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1.0 ABSTRACT

This report summarizes results obtained under contract Nonr 5054(00).
The objective of this work was the construction of a computer progrem for the
solution of the problem of an arbitrary three-dimensiomal body with zero
translational velocity performing small steady harmonic oscillations in the _
presence of an otherwise undisturbed free surface, which bounds the fluid in . ",
which the body is immersed. Because the sponsorship was terminated, this work '
was not carried to completion. The results that were obtained are contained
in this report.
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«

The solution of the above problem consists of two principal tasks: the
development of certain analytic formulas and the incorporation of these formlas
into & working computer program. Almost all of the necessary formulas were
derived and tested numerically, but they could not be incorporated into a pro- )
gram in the time available. The subsequent sections of this report describe *":J;
the general scheme for solving the problem of interest, present the formlas
that were derived to implement this scheme, and point out areas where additional
formulas need to be developed.
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5.0 PRINCIPAL NOTATION

equals VR, the dimensionless horizontal distance between a point

source and a field point where the potential is to be evaluvated

equals va, the dimensionless horizontal distance between a field

point and the centroid of an element

normal velocity at the control point of the i~th surface element due

to a unit source density on the j-th element

coordinates of the location of a point source

m=1,2,3 n=12,3;

components of the unit vectors along the axes

of the coordinate system of an element, equation (T0)

coefficient functions defined by equation (58)

equals +vh, the dimensionless vertical distance between the image

of a point source and a
evaluated

field point where the potential is to be

equals vho, the dimensionless vertical distance between a rield
point and the image of the centroid of an element

with superscripts x, y,
multipole expansion

and 2z, these are coefficients in the

coefficient functions defined by equation (63)

coefficient functions defined by equations (48) and (52)

coefficient functions defined by equation (66)

with superscripts x, y,
multipole expansion

and 2z, thece are coefficients in the

exponential integral, equation (40)

function that specifies normal velocity distribution on the body

surface

coefficient functions defined by equations (64) and (67)

leading term in the expansion of section 7.5 for the potential,

equation (68)
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function defined in terms of G(A,p) by equation (69)
weights in Ieguerre-Gauss quadrature
Hankel function of first kind of order zero

leading term in the expansion of section 7.5 for the A-derivative
of the potential,equation (68)

vertical distance between the image of a point source in the free
surface and a field point where the potential is to be eveluated,
figure 2

vertical distance between a field point and the image of the centroid

of an element
function defined in terms of H(A,p) by equation (69)
Bessel functions of first and second kinds of order zero

normalized moments of the area of a quadrilateral element about its

centroid, equation (T2)

subscripts denoting quantities associated with the i-th and j-th
el=ments, respectively (other uses of these subscripts with certain

variables are detailed explicitly in this section)
unit vectors along the axes of the x,y,z-coordinate system

integer subscript used in several ways, especially to denote terms

of expansions

integer denoting the order of an expansion, usually the upper limit

of a summation

number of elements used to approximate the body surface

distance normal to the body surface

unit normal vector to the body surface

voint off the body surface where the potential is to be evaluated

point on the body surface where the potential is to be evaluated;
with subscript i, the control point of the i-th element

point where a source is located, especially a point on the body

surface
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horizontel distance between a point source and a field point where
the potential is to be evaluated, figure 2

horizontal distance between a field point and the centroid of an

elementi

distance between a point source and a field point where the potential
is to be evaluated, figure 2

distance between the image of a point source in the free surface and
a field point where the potential is to be evaluated, figure 2

mean position of the surface of the body that is performing oscillations

principal use is as the maximum dimension of a quadrilateral element;
in certain sections also used as time, as integration variable, and
with subscript J as abscissas for Laguerre-Gauss quadrature

with subscripts x,y,z, denotes velocity component

velocity at the control point of the i-th surface element due to a

unit source density on the j-th element
veoctor velocity

Cartesian coordinates. The mean position of the free surface is the
plane y = 0, and “the flow field 1s the half-space y < 0. Used
to denote coordinates of a field point where the potential is to be

evaluated

coordinates of the centroid of a quadrilateral element

area of a guadrilateral element J
B - pA i
OF/g, vhere g 1s acceleration of gravity. This is the spatial

circular frequency of the motion

coordinate system based on a quadrilateral element

a particular value of B/A about which the potential function is
expanded

fluid motion is a pure harmonic in time with circular frequency
equal to o. Also used as surface source density.
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integrated potential of a quadriizteral element. Also time-
deperdent potential

potential aé the control point of the i-th element due to a unit
source densily on the i-th element

velocity potential after harmonic time dependence has been removed.
Used in various places to denote various potentials

potential defined by equation (27)
potential defined by equation (30)
potential defined by equation (26)
potential defined by equation (29)
potential of an oscillating point source

Laplacian operator
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6.0 THE METHOD OF SOLUTION
6.1 General Description of the Method

For the past several years there has been a contimuous effort at this
facility directed towards the solution of certain three-dimensional problems
of fluid dynamics. The first problem studied was that of the potential flow
about an arbitrary three-dimensional body in an infinite fluid. This work
was successfully completed, and a description of the method of solution is
contained in references [1] and [2]. A subsequent investigation concerned the
solution of the Helmholtz equation governing the scattering and radiatioﬁ of
acoustic waves by an aribtrary three-dimensional body. A description of the
method of solution is contained in reference [3].

The two above-mentioned problems are logically simiiar, and the same
general approach was adopted to effect each of their solutions. This same
approach can be used to solve the problem of interest here. In each case it
is desired to solve for a scalar velocity potential that satisfies a partic-
ular partial differential equation together with certain auxiliary conditions
and vhose normal derivative is specified on the body surface. The solution
method is based on a point source function that identically satisfies the
partial differential equation and the auxiliary conditions. A distribution
of the appropriate type of source density is assumed to lie on the body sur-
face. Applying the normal derivative condition on the body surface then leads
to a Fredholm integral equation of the second kind for the unknown source
density distribution. The only difference between the three above-mentioned
problems lies in the nature of the three different point-source functions that
are appropriate to the various problems.

The approximate solution of the integral equation is effected in the
following manner. The body surface is approximated by a large number of small
plane surface elements, over each of which the source density is assumed
constant. On each element a control point is selected at which the boundary
condition is to be satisfied. The basic formulas for the point source potential
and its gradient are integrated over each element to obtain the effects of the
elements at each others' control points per unit value of source density. In
particular, a matrix 1s obtained whose entries are the normal derivatives of

10




potential induced by the elements at each others' control points for a unit

value of source density. This is the coefficient matrix for a set of linear
algebraic equations for the unknown values of the source density on the ele-~
ments. The right-hand sides of these equations are the prescribed values of
thc normal derivative of the potential at tkc control peints. Once this set

of equations has been solved for the values of the source density on the
elements, all other quantities of interest can be calculated fairly easily at

any desired point. The key operation in this solution scheme is the integra-

tion of the basic formulas for the basic point source potential and its gradi-

ent over a plane surface element. This is also the only operation that is
different for the three above-mentioned problems. Thus the solution of the
problem of oscillatory motion near a free surface is primarily a matter of

performing this integration numerically.
6.2 Mathematical Statement of the Problem

The problem of a body with zero translational velocity performing small
steady oscillations in the presence of a free surface is well known. The
mathematical formulation is given in references [%] and [5], and results will

simply bé stated here with no attempt at a derivation.

Cartesian coordinates x,y,z are assumed, and the undisturbed location
of the free surface is taken as the plane y = O. The fluid motion takes
place in the half space y < O, (figure 1). In discussing this problem
distance perpendicular to the free surface, i.e., y distance, is denoted
vertical distance and distance parallel to the free surface, i.e., x and
z distance, is denoted horizontal distance. The surface of the body that is
performing small oscillations is denoted S. Specifically, S represents
the mean position of the body surface, and the oscillations take place about
this surface. In particular, the surface S 1is independent of time. The
body represented by S may be surface-piercing, as shown in figure 1, or
completely submerged. Moreover, S may be multiply-connected and represent

an ensemble of bodies.

The fluid velocity field in the half-space y < 0 is assumed to be
irrotational. Thus, the velocity is equal to the negative gradient of a scalar
potential function &(x,y,z,t), which is a function of the time t as well

11
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Figure 1. - A three-dimensional body near a free-surface.

as of position. By assumption the fluid motion is harmonic with a single
. circular frequency o. Thus, the time-dependent potential &(x,y,z,t) can
F: A be written

@(x,y,z,t) = Re[q’(x)Y)z)e-iOt] (l)

vhere the potential o(x,y,z) is independent of time and is thus denoted the
steady potential. It is the potential ¢ that must be calculated.

According to references [4] and [5] ¢ must satisfy the following

equations:
| V2q> = for y<o (2)
0 _ o= -
vo = 0 for y=0 (3)
lim (grad 9) = 0 (4)

y o -
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j lim [\/3- (i %g +v(9)] 0, of =P+ (5)
;,E P e
1 Lots) o s (6)
't The parameter v is def;ned as
_F
Ve (1)

where g is the acceleration of gravity. In (6) a denotes distance normal
to 8.

AN T Y

ine physical significance of the above equations is as follows. Equation
(2) is the partial differential equation for @ and exprescses the conditions
of incompressibility and irrotationality. Equations (3), (4), and (5) are the
auxiliary conditions on ¢@. Equation (3) is the linearized free-surface
condition, which requires that the pressure on the free-surface be constant.
Equation (4) expresses the vanishing of the disturbance at infinite depth,
and equation (5) is the radiation condition that requires the disturbance
to be an outgoing wave at infinite horizontal distance. Equation (6) is the

R A T e e

boundary condition on S. It expresses the fact that the norma) fluid velocity
on S must be specified as a function f(S) of position on the surface.

Often the fluid normal velocity is specified as equal to the normal velocity
of the surface S. However, in the case of a known incident wave, 9 denotes
the disturbance potential due to the body, and the boundary condition expresses
the fact that the normal velocity of the disturbance must cancel that of the

incideat wave on the body surface.
6.3 The Oscillating Point-Source Potential

The method of solving the mathematical problem defined by equations (2),
(3), (4), (5), and (6) is based on a so-called elementary solution or point-
source solution. The point-source potential is defined as the one that
identically satisfies the auxiliary conditions (3), (%), and (5), and that
satisfies the homogeneous partial differential equation (2) throughout space
except at one point, where it is singular. The singularity is such that the
point-source potential satisfies equation (2) with the right side replaced by

13
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the Dirac delta function (a function zero everywhere except at one point where
it is infinite and such that the integral of the function over any volume that
includes the singularity is unity). The point where the point-source potential
is singular is the location of the point source. '

Expressions for the point-source potential are given in reference [4].
If the source is located at the point (a,b,c) its potential at a general
point (x,y,z) is

o =1+ i—l+ 2vew.‘/Y %:1 ay + 2rive’*P) H(()l)(vR) (8)
where
? = (x-8)2+ (y-b)%+ (z —c)° (9)
= (x-a)+ (y+p)P+ (z-0c) (10)
B =(x-2)+ (z-¢) (11)

and vhere Hgl) =J_+ 1Y  is the Hankel function of the first kind of order
zero. (Jo and Y are the ordinary Bessel functions of order zero.) The
physical significances of the three distances r, rys and R are evident
from equations (9), (10), and (11), and they are illustrated in figure 2. The

distance r is the distance between the point source and the field point where
the potential is evaluated. Similarly, ry is the distance from the field

point to the image point of the source in the free surface. Finally, R 1is
the horizontal distance between source and field point. The point source
whose potential is given by (8) is defined as a source of unit strength.

