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1.0 ABSTRACT 

This report summarizes results obtained under contract Honr 505^(00). 

The objective of this work was the construction of a computer program for the 

solution of the problem of an arbitrary three-dimensional body with zero 

translational velocity performing small steady harmonic oscillations in the 

presence of an otherwise undisturbed free surface, which bounds the fluid in 

which the body is immersed. Because the sponsorship was terminated, this work 

was not carried to completion. The results that were obtained are contained 

in this report. 

The solution of the above problem consists of two principal tasks: the 

development of certain analytic formulas and the incorporation of these formulas 

into a working computer program. Almost all of the necessary formulas were 

derived and tested numerically, but they could not be incorporated into a pro- 

gram in the time available. The subsequent sections of this report describe 

the general scheme for solving the problem of interest, present the formulas 

that were derived to implement this scheme, and point out areas where additional 

formulas need to be developed. 
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5.0 PRINCIPAL NOTATION 

A      equals vR, the dimensionlesc horizontal distance between a point 

source and a field point where the potential is to be evaluated 

A      equals vR , the dimensionless horizontal distance between a field 
o o' 

point and the centroid of an element 

A, .     normal velocity at the control point of the i-th surface element due 

to a unit source density on the j-th element 

a,b,c   coordinates of the location of a point source 

a      m = 1,2,3, n = 1,2,3; components of the unit vectors along the axes 

of the coordinate system of an element, equation (70) 

a. (p)   coefficient functions defined by equation (58) 

B      equals vh, the dimensionless vertical distance between the image 

of a point source and a field point where the potential is to be 

evaluated 

equals vh , the dimensionless vertical distance between a field 

point and the image of the centroid of an element 

with superscripts x, y, and z, these are coefficients in the 

multipole expansion 

coefficient functions defined by equation (63) 

coefficient functions defined by equations (k8)  and (52) 

coefficient functions defined by equation (66) 

with superscripts x, y, and z, these are coefficients in the 

multipole expansion 

exponential integral, equation (40) 

function that specifies normal velocity distribution on the body 

surface 

coefficient functions defined by equations (6h)  and (67) 

G(A,p)   leading term in the expansion of section 7»5 for the potential, 

equation (68) 

B 
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I 
I     g(A,p)   function defined in terms of G(A,p) by equation (69) 

I     H.      weights in Laguerre-Gauss quadrature 
I      J 

I     H '    Hankel function of first kind of order zero 
I      ° 

H(A,p)   leading term in the expansion of section 7*5 for the A-derivatlve 

of the potential,equation (68) 

1 
h      vertical distance between the image of a point source in the free 

surface and a field point where the potential is to be evaluated, 

figure 2 

t 

h      vertical distance between a field point and the image of the centroid 

of an element 

h(A,p)   function defined in terms of H(A,p) by equation (69) 

I ,J    Bessel functions of first and second kinds of order zero 
o o 

I      normalized moments of the area of a quadrilateral element about its 
mn ' 

centroid, equation (72) 

i,j     subscripts denoting quantities associated with the i-th and j-th 

elements, respectively (other uses of these subscripts with certain 

variables are detailed explicitly in this section) 

_k _» _» 

i,j,k   unit vectors along the axes of the x,y,z-coordinate system 

k      integer subscript used in several ways, especially to denote terms 

of expansions 

M      integer denoting the order of an expansion, usually the upper limit 

of a summation 

K number of elements used to approximate the body surface 

n distance normal to the body surface 

n unit normal vector to the body surface 

P point off the body surface where the potential is to be evaluated 

p      point on the body surface where the potential is to be evaluated; 

with subscript i, the control point of the i-th element 

q      point where a source is located, especially a point on the body 

■surface 



R      horizontal distance between a point source and a field point where 

the potential is to be evaluated, figure 2 

R      horizontal distance between a field point and the centroid of an o 
element 

r      distance between a point source and a field point where the potential 

is to be evaluated, figure 2 

r.      distance between the image of a point source in the free surface and 

a field point where the potential is to be evaluated, figure 2 

S      mean position of the surface of the body that is performing oscillations 

t      principal use is as the maximum dimension of a quadrilateral element; 

in certain sections also used as time, as integration variable, and 

with subscript j as abscissas for Laguerre-Gauss quadrature 

V      with subscripts x,y,z, denotes velocity component 

y.. velocity at the control point of the i-th surface element due to a 

unit source density on the j-th element 

v      vector velocity 

x,y,z    Cartesian coordinates. The mean position of the free surface is the 

plane y = 0, and 'the flow field is the half-space y < 0. Used 

to denote coordinates of a field point where the potential is to be 

evaluated 

x ,y >z  coordinates of the centroid of a quadrilateral element o o o 

A S     area of a quadrilateral element 

€       B - pA 

v      <T/g, where g is acceleration of gravity. GMs is the spatial 

circular frequency of the motion 

£,H,(;   coordinate system based on a quadrilateral element 

p      a particular value of B/A about which the potential function is 

expanded 

a fluid motion is a pure harmonic in time with circular frequency 

equal to a.    Also used as surface source density. 

8 
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4      integrated potential of a quadrilateral element. Also time- 

depecdent potential 

*..     potential at the control point of the i-th element due to a unit 

source density on the j-th element 

$      velocity potential after harmonic time dependence has been removed. 

Used in various places to denote various potentials 

<a, potential defined by equation (27) 

<p_ potential defined by equation (30) 

<Pj. potential defined by equation (26) 

(ft. potential defined by equation (29) 

q>s potential of an oscillating point source 

iß Laplacian operator 

«S(«**K***1Mfc'*'«*w**'~ 
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6.0 THE METHOD OF SOLUTION 

6.1 General Description of the Method 

For the past several years there has been a continuous effort at this 

facility directed towards the solution of certain three-dimensional problems 

of fluid dynamics. The first problem studied was that of the potential flow 

about an arbitrary three-dimensional body in an infinite fluid. This work 

was successfully completed, and a description of the method of solution is 

contained in references [l] and [2]. A subsequent investigation concerned the 

solution of the Helmholtz equation governing the scattering and radiation of 

acoustic waves by an aribtrary three-dimensional body. A description of the 

method of solution is contained in reference [3]. 

The two above-mentioned problems are logically similar, and the same 

general approach was adopted to effect each of their solutions. This same 

approach can be used to solve the problem of interest here. In each case it 

is desired to solve for a scalar velocity potential that satisfies a partic- 

ular partial differential equation together with certain auxiliary conditions 

and whose normal derivative is specified on the body surface. The solution 

method is based on a point source function that identically satisfies the 

partial differential equation and the auxiliary conditions. A distribution 

of the appropriate type of source density is assumed to lie on the body sur- 

face. Applying the normal derivative condition on the body surface then leads 

to a Fredholm integral equation of the second kind for the unknown source 

density distribution. The only difference between the three above-mentioned 

problems lies in the nature of the three different point-source functions that 

are appropriate to the various problems. 

The approximate solution of the integral equation is effected in the 

following manner. The body surface is approximated by a large number of small 

plane surface elements, over each of which the source density is assumed 

constant. On each element a control point is selected at which the boundary 

condition is to be satisfied. The basic formulas for the point source potential 

and its gradient are integrated over each element to obtain the effects of the 

elements at each others' control points per unit value of source density. In 

particular, a matrix is obtained whose entries are the normal derivatives of 

10 



potential induced by the elements at each others' control points for a unit 

value of source density. This is the coefficient matrix for a set of linear 

algebraic equations for the unknown values of the source density on the ele- 

ments. The right-hand sides of these equations are the prescribed values of 

the normal derivative of the potential at th2 control points. Once this set 

of equations has been solved for the values of the source density on the 

elements, all other quantities of interest can be calculated fairly easily at 

any desired point. The key operation in this solution scheme is the integra- 

tion of the basic formulas for the basic point source potential and its gradi- 

ent over a plane surface element. This is also the only operation that is 

different for the three above-mentioned problems. Thus the solution of the 

problem of oscillatory motion near a free surface is primarily a matter of 

performing this integration numerically. 

6.2 Mathematical Statement of the Problem 

The problem of a body with zero translational velocity performing small 

steady oscillations in the presence of a free surface is well known. The 

mathematical formulation is given in references [h]  and [5]» and results will 

simply be stated here with no attempt at a derivation. 

Cartesian coordinates x,y,z are assumed, and the undisturbed location 

of the free surface is taken as the plane y = 0. The fluid motion takes 

place in the half space y < 0, (figure l). In discussing this problem 

distance perpendicular to the free surface, i.e., y distance, is denoted 

vertical distance and distance parallel to the free surface, i.e., x and 

z distance, is denoted horizontal distance. The surface of the body that is 

performing small oscillations is denoted S. Specifically, S represents 

the mean position of the body surface, and the oscillations take place about 

this surface. In particular, the surface S is independent of time. The 

body represented by S may be surface-piercing, as shown in figure 1, or 

completely submerged. Moreover, S may be multiply-connected and represent 

an ensemble of bodies. 

The fluid velocity field in the half-space y < 0 is assumed to be 

irrotational. Thus, the velocity is equal to the negative gradient of a scalar 

potential function *(x,y,z,t), which is a function of the time t as well 

11 



FREE SURFACE 2^ 

FLOW HELD 

Figure 1. - A three-dimensional body near a free-surface. 

as of position.    By assumption the fluid motion is harmonic with a single 

circular frequency   a.    Thus, the time-dependent potential   *(x,y,z,t)    can 

be written 

0(x,y,z,t) = Re[q>(x,y,z)e'10fc] (1) 

where the potential q>(x,y,z) is independent of time and is thus denoted the 

steady potential. It is the potential 9 that must be calculated. 

According to references [k]  and [5] <p must satisfy the following 

equations: 

\T<p = 0 for    y < 0 

|2 - v<p = 0    for    y = 0 

(2) 

(3) 

lim  (grad <p) = 0 
y -» -» 

CO 
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UM [/P"(i^+ vq>)| = 0,    p2 = x2 + z2 (5) 

g = f(S)  on   S (6) 

The parameter v is defined as 

where g is the acceleration of gravity. In (6) n denotes distance normal 

to S. 

itte physical significance of the above equations is as follows. Equation 

(2) is the partial differential equation for q> and expresses the conditions 

of incompressibility and irrotationality. Equations (3), (*0, and (5) are the 

auxiliary conditions on q>. Equation (3) is the linearized free-surface 

condition, which requires that the pressure on the free-surface be constant. 

Equation (h)  expresses the vanishing of the disturbance at infinite depth, 

and equation (5) is the radiation condition that requires the disturbance 

to be an outgoing wave at infinite horizontal distance. Equation (6) is the 

boundary condition on S. It expresses the fact that the normal fluid velocity 

on S must be specified as a function f(S) of position on the surface. 

Often the fluid normal velocity is specified as equal to the normal velocity 

of the surface S. However, in the case of a known incident wave, q> denotes 

the disturbance potential due to the body, and the boundary condition expresses 

the fact that the normal velocity of the disturbance must cancel that of the 

incident wave on the body surface. 

6.3 The Oscillating Point-Source Potential 

The method of solving the mathematical problem defined by equations (2), 

(3), CO» (5)> and (6) is based on a so-called elementary solution or point- 

source solution. The point-source potential is defined as the one that 

identically satisfies the auxiliary conditions (3), (^), and (5), and that 

satisfies the homogeneous partial differential equation (2) throughout space 

except at one point, where it is singular. The singularity is such that the 

point-source potential satisfies equation (2) with the right side replaced by 

13 



the Dirac delta function (a function zero everywhere except at one point where 

it is infinite and such that the integral of the function over any volume that 

includes the singularity is unity). The point where the point-source potential 

is singular is the location of the point source. 

Expressions for the point-source potential are given in reference [h]. 

If the source is located at the point (a,b,c) its potential at a general 

point (x,y,z) is 

9 . I + 1_ + 2vevy r CLdy+ 2^ivev(y+b) H(l>(vB) 
s  r  r.,      Jr. o (8) 

where 

r2 = (x - a)2 + (y - b)2 + (z - c)2 (9) 

r2 = (x - a)2 + (y + b)2 + (z - c)2 (lo) 

B2 = (x - a)2 + (z - c)2 (11) 

and where IP ' ■ J + iX     is the Hankel function of the first kind of order o    00 
zero.  (J  and Y  are the ordinary Bessel functions of order zero.) The 00 ' 
physical significances of the three distances r, r., and R are evident 

from equations (9), (lO), and (ll), and they are illustrated in figure 2. The 

distance r is the distance between the point source and the field point where 

the potential is evaluated. Similarly, r., is the distance from the field 

point to the image point of the source in the free surface. Finally, R is 

the horizontal distance between source and field point. The point source 

whose potential is given by (8) is defined as a source of unit strength. 

For ordinary problems governed by Laplace's equation with no free surface 

the point-source potential is simply l/r. The first two terms of (8) are seen 

to be the potentials of l/r-type point sources — one located at the point 

source and one at its image in the free surface. The integral term in (8) may 

be written 

2vevy f £L dy , _ 2v f     /"^ (12) 
J      rl        i    y/& + (u+y+b)2 

0 
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IMAGE 
(0,-b.c) 

fa.b,c)4 

Figure 2. - Distances between a field point where potential is evaluated and 
a point source and its image. 

The square root on the right side of (12) is the distance between the point 

(x,y,z) and the point (a,-b-u, c). Thus, this integral represents the 

potential of a l/r-type line source of exponentially decaying strength start- 

ing at the image point (a, -b, c) of the point source and running vertically 

downward through the free surface to y = -». 

For large values of vR, the function IT '(vR) oscillates with 

increasing horizontal distance R at a circular frequency of v. Thus v 

is denoted the spatial circular frequency of the motion, and its relation to 

the temporal frequency a   is given by (7). 

