plo)(og)™(e,*)",

then we find for the scattered radiation

5= [ [ o, Pilo 0]
with
()= (i/h) / ‘ d! 3(ae,0,), (36)
where '
F(ohy00) = — (2rhon, w0 el )24 p-br,,.

This shows that statistical propertivs of the scattered
rivliation are deternuned by those of incident radiation
and density fluctuations. Thus, measurciments of
statistical propertics of the scattered radiation coull
vield information about the statistical properties of the
density fluctuations, if those of the incident radiation
are known. The analysis is particulardy simple for
coherent incident radiation,
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Recently, the question whether intensities of scattered
radiation may be different for coherent and incoherent
incident radization has arisen.!” It is clear from Eq. (34)
that with cur assumptions for linear incoherent scatter-
ing, the average scattering intensity is directly propor-
tional to the average number of photons in the pump
mades, and is independent of the coherent property of
the pump field.

The above calculation can be extended to the case of
incoherent nonlinear scattering, which has recently been
investigated by Terhunc ef a/.!® We shall aga’n consider
only nonlinear scattering due to density fluctuations,
in which two photons in the pump modes &, and ko'
are scattered into a single photon in the scattered mode
k. ‘The corresponding interaction Hamiltonian can be
written as

Cin=~3 [ExP(r)
ik

PP By () By C(r)+adjoint §,  (37)
where p® is the second-order nonlinear polarizability.1?

Tollowing the same procedure as in the linear case, one
would find for the scattered radiation

E.. ()= ay o Fe, ) [expiCko+ ko) R]

X f ' N{r',0) expli(ko+ko'—k) r]
v

k 2xh
Frt)= (k xp®:8,80) x( )(_)
{r—=R{/\ 13

wewro' \ 1/
X( ) explik:- r—i(wotwo’)t]. (38)

€x9€kg'

If only one Fourier component of the density fluctua-

tions is taken into account, the first-order correlation

function of the scattered radiation is

(Ene®(r,t) B (rta))= | F(r)| 28x°V

X (@1'ary 0k XN N ¢*)A (Kot ko'~ kiq)

Xexp[-— i(wo"‘l-wo':hw,)(l;- fg)] y (39)

where F(r) is given in Eq. (38). Assuming Eq. (35) for

both the pump modes and the density fluctuations, we

T, V. George, L. Goldslein, L. Slama, and M. Yokoyama,
Phys. Rev. 137, A369 (1965); R, D. Waison and M. K. Clark,
Phys. Rev. Letters 14, 1057 (1965); R. C. C. Leite, R. S. Moore,
S. P. S. Porto, and J. E. Ripper, ibid, 14, 7 (1965); D. H. Wood-
ward, Appl. Opt. 2, 1205 (1903).

% R, W, Terhune, P. D, Maker, and C. M. Savage, Phys. Rev.
Letters 14, 681 (1905); . D. Maker,in Proceedings of the Conference
en Physics of Quantum Ulectrenics, Puerta Rico, (965, edited by
L. Kelfey, B, Lax, wind P E Pannenwakd {MeGraw - THIE Baok
Conmymny, Inc., New York, 1966), p. ol

"Il. A, Ammstrong, N. Bloendwrgen, . Dacuing, amd 1.
Pershan, Phys. Rev. 127, 1918 (1902),

find the density matrix for the scattered radiation

pu(l)= f d%y, / dayy / B2y Pig(as) Pry(ouiy)
xPo("v)Iak(l)Xﬂ'x(()i ’
Has [ 1 (@i 75) (40)
’! 0

Flotrg, My, 00) = — (B hws wigtwte/ €ag€iy €21.9)172
Xéy: p"’ ZéAoﬁAu'a‘.uﬁ‘-o'Uq .

From Eq. (39) i is seen that the scattering in-
tensity, (| E.(r,8)|?), for k! is proportional to
(@r'ar, )@k 2ey), but for k=1, it is proportivnal to
(s, ks ay81,), Which from Eq. (17) is two times larger
for chaotic than for coherent fields.

In the actual experiments, the incident radiation may
contain many modes. However, as long as the diverg-
ence and the linewidth of the incident radiation are
small compared with the acceptance angle of the
photodetector and the linewiidth of the scattered radia-
tion, conservation of energy and momentum as ex-
pressed in Eq. (39) can be relaxed. We therefore have
for the multimode case,

(| EH (0,0 |92 | F( ] Qx V LS/ hrwgad')
X {Ekg™ Ery .70 Ery O) R 1)

XN N MDA (kot+ko'~k+q), (41)
where

EOR)=X% (2‘!"1@0;"&,1“) 120, 0 CXp(ikox -R— tworl).
A

and R is the center of the volume V. Then, if ky=£y',
from Eqs. (20a) and (28) we find for stationary fields, if
the number of modes is lurge, (44 F B DV E, )
=L, EL ). This shows thet the scatiering in-
tensity in the multimode case is iwo limes higher than
in the single-mode case. The sccend-order incoherent
nonlinear scattering is closely rclated to the second-
order coherent scattering, which gives rise to sum-
frequency and second harmonic generation, as we shall
now discuss.

