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signers and field personnel concerned with off-road mobility. 

Under these broad objectives, soil mechanics research is directed 

at developing techniques for analyzing off-road mobility problems 
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with steady state two-dimensional flow generated by a driven 

rigid cylindrical wheel moving in soft saturated clay, assumed 

to behave like a rigid plastic material.  The study was per- 
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ABSTRACT 

The steady two-dimensional flow beneath a driven rigid 

cylindrical wheel moving in a soft saturated clay is solved by 

assuming thaL the soil behaves like a rigid-plastic material. 

The general equations of plastic flow are discussed, with empha- 

sis on the inertlal effects which generally are not negligible. 

A plastic flow pattern is suggested and the quasi-static equa- 

tions of flow are integrated in two regions of the plastic zone. 

An approximate solution provides the magnitude of the recovery 

angle, the vertical and horizontal forces and the torque acting 

on the wheel as function of wheel radius, sinkage and shear 

stress along the wheel (assumed constant on the bow portion). 

A minimum slippage necessary to maintain the shear stress on 

the wheel is found. The theoretical results are compared with 

some existing measurements and the agreement is generally 

satisfactory. 



HYDRONAUTICS,   Incorporated 

1.  INTRODUCTION 

The capability of a vehicle to navigate In a soft soil de- 

pends on the magnitude of the forces developed at the wheel 

(or track) and soil Interface.  The prediction of these forces 

as functions of the wheel geometry, soil characteristics and 

wheel speed is necessary in order to design vehicles or to esti- 

mate the mobility of a given vehicle under different conditions. 

Unfortunately, at this stage of development of the art (see 

Section 2) there i^ no reliable theory which can produce design 

formulae.  Moreover, even the fundamentals are not well under- 

stood and similitude criteria which allow extrapolation of 

model testa to prototype are not clearly formulated. 

The purpose of this study is to solve in a basic way the 

problem of soil flow beneath a wheel under some simplifying 

assumptions.  While existing approaches use empirical results 

obtained from static tests of plates on the soil surface and ap- 

ply thera to the moving wheel, in the present study the whole 

region of soil flow beneath the wheel is considered.  The solu- 

tion of the problem follows the lines of the classical applied 

mechanics: the soil behavior is represented by material consti- 

tutive equations, the stresses and velocity fields are inter- 

related through the equations of motion and the particular 

solution for the wheel is obtained by integration with the ap- 

propriate boundary conditions. 
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Unfortunately, the dlfflcultle; encountered In such a type 

of solution are formidable.  The most Important of them is the 

lack of a good mathematical representation of the soil behavior 

in form of constitutive equations, i.e., relationships between 

stresses and deformations.  But even if some simplified consti- 

tutive equations are adopted, the exact integration of the equa- 

tions of motion in the wneel case seems impossible at this stage. 

For the above reasons, in this preliminary study the problem 

has been simplified by adopting the following assumptions: (l) 

the soil behaves like a rigid-plastic incompressible material, 

(ii) the wheel is two-dimensional and rigid, (iii) the motion 

is steady and (iv) the soil surface is plane and unperturbed 

far from the wheel. Assumption (i) limits the applicability of 

the results to soft clays with a high water content, although 

even in this case the plastic-rigid model is a foregoing simpli- 

fication.  It may describe roughly the behavior of a saturated 

undrained clay with a dispersed structure (Reference H, p. 369)» 

(Reference 7, p. 188). 

Considering the highly empirical character of existing 

theories it is felt that the present work, in spite of the above 

simplifications, constitutes an important strip forward in the 

understanding of soil-vehicle interaction.  This is only a first 

step, and the results obtained so far encourage the contln- • 

uation of the study along the same lines, with steady improve- 

ment and extension of results to more complex conditions, like: 

representation of soil as a work-hardenVng material and incorpo- 

ration of friction, consideration of three-dimensional wheels and 

of unsteady motions, influence of wheel or track shape, etc. 
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o BRIEF LITERATURE REVIEW 

The purpose of this section is not to give a comprehensive 

review of the publications in the field of vehicle-soil inter- 

action, but a critical discussion of the most important contri- 

butions, relevant to this study. 

A.  Theoretical Works on Soil Wheel-Interaction 

The most known and applied theories of wheel-soil interac- 

tion are those of Bekker and Uffelraann. 

Bekker's theory (2), (3) is based on the following assump- 

tions on development of stresses on the soil-wheel interface: 

(i) The normal stress at a point is related to the wheel sinkage 

at the same point.  The relationship, known as Bernstein equa- 

tion, is obtained empirically by pressing plates in the soil and 

representing the dependence of force on sinkage. (ii) The hori- 

zontal resisting force to the wheel motion is a result of the 

work done in compacting the soil and creating the rut.  There 

is no soil recovery beyond the wheel bottom.  (iii) The shear 

stress along the wheel is computed by using the relationship be- 

tween shear stress and deformation obtained empirically by pulling 

a flat plate on the soil surface. 

The soil layer adjacent to the wheel has an angular defor- 

mation which is computed by assuming that on the wheel side the 

speed is equal to the wheel rotational speed and on the soil 

side equal to the translational speed.  This permits the deter- 

mination of the shear stress as function of slippage and position. 
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By using seven soil constants In the representation of the 

empirical curves and some additional computational simplifica- 

tions Bekker was able to calculate the forces acting on the 

wheel by using the above assumptions. 

The Inconsistency of Bekker's theory when compared with ex- 

perimental results have been largely discussed In literature 

'^ee, for Instance, (19)* (20)) and will not be repeated here. 

From a basic point of view, Bekker's theory Is an attempt 

to apply results of measurements of forces on flat plates In 

static  conditions to moving wheels.  There Is no a priori 

reason that such an attempt should be successful since the soil- 

flow beneath a flat-plate Is different from that beneath a 

wheel.  If we adopt the plastlc-rlgld model and observe the 

plastic flow pattern beneath a footing  (7), (8) and that be- 

neath a rolling surface  (l), (8) we will find that they are 

different. Moreover, the normal stress at a certain point Is 

depending on the whole flow-field and not on the vertical dis- 

placement of that particular point.  There is no theoretical 

ground for the assumption of pressure-sinkage relationship along 

the wheel. 

The rolling resistance of a wheel cannot be attributed to 

the soil compaction, excepting possible agricultural soils 

with high content of air-filled pores. A soft clay with a high 

water content is practically Incompressible and in a two-dimen- 

sional case there is no ultimate rut.  There is definite evidence 

of soil recovery at the rear with normal stresses contributing 

to draw-bar pull (l8), (22). 
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The distribution of shear stresses along the wheel is dif- 

ferent from that assumed by Bekker because a roil particle 

moving along the wheel has velocity gradients depending again 

on the whole flow-field end it starts to be sheared before .1 c 

reaches the wheel surface. 

Concluding these remarks on Bekker's theory it may be said 

that in spite of the progress marked by this theory in the quan- 

titative representation of the soil-wheel interaction, it has 

not clarified the mechanism of soil flow beneath the wheel. 

Uffelmann (18) has assumed that the normal stress on a 

wheel is constant and equal to that under a static rough foot- 

ing in a plastic incompressible clay and he suggested the com- 

putation of the wheel-resistance on this basis. Again, because 

of the different plastic flow patterns in the two cases, the 

pressures are generally different.  The normal stress is con- 

stant on a footing, but varies along a wheel. 

Reece and Wong (13) nave refined Bekker's theory 

by empirically relating the position of the point of maximum 

normal stress on the wheel to slippage. Consequentlly the well- 

known fact that the tangential stress influence tne distribu- 

tion of normal stresses is reflected by the formulae (fact 

Ignored by both Bekker and Uffelmann theories). Again, this 

generalization is based on some empirical data and not on the 

analysis of the flow-field. 
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In conclusion, there Is no comprehensJve theory of soil- 

flow beneath a wheel.  All existing approaches are empirical and 

consider the soil-wheel Interaction as a surface effect.  They 

Ignore the stress and velocity distribution In the soil body. No 

consideration has been given to Inertlal or strain-rate effects. 

B.  Experimental Work 

The experimental works on soil-wheel Interactions are dom- 

inated by the same trend as the theoretical works: only forces 

acting on wheels or stress distribution have been measured. 

Experiments In which the flow-pattern of the soli has been 

observed are reported In (21), (22), most of them being carried 

out with sand.  Because of the small dimensions of the experi- 

mental soil bin and the low speed of the wheel, the quantitative 

value of the results Is questionable.  Moreover, no stress measure- 

ments - to be correlated with the kinematics - have been carried 

out.  Qualitatively, however, these experiments confirm beyond 

any doubt that the dynamics of wheel motion Is determined by 

the soli flow beneath the wheel and not Just by a surface effect 

at the Interface. 

The stress distribution along wheels and the resulting 

forces have been measured by different authors, but there is no 

general agreement between measurements.  For instance Uffelmann 

(l8) has found that the maximum normal stress acts at the bottom 

of the wheel, while in (15) and (13) it has been found somewhere 

forward near the bow.  Any analysis is hampered by the fact that 
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results are dependent on the type of soil and Its preparation. 

Since generally there Is no detailed description of the mechan- 

ical behavior of the soil used by different  experimenters 

It Is difficult, to compare different results on a common basis. 

The comprehensive measurement of forces on towed and 

driven wneels by Cullen, Culllngford and Mayfleld {^)  gives some 

qualitative trends as the decrease In flotation with slippage 

at constant slnkage. 

Some experiments are compared with the results of the 

present work In Section 9. 

In conclusion, there Is an urgent need for careful experi- 

ments In which both soil velocity distributions and stress dis- 

tributions along the wheel should be measured.  These experiments 

have to be carried out under thorough control of the soil be- 

havior and respecting the inertlal similitude requirements. 