( 

6.h   Representation of the Solution by a Source Distribution 
on the Body Surface 

The unit point-source potential, which for the. present problem is given 

by (8), is a function of the field point P with coordinates x,y,z where 

the potential is evaluated and of the point q with coordinates a,b,c where 

th source is located. Accordingly, the potential of a unit point source may 

be written cps(P,q). Now let the source point q be restricted to lie on the 

surface S. (Figure ;5.) A distribution of source density of strength <x(q) 

15 
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FREE SURFACE 

Pfe, y. *) 

Figure 3. - Illustration of quantities appearing in the integral equation. 

is assumed to lie on the surface J. The potential at P due to this 

distribution is 

JP(P) =(P q>s(P^)o(q)ds (13) 

This potential satisfies the auxiliary conditions (5), (h),  and (5) simply 

because cp  does and because all these conditions are linear. Similarly cp(P) 

satisfies the partial differential equation (2) at all points of the half space 

y < 0 that are exterior to the surface S. Thus cp(P) satisfies equations (2), 

(3)> CO» and (5) regardless of the nature of the function o(q). This func- 

tion is determined in such a way that <p(P) satisfies the boundary condition 

(6). 

Applying the boundary condition (6) to the potential of (15) requires 

evaluating the limits of the spatial derivatives of (13) as the point P 

approaches a point p on the surface S (figure 3). These same limits are 

required to calculate fluid velocity components on S. Care is required 

because the derivatives of l/r, where r = r(P,q) is given by (9)> become 

singular as the surface is approached. The other terms that comprise cp  in 

16 
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equation (8) are not singular as P -»p. Thus the singularity is exactly the 

same as that encountered in references [l] and [2], and the results of these 

references apply here. In particular, the application of the boundary condi- 

tion (6) to the potential (13) gives 

- 2ir<Kp) + JJ^ [<Ps(p,q)Mq)dS = f(p) (lk) 
S 

where the right side of (6) has been written f(p) to show its dependence on 

position on S. Equation (l^) is a Fredholm integral equation of the second 

kind for the source distribution o(q). Once it is solved for a(q) the 

potential at any point is given by (13) and the velocity at any point by 

v(P) = - grad <p(P) = -j^grad [q>g(P,q)]a(q) dS (15) 

S 

The evaluation of either (13) or (15) at a point P = p on S requires the 

limiting process discussed in references [l] and [2]. 

6.5 Logic of the Numerical Procedure 

It should be noted that the discussion of the previous section applies to 

the problems of references [l], [2], [3] as well as to the present problem. 

In fact the equations of section 6.k apply exactly to each of the problems of 

these references if <p  is set equal to the appropriate point-source function. 
s 

Similarly the method of numerically solving the problem defined by equation (lh) 

and subsequently calculating the quantities (13) and (15) is logically identical 

for all problems. This method is described in great detail in the references. 

It will simply be outlined here. 

The body surface S is approximated by a large number of small plane 

quadrilateral surface elements, as is shown schematically in figure k.    The 

total number of elements used to approximate the surface is denoted N, and 

typical elements are denoted the i-th and the j-th, as shown in figure k.    Sub- 

scripts i and j denote quantities associated with the i-th and j-th elements, 

respectively. In particular n. is the unit normal vector to the i-th element, 

17 



CONTIJOL POINTS 

Figure 4. - Approximation of the body surface by plane quadrilateral elements. 

and AS. is the area of the j-th element. On each element the source density 

is taken as constant. The value of source density on the j-th element is 

denoted a..    On each element a control point is selected where the integral 

equation (ik)  is required to be satisfied and where the potential and velocity 

will eventually be evaluated. The control point of the i-th element is denoted 

pi* 

It is clear from the above that the potential and velocity at the control 

point of the i-th element due to the j-th element are, respectively, 

Vd and V. .<T. 
1J  3 

(16) 

where 

*ij = jo^I'V dS 
AS, 

% - - iTerad [q,s(Pi> v] ds 
AS. 

(17) 
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and Where q. denotes a general point of the j-th element as shown in figure h. 

The normal velocity at the control point of the i-th element due to all the 

elements is 

Vni 

N 

-1 VJ «18> 
,5=1 

where 

^-\'\5 (19) 

Application of the normal derivative boundary condition at the control points 

of all elements then gives 

N 

2- A...0.. = - f(PjL), i = 1, 2, ... H (20) 

where f(p.) is the right side of (6) or (lk) evaluated at p.. (Recall that 

dqp/oü = — V .) Equation (20) is the numerical approximation to the integral 

equation (l1*). It consists of a set of linear algebraic equations for the 

values of source density on the elements. Once this set of equations is 

solved, the potentials and velocities at the control points of the elements 

are calculated from 

N 

*i= I VJ> i = 1'2' -N 

J-l 

N 

i = 1, 2, ... N 

d-i 

(21) 
a 

All of the above is quite straightforward. The only problem is the cal- 

culation of the integrals in (l'()  for a function ©  given by (8). That is, § 

the only new calculation that is required to solve the problem of oscillatory 

motion near a free surface is the integration of the oscillating point-source          j^ 

potential and its derivatives over a quadrilateral element. 

19 
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7.0 CALCULATION OF THE OSCILLATING POINT-SOURCE 
POTENTIAL AND ITS DERIVATIVES 

7.1 General Remarks 

As stated in the previous section, the central problem of this method of 

solution is the integration of the oscillating point-source potential and its 

derivatives over a plane quadrilateral surface element. These integrations 

must be done numerically and they must be done very rapidly, because a total 

of a     such integrations are required to produce the matrices *.. and V..» 

where N is the number of elements used to approximate the body surface and 

is thus a large number. The problem of numerical integration divides itself 

into two parts. The first is the calculation of the point-source potential and 

derivatives for general values of the parameters. The second is the integra- 

tion of these quantities over an element by means of a multipole expansion. 

This section, 7.0, will consider the first of these parts, and section 8.0 

will consider the second. 

7.2 The Quantities Calculated 

The horizontal distance R between the point source at the point (a,b,c) 

and the field point (x,y,z) is given by equation (ll). The vertical distance 

between the field point and the image point (a,-b,c) of the point source is 

h = -(y + b) > 0 (22) 

(See figure 2 for an illustration of these quantities.) Using these variables 

and the results of equation (12) the oscillating point-source potential (8) 

can be written 

cp = 1 + i- - 2v f   ■ /    dU  + 27Tie-VhH(l)(vR)        (2?) s    r    ri        i M; (u - hP      ° 

The l/r and l/r, terms are already accounted for by the method of refer- 

ence [l]. They will not be considered here, but attention is directed to the 

last two terms. It should be noticed that x and z do not enter the 
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above equation separately but occur only in R, i.e., the potential is 

axisymmetric about a vertical line through the point source. Thus, only 

h- and R-derivatives need be considered, and the x- and z-derivatives 

are easily obtained from the latter. All distances in the last two terms 

of (23) enter as products with the inverse distance v. Such products are 

dimensionless and are now defined as new variables. In particular the 

dimensionless horizontal and vertical distances are 

A = v R 

B = v h 
(2k) 

These are essentially distances measured in wave lengths of the motion. 

Substituting these in above, together with t = v u gives the following 

form for the oscillating point-source potential: 

<P8=?+r7+v[-(PL + %J (25) 

where 

q^ = q^(A,B) = 2 / e"fc dt 

0     VA
2
 + (t - B)2 

(26) 

qfc = <HJ(A,B) = 2rLe~Vl)(A) (27) 

This form of    <ps   is used for   A  > 5-    For   A < 5   the terms are regrouped in 

the following manner: 

»•-r + ^+ v[H%+*] (28) 

where 

% 

a 

fy(A,B) = 2J e_t dt + 27re"BY (A) o    ' 
0   VA

2
 + (t - B)2 

(29) 

9j = .<Pj(A,B) = 2rrie"BJo(A) (30) 
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The value A = 5» where the change is made from (25) to (28), is more or 

less arbitrary. Form (25) is more convenient at large values of A. Form 

(28) must be used at small values of A, because %.   and q>. are well- 

behaved at A = 0, while 9, and 9, are singular there. 

It is the potentials <JL, <O., <a_, q>  and their derivatives that are 

considered in this report. Only the A-derivatives need be considered. The 

B-derivat5ves can be expressed in terms of the potential itself. Specifically, 

iB = - 9 if 9 = <fy  or <Pj      (31) 

Also 

0*9 -<p + 2 
dB 

\/A2 + B2 

= -<p + 2 
vr    ' 

1 
if <P - \     or (^      (32) 

The additional term in (32) can be handled by the method of reference [l]. 

For the integration over an element discussed in section 8.0 all four 

of the above potentials must be considered. In the present section, however, 

the interest is in formulas for expressing the point-source potential itself. 

Toe two potentials <p„ and 9, each consist of an exponential times a 

Bessel function, and these functions may be calculated from more or less 

standard formulas. (Reference [6] contains a rather extensive section on 

Bessel functions.) 

Thus, in this section attention is concentrated on the potentials a 

and <JVj and on their A-derivatives. Generally 9- is of interest for 

A > 5 and (O. for A £ 5, but both have been investigated over a wider 

range of A so that the cross-over point could be changed if desired. The 

potentials 9, and 9*. and their A-derivatives are shown in figures 7> 8, 

9> and 10, and numerical values are given in tables 1 and 2. The nature and 

general magnitude of these functions are illustrated in these figures. 

22 



> so 

a 
pq 

S 
* 
o 

* 3 
3}    ON 

O    O 

r- 
ON 

o 

P 

O o   o 
Os 

O 

(U    >J    S   i 
Os    In    if   O 
O    O    O    O 

-» 
sO 
CO 

o 

CO 

o 

*A   CO 

o   o 

rH 

« 
r- 

o 

rr\   sQ 

o  o 

CO    ON   *. 

s »?. 
o   o  o O 

5 

o 

* 
cu -» 
o 

R S 
» Ä 
o  o 

f-     0s 

o   o 

«o 

1 
o 

co   t-   K".   r-   o 
CO    -*    'S    NO    Ä rH       rH      S       O       O 
rH     rH     »H      rH     rH 
o  o  o   o  o Is 

0J  CU   CU   JU 

o 

• 

o 0 o 
1 1 9 O <? <? o «? ? o 

1 ? 9 p o <? 9 9 9 9 9 9 ° 9 ° o  o o oop 9 9 o   o 
•      1 9 9 9 9 

3* 

-» 
CO 
ON 

« i 1 1 cK  r- 
CO 

1 8 
•A 
r-l 
lf\ 
t- 

a 
i 
Ov ON 

ft -? ft 1 1 
o. 

rH 
IA 

»A 

CO 

8 

-»     rH 

| 3 
CO     rH    e- 

? S 8< SO     rf\   «A 
*    CO    CO CO 

*\ UD    CU 

a f s a 
t— r- 

r-   cu   t- vo 

OS   t-    fs   »A 
ND     NO     NO    NO 

to c> 
CO    »A   NO   C            P- 

o o  o o o o   c o o o O o o o o O o o   o O     O     O O o o o  o o   o O o  o  o o o o  o o o o o 

.A i 
o 

-SS 
o o 

p- 

§ 
*s 
o 

S 

o o   o 

Ä 
St 
o 

.» 
o 

■A 

R 
O 

3 
8 -» 
O 

R 
f- 

r- 
H 
rH 
SO -» 
o 

rH 
CO -» 
-ar -» 
o o 

§ 
s o 

r- to 

O    O 

CO     p     »A 

IA    -A    US 
O    O    O 

iA 
»A 
r- 
CO 

3 

i 
r- 31            Si 

s s § 8 I 
i 
rH 
o 

NO    CU    CU 

rH     rH     rH 
o  o  o 

*-*    t-   CO    ~* 
r*     r\     ,4     *\ 

$ s sx § 
rH     rH     rH     rH 
O  o   o   o 

R3 A$ 
rH    rH     rH    P o o o o 

o 

< 

o o   o o o o  o o o o O O ? 9 o o 9 9 9 O    O    O 
111 

O o 
i 

o o  o 9 9 o 9 9 9 9 9 o  o 
»      1 

p o o o 
Till 

<*» 
8 5* 3 
R g =S 

iA,   CO 
IT»     !— 
-H    nj 
ty   Os 

or--» 
C>     CTv    CK 
m    Js   rv 
c5   j—  vc 

a ä ä 
Jt      CM 

r-l 

?! 
ON 
r-l 
rTN. 

cy 

»A fA 

5^ ä so 
Q     0\    rfN 

XS?8f! 
asisa 
os  co   co   r-  «- 
ft*   <y   cu   Cu   cy 

rA 
SO 
r-* 

8 

tfs 

s 
SO 
a; 

Pi 
R 
lA 
CU 

£   R   3   vg 

?S    -»     J      »A 
CU     CU     CU     CJ 

5 
rH 
»A 
CU 

P ?} tf 
N    ft    M 

: R 

CU   cu 

II 8[*Ptt 
m & »A p- 
OS   ON  CD   CO 
r-D    rH     rH     rH 

o ■J      3 O o o  o o o o o C o o o o c o   o o  o  o o o o o   o o   o o O     O    O o  o o   o o o o o 

* M 
O 

OS    «A 
NO    O «a   r- 
•A    «A 
,-H  -H 

1 
rH 

eg 
ir>  »A 1 3 

a 

s •-* 
o 

* * 
& 2 

S f, 8 
sD      Q      J> 
ce  ao   r- 
o   o   o 

S 3 S" K \8 R ^ £ 
'S | 8 ?, 
o   o   o   o 

r-     r-    CO 
»A   if\   «-» 
-a   »A   tfs 
Ö    O    (V 
JA  -?    -» o  o  o o 

PA 

fA 
O 

fs 
P- 

Ä 
o 

cu   t— 

§ 8 8 8 

8 
a 
8 

pa» 
»H      rH     rH 
O' o   o 

<U    CO 

« a 
S3 o o 

R 1 
o  o 

8 JJ^S 
o o 8 8 

o 

-» 

< 

o o   o O O o  o o o o o O o o o o o o   o OOP o o o o  o o  o o poo 9 9 9 9 9 V °? 