IV. SUM-FREQUENCY AND SECOND
HARMONIC GENERATION

The coherent sum-frequency gencration can be
described by the same interaction Hamiltonian in
Eq. (37) for incoherent nonlincar scattering. It was
shown in Sec. IIT that if there are no fluctuations ir
the miedium, scattered radiation can only appear in the
direction where the wave vectors of incident and
scuttered radiation are matched. This corresponds to
coherent scattering. Thus, colerent sum frequency
generation descrilied by the Hamiltonian of Eq. (37)
appeirs in the direction ke-t-ky'— 2450,

TR TR
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The calculation follows cssentially the same patterr
as for the case of incoherent nonlinear scattering. Again,
in the Heisenberg representation, the equation of
motion is

ddk/dl= —iwkak(!)— (i/h)fkak‘,(t)akg' () 8
fk= - N V(Sﬂ'”la(kol’2@0'll:“’ir”,/’ekoflo'tklag) 12

X & p"’ o akgélo' o (42)
Here, we have assumed a uniform medium in a volume
V. For intense pump ficlds, which have not yet been
depleted appreciably by the sum-frequency generation,
ax, and a;y can be treated asconstant ¢ numbers. Then,
Eq. (42) yields

a:() =[ax(0)— (i /#) faar,ary 1] exp(—i2wol) . (43)

From Eqs. (42) and (43), we find the average rate of
sum-frequency generation;

d(a,,'ak)(t)/dt
= (i/)[fe*(art o, ') (0) — filar'ar,aiy YO) ]
+ ("’kt/ "') [f k‘\‘ako'ako’?alxo) +f k(ak'akoak’c»)(o)]

+ (21 fi 20/ )0k 0ky 01,8100 (0),  (44)
which can readily be integrated. Equation (44) shows
that for ko=k¢', corresponding to second-harmonic
generation, the average rate oi generation depends on
the initial statistical properties of the pump and the
second-harmonic fields. In particular, if {@:(0))=0, this
rate is proportional to the sccond-order correlation
function {a;tas!as,6k,)(0), and is thercfore two times
higher for a chaotic than for a coherent pump field.

Corresponding to the Hamiltonian of Eq. (37) with
ay, and @iy treated as ¢ numbers, the density matrix
for the sum-frequency field is

pe(f)= / g0y P ro{otke) P iy (i)

X D(ar)pe(0)Dui),
D(ai)=explasai!—a*a, ], (45)

i s
m=—f dl fretngte
ks

wherzs fi is given in Eq. (42) and P’ representation is
assumed for the pump fields,

Pko=j d,moplm("lo):"h)("kol ’

e’ = / APy Pro (o) [ atsor Metrar | -

If initially, pe(0)=JS"d%8ePe(8)|8:)(Bsl, ihen Eq. (45)
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becomes

pu(r)= / @t 381 P 1o (tkg) Py (o ) P(Bi)
XiaFBe){antB:l, (46a)

which, in the case of occond-harmonnic generation,
reduces to

m(/)‘_‘/d’akolpﬁl.l’ko(ako)l,k(ﬁk)
X JetBe)antBil , (46b)

with ag=(i/#) S¢' dl fiar,2. The above expressions
lead to the following results. (1) For coherent pump
fields, if |Bi)=|0), the generaterl sum-frequency field
is also coherent; but if |Bi)#£]0), the sum-frequency
output has the same distribution function P as the
input with pe() = S d*Bel s (Bi) |axt+BiMan+8:]. (2) If
{Br)=10), the sum-frequency output reflects the
statistics of the pump fields. (3) In general, the sum-
frequency output has the composite statistical prop-
erties of the pump fields and the sum-frequency in-
~ut, Clearly, measurements of the statistics of the
sum-frequency or second-harmonic output could yield
information about the statistics of the pump ficlds.
For example, if |8:)=10), the nth-order correlation
function of the second harmonics is proportional to
the 2nth-order correlation function of the fundamental.