C-  Theoretical Works on Rlgld-Plasilc Flow 

Although tr.e present study relies on the rlgld-plastlc 

theory, It Is beyond our purpose to review the publications con- 

sulted for this study.  The most referred work Is Hill's book 

(8) and to a lesser extent Prager's (10), (ll) and Tnomas (l?) 

books..  The results of some papers of special interest (l), (9), 

are recalled in some detail in the context of tne following 

seen ons. 
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3.  THE STATEMENT OF THE PROBLEM AND THE GENERAL 
EQUATIONS OF RIGID-PIASTIC FLOW 

A. The Statement of the Problem 

Under the assumptions enumerated In Section 1, the soil- 

wheel problem may be stated In the following terms (Figure l): 

A standing rigid cylinder of radius r' rotates with con- 

stant speed uu' and has a given constant slnkage z1.  The soil 

approaches the wheel with a constant speed at Infinity U ' and 

unperturbed free-surface elevation.  Find the free-surface 

shape, the soil velocity and stress fields In the whole seml- 

Inflnlte domain and particularly along the wheel.  The normal 

and shear stresses along the wheel (ö
1
 and T') result In a 

vertical force W, a horizontal force H' and a torque M'. 

The equations of rigid plastic flow, on which the solu- 

tion Is based In this study, are discussed In the following 

paragraphs.  The boundary conditions are analyzed In Section 5. 

The approximate solution Is given In Sections 6 and ?• 

In applications the slnkage z' Is not given, but the verti- 

cal load W.  From a mathematical point of view, however, It Is 

much more convenient to start with a given slnkage.  Once the 

problem Is solved, a correlation between slnkage and flotation 

Is found and z1 may be determined for a given W. 

B. The Physical Behavior of a Rlgld-Plastlc Material 

The Ideal rlgld-plastlc model, adopted here for representing 

the clay behavior. Is based on the following assumptions (8), (17) 
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- The plastic deformations are much larger than the elas- 

tic ones (which may be neglected).  The elastic state Is there- 

fore approximated by a rigid state (Young modulus tends to In- 

finity).  The only possible rigid motions are translation and 

rigid rotation. 

- In the plastic state the maximum shearing stress at any 

point Is constant and equal to the yield stress k'.  In the 

rigid state T' < k'. 

- The material In plastic state flows, the direction of 

maximum shear stress and the direction of maximum shearing 

strain-rate being parallel (i.e. the stress and strain-rate ten- 

sors have parallel principal axes).  There is no one to one 

correspondence between the stress and the strain-rate, which 

means that in a plastic flow the maximum shear stress is con- 

stant but the shearing strain rate may vary.  The deformation 

work Is totally irreversible in a thermodynamic sense. 

- The material is Incompressible and a hydrostatic pres- 

sure does not Influence the plastic flow.  Only the deviatorlc 

stress plays a role In creating plastic flow.  The material is 

r.omogeneous and Isotropie. 

The above assumptions lead to the simplest rigid-plastic 

model.  They may be modified in order to take Into account elas- 

tic effects, anisotropy, friction and work-nardenlng. Although 

this study is restricted to the application of the ideal rigid- 

plastic model, it is worthwhile to discuss briefly the work- 

nardenlng model, which is useful for future work on wheel-soil 

Interaction. 
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While an Ideal non-hardening material yields under constant 

yield stress, otherwise being rigid, the yield stress of work- 

hardening material is dependent on the history of strain and 

increases with the total shearing strain (or with the work of 

deformation).  The stress-strain curve of a non-hardening ideal 

rigid-plastic material is a straight line (Figure 2),   while in a 

work-hardening material it is curved.  The physical microscopical 

mechanisms which underlie work-hardening of metals (8) and of 

soils are probably different, but the macroscopical description 

is satisfactory in both cases.  Due to mathematical difficulties 

the work-hardening theory has apparently not yet been used in 

soil mechanics.  An ideal rigid-plastic material (meaning also 

non-hardening here) may be regarded as a limit of a work-harden- 

ing material with a very high rate of hardening (Figure 2). Thia 

interpretation will be useful in the discussion of Section 4C. 

C.  The Equations of Two-Dimensional Steady Flow (Cartesian 
Coordinates) 

Although the equations of plastic flow may be found in 

text-books (3)j it is worthwhile to discuss them here briefly. 

The kinematics of flow is described with the aid of the 

velocity components u', v1, and the stress field by a ', a ' 
A   y 

T  ' (Figure 3). 

The equations of motion, valid for any type of material 

are 
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da1 
x 

dT 
+ ax1   ay 

*L 
= p ax' 

au1 

ay C3.il 

äT ' 
xy 

Sc' 
+ 

öv' 
dx'    dy' = P' lu a- + v ay 

+ p'g   C3.2] 

The positIve signs of the different quantities being those of 

Figure 3• 

The assumption of incompressibility yields the continuity 

equation 

ax1 + ay1 C3.3] 

The assumption of constancy of yield stress in the plastic 

zone is reflected by Von-Mises criterion (8) 

(a ' - a ' )3 + 4 r- 3 = Ifk'3 
x    y '       xy [3^1 

and finally, the parallelism of principal directions of stress 

and strain-rate tensors is mathematically described by Saint- 

Venant  relationships 

au' 
ax* 

av 
ay 

au1  av' 

X 
a ' - o 

ay  ax1 

T^r 
xy 

C3.5] 
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whlch by the  continuity  equation become 

o ' - a ' 
öu'   äv 

- 

2 T"      Su'   öv' 3  J 

The five differential Equations [3.1], C3.2], [3.33, C3.*l and 

C3.6] are In principle sufficient In order to determinate the 

unknown functions a ', a ', T' , u' and v!. 
x * y ' xy' 

The five equations may be reduced In a particularly con- 

venient way to a system of four equations by Introducing Von Mlses 

variables p' = - (o ' + a ,)/2 (the Isotropie pressure) and 0-the 

angle between the direction of maximum shearing stress and the 

x' axis.  The two orthogonal directions of maximum shearing 

stress a and ß   (Figure 4) are selected such that the maximum al- 

gebraic normal stress acts In the first or third quadrant (Fig- 

ure 4). 

The new variables p', 0 replace a ', c ' and T'  through 
x   y      xy 

the relationships 

a ' = -p' - k' sin 2 0 x    r 

a ' = -p' + k' sin 2 0 [3.?] 

T'  = k' cos 2 0 
xy 

which satisfy Von Mlses criterion [3.4]. 
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Uslng dlmenslonless  variables   (defined  In  "Notation")  the 

equations  of plastic  flow become 

^ + 2 COS 2* J* + 2 sin 20 ^ äx öx oy 

^ ♦  2  sin  20 ^ -  2 cos  20 U ay dx äy 

-  H 
du        au 

U   5—  +   V   r— 
ax        ay 

/ 

-   H 
av        av u — + "  — 

i    ax        ay 

C3.8] 

G C3.9] 

20|}u .|v|+ sln 20(|ü + |v , 
ax     ay 1 [ay     ax C3.10] 

I u     a v     _ 
ox        ay [3.11] 

The plastlc-lnertlal dlmenslonless  number H = 
p'U '' 

(some- 

how similar to Reynolds number In a viscous flow) Is particularly 

significant for the soil-wheel Interaction. 

D, The Characteristic Directions and the Inertlal Terms 

In plasticity theory the Inertlal and gravitational terms 

are neglected (equivalent to assuming H = 0*0 =0).  Jn this 

case Equations [3.8] - [3*11] form an uncoupled quasi-linear 

system of first order: the derivatives of p and 0 appear in the 

two first equations, while those of u and v in the last equations 

Each of the two systems is totally hyperbolic and has two charac- 

teristic directions (8). Accidentally, the characteristic direc- 

tions for p,0 and u,v coincide and are the a and ß  directions. 
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The  equations  are  rewritten  In  curvilinear characteristic  co- 

ordinates x   ,   x.  by using the variables  transformation   (8) a      p 

-— =  cos  0 a sin 0 r  
ax dxa axß 

r— =  sin  0 r  + cos  0 ^— dy dx dx a P 
[3.12] 

v    =  u  cos  0 + v  sin 0 

v    =  - u  sin 0 + v  cos  0 
P 

the velocity being now referred  to the new coordinates. 

After some algebraic manipulations  the  system C3.8]   - [3.1l] 

becomes   (with  H = G =  0) 

äx ax a a 

_&£_    2 _a0_ 

= o 

=   0 

öv 
(i 

- v. 
30 

öx |B  öx =  0 
a ß 

_£.  +   v      _it 
axß      a axß 

=  0 

[3.13] 

[3.1^] 

■ 
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Equatlons [3.1^1 are known as Gelrlnger equations.  The 

lines a = const and ß =  const are known as sllpllnes and they 

determine an orthogonal network. 

Equations [3-13] and [3.1^1» known as the equations of quasi 

static plasticity, have the well-known properties of hyperbolic 

systems: The Cauchy problem for p, 0, v , v0 has a unique solu- 
CL p 

tlon If the data are given on a noncharacterlstlc curve; the 

solution at a point depends only on the data on the portion cut 

by the two-characterlstlcs through the given point; velocity 

tangential discontinuities are possible along a characterl 'I ; 

the velocity derivatives or p and 0 derlvatlvf;' may be II   ■ • ' 

uous along charac eristics,  p and 0 may be dilCOntil ."Ui   ng 

a line of stress-discontinuity which cannot be a CharftOt*!*] ' ' 

All the above properties are discussed in dttfti] lv 

and will be used extensively In Sections 5 »' I 

The neglectlon of the Inertia! t«nu In I • '' 

when applied to metal tecnnology is enH i • ,v Ju«i ' ■ 

H « 1 there (because of the very high ft 

Is true for foundation engineering wh- • 

equilibrium are considered.  In th-  . ■  I  • 

tlon, however, H may be of the order 0(l), 

a soil with k' ■ 3 pslj p'g = 120  pcf, fl b< 

for a translatlonal speed U ' • 7»5 WOhi o 
therefore, may be Important In mobility pi i 

has been ignored in both plasticity th( rv u 

Most of the laboratory tests have been eaitl 

of H much smaller than In field conditions. 
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An attempt to discuss the full equations of plastic flow Is 

presented by Spencer (l6).  Spencer analyzes the system C3.12] 

as a quasi-linear system for p, 0,  u, v and determines the char- 

acteristic directions by the well-known method (see (4), p. 171- 

173). 