tf5 

rH 
GO 
»A 

p- 
-4 

C0    CO 

R £ 
S £ 
-4    -4 

■A 

R 
P- 
CO 
-4 

00 

5 & 
■3 £ 
CD     CO 

t- 
co 
I- -» 

8 
0j 
r- -» 

1 * * & 1 § 
3\   ON  ON 25   oo 
Jt     r\    CU     H    O -*-»-»-»-» 

Pi 
IA    ON 

R ¥ * 5 s 
»A      »A      IA 

R 
F- 
*s 
»A 
•A 

ru 
»A 

CM    Q    t-    iT»   *\ 

-»     (A   sO     CO     OS 
rH     Q     0\    55     F- 
>A    »A    OJ     CM    CU CU     CU    CU    CU 

fA   CO II 
-r   r\ 
«    <V1 

r\   cw 
OJ    Ol CU   CU    CU   CU 

o o   o O o o   o o o o o O o o o o o O    O POO O o O o   o o   a o o  o o o   o o   o o o  o o 

1 
-»    t~   ON 

S 81 S 
rH      rH      rH 

P- 
t- 1 

-^  -» 
r-t       CT\ 

ON     Q& s 
•r. 
rf> 

r-* 

so    CO 

r-t      r-l 

I 
PA 

-» 
3 

CC 
rH 

» 
rH 
rH rH 1 

«A 
fA 

1 
O    »A 

o   o 

IA r-t   r-. rv 
•A   m  r-   rf> 
"AJ     OS    "A    IA 
Ö    *S   CO    «A 

o   o   3   <5 o 

I -» 
fA 
o 

* 9 

S S) 

S » 
"?*    CU 

8 8 

CO 

Pi 

1 
os so  m 
ND     CU     P- 

SPA 
r-t     r^     rl 
O      O     O 

8 g 
la o o 

AS 

o  o 

Q   »A   ON  IA 

8888 

H 

< 

O o   o o o p     O o o o 
1 

o 9 o O o o 
1 

O o   o o  o   o o • o o 
1 

0 o 
1 1 9 9 o 

k 9 9 9 o o 
1     t 9 9 9 9 9 9 

^ 
NO 

p 
9 

so   as 
ON    O 
fA    Oi 

fA      *S 
NO    <£> 

o    NO 

A St 
o   o 
3 4 

CJJ   o 

\0'    so 

o 
-a 

8 
■3 

<o 
r- 
g 

r-l 

•3 
ON 

CD 
r- 

.-* rH 
CM 

* 

iA 

3 
CO 1 
R -» 

»A 

I •A    SO 
rf\     fA 

Srr 
O     PA    WS 

§ s I 
*    4     «\ lA 

-H    CD 

K R CC      rH     ON 
-f      0*.    rH) 
JD      rH     tA 
»A    iA    »A 

tA    5\    CU 

CU    P    »A    rf\   NO 
h     S     K>    CO     4 

RRSSa 
CO    P-   NO    ^   lf\ 
cu   CM   ru   cu   cu m cu 

r\ N.C   ft: p- 

■S   «    rl   H 
CU   CU   CU   CU 

o o   o o o O     O o o O O o o O o o o o   o o   c   o O o o o   o o   O o o   o  o o   o o  o o o o o 

| -?N 

5   o 
•A    _» 

I 3 1 o 

4T\    ^\ 

Cd   r- t- 
•rs 

CD 

8 
i 
r- 

■ R 
»A 
»A 
rH 

R 
s 
CO 
r-l 

r- 

£ 
3 
rH 

C0 

-a 

r-l 
sO 
c 8 £ 

* ¥ - 
cb 
SO   ^  5s 
o   o   o 

ON     rH 
j.      CJN 

3 S 

ON 
rH 

^A 
o 

s S 
8 3 

CO    0\ 

a i 
»A     P 

s § 
3 i 
rH 
O 

»A    »A   ^ 
NO      rH     OS 
Q    *A   P- 

is -A SH 
o   o   o 

Pi 2 
-Sf       rA 
rH     P 
rH     r5 
o   O if 

-*   Cr co ap 

8 8 8 8 
a 

CM 

o o   o O o O    O O o O o O o o p o 
1 

o o   o 
1       t 

o   o   o P o 
1 

o o  o 9 9 P o  o  o 
1       1      1 

P     P o  o 
f      1 

o o  o o 
T    t     •     i 

^ 
on 

rH      -4 
^J       "A 

i ?, 
CN 

cc    o 
nj   ^ -»   -» 
ON    CO 

f- 

CO 

a 
CD 

3 
■A 

s 

f— 
-a 

r- 

o 
r- -» CM    CO 

II iA   in 

rH       ,H      SO       PA 

P 5 i ä 
^       rH       OS      OS 
CO     -O     lA     rH 
.-*    J-   -»    -» i 

fTS 

CO 
PA 

r-   so 
CO    »A 
r-   cu 
so    *A 
fA    <A 

Sj £ 
CD     lA 
rA     CU 
»A      FA 

PA 

8 
a 
fA 

$ R - Js  o>  o 
rH       Q      rH 
p    (f.   CO 
PA    CU    CU 

J     P-    »A   -» If p 1 
P-    NO     If»    -» 
CU   cu   cu   cu 

S3   O   fA  p- 
5H    ON   CO    r* 

OS   ru   &    S 
•A     JX      CU      CU 
CU   CU    rt   CU 

o O     O o o o   o o O o o o o o O Ü o o   o o   o   o O o O o   O o   o O o   o   o o   o o  o o o o o 

| 

«~1 
CU 
r- 
P- 
p- 
o 

CU     Cv 

b  p- 
CU    in 

p" 
nA 

8 
H 
PA 

CD     -3 
(\j   -a 

In   f- 
r-   CM 
O      ON 

S 
CD 
t- 

CM ON 
r-l 

ig 
-» 
rH 
LA 
rM 
IT. 

r-l 
r— 
1f\ 

CO 
CM 

R 
R 

sC 
iA 

CM 

s 
o 
CM 

fA 
li\ 
CD 

6 
rH 

.A 
-H 

SO 

K 
rH 

r- co 
* a 
a a, 
«   o 

2£ •*  "E t—  -»   r— 
4     H     W 
Ü5     IA    CM 
r- so   IA 
o   o   o 

5 -» 
»A 

O 

D 
rH 
■Ö 
fA 
o 

sS 

ft 
O 

CO     OS 
rH       IA 

8 3 

sO    \3 
CO    ?» 
rH      rH 
o   o 

R 
rH 
o 

P X Ä 
»A co   »rs 
rH      ON    CO 
r«   6   P 
OOP 

O  'CU    o   *» 
£ ft £ r4 
P-   NO    IA   *A 

8 8 8 8 

4    4     Q    H\ 

88 8 8 
o 

< 

r-t H      rH 
i 

H rj*      O O o o 
1 

O 
1 

o o Ü 
1 

O 
i 

o 9 o   o 
1      1 

o   o   o 
1      1      • 

O o o o   o o   o c o   o  o 
1       1      1 

o  o 9 9 9 9 9 9 

rf3 
rH 

R 

»A     ON 
r-l      -4 

-3   $ 

Ü 
-H 
-4 
r— 
sO 

m     A    * 
\C    CD    öS 
i?S   ^»    ""v. 

fA 

CO 
0J 

r- 

s 
ON 
CO 
r-l 

s 
ON 
o o 

ON 

"A 
IA 

ON 

co   r- 
rH       'D 
VO     ON 
to   t— 

ON 

I •A 

r-   <A 
fA    OS 
VO     iA 

OS    tfS   5 
\g   cu   e* 
R &s * 

CO 

r- 
PO, 
SO 

* 
0* 

iA 
rH 

-a   so 
os   r— 
KS     PA 

O     iA 
CM     "«0 

CD     rA 
in.  .» 
r.-^    |A 

CO 

s 
CO 

-»     Q    NO 
P      »A     P- 
_3        rH      t- 
IA     IA.     rH 
-H      p     ON 
PA     fA    CU 

a 3 
CO    P- 
CM     CU 

vO   '.O 
PA     rH 
PA   CO 

$ 3s 
CU   cu 

H r? A °J _♦    S„     K\   r4 
CO   fA   PA   P- 
lA'?    f-t   4 
-»    «A   PA   CU 
CU    OJ    CU    CU 

H 
M   - * * r~l       -4 r-l H iH 

M 
rH o o o o o o   o OOP O o Ü o   o o   o o OOP o   o o o O   O   P   P 

| 

s 
CO 
r— 

ON   5 
H     O 

r-   co 

p- 
■o 

—. 
-4 So 

M\    O 
N-N.    ON 

CO 

R 

o 

ON 

VO 

rA 

r— 

kA 

[~ 
fA 

sO 
co 

»A 

a 
CO 

CM 
r— 

3 
R 

fA 
t~ 

St 
r-l 

iA   \D 
Ö    CU 
PA     O 
PA     Ju 

^       r^ 

t-    t-    OS 
CU    O-   -» 

?h ON  r- y3 
o   o   o 

CO 
a 
r- 

o 
1 fA 
"3 

fA 

CM 
•A 
O 

-»      CM 
CU      rH 

S     H 
8 & 

iA   SO 
ON    ^5 
rH       O 
r-   -» 
c   o 

I 
rH 
O 

p     IA   CO 
lA.    fA    CU 
lA     ON    NP 
OS     P-    NO 

8 8 8 

rH     K\ 
P-     i-l 
iA    p- 
lA   -» 

8 8 

f"S    O   CD    v>   »A   lA 
rH    -*    sß    P-    tfS   CO 
P   -4     ON   iA   ÖJ    ON 
3   NN   CU   CU   CU   rH 

8 8 8 8 8 8 
lA 

d 

< 

«5 ri PA    n-\ rA CM 
t      > 

r-i r-l c O o o o O 
1 

o o o   o o   o   o 
1      1      « 

o O o 0 o 
1 1 

o   o o O    O    O 
t       I      1 9 9 9 9 o p  p o 

s" 

lA 

PA 

NO     O 

ft 3 
-»     PA 

o I -* 
CO ^C'     CM 

O    -* 1 » 
s0 

8< 

r-t 
CO 

CO 

CO 
tA 

-» 
CM 

F- 

3 

iA 
iA 
CU 
PA 
rH 
o 

R 
CO 

OS 

3 
co' 

hfN PA    PA 
iA    CM 

a 8 
£ sj 

PA  m co   r— 
\'j   H   in   co * f » 1 
*£•      lA      rH      CO 
«S    lA    iA    -» 

I 
-a j' 

g R 
o    CO 
^     PA 

SC       rH       t,^ 
in   js  co 
if\   -A   r- 

VQ      IS    (A 
fA    tA    PA 

A     O     ^ 

o   r-  «s 
CM     P    ON 
rA     »A     CM 

a s 
J   cu -*   -» 
CO    P- 
cu   cu 

CO    P-   CO    -4    PA  UJ 
■A   (A    o    »-*   Q    CU 

11 P 81 a 
si   tfs _»   ^r   »A  cu 
CU    CU    CM    CM    CU    (M 

CM OJ     OJ OJ 0-1 CM   cy r-l r-< rH rH H rH 
H o o o o o  o  o o O o O    O o   o o POO o   o P   o O   o   o  O 

in 
CU    tfs 

ITS 
a CM    a\ 

IT. 
o CM 4A 

lA 
r- o 

IA 
CM iA 

IA 
t— o 

IA 
CU     »A 

•A            «A 
P*    O    OJ .A 

iA 
o 

iA 
CM     lA 

tfS 
t~   o CM liv   P-   o 

lA 
CU     iA 

tfS 
P-   o 

in       in 
0j   *A   p-   o 

O o   o o r~t r-l       H "~* CM CM CM CVI fA fA fA fA -X -»    -» -»     iA    (A IA iA VO so    -.O sO    C- 1- p-   r- co co    CO CO    OS ON   OS   ON   p 

23 



& 

I 
*" 

J 

#= 

#« 

^ 

<f 

0: O ?N ON O -» 

-* « tc 3 l?i a 
CO «n NO if» CN NO 
«n oj ON t- iT\ .» 