The discussion can easily be extended to the mul-
timode case. As discussed in the case of incoherent
scattering, if the energy and momentum matching
condition is relaxed, Eq. (44) gives

dEP L) (x,0)/di=(i/ h)[g*(Ex ™ Exy i, ) (1,0)
— g EaPEs O Ery ) e.0) 4 (ont/ )
XL2e* (B Ery W EL)(r,0)
8 Ex P Ex, ) By ) r,0) - (2] 2] 22/ 1)
X(Exy P Egy P Ey O Fig ) 1,0), (+.)
Bx= —NV(Zrﬁwk”’/ek”’L’)ék . p(” : é..,&k,' 0

where £,7(r,f) has the same expression as in Eq. (41).
Again, for ko=ky/, if (Fi(0))=0, the average rate of
second-harmonic generation is usually higher for
multimode than for single-imode pump ficlds, since
(Exy P EE ) has a larger value in the
former case. For stationary fields, there is a ratio of 2
in the rates of sccond-harmonic generation for the two
cases.™ The density niatrix given in Eq. (46) can also
easily be gencralized to multimodes.

The above discussion is valid as long as there is no
appreciable depletion of pump power by suin-frequency
generation. For the more general case, the mathematics
becomes much more complicated, since the reaction
of the sum-fiequency field on the pump ficids must be

¥ J, Ducuing and N. Bloembergen, Phys. Rev. 133, #4493
(1964).
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taken into account, The sum-frequency generation now
depends on bigher-order correlation functions of the
initial pumip fields. The output is no longer coherent
even if the initial pump fields are coherent. Ducuing
and Armstrong?®' have discussed the statistical aspects
of sccond-harmonic generation with high conveision
using the classical approach. A corresponding quantum-
statistical discussion would be extremely difficult, if
the nonconumutability of the operators ¢ and @' is to
be taken into account.

V. PARAMETRIC AMPLIFICATION

One of the most important subjects in nonlinear
optics is parametric amplification. It is not only because
the parametric amplification may lead to tunable
oscillators at light frequencies,? but because in a broader
sense, it also describes such important nonlinear proc-
csses as stimulated Raman and Brillouin scattering by
clementary cxcitations.® In the latter cases, the idler
photon mode is replaced by the mode of clementary
excitations. The calculations remain the same if the
clementary excitations are bosons,

The statistical properties of a parametric amplifier
have been discussed in detail by Gordor of ai.** How-
ever, they have assumed a constant field strength for
the pump mode. From our discuscion in the previous
sections, we expect that the statistics of the pump field
should influence the statistical output of the amplifier.
Their results are valid only when the pump ficddisin a
coherent state. In the following, we shall follow their
calculations, but take into account the statistical prop-
crties of the pump field.

The interaction Hamiltonian for parametric am-
plification is also the same as in Eq. (37).

Rine= =2 [E,P(r;) p®: E,(ry)
ok

X Er=(r)+adjoint].  (48)

Here, however, the cohcerent scattering process is to
destroy a photon in the pump mode p, and to creatc one
photon in the signal mode s and another in the idler
mode I, with «,=w,+wr and k,=k,+k;. The Heisen-
berg equations of niotion are

da,/dt=—iw,a,()—ixe (ast 1),

dart/dt=iwast () — ic*a N{0a, (1), (1)

where

k== — N V(8w i/ epe,er L0) 28, p2*: 8,4,

% [ Ducuing and [. A, Armstroag, in Proceedings of the Third
Quantum Flecironics Confesence, Paris, 1963, edited by I'. Grivet
and N. Bloembergen, (Columbia Universily Press, New York,
1964), p. 1643.

12 J A, Giordmaine and R. C. Miller, Phys. Rev. Letters 14,
973 (1965).

BY_ 1, Shen and N. Hloenbergen, Phys. Rev, 143, 372 (1960).

¥ L P Gardon, W, H. Loaisell, and L. K, Walker, Phys. Rev.,
129, 481 (196d), Sce also V. 1. Lovisell, Radiation and Noive in
Quantum Fledronics (MeGraw-1H Book Company, Inc,, Mew
York, 1904},
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1f the puip field is of high intensity, and has not been
depleted appreciably by the parametric process, then
a,(1) = ¢,(0) exp(—iw,f), where a,(0) and g,'(0) can
be regarded as ¢ numbers. Then the solution of Eq.
(49) is
a,(t)={a,(0) cosh[ || (a;ta )]
+Lixa,/ || (a,'a,)!*]ar(0)
Xsinh[ | | (aptap) 2} exp(—-iwt),
2,(8)= {ar(0) cosh[ || (a,'a,)!/*(]
+[ika,/ x| (a,,'a,.)"’]a,(())
Xsinh[ || (apta,)' ]} exp(—iwrd), (50)