The characteristic determinant of the system [3.8] - [3.11] 

considered by Spencer has the form 

■ I  tin 20 

•In 2/ • 

H(u - Xv) 0 

cot  20 - 
'    «In 30 

l 

H(u - Xv) 

sin 20  + 
+ X cos 20 

= 0 

• • 1 tlrtel ion. 

w  t hat rather than 

t, • cotan I C3.15] 

• ■  ' '•   of the quasl- 

• ■ it the system C3.8] - 

(»•mcterlotlcs.  This 
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concluslon Is open to criticism for the following reason:  Like 

In the quasi-statical case, Equations C3.10] and [.3. Ill form a 

decoupled system for u and v which Is hyperbolic and has the 

characteristic directions of [3.151. No matter what the form 

of the right hand sides of Bqatlons [3.81 and C3.91, the deter- 

minant will vanish for these two characteristic values of X, 

which can be easily seen from the Inspection of the last two 

lines of the determinant.  No conclusion regarding the Influence 

of the right hand side of Equations C3.8I and [3.9I can be drawn 

from Its vanishing. A better Insight Into the problem may be ob- 

tained by writing the system C3.8I - [3. Ill In characteristic 

coordinates i.e., by the aid of Equations [3.I2I.  The result Is 

(16) 

dx     ox 
a      a ß I *xß      ß  axß 

) C3.16] 

ibvß a ^ 1 I v  —■t- + v ~-    + G cos 0 
a dx    a dx a       a 

Sva      B0 
dx  " Vß öx a   ^  a 

!!£       00 
axß   a dxß 

> 

0 

= 0 
s 

[3.171 
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Obvlously the Gelrlnger Equations [3.171 are the same as 

[3.1^1.  Equations [3.16], however, do not satisfy the require- 

ment of fully hyperbollclty ((4), p, 173) which states that all 

the quantities should be differentiated along the same charac- 

teristic.  The presence of the cross-derivatives In the right- 

hand sides of Equations [3.I6] shows that the usual properties 

of a hyperbolic system are not met here. 

It Is beyond the purpose of this study to Investigate the 

nature of the system [3.16] and [3.171 which In fact Is the 

basis of a new chapter of applied mechanics which can be called 

dynamic plasticity. At this stage, assuming that for the soil- 

wheel Interaction H < 1, a perturbation expansion, similar to 

that suggested by Spencer (l6), will be adopted.  In such an 

expansion, In which H Is a small parameter, the leading term 

satisfies the hyperbolic quasi-static equations [3.13] and 

[3.1^1.  The wheel-problem will be studied (Sections 5>6) In 

thin first quasi-static approximation at this stage.  In Sec- 

tion 4 the influence of the inertlal terms on singular points 

and lines will be discussed and the quasi-static solution will 

be built in the light of the results.  In this sense the influ- 

ence of the inertlal terms will be reflected in the proposed 

solution, which is different from the type of solutions adopted 

in rolling and extrusion theories (8), (l). 

It is worthwhile to mention here that in a hypothetical 

case of very high H (for instance, for a vehicle which is not 

wheel-propelled) a perturbation expansion of Equations [3.l63> 
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C3.17] starts with the equations of Invlscld flow (Euler equa- 

tions) as the leading term.  The soil behaves In this case as 

an Invlscld fluid, rather than a plastic solid.  The Euler equa- 

tions have an elliptic character.  The problem for Intermediate 

H Is therefore somewhere between these two extremes. 

In an analysis of the equations of flow, written In the 

form of a second order system for p, u, v by the elimination of 

0 from L3.8] - [3.1l]> Thomas (17) has found the same character- 

istic directions L3.153, but he did not discuss at all the nature 

of Equations [3.16], [3.171. Assuming continuous velocities and 

pressures, Thomas snowed that discontinuities in the second 

derivatives of the velocities can occur only along the charac- 

teristics.  The only applications discussed by Thomas are of un- 

steady flows with no inertlal convectlve terms. 

E.  The Equatlonr. Along Streamlines 

The equations of plastic flow have been written so far in 

cartesian and cnaracterlstic coordinates. It is worthwhile to 

rewrite them in coordinates attached to the streamlines. 

Wltn 6 the angle between the streamline and x axis, s and 

n coordinates along and normal to the streamline (Figure 3)> the 

following relationships hold 

^— = r— cos 9 - 5— sin 8 
d x  os en 

^- = ^- sin 9 + X- cos  9                                 [3.18] dy       ds on 

u  = V cos 0 

v  = V  sin 9 
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The substitution  of Equation   [3-18]   Into Equations   [3.8] 

[3.11]   gives 

|^ + 2 cos   2(0-9 )  M +  2  sin  2(0-9 )  M = _  H ^ -  G  sin 9 ös                       x        '   äs                       K"     *   än 3S 

^ + 2  sin  2(0-9 )  |^ -  2 cos   2(0-9 )  |^ = -  HV3   ^- -  G cos  9 dn                       x        '   ds                       v     /   än 5S 

cos  2(0-9 ) Jl + sin  2(0-9 ) |I + v sin 2(0-9 ) Jt  - ds                  x       '  on                       v '  os 

- V cos  2(0-9)  J2.- 0 
on 

dV 39 r -, 
1^ + v 1^- = 0 L3.19] as        an 

The Equations  C3.19lare used  in Section 4  for some applications. 

F.  The Condition of Positive Work 

The Salnt-Venant condition [3.6] expresses the parallelism 

between the principal directions of stress and strain-rate ten- 

sors, but does not specify the signs of the two, which permits 

for two alternatives.  Only one of them, which satisfies the re- 

quirement of positive dissipation work is a valid representation 

of a plastic flow. 

The power of dissipation is given by 

E = ea+2T'y      +ea>0 C3.20] xx x xy rxy        yy y 

- 
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In terms   of u,v and 0.E Is   expressed as 

E =  sin   20 | |i - |H 
dy       dx 

\ 
f  cos   20 [ |ji + |v 

dy        dx 
> 0 C3.21] 

In  characteristic  coordinates,   Equation  [.3.2l]   transforms 

with  the aid  of  Equations  [3.12]   into 

E = 1 av3 av3 , ^ 0 V_  ^— + v„   ^—    >  0 
Vß Ya*\ ! ^ öxß 

C3.22] 

Equation [3.22]   has  been  found by  Prager   (10)   from graphical  con- 

a a 
slderatlons.  Since the operator v  5  + vn s represents dif- r       a, dx    ß dxD   ^ 

ferentlation along streamlines {TT)t   E may be finally expressed 

E . JJ_ ^ > o 
V V. ds a ß 

C3.23] 
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4.     SOME APPLICATIONS  OF  THE GENERAL 
EQUATIONS   OF  PIASTIC-RIGID FLOW 

As   stated in Section 3J   the general  study  of the  equations 

of plastlc-rlgld flow [3.8]   - C3.ll]   or C3.16],   [3.171   is be- 

yond  the  scope  of this  report.    A discussion  of the application 

of the  equations  to some particular  lines and  singular points 

Is presented here because  of Its  Importance  for the wheel problem. 

A.     The Free-Surface 

The  soil free-r.urface  In the rigid zone  of uniform flow Is 

horizontal.     In the vicinity  of the wheel,In the plastic  region, 

the  free-surface curves.     Three boundary conditions have  to be 

satisfied on a  free-surface 

[4.1] 
a n ■ 0 

T 
n 

■ 0 

V n " 0 U.2] 

I.e.1   the  free-surface  Is  stress-free and  It  Is a  streamline   (in 

a  steady  flow). 

From Equations C3.71   we  Immediately  find  that  Equations [4.1] 

are  equivalent  to   (Figure  5) 

0-e =±- 
4 [4.31 

p = ±  1 
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l.e.j   the a  lines  Intersect  the  free-surface at  45 degrees.     The 

plus   sign  In Equations  [4.3l   corresponds  to a  state  of compres- 

sion,   the maximum compressive  stress  being  a =  -2.     For 0-0= -v/h 

the  normal  stresses  are  tensile  with a maximum value  of   i =  2,   I.e. 

twice  the yield  stress   (Figure  5). 

Considering  first  the  state of compression,   it  is  easy to 

ascertain that   (Figure  5a) 

V      =   V   COS   rr 
4 C4.il] 

v     -  -V sin J 

Hence,   from the  condition  of positive work [3.23]   It  is  found 

that 

^<   0 [4.51 
OS 

which means that the speed along a free-surface has to decrease 

in tne direction of flow. 

The equations of flow [3.191 become in the case of a free- 

surface (0 - 6 = Tr/4 ,p = 1) 

2 |M       H |vl . 0 sln e 
on 2   os 

|£+  2  ai=   _  HV3   1^--  G  cos  9 [4.6] 
on äs 9s 

av        ae — + v _ = 0 
on os 

os on 
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The second equation of [4.6] shows that for a convex free-surface 

the pressure decreases along the normal, Inside the flow region, 

I.e., tensile stresses are Induced beneath the free-surface. The 

last equation of [4.6] shows that äO/ön > 0, I.e., the stream- 

lines diverge In the flow direction. 

In the case of tension (0-9 = - ir/k,  p = l) the speed has 

to Increase along the free-surface. 