For ordinary problems governed by Laplace's equation with no free surface
the point-source potential is simply 1/r. The first two terms of (8) are seen
to be the potentials of l/r-type point sources — one located at the point
source and one at its image in the free surface. The integral term in (8) may
be written

-vy . -V
2vewf e gy =- 2vf e (12)
st 5 VE? + (uty+b)2
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Figure 2. - Distances between a field point where potential is evaluated and
a point source and its image.
The square root on the right side of (12) is the distance between the point
(x,y,z) and the point (a,-b-u, c). Thus, this integral represents the l
potential of a l/r-type line source of exponentially decaying strength start-

ing at the image point (a, -b, c) of the point source and running vertically
downward through the free surface to y = -o

For large values of VR, the function Hgl)(vR) oscillates with
increasing horizontal distance R at a circular frequency of v. Thus v
is denoted the spatial circular frequency of the motion, and its relation to
the temporal frequency o 1is given by (7).

6.4 Re vesentation of the Solution by a Source Distribution
on the Body Surface

The unit point-source potential, wiaich for the present problem is given
by (8), is a function of the field point P with coordinates x,y,z where
the potential is evaluated and of the point q with coordinates a,b,c where
th . source is located. Accordingly, the potential of a unit point source may
be written ¢§(P,q). Now let the source point g be restricted to lie on the
surface S. (Figure 2.) A distribution of source density of strength o(q)

15
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(P, q)
Pix, y, 2)

Figure 3. - lllustration of quantities appearing in the integral equation.

is assumed to lie on the surface 'i. The potential at P due to this

distribution is

#®) = @ o, (2, 0)ela)as (13)
S

This potential satisfies the auxiliary conditions (3), (4), and (5) simply

because P does and because all these conditions are linear. Similarly ¢(P) 2
satisfies the partial differential equation (2) at all points of the half space '
y < 0 that are exterior to the surface S. Thus ¢(P) satisfies equations (2),

(3), (%), and (5) regardless of the nature of the function o(q). This func-

tion is determined in such a way that @(P) satisfies the boundary condition

(6).

Applying the boundary condition (6) to the potential of (13) requires
evaluating the limits of the spatial derivatives of (13) as the point P
approaches a point p on the surface S (figure 3). These same limits are
required to calculate fluid velocity components on S. Care is required
because the derivatives of 1/r, where r = r(P,q) is given by (9), become !

singular as the surface is approached. The other terms that comprise qg in

16
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equation (8) are not singular as P - p. Thus the singularity is exactly the
O same as that encountered in references [1] and [2], and the results of these
E references apply here. In particular, the application of the boundary condi-
. tion (6) to the potential (13) gives

Sl

) - 2wo(p) + [ & 19,0, 0)1a(a)as = £(2) (14)
S

where the right side of (6) has been written f(p) to show its dependence on
position on S. Equation (14) is a Fredholm integral equation of the second
kind for the source distribution of(q). Once it is solved for o(q) the
potential at any point is given by (13) and the velocity at any point by

v(P) = - grad o(P) = —ﬁgrm [o,(P,a)]o(a) as (15)
s .

The evaluation of either (13) or (15) et a point P=p on S requires the
limiting process discussed in references [1] and [2].

6.5 Logic of the Numerical Procedure
It should be noted that the discussion of the previous section applies to

the problems of references [1], [2], [3] as well as to the present problem.
In fact the equations of section 6.4 apply exactly to each of the problems of

these references if P is set equal to the appropriate point-source function.
Similarly the method of numerically solving the problem defined by equation (14)
and subsequently calculating the quantities (13) and (15) is logically identical
for all problems. This method is described in great detail in the references.
It will simply be outlined here.

The body surface S 1s approximated by a large number of small plane
quadrilateral surface elements, as is shown schematically in figure 4. The 3
total number of elements used to approximste the surface is denoted N, and q "
typical elements are denoted the i-th and the j-th, as shown in figure 4. Sub- :
scripts 1 and J denote quantities assoclated with the i-th and j-th elements,

-

respectively. In particular ng is the unit normal vector to the i-th element,

17
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CONTIOL POINTS

Figure 4. - Approximation of the body surface by plane quadrilateral elements.

and ASJ is the area of the j-th element. On each element the source density
is taken as constant. The value of source density on the j-th element is
denoted aJ.. On each element a control point is selected where the integral
equation (14%) is required to be satisfied and where the potential and velocity
will eventually be evaluaéed. The control point of the i-th element is denoted
Py

It is clear from the above that the potential and velocity at the control
point of the i-th element due to the j-th element are, respectively,

o

) 13% and vij o (16)

where

& = ~[7\¢S(pi,qj) ds
5y

(17)

b

3
(]

oS,
J
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and where qJ denotes a general point of the j-th element as shown in figure k. .
The normal velocity at the control point of the i-th element due to all the
elements is

.
A TINHTS EURSITR N LT T
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N
Y= z Aijoj (18)
J=1
Z where
i Ay = :1 . ?ij (19)

Application of the normal derivative boundary condition at the control points
of all elements then gives

P ATT e

i |
: z Aijoj = - £(p,), i=12, ... N (20)
J=1

where f(pi) is the right side of (6) or (14) evaluated at D; - (Recall that
d9p/dn = -Vh.) Equation (20) is the numerical approximation to the integral
equation (14). It consists of a set of linear algebraic equations for the
values of source density on the elements. Once this set of equations is
solved, the potentials and velocities at the control points of the elements

are calculated from

N
¢i= z °ijaj, i‘-‘l, 2, oo N
J=1
(21)
N
- -
Vi— ViJCJ., i=1, 2, s N
J=1

o A Lk

All of the above is quite straightforward. The only problem is the cal-
culation of the integrals in (17) for a function ¢, glven by (8). That is,
the only new calculation that is required to solve the problem of oscillatory

motion near a free surface is the integration of the oscillating point-source

potential and its derivatives over a quadrilateral element.

19

e e 1 e - . ot o s et




7.0 CALCULATION OF THE OSCILLATING POINT-SOURCE
POTENTIAL AND ITS DERIVATIVES

T.1 General Remarks

As stated in the previous section, the c:ntral problem of this method of
solution is the integration of the oscillating point-source potential and its
derivatives over a plane quadrilateral surface elcuent. These integrations
mist be done numerically and they must be done very rapidly, because a total
of N2 such integrations are required to produce the matrices ¢ij and 6;3,
where N is the number of elements used to approximate the body surface and
is thus a large number. The problem of numerical integration divides itself
into two parts. The first is the calculation of the point-source potential and
derivatives for general values of the parameters. The second is the integra-
tion of these quantities over an element by means of a multipole expansion.
This section, 7.0, will consider tue first of these parts, and section 8.0

will consider the second.
7.2 The Quantities Calculated

The horizontal distance R between the point source at the point (a,b,c)
and the field point (x,y,z) is given by equation (11). The vertical distance

between the field point and the image point (a,-b,c) of the point source is
h=-(y+b)>0 (22)

(Bee figure 2 for an illustration of these quantities.) Using these variables
and the results of eq ation (12) the oscillating point-source potential (8)

can be written

=]
1]
B~

e Y e Vay oV (1)
"r Ev[\/nm o e &

The 1/r and l/rl terms are already accounted for by the method of refer-
ence [1]. They will not be considered here, but attention is directed to the
last two terms. It should be noticed that x and z do not enter the
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above equation separately but occur only in R, 1i.e., the potential is
axisymmetric about a vertical line through the point source. Thus, only
h- and R-derivatives need be considered, and the x- and =z-derivatives
are easily obtained from the latter. All distances in the last two terms
of (23) enter as products with the inverse distance v. Such products are
dimensionless and are now defined as new variables. In particular the

dimensionless horizontal and vertical distances are

A=vR
(2k)
B=wvh
Thesc are essentially distances measured in wave lengths of the motion.
Substituting these in above, itogether with t = v u gives the following
form for the oscillating point-source potential:
L 1 "
% = T+ T + vl-q + @] (25)

where

et oat
@ = ¢ (4,B) =2 (26)
[ Va2 + (¢ - )2

2rie 'BHC()]') (a) (27)

CPH = CPH(A: B)

This form of g 1is used for A >5. For A € 5 the terms are regrouped in

the following manner:

0, = :'7+ %]-.- + V- + 9] (28)
where
N -t
@ = B(4,B) = 2 s_dt + 2re”Py_(A) (29)
0 Va2 + (¢t -B)2
@y = 95(4,B) = 2rie™y_(8) (30)
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The value A = 5, where the change is made from (25) to (28), is more or
less arbitrary. Form (25) is more convenient at large values of A. Form
(28) must be used at small values of A. because @ and 9y are well-
behaved at A = 0, while @, and @ are singular there.

It is the potentials @, By qh, q& and their derivatives that are
considered in this report. Only the A-derivatives need be considered. The
B-derivatives can be expressed in terms of the potential itself. Specifically,

%=_Q if q>=q)ﬂ or q’J (31)
Also
A2 + B2
ks & em ey o

The additional term in (32) can be handled by the method of reference [1].

N

For the integration over an element discussed in section 8.0 all four
of the above potentials must be considered. In the present section, however,
the interest is in formulas for expressing the point-source potential itself.
The two potentials Py and Py each consist of an exponential times a
Bessel function, and these functions may be calculated from more or less
standard formulas. (Reference [6] contains a rather extensive section on
Bessel functions.)