(a.ta.)(t)="Trp,(0){{a.ta,)(0) cosb ¥ |x| (a,ta;)'"*]
+((artar)(0)+ 1)+sinh?[ |« {a,'a,) 2]
+ilxa{a.tart)- 5)/ x| (a,a,) 2= n*az oar)(0)/
i} (aﬁ'aﬁ)“q% sinh2[ || (apta,)' ]}, (51)
with a similar expression for {as'as){). Equation (51)
shows that the output signal in the parametric amplifica-
tion depends on the initial stutistical properties of the

pump field. Assume (a,a;)(0)=0. Then, for a coherent
pump field, we have

(ata)()=4[{a,"a,)(0)— (artar)(0)—1]
+%[(ﬂ-'aa)(0)+(a:'ﬂ:)(0)+1]
XCOSh[2 ‘ "‘ ((a,'a,,)"’)l] , (52)

but for a chaotic pump field, since
{(a,ta)")=nYay'a,)",

wu have
(a,'a, (1) =3{{a.1a,)(0) — (ur'er)(0)—1]
+3{{a. "30)(0)"‘(“1'01‘/(0)"' 1]

X 3 [nl/@n)J2Ixl0™a lasp. (53)
nw0

It is clear from the ubove expressions that the signai
output is much larger for chaotic than for cohereat
pump fields.

For the multimode case, if the encrgy and momentum
matching condition can be relaxed, as discussed in the
previous sections, the calculations follow essentially
the same as in the single-mode case with @ 1cplaced by
ES) (), and « in Eq. (49) by

K'=—NV(Q2r/LYwwr/ eer)V 2, p@*: 881, (54)
The result is
(O EYr, ) =Trp (0} (11D E,)r,0)
Xeosh®[| €| (1, 1,214 (J O Er ) (r,0)
Xsinh[ || (£, P E,VH]Y, (55)

assuming (5,0 280 (r,0) = 0. Again, the output signal
is usually larger for multimode than for single-nade
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pump fields. For stationary fields with many modes,
we have

(ESE N i) = (ESEO),0)
—{EfSEF D 0) 4 3B, S B9 (r,0)

F(ESESY 0] T Dnt/ 3™

wall
X{E, P ELO)r,0). (56)

In principle, all higher-order -orrelaticn functions
of the signal and the idler fields can be obtained from
Eq. (59). However, to describe the statistical properties
of fields, ar explicit expression of the density matrix
for the fields is usually of great interest. For the case
of parametric amplification, the density matrices
pel)="Trrp, () and pr{t) ="Tr,p, 1{§) for the signal and
the idler fields can be obtzined through the use of the
characteristic functions,?* which arc defined as?

Xolnd)=Troa{p.1(t) explya.’(0) Jexp[—v*a,(0)])

=Tr..1{p.0)p:(0) explva.'(1)]

Xexp{—v*a.(0]}, (7)
Xr(ny="Tr 1{p.(0)pr(0) explvart ()]
Xexp[—v*ar()]}.

Explicit expressions of X, and X can be found by sub-
stituting into Eq. {57) the cxpression: of a,{f) and
a;(8) in Eq. (50) and the known initial distributicn p,{0)
and p;(0).2 iT<ze, g, and v, arc treated as ¢ numbers.
Thei, the characteristic functions lead to the density
matrices in the P representation,?

Pr(’)-_"rl’lpa.l(’):fdgﬂcpn(“u‘)‘ﬂn)(ﬂx¥ '
Pa(an’):"[d2“;1’r(ﬂr)<“n‘

X[ 360 explozy*~antayy wien, (8
[

with a similar equation for p/{f). As an cxample, con-
sider the case where initially hoth the signal and the
idler modes are in the vacuum state.

Pt(o)=' ‘0~)<0J ’ Pl(o) = i“l)(ol‘ .

From Eqs. (50) and (57), the characteiistic function .Y,
is

X.(v,0) =exp{4]v|*cosh'_|x|(a,'a,)"'%]
+sinh{|«|(a,'a,)!%]-1)}. (59)

B R. Glauher. ir Jcaceadings of Conference on Physics of Quantum
tdecironics, 1voS, wvliteld by P, L. Kelley, B. Lax, and 1° E,
Tannenwald (McGraw-165l Buok Company, nc, New Yurk,
19606), p. 788,
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Substitution of X,{v,8) in Eq. (58) gives

1’.(a.,l)=j[d’a,l’,,(a,,)(l,v"xr(n.))
Xexp[—la.{%(n.)], (60)

where
(1,30 == sinh¥ |xar,| {].

If the pump field is coherent, this corresponds to a
Gausstan probaoility distribution for a chaotic field
with an average number of photons (1,).2* Thus,
with ro input to the amplifier, the parametric amplifier
acts as a noise oscillator. Characteristic functions for
various input corditions have been obtaired by Gordon
ef al ¥

More generally, we should also consider the loss in the
modes due to absorption. However, in the first approxi-
mation, we can simply take », and w7 in Eq. (49) as
complex quantities. The mathematics is straightfor-
ward, and will not be reproiuced here. The above
discussion is valid as long as the pump {¢ld is not
appreciably disturbed. The general calculations, taking
into account the reaction of the parametric process on
the pump field, becomes extremely complicated.