B. A Boundary With a Rigid Body 

In plasticity theory (8) two conditions are Imposed on a 

boundary with a rigid body: the normal speed Is zero (streamline) 

and a stress condition.  Three types of stress conditions are 

assumed:  on a "rough" surface T = 1, on a "smooth" lubricated 

surface T = 0 and on a frlctlonal surface T Is proportional to 

o (Coulomblan  friction).  There Is no restriction on the tan- 

gential velocity which Is generallydlfferent from that of the rigid 

body (Figure 6).  The sign of the shearing stress on the rigid 

body depends, however, on the relative flow along the body: T 

acts In the direction of relative flow. 

Assuming for the time being (see Section 5) that the stress 

boundary condition Is T = T , i.e., the shearing-stress Is given 
w 

(0 s  T    ^1),   let  us  first  consider  the Equations CS-Tl.     For a 
w 

given  T     the angle between the a  line and  the body  Is  given by w 
(Figure  6) 

T     =  cos   2(0-9) [4.71 
w 
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Slnce T acts In the direction of relative flow, the angle 
w 

between the a line and the boundary Is smaller than TT/H  with 

respect to the relative flow direction,  Three cases of a 

locally slipping and skidding boundary are represented in Fig- 

ure 6. 

The velocity components on the characteristic directions 

are 

v = V cos (0 - e) 
a [4.8] 

v, = -V sin (0 - 6 ) 
P 

The condition  of positive work C3.23]   applied along  the 

boundary gives 

I dy3 . .      . 
cos   (0 - 9)  sin   (0 - 6)  "dF >  0   ' LK9J 

Hence,   for an accelerating  flow along the boundary  in the dlrec^ 

tion  of relative  flow  Equation [4.9]  gives 

sin   (0 - 9)  >  0  , [4,10] 

since cos (0 - 9 ) > 0 for  |0 - 9| * jr •     Consequently, in the 

case of an accelerating flow 0 > 9 (Figure 6a), while for a 

retarded flow 0 < 9 (Figure 6b). 



HYDRONAUTICS, Incorporated 

-27- 

A limit case is particularly important since it permits 

the exact integration oi the eqrations of flow, namely T  = i 
w 

(a rough boundary) i.e., 0 - -9 0. 

In this case the boundary is a characteristic line and 

Equations [3.191 become 

op  „ ae 
as   as 

H dVf_ 
2 bs 

G sin 6 

|£ . 2 |£ = . H v- I«- - G CO. e 
on    on        os 

[4.11] 

os    on 

OS       OS 
0 

av 
From the last two equations we find r— = 0, V = const. 

o s 
Hence,   the  speed  is  constant  along a  streamline  which  is  a  char- 

acteristic . 

The  first  equation  of [4.11]  yields 

p  + 29   +  Gy =  const [4.12] 

Equation [4.12]   shows how  the pressure variation depends  on 

the  curvature  of the boundary.     In the case  of a  wheel p decreases 

along the boundary,   since 09/as >  0  (assuming  that   the gravity 

effect   is  negligible.)- 
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In the case In which a streamline Is an envelope of char- 

acteristics the velocity may vary along It.  This property has 

been used In Prandtl solution (8) of flow between two rigid 

plates and Alexander (l) solution of rolling.  This possibility 

Is used In this work too (see Section 6). 

C.  A Line of Separation Between Regions of Rigid and 
Plastic Flows 

A body moving In a rlgld-plastlc material generates a 

region of plastic nonunlform flow In Its vicinity.  Since at In- 

finity the flow Is uniform and In a rigid state,there Is a transi- 

tion between the two regions.  In all problems of metal technol- 

ogy similar to the soil-wheel problem (extrusion, rolling, wedge 

Indentation (l), (8), and solved with the aid of the quasi-state 

equations),It Is assumed that this transition Is realized through 

a line of tangential velocity discontinuity. 

Such a line Is regarded as a limit of a narrow zone of 

plastic flow In which the tangential velocity varies rapidly 

(Figure 7)J (8).  In this layer the direction of maximum shear- 

ing strain-rate Is parallel to the layer axis.  It Is, therefore, 

assumed that the discontinuity line Is a characteristic line. 

Along such a line the tangential velocity Jump Is constant , 

This Is simply found from Gelrlnger's Equations [3.1?] (Figure 

7b). Assuming that the discontinuity line Is an a line, from 

continuity normal to the line 

'ß 
= -U sin 0 U.13] 
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The first of Equations [3.171 gives 

jIsL-.-U «sin 0 jr^-  or tk.lkl 
ÖX '    o      dx ' 

a a 

v ' - U ' cos 0 = const C4.15] 
a    o 

Since the component of the rigid uniform flow along the line 

is U ' cos 0, Equation [4.15] states that the tangential Jump is 

constant. 

In a rigid-plastic material the shear stress in the plastic 

narrow zone is constant and equal to the yield-stress, T' ■ k'. 

Since there is no variation in the shear stress across a thin 

layer when inertial effects are neglected, the shear stress at 

the boundary between the plastic layer and the rigid zone is 

T' = k' and decreases inside the rigid zone. 

In a work-hardening material in whicn inertial effects are 

neglected the discontinuity layer has to diffuse and to have a 

finite thickness, since the shearing stress at the limit of the 

rigid zone must be smaller than the ultimate yield-stress.  If 

the zone of work-hardening in the stress-strain diagram (Fig- 

ure 2b) is narrow, the transition layer may be thin and the dis- 

continuity line is still a valid approximation. 

When inertial effects are taken into account the first 

question to be asked Is if a line of velocity discontinuity is 

possible. Applying the momentum equation to such a discontinuity 
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line (Figure 7c) it is found that a shear-stress discontinuity- 

exists across the line 

6T' = Ti      - T'  ^ = n'U ' sin 0 6V 
plastic   rigid  r  o 

[4.16] 

or in dimensionless variables 

6T   =  H  sin  0 6V   . [4.171 

If bT is much smaller than unity (BT1 « k1) or 0 - 0 (no cross- 

flow), Inertial Jump may be neglected and the conclusions ob- 

tained from quasi-static considerations are valid.  But in the 

case of soil-wheel interaction H may be of order unity and the 

inertial Jump cannot be neglected.  The important conclusion is 

that (assuming that in the transition layer the characteristics 

are directed along the layer), the inertial effect causes the 

thickening of the layer in an ideal rigid-plastic material, 

since otherwise the plastic flow will start with T1  < k1. r max 
Hence,   a velocity discontinuity  is  not  acceptable  in an  ideal 

rlgi 1-plastic material. 

If work-hardening  is  taken  into consideration,   then a 

narrow  transition zone becomes possible again   when  inertial  ef- 

fects  are  considered,   since plastic  flow may   start  with T1       <  k' v max 
At any rate,' since T ' > o (Figure 2b) the Inertial Jump is lim- e 
ited by  the value 

bT  = H bV  sin 0 <   1   . [4.181 
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In a similar context the direction of the velocity discontinuity 

has to be such that 

&T = H6V sin 0 2 0 C4.19] 

i.e., the maximum shearing stress in the rigid zone is smaller 

than the yield stress. 

At this stage it will be assumed that in the case of soil- 

wheel interaction the rigid and plastic zones may be separated 

by a line of velocity discontinuity, provided that Equations 

[4.18] and ik.19]  are satisfied.  It is however, fair to say 

that this point needs further theoretical and experimental in- 

vestigation in the framework of dynamic plasticity. 

The velocity Jump is constant and given by Equation [4.151, 

since inertial terms do not affect the Geiringer equations. 

D.  The Centered Fan 

A bundle of intersecting characteristics of the same family 

determine a centered fan (Figure 8a).  The vertex of the fan is 

a singular point.  This singularity plays an important role in 

quasi-static plasticity and it is used in the solution of ex- 

trusion, rolling and sheet-drawing problems (l), (8).  In all 

these solutions a velocity discontinuity is admitted at the 

vertex.  It will be subsequently shown that in a plastic flow 

with inertial effects such a discontinuity is not possible. 
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Assumlng,   for  sake  of definlteness,   that   the  straight   char- 

acteristics are a  lines,   we may replace the a,   ß  coordinates   by- 

polar  coordinates   (Figure  8) 

c     "  dr       '        äxn a ß 
,— - r--       ,       v   - -       ,a       ;    v    = v ;       v.  = vQ     ['1.191 dx or ox r o9 a. r ß Ö 

while,   by definition 

\SLm0   M.i Li 2o] 

Substituting  the above relationships   In  Equations C3.16]   - 

[3.17]   WG  obtain 

|£=-H — Ur^-v,     -G     Bin 9 [4.21] dr r   I do 9 

•^ -   2  =   -   H v     -s-^- Q     cos  9 P4.22] 39 r   ör 

3 v & Vg 
^=0 ^- + v=0 [4.231 dr d 9 r 

Equation [4,21] .implies that generally p becomes Infinite at the 

vertex. This inadmissible effect may be avoided in three cases: 

(i)  v     ■  0 which by  Equation [4,23]  gives vr  • 0,   I.e.,   rest; 
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avr (li)    y|- - Vg   =  0 which together with  Equation [4.231  provides 

for v^    and vQ   the  solutions 

vr = C,   sin 6   + Cs   cos 6 [4.24] 

vQ   = Ci   cos  8   -  C2   sin 6 

In a  cartesian  system the velocity  distribution [4.24]   Is  equiva- 

lent to 

u = v    cos  6   -  vn   sin 6   = C2 r 9 
[4.23] 

v  = v    sin 6   + vQ   cos 0   = Ci r B 

representing a  uniform flow. 