Thus, in this section attention is concentrated on the potentials A,
and Py and on their A-derivatives. Generally qi is of interest for
A>5 and P for A€ 5, but both have been investigated over a wider
range of A so that the cross-over point could be changed if desired. The
potentials @, and B and their A-derivatives are shown in figures T, 8,
9, and 10, and numerical values are given in tables 1 and 2. The nature and

general magnitude of these functions are illustrated in these figures.
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T.3 Laguerre-Gauss Quadrature for Large Values ;
of Horizontal Distance 4

For "large" values of the dimensionless horizontal distance A between
the point source and the field point, the oscillating point-source potential
is used in the form (25), and the potential @, from (26) is the one that
must be evaluated. Laguerre-Gauss quadrature is used to evaluate qt in the

form

H
=2 i ] (33)

w-2f
0 VA+ (¢ -8)2 321 Va2 + (¢, - )2

The constants Hﬂ are the weights of the quadrature, and the numbers tj
are the abscissas of the quadrature. Both HJ and tJ depend only on M,
the order of the quadrature. For the present application, the first abscissa

was set equal to zero, i.e.,

t, =0 (34)

1l
so that
2H d H
chz ——1—+2 i J
2+ B j=2 VA2 + (t-,J —}3)2
(35)

n
+
n

oH, i H,
vr
L 42 Va2 + (e, - B)2

In general the accuracy of Laguerre-Gauss quadrature improves with increasing
M, 1i.e., the more abscissas, the more accuracy. The term with abscissa of
zero, i.e., the first term of (35), is computationally free, because it may
be combined with the l/rl-term of (25). Thns, for the same computational
labor the form (35) should be more accurate than the form of Laguerre-Gauss
quadrature that does not prescribe any abscissas, because the former uses one
more abscissa. This plausible hypothesis was verified in the present case by

a large smount of numerical experimentation.
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Reference [7] gives the abscissas tj and weights Hj for the form of
Laguerre-Gauss quadrature that has zero value of the first abscissa. The
results for M=1, 2, 3, 4, 5, 6 are given in table 3. These were used in
equation (33) or (35) and the results were compared with the results of "brute
force” numerical evaluations of e, and its A-derivative. (The approxima-
tion to the A-derivative of o, is obtained by analytically differentiating
(33) or (35).) In this manner computational errors were obtained for various
values of M at sets of values of A and B. For each A the largest
error for any value of B was determined and designated the maximum error
at that A. These maximum errors are presented in table 4 for 2< A < 10.
These errors should be compared with the functions ¢ and Bqt/BA, which
are given in table 1. Table 4 illustrates the very rapid decrease of error
with increasing A and M. If an allowable error is defined as one less
than 0.001, two abscissas are sufficient for A > 6, while three suffice for
A > L4, Thus, in the present context A becomes "large™ at a value of four
or less. The smaller the value of A, the larger is the value of M that
must be uced to obtain a given accuracy.

For the present purpose, it was tentatively decided to use M =3 and
to restrict use of this formula to the case A > 5. For larger values of M
the computation (35) is more time-consuming than the expansions discussed
later in this section. With this M errors in @ and 3¢ /A are bounded
by 0.00023. The formula for @, is explicitly

% - 0. 66666667 1.2440169 % 0.089316398 A>5
Va2 4+ 82 A2+ (1.2679492 — B2 A2 + (4.7320508 — B)?
.2 . 7320508 ~ B) (36)

and the formula for aqxI/aA is obtained by differentiating (36).

7.4 'The Exponential-Integral Expansion for Small Values of the
Ratio of Horizontal to Vertical Distance

For small values of the dimensionless horizontal distance A between the
point source and the field point, the osecillating point-source potential is
used in the form (28), and the potential @y from (29) is the one that must be
evaluated. On page 477 of reference [4] two forms of the oscillating point-
source potential are given. By comparing, these forms it is evident that in

26
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TABLE

3

ABSCISSAS AND WEIGHTS FOR LAGUERRE-GAUSS QUADRATURE WITH

ZERO VALUE OF THE FIRST ABSCISSA

3 t 3 Hj
M=1
1.0 0 1.0
M=2
1.0 0 0.5
2.0 2.0 0.5
M=3
1.0 0 0.33333333
2.0 1.26794919 0.62200847
3.0 L, 73205081 0.04465820
M=15
1.0 0 0.25
2.0 0.93582223 0.62905268
3.0 3.30540729 0.11835639
4.0 T.75877048 0.00259093
=5
1.0 0 0.20
2.0 0.74329193 0. 60120469
3.0 2.57163501 0.18573233
4.0 5. 73117875 0.01294285
5.0 10.953894 51 0.00012913
M=20 K
1.0 0 0.16666667
2.0 0. 61703085 0. 56401481
3.0 2.11296596 0.23771357
4.0 4. 61083315 0.03056192
5.0 8. 39906697 0.00103820
6.0 14.26010307 0.00000484
27
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the present notation the following result holds

K~V v

i‘f”““”[ Kty (/98 (Ep)a on

where the designation PV signifies that the principal value of the integral
is to te taken. With the variable change k = vt and some reﬁrrangement

(37) yeilds for P

© e-BtJo(At) o Bt .
q,N=,_qu 2 dt + T—g-fe J_(At)at (38)
0 A" + B 0
or
J (At)
2Pvf —2—dt (39)

This last follows from the fact that the bracketed term in (38) is zero as can
be verified from a table of Laplace transforms, for example, page 1024 of
reference [6]. The form (39) serves as the basis of an expansion involving
the exponential integral Ei(B), which is defined as

Ei(B) = - PVf 3; dt (40)

A simple variable change gives the result that

Q=W (k1)
from which it immediately follows that
n =Bt
J (-1)" PVf dt = —[ BEi(B)] (42)
dB
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To expand the integral in (39), replace J, by its power series, which is
convergent for all values of the argument. This gives

= (-1)¥ /a2 v 2k -Bt
% = 2 (51)2 (3) Pvf St (43)
k=0 * 0

In view of the above this is '

i = (-1)% a2k 2% 1
% =2 kZ:O (! ('2') -3 [e BEl(B)] (1)
From (L40)
d | ron e
= (Ei(B)] = 5~ (45)

Repeated use of (45) in (44) gives the final form of the exponential-integral
expansion. Specifically,

- 2k
=2 ) (1% (4) (16)
k=0
where
c_(B) = e"Ei(B) (&7)
ok-1
p2k - A
Ck(B) = k2 e BEi(B) - =1 (48)
2% (k!) )Zo 3™

The expansion for the A-derivative of P is obtained from (40) by differ-
entiation. The bracketed term in (48) consists of the difference between the
quantity e'BEi(B) and the first 2k terms in its asymptotic expansion for
large B (see below).
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3 The factor sz has been included in the coefficient functions given by
| (48) to minimize their variation with B. That this is the correct factor to
accomplish this may be inferred from the limiting forms of these functions

1 for very small and very large values of B. For large B the asymptotic

; _ series for the exponential integral gives

o (m) ~ G =N e o (B)] B (19)

For small B the form

2k — 1

- 22k(k.')2! 1+ 0(B)], B -0 (50)

L oA

Ck(B) -

is obtained directly. Thus, Ck(B) approaches zero as 1/B for large B

and approaches a finite value for small B. Division of these quantities by
B2k would result in coefficient functions that rapidly approach zero for ]
large B and that become large for small B. If the limiting forms (49) and

(50) are used in the series (46), in both cases the ratio test shows converg-

ence for A/B < 1 and divergence for A/B > 1.

Thus, the expanfion for small values of A 1is actually an expansion
in powers of A/B, aid it is the value of this parameter that determines how

many terms of the expansion must be used to obtain a certain desired accuracy.
Clearly small values of A/B may correspond to rather large values of A if

B is sufficiently large.

BT,

The approximate form of (46) that is used for computation is, of course,

f M . R
@ - 2 z (-1)%,(2) (&) (51)
k=0

Values of @ calculated from (51) and of B¢h/BA calculated from the
derivative of (51) have been compared with "brute force" numerical evaluations
for various orders of the expansion, i.e., various values of M, over a wide
range of values of B and A/B. For each value of A/B the maximum error

for any value of B was determined and designated the maximum error at that
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value of A/B. These maximum errors are shown in figure 11. (The functions
themselves are shown in figures 9 and 10.) The errors in the derivative
have been multiplied by A to minimize their dependence on B for fixed
A/B. For M =1L the expansion is accurate to 0.001l vp to values of A/B
of rbout 0.4 to 0.5. The smallest value of M that is used is M= 1.
Notice that this means that two terms of the expansion (51) are used.

If subroutines are available for the exponential integral, the coef-
ficient functions Ck(B) can be calculated directly. However, such sub-
routines are rare. To fill this need, the functions Ck(B) have been fitted
with polynomials in the ranges: 0< B <1, 1< B<?2, 2< Bsl, L< B %8,
and 8 < B <10. The results are contained in Appendix A. All the Ck(B)
have individval polynomial fits, except Cl(B)’ which is calculated from
the relation

¢,(B) = % [Beco(B) -1- B] (52)

which us obvious from the definition (48). This method of calculating Cl(B)
not only saves computing time, but also prevents numerical difficulty in the
multipole expansion at small values of R or A (see section 8.3). The
other coefficient functions can also be expressed as a multiple of Co(B)
plus a polynomial, but the expressions contain 2k + 2 terms and for the
larger k are more complicated than the fitted polynomials. In Appendix A
all the CK(B) are fitted to about the same accuracy, approximately 0.000L.
When these functions are used, they are multiplied by (A/B)ek, where A/B
is never larger than one-half. Thus, less accuracy is required for the
functions with larger values of k, and further investigation will very
probably show that one or two terms may be omicted from the polynomial fits

for Ck(B)’ k =2, 3, b, This change will reduce computing time.

For B > 10, the coefficient functions are calculated using the
asymptotic expansion of e‘BEi(B) for large B. This expansion is

o0

Bi(s) - ) A, B (53)
Ao P
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The accuracy of an asymptotic expansion is usually optimized if the expansion
is terminated with the smallest term. For B = 10, the tenth and eleventh
terms of (53) are the smallest, but the accuracy is insensitive to term
number between six and ten. For the present purposes six terms are used for
CO’ C2, and C}’ and eight terms are used for Ch' As mentioned above,
use of the asymptotic expansion leads to some cancellation in the bracketed
term in .(48). The resulting expressions for the coefficient functions are:.

c(B)~l+L+g—+6+g&+12°
g B P g » 8
Cl(B)=1]f B2C°(B)—1—B]
_3N
c,(B) = % B 25] B >10 (54)
C3(B2=0
Ch(B)zo

The approximations (54) are less accurate for the higher values of k, but
the lessening of accuracy with increasing k is consistent with the decreasing

accuracy requirement that is discussed above.

7.5 Z2xpansions for Finite Values of the Ratio of Vertical
to Horizontal Distance

The expansion of the previous section calculates qh(A,B) accurately for
all values of the parameter B/A larger than some value in the range 2.0 to
2.5, say B/A = 2.3 for definiteness. What now remains to be devised is a
method of calculating @(A,B) for the range O =<B/A =2.3. It turns out

that several expansions are required to do this, each of which is based on a

particular value of B/A.
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It is desired to expand QJN(A,B) about a particular value of B/A,
which is denoted p, i.e., the expansion is about B = pA. All the expan-
sions of this type are based on the formula

-(B-pA) (Bfe)-e e du
@ (A,B) = e Ay(A,08) + 2 (55)

0 Vi+ (u+p)?

vwhich is obtained from (29) by straight-forward manipulation. First define

€ =B-pA (56)

The function 1/V1 + (u + p)2 is expanded as a power series about u = 0 in
the form

00

. - Z a (o)u" (57)
\/1 + (u + p) k=0

where the first few ak(p) are as follows

J1+ o2 a,(p)

1]
=

Vi+o° a,(p) = - —E—

1+p
‘/l-'.pea (p) =-£2-;].:/i
27 )2
(58)
3
Vi+ o2 a (p) - el =(3/2)p
3 (l+pe)3

o' — 352 + 3/8
(1+ p2)l‘

vl + 92 a'—l(p)

1}

_ 22 = 50° + (15/8)p
(1 + p2)?