V1. CONCLUSION

Nonlinear optieal eifects often depend on the statisti-
cal properties of the fields present. The rate of nonlineur
absorption, emission, and amplification is higher for
chaotic than for coherent, and higher Tor multimode
than for single-mode puinp fields. The statistics of the
fields generated in the nonlinear cffects is a partial
function of the statistics of the pump fields. Measure-
ments of the statistics of the output fields muy yield
information about the statistics of the input fields, and
the statistical properties of the mediun:,

APPENDIX

Classically, a cavity problem of coherent scattering
can usually be converted to a corresponding steady-
state propagation prcblem by simply replacing ¢ by
—z/¢ in the field amplitudes, where £ is the direction of
propagation. It is expected that the same is true in
the quantum treatment. This can be realized by using
a localized momentum operator instead of the Hamil-
tonian operator.

For steady-state propagation, the field amplitudes at
fixed spatial points remain unchanged. The vector
potential for a plane wave propagating in the z direction
can be written as

A =c Y (h/2wpel3)2
1
X {¥a(z) exp(—iwd) + ¢4 (z) explivdd)) ,
¥i(z) = b(z) exp(ikz), (A1)
Uhele),bet(2) )= banr.
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For free fields, .(z) = ¢, ex. (ikz). Here, we have defined
localized annihilation and creation operators 4(z) and
5'(z) under the assumption that {(5.)™(b:)*) does not
vary much in a distance d large compared with the wave-
lengtn. We also assume that k= 2wn/d, where » is an
integer. Thus, the corresponding localized photon
number operator is?

AG)=(ad/L?) 2:, bi!(2)b:(z) (A2)

where @ is the cross-sectional area of the beam, and L3
is the volume of quantization. We can alse define a
localized momentum operator,

®(z0,)=23(20,0)/c

L3 peetd2
=2— Li(z0)dz, (A3

(d s0—d/2
wl.ere H(z,!) is the Hamiltonian density, and 3(2o,!) is
the Hamiltonian corresponding to a system which has
the sanie Hamiltonian density
sotd)2

(1/d) H(z,)dz

—-dj2

everywhere in the volume L2 Therefore, 3¢(zo,f) here
has the same form as given for the various cases dis-
cussed in this paper, but with 5:(z,) and by!(2o) replacing
dax and !, assuming that the medium has a uniform
density N(zgo), which fills the entire quantization volunie
for free ficlds,

®(0)=2 Zk: hE[b:M(2)bi(z)+ 1 ].

The momentum operstor acts as a translation
operator:

dy(z)/dz=(—1/in)[¥(2),0(z)],
dEC@)/dz= (—1/i[E(2),2()]. (A1)
Thus, for exaniple, in the case of sum-frequency genera-
tion, Eq. (Ad) yields
dl;’k“’(z)/dz— thE, (*)(3) = i[i’rm/'u(z)]
XN(@)ee-p':ea iy Er{e)Exy(z), (AS)

L. Mandd, Phys. Rev. 144, 1071 (19606).

which agrees with the corresponding classical equation.
According to Eq. (A4), the unitary translation operator
is

Uz,z0) = {‘ exp[(x’/h) / G’(z)dz]} . (A6)
t ” +

Here, the space-ordered product { }, has the similar
definition as the time-ordered product. Field operators
at dif.erent spatial points arc connected by this unitary
operator:

E(z,0)=U"(2,20) E(s,1) U (2,20) . (A7)
We can now define a localized density matrix opcrator,
p(2)=U(,0)p(0)U'(3,0) , (A8)

assuming free space for 2<0. Then the correlatior func-
tion of fields at different times is given by

(D (g8 - ED (g ) EC (5,0) - - EC) g,0))
=Trlp(0)EF (z,1)- - ED(g,ta) E(zyth)
X ECg0)]
=Trlp(2) EP(0,) - - - E®(0,ta) ) (0,t)
X EON04)]. (A9)

‘The equation of moton for the density matrix p(3) is
dp/dz=(—1/in)[@(z),p(2)]. (A10)

With the help of these localized operators, the calcu-
lations for steady-state propagation in a medium be-
come exactly the same as the coiresponding calculations
for a cavity with { replaced by —z/c.

Physically, the density matrix p(s) describes an
ensemble of paoton systems which has all the statistical
properties of fields at z. If a photon system is taken as
the section of the light beam emerged from the plane
at z in a time T, where T can be the counting time of
photodetectors,’ then p(z) actually describes an en-
semble of such photon systems. This is the ensemble we
measure in experiments.

The problem of beam splitting has been deliberately
avoided in this paper. It requires some modification of
our formalism. Qualitatively, the split beams would
have different statistical properties than the unpslit
beam, and they are correlated with each other. The
equivalent problem in the cavity case corresponds to
the splitting of the photon ensemble with time.