The pressure distribution  Is,   according to Equations  [4.21] 

and [4.22] 

p  =   26   -   Gy [4.26] 

which  Is  obviously  Identical  with that   obtained  In a quasi-static 

case; 

ve 
(111) v0=v6(r) 11m      -7- = 0 [4.2?] 

r -  0 
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Equatlons  ih.23]  and [4.26]   shows  that   v    = 0 and  this   is, 

therefore,   a rotational  flow around  the vertex      The pressure 

distribution  In  the  centered  fan  Is given by 

p  =  26   - Gy + H        dr [4.28] 

Case (111) offers the possibility of matching plastic flows 

around concave corners (Figure 8b).  in the case of a convex 

cornei', In quasi-static  solutions it Is generally assumed that 

the flow passes from the uniform regime to the plastic flow (Fig- 

ure 8c) through a line of velocity discontinuity AD followed by 

a centered fan with discontinuous ADC velocity at the vertex A 

(l), (8), (10).  In a flow with Inertlal terms taken Into ac- 

count, the only possible type of flow behind the discontinuity 

line Is a uniform flow (Figure 8d).  This Important difference 

has to be kept In mind when solving the soil-wheel problem. 

E.  A Line of Stresc Discontinuity 

The  shear   (T) and normal stresses (o ) have to be con- 

tinuous across a line.  The normal stress parallel to the line 

(o ) may be discontinuous (Figure 9).  Hill ((8), p,. 157) has 

analyzed this type of discontinuity along a line separating two 

plastic zones. 

His conclusions are: (l) such a line cannot be a cnaracter- 

Istlcj (ll) the characteristics of the same family from the rwo 

sides Intersect the line at a same angle X (Figure 9) ; (ill) 

the pressure Jump Is given by |pi - pa | =2 sin \,   and (iv) the 
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velocity Is continuous across the stress discontinuity line. The 

last property shows that such a line Is acceptable in a plastic 

flow when Inertlal effects are taken Into account and all above 

conclusions remain valid. 
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5.     APPLICATION  TO THE WHEEL PROBLEM 

A. general 

A rigid cylindrical wheel (roller) rotating and moving 

with constant speeds Is considered here.  The study Is limited 

here to a driven slipping wheel which by definition has peripheric 

rotational speed larger than the soil speed at any point of the 

soil-wheel interface.  Consequently the shearing stress along 

the wheel is positive everywhere on the interface. 

Assuming that the soil, a soft undrained clay, behaves 

like a rigid-plastic material,one has to solve mathematically 

the problem by integrating the equations of plastic flow [3.8] - 

C3. Ill with the appropriate boundary conditions. 

Due to the difficulties caused by the inertlal terms a per- 

turbation expansion technique is used in order to simplify the 

equations ("6).  The Influence of the inertlal terms on some 

particular lines (Section h)  will be, however, taken into 

account. 

B. The Perturbation Expansion 

Spencer (16) has suggested a perturbation expansion of the 

equations of flow [3.16], [3.171 in which H is considered a small 

parameter.  Assuming that all the variables may be expanded in 

a power series as 
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p = Po + H pi + Hapa + . . . 

0=0 + H 0! + Ha0, + . . . 

v  = v  + H v  + Hav  + .. . C5.ll 
a   a      Qh      Og 

o 

v = v  + H v  + H3v  + ... 
P   P0     Pi      Pa 

and substituting in Equations [3.I6], a set of separate systems 

of equations is obtained for each order of approximation.  Here 

only the zero order terms are considered.  They are satisfying 

the quasi-static equations [3.131 ;ind [3-1^1» assuming that G 

(gravity effects) is also small. 

Since only the zero-order approximation will be subsequently 

considered, the zero sub-index is omitted. 

A legitimate question is that of the validity of the expan- 

sion in cases in which H is not small. A rigorous investigation 

of this problem is suggested for a later stage (Section 11). 

Intuitively, it seems that for moderate value of H (H < l) the 

inertial effects are mainly concentrated in the discontinuity 

lines rather than in the plastic region. It is, therefore, hoped 

that taking certain precautions in the ze^o-order approximation, 

the zero-order solution is an acceptable approximation for the 

soil-wheel interaction at moderate speeds. 
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C.  General Properties of Quasi-Static Solutions 

The solution of the soil-wheel problem In the quasi-static 

approximation Is still very difficult, as may be ascertained 

from the examination of similar solutions In metal technology. 

In fact, almost all solutions obtained so far In plasticity 

theories are approximate, or "incomplete." A complete solution 

of a plasticity problem requires the determination of p, 0, u, v 

satisfying the equations of flow C3.131 - [3.1^1 In the plastic 

region and the boundary conditions, and the determination of 

a , a and T  In the rigid zone satisfying the elasticity equa- 
xyxy 
tlons and matching the stresses at the rigid-plastic interface. 

The equations are elliptic in the elastic zone and hyperbolic 

in the plastic zone.  The location of the line of separation be- 

tween the two zones is unknown and the same is true for the 

free-surface, if it occurs.  Since the complete solution is very 

difficult the usual approach in plasticity is to look for ap- 

proximate incomplete solutions which give lower and upper bounds 

of the exact solutions (8), (ll). 

A lower bound is found by assuming a plastic pattern which 

satisfies only the stress boundary conditions, while kinematlcal 

boundary conditions are neglected.  In other words, if a stress 

distribution in both the assumed plastic and rigid zones which 

equilibrates the external forces is found, then the exact solu- 

tion will allow for larger external forces. 
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The upper bound Is found by assuming a plastic flow pattern 

which satisfies the velocity boundary conditions.  The forces 

become in this case an upper bound to allowable external forces. 

The solution Is found generally by assuming a priori a certain 

qualitative distribution of discontinuity llnes^ centered fans 

and slip-line field and trying to adjust them In order to satisfy 

the equations of flow and the boundary conditions. 

In the soil-wheel problem the boundary conditions, for a 

given slnkage, are expressed In klnematlcal terms mainly (see 

Section 5E).  It is, therefore, natural to seek an Incomplete 

upper bound solution.  Such a solution may be eventually proved 

to be an exact one If the stress field may be continued In the 

rigid zone.  Otherwise, the validity of the solution has ulti- 

mately to be checked by comparison with experiments (see Sec- 

tion 9). 

It is worthwhile to mention here that in view of the dif- 

ferent simplifying assumptions it seems somehow futile to refine 

the computations beyond a certain limit.  An approximate solu- 

tion which reflects the main features of the problem and shows 

the characteristic trends should be satisfactory in the soil- 

wheel case. 

D.  Qualitative Analysis of the Problem 

The solution of the soil-wheel problem has to be found now 

by assuming a slipline field which has to satisfy equations of 

plastic flow and boundary conditions.  This  a facilitated by a 

qualitative analysis of the problem. 
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Flrst, It is reasonable to assume that, similarly to ail 

known solutions in plasticity literature, the plastic region is 

of finite extent and attached to the body (experiments tend to 

confirm it, at least at low speeds). Moreover, in quasi-static 

conditions, there is no reason to assume a forward influence of 

the driven wheel.  This is the case at least in the solutions 

of rolling, extrusion and sheet-drawing processes.  If slight 

upstream Influences are observed in experiments (22), it may be 

well due to work-hardening effects (see Section 9E) not taken 

Into account in a rigid-plastic model. At any rate in all tests 

of driven wheels in clays no sensible upstream disturbances of 

the free-surface have been reported (l8), (5) which confirms the 

assumption of upstream rigid flow. 

In the downstream region the free-surface has to leave the 

wheel smoothly and a plastic "wake" of finite dimension is 

created.  This is different from rolling and extrusion processes 

in which it is assumed that the free-surface Is horizontal im- 

mediately behind the body (l), (8), by locating a centered fan 

and a discontinuity line at the rear.  Inertial effects do not 

allow for such a type of solution (see Section 6C) and experi- 

ments, even at low speeds, in both sand and clay confirm this 

conclusion (l8), (21), (22). 

Consequently, the free-surface has qualitatively the shape 

suggested in Figure 10. 

The kinematics of flow may be also depicted from qualita- 

tive considerations.  Since the flow is incompressible, from 

continuity requirements the streamlines have to look somehow 
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as In Figure 10a.  The average speed In the plastic zone Is max- 

imum at the bottom of the wheel.  The flow Is converging from up- 

stream to the bottom section and diverges downstream In order 

to match the unlform-rlgid downstream flow.  Obviously, In an 

Incompressible material and a two-dimensional flow there Is no 

rut and both free-surface and speed have to reach the unperturbed 

state downstream. 

A qualitative picture of a suggested sllpllne field built 

In the light of the above observations Is presented In Fig- 

ure 10b. A detailed argumentation and examination Is presented 

In Section i . 

At the bow A a line of discontinuity AB separating the rigid 

and plastic zone Is suggested.  This Is an a line since shearing 

stresses acting on the rigid material have to have the same sign 

as those acting on the wheel.  The speed along the wheel Is In- 

creasing from A to C, so that the ß lines have to Intersect AC 

at the angles shown In Figure 10b (according to Section 4B). On 

the rear portion CR it is assumed that the flow is decelerated. 

Hence, the ß  sllpllnes have to intersect CR at the angles of 

Figure 10b.  The transition between the two zones, of converging 

and diverging flow, is realized through a rigid core BCD wnich 

moves horizontally with the bottom soil speed. A sumehow simi- 

lar rigid region is assumed in rolling solutions (l). Although 

not necessarily rigorous, this separation of the two plastic 

regions ABCA and CBETRC by a zone of uniform flow is very con- 

venient for computational purposes (Section 6).  The zone RTER 
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ls a curvilinear triangle created by the free-surface TR.  The 

line ET separating plastic and rigid zones at the rear again 

has to be a characteristic line since at least the second de- 

rivatives of the velocity are discontinuous there (17). This 

Is assumed again to be an a line, with the rigid zone sheared 

In the same direction as the soil beneath the wheel.  From in- 

ertlal considerations (Section 6C) there is no possible veloc- 

ity Jump on the line ER and the flow has to match smootnly the 

uniform downstream flow. 