JL+ a(p)
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Now (55) beccmes

o e€/A
¢ oy (a,0) + 2 Z 2, (p) f ue e (59)

k=0 0 -

qh(A,B) =e

Tne integral in (59) is a standard form with value

e/ X=1
fukeAudu = —;—if Z (-1))\ & =N 1:' e %zli' ~-1) (60)
0 T o

This gives for (pN

= k!a (p) k~A
qh(A,B) =e€ ¢N(A’°A) + 2e€ E: :Elp E: (ke-ASJ

k=1

r2ef-1) ) (D 7 (o) (61)

This can be rearranged tq give the final result

M K+l
BA) = o) + ) (1 (0)e,, (e (£) (&)

k=0

where

Ji+ o2 bole) =2

i+ b (o) - —2— ‘

1+ ¢
2
JL+ 0% b (p) = 7 —E—= (63)
2 31+ )
35

Ko *atitg gy

T VT TRY e

DT

el o avE




e oo P ASEOT RO E Y TN 8717 arptnte g <oy S

i+ b(p)-lﬁ;% (63)

h 2
J1+ 6% vy (p) = }2-0- S -2k +5

1+ ?)

I _ R
Ji+ ¢ bs() = 37 bp” = M0p + 1op

@+ ?)°

and where the functions fk(e) are deéfined as

£ () = Z(l)J T

k-2

-=1)! - -€ e)‘

T L%{__.lil_ (-1)k 1 [e - z (-1)M )7]
2 A=0

€ 2 63
=1"E+k(k€+17—k(f~:+lﬂk+ﬂ+"' (64)
The derivative of Py is given by
) el k
2 (4,8) = & oayta,m + &5 [ )i+ ) 0o @ (5) 6
k=0
where
v1+ 92 co(p) =—2p
/ c e, () =
p) -, p2
' 2
Jl + =
P cg(p) %) —I—;P—pg-yz (66)
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(66)

2
J1+n2c(p)=—h9—-1—5
3 (1 + @)

5 5 4’ —
AR e

4 2
/ 2 8p — 12p~ + 1
1+e c5(p) =% ) (1 +Lp2)5

Notice that the infinite series that would be required to give equality in (62)
and (65) have been replaced by finite series for practical computation. The
upper limit M of the summation for the potential is the order of the expan-
sion. A total of M+ 1 terms involving powers of € are added to the basic
term in the potential expansion (60), and M + 2 terms in powers of € are
added in the derivative expansion (63). (Both expansions are terminated with
the same fk(e).)

If the expansions (62) and (65) are considered infinite series, the
question of their convergence arises. From analysis of special cases and
general order of magnitude arguments, it appears that the series convergence
for |e/al <1.

The above formulas permit expansions up to M = k4 to be written down
for any expansion parameter p. (In fact M =5 1is included for the potential
expansion.) One value of p is special, namely p = O. For this value,
every other term in the expansion is zero, and for the same computational
effort roughly twice as large a value of M can be used for p = 0 as for
other wvalues of p. Expansions have been worked out for three values of
p: p=0, p=1, p=T/h. These expansions are designated the near-zero,
near-one, and near-seven-quarters expansions, respectively. They appear to
cover the range O = B/A < 2.3 adequately, but possibly a few small ranges
require new expansions. For these values of p, the first few coefficiants
in the expansiqns are given in table 5. Specifically, table 5 contains bk(l)’
ck(l), bk(7/l+), and ck("(/h) for k=0,1,2, 3 4 5 and bk(O) and
ck(O) for k=1,2, 3 ..., 9. With these coefficients the near-zero expan-

sion can be written down with up to five nonzero terms in the summations — the
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same numver as the other expansions. For k > 5 the general formulas for
bk(p) and ck(p) are not given above, because these terms are used cnly for
p = 0. For nonzero p it is more efficient computationally to derive more

expansions than to extend existing expansions to high values of k.

The accuracy of the near-zero and near-one expansions for various orders
M has been determined by comparing values of @ and b@h/ba calculated by
the expansions with "brute force" numerical evaluations for a considerable
range of values of A and B/A. For each value of B/A the largest error
that occurs for any A has been determined and desjgnated the maximun error
at that value of B/A. These maximum errors are shown in figures 12 and 13
for the near-zero and near-one expansions, respectively. The errors in the
derivative have been multiplied by A to minimize their dependence on A for
fixed B/A. An exhaustive error study has not been made for the near-seven-
quarters expansion. However, from the form of the general expansion, it is
felt that the errors for this expansion are nearly the same as those for the
near-one expansion if the two expansions are compared at equal values of
¢/A = B/A — p. That is, figure 13 can serve approximately as the error plot
for the near-seven-quarters expansion, if the abscissa scale is translated to

make T/4 lie where 1 does now.

For small k the functions fk(e) are evaluvated from the middle line
of (64), i.e.,

"
1

£, (¢)

"
'—l
|
o

ef,(e) € - (67)

€+ e-1]

s (e) = 2[e
3

It will be noticed that the functions fk(e) enter the expansions (62) and
(65) multiplied by the powers of ¢ given in (67). For higher values of k,
this method of evalvation is cumbersome. Accordingly, the functions fk(e)
for k=3, 4, 5 and 6 have been fitted with polynomials over a range
-2.5 <€ <2.5. The functions fk(e) for k = 8, and 10, have been
fitted over the range O < € < 2.5. These latter functions are used only

in the near-zero expansion for which € cannot be negative. The polynomial

fits of these functions are given in Appendix B.
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To evaluate expansions (62) and (65) explicit formulas for the leading

terms are required. Specifically, the functions

G(A’ p) = (pn(A’ QA)

and

(a,0) = oay(h00) + 35 [ay(n, 00)] (68)

are needed in the range O < A <5. These two functions have been fitted with
<As<5 for p=0,1, and T/%. The results

are given in Appendix C. For the range O0< A =<1 improved polynomial fits

pelynomials in the range 1

were obtained by writing the above functions in the forms

G(a,0) = g(A,p) + Ee'pAJO(A)ln (%— A)
(4, 0) = n(a,0) = 2e™5 (a)in (£ 4) (69)

v 2e™5 (a) &

The functions g(A,p) and h(A,p) sre not singular for small A, and it is
these functions that are fitted with polynomials in the range 0 < A <1. The

results are also given in Appendix C.

It can be seen from equation.(69) that these expansions are singular for
A°= 0. With p fixed the condition A - 0 implies that also B -0 and
thus that the source, its image, and the field point approach each other and
approach the free surface. Clearly, singularity is expected for this sitvation.
Both these expansions and the multipole expansion of the following section fail

for this condition.

If the expansions are used for values of A as large as five, the
ranges of the fits in Appendix B are appropriate as long as Ie/AI is no
greater than one-half. If it should prove necessary to use values of |e/A|
greater than one-half, either the range of the polynomial fits must be expanded,
which is quite straightforward, or the expansions must be restricted to valuves
of A less than some valve less than five. In the latter case, the Laguerre-
Gauss formulas must be used down to the new limit on A, and this can be

arranged simply as can be seen in table 4. However, it is desirable to keep
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values of |e/A| as low as possible so that relatively few terms of the
expansions (62) and (65) are needed for good accuracy.

7.6 A Sample Range Criterion for the Expansions

The formulas of the previous parfs of this section can be used to calculate
Py and its A-derivative to any degree of accuracy. The greater the accuracy
that is required, the greater is the number of expancsions that are needed,
i.e., the greater is the number of values of p that must be used with (55).
The accuracy requirement basically determines which expansion and how many
terms of it are to be used at a pafticalar set of values of A and B. How-
ever, the translation of this requirement into an actual logical decision
routine for selecting the expansion and term number is a nontrivial task. To

illustrate this procedure an example is presented here.

For illustrative *oses it is assumed that it is required to calculate
Py and 3¢h/aA with an error not exceeding 0.001l in absolute value. (Compare
the values of these functions given in table 2 and figures 9 and 10.) This
seems to be a reasonable error criterion for applicatious. Possibly, it is too
conservative. (A decision routine for a different error criterion could be
worked out from the error curves of figures 11, 12, and 13.) It is further
assumed that only the expansions discussed in the previous parts of this
section are to be used with only the terms that have been rresented. The
calculation is to cover the complete range of B and all A up to five. In

all cases the fewest possible terms are to be used to conserve computing time.

The error curves shown in figures 11, 12, and 13 are used, but the
results are adjusted, always in the conservative direction, to simplify the
decision routine. The results are shown in figure 1%, whose abscissa is A
and whose ordinate is B/A. The coordinate plane is divided into regions,
in each of which a certain number of terms of a particular expansion is used
to calculate @y and th/BA. In all cases the number of terms is specified
by M, wvhere this quantity has the same meaning as it does in the definitions
of the expansions that are given in the previous parts of this section. The
error curves of the expansions have been conservatively simplified to make
the boundaries of the regions in figure 14 straight lines, whose equations

are given. It can be seen that the only regions that are not handled
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satisfactorily are three small regions having small values of A near B/A
values of 0.6, l.4, and 2.1, respectively. These regions could be handled
by means of one~term expansions about thosz values of p. Possibly an

increase of the error criterion would cause these regions to disappear.
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8.0 INTEGRATION OVER AN ELEMENT USING A MULTIPOLE EXPANSION
8.1 Geometric uantities Associated with an Element

To carry out the method of solution outlined in section 6.5, it is
necessary to develop formulas for calculating the potential and velocity at
points in space due to a unit source density on one of the plane quadrilatersl

: elements used to approximate the body surface (see figure 4). This requires

¢ integrating the formulas for the oscillating point source potential and its

: gradient over a general quadrilateral element. Certain geometric quantities
associated with the quadrilateral are used to perform this dintegration.

Thecze quantities are defined in this section.

Figure 5 shows a general quadrilateral element. The coordinates of the
centroid of the area of the quadrilateral are X yb, zo. Integrations are
performed in a coordinate system based on the element. The variables of this
coordinate system are ¢, 1, {, where the £&- and mn-axes lie in the plane of
the element and the {-axis is normal to this plane. The origin of this coordi-
nate system is taken as the centroid, and the unit vectors along the axes of

the system are:

\-( xo.'yo * ZO)

R Y

FREE SURFACE nY

y [--- {k(x.y.z)

A i G P T S T e B e

RO
(Xor Yor 20)
1 (a,b,c)
g
1 Figure 5. - lllustration of quantities used to obtain the multipole expansion.
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- - -

g-axis: alli + a123 + a15k
- - -

n-axis: ayi+a,d+ a25k (70)
- - -

t-axis: azyi + az5d + a35k

where 'iT, 3, Tc. are the unit vectors along the x, y, z axes, respectively.
A point with coordinates x, y, z has coordinates &, 1, { in the system

based on an element where these coordinates are related by

£ = an(x - xo) + alz(y - yo) + aD(Z - zo)
n=a,(x-x)+a,(ly-y)+ a25(z -z.) (1)
b= ag(x=x)+ag,y—y)+ag(z-2)

The maximum dimension of the quadrilateral is denoted t. Its value
determines the size of the quadrilateral. The shape of the quadrilateral is
expressed by the normalized moments of its area. Specifically, the normalized

moments are:

In= m+,1,+2 ﬂ £"'n"dgdn (12)
t AS

where the integral is over the area AS of the element. The order of a
particular moment is defined as the sum of its subscripts m+n. In geheral,
the size of the moments decreases with increasing order. The zeroth order
moment IOO is the normelized area of the element, and the second order

moments, I I and are the normalized "moments of inertia'". The

207 W I02’

first order moments, IlO nd IOl’ are zero because the origin of coordinates

is the centroid of the area.