]
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Permutation Symmetry of Nonlinear Susceptibilities
and Energy Relation*

Y. R. Snext
Physics Department, University of Calijornia, Berkeley, Californic
{Received 2 October 1967)

Permutation symmetry for generi''zed nonlinear susceptibilities is derived from the microscopic theory.
It is shown that this permutation sy.nmetry is essentizl for the existence of a time-averaged stored energy
density or free energy for wave propagation in a nonlinear, nondissipative medium.

R propagation of electromagnetic waves in a

linear, nondissipative but dispersive medium, it
is well known that a simple energy relation exists. The
rate of time-averaged energy propagated out of a closed
volume is equal to the rate of decrease of time-averaged
energy stored in the volume.' The quesiion arises on
whether the same energy relation holds for wave propa-
gation in a nonlinear, nondissipative medium. We shall
show in this note that the permutation symmetry of
nonlinear susceptibilities would in fact lead to the
existence of such an energy relation in the nonlinear
case., Pershan® derives the permutation symmetry of
nonlinear susceptibilities from energy consideration by
assuming the existence of time-averaged free energy.
However, his expressions for iime-averaged free energy
are correct only for nondispersive media.

From the Maxwell equations

VX E=—(1/c)aB/at,

Q1
vXB={1/c)oE/ 0!+ (4x/c)] , )
cone obtains the energy conservation equation
(c/4x)V-(EXB)=—(1/8x)(a/00)[ E*+B*]—E-J, (2)

where J is the total current density which can often he
written in {erms of multipole moments:

J= Jconducﬁon+ (‘3//“")1"'!"Cv>'(AM — (a/al)V-Q+ R (3>

However, the expansion of Eq. (3) is physically
meaningless, if the wavelength of the propagating
waves is small compared with the dimension of the
medium.! It is then more appropriate to keep J as a
single physical quantity. We can define & generalized
polarization P as®

)

Moreover, the Fourier component of  can often be

J—=Js=aR/0t.

* This research was supported by the joint sponsorshi*p of the
Advanced Research Projects Agency and the Office of Naval
Research under Contract No. Nonr-3656(32).

1t A. P. Sloan Research Fellow.

1Sce, for example, L. D. Landau and E. M. Lifshitz, Electro-
dynamics in Continuous Media (Addison-Wesley Publishing
Co., Inc., Reading, Mass., 1959), p. 252.

1P, S. Pershan, Phys. Re-. 130, 919 (1963). Scc also N. Bloem-
bergen, Nowlinear Optics (W. A. Benjamin, Inc,, New Yeork,

19 ),5.60. _
Y. R. Shen, Phys. Re . 133, A511 (1964).
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expanded into a series

P kw)= 2133""’0(&‘), (5
where
PBO(kw)=xV(kew)-E¢w),
RO (h=ki+ks, w=wi+ws)
=xPk=kitk;, w=w+w):
E(ky ) E(kz,w) .

The tensors 3, x@® etc., denoie the (gencralized)
linear susceptibility, the sccond-order nonlinear sus-
ceptibility, etc., respectively,

Consider first the linear case, where B with n>2
can be neglected. Let us assume a quasimonochromatic
wave which can be represented by

E(5)=8() exp(—iwl)+ E*(N expliwt), (6)

where |38(f)/0] << w&(t)]. Then, it can be shown that
for a nondissipative mediuni, since X;P=x,, from
the microscopic theory, Eq. (2) averaged over a period
of time 2r/w can be written as!

(c/4r)V-(EXB)sn=—031"% /01,
where the time-averaged stored energy density is
U0=(1/4m) |8+ @]+ 478*- (dux/d0)-£]. (8)

From energy consideration, we would expect that
there may also exist in gencral a time-averaged stored
energ' density L for wave propagation in a nonlinear
medium., To show this, we must first derive the per-
mutation svmmetry for the gencralized nonlinear
susceptibilities. The microscopic expressions for non-
linear susceptibilities can be obtained from density
matrix calculation®* which is summarized as follows.

In the semiclassical treatment, the Hamiltonian of
the nondissipative system is

H= 3C0+3Cint 1

@)

)

where
3Colny=thwnlny,

Hine=Fin V+HKin?,
KineM=(e/2mc){p-A+A-p)+(eh/mc)s- VXA,
i = (e2/2m)A-A.