The region ODER is a transition region in which the flow 

diverges. Along DE the speed drops from its maximum value to 

the unperturbed speed.  The only possible way TO satisfy this 

requirement Is to assume that DE is an envelope of i  lines sim- 

ilar to that suggested by Prandt1 In block compression ((8), 

p. 228) or by Alexander (l) In roiling.  FE la assumed to be a 

line of stress discontinuity, so that tne angle between the 

sliplines is discontinuous on it, while the velocity is con- 

tinuous. The suggested slip line is examined in detail in Sec- 

tion 6. 

E.  Boundary Conditions 

The boundary conditions on the different portions of the 

plastic flow domain ABDETPCA (Figure 10b) have oeen In part dis- 

cussed in Section 4, but will be briefly recalled here.  The 

problematic boundary condition - that of stress on the wneel - 

will be discussed In more detail later. 
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The separation line AB Is assumed to be an a characteristic 

line with a velocity jump along It.  The line DE Is assumed to 

be a horizontal envelope of a lines with a varying velocity 

jump along It.  The line ET Is an a line with continuous veloc- 

ity across, I.e., u=l, v=0on this boundary.  CB and CD are 

assumed to be ß   lines with continuous velocity across u = u  , 

v = 0 (Figure 10a).  The free-surface RT Is stress-free and a 

streamline (Equations [4.1] and [4.2],  The location of all those 

lines Is a priori unknown. 

The only remaining boundary Is the soil-wheel Interface 

which Is obviously a streamline. An additional stress condition 

Is necessary In order to solve the problem.  We have not been 

able to find experimental evidence on this condition in the 

literature for the case of a wheel-clay interface. 

A perfectly rough wheel may be imagined as a rim with a 

series of spuds which cut . iu soil.  The spuds have to be very 

small if the wheel is to be considered as a smooth continuous 

line and the quantity of entrained material has to be negligible. 

A perfectly smooth wheel may be imagined as a smooth lubricated 

surface with zero  shear  stress along it. A real rough wheel 

is probably somewhere between the two.  In Uffelmann's experi- 

ments for Instance, (l8), the nighest shear stress attained on 

the wheel was T ■ 0.3.  In (5)> rough and smooth wheels tested 

in the same kinematical conditions gave approximately the same 

resultant forces.  We are inclined, therefore, to admit that 

the shear stress on rigid wheels is less  than the yield stress 

and there are no perfectly rough wheels.  In reality the problem 
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Is more complex.     Between the wneel and the soli body moving 

with different   speeds a  boundary   layer of wet   clay probably de- 

velops.     This problem needs special consideration and analysis. 

At   this   stage,   and  In  the  framework   of the rlgld-plastlc 

model,   it  wlil  be  assumed  that  on  the  forward part   of the  wheel 

AC  the  Shear  stress  *   Is  constant   and  given   (0 *  T     ^   l).     Its v    w 
magnitude has to be determined experimentally.  It will be shown 

that there Is no major difficulty in solving the problem when 

more complex relationships are used, like " depending on the 

slippage along the wneel or on pressure; the effect of such 

relationships on the piastir flow is left for future investiga- 

tion. At the rear portion CP IT is assumed that the shear stress 

drops along the wneel from T  at C to " = 0 at R.  This type of 
M 

T distribution sewns ro be ronfirmed by experiments wltn driven 

wheels (l8). 

In addition to velocity and stress conditions the line ACR 

Is the only one whose location is Known., havlrg the equation 

x3 + ya = 1  The determination of the slipline fie id in the xy 

physical plane starts always from this line.  Ine angle of de- 

tachment 9  i& unknown a^a constitutes one of tne Important 

parameters of tne problem 
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6.  THE SOLUTION OF THE QUASI-STATIC 
EQUATION FOR THE DRIVEN WHEEL 

A.  The Method of Solution 

The wheel-soil problem belongs to the difficult category 

of problems In which both klnematlcal and stress boundary con- 

ditions are Imposed on the different boundaries, which Is dif- 

ferent from the foundation engineering problems in which the 

problems are formulated in terms of forces solely.  For this 

reason the four variables p, 0, v , v^ are Interrelated and 
a      p 

the whole set of Equations [3.131 and [3.1^1 has to be used. 

The method used here is the analytical method of Hill's 

book ((8), Chap. VI).  The problem will be solved in an auxil- 

iary characteristic plane rather than in the physical xy plane. 

Selecting arbitrarily, but conveniently, two parameters 

a and ß such that a is constant on ß   lines and ß   is constant on 

a lines, the variables p, 0, v , v0, x,y become functions of a  p 
a,ß and satisfy the following set of equations 

|£+2||-0 [6.1] oa oß 

^--2^=0 L6  2] öß öß       U ^    '   J 

^-vA^=0 [6.31 oa ß  oa 
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dv 

U-tan0|f .0 C6.5] 

g.+ cotan 0|f = 0 [6.61 

Equations  [6,1]   -  C6,Jf]  arc  obtained  fron'  Equations  C3.13]   - Ll.lk] 

by  reducing by   the  factors h    = dx  /do   ,   h0  = dxD/dß.     h    and  h. a CJ. p ß aß 
are the metrics  coefficients   (or  Lamme " coefficients)  and  tney 

represent  the  .-icale  factors between  the  characteristic  and phys- 

ical  planes.     A   w 11-known property   of nyperbollc   systems  Is 

their  Invarlance  under a  cnange  In  characteristic  variables.   Note 

that   the  full equations  of flow [3.61  and [3.7]   do not possess 

this property. 

Equations  [6.5]  and [6.6]  are  simply a  transcription  of the 

characteristic  directions   (Equations  [ 3. lr^]   ) 

A  convenient   transformation  of  Equations  [6 3]  and [6.6]   Is 

achieved by using the new variables   ((8),   Cnap,   VT), 

/=xcos0-f-ysln0 [6,.7] 

y  =  - x  sin  0 + y  cos  0 

which give 
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oa da 

*i b0 
aß " y aß 

= o 

= o 

C6.8] 

C6.9] 

B.  An Incorrect Sllpllne Field 

Before proceeding to the detailed solution of the flow 

problem It Is worthwhile to discuss a sllpllne field suggested 

In the early stage of this work which proved later to be Incor- 

rect.  This analysis Is also valuable since In (22) It Is claimed 

that the experiments show such a field. 

In the preliminary stage of the vork It was assumed that 

the plastic region Is delimited  by a closed a line (Figure 11). 

This was proved ultimately wrong for at least two reasons: 

(l) At R the free-surface Is Intersected by the CR a line 

at 45 degrees (Figure 11). According to Section ^A the region 

TCRT Is In a state of compression.  Under these circumstances 

the detailed solution of flow in the triangle TCRT (the method 

is given in Section 6c) has shown that the free-surface is con- 

cave (Figure 11) and the speed is increasing from T to R and 

negative work is done in the entire TCRT region, which contra- 

dicts the basic condition of plastic work. 

(li)  The velocity Jump along ABCR is constant and a typical 

streamline has the shape depicted in Figure 11.  It is easy to 

ascertain that along the rear portion BCR the inertial shear 
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stress ^ump along CR is such that the snear stress In the rigid 

zone Is larger than the shear stress in the plastic zone, i.e., 

larger than the yield stress. 

For these two reasons this initial slipline field, although 

esthetically appealing at first glance, has been abandoned in 

the favor of that of Figure 10b. 

C.  The Free-Surface Region RETR (Figures 9b and II) 

Let us consider in detail the free-surface curvilinear tri- 

angle TFRT in the physical plane (Figure 12a). A point P nas 

the coordinates x,y and the characteristic coordinates OL , ß   . 

The characteristic coordinates are selected as follows:  the 

value of ß on the a characteristic line P'P is ß = J2L|, I.e. the 

value of 0 at the Intersection of the a line and the free-surface; 

the value of a. on the ß  characteristic P"P Is equal to 0pH , i.e. 

the value of 0 at the intersection of the ß   line and the free- 

surface. As long as the free-surface RT Is curved with no in- 

flexion points a one-to-one correspondence exists between x,y 

and a,ß. 

At point T the free-surface has to be tangent to the hori- 

zontal unperturbed rigid free-surface.  Otherwise a velocity 

Jump 5V will exist along FT (Figure 11).  Such a velocity Jump 

induces an ir.ertlal shear-stress Jump along FT (see Section ^C) 

which increases the shear stress in the rigid zone beyond the 

yield-stress.  Hence, the free-surface has to match smoothly the 

norizontal and Q = ß = 0 = v/k. 
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At polrt R the free-surface must be tangent to the wheel. 

Again, an angle different of zero between the free-surface and 

the wheel means a discontinuity In velocity along RF.  But a 

velocity Jump cannot exist in the Interior of a plastic zone 

since due to Inertlal shear stress Jump the shear stress on 

one side of the line will be different from the yield-stress, 

which Is absurd.  Consequently a_= /3_ = 0^= 7r/4 + 9 . 
R    n    K r 

The representation of RFTR In the characteristic plane aß 

Is very simple (Figure 12b). By the definition of a and ß the 

free-surface Is represented by tl-e line a = ß, while the char- 

acteristics are parallel to the axes.  Now p, 0, v , vA, x, y 

as functions of a and ß, for a given 0  have to be determined. r 

(1)     Solution  of p,   0  (dynamics  of flow)   - 

The  elimination  of p  from Equations  [6.1]  and [6.2] 

shows  that  0 satisfies  the  equation 

äS0=O [6.10] daöß 

The general  solution  of Equation [6.10]   is 

0 = f(o)  + hiß) L6.ll] 

where  f and h are arbitrary  functions.     On the  free-surface 

TR(a = ß)   0=a=ß  by  definition,   which gives 
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or 

t{ß)  + h{ß) = j8 

h{ß) = ß  - f(ß) 

and 

0 = f(a)  - f(ß) + j6   . C6.12] 

From  Equations [6.1]  and [6.2]   It  Is   easily  found that 

p  =  -2 30   . 30 Jn [6.13] 

Tie Equations [6.12]  and [6.13] yield 

p - -  2[f(a)   + f(ß)   - ß]   + C [6.14] 

On the  free-surface RT the  Isotropie pressure   \s constant and 

for the  compression state   (Equation [4,3]  p  -  1,     Hence,   for 

<i = ß  Equation [6.14]  gives 

-4f(a)   + 2a + C =  1 [6.15] 

From  Equations  [6.12],   [6.14]  and [6.15]   the  final  expres- 

sions  for p and 0 are 
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0 = ^—^- 16.16] 

p = _a + j3 + 1 [6.171 

which completely solves the problem. 