Ä S 3   o   b -»    a»   as   ^\   *J   -j   m   t-   (^Qco^t^-moojcc^vOQ 
ON   ON   ON   p   _»    —«   oo    p   p   in   ON   cy    —    ff>   ^i   irt   «N   ifs   vy   4 

c*r-trkj»^cycy^^«öooooooooocoooooooooooooöcöc5ö 

3 ri pi\ H ?i 
-2 -» t- o> J\ 
-5 r-* m r- UD 
- 50 o - 

POOPOOOPOOOPPPo 

-it-p^^P-4wC>cpP-^HtcyNOi^ftco® o 

rv   f^   »«   NO   cy   JS   i—   5N  -*   in   cy   -#   .J   p   p   o   c^   o»   c*  co   co   co   co   co   iv   p-   r-   t-   :—   o   vo   vo   -o    ?   •"   -\ x. 7*  ^ X    , 

ppöpöoöddddopd OOOOOOOOOOOOOOOQOG O    U   O   O    O    O 

0\   CO    if\   (D    if\    fv|    U)    iT\   K\   \a    J     .-(    p   .* m    U"\    fy CU    GINO^OJ- ."•    XN   CU    if\ ift    iTi   f- ^   <D    CO m    -J     m -T   lA t—   «\  f-    I*N 
F-   r-   «-<   ft  vp   &   tft  \0   m O   ft  -*    ""-a V-a    r- cu   Cft   «-*   t-   ^ -»   -»    ft  *s <■*   x\  co cu   [~   «S r-   CJ    *■* -»   •-< cu   t^- (j    .*, 
f\    f\   V    F-   CD    «r\K\t-i'\O'HiOV0« -A    »4    p t-    K\    «>   ^    \fl Cy    NO    CO     G ^    ^     -"• CU     CU    *"» -4/      .     t    O   "^'l:    OMT,    r- 
t    tt\   w\   <£\   Q   ^   nt   cb   t-  r\   H   CJ   i£   •-> ON   tf\   ft -t   m  -»   -*   -* -»   «"*   cy   ftt »■■*   p   ON <c   r-    0 in  -4   tn <^» cy »■•  &  o   -*> 
j   O   «**   & \0   ft  in   ft NO  -*   fti   P   Q O   -*   5* Q»   cu   eu   cu   op ftp   tu   cy   ©J CU   5   c* ^   £   »* 2+   <-*   ~«< •" *? «•*  .3  25'   o 
OÖ\0-*'nc\l.-*.-*OOOdöO OOO OOOOO OOOO OOO POO OPOOOOpoo 

0000000 9 9 9 9 OOOO 

£ ri   ^   in co   IT» a)   ^ 
t   Q   ■*   tt   .4   Q   C 

NO    0N   NO     •riÖO*"t"N'«0*N-»4 
yj   -*   -*   tf»ceii\c\jfr--*NOt-ysoN<© 
vot-gj    fyO\aO-if    (ji   ^   w   f-   r-   (VJ   4 

K\    p    o    r 
H     S     rj     ■■ ^4t-Q-*   ty   -T   p   T\SJ-»^   tf\ffli^\f\;r-^r\C'   t-^2   C* «   m   H   *   H   -»fj 

«ocSvHpiricoiiiffl pr-cu»?*voir\_» ^00 if\ *•* t- K\ 5S -» ptr» 
ä,^wt-«-*f~''r^i*_öfy'«A*^rfNxöVOvo^oovO «s if\ rf\ .* -» NS in ^ 01 
^io^«ooO'-"'-*niOJC\jfyWnjCjpjf\JC,ycij<\tf\jWi'jrjr]rijc\iOj 

O       r«     4       (^       K\      C\ ^7\    j     r.\ 
N"\   ab   »■♦ 

_   xj   -5 '0 

? 9 9 ? ? ° ° 000000000 00    OOOOOO    OOOOCOoO 

t-ao    aj   do    ■£.  co   ry*«   ^J? 
HS   Äo»rtior-Jt4« 
'•COOcjOoONOirvj'Ä 

>öeQch^fflir\-i(va^co^   »A 
0><5    ON ^O CO mr-i    K\   03    CC    »rvO    CT* 
?\iA-» ri 4 ft)(\JNOO^iNOt-,2), 
**    Q   F* Q w OiACU     (U    N\    ft   <4    M   CO 
UN   A   r n N r-t    ft   co    C-   vfl    tf\   *t^.   j    m 
airur-i^^^oooooooo 

.-I   IJN "o  co   r-  vo   .0   p   -*   tf\ e- if. ■ 
ir\_*   co   r-   »A '0   tr»o\»r\a'\N-\XN. 

. *    J   co   »A   *S   o   cS   r-   2 >  -*   1^ 
«\m(Vj(\|(vJ(VJr*rlH1-.H. 
0000000000-> 

lt5.   ^ 

7T??<???00999??9° 000000 9 9 9 9 9V 

t—   -*vO    OONCQiT^t— 
t-fliiACJ-i^tJsio 
t—     J       (V|      lO     \J       ni      r4      4 
mmw;Nf»\ir\j'   IT. O 
NO)TN-*mC\ir-«pCN ._    .„     _    __.     ..    —   ^   w m   m   K\   m   »r\   »rs   n-\ 

8 CO s WA K if.   -0 
2l     *T\ ffifiS) ^ 

P r^ <r\ X -J       h(% •n r,  Cj -T 

Cj (\l OJ Cj Pi    r.> rj rj ci OJ 

OOOOOOOOOOOOOOOPOOPOOOOOOOOO O    O   O   O    o 

^   C\J   cy 
CU    CO 

itN   o\   m   a   f- ai 'D   [- nj     -j 4   ni   «>   O   ^   co   t-   cj,  co   5.   nn\t-t-mt-o5.t-4\ogpj^ 

(-so-*    5    mo^^r-^^^Q^^i^r-o^*^Q^,^0J,Oi<\'a5t~*-'00*,-^:5    c^OOpoa^i   -w -*^^-4    IS   5   4    *\v£>-*    «rNVÜNDry^»    0    0-äF2»F-t—    CD--*<r'2.<rt^t-J    C\JCNC-'3_4    m  w   H O    cS *    h 
afpinÖ4C04in4t-^^Nft^4«0®^«^^4^inin(Vfj(\ir<HHHr<fJHHoüO F-^H^t-S^3^^oicy^»H<H^^oopooooooooooPOPOPO& 

cür4^Hpdddddddpddddddddddd 
IIII'TIITIITTITIIIIIIIII 

0000 

o  o  o   o   o   o   o 000000000000 OOOOOOOQOO 

if\  m   o   I-   o  t-  co   O^   m   t-  co  co   ^   0-4   •*■   IT*M-\CO   .H   mp-»   p   *-  -»   ^o   -»   ^<   ^   fo   o   ni  ^. ■-* Q   v3 c\   t- 
m   in   u>   H    fr-   t—   w   c-   r-  co   J    »rv»nt-^t-r-cy   C^ONQ.-*   cy    o   «^"O   cy   -n   «   -3   '0    o    if\0j   ,.<   n  in A   ^. >7\   ^ 
4r^öfflfePö*5&9mf^^^i!l^9lvffl8PW««\ft|3»t-n4iiiHOJ';t''; Dt."' ÖNOO«Ch'<K^Orot-if\««OftCOh\3ift44^^(vjCuri^r<-ir)rJ^.JÖr 
AJo3,J^C4fWCyftjH^rJ^^rJOOOOOOOOOOOOOOOOOOOOOO£oO 

99999999 9 9 9 9 OOOOO 

-I » ON  cy 
». Ä 5 8t 
S 4 « § » 

m to m vo 
r\ r-i p t^ 
-    0   -n   r* 

0   5?  Ä   W   t*  ■* 

K\   CM   ry    rj 

NOOcy-ico_»cy»rvco-*eocpcycock-c-(-(p 
rjwcQ^2eoiAfj4^4 5'Wf-'r,5'J0 
m t- ift O ONIOJ ifSO«^v*I0N'rN'^0NfJ5 o ry 
iTNirij' H m nj T\ ru NS (o OJ o--»'',**o^»ci5 J\ 
^»cyt-ryog-iHcotrv»n^»o\r-tr>-4   CM   <-< 
Of-p3'3nift<V4444inm(',lftir1    m 
dddcddddddddddddddddd 

A-    ^   ^ Ä 7*    '2 O CU    ?i irt a)  Cj   m (- 
in   ä . >-1 m CN   o * 

'"■  *-    rA D 
fn ci 

in   ry   c J   cy   m  J • 
Ä3S   ■*>    t-   '0   ifN    . 

fi     *~J     fj     r 1    TJ    CJ 

OOOO   00    o 

"S    iT\    c\l 
CO     i>    <0 

ON    O     O    NO     t>    I—   -4>      ^-*      HjH»n^<^C-Cytf"'?»CA-4      •A<HtOJNQr4*r--4CNp'/>o^''^ 
h  f-  «   * co   b-   0   ?>'«   Olf-cyog^   Q^1^   p   c8   (A  -*   ri   0   * 5   f 5   5   £• i i i   « ^   ^ 

000000000 0000000000 OOOOO 

JO  -<   r-  KN co ^ 2 $ 5 g 28 g 3 R S * 5 § f ? ® Ä e 8 d S 3 8* £ 3 * * S '9 ft 
O\tn^^o^r-^r-^^p^opcr'ir»;:   -4t-,nc>'Aii   -1 '-O -o  _j>   m   t— 

^NCU ONJ       fVJ CO ON-» *0 F" r-4 K\     H     \D O ÖNCO      O^O      iTNi-»      lf>^4      p ONO '3 -a I— O <"l     N3 »O CT r- r,    'Ü    ON     o    ^      »■ 

«\   4 7>   M)     O O 4      6 H CO i?\ ¥-    f*    #\ K\ rH     IT*    Mpt    *-4     i-*    V£l    J     ^J     O t*   "S '3 C> K\ O ^    ^ ^ •* H 'J'r,"^'n^<-1 
vO-» OÄJF BI O   » '3 4 4 -»v0<>? -• I^ON-»    P^O   cyoNNOJF M   c> r ^ 4 cy ^P civ 'ß t- 'a n>4   ,r,.^r 
p   p p   ON  co r- vO   -* "% cy f* o   ON  'U co t—  o   NO   '3   <t\   ITN  -*   -T    -» -»   in ^ >n tn »n tn   ^ r-j ^i ci nl fl fi   f;  "i   r 

OJ    (M     OJ oooooooooooooooo ooooo 

r-K^cg    c>p   IA   r-   1ft  4 

ifSco   «r»cy   «N   B\  e-   QJ 

K 0NiT\^,0tfNifNt-Cp^-n-4'CO     ONOCJOtT» 
mtncoQNinco   ^(jno»nj   cyt—   c—r-if-in 
ITNNO    O    ITN'O    -»    m    cy    ^\    KvCv    if^OJ    -~*    cy    '0,3 

y, ,„   \o    tr-    t-    ITS   KN    r4    ON   r—    IT-,   m    c-t    O    Cv   CO    t—   vO    ifN   -*    .j    -,„,.-.. ,    , ,   , w   ■ ■, 

/. rx 2 
r*     'fi     7» 

8 s I 
9 9 oooooooo ooo   oooooo poo 

r"   H   t- £$?Ng£p,2ox.$lcRc3 
h  g   o<   wS   »TN   ry   co   f-   ITN  \£   vß 

a« SS\ 1 6? C « £ S II a   7\  O 4   Ri   in a   ot in  ^ öj  «   t^  ^ «  «  «   d   ©  rJ   iK   rj co   ffl   a ,cj|   ^  ET 'i  ^ CJe. 
H^F^   if\i\'Ocpo?\f-w\ip   ^   t- m   o   t-  jr    woflfl^J»   Eafis'^C'?^^ ir. 3   ^  ^   ^   o   ft Ä co   f-  r- '3   'O   in  iA  ^ 4   4   4   4   in   n in   in  in  ^   'j   H   CJ   fj ^. rj 

i/-  o    «*■ 

14 8 

ooooooooooooooooooooooooocpoo 

5SÜSRS •8 
K\pr-«C\QCO    Ch-4 
cyint-wp-oco^t 

p   «n   m 

'■ $ - 

IfN    0>    f- R 
& * ;S S Ä R S§ä 51 « * fi *, gs i' « ö ». '6' H y & s a a a s e s *' w P-- F ö * ¥ s » * I j? K & *' e *' % 5 § S r<* 

ddi-<'*5'-5'-*<-i'-<'^'^'^ddddddddddododoodooooooooopdc; 

IfN  t-   L»   oj   ir> O   (\j   m  .-   O   cy   int--ooj<r>t— 

OOOO CJ    OJ     OJ m   m   m   m  ^ 
o   rj   m 
IfN    lA    lA 

f-    O    Cy     iTi   P»    O     OJ     if. 

.Ä o  'Ö  'ö  'o   t^  r-  P- 
r-  o   cy   ITN i— o oj   a*\t- 
[-CO     Cf)    fO    *1    C»  Ch    ijn   (Jv 

2U 



• 

7.5 Laguerre-Gauss Quadrature for Large Values 
of Horizontal Distance 

For "large" values of the dimensionless horizontal distance A between 

the point source and the field point, the oscillating point-source potential 

is used in the form (25), and the potential <jt from (26) is the one that 

must be evaluated. Laguerre-Gauss quadrature is used to evaluate «p. in the 

form 

^^/T"5"^""2 IT   H'1 (53) 
0  VA + (t - B)2    d=l VA2 + (tj - B)2 

The constants H. are the weights of the quadrature, and the numbers t. 
d J 

are the abscissas of the quadrature. Both H. and t. depend only on M, 

the order of the quadrature. For the present application, the first abscissa 

was set equal to zero, i.e., 

tL = 0 (54) 

so that 

\ 
as -t i_., V 5L 

VA
2
 + B2    J=2 VA2 + (t - B)2 

J 

(55) 
2H,    O     H s§+2 L L 

i=2  VA2 + (tj - B)2 

In general the accuracy of Laguerre-Gauss quadrature improves with increasing 

M, i.e., the more abscissas, the more accuracy. The term with abscissa of 

zero, i.e., the first term of (55)> is computationally free, because it may 

be combined with the l/r,-term of (25). Thu.i, for the same computational 

labor the form (35) should be more accurate than the form of Laguerre-Gauss 

quadrature that does not prescribe any abscissas, because the former uses one 

more abscissa. This plausible hypothesis was verified in the present case by 

a large amount of numerical experimentation. 
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Reference [7] gives the abscissas t. and «eights H. for the form of 

Laguerre-Gauss quadrature that has zero value of the first abscissa. The 

results for M = 1, 2,  3, k,  5, 6   are given in table 3» These were used in 

equation (33) or (35) and the results were compared with the results of "brute 

force" numerical evaluations of <JV and its A-derivative. (The approxima- 

tion to the A-derivative of qt is obtained by analytically differentiating 

(33) or (35)*) ID this manner computational errors were obtained for various 

values of M at sets of values of A and B. For each A the largest 

error for any value of B was determined and designated the maximum error 

at that A. These maximum errors are presented in table h  for 2 < A < 10. 

These errors should be compared with the functions <a. and dqt/öA, which 

are given in table 1. Table k illustrates the very rapid decrease of error 

with increasing A and M. If an allowable error is defined as one less 

than 0.001, two abscissas are sufficient for A > 6, while three suffice for 

A > k.    Thus, in the present context A becomes "large" at a value of four 

or less. The smaller the value of A, the larger is the value of M that 

must be used to obtain a given accuracy. 