L




T

- e

8.2 The Multipole Expansion

It will be recalled that the potential at a point (x,y,z) due to a

unit oscillating point source at a point (a,b,c) is of the form

+ vo'(A,B) (73)

o =)

n
|

+
H |I—'

1

In integrating this expression over an element the two 1/r terms are treated
by the method of reference 1. The term of interest here is of one of two

forms. Either

vg'(A,B)

vI-q,(4,B) + q,(A,B)] (7)

or

vo' (4,B) = v[-q,(A,B) + 9;(4,B,] (15)

where the individual potentials ¢t, qh} ¢h’ and qh are given by equations
(26), (27), (29), and (30), respectively. In this section

¢ = ¢(A,B) ('76)

is used to denote any oné of the four individusl potentials of (Tl4) and (75)
which must be integrated over an element. The quantities A and B depend on

the coordinates a,b,c of the point source. Specifically,

v\/(x —a)2 + (z - c)2 = VR

>
[}

(17

B=-v(y +b) =vh

The process used to integrate the quantity vQ over an element is known as
the multipole expansion. In general terms it vroceeds as follows. The point
(a,b,c) where the source is located is taken as a general point on the quad-
rilateral element as shown in figure 5. This point is expressed in the element
coordinate system by using a,b,c in place of x,y,z in equation (T1).

Because the point is on the element the resulting f 1is zero. By this means
the quantities A and B, and thus the quantity v, are expressed in terms

of the coordinates xo, yo, Zo of the centroid of the element and the
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coordinates &, 1 of a point on the element in its own coordinate system.

This expression for v 1is expanded in a two-variable Taylor series in powers
of & ané 1. The resulting series consists of certain derivatives of ¢
evaluated at the centroid, i.e., at the point & =1 = 0, multiplied by powers
of & and 1. The derivatives of ¢ are constants with regard to integration
over the element, and integration of the powers of & and 17 gives the nor-

malized moments, equation (72).

The subscript O 1is used to denote quantities evaluated at the centroid,
e.g., (Bcp/aA)o, etc. In particular

Ao

v\/(x —xo)2 + (z - zo)2 = VR,
(78)

B, -v(y + yo) = vh

(o]

Here Ro and ho are, respectively, the horizontal and vertical distances
between the field point (x,y,z) and the image point (xo, -yo,zo) of the

centroid of the element.

In carrying out the details of the multipole expansion it turns out to be
more efficient to expand the velocity components rather than the potential.
Let the integrated potential of the element be

o = vﬂqadedn (79)
S

where @ may be any of the potentials qJL, q)H, tpN, or q)J. The velocity

components associated with this potential are

g w[[%f dgan

A

<3
(]

<
"

y 'v\/]‘g% dtan (60)
S

i o d
S
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These components are integrated over the element in the above-described
manner. The potential can be expressed in terms of the y-component V&.
Specifically,

- oy [ dkdn_1 : _
o = 2v1/ r, vvy if ¢=q or By
NS
(81)
o= - iy if Q= or @
v Yy qh Jd

The integral term of (81) can be absorbed with the integral of the l/r1 term
of (73) and evalvated by the method of reference 1.

In deriving explicit formulas for the velocity components (80) use is
made of the fact that the first order area moments, Ilo and IOl’ are zero.
Use is also made of the fact that ¢ is an axisymmetric solution of Laplace’'s

equation in cylindrical coordinates, i.e., that

Ang_A(A%)‘Lng:o (82)

The manipulations required to derive the formulas of the multipole expansion
are rather lengthy and are not included here. Instead only the results are

presented.
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The expansion for Vx is
o9 (x
Y (an) ("t) [bzo) ]
32 3 x (x ]
_(BB) (vt) [§0) + b31)( O)+
3
4 (Q-%) (vt) [b(x) ]
OB
0
(83)

) b
+ (%)0 (Vt)3 [cgg) 3(51 (;_0)+ J

3 9
—(%L) (vt)h [cl%) + .ae
OB"3A o i

The expressions for Vy and VZ are identical to the above with superscripts

= (%%)o (vt)? l:cég) + cg) (11;—()) ox) (;—) + W

x replaced by superscripts y and 2z, respectively. Before explicit formulas
for the vdrious ~antities in (83) are presented, some discussion of the gen-
eral form of the expansion seems in order. The expansion (83) is the sum of

two expansions in powers of (vt): the "b array" whose rows are multiplied by
successive B-derivetives of ¢, and the "c array" whose rows are multiplied

by successive B-derivatives of (8¢/3A). All rows of both arrays are infinite
series in powers of (t/Rb)’ except the first row of the "b array", which con-
sists of a single term. The complete expansion is thus in powers of the two
variables (vt) and (t/RO). The coefficients b~ and c (with any
superscript x,y, or 2z) have subscripts that denote the powers of those

variables that the coefficient multiplies. Specifically, the first subscript m
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denotes the power of (vt), and the second subscript n denotes the power

of (t/R ). The coefficients b~ and c_  are each linear combinations of

the normalized moments of order equal to two less than the sum of the subscripts
of the coefficient. (That is, the sum of the subscripts of the coefficient is
two greater than the sum of the subscripts of the normalized moments from which
it is formed.) Thus, each coefficient bmn or ¢ . is designated as being

of a particular order, which is simply the order of the normalized moments

used to form it. The chief decrease in size of the coefficients in (83) is
with increasing order. Note that coefficients of a fixed order are all on

the same "antidiagonal" of the arrays in (83). This is similar to the multipole

expansion described in reference [3].

In particular, the terms of (83) involving by, and c,, are the zeroth
order terms of the expansion. These coefficients depend on the normalized
area Ioo of the element. The first order coefficients b}o’ cjo, and Cx
depend on the first order moments I10 and IOl' Thus, these coefficients
are zero if, as in the present case, the expansion is about the centroid of
the element. They have been included in (83) to make clear the form of the
expansion. The coefficients, bho’ b31, )0 c31, and Cyy are the second
order coefficients. The expansion is used in two forms. Either the zeroth
order terms are the only ones retained, or the zeroth order terms and all
second order terms are retained. In the latter case, expansion (83) is used
as written. Higher-order terms are not included because the complexity of the

terms increases rapidly with order.

First define the auxiliary quantities

o o o
@=—2, B=—52, 7="% (8%)
o o o
d=L--a.p, B=f-a,p (85)
o o
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Then the coefficients in expansion (83) are as given

AL, +B1,,

210K * 8k,

= 8500 + a1y,

H=

&~
"

a,.CG

890507 * 8550,

W, +E-L, - I,

-G, +BL, (6
-3k +BE, (87)
=8Iy *ayt,  (88)
(89)
(90)

in the tables below:

. (x) () (2)

mn mn mn
2| o 0 I, 0
31 0 0 0 0

1 1. _
5| 1| (300 -ayK - 221%) ° (5 a3k = 25K
v | o o 2 (H-3) ),
m n clf;) cg) clfni)
2| o oI, 0 2
2 | 1 0 0 0
2| 2 2b§’1‘) 0 2b§i)
31 o0 0 0 0
(x) _ _ DL (z)

31 1 (2%0 ay,6; a.21G2) (3 - 27.) (2b,40 —a 56, - a.23G2)
| o mﬁg) -1 7b£.g)

The many zeros in these tables greatly simplify the computation.




The B-derivatives in (83) can be simply related to the quantity that is
differentiated. It is evident from definitions (27) and (30) or directly
from relation (31) that

m

§J2== L\
- (-1)7g
if ?= @ or @y (91)
o _ (pmde
3EA 075

For @ and By the B-derivatives can be computed successively from the
definitions (26) and (29) or more directly from relation (32). The results

are as follows:

if Q= qt or qh

9 2
= o= ¢ — ————
£ L Vrl
2 L
99 _,|lo—2___2B
3 L (ur)’
Yo _ _ a2 & . B __6F (52)
6B5 ) VI (wr )3 (vr )3 (vr )5
I 1 1l 1l
il h)
B [ o)
OBAA 3
* n)
OO _|dp, _2A , _6AB
2 JA 3 5
oB“A (vrl) (Vrl)
where as before
e, = A2+ B (93)
Expressions similar to (92) could be derived for the higher derivatives, so

that in principle expansion (83) can be carried to any desired order. The
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derivatives in (92) are all that are needed if expansion (83) is terminated

with second order terms.

The formmlas of this section permit the potential and velocity at a
general point in space due to a general quadrilateral element to be evaluated
in terms of the potential and A-derivative of the potential due to a p;int-
source at the centroid of the quadrilateral. These two quantities are
evaluated by the formulas of section 7.0. Thus, the multipole expansion
reduces the quadrilateral source to a point source as far as computation is

concerned and is effective for all range of A and B.

£.3 Behavior of the Multipole Expansion at Small Values
of Horicontal Distance

From the form of expansion (83) it appears that the expansion becomes
singular as Ro/t approaches zero, i.e., as the horizontal distance between
the centroid of the element and the field point becomes small. However, it
i3 clear that if the potential ¢ is an analytic function, as are all ¢

considered for the present purpose, this singularity must be apparent and nct

real. It is possible that the apparent singularity might lead to numerical
difficulty, snd calculational procedures must be designed to avcid such prob-
lems. It turns out that to‘avoid any singularity the multipole expansion
must include either all terms of a particular order or no such terms. The
procedure adopted in this report is such that the apparent singularity causes
no difficulty. Of course, expansion (83) cannot be used if Ro/t is exactly

zero. Thus, a test is made and special limiting formulas are used if

IRb/t| < ¢, where ¢ is taken as, say, 1c'h. The discussion below shows
that the expansion formula may be used for small values of Ro/t Just greater

than any nonzero e.