It Is worthwhile to note that at point F (Figure 12) 

F   F  v r 0    =   p  = F + ~p~ ' I.e., the characteristic line TF bends 

6 
with an angle — and the characteristic FR with the same angle 

9 
■p 

-x- .     The pressure drops along TF and reaches a minimum value 

at F, p^ = -a_ +ß_ +1=1-9  which means that the soil is r     r    r r 
under slight tension in this region. 

(11) Solution of v , v. (kinematics) - 
ot      p 

From Equations 16.33,   [6.4]   and [6.l6]   it  is  found  that 

v    and v    satisfy  the  following relationsnips 

ÖV V- 

^-i=0 ^6.18] 

äv«       v 

öß   +    2       ü   ' 

or,   by  elimination  of v    and v. a ß 
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I   V V 

aaaß + 4      u 

[6.191 
aa 

Öaöß 

v 

hi- 
i.e.,   v    and vD   satisfy  the telegraph       equation, 

ct p 

The kinematic boundary conditions are as  following:     On the 

characteristic FT   (Figure   12)  the velocity  Is  continuous and 

equal  to the rigid velocity u =  1.     Hence,   from Equation L3.12] 

^ + a 
v     =  cos  0 = cos —5— 
a 2 

TT |+ a 
v.   =  -  sin 0 = -  sin —&— 

P « 

On the  free-surface,  according to Equation ['+.•+] 

L6.20] 

V     + vQ   =  0   . a        ß 
[6.21] 

v    and vQ may be  found from Equations  [6.19]J   L6,20]  and 
ct p 

[6.2l]  by  the  following procedure.     Let  us   Introduce a new  var- 

iable v = v    + v.   .     V  satisfies  the following  equations and 
ct        p 

boundary  conditions  In  the  characteristic  piar.e   (derived from 

Equations  [6.19],   [6.20]  and [6.21] 



«HUMMiiMHBII 

HYDRONAUTICS,   Incorporated 

-53- 

a ß 
^■o 

IT 
+ a 

v  = cos 

v =  0 

TT 
+ a 

-  sin 

(In TFRT) 

(on TF) 

(on TR) 

[6.22] 

C6.23] 

16.2k] 

The triangular domain TFRT In the a,i3 plane  (Figure  12b)  may be 

reflected across  TR  in TF'RT.     From the  symmetry  of the  tele- 

graph      equation and the condition [6.24]  v may be determined in 

the whole rectangular domain TFRF'T by reflection.     Since TF'   is 

the reflection  of FR,   v takes  on the value 

v =  - cos sin 
} + ? 

(on  TF') 16.251 

The solution of the telegraphic equation for a function given 

along two intersecting characteristics by the Riemann procedure 

is described by Hill ((8), p. 155) 

solution is (Figure 12b) 

In the present case the 

Pa 

V(P)   = /•s da + [6.26] 

where G(a,ß;   a   ,ß   )  = J 
P    P 0 V (ap   - a)(ßp   - ß) is  the  Green Function. 
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The substitution of the expressions  of the Green function 

and the values  of öv/äot and Öv/Öß  on the boundaries  In Equa- 

tion [6.261  gives  finally 

a 

v(a,i5)  = 

ß 

*-  2    I    Jo 

I Ac [f- ?)(ß-1) sin —s— + cos — I d? 

TTA 

^(a - IHM) 
?   + 

IT ?    + 
sin 11 + cos —~~ !d? [6.2?] 

7r/4 

Equation [6.27]   completely determines v.     In order to  find 

v   ,   for Instance,   the  second equation of [6.18]   Is  written as 
P 

ä V v .i _ ^-= _ v 
aß       2 2 

[6.28] 

The Integration  of this  ordinary differential  equation along a 

ß   line  from   ft   to   P (Figure  12)  gives 

J 
r + a    i  (ß   * ^       ß/2 ¥ V.(a,/5)  =  -  sin -   c 

f 
J    v(o, 

-§/2 
§ ) e d?   , 

wA [6.29] 

which determines  v0   once v  Is known.     Obviously  v     Is  found  from 
p CL 

V       =   V    -   VQ a ß 
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The Integrals In Equations [6.271  and [6.293  have been com- 

puted numerically  (by Simpson rule)   on HYDRONAUTICS'   IBM  1130 

computer. 

The resulting values  of v  ,  v-,   0 and V =Vv 3   + v0
a     are 

CL p dp 

given In Appendix 1.  The computations have been carried out to 

the maximum possible value of 6  = TTA and the results may be 

used for any arbitrary 6  In the range 0 < 9 < 7r/4.  Each group 

of results In Appendix 1 corresponds to a constant a in the 

range ir/k <  a. < v/2  and a variable ß In the range 7r/4 s /3 < a. 

The velocity 7 on the free-surface has the value of the last 

line of each group, where a = ß.  It Is easy to ascertain that 

the velocity decreases along the free-surface, or increases from 

T (V- = 1) to R (V_ = 1.75 for 6  = Tr/4). For moderate values 
i K r     ' 

of 6 , as encountered in applications, V. is smaller.  The ve- 
r ^ R 

locity distribution along TR will be used in Section 7A in 

order to determine the magnitude of the recovery angle 9 . 

The results of this section and of Appendix 1 are valid not 

only in the triangle RFTR, but in the whole region REFTR (Fig- 

ure 10b).  The plastic flow in RFER is Just the continuation of 

the flow in RFTR across the characteristic RF. 

(ill) The determination of x,y (geometry of flow) - 

The mapping of the free-surface triangle TFRT from the 

characteristic plane to the physical plane may be done by using 

Equations [6.5], [6.6] or Equations [6.8], [6.9].  In order to 

solve the problems the location of the line RE (Figure 10b) aas 

to be known.  In principle this can be done by starting with the 

solution of the x,y equations from the wheel, but this is not 

done here. 
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The x{a,ß)  and y{a,ß)  of the line RE are enough In order to 

solve the problem since an additional boundary condition exists 

on the free-surface, namely the fact that 0 - 6 = tr/k   (Equa- 

tion [4.31.  Since tan 6 = dy/dx, on the free-surface RT 

g = tan (0 - JU tan 
a + ß 

2 7, C6.30] 

This additional condition permits, In prnclple, the mapping 

of the whole region TERT from the a,ß plane onto the x,y plane. 

D.  The Bow Region ABCA (Figures 10b and 13) 

In this case the characteristic coordinates of a generic 

point P (Figure 13a) are selected as following:  a Is the angle 

0 „ at the Intersection between the ß   line PP" and the a base 

line APMB and ß  Is 0      at the Intersection of the a line PP' and 

the ß  base line BP'C. 

Some general relationships may be found before solving the 

problem In detail. At point A (the leading edge) the velocity 

Inside the plastic zone has to be parallel to the wheel, since 

no velocity discontinuity Is admitted Inside the plastic zone 

from Inertlal considerations (see Section 4D). AB Is a line of 

velocity Jump.  The Jump 6V may be found from continuity con- 

siderations at point P   (Figure 13b). 

From the velocity triangle, by projecting on the direction 

of 6V and on the normal to It, the following Is obtained: 
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sin e 
Va • sin  (^   - M C6-31] 

sin 8 
5V = V    cos   (6     - 0   )   - cos 6,   ■     .   n—a ■   i a v  4 a' I       sln(9     - 6   ) C6.32] 

The angle 9     Is  related to the slnkage z by   (Figure  12a) 
St 

z =  1 - cos 0     . [6.331 a 

The angle 6     Is determined by the shearing otress T    on the 
v W 

soil-wheel Interface at A.     9.   Is the angle between the a line 

AB and horizontal,   I.e.,  9     = 0    .     The relationship between T 
v WA 

and 0      Is,  according to Equation [4.73 
w 

T     =  cos  2(0    - 9)  = cos   2(9     - 9   ) [6.34] 
W W v B. 

which determines 9,   for given T    and 9   .     Obviously T    may vary 
I ° w     a J     w J 

In the range 0 ^ T s I, i.e., between perfectly smooth and 

perfectly rough conditions.  For T =0 at A, 9. -9  = -jr/k 
w        '  v   a 

while for T =1, 9,-9  =0 and the characteristic AB sticks w      t a 
to the wheel. 

According  to our present  concept  on  soil-wheel Interface 

(see Section 5E)  T     js assumed constant  on AC. w 

»mmmmm* 
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The line BC is a characteristic ß   line between the plastic 

zone ABCA and the assumed rigid core BCDB (Figure 10b).  The 

velocity in the rigid core is horizontal and constant u ■ u , 

v = 0,  There is no velocity Jump along BC since at C, inside 

the plastic zone, the velocity along the wheel is also hori- 

zontal.  Hence, the slip]ine AB has a norizontal tangent at B 

(0_ = 0).  Since bV, the velocity Jump along AB is constant 

(Section kC),   we have 

sin 9 
U.-1 + BV«1 + —.—Tn- b sin(9 

a 
e ) • 
a' 

[6.35] 

which gives u in terms of known quantities.  Prom continuity 

considerations 

z + h = u,h 
b 

[6.361 

or h = 
(1 - cos ea) sin (6^ - ej 

u. sin 6 
a 

[6.371 

which gives the thickness of the plastic zone at bottom. 