For the present purpose, it was tentatively decided to use M = 3 and 

to restrict use of this formula to the case A > 5. For larger values of M 

the computation (35) is more time-consuming than the expansions discussed 

later in this section. With this M errors in qx. and dqv/dA are bounded 

by O.OOO23. The formula for «a. is explicitly 

m 0.66666661 + 1.2hHoi69 + 0.089316398      A > _ 

VA
2
 + B2   \jt? + (1.2679A92 -B)2  \/A

2
 + (M320508 -B)2    (36) 

and the formula for dcPr/oA is obtained by differentiating (36). 

I.k   The Exponential-Integral Expansion for Small Values of the 
Ratio of Horizontal to Vertical Distance 

For small values of the dimensionless horizontal distance A between the 

point source and the field point, the oscillating point-source potential is 

used in the form (28), and the potential qx^ from (29) is the one that must be 

evaluated. On page 477 of reference [4] two forms of the oscillating point- 

source potential are given. By comparing, these forms it is evident that in 
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TABLE 3 

ABSCISSAS AND WEIGHTS FOR LAGUERRE-GAUSS QUADRATURE WITH 
ZERO VALUE OF THE FIRST ABSCISSA 

j *i 
HJ 

M = 1 

1.0 0 1.0 

M = 2 

1.0 0 0.5 

2.0 2.0 0.5 

M = 3 

1.0 0 0.33333333 

2.0 1.2679^919 0.62200847 

3.0 4.T320508I 0.04465820 

M = 4 

1.0 0 0.25 

2.0 O.93582223 O.62905268 

3-0 3.305^0729 O.H835639 

4.o 7.758770^8 O.OO259093 

M = 5 

1.0 0 0.20 

2.0 0.7^329193 0,60120469 

3.0 2.57163501 0.18573233 

4.0 5.73117875 Ö.01294285 

5.0 10.95389431 0.00012013 

M = 6 

1.0 0 0.16666667 

2.0 0.61703085 0.56401481 

3.0 2.11296596 0.23771357 

4.0 4.61083315 O.03056192 

5.0 8.39906697 O.OOI03820 

6.0 14.26010307 0.00000484 

\ 
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f 

the present notation the following result holds 

L-vqfc-W 
co 

Ve-(VV)B   /kA\ 
v       oVv / 

dk (37) 

where the designation PV signifies that the principal value of the integral 

is to be taken. With the variable change k = vt and some rearrangement 

(37) yeilds for ^ 

" e-^J (At) /e  ti \ 

dt + 

GO 

3    P   U .\^T?  o 
e_BtJo(At)dt (38) 

or 

= 2FV 
f e"BtJo(At) 
J    1-t (39) 

This last follows from the fact that the bracketed term in (38) is zero as can 

be verified from a table of Laplace transforms, for example, page 102U of 

reference [6]. The form (39) serves as the basis of an expansion involving 

the exponential integral Ei(B), which is defined as 

Ei 

CO 

(B) = - FfJ 
-t 

dt 

-B 

A simple variable change gives the result that 

(«K» 

Q = W 
r   -Bt 

dt = e ,BE1(B) <H) 

from which it immediately follows that 

S-™""/'££»-£[•■*»] (te) 
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Tö expand the integral in (59),  replace J  by its power series, which is 

convergent for all values of the argument. This gives 

Z/ .xk ...2k   p  .2k -Bt 

k=0 u*;       0 

(**3) 

In view of the above this is 

-■> I «j«r &[••■«■>] (**) 

From 0»O) 

B 
^ [Ei(B)] = S_ dB L"J-VJ,',J      B (*5) 

Repeated use of (U5) in (*A) gives the final form of the exponential-integral 

expansion. Specifically, 

where 

% *21 n> V> (I) 
k=0 

(W) 

C (B) = e"?Ei(B) (*7) 

B2k 
Ck<B> = "si 2 

2k-l 

A=0 
m 

The expansion for the A-derivative of %.   is obtained from (ho)  by differ- 

entiation. The bracketed term in (48) consists of the difference between the 

quantity e TEi(B) and the first 2k terms in its asymptotic expansion for 

large B (see below). 
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2k 
The factor B  has been included in the coefficient functions given by 

(h8)  to minimize their variation with B. That this is the correct factor to 

accomplish this may be inferred from the limiting forms of these functions 

for very small and very large values of B. For large B the asymptotic 

series for the exponential integral gives 

For small B the form 

Ck(B)--%^42.[l + 0(B)] , B^O (50) 
k      22k(k.') 

is obtained directly. Thus, C.(B) approaches zero as l/B for large B 

and approaches a finite value for small B. Division of these quantities by 
2k 
B  would result in coefficient functions that rapidly approach zero for 

large B and that become large for small B. If the limiting forms (h$) and 

(50) are used in the series (^6), in both cases the ratio test shows converg- 

ence for A/B < 1 and divergence for A/B > 1. 

Thus, the expansion for small values of A is actually an expansion 

in powers of A/B, a.id it is the value of this parameter that determines how 

many terms of the expansion must be used to obtain a certain desired accuracy. 

Clearly small values of A/B may correspond to rather large values of A if 

§       B is sufficiently large. 

The approximate form of (h6)  that is used for computation is, of course, 

A 2k 
h - 2  I   <-l)\(B) (|) (51) 

k=0 

Values of co. calculated from (51) and of dcp^/dA calculated from the 

derivative of (51) have been compared with "brute force" numerical evaluations 

for various orders of the expansion, i.e., various values of M, over a wide 

range of values of B and A/B. For each value of A/B the maximum error 

for any value of B was determined and designated the maximum error at that 
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value of A/8. These maximum errors are shown in figure 11. (The functions 

themselves are shown in figures 9 and 10.) The errors in the derivative 

have been multiplied by A to minimize their dependence on B for fixed 

A/A. For M = k   the expansion is accurate to 0.001 up to values of A/B 

of rbout 0.U to 0.5« The smallest value of M that is used is M = 1. 

Notice that this means that two terms of the expansion (51) are used. 

If subroutines are available for the exponential integral, the coef- 

ficient functions C.(B) can be calculated directly. However, such sub- 

routines are rare. To fill this need, the functions C, (B) have been fitted 

with polynomials in the ranges: 0 S B < 1, 1 < B < 2, 2 < B < k, ^ < B < 8, 

and 8 £ B < 10. The results are contained in Appendix A. All the C, (B) 

have individual polynomial fits, except C.(B), which is calculated from 

the relation 

^(B) = J [B2CO(B) - 1 - B] (52J 

which xs obvious from the definition (hQ).    This method of calculating C. (B) 

not only saves computing time, but also prevents numerical difficulty in the 

raultipole expansion at small values of R or A (see section 8.3). The 

other coefficient functions can also be expressed as a multiple of C (B) 

plus a polynomial, but the expressions contain 2k + 2 terms and for the 

larger k are more complicated than the fitted polynomials. In Appendix A 

all the C (B) are fitted to about the same accuracy, approximately 0.0001. 
2k 

When these functions are used, they are multiplied by (A/B) , where A/B 

is never larger than one-half. Thus, less accuracy is required for the 

functions with larger values of k, and further investigation will very 

probably show that one or two terms may be omiüted from the polynomial fits 

for G.(B), k = 2, 5j *»■• This change will reduce computing time. 

For B > 10, the coefficient functions are calculated using the 

asymptotic expansion of e~£i(B) for large B. This expansion is 

00 

^i(B) -> £ -^ ,       B -. (53) 

*=0B 
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The accuracy of an asymptotic expansion is usually optimized if the expansion 

is terminated with the smallest term. For B = 10, the tenth and eleventh 

terms of (53) are the smallest, but the accuracy is insensitive to term 

number between six and ten. For the present purposes six terms are used for 

CQ, C„, and C,, and eight terms are used for CV. As mentioned above, 

use of the asymptotic expansion leads to some cancellation in the bracketed 

term in .(^8)« The resulting expressions for the coefficient functions are:. 

B   V      B   B^  B 

(^(B) * \ U2C0(B) - 1 - Bj 

C2(B)s 8 [B + ^J B >10 (5M 

C3(B) = 0 

Cj^B) * 0 

The approximations (5*0 are less accurate for the higher values of k, but 

the lessening of accuracy with increasing k is consistent with the decreasing 

accuracy requirement that is discussed above. 

7.5 .Expansions for Finite Values of the Ratio of Vertical 
to Horizontal Distance 

The expansion of the previous section calculates <aj(A,B) accurately for 

all values of the parameter B/A larger than some value in the range 2.0 to 

2.5> say B/A = 2.3 for definiteness. What now remains to be devised is a 

method of calculating cp„(A,B) for the range 0 < B/A < 2.3« It turns out 

that several expansions are required to do this, each of which is based on a 

particular value of B/A. 

33 

'"«*» 



It is desired to expand <jLj(A,B) about a particular value of B/A, 

which is denoted p, i.e., the expansion is about B = pA. All the expan- 

sions of this type are based on the formula 

%(A,B) = .-<*■*> 
(B/ 

<fy(A,pA) + 2 J 
(B/A)-p 

e du 

0      ^1 + (u + p)2 

which is obtained from (2<?) by straight-forward manipulation. First defi 

(55) 

ine 

e = B - pA (56) 

The function 1/ VI + (u + p)2 i 

the form 
is expanded as a power series about u = 0 in 

= ■ I \<»»' 
VI + (u + p)2  k=0 

where the first few av(p) are as follows 

(57) 

V7! + P2 aQ(p) = 1 

>A + P2 ax(p) = £ 
1+ P^ 

(1 + P2)2 

A+p2 a,(p) = - P3 - (?/g)p 
5 (1 + P2)3 

JT77 a1+(p) -»u - ?p2 + V« 
(1 + p2)^ 

(58) 

N/TV? a„(p) - - P5 - PP5 t (lV8)p 
5 (1 + P2)5 

3^ 



Now (55) becomes 

,B) = e* 

..»     e/A 

,PA) + 2 £ ^(P) j  u 
k=0     0 

e du 

The integral in (59) is a standard form with value 

?■■ W 
k Au.   e" 

0 A   ?v=0 

V /.^  k.'   k-Ä . (-l)1^.' / e  ,» 

This gives for qi^ 

<^(A,B) = e"€ 

k=l   A X=0 

(59) 

(60) 

2(e€-^I^k^r\(p) 
k=0 

This can be rearranged to give the final result 

Zk+1 
(-l)\(p)fk+2(€)(f) 

where 

k=0 

(61) 

(62) 

>/l + P2 bQ(p) = 2 

>/l + P2 b (p) = —£ 
■*■ 1       ■ 1+ Pc 

(1 + P ) 
(63) 
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^ *•»-*£# (65) 

Ptf^y-^I.(! 

CT^-k*^^ 
and where the functions fk(

€) are defined as 

k-1       v    ; 

k-2 

A=0 

1 ~ k     k(k + 1)     k(k + l)(k + 2)     * *' 

MH 

(ft) 

übe derivative of   %.   is given by 

where 

k=0 

VI + P2 c0(p) = - 2p 

>/l + P2 c,(p) = -£-» 
x 1 + p 

,/ 1 + P    c  (p)  = 5    £_ 
(1 + Pd) Tv? 
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{ JT77 c5(p) - ^£-=± 
(66) 

& 

^77 ^-?J^ 

^^^r^1 

Notice that the infinite series that would be required to give equality in (62) 

and (65) have been replaced by finite series for practical computation. The 

upper limit M of the summation for the potential is the order of the expan- 

I       sion. A total of M + 1 terms involving powers of € are added to the basic 
i 

1       term in the potential expansion (60), and M + 2 terms in powers of € are 

I      added in the derivative expansion (63)• (Both expansions are terminated with 

the same fv(e).) 
F 

I 
If the expansions (62) and (65) are considered infinite series, the 

question of their convergence arises. From analysis of special cases and 

general order of magnitude arguments, it appears that the series convergence 

I       for I e/A I < 1. 

I The above formulas permit expansions up to M = k   to be written down 

I       for any expansion parameter p. (in fact M = 5 is included for the potential 
s 

expansion.) One value of p is special, namely p = 0. For this value, 

e       every other term in the expansion is zero, and for the same computational 

I       effort roughly twice as large a value of M can be used for p = 0 as for 

other values of p. Expansions have been worked out for three values of 

p: p = 0, p = 1, p = 7/h.    These expansions are designated the near-zero, 

I       near-one, and near-seven-quarters expansions, respectively. They appear to 

cover the range 0 < B/A < 2.3 adequately, but possibly a few small ranges 

I       require new expansions. For these values of p, the first few coefficiants 

in the expansions are given in table 5. Specifically, table 5 contains b.(l), 

ck(l), bk(7A), and ck(TA) for k = 0, 1, 2, 3, k,  5 and bk(0) and 

c, (0) for k = 1, 2,  3, ..., 9« With thsse coefficients the near-zero expan- 

sion can be written down with up to five nonzero terms in the summations — the 
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same number as the other expansions. For k > 5 the general formulas for 

b,(p) and c. (p) are not given above, because these terms are used only for 

p = 0. For nonzero p it is more efficient computationally to derive more 

expansions than to extend existing expansions to high values of k. 