. ‘mmbergcn and Y. R. Shen, Phys. Rev, 133, A37 (1964).
818
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The vector potential A can be written as

A(r,) =X [An(r) exp(—iwnl)+An*(r) exp(ivni)] -
" 10

An(r) = (c/iwm) & (Kmwm)exp(ikan-1),
with V-A=0. The equation of motion for the density
matrix p is

1h9p/ 1= [3Cc+ICint,0]. (1)
If 3™ and 3Cin® are treated as first-order aud
second-order perturbations, respectively, then p can

be expanded into series in ascending orders of the
perturhation,

©
p=2 p™.
n=

The various orders of p can then be found from the

following hierarchy of equations

ihapm/9t= [Ko,p“’]+[30gn,‘l’,p‘°’] ,

,';,ap(z)/a,._: [GCo,p"‘"]-{-[ZCim‘”,p“’:H-[30.,.&”,;)“”] ,

thap™)/d1= [3@0,’,(»-)].6_[mint(l),p(u—l)]
+[im@,0 0], (12)

These equations can be solved successively through
Fourier decomposition of p™

p D=2 p™ (wm) exp(—iwml). (13)

—iN

2(‘”(](3‘—' k1+k2’ U3=wl+“‘7) = Z

no' M Re;

(pw «n_pnm))l

From the density matrix, we can calculate the ex-
pectation value of a Fourier coniponent of the current
density,
J(k,w) exp(ik- r—iwt)="Tr{Jo (k,w)o(w))
Xexp(ik-r—iwl), (14)

where Jor(k,w)=J?(kw)+J:*?(k,w) have matrix cle-
ments
(n]J2 (k) |n'}=—(e/mc){n|{exp(—ik-)p

+ (p—2ihsXK) (15)

Xexp(—ik-n)}|n'),

(1|37 (k,w) [1'y= (#/mc){n| A exp(-~ik-r)|n’).
The nti-order term of the current density is now given
by

IO @)= T (] 307()|m) o) )

.

+Hn| T kw)|n' )’ o>V (W) |n)} . (16)

Subsequently, the nth-order generalized susceptibility
tensor can be obtained from the relation

(k) = (i) (k=T ki o= 35 03):
] (L1

E(kywr): - - E(kawa). (17)

The above provedures lead, for example, to the
second-order generalized susceptibility tensor

Ru’ nf (ks)[exp (ik;' r):],,,,,

fl (w;—w,.,.r)

n [exp(—ikt'r)]n'nknn' (kz) \ [exp(—iki'r)Jn'ann’(]‘l)]+ —iNe

h(“’z—wnn')

fl(w;—w,.,.:)

n,n'.n'’ m’o;lwgw;

e ‘ PO

X { Rn’nf(ki)Rnn' \Akl)Rn” n'(k!))[

pn"(‘”

- ]‘*’Rn'u'(k!)nnn”(J‘I)Ru"n'(kl)[

W2 (W= @ pper ) (Wa—Wnrrar

fl:(wi_wll') (w?—wu"n') rhz (“’l—wnn') (wl—wvm”)

p”w)

72 (W3 Wnt) (@2—Wnnrs)

PR Par®

+ ] , (18)
’l’(“”l—wln’) (wl—wn" n') f”(wl—wu"u‘)(wz_wnn")

where
Ra-(k)=[(p+ihsXk) exp(ik-1)]nn’
=[Nl (k)1 =[Roa(—k)*.

B e = heon— Fleone .

& is the number of atoms per unit volume. The term
exp(k-7) in the above equation~ can be expanded

into power series of (k-r). One would finds

Ron (k)= imepnTnn—3mwpn[r (k1) Janr
+3ih[1428] Xk+---, (19)

where | is the orbital angula1 mementum of electrons.

* 1. S. Griffith, The Theory of Transition Metal Ions (Canibridge
University Press, London, 1961), p. 54.
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Equation (19) is clearly the multipole expansion of
Ran. In the electric-dipole approximation, only the
first term in the expansion of exp(ztk-r) is retained.
The expression for x® in Eq. {18) should then reduce
to the one obtained by Armstrong ef al.¢ From Eq. (18),
one finds readily the permutation symmetry for the
generalized susceptibility tensor.?

Xima @ (ks=k+ ks, wa=w1+w2)
=X mat® (k1= — kotks, 1= —w2t-w)
=X”1...(”(kg=ka—k1, w2=w3—wg) . (20)

In a dense medium, there should also be a Lorentz.
Lorenz correction factor in the expression for x™, but
the permutation symmetry relation of x© is
unchanged.®

SHEN 820

Consider now the presence of three waves in the
nonlinear medium,

En(r,)= 8um(t) exp{thm: r—tcml)
“+complex conjugate {c.c.), m=1,2,3, (21)

ka= k1+kz y ws=uwn w2 y

where |88m{t)/t|<<]|wnEm]- These three waves are
coupled through the nonlinear susceptibility x®, and
consequently there is ene:gy transfer aniong them. We
expect that a time-averaged energy for the coupling
of the three waves should exist. The term involving
coupling of the three waves in Eq. (2) is

E-J®= 3% E. ./, (22)

m=l 23

where we can write

E.()= / mEm(wmt1m) Xpliknm  T— iwml—igmtHc.c.\

0
;}B:"’ 0= [ dnadna(—1) (ws— wrt-m— 1) % ® (i m= — we— natws+15): E2* (Wat72) Ea(wst73)

e {xm(w1= —wytwy) 1[(_’.‘"1)82‘(‘)8‘(1)'*'

ag

*

X e:\'p[z'k; o i(wrl-m— 172)[]
()

! 28:(t)
&3(0)+ &:*(1) ]
at at

o I[_ ax:n(‘.,,)+axm(w,)]: a&* () £t {ax(n(w,)% axm(m,)]: & asa(t)}

dws Jwy al

3 a&;
;?32‘”(!) ] {x(=)(w,=w;—w1):[(—iw,) E(NEF(0)+ 3

!