The potentially troublesome terms of (83) are those containing negative
powers of Ro/t. For the present discussion it suffices to consider only




e
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those terms and to ignore the others. The sum of the singular terms of (83)
are (dropping the subscripts o)

V, (sing.) = — (:_}) (vt)3 b§:{)(%)
<£>(“)2 5 (& ) (9%)

(ﬁ) (vt)? o (x) ( )

For finite values of v and B = vh taking the limit as R - 0 means that
A = VR and thus A/B are both small. Thus, the potential is considered only
in the form (28), i.e., @ and @y are used in expansion (83), not @, and
Py Also, the potential qh and its A-derivative are evaluated by means of

e o o

S R

the exponential-integral expansion vsing an order of the expansion M =1
(figure 1%). Thus, equation (51) gives for tie potential and its derivative

2
@ = 2 [CO(B) - ¢, () (151) ]+ (%)
s}
(p“ - [— 2 ¢ (8) (g)]af (&%)

where the O(Rh) and O(RB) terms in (95) merely illustrate the magnitude

of neglected terms, since only the terms in square brackets are retained for
M = 1. The coefficient QJI» is not calculated independently but is obtained
from CO(B) by equation (52). Thus, the above expressions are

(95)

@ = CO(B)[2 - % (vR)2] + 3%—-1:(}31)2 + o(R)

(96)
o
a..;.‘.“ - CO(B)(VR) + _lé_;;_L (131-) + 0(R)
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If (96) and (92) are used in (9%), the result is (dropping the O(Rh) and
O(R;) terms that contribute nothing in the limit)

2
1 2 E+1/R 2 2B
o) = fo,fe - o]+ 232 @) - 2o o2

x(vwi(x)(%)

(97)
e @om - 252 (2)] el (&)
+ Ac 0w - 231 (R) - —(V—R)—l(vt)’c"‘)(g) i
or |
v, (sing.) = {~ :260(13) . vg_1+ - ](%)3 (x)(%)
(w22 e ) on

(ﬂww FJM_BZI— 23]+mm

B (vr1

The two terms in curly brackets in (98) will be computed separately in practice.
Both terms have singularities of order L/R with coefficients that are the
terms in square brackets. These singularities, which are shown below to

cancel analytically, must also cancel numerically. Since the singularity is
only first order, this can be arranged with moderate caution in the calcula-

tional procedure. This has been verified explicitly by nurerical experimenta-

tion at R/t = ¢ = 10-4,

There are two kinds of terms in (98). The terms that do not Znvolve
(%(B) are exact except for round-off caused by the finite word length of

the computer. The terms containing CO(B) have an additional, much larger




error due to the polynomial fit of CO(B). To show these two types of terms
explicitly, (28) is written in the form

v (sing.) = (vt)? (% c_(B) o) 4 O 4 | 2plx) (—1—+ B

S

31 22 31 Vrl (Vrl)3
N CIR-EBY
22 "3 (99)
b (x) B+ 1 2
+ (v6)" o5y’ | (8) - B; s + O(R)

From the table of coefficient functions above, it can be seen that

cé;) = 2b§’1‘) (100)
and the same statement is true if the superscript x ie replaced by y or =z.
Thus, the coefficient of (t/R)C_(B) in (99) vanishes, and thus errors due to
fitting CO(B) are not critical. This is entirely due to the fact that c]_(B)
is computed in terms of CO(B) from (52). 1If Cl(B) were computed separ-
ately, CO(B) and Cl(B) would have independent errors and the required
cancellation would not occur. There would then be numerical difficulty for
small R. To show the disappearance in the limit of the second term in (99)

it should be noticed that

L - £ 2 o(2®) (101)

(o]

This, together with (100) gives the desired result. Thus, in the limit as
R- 0

2

v, (sing.)~ (vt)hcgi) [CO(B) - Q-B—"-é (102)

with similar expressions for V& and VZ. These expressions may be used for
ln /+] &

n_/% < €
| Yo
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Methods of computing the potential Py vhich is given by (30), are not
discussed in section 7.0, because it is felt that standard expressions will
be adequate. In particular, for moderate-to-small values of A, it seems
reasonable to use the rapidly convergent Taylor series for JB(A) in powers
of A. In this case the apparent singularities in the multipole expansion
can be shown to cancel analytically and numerical difficulty at small R
should be no worse than for e

8.4 Accuracy of the Multivole Expansion

The accuracy of the multipole expansion was investigated by using it to
calculate a large number of cases and comparing the results with the results

of "brute force" numerical integrations. In formulating error curves one

SR

problem was to be conservative without being too conservative. The procedure

used to generate these error curves is described below. :

b catbes et

The potential was considered in the form (28), i.e., divided into Py
and qh. (The l/r terms were not considered.) Thus the potential was
divided into its real part -vq, and its imaginary part vcpJ/i. In the
derivative expressions (91) and (92) that enter into the expansion (83) =xact
values of @ and (aqyaA) were used, so that any errors are those ar 1
with the mltipole expansion. The accuracy of the multipole expansior =
on the parameters (ho/t), (Rb/t) and (vt) and also on the shape of the
element and on the direction of the fieid point with respect to the centroid
of the element. In calculating error curves, the maximum error with respect to
element shape, direction, and +elocity component was determined as a function
of the three parameters above. Specifically, a set of values of (ho/t),
(Rb/t), and (vt) was selected. Calculations were performed for six differ-
ent elements and for a variety of directions. The largest error in any velocity
component for any of the elements and directions was determined by inspection.
This was done for the potentials vqh and Voy separately to obtain a
"maximum real part" and a "maximum imaginary part" error. The square root
of the sum of the squares of these two errors is the quantity eventually
plotted. It has the nature of a "maximum absolute value" error, and it is
conservative because the "maximum real part" and "maximum imaginary part"

errors seldom occur for the same velocity component, the same element, and
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the same direction. The above procedure was repeated for ranges of values of
(hb/t)’ (Ro/t), and (vt) to obtain the maximum error curves presented here.

Maximum error curves were calculated for the case where all second-order
mltipole terms were retained, i.e., where expansion (83) is useu as written,
and also for the case where only zeroth-order multipole terms are retained,
i.e., only the b

20 20
for the second-order maltipole expansion, and figure 16 shows error curves for

and c,. terms of (83). Figure 15 shows error curves
the zeroth-order multipole expansion. Values of (vt) wup to three were con-
sidered. For (vt) = 3 the maximum element dimension is approximately equal
to one-half the wave length of the motion. No higher values of (vt) were
considered, because it was felt that at such frequencies the assumption of a
constant source density on the element would breaﬁ down. If, however, this
assumption remains valid, higher frequencies can be considered by subdividing
elements to reduce the maximum value of (vt) below three (see next section).
A comparison of figures 15 and 16 for (hb/t) =2 and (ho/t) = 3 shows the
very large improvement in accuracy that is obtained by using the second-
order multipole expansiop instead of the zeroth order. This fact was also a

factor in the decision not to proceed to higher orders for the multipole

expansion.

If a definite error criterion is adopted, figures 15 and 16 permit ranges
of validity to be established for the zeroth and second-order multipole expan-
sions. For definiteness, it is assumed here that an absolute error criterion
of 0.001 has been adopted. With this criterion the ranges may be defined:

a. For (ho/t) > 4, zeroth-order multipole is sufficient for all
(Ro/t) and all (vt) = 3. (As can be seen from figure 16c,
possibly (hb/t) > 4.2 is required for small (Ro/t), but this
is a detail.)

b. For k4 > (ho/t) > 2, second-order multipole gives the required
accuracy for all (Ro/t) and all (vt) = 3.

c. For (hb/t) < 2 second-order multipole is not sufficiently accurate
for all (Ro/t) and all (vt) s 3. However, the accuracy improves
very rapidly with decreasing (vt) and with increasing (Ro/t).

gl
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Tn the range (hb/t) < 2 the integration over an element is accomplished by
subdividing the element into subelements, each of which has a smaller value

of t. Thus, when calculating the effect of the subelement, the effective
value of (vt) is reduced compared to that of the original element. In most
cases the values of (ho/t) and (Rb/t) are increased relative to those of
the original element. As can be seen from figure 15, all three of these
changes in parameter values lead to a reduction of the error fbf the second-
order miltipole. The computation of the effect on itself of an element adja-
cent to the free surface may require special handling. This is acceptable
‘from the standpoint of computing time, because such cases represent a small
fraction of the total computation. However, the use of a second-order multipole
with element subdivision will give accurate results for the important case of
the effect of one element adjacent to the rree surface on another such element.
It is only for elements near the free surface that subdivision is required,

and thus it is uscd rather infrequently in the computation scheme.
8.5 A Scheme for Subdividing an Element

The subdivision of an element for use with the multipole expansion at
velues of (ho/t) less than two may be accomplished in a variety of ways.
From a computational standpoint the process of subdividing an element con-
sists cof the calculation of the sets of geometrical quantities that define the
subelements. Specifically, the following quantities must be calculated for
each subeiement: the normalized moments I of the area, the coordinates

mn

of the centroid, the maximum dimension ¢, and the components 8595 ete.

&.q

of the unit vectors along the axes of the subelements' coordinateliystims.

(In reference 1 the set of these amn's is called the transformation'matrix.)
If further subdivision is required to reduce values of (vt) to acceptable
values, i.e., if the subelements must themselves be subdivided, the coordinates
§k, Thes k = 1,2,3,4 of the corners of the subelements in their own coordinate
systems must also be calculated. An efficient subdivision scheme is vne

that: (1) obtains all the above quantities with as little computation as
possible, (2) reduces values of (vt) as much as possible, and (3) can be
iterated in a straightforward mamner to subdivide the subelements. Many
schemes are possible. One scheme that possesses these requirements is out-
lined here.
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A typical element to be subdivided is shown in figure 6. The
coordinates of its four corner points in the element coordinate system are
b M k= 1,2,3,k. It is assumed that the maximum dimension t of the
element is taken as the longer of its two diagonals and that the ¢-axis
of the element coordinate system is taken parallel tc this longer diagonal.
Thus, if (as shown in figure 6) the longer diagonal is between the points
(gl,nl) and (53’“3)’ then 1, = Ny and t = (g3 - gl). The origin of
the element coordinate system is taken as the centroid of the element.
(All of the above is consistent with the geometrical considerations of
reference 1. The only required change is making the g&-axis parallel to
the longer diagonal.)

Conceptually, the subdivision scheme consists of bisecting each side of
the quadriiateral with a point and drawing a line connecting each of these
four points with the midpoint of the longer diagonal. As“shovm in figure 6,
this process yields four subelements, which are labelled 1, 2, 3, 4 to
denote the corner point they contain. Subelements 1 and 5 have the same shape

‘q
lez-"?a)

&.m) &5+ 73)

(PPN

Figure 6. - Subdivision of an element by the use of midpoints.
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and orientation as the original element, and each is reduced by one-half in

linear dimension. Subelements 2 and 4 are parallelograms. Each subelement

has one diagonal parallel to the longer diagonal of the original element.

The E-axes of the coordinate systems of all subelements are thus taken

parallel to the &-axis of the coordinate system of the original element.

Thus, the components a9

8,ys €tc.,

of the unit vectors along the axes

of the coordinate systems of all subelements are identical with the same

quantities for the original element, and no additional computation is required

for these quantities. Subelem.nts 1 and 3 have the same normalized moments

as the original elemen% and have values of t exactly half that of the original

element. Normalized moments must be computed for the parallelogram subelements

2 and 4, but in subsequent subdivision of the parallelograms the normalized

moments are identical for all later subelements. The length of the longer

diagonal t of one of the parallelogram subelements cannot be predicted in
advance. The diagonal parallel to the &-axis is exactly half the value of ¢t

for tke original element, but the other diagonal may be longer. In the worst

case the other diagonal of a parallelogram subelements may be only slightly

shorter then the value of t for the oiriginal element. However, in subsequent

subdivisions, the values of t for the subelements of the parallelogram are
exactly half the value of t for the parallelogram.

Explicit formulas for the geometric quantities associated with the sub-

elements 1, 2, 3, and 4 of figure 6 show how little computation is required

by the subdivision process. First define

—ah
m2 §5—=1,
b
2 53 = §1

o nl =My
(103)
28, = & — &
TR

|




Then the geometric quantities associated with the subelements in figure 6 are

o

s

as follows:
. Maximum
fo Element Diagonal ¢(Centroid) n(Centroid) Ino
f Original t 0 0 T
1 1 1 :
Subelement 1 5 t 5 §1 5 nl IOO
! Subelement 2 see above llf (§1 +2¢, + §3) % (1|-1 + n2) m,
{ 1l 1 1
; Subelement 3 5t 5 §3 . 5T Ino
: 1 1
i +
% Subelement U see above i (g1 +2¢), + 53) 5(1]1 “h) m,
!
i
i Element I2 0 I.L 1 102
| Original L, L: Lo
{ =
[ Subelement 1 I LY Io
! 1 2 1 3
Subelement 2 o m2(e2 + 1) 0 Z m
L Subelement 3 120 Ill 102
1 2 | 1 3 |
Subelement L oF mh(eh + 1) 0 Z m, !'