The accuracy of the near-zero and near-one expansions for various orders 

M has been determined by comparing values of qu and dqu/oA. calculated by 

the expansions with "brute force" numerical evaluations for a considerable 

range of values of A and B/A. For each value of B/A the largest error 

that occurs for any A has been determined and designated the maximum error 

at that value of B/A. These maximum errors are shown in figures 12 and 13 

for the near-zero and near-one expansions, respectively. The errors in the 

derivative have been multiplied by A to minimize their dependence on A for 

fixed B/A. An exhaustive error study has not been made for the near-seven- 

quarters expansion. However, from the form of the general expansion, it is 

felt that the errors for this expansion are nearly the same as those for the 
1 
|     near-one expansion if the two expansions are compared at equal values of 

I      e/A = B/A — p. That is, figure 13 can serve approximately as the error plot 1 - 

for the near-seven-quarters expansion, if the abscissa scale is translated to 

make l/k  lie where 1 does now. 
f 

For small k the functions fk(
e) are evaluated from the middle line 

I      of (64), i.e., 1 

| fl(£) = e"€ | 

f ef2(e) = 1 - e"
€ (67) 

I 

I €2f,(e) = 2[e'€ + € - 1] 
| J 

|      It will be noticed that the functions fk(
e) enter the expansions (62) and 

I      (65) multiplied by the powers of e given in (67). For higher values of k, 
I 
I      this method of evaluation is cumbersome. Accordingly, the functions fv(e) 

I      for k = 3, 4> 5 and 6 have been fitted with polynomials over a range 

-2.5 < e < 2.5. The functions ffc(e) for k =  8, and 10, have been 

fitted over the range 0 < e < 2.5. These latter functions are used only 

in the near-zero expansion for which e cannot be negative. The polynomial 

fits of these functions are given in Appendix B. 
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To evaluate expansions (62) and (65) explicit formulas for the leading 

terms are required. Specifically, the functions 

and 

G(A,p) = <^(A,pA) 

H(A,p) = P%(A,pA) + ^ [q^(A,pA)] (68) 

are needed in the range 0 < A < 5. These two functions have been fitted with 

polynomials in the range  1 < A < 5 for p = 0, 1, and 7/k.    The results 

are given in Appendix C. For the range 0 < A < 1 improved polynomial fits 

were obtained by writing the above functions in the forms 

G(A,p) = g(A,p) + 2e_pAJo(A)ln (I A) 

H(A,p) = h(A,p) - 2e'pAJ1(A)ln (| A) (69) 

♦ 2e-<\(A) t 

The functions g(A,p) and h(A,p) are not singular for small A, and it is 

these functions that are fitted with polynomials in the range 0£ A < 1. The 

results are also given in Appendix C. 

It can be seen from equation. (69) that these expansions are singular for 

A*= 0. With p fixed the condition A -»0 implies that also B -> 0 and 

thus that the source, its image, and the field point approach each other and 

approach the free surface. Clearly, singularity is expected for this situation. 

Both these expansions and the multipole expansion of the following section fail 

for this condition. 

If the expansions are used for values of A as large as five, the 

ranges of the fits in Appendix B are appropriate as long as | e/A| is no 

greater than one-half. If it should prove necessary to use values of |G/A| 

greater than one-half, either the range of the polynomial fits must be expanded, 

which is quite straightforward, or the expansions must be restricted to values 

of A less than some value less than five. In the latter case, the Laguerre- 

Gauss formulas must be used down to the new limit on A, and this can be 

arranged simply as can be seen in table h.    However, it is desirable to keep 
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values of \e/A\    as low as possible so that relatively few terms of the 

expansions (62) and (65) are needed for good accuracy. 

7.6 A Sample Range Criterion for the Expansions 

The formulas of the previous parts of this section can be used to calculate 

%.   and its A-derivative to any degree of accuracy. The greater the accuracy 

that is required, the greater is the number of expansions that are needed, 

■'       i.e., the greater is the number of values of p that must be used with (55)« 
1 
I       The accuracy requirement basically determines which expansion and how many 
I 
§       terms of it are to be used at a particular set of values of A and B. How- 

ever, the translation of this requirement into an actual logical decision 

routine for selecting the expansion and term number is a nontrivial task. To 

f       illustrate this procedure an example is presented here. 

For illustrative  • oses it is assumed that it is required tö calculate 

I       <o_ and (i<fL.f&k   with an error not exceeding 0.001 in absolute value. (Compare 

I       the values of these functions given in table 2 and figures 9 and 10.) This 

I       seems to be a reasonable error criterion for applications. Possibly, it is too 

conservative. (A decision routine for a different error criterion could be 

worked out from the error curves of figures 11, 12, and 13.) It is further 

assumed that only the expansions discussed in the previous parts of this I 
section are to be used with only the terms that have been presented. The 

calculation is to cover the complete range of B and all A up to five. In 

all cases the fewest possible terms are to be used to conserve computing time.. 

The error curves shown in figures 11, 12, and 13 are used, but the 

results are adjusted, always in the conservative direction, to simplify the 

decision routine. The results are shown in figure l4, whose abscissa is A 

and whose ordinate is E/A. The coordinate plane is divided into regions, 

in each of which a certain number of terms of a particular expansion is used 

to calculate qu and ö<p„/öA. In all cases the number of terms is specified 

by M, where this quantity has the same meaning as it does in the definitions 

of the expansions that are given in the previous parts of this section. The 

error curves of the expansions have been conservatively simplified to make 

the boundaries of the regions in figure lU straight lines, whose equations 

are given. It can be seen that the only regions that are not handled 
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satisfactorily are three small regions having small values of A near B/A 

values of 0.6, 1.1», and 2.1, respectively. Kiese regions could be handlet, 

by means of one-term expansions about those values of p. Possibly an 

increase of the error criterion would cause these regions to disappear. 

! 
i 
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8.0 INTEGRATION OVER AN ELEMENT USING A MULTIPOLE EXPANSION 

8.1 Geometrie Quantities Associated with an Element 

To carry out the method of solution outlined in section 6.5, it is 

necessary to develop formulas for calculating the potential and velocity at 

points in space due to a unit source density on one of the plane quadrilateral 

elements used to approximate the body surface (see figure 4). This requires 

integrating the formulas for the oscillating point source potential and its 

gradient over a general quadrilateral element. Certain geometric quantities 

associated with the quadrilateral are used to perform this -Integration. 

These quantities are defined in this section. 

Figure 5 shows a general quadrilateral element. The coordinates of the 

centroid of the area of the quadrilateral are x , y , z . Integrations are 
000 

performed in a coordinate system based on the element. The variables of this 

coordinate system are I, i\,  £, where the g- and Tj-axes lie in the plane of 

the element and the l;-axis is normal to this plane. The origin of this coordi- 

nate system is taken as the centroid, and the unit vectors along the axes of 

the system are: 

(xo«""o»zo) 

FREE SURFACE IV 

(*o>yo» *o) 

(a.b.c) 

(x. y, *) 

Figure 5. - Illustration of quantities used to obtain the multipole expansion. 
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l-axis:   a^i + a^j + a^k 

n-axis:   a21i + &22J  + a^k (70) 

t;-axis:   a?1i + a^j + a^k 

where i, j, k are the unit vectors along the x, y, z axes, respectively. 

A point with coordinates x, y, z has coordinates g, r\,  £ in the system 

based on an element where these coordinates are related by 

| = an(x - xo) + &12(y - yQ) + a^z - Zf)) 

n  = a21(x - xo) + a22(y - yQ) + a^z - Z<)) (fl) 

i =  a51(x - xo) + a52(y - yQ) + a^z - zj 

Hie maximum dimension of the quadrilateral is denoted t. Its value 

determines the size of the quadrilateral. The shape of the quadrilateral is 

expressed by the normalized moments of its area. Specifically, tho normalized 

moments are: 

hzJft'Vw ™ mn       m+n+2 

where the integral is over the area /^3 of the element. The order of a 

particular moment is defined as the sum of its subscripts m+n. In general, 

the size of the moments decreases with increasing order. The zeroth order 

moment Ino is the normalized area of the element, and the second order 

moments, I_„, I... and I^_, are the normalized "moments of inertia". The '  20'  la.       02 
first order moments, I,Q ind I ., are zero because the origin of coordinates 

is the centroid of the area. 
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8.2 The Multipole Expansion 

It will be recalled that the potential at a point (x,y,z) due to a 

unit oscillating point source at a point (a,b,c) is of the form 

<PS = 7+ 7-+ vq>'(A,B) (73) 

In integrating this expression over an element the two l/r terms are treated 

by the method of reference 1. The term of interest here is of one of two 

forms. Either I 
1 

V<p'(A,B) = vt-qp^B) + q^(A,B)] (7*0 j 

or 

vq>'(A,B) = v[-q^(A,B) + qp^Bj (75) 

where the individual potentials    (fL,  <&.*  cp„,    and   <pT   are given by equations 

(26),   (27),   (29),  and (30),  respectively.    In this section 

9 = <P(A,B) (76) 

is used to denote any one of the four individual potentials of (7*0 and (75) 

which must be integrated over an element. The quantities A and B depend on 

the coordinates a,b,c of the point source. Specifically, 

A = v/(x - a)2 + (z - c)2 = vR 

(77) 

B = -v(y + b) = vh 

The process used to integrate the quantity V9 over an element is known as 

the multipole expansion. In general terms it proceeds as follows. The point 

(a,b,c) where the source is located is taken as a general point on the quad- 

rilateral element as shown in figure 5- This point is expressed in the element 

coordinate system by using a,b,c in place of x,y,z in equation (71)- 

Because the point is on the element the resulting f is zero. By this means 

the quantities A and B, and thus the quantity v<p, are expressed in terms 

of the coordinates x , y , z  of the centroid of the element and the 
o' o  o 
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coordinates £, TJ of a point on the element in its own coordinate system. 

This expression for vq> is expanded in a two-variable Taylor series in powers 

of 6 and i\.    The resulting series consists of certain derivatives of q> 

evaluated at the centroid, i.e., at the point g = TJ = 0, multiplied by powers 

of | and TJ. The derivatives of <p are constants with regard to integration 

over the element, and integration of the powers of | and n, gives the nor- 

malized moments, equation (72). 

The subscript 0 is used to denote quantities evaluated at the centroid, 

e.g., (dcp/dA)-., etc. In particular 

A = v /(x - x )2 + (z - z )2 = vR 

(78) 

B0 = -v(y + yo) « vhQ 

Here R  and h  are, respectively, the horizontal and vertical distances 

between the field point (x,y,z) and the image point (x ,-y ,z ) of the 

centroid of the element. 

In carrying out the details of the multipole expansion it turns out to be 

more efficient to expand the velocity components rather than the potential. 

Let the integrated potential of the element be 

■ v^ <PHdTi (79) * 

where <p may be any of the potentials cpL, (fu, qi-, or q>T. The velocity 

components associated with this potential are 

\ • -vMasdi (8o) 
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These components are integrated over the element in the above-described 

manner. The potential can be expressed in terms of the y-component V . 

Specifically, 

JTT-* -2v / / -f—l - - V        if      qp = (ft.  or 

AS 

(81) 

* = - - V if 
v y <P = %  or  <p 

The integral term of (8l) can be absorbed with the integral of the l/r.. term 

of (73) and evaluated by the method of reference 1. 

In deriving explicit formulas for the velocity components (80) use is 

made of the fact that the first order area moments, I1f. and I_., are zero. 

Use is also made of the fact that <p is an axisymmetric solution of Laplace's 

equation in cylindrical coordinates, i.e., that 

*Sc(Atf) + &-° (ao 

The manipulations required to derive the formulas of the multipole expansion 

are rather lengthy and are not included here. Instead only the results are 

presented. 

hi 
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The expansion for   V     is 

V x 

(85) 
+ ... 

-(Äl'^k- ] 
The expressions for V  and V  are identical to the above with superscripts 

x replaced by superscripts y and z, respectively. Before explicit formulas 

for the various Quantities in (83) are presented, some discussion of the gen- 

eral form of the expansion seems in order. The expansion (83) is the sum of 

two expansions in powers of (vt): the "b array" whose rows are multiplied by 

successive B-derivatives of cp, and the "c array" whose rows are multiplied 

by successive B-derivatives of (dcp/cW). All rows of both arrays are infinite 

series in powers of (t/R ), except the first row of the "b array", which con- 

sists of a single term. The complete expansion is thus in powers of the two 

variables (vt) and (t/R ). The coefficients b   and c   (with any x '      ' o' mn     mn 
superscript x,y, or z) have subscripts that denote the powers of those 

variables that the coefficient multiplies. Specifically, the first subscript m 
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denotes the power of (vt), and the second subscript n denotes the power 

of (t/R ). The coefficients b  and c   are each linear combinations of 
' o mn      mn 

the normalized moments of order equal to two less than the sum of the subscripts 

of the coefficient. (That is, the sum of the subscripts of the coefficient is 

two greater than the sum of the subscripts of the normalized moments from which 

it is formed.) Thus, each coefficient b  or c   is designated as being 
mn     mn 

of a particular order, which is simply the order of the normalized moments 

used to form it. The chief decrease in size of the coefficients in (83) is 

with increasing order. Note that coefficients of a fixed order are all on 

the same "antidiagonal" of the arrays in (83). This is similar to the multipole 

expansion described in reference [3]. 