A (wy) I (ws)} &:(t)
+w{ ; J: & (1)

a&); 3\'.02

a r 98:1(1)
3‘?:“’(‘) = { x"’(w:=wx+wz):l_(- iw3) 81(8) 82(‘)4‘7-82(1)-!- &)

H o
2

+

{
( )81*(1)'!- 81(1)

+wzl_ dw; Oy

O——
23 duy ot

Xexp(iky r—fwyt)+c.c.,
(23)

a8,* ()
al
rax®(ws) ax® (w) &> (1)]
Jeso—=]

o

Xexp(iks: r—iwdsf)+c.c.,
882(1)]

at

+

@) (g, @)y 3 ~ D,
+w{6x (ws) IxP(w )] a :(1)8 Oto sLchc."’(«u)lazc‘ { )]_‘81(\682(1)]

ow 1 c"w;

From the above expressions, and with the help of
permutation symmetry of @ in Eg. (20), it can readily

$ J. Arnastrong, N. Bloembergen, J. Ducuing, and P. S, Pershan,
Phys. Rev. 127, 1918 (1962).

7 Permutation symmetry for X in the electric-dipole upproxi-
mation was derived in Ref. 6.

3 The proof of this statement is given in Ref, 6 for the electric-
dipale approximation. However, it can also be applied to the
present case with slight modification. Equation (Al) in Ref. 6 is

{
o |

Xexp(iks: r—iwat)+-c.c.

Ouwr dw;

be shown that the time average of Eq. (22) is given by
L (EndBn% a0 =aU®/a, (29)

mw} 2,3

now defined {or each wave with wave vector k andfrequency w
separately. The Lorentz tensor Ly;is a function of both k's and
w's. Both the lincar polarizability a'? and the Lorentz tensoi Li;
are sclf-adjoint and the derivation in Ref. 6 should be modified
accordingly.

L
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where the time-averaged coupling density stored in the
medium is
U®=28*(f) x®(w1): 8:* () Ealt)
X)) 8 ®(u)
o
3% (w1) )
+w;——3w—]:&‘(l)8;(l)+c.c. (25)

+8l"[\~?|

More generally, one can show, from the microscopic
expression for x for a nondissipative medium, ths
general permutation symmetry

» n
Lttt tn ™ K= ki, wpn=2 wi)
-l

=1

= x'l“'ln-la'll(')(kl: - Z ki+kn+l,

it

W= =3 Wit Wat1)

il

=== xln-ln-&hll""n-l"")(k"=k"’*'l_ § ks‘y

Wa=Wap1— 2 @), (26)
syin
With Eq. (26), one finds
wil

3 (B OBa™/ 3l)ee= U™/,
1

@7

where the time-averaged energy density stored in the
nonlinear medium for the coupling of the {n-}+1) waves

NONLINEAR SUSCEPTIBILITIES AND ENERGY RELATION
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is
U™ =ng* (1) -+ 82 () Ky 1,0m11) Enga (0)
+E4() - & (t)[ ) w.___ax(")‘(k"*"""‘“)]
i i
X 8apr()+cc. (28)

Conversely, the existence of U™ in the form of Eq.
(28) implies the permutation symmetry for x™. The
energy conservation relation of Eq. (2) after time
average can now be written as

(¢/4x)V- (EXB)=—aU/ot,

where
U=% U,
newl
with U® and U™ (#>2) given by Eqgs. (8) and (28),
respectively.

In conclusion, we have shown in this paper that the
permutation symmetry of the generalized nonlinear
susceptibilities leads to the existence of a time-averaged
stered energy density for electromagnetic wave propa-
gation in a nonlinear, nondissipative, but dispersive
medium.® The discussion can of course be generalized
to include other types of excitational waves in the
medium.

#°Vhe derivation here is strictly correct only for waves with
ky=k;+k; 2nd wy=w;+ws. However, it is also a good approxi-
mation when these matching conditions are approximately satis-
fied. This is in the same spirit as one can define a linear dielectric

constant e(w) for & pulse of waves of frequenci,; w a8 long as w is
much larger than the inverse of the pulse width.




