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In recent years there has been considerable experimental and

6,7 7.some theoretical ',interest in the spatial-temporal growtL of instabilities

: I arising when a beam is injected into a plasma. There does not appear, how-

gI ever, to be any theoretical treatment of the modification of the growth of

an initial perturbation due to the presence of a spatial boundary. This

FJ modification will be illustrated for the case of a monoenergetic electron

beam injected into a cold plasma with an infinitely massive ion background.

The treatment is based on the linearized hydrodynamic equations

and Maxwell's equations for the normalized densities, the drift velocities,

and the electric field,4A (elm) E):

n + u 0 (1)

up't + -Vup (2)

nB,t + UongB,x + ug0x 0 (3)

UBt + UUB + =0 (4)

2 2(5

,t - )P Up - 'B (UB + uonB) 0 (5)

Eq. (2) contains a phenomenological collision term, representing collisions

between the plasma electrons and the ion background. The remaining Maxwell's

equation:

,x p np + =B nB - 0 (6)

is treated as a condition to be satisfied at t - 0, whence it is satisfied for

all later times.

Eqs. (1-5), which are of the following form (repeated indices are

summed):

I
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+b f + f 0 i,j 1,...)5 (7)

aiJfj,t + i bfj,x cijfj"

are to be solved for x > 0 and t > 0 subject to conditions: fi (Ot) g i(t)

and fi(xO) = hi(x). These conditions are not ai., independent since Eqs. (2)

and (5) must be satisfied at x = 0, and equation (6) must be satisfied at

t = 0. The first two of these restrictions are due to the fact that char-

* acteristicsof Eqs. (1-5) lie on the boundary x = 0.

The double Laplace transformation solution to Eqs. (1-5) is:

fi(xt) = (2Tri)- 2fdpdq ePt + qx Fi(pq) (8)

Fi(Ptq) = E[ajkHk(q) + bjkGk(p)] dji(p,q)/D(pq) (9)

Hi and Gi are the one dimensional Laplace transforma of h.(x) and gi(t).

D is the determinant of the matrix a.ijp + bijq + cij, and dij is the cofacLor.

(D 0 is the dispersion relation, apart from a multiplicative factor p, for

the infinite case.) The integration paths ii (8) are to the right of all

singularities of the integrand.

If the transforms Hk contain only simple poles at q = i I...,

the q integratioa in Eq. (8) may be performed to give.,

fI dp Pt + qIx CakHk(qt) + b, uGk(P)] dl1 (p'qA)
i 2Y~ A1,2(BD(p,q-)/Bq) q=q I

- • fdp ept + Omx D(Pi ) Residue (H1(%)) (10)

where %(p) are the roots of D(pq(p)) 0:

U._ -p iwB (P + V)
q1, 2 (p) = -+ - 2

u 2

,ut
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If x > u t, the first term in Eq. (10) does not contribute, since

the contour may be closed et infinity in the right half-plane, where it en"

-f closes no singularities. (This result is independent of whether the Hk have

only simple poles.) The expression for fi(xt) is then independent of the

presence of the boundary and consists, as in the unbounded case, of plane wave

terms proportional to exp (pI(Ti)t + 0ix) where p,(q), ! = t,...,4 ore the

roots of D(p(q),q) = 0.

If x < uot, the first term of Eq. (10) has singularities at: (a)

singularities of q,(p), (b) singularities of Hk(q)(p)) apart from those in

(a), and (c) singularities of Gk(p), which we assume to be simple poles at

p = i i - ,..... The contour can, in this case, be closed in the left half-

plane, and it can be shown that the singularities (b) exactly cancel the

second term in Eq. (10). This cancellation eliminates the plane wave terms

which appear for the infinite plasma. In their ; ,ace the singularities (a),

which include the essential singularities at p = -kv + i [ -p2 _ give

the more ccmplicated dependence due to the presence of the boundary. The

singularities (c) give rise to plane wave terms proportional to exp(Oi t +

To illustrate the long time behavior of an initial perturbation,

consider the case: nrp(x,0) = N sinkx and P(x,0) = -N0, ikt (l-coskx). All

other boundary and initial conditions are taken to be zero. The integral

(10) around the essential singularity can be evaluated by the saddle point

method in the limit of large t. It can be shown that this method is valid

in the present case, and that only two of the eight saddle points which occur
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contribute to the asymptotic behavior. The result is:

P,(x,t) Nku 2 (670 - (0PW) TX1  ,-/

X- e .2 j 3 OX213 T1/3 _ k/ l)T
11/

-3' 3 2/3 1/3023(12
Xsinf T~~ 7y 3(2

where l- (v/wp)2-/6, /Uo, wP t, and sin 0 kv/Wp* This
2tad -3T-2/3.'<< 1 <,< OIt should

result is valid provided x << u t and f/ / It should

be noted that the exponential factor, which dominates the form of ?(x,t), is

independent of the initial disturbance.

The above results yield the following picture for the development

of an initial disturbance. If the disturbance is unstable according to the

F usual theory for spatially unbounded systems, it grows as eYt only until

t = x/uo. For t >> x/L° the amplitude goes as in Eq. (12). It reaches a"F -V3 0/,Ji)311 /o

maximum at to 0 (/ (Bxuo) and finally decays as e"kvt If

the collision frequency is large, t does not occur in the asymptotic region
0

t >> x/u, so the behavior is always e-lut in this region. On the other

band if v = 0, the disturbance grows indefinitely, and one has essentially

an absolute rather than a convective instability. This is due to the fact

that there are characteristics of Eqs. (i-5) which are parallel to the t

axis.8 The presence of collisions thereby insures the validity of the

linear approximation for all times, provided x is not too large.

In experimental measurements what is observed is the result of

many disturbances originating at different prior times. Since each distur-

I1- bance has a limited lifetime (for any fixed x and v # 0), the cumulative

t F

i- -F - -.. ." . . .
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effect is a stationary state which varies with x. In the present situation

the lifetime depends critically on the collision frequency, so one expects

the level of fluctuations in the stationary state to also be strongly in-

fluc ;ed by v. While a rough estimate of this stationary state can be

obtained from the above results, a more accurate analysis is desirable. Such

"an analysis is presently being performed.
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