In particular, the terms of (83) involving bp_ and c?0 are the zeroth 

order terms of the expansion. These coefficients depend on the normalized 

area I--. of the element. The first order coefficients b%, c__, and c?. 

depend on the first order moments L.Q and I . Thus, these coefficients 

are zero if, as in the present case, the expansion is about the centroid of 

the element. They have been included in (83) to make clear the form of the 

expansion. The coefficients, b._, b„, c.., c,., and c„ are the second 

order coefficients. The expansion is used in two forms. Either the zeroth 

order terms are the only ones retained, or the zeroth order terms and all 

second order terms are retained. In the latter case, expansion (83) is used 

as written. Higher-order terms are not included because the complexity of the 

terms increases rapidly with order. | 

First define the auxiliary quantities ] 

a.-r-a, ß--s-a, r—r3- «*> 
X — X 

0 
z — z 

v               0 
R 

0 
ß -      R        ' 

0 
}  -      R 

0 

R--a12ß' 
0 

ß = J- - a    ß 
R,        22H 

0 

a = *--a12ß,     ß.^-a p (85) 

^9 
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h ' 3 T20 + * Xll ' «2 * ° hi + ß * 02 (86) 

Jl = «lA + a22^ ' J2 = a ^ + p K2 (87) 

G,  = 1 = ^2^0 + a22Ill ' G2 ~ al2Ill + a22J02 (88) 

H = a12Gl f a22G2 (89) 

'-^♦K-3^-^ (90) 

Then the coefficients in expansion (83) are as given in the tables below: 

m n b(x) 
mn b^> mn b<2> 

mn 

2 0 0 ■"■oo 
0 

3 0 0 0 0 

3 1 
(*— *u\- a21*>) 0 (|* " al3Kl " ^3*2 ) 

h 0 OJ, | (H - J2) 
"l 

m n mn 
c(y) 
mn 

(z) 
mn 

2 0 aIoo 0 rIoo 
2 1 0 0 0 

2 2 2b<X> 
* 31 

0 «£' 
3 0 0 0 0 

3 1 N? - allGl " " a21G2) -J(J-aJ2) Ho   - a13Gl ' " a23G2) 

If 0 
*# -Jl 7b(y} 

The many zeros in these tables greatly simplify the computation. 
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The B-derivatives in (85) can be simply related to the quantity that is 

differentiated. It is evident from definitions (27) and (30) or directly 

from relation (31) that 

Nm 

dB* 

d $ _ / . \m <*£ 

if <p = <^j   or <Pj (91) 

For qjj. and (ft» the B-derivatives can be computed successively from the 

definitions (26) and (29) or more directly from relation (32). The results 

are as follows: 

if    q> = «^ 
\ % 

i- T     vr1 

*                                   T 
3f| = + 
oB2 

2              2B 
Wl     (vr,)3 

9 
2B  ,  2 

T 
6B£ 

Vrl  (vrL)
5  (vr/  (v^)' 

a3cp 

öB2aA 

§2 .  2A 

»   (Wl)
3 

<&+  2A  1  6AB 
55 ' (V^)5  (vr/ 

(92) 

where as before 

vr]L = /Ä 2   2 " + B (93) 

Expressions similar to (92) could be derived for the higher derivatives, so 

that in principle expansion (83) can be carried to any desired order. The 

51 



derivatives in (9?-)  are all that are needed if expansion (83) is terminated 

with second order terms. 

The formulas of this section permit the potential and velocity at a 

general point in space due to a general quadrilateral element to be evaluated 

in terms of the potential and A-derivative of the potential due to a point- 

source at the centroid of the quadrilateral. These two quantities are 

evaluated by the formulas of section 7-0. Thus, the multipole expansion 

reduces the quadrilateral source to a point source as far as computation is 

concerned and is effective for all range of A and B. 

8.3 Behavior of the Multipole Expansion at Small Values 
of Horizontal Distance 

From the form of expansion (83) it appears that the expansion becomes 

singular as R /t approaches zero, i.e., as the horizontal distance between 

the centroid of the element and the field point becomes small. However, it 

is clear that if the potential 9 is an analytic function, as are all cp 

considered for the present purpose, this singularity must be apparent and not 

real. It is possible that the apparent singularity might lead to numerical 

difficulty, &nd calculational procedures must be designed to avoid such prob- 

lems. It turns out that to'avoid any singularity the multipole expansion 

must include either all terms of a particular order or no such terms. The 

procedure adopted in this report is such that the apparent singularity causes 

no difficulty. Of course, expansion (83) cannot be used if R /t is exactly 

zero. Thus, a test is made and special limiting formulas are used if 

R /t < e, where e is taken as, say, 10 . The discussion below shows 

that the expansion formula may be used for small values of R /t just greater 

than any nonzero e. 

The potentially troublesome terms of (83) are those containing negative 

powers of R /t. For the present discussion it suffices to consider only 
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those terms and to ignore the others. The sum of the singular terms of (83) 

are (dropping the subscripts o) 

V-*) = -gf)(*>5 >£>(!) 

-(^)w24x)(l)2 w 

(^)<*>M?(I) 
For finite values of v and B = vh taking the limit as R -» 0 means that 

A = vR and thus A/B are both small. Ums, the potential is considered only 

in the form (28), i.e., qy. and q>T are used in expansion (83), not qx. and 

(ftj. Also, the potential qu and its A-derivative are evaluated by means of 

the exponential-integral expansion using an oider of the expansion M = 1 

(figure Ik).    Thus, equation (51) gives for tie potential and its derivative 

%-2[0°(B)-ci(B)(fc)2]+0(Rl 

&-[-*«L»fc)}oO> 

") 

(95) 

where the o(R ) and 0(R) terms in (95) merely illustrate the magnitude 

of neglected terms, since only the terms in square brackets are retained for 

M = 1. The coefficient CL(B) is not calculated independently but is obtained 

from C (B) by equation (52). Thus, the above expressions are 

= -Co(B)(vR) + ^-i(!)+0(R5) 

k) 

(96) 

oA 
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If (96) and (92) are used in (9U), the result is (dropping the 0(R ) and 

0(R) terms that contribute nothing in the limit) 

Vx(sing.) = - )(B,[2-i(v^].^(|)
2-^-- 2B 

<»!>" 

«<**£>(*) 

..«(-)-H1©«*^^ 
+ C0(B)(VH,-^(|)-^ (**£> (I) 

(97) 

or 

Vx(sing.) = -h(B,+^+^](vt)3^(i) 
[o.M-^l] <*>>«# (|) 

^W[co<B,-^-^]+0 

(98) 

(R) 

The two terms in curly brackets in (98) will be computed separately in practice. 

Both terms have singularities of order l/R with coefficients that are the 

terms in square brackets. These singularities, which are shown below to 

cancel analytically, must also cancel numerically. Since the singularity is 

only first order, this can be arranged with moderate caution in the calcula- 

tional procedure. This has been verified explicitly by numerical experimenta- 

tion at R /t = e = 10-1*. 
o' 

There are two kinds of terms in (98). The terms that do not involve 

C (B) are exact except for round-off caused by the finite word length of 

the computer. The terms containing C (B) have an additional, much larger 

5t 



error due to the polynomial fit of C (B). 'JO show these two types of terms 

explicitly, (98) is written in the form 

Vx(sing.) = (vt)
3(|) C0(B) 

_gbU) + (x) 
-KD31 + C22 2b (x) 

31 (*i+ K)5) 

— c, 
(x) B + 1 
22  B2 

+ (vt) c^' C0(B) - S^ 
(vrx)

5 
+ 0(R) 

(99) 

From the table of coefficient functions above, it can be seen that 

c<X> = 2b(x> 
22   ^D31 

(100) 

and the same statement is true if the superscript x i6 replaced by y or z. 

Thus, the coefficient of (t/R)C (B) in (99) vanishes, and thus errors due to 

fitting C (B) are not critical. This is entirely due to the fact that C.(B) 

is computed in terms of C (B) from (52). If C. (B) were computed separ- 

ately, C (B) and C. (B) would have independent errors and the required 

cancellation would not occur. There would then be numerical difficulty for 

small R. To show the disappearance in the limit of the second term in (99) 

it should be noticed that 

1 
vr, JF7I 

= I + 0(R2) B (101) 

This, together with (lOO) gives the desired result. Thus, in the limit as 

R-» 0 

Vising.)- (vb)^cW rCo(B) - I-p (102) 

with similar expressions for V  and V . These expressions may be used for 
y      z 

I v,  u 
I JA / U 

I   O' 
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Methods of computing the potential <p_, which is given by (30), are not 

discussed in section 7*0, because it is felt that standard expressions will 

be adequate. In particular, for moderate-to-small values of A, it seems 

reasonable to use the rapidly convergent Taylor series for J (A) in powers 

of A. In this case the apparent singularities in the multipole expansion 

can be shown to cancel analytically and numerical difficulty at small R 

should be no worse than for <o.. 

8.k   Accuracy of the Multipole Expansion 

The accuracy of the multipole expansion was investigated by using it to 

calculate a large number of cases and comparing the results with the results 

of "brute* force" numerical integrations. In formulating error curves one 

problem was to be conservative without being too conservative. The procedure 

used to generate these error curves is described below. 

The potential was considered in the form (28), i.e., divided into qu 

and q>,. (The l/r terms were not considered.) Thus the potential was 

divided into its real part -VCJL and its imaginary part v<pT/i. In the 

derivative expressions (9l) and (92) that enter into the expansion (83) exact 

values of <p and (dq)/äA) were used, so that any errors are those ar     i 

with the multipole expansion. The accuracy of the multipole expansion 

on the parameters (h /»),    (R /t) and (vt) and also on the shape of the 

element and on the direction of the field point with respect to the centroid 

of the element. In calculating error curves, the maximum error with respect to 

element shape, direction, and velocity component was determined as a function 

of the three parameters above. Specifically, a set of values of (h /t), 

(R /t), and (vt) was selected. Calculations were performed for six differ- 

ent elements and for a variety of directions. The largest error in any velocity 

component for any of the elements and directions was determined by inspection. 

This was done for the potentials vca, and vcp, separately to obtain a 

"maximum real part" and a 'maximum imaginary part" error. The square root 

of the sum of the squares of these two errors is the quantity eventually 

plotted. It has the nature of a "maximum absolute value" error, and it is 

conservative because the "maximum real part" and "maximum imaginary part" 

errors seldom occur for the same velocity component, the same element, and 
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the same direction. The above procedure was repeated for ranges of values of 

(h /t), (R /t), and (vt) to obtain the maximum error curves presented here. 

Maximum error curves were calculated for the case where all second-order 

multipole terms were retained, i.e., where expansion (83) is useu as written, 

and also for the case where only zeroth-order multipole terms are retained, 

i.e., only the b2Q and c2Q terms of (83). Figure 15 shows error curves 

for the second-order multipole expansion, and figure 16 shows error curves for 

the zeroth-order multipole expansion. Values of (vt) up to three were con- 

sidered. For (vt) = 3 the maximum element dimension is approximately equal 

to one-half the wave length of the motion. No higher values of (vt) were 

considered, because it was felt that at such frequencies the assumption of a 

constant source density on the element would break down. If, however, this 

assumption remains valid, higher frequencies can be considered by subdividing 

elements to reduce the maximum value of (vt) below three (see next section). 

A comparison of figures 15 and l6 for (h /t) = 2 and (h /t) =3 shows the 

very large improvement in accuracy that is obtained by using the second- 

order multipole expansion instead of the zeroth order. This fact was also a 

factor in the decision not to proceed to higher orders for the multipole 

expansion. 

If a definite error criterion is adopted, figures 15 and l6 permit ranges 

of validity to be established for the zeroth and second-order multipole expan- 

sions. For definiteness, it is assumed here that an absolute error criterion 

of 0.001 has been adopted. With this criterion the ranges may be defined: 

a. For (h /t) > h, zeroth-order multipole is sufficient for all 

(R /t) and all (vt) < 3» (As can be seen from figure l6c, 

possibly (h /t) > k.2    is required for small (R /t), but this 

is a detail.) 

b. For h >  (h_/t)> 2, second-order multipole gives the required 

accuracy for all (R/t) and all (vt) £ 3. 

c. For (h /t) < 2 second-order multipole is not sufficiently accurate 

for all (R/t) and all (vt) £ 3« However, the accuracy improves 

very rapidly with decreasing (vt) and with increasing (R /t). 
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In the range (h /t) < 2 the integration over an element is accomplished by 

subdividing the element into subelements, each of which has a smaller value 

of t. Thus, when calculating the effect of the subelement, the effective 

value of (vt) is reduced compared to that of the original element. In most 

cases the values of (h /t) and (R/t) are increased relative to those of 

the original element. As can be seen from figure 15, all three of these 

changes in parameter values lead to a reduction of the error for the second- 

order multipole. The computation of the effect on itself of an element adja- 

cent to the free surface may require special handling. This is acceptable 

from the standpoint of computing time, because such cases represent a small 

fraction of the total computation. However, the use of a second-order multipole 

with element subdivision will give accurate results for the important case of 

the effect of one element adjacent to the free surface on another such element. 

It is only for elements near the free surface that subdivision is required, 

and thus it is UFCJ rather infrequently in the computation scheme. 

8.5 A Scheme for Subdividing an Element 

The subdivision of an element for use with the multipole expansion at 

values of (h /t) less than two may be accomplished in a variety of ways. 

From a computational standpoint the process of subdividing an element con- 

sists of the calculation of the sets of geometrical quantities that define the 

subelements. Specifically, the following quantities must be calculated for 

each subelement: the normalized moments I   of the area, the coordinates 
mn 

of the centroid, the maximum dimension t, and the components a,,, ap-, etc. 

of the unit vectors along the axes of the subelements' coordinate systems. 

(in reference 1 the set of these a 's is called the transformation matrix.) 
mn 

If further subdivision is required to reduce values of (vt) to acceptable 

values, i.e., if the subelements must themselves be subdivided, the coordinates 

|. , TL , k = 1,2,3,4 of the corners of the subelements in their own coordinate 

systems must also be calculated. An efficient subdivision scheme is one 

that: (l) obtains all the above quantities with as little computation as 

possible, (2) reduces values of (vt) as much as possible, and (3) can be 

iterated in a straightforward manner to subdivide the subelements. Many 

schemes are possible. One scheme that possesses these requirements is out- 

lined here. 
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A typical element to be subdivided Is shown in figure 6. The 

coordinates of its four corner points in the element coordinate system are 

L, \,    k = 1,2,3,1*. It is assumed that the maximum dimension t of the 

element is taken as the longer of its two diagonals and that the (-axis 

of the element coordinate system is taken parallel to this longer diagonal. 

Thus, if (as shown in figure 6) the longer diagonal is between the points 

(l^t^) and (lyi\j),    then t^ = ij  and t - (|, - l^).    The origin of 

the element coordinate system is taken as the centroid of the element. 

(All of the above is consistent with the geometrical considerations of 

reference 1. The only required change is making the (-axis parallel to 

the longer diagonal.) 

Conceptually, the subdivision scheme consists of bisecting each side of 

the quadrilateral with a point and drawing a line connecting each of these 

four points with the midpoint of the longer diagonal. As shown in figure 6, 

this process yields four subelements, which are labelled 1, 2, 3, **■   to 

denote the corner point they contain. Subelements 1 and 3 have the same shape 

«■*)«; 

Figure 6. - Subdivision of an element by the use of midpoints. 
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and orientation as the original element, and each is reduced by one-half in 

linear dimension. Subelements 2 and h are parallelograms. Each subelement 

has one diagonal parallel to the longer diagonal of the original element. 