Finally, from the method of subdivision it is clear that the coordinates of
the corner points of the subelements of figure 6 are simple averages of the

coordinates of the corner points of the original element.

;
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APPENDIX A
EXPRESSIONS FOR EVALUATING THE COEFFICIENT FUNCTIONS IN THE

EXPONENTIAL-INTEGRAL EXPANSION FOR VALUES OF THE ARGUMENT
FROM ZERO TO TEN
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c,(B) =

¢, (B) =

Co(‘B) =

co(B) =

CO(B) = e'BEi(B)

e 1nB

+ 0.57723459

+ 0.42188715 B
— 0.454200L4 B2
+ 0.18830916 B>
- 0.0360T4946 BY
+ E(B)

0.69717880

+ 0.30182470 (B — 1)
~ 0.63786604 (B — 1)@
+ 0.48345048 (B ~ 1)
- 0.22434376 (B — 1)
+ 0.050233747 (B — 1)°
+ E(B)

0. 67048886

- 0.17123280 (B —2)
- 0.034727768 (B - 2)°
+ 0.042573269 (B — 2)7
- 0.014448463 (B — 2)“

+ 0.0019073418 (B — 2)>

+ E(B)

0.35953823
~ 0.10948767 (B — 4)
+ 0.023664245 (B — 4)°

- 0.0031370348 (B — 4)7
+ 0.00018870981 (B — )4

+ E(B)

6k
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|EB)| < 25 - 100

E(1) = - 0.000019‘

|E(B)| <20 ° 10'6

E(1) = 0.00000k4
E(2) = 0.000004

| E(B)| < 25 - 10'6

E(2) = 0.000006
E(*) = 0.000006

| EB)] < 30 - 1076

E(4) = - 0.00001k
E(8) = - 0.000014
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In 21l ranges of B Cl(B)

CO(B) = 0.14T72609

C,(B) = }E (B*eBei() - B° — B2 - he 6

— 0.022641303 (B - 8)
+ 0.0033149587 (B ~ 8)2

- 0.00032011296 (B — 8)3

+ E(B)

c,(8) = ¢ (2% BEi(B) - 1 - B]

c,(8) =  [8°_(8) - 1 - B]

|E(B)] <15+ 107

E(8) = « 0.000005
E(10) = =~ 0.000005

is calculated from the identity

6

c,(B) = —0.093764999

- 0.030660348 B
— 0.018986087 B2
— 0.016060631 B>
+ 0.014132838 B4
+ E(B)

- 0.14535703

- 0.061019814 (B — 1)
+ 0.011051671 (B = 1)
+ 0.0265045T1 (B — 1)>

~ 0.0073085699 (B — 1)*

+ E(B)
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E(B)| < 20 « 107° a

E(1) = o.oooor{I

E(B)] <10 * 107

E().) = 0.000000
E(2) = 0.000000
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, E 2sBskh C,(B) = - c.17609428 |E@®) < 715 - 1076
‘ + 0.010002509 (B — 2)

+ 0.052699467 (B — 2)2
- 0.0106590%0 (B — 2)°

E(2) = 0.000035
E(4) = = 0.000022

+ E(B)

hsBs3 Ca(B) = = 0.030565T42 {E(B) < 35 - 10‘6
+ 0.0941 74067 (B — 4)
- 0.00899T1945 (B — 4)2 E(4%) = — 0.00002k
- 0.0055536427 (B — &) E(8) = — 0.000023

+ 0.0014851919 (B — h)h

— 0.00011322320 (B — 4)5

+ E(B)
8sBs10 c2(B) = 0.11105052 |E(B)| < 25 * 1076
- 0.0089389738 (B — 8)
-- 0.0034T3715L (B - 8)2
+ 0.00077624732 (B — 8)3
+ E(B)

-n

E(8) = 0.000017
E(10) = 0.000016

CB(B) = 5%1; [B6e'BE1(B) -p - 13h - 28> — 68° — 24p - 120]

0sBs1 CB(B) = = 0.052081517 |E(B)| < 10 * 1076
- 0.010485TTT B
- 0.0021508276 B2 IE(l) == o.ooooml
~ 0.001820T1L72 B’
+ E(B)

l1sBs2 03(3) = = 0,066549269 |E(B)] < 20 * 10'6
- 0.019776277 (B = 1)

| - 0.0092101808 (B — 1) E(1) = = 0.000012

+ 0.0030382825 (B — 1)3 |E(2) = - o.oooonl

+ E(B)
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03(3) = = 0.092491866

Cs(B) =

| E(B)] < 20 * 10'6

- 0.028463143 (B — 2)

+ 0.0003322L846 (B - 2)° E(2) = — 0.000005
+ 0.0074613867 (B — 2)3 lE(h) = 0.00000k I
~ 0.0011826565 (B ~ 2)*

+ E(B)

= — 0.10729389 | E(B)l < ko ° 10'6

+ 0.023850510 (B — 4)

+ 0.018257392 (B — 4)2 E(4) = 0.000030
- 0.0039381087 (B — 4)2 IE(8) = 0.000028|
— 0.000014366499 (B — h)"

+ 0.000036616026 (B — 4)°

+ E(B)

0.061968114 |E(B)| < 25 - 1076
+ 0.023687T46 (B — 8)

— 0.0086533615 (B - 8)2
+ 0.00080LTL344 (B - 8)°
+ E(B)

E(8} = — 0.000009
E(10) = = C.00000k

s U0 =7 = o = 29 - 5 - o 2 — e — o

o
173
]
"

1

Ch(B) = = 0.034191950 | E(B)] < 20 * 1'0'6
— 0.0047257587 B
— 0.0011700246 B I E(1) = 0.00001k4 l
+ E(B)

Ch(B) = = 0.040121243

-

|E(B)] < 25 - 1076

~ 0.0069648968 (B ~ 1)
- 0.0026223112 (B - 1)2 IE(l) = = 0.000019
+ E(B) E(2) = + 0.000017
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2sBsh Ch(B) = = 0.049763691 | E(B)| < 50 - 10'6
- 0.011747816 (B - 2)

- 0.0050354531 (B — 2)2 ln(z) = = 0.000038
+ 0.0016034521 (B — 2)3 E(4) = - o.000052|
+ E(B)

L =sBs8 C,(B) = - 0.080550890 | E(B)] <20 - 1076
- 0.011972214 (B = 4)
+ 0.0048073235 (B — 4)° lE(h) = — 0.000009
+ 0.0027910827 (B - 4)2 E(8) = — 0.000005

- 0.00072846533 (B — 4)*
+ 0.000046982416 (B — 4)

+ E(B)

8=sB=10 Ch(B) = = 0.0112894 T4 | E(B)| < 30 - 10'6
+ 0.034544199 (B - 8)
- 0.0023406480 (B ~ 8)2 E(8) = — 0.000024
- 0.00057919267 (B — 8)> E(10) = - 0.000021
+ E(B)
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POLYNOMIAL FITS FOR THE COEFFICIENT FUNCTIONS APPEARING IN THE
EXPANSIONS FOR FINITE VALUES OF THE RATIO OF VERTICAL
TO HORIZORTAL DISTANCE
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-106§€§0

l.6s e s2.5

-2.5s € s -1.6

f3(e) =

f3(e) =

f3(e) =

f3(€) =

fh(€) =

1.838307k4

- 0.79033419 (e + 1.6)

+ 0.22952184 (e + 1.6)2

= 0.04T54114T (e + 1.6)3
+ 0.012524009 (e + 1.6)%
+ E(e)

1.0000131

= 0.33290257 €

+ 0.085419TT5 2

- 0.013188412 ¢

+ 0.0050259510 e
+ E(e)

0.99999443

= 0.33316475 ¢

+ 0.082501642 €2

- 0.015167643 &

+ 0.0015987224 eh
+ E(e)

0.626478T2

= 0.15945710 (e - 1.6)

+ 0.03288T796 (¢ — 1.6)°
- 0.0045847555 (e — 1.6)3
+ E(e)

1.5T18059

- 0.50042778 (e + 1.6)

+ 0.11221306 (e + 1.6)2
- 0.028T70321 (e + 1.6)3
+ E(e)

- i
|E(e)l <10 - 10 6 |

lE(-1.6) = o.000001|

| E(e)] <25 « 1070

E(-1.6) = — 0.000017
E(0) = 0.000013 l

[E(e)] <15 1076

l E(0) = - o.ooooosl
E(1.6) = 0.00000%

| E(e)] < 10 « 107

,E(1.6) = = 0.000003 l

| E(e)} < 30 - 1070

E(-1.6) = - 0.000019




-1,6=€s0 fh(e) = 1.0000037
- 0.24986190 ¢
+ 0.050698352 €2
~ 0.00TL338529 ¢
+ 0.0019878595 ek
+ E(¢)
0sez=lb fh(e) = 0.99999728
- 0.249925TT7 ¢
+ 0.0496502TL €2
=~ 0.00772493T3 €3
+ 0.00072768106 &*
+ E(¢)

1.6

WA

€ 2.5 fh(e) = 0. T0034546
= 0,13843385 (e — 1.6)
+ 0.023159423 (e — 1.6)2
- 0.002TT12165 (e — 1.6)°

+ E(e)

2.5 s ¢ s -1.6 fs(e) = 1.4295541
- 0.35599015 (e + 1.6)
+ 0.067011655 (e + 1.6)°
- 0.014116002 (e + 1.6)°
+ E(¢)

-l.6s€s50 f5(e) = 1.0000008
- 0.19995266 ¢
+ 0.033598009 €2
- 0.0042806136 ¢’
+ 0.00092920812 eh
+ E(¢)

T

1 E(e)] <15 ° 10-6

IE(-1.6) = — 0.000006
E(0) = 0.00000%

| E(e)] <10 1076

E(0) = — 0.000003
E(1.6) = 0.000001

| B(¢)] <10 - J.o"6

‘3(1.6) - 0.000001‘

| E(e)| <20 1076

|E(-1.6) + - o.oooooel
| E(e)] <10 * 1076

E(-1.6) = ~ 0.000003
E(0) = 0.000001
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1.6 s ¢ s2.5

-2.5< € s -1.6

-1'6§€§0

f5(€) = 0.99997465
- 0.1995529% ¢
+ 0.031929205 €°
~ 0.00325173%0 €3
+ E(e)

f5(e) = 0.T4913199
- 0.12192979 (€ — 1.6)
+ 0.017239545 (€ — 1.6)2
- 0.0018205902 (e — 1.6)3
+ E(e)

f6(€) = 0.13423TTT
- 0.27260146 (e + 1.6)
+ 0.043983123 (e + 1.6)2
- 0.0078170310 (< + 1.6)3
+ E(e)
fele) = 0.99996945
- 0.16717386 ¢
+ 0.022341423 €2
— 0.0043232077 ¢
+ E(e)

f6(e) = 0.9999852k
- 0.16640878 ¢
+ 0023003983 €2
- 0.0021178262 €
+ E(e¢)