The (-axes of the coordinate systems of all subelements are thus taken 

parallel to the 6-axis of the coordinate system of the original element. 

Thus, the components a.., a2-, etc., of the unit vectors along the axes 

of the coordinate systems of all subelements are identical with the same 

quantities for the original element, and no additional computation is required 

for these quantities. Subelements 1 and 3 have the same normalized moments 

as the original element, and have values of t exactly half that of the original, 

element. Normalized moments must be computed for the parallelogram subelements 

2 and k,  but in subsequent subdivision of the parallelograms the normalized 

moments are identical for all later subelements. The length of the longer 

diagonal t of one of the parallelogram subelements cannot be predicted in 

advance. The diagonal parallel to the 6-axis is exactly half the value of t 

for the original element, but the other diagonal may be longer. In the worst 

case the other diagonal of a parallelogram subelements may be only slightly 

shorter than the value of t for the original element. However, in subsequent 

subdivisions, the values of t for the subelements of the parallelogram are 

exactly half the value of t for the parallelogram. 

Explicit formulas for the geometric quantities associated with the sub- 

elements 1, 2, 3}  and k of figure 6 show how little computation is required 

by the subdivision process. First define 

2g2 - h " h 2*k - *l - *3 p        —       1       11      ■ ■■ 1   r, p.      —    . .i   1 ■   1   ■ 1     11   1  1.1     £. 

2            6—6 '                        h            6—6 
*          53     51 53     51 

(103) 
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Then the geometric quantities associated with the subelements in figure 6 are 

as follows: 

Maximum 
Element Diagonal 

Original t 

Subelement 1 h 
Subelement 2 see above 

Subelement 3 h 
Subelement k see above 

l(Centroid) 

K 

2 53 

i (lL + 26u + e3) 

Ti(Centroid) 

1 « 
2*1 

| (ux + ng) 

K 
¥\+ v 

_22. 

""2 

■"■oo 

Element ^0 hi X02 

Original 
■^o hi •"•cß 

Subelement 1 ^0 hi I«> 

Subelement 2 
1 
2T "fe(e2 + 1) 0 H 

Subelement 3 ^O xll "be 
Subelement ^ 

1 
2T 

f 2 a 1) 0 K 
Finally, from the method of subdivision it is clear that the coordinates of 

the corner points of the subelements of figure 6 are simple averages of the 

coordinates of the corner points of the original element. 
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APIENDIX A 

EXPRESSIONS FOR EVALUATING THE COEFFICIENT FUNCTIONS IN THE 

EXPONENTIAL-INTEGRAL EXPANSION FOR VALUES OF THE ARGUMENT 

FROM ZERO TO TEN 

/ 
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oiBa 

c. 

UBi2 

C (B) = e_BE L(B) 

C„(B) = e"B InB 

+ 0.57725^59 

+ 0.^2188715 B 

- O.U5U2OOM B2 

+ 0.18850916 B5 

- 0.05607^6 Bk 

+ E(B) 

C„(B) = 0.69717880 

+ 0.50182^70 (B - 1) 

-0.6578660t (B - I)2 

+ 0.^85^59^8 (B - D5 

- 0.22^576 (B - Dk 

+ 0.0502557^7 (B • -I)5 

+ E(B) 

|E(B)| < 25 • 10" 

E(l) = - O.OOOOI9 

|E(B)| < 20 • 10" 

E(l) = o.ooooo^l 

E(2)  = O.OOOOOUj 

2iB^ 

k s B * 8 

c (B) = 0.6701*8886 

C0(B) 

-O.I712528O  (B -2) 

- 0.05^727768 (B - 2)2 

+ 0.0^2575269  (B - 2)5 

- 0.0lhkk8k63 (B - 2)k 

+ 0.0019075^18 (B - 2)5 

+ E(B) 

■ 0.55955825 

-0.109^8767 (B -k) 

+ 0.02566^2^5 (B - MP 

- 0.00515705^8 (B - t)5 

+ 0.00018870981 (B - k)k 

+ E(B) 

|E(B)| < 25 • 10" 

E(2) = O.OOOOO6 

E(t) = O.OOOOO6 

-6 
I E(B)|  < 50 •  10 

E(k)  = - 0.00001t 

E(8) = - O.OOOOlt 

6k 

»«.««, »gw^ww^MK^^aMa^^^^^^ ^^ 



8 s B -k 10 CQ(B) = 0.1^772609 
_ 0.02261H305 (3 - 8) 

+ 0.00331^9587 (B - 8)2 

- 0.00032011296 (B - 8)5 

+ E(B) 

-6 
I E(B)| < 15 * 10 

E(8) = - 0.000005 

E(10) = - 0.000005 

CX(B) - \ [B
2e_BEi(B) - 1 - B] 

In all ranges of B C.(B)  is calculated from the identity 

CL(B) = \ [B
2Co(B) - 1 - B] 

C2(B) = ^ [B^e-^KB) - B3 - B2 - 2B - 6] 

0«3il C2(B) = - O.O9376U999 
- 0.0306603^8 B 

- O.OI8986087 B2 

- O.OI606063I B3 

+ 0.01^132838 Bk 

+ E(B) 

1 § B =» 2 C2(B) = -O.lJ+535703 

- 0.06101981^ (B - 1) 

+ 0.011051671 (B - l)2 

+ 0.02650^571 (B - 1)' 

- 0.0073085699 (B - i)k 

+ E(B) 

|E(B)J < 20 • 10 

E(l) = 0.000017 

-6 

|E(B)| < 10 • 10" 

E(l) = 0.000000 

E(2) = 0.000000 
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2 S B s h 

UBS3 

8 i B no 

C2(B) = -C.17609te8 

+ O.OIOOO2509 (B - 2) 

+ 0.052699^7 (B - 2)2 

- 0.0106590?0 (B - 2)5 

+ E(B) 

C2(B) = - 0.0505657^2 

+ 0.09^17^67 (B - k) 

- 0.00899719^5 (B - h)2 

- 0.0055536^27 (B - 4)5 

+ O.OOIW51919 (B - h)k 

- 0.00011322520 (B - kp 

+ E(B) 

Cg(B) = O.IIIO5O52 

- O.0089389738 (B - 8) 

- O.OO3473715I (B - 8)2 

+ 0.0007762^732 (B - 8)5 

+ E(B) 

|E(B)|  < 75 *  10'6 

E(2) = 0.000055     j 

E(k) = - 0.000022 ! 

|E(B)| < 55 '  10"6 

E(k)  = - 0.000024 

E(8) = - 0.000023 

|E(B)| < 25 • 10"6 

E(8) = 0.000017 

E(lO) = 0.000016 

C^B) = FEE [B6e_BEi(B) - B5 - Bk - 2B3 - 6B2 - 2^B - 120] 

0SBS1 

1 S B S 2 

C5(B) = - 0.052081517 

- 0.010^85777 B 

- O.OO21508276 B2 

- O.OOI8207172 B5 

+ E(B) 

C,(B) = - 0.0665^9269 

- 0.019776277 (B - 1) 

- 0.0092101808 (B ~ l)2 

+ 0.0030382825 (B - 1)3 

+ E(B) 

E(B)| < 10 * 10"6 

E(l) = - 0.000001 

E(B)j < 20 ' 10"6 

E(l) = - 0.000012 

E(2) m - 0.000011 
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2 S B S U C3(B) = - 0.09?49i866 | E(B)| < 20 • 10 
-6 

l - 0.028463143 (B - 2) 
s + 0.00053224846 (B - 2)2 E(2) = - 0.000005 

j + 0.007^613867 (B - 2)5 E(4) = 0.000004 
i 
r ~ O.OOII826565 (B - 2)^ 

i 
i' 

+ E(B) 

1 
l)iB$8 C,(B) = - 0.10729389           1 E(B)| < 4o • 10"6 

\ + 0.023850510 (B - 4) 

\ + O.OI8257392 (B - 4)2 E(4) = 0.000030 
> - 0.0039381087 (B - 4)3 E(8) = O.OOOO28 
f 

* 

i 

- 0.00001^366^99 (B - k)* 

+ O.OOOO36616026 (B - 4)5 

+ E(B) 

J 
1 

i 
8 * B * 10 C3(B) = 0.061968114            | 

+ 0.023687746 (B - 8) 

E(B)| < 25 • 10"6 

- O.OO86533615 (B - 8)2 E(8) = - 0.000009 
? + 0.O0O8o47i344 (B - 8)5 E(lO) = - 0.000004 

+ E(B) 

C^(B) = ppp^g [B8e_BEi(B) - B7 - B6 - 2B5 - 6Bk - 24B3 - 120B2 - 702B - 504o] 

0 § B £ 1 

UBI2 

CU(B) = - O.O3419195O 

- O.OO47257587 B 
- 0.0011700246 B2 

+ E(B) 

CJ^(B) = - 0.0U0121243 

- O.OO696I+8968 (B - 1) 

- - O.OO26223II2 (B -1)' 

+ E(B) 
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E(B)| < 20 • 10" 

E(l) = 0.000014 

I E(B)|   < 25 '   10"6 

E(l) = - 0.000019 

E(2) = + 0.000017 
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2SB«1( 

h § B § 8 

8 * B S 10 

<\(B) = - O.OU9763691 

- 0.0117^7816 (B - 2) 

- 0.005055^531 (B - 2)2 

+ 0.001603^521 (B - 2)5 

+ E(B) 

C^(B) = - 0.080550890 

- 0.01197221t (B - k) 

+ 0.00^8073235 (B - h)2 

+ 0.0027910827 (B - t)5 

- O.OOO728U6533 (B - k)** 

+ O.OOOO46982U16 (B - «05 

+ E(B) 

C^(B) = - 0.011289^7^ 

+ 0.03^5^199 (B - 8) 
- 0.00231*o6t8o (B - 8)2 

- O.00057919267 (B - 8)5 

+ E(B) 

I E(B)|  < 50 •  10"6 

IE(2) = - 0.000038 

E(4) = - O.OOOO32 

I E(B)|   < 20 •  10"6 

E(k) = - O.OOOOO9 

E(8) = - 0.000005 

-6 I E(B)|   < 30 •  10 

E(8) = - 0.00002t 

E(lO) = - 0.000021 
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APPENDIX B 

POLYNOMIAL FITS FOR THE COEFFICIENT FUNCTIONS APPEARING IN 

EXPANSIONS FOR FINITE VALUES OF THE RATIO OF VERTICAL 

TO HORIZONTAL DISTANCE 
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-2.5 s € s -1.6 

-1.6 S € £ 0 

0 £ €  £ 1.6 

1.6 5 e s 2.5 

f3(e) = 1.838307^ 

-0.79033^19 (e + 1.6) 

+ 0.2295218t (e + 1.6)2 

-0.0^75^11^7 (e + 1.6)5 

+ 0.01252lK)09 (e + 1.6)k 

+ E(e) 

f,(€)   =  1.0000131 

-0.33290257 c 

+ O.085U19775 c2 

- 0.013188412 e3 

+ O.OO50259510 e*1 

+ E(e) 

f3(e) = 0.99999^3 

- 0.33316^75 € 
+ 0.0825010^2 62 

- O.OI51676U3 €5 

+ O.OOI59P722U €^ 

+ E(e) 

f3(c) = 0.626^7872 

-0.159^5710 (e -1.6) 

+ 0.032887796 (€ -1.6)2 

-0.00^58^7555 (e -1.6)5 
+ E(c) 

I E(e)| < 10 • 10"6 

E(-1.6) = 0.000001 

I E(e)| < 25 • 10"6 

E(-1.6) = - 0.000017 

E(0) = 0.000013 

f E(c)| < 15 • 10"6 

E(0) = - O.OOOOO6 

E(l.6) = 0.000004 

-6 I E(e)|  < 10 •  10 

E(i.6) = -0.000003 

-2.5 S € S  -1.6 VO = 1.5718059 
-0.50042778 (e + 1.6) 

+ 0.11221306 (€ + 1.6)2 

-O.028770321 (e + 1.6)5 

+ E(c) 

I E(c)|  < 30 •  10"6 

E(-1.6) = - 0.000019 
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-1.6 iElO 

0 * 6 s 1.6 

1.6 S e * 2.5 

f^(0 = 1.0000037 

- 0.21*986190  € 

+  0.050698352  €2 

- O.OO71338529 e5 

+ O.OOI9878595 ^ 
+ E(£) 

fU(c) = 0.99999728 

- 0.2^992577 e 

+ O.OU965027I €2 

- 0.00772^9373 e5 

+ O.OOO72768106 e^ 

+ E(c) 

f^Ce) = 0.7003^6 

-0.138^3385 (c -1.6) 
+ 0.023l39te3 (e - 1.6)2 

- 0.0027712165 (e - 1.6)5 
+ E(e) 

-6 I E(e)|  < 15 * 10 

E(-1.6) = -O.OOOOO6 

E(0) = O.OOOOOfc 

I E(c)|   < 10 • 10"6 

E(0) = - 0.000003 

E(l.6) = 0.000001 

-6 I E(c)|   < 10 • 10 

E(1.6) = -0.000001 

-2.5 ^ e * -1.6 f5(€) = 1.1*2955^1 

-0.35599015 (e + 1.6) 

+ 0.067011655 (e + 1.6)2 

-0.01IUI6002 (€ + 1.6)5 

+ E(e) 

-6 I E(e)|  < 20 •  10 

E(-1.6) + -0.000008 

-1.6 i e s 0 f5(e) = I.OOOOOO8 

-O.19995266 e 

+ O.033598OO9 e2 

- O.XU2806136 e5 

+ 0.00092920812 e^ 

+ E(e) 

I E(e)|  < 10 •  10" 

E(-1.6) = -0.000003 
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APPENDIX C 

POLYNOMIAL FITS FOB THE LEADING TERMS IN THE EXPANSIONS FOB FINITE 
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Figure 12. - Maximum errors in the potential   ^N and its A-derivative calculated 
by the near-zero expansion. 
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