T2

| E(e)l < 35 + 107°

l E(9) = = 0.000025
E(1.6) = = 0.000023

| E(e)] <10 ° 1078

IE(1.6) = - o.ooooml

| E(e)] <15 1070

[ E(-1.6) = — o.ooooohl
| E(e)] < 4o - 10-6

I E(-1.6) = — o.oooo32|
E(0) = - 0.000031

| B(e)| < 25 * 1070

E(0) = — 0.000015
E(1.6) = — 0.000013
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1.6 = ¢

1.6 s € =

1.6 s €

£ 2.5

1.6

£¢(e) = 0.78392780
- 0.10823101 (e — 1.6)
+ 0.011660870 (e — 1.6)2
+ E(e)

f8(€) = 0.99999389
= 0.12489522 ¢
+ 0.0135649T7 €2
~ 0.0010491184 ¢
+ E(e)

tg(e) = 0.83057847
- 0.08912720% (¢ — 1.6)
+ 0.0078138640 (e — 1.6)2
+ E(e)

flo(e) = 0.99989680
- 0.099060575 €
+ 0.0075039341 2
+ E(e)

flo(e) = 0.85982823
- 0.070646426 (¢ — 1.6)
+ E(e)

| B(e)l <bo 1076

E(1.6) = = 0.000032

| B(e)l <15 - 10'6

l E(1.6) = - 0.000005|

| E(e)] <25 10'6

‘ E(1.6) = - o.oooor{‘

| E(e)| <125 ° 10'6

‘ E(1.6) = o.oooogal

| E(e)| < 750 * 1070

‘E(1.6) = - o.ooosehl
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APPENDIX C

POLYNOMIAL FITS FOR THE LEADING TERMS IN THE EXPANSIONS FOR FINITE
VALUES OF THE RATIO OF VERTICAL TO HORIZONTAL DISTANCE
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P i

lsAs2.1

2.1 sAs=s3

S(A:o) =

G(A,0) =

Near-Zero Expansion SPbtential)

1.1544907

+ 1.9980015 A

+ 0.22411488 A2
0.25205448 A
E(A)

+

2.0637684

3.8292096 (A - 1)

~ 1.9264769 (A - 1)
0.21414903 (A - 1) -

+

+

= 0.14931148 (A - 1)’*

G(A,0) =

G(a,0) =

0.056566782 (A — 1)°
E(A)

+

+

%.1023310

0.014383310 (A - 2.1)
1.5755990 (A — 2.1)2
0.18698199 (A — 2.1)7
0.058979955 (A — 2.1)%
E(A)

+ + P

2.9881196

- 2.2236879 (A — 3)

~ 0.79598019 (A ~ 3)°

+ 0.39190768 (A — 3)°

+ 0.023937640 (A — 3)¥
- 0.013320342 (A - 3)°
+ E(a)

75

|E(A)] < 60 - 1070
'3(1) = 0.000008 }
| E(A)| <%0 - 1076

, E(1) = o.ooooml
E(2.1) = 0.000047

| E(A)] < 20 - 1076

E(2.1) = = 0.000011
E(3) = 0.000012

|E(A)| < 65 + 1070

lE(5) = = 0.000025 I

|
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l1sAs2.1

2.1 sAs3)

Near-Zero Expansion fDerivative 2

h(A,0) =

H(A,0) =

H(A,0) =

H(A,0) =

2.0000031

+ 0.4225753%2 A
- 0.66467931 A°
- 0.12212829 A3
+ 0.0545681TL A*
+ E(A)

3.8307581

- 3.8920436 (A — 1)

+ 0.90918151 (A - 1)2
- 1.3445198 (A - 1)°
+ 1.2526896 (A - 1)"
- 0.56621765 (A — 1)
+ 0.11452397 (A - 1)6
+ E(A)

- 0.014925130

- 3.1415572 (A - 2.1)

+ 0.51558135 (A — 2.1)2

+ 0.31359T77 (A - 2.1)3

- 0.043664524 (A — 2.1)h
+ E(A)

= 2.221&71&29

- 1.5803259 (A - 3)

+ 1.1424351 (A - 3)2

+ 0.12911733 (A - 3)°
- 0.073811662 (A — 5)h
— 0.0056T5T4T8 (A — 3)°
+ 0.00223%09kk (A — 3)6
+ E(A)

76

| E(A)|] <10 * 10

.{E(l) = - o.ooooosl

-6

| E(A)] < %0 - 1076

l E(1) = — 0.000022
E(2.1) = + 0.000015

| E(A)} < 30 - 107

{E(E.l) = — 0.00002k

6

E(3) = 0.000022

|£(a)} < 30 - 10”

6

IE(B) = o.ooooao]

|

|

1
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Near-One

g(A,1) = 2.9171383
- 0.086882334 A
- 0.90TLL445 A2
+ 0.33854153 AJ
— 0.031389738 A%
+ E(A)

G(A,1) = 1.8400312
+ 0.16427911 (A — 1)
- 1.5778025 (A - 1)2
+ 1.2836527 (A —1)7
- 0.56383902 (A — 1)*
+ 0.12545148 (A — 1)5
+ E(A)

G(a,1) = 1.4290456
- 0.79388355 (A —1.8).
+ 0.0235278T4 (A — 1.8)°
+ 0.23458663 (A - 1.8)3
= 0.1157759% (A - 1.8)”
+ 0.021430690 (A - 1.8)7
+ E(A)

G(A,1) = 0.66112296
- 0.41639898 (A - 3)
+ 0.18942493 (A — 3)2
- 0.040367529 (A — 3)°
+ 0.00073725892 (A — 3)"
+ 0.00074203049 (A — 3)°
+ E(A)

T

sion (Potential

[E@) <45« 107

lE(l) = o.ooooea‘

[E(a)] < 20 - 2076

I E(1) = 0.000009
E(1.8) = 0.000001

| E(a)] < 20 - 1076

E(1.8) = — 0.000004
E(3) = 0.000016

|E(a)]| < 30 - 1076

{E(s) = 0.000014 l
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Near-One Expansion (Derivative)
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OsA 0

n

1 h(A,1) = 2.8284TT9 | E(A)l < 60 -
- 1.8750697 A
+ 0.0045364752 e lE(l) = - o.oooossl
+ 0.36642281 A
- 0.10645884 At
+ E(A)

l-l

1sAs518 H(A,1) = 2.0053627 | E(A)] < 4o - 1o'6

— 3.0194857 (A — 1)

+ 2.4812103 (A - 1)2 l E(1) = — 0.00002
- 1.5964116 (a —1)3 E(1.8) = — 0.00002
+ 0.88156561 (A - 1)1’

- 0.26310315 (A — 1)

+ E(A)

(S
S ——

1.8sAs3 H(A,1) = 0.63527320 | E(A)] < 20 ° 10'6

- 0.845478TL (A - 1.8)
+ 0.71240566 (A - 1.8)2 E(1.8) = — 0.000009
- 0.30982833 (A — 1.8)° ' E(3) = — 0.000001
+ 0.0755T9468 (A — 1.8)h
— 0.0090482946 (A — 1.8)°
+ E(A)
35sAs5 H(A,1) = 0.24537160 | E(a)] <25 - 10'6
- 0.044912902 (A - 3)
+ 0.091506k45 (A — 3)° IE(B) = — 0.000016
— 0.066964068 (A — 3)3
+ 0.020788426 (A — 3)*
= 0.0025195079 (A — 3)2
+ E(A)
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Near-Seven-Quarters Expansion (Potential)

g(A, 7/"") =

G(A, 7/,“) =

G(A,T/4) =

G(a,T/b) =

3.8062113

- 2.6292506 A

+ 0.08310758 A°

+ 0.71818628 A’

- 0.39167057 A*

+ 0.078722785 A
+ E(A)

1.4809815

- 0.7911656% (A - 1)
- 0.47568652 (A — 1)°
+ 0.97274634 (A - 1)3
- 0.61746058 (A - 1)’*
+ 0.15520651 (A — 1)2
+ E(A)

0.T72k59428

- 0.52154760 (A = 2)

+ 0.26664779 (A - 2)2
- 0.076093178 (A - 2)3
+ 0.0081860973 (A — 2)*
+ E(A)

0.40171333

- 0.181%1188 (A - 3)

+ 0.082011657 (A — 3)°
- 0.026231297 (A - 3)3
+ 0.0038096253 (A - 3)"*
+ E(A)
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|E(A)] =20 ° 10'6

lE(l) = o.ooooaol

1E(a)] < b5 - 10~6
E(1) = 0.000032
E(2) = 0.000040

6

|E(A)] <15 - 107

IE(2) = 0.000013
E(3) = 0.000010

| E(A)] < 85 - 10'6

IE(3) = o.oooo8h|
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Near-Seven-Quarters Expansion (Derivative)

h(A,7/4) = 4.0311283%0
= 4.43098650 A
+ 2.30502990 A°
- 0.37921324 AS
- 0.16673206 At
+ 0.072409875 A9
+ E(A)

H(A,T/4) = 1.80347950
- 2.40290510 (A — 1)
+2.50943380 (A - 1)2
- 1.850TT490 (A — 1)3
+ 0.89663576 (A — 1)*
- 0.20878570 (A — 1)°
+ E(A)

H(A, T/4) = 0.T4T09LT3
- 0.38813724 (A = 2)
+ 0.27309180 (A — 2)2
— 0.15160002 (A — 2)°
+ 0.039336945 (A — 2)*
+ E(A)

H(A,T/4) = 0.51968616
— 0.13928528 (A — 3)
+ 0.036160438 (A — 3)2

- 0.0092761385 (A — 3)3
+ 0.0013868976 (A — 3)

+ E(A)

1E(A)] < 30 - 1076

lE(l) = 0.000028‘

|E(A)| s 90 - 1070

E(1) = 0.000081
E(2) = 0.000049

|E(A)| < 45 - 106

"E(.?) = o.oooohll
E(3) = 0.000034

|[E(A)] <65 - 2070 '

lE(}) = 0.000063‘
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Figure 11. - Maximum errors in the potential ¥y and its A-derivative calculated
by the exponential-integral expansion.
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Figure 12, - Maximum errors in the potential ¢N and its A-derivative calculated
by the near-zero expansion.
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EXPOTENTIAL INTEGRAL: M =1
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EXPOTENTIAL INTEGRAL: M=1

MA=21
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’
BA = (175 + 0044

-

BA=(1.75— 0.%
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3 8/A = (1.3125 + 0.037.
- 12.1,1.39)
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Figure 14. - Ranges of values of A and B/A where certain numbers of terms of the several
expansions are to be used to obtain an accuracy of 0.001 in computing the

potential spN and its A-derivative.
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Figure 15. - Maximum errors in velocity calculated by the second-order multipole

expansion. (a) hg/t = 1.
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Figure 15. - Continued. (d) ho/t = 3.
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