Finally, for the slipping wheel considered here the wheel 

peripheral velocity V ' = uü'r' has to be larger than tne soil ve- 
w 

locity at the interface AC (Section 5E). Since the maximum soil 

velocity occurs at bottom where u - u , the following inequality 

holds 

V *   VL    , w   b 

or in terms of slippage coefficient S ■ 
V  - 1 
w  

V 
w 
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1        ^    u ,      S ^      " 1  -  S b u. 
C6.38] 

Using  the value  of u    of  Equation [6.351 

sin 9 
S 2   Sm "  sln(Ö.   - 0   )  + sin 9 

v Si a 
[6.391 

This   Is  the minimum  slippage necessary  In  order to ensure 

a positive  T    along the  wheel.     The real  slippage may be  larger 
M 

than S    and rlgld-plastlc   considerations  solely permit  T    to 

remain unchanged.    A more  detailed  study,   experimental  or theo- 

retical,   may reveal a  relationship between S    and  T   . J ^ m w 

If we assume that  the  real  slippage coefficient S  Is  equal 

to S   ,   then a relationship  between T    and S     (for given  z)  Is m w m 
established through Equation [6.391       For T     -1,3    =  1,  as w       m 
expected. 

Now, a detailed solution of the plastic flow Is presented 

along the lines of Section 6D.  The domain  ABCA Is represented 

In the characteristic a,ß plane In Figure 13C.  The representa- 

tion follows straightforward from the definition of a and ß. The 

wheel-soil Interface AC is represented by an unknown curvilinear 

line in the characteristic plane. 
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(l)     The determination  of p,   0  (dynamics) 

Again, 0 has the general expression C6.ll]. But, from 

the definition of a and ß, we have 0 = a on AB (ß = 0) and 0 -- ß 

on EC   (a • 0).     This gives   Immediately 

0 =  a  -f ß ie.ko] 

The  Isotropie pressure p  Is  related  to 0 through  Equation 

[6.131.     Hence, 

p =  -rv'a   - ß)  + const [6.41] 

Let  p    be the pressure at  C.     Then,   [6.4l]   becomes 

p  = p     -  2(a  - ß   - 0    ) 
C wc' [6.42] 

where 0      =0    -9=-A cos"     T   . 
wc w ■ w 

The pressure  Increases  along  the wheel  from pr  to p.,   p 
A'   'A 

being given by 

PA 
=
PC  

f 2(8t +0wc)  • [6.43] 

The  normal  stress acting  on  the wheel  Is   (Equation [3.?]) 

0    =  -  p  + sin  2(0    - e)   . w ^ v   w ' [6.44] 
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Since T = cos 2(0 - 6) is  assumed constant, 0-9 Is constant 

and o le simply equal to the Isotropie pressure plus a constant. 

For a perfectly smooth wheel (T = o), 0 - 9 = -ir/4 and 
w w 

o     =     -p   -   1;   for a   "ough wheel   (T    =l),0    -9=0 and o     =   -p. w www 

(11)     The determination of v   ,  vD   (kinematics)   - a      p 

Similarly  to Equations [6.18]  and [6.19]  we have this 

t ime  for v    and v. a ß 

ftv 

J7 -*ß-° dp         a 

a 
^^„   +  v^   =0 

dJv3 ca» + v. = 0 . 

[6.^3 

,   . C6.46] a oadß ß 

The boundary  conditions  for the telegraph       Equations [6.^61 

are as  follows: 

-  On AB v    and  v     satisfy the conditions along a   line of a p 
separation between a plastic and a rigid  zone   (Section ^C) 

v     =   1  + 5V cos  0 a ce.vn 
v     =  -  sin 0 

p 

or by   Equation [6.40] 
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v    «  1 + 5V cos a a 

vß  =  -  sin a 

(on /3  =  0;   -6     <   i <  0) 

- On the  line BC there Is no velocity Jump,  hence 

[6.483 

V     = u.   cos  0 » u.   cos fl ab \ r 

v.   =  -u,   sin 0 = -u.   sin ß   . 
p D D 

(on a =  0;   -0^ < ß <  0) 

ib.HQl 

These conditions completely determine the values of v    and 

v.  at any point  In the characteristic rectangle ABCB'A  of Flg- 
P 

ure  13 c). 

Following the same Rlemann method as In Section 6D, V and 

v0 at a point P(a,ß) are given by 
P 

P" B 

,a(p) =jG^ da r hv 

B 

p.. 

jy   dß    r   G(P.B)   V^B) 

F 

B 

P' 

W V 

vfl(P)   = la ^ 
r   >v 

dß  + G(P,B)  vfl(B) 
P 

16.50] 
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where 0,   the Green Function,   ^s 

G(ap,ßp;a,ß)   = Jo [2 V(ap-a) (ßp-ß ) C6.511 

Using the values of v , v. on the boundaries (Equations [6.^8] 
a      ß 

and C6.49]  and the definition  of G  (Equation C6.5l3 ),   Equations 

[6.50] become 

o ß 

a,ß)   =   - /jo  f2Vß(a-?) v   ( a sin |dl   - ub 

P 

(M) sin ?d? 

+ u^ JO (aVöJ) C6.52I 

rA*>ß)  =   - h0 |r2V(a-5)ß     cos ?d?   " ub !  Jo faVotM)] cos §d§ 

5        L o C6.531 

For the Illustration of the method we have selected an ex- 

ample with the following data 

6    = 30      -    B ■ 0.13^ 
a 

0-0=0 
w wc -35° -    T

w = 0-3^e
t ■ 65 [6.54] 

v and vn have been determined by numerical Integration and their a     ß 
values for different a and ß In the rectangle -9  < a < 0 , 

0  < ß < 0 are given In Appendix 2. 
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The   location  of  the   line AC  is  found now by  using the  con- 

dition that AC is  a   streamline and a  line  of constant  T =  T 
w 

According  to  Equation [4.8],   v    and v.   satisfy  the condition 
ex p 

1. tan  (0    - 9) 
w [6.553 

or,   in our example   (0    - 0 
w -35°) 

-fi- = tan 35( 

Va 
0.7 [6.56] 

In the numerical results v./v has been given for each point 

(Appendix 2) and it was a simple matter to pick from the results 

the location of the points which satisfy Equation [6.56].  In 

Figure 14 the characteristic plane, including AC, is represented 

according to the data of Appendix 2. 

Once AC is known the same Appendix 2 provides the speed 

V =Vv 3+ v.3 along the wheel.  In Figure 15 the velocity varia- 
a    p 

tion along the wheel and along corresponding points (i.e., on 

same a lines) along the separation line AB is given graphically. 

In Figure 17 the velocity distribution along a few character- 

istics is also given. 

The velocity along the wheel increases from its value at 

the leading edge A (V = 1.57) ^o its value at the bottom B 

(V = 1.88) and the requirement of positive work is satisfied. 
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The velocity along the  sUpline AB is  somehow higher  than the 

value  on AC.    A  rough check  has   shown that  the positive work con- 

dition   (Equation L3.22])   Is   satisfied  everywhere  In the plastic 

zone.     The small difference between V on AC and AB for the  same 

ß  sllpllne shows  that  the distribution Is almost  uniform on the 

ß   lines,   but     changes  In a   direction  (Figure   17). 

(ill)  The  solution  of x,y   (geometry)   - 

Equations [6.8]  and [6.9]  have been used In order to 

map  the  characteristic  region   of Figure  15 onto the physical 

plane. 

Along the  wheel AC x and y are known,   namely, 

x = sin 6       y = - cos 9 C6.57] 

According  to Equations  [6.?]   x and y are given by 

x  =  sin 9   cos  0    -  cos 9   sin 0    =  -  sin   (0    - 9) 
[6.58] 

y  =  -  sin 9   sin 0    -  cos 9   cos  0    = -  cos   (0    - 9), 
w w        v w   ' 

But, from the assumption of constant T we have 
w 

0-9=0 
w wc 

1      -1 • —  COS T 
2 w 

Hence,   from Equation [6.5^] 

x = sin 35°      y = -cos 35°      (On AC) 

[6.591 
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Wlth these values   of x and y   along AC,   the Equations  [6.8] 

and [6,9]  have been  Integrated numerically,   by  finite differ- 

ences.     The  results.   In terms  of  the mapping  of a,ß  region ABCA 

on x,y plane,   are given in Appendix 3-     The  .; Upline  field  has 

been plotted graphically  in Figure   l6.     The slipllnes  are  ortho- 

gonal,   as  required by  the  theory.     They  Intersect  the  wheel at 

the constant  angle  corresponding  to T     =  0,3^   (0    ~ 9   =  -33   ). 

Hence,   for the  selected  example,   the plastic  flow  in  the 

bow  region has  been completely  solved.     The  stress distribution 

has been determined   (Equations C6.40]   and [6.42]   excepting  the 

constant p    which  has  to be found  from the matching  of bow and 

rear plastic  regions. 

There Is  no problem,   in principle,   to find graphically  the 

streamlines  In  the bow region,  but  the work Involved  Is  quite 

tedious.    A  simpler problem is  to depict  the velocity distribu- 

tion along  characteristics,   based  on  the data of Appendices  2 

and 3.     Such a representation,   for the discussed  example,   is 

given  in Figure   1?.     Figure  17  shows  that  v    is almost  uniformly 

dibtributed along  the ß   characteristics,   while v    has  approxi- 
P 

mately a  linear variation.     This   observation may help  In  con- 

structing the  kinematical field approximately  without   solving 

the problem  in  detail.     It may be also useful  in  future work  in 

which inertlal  terms  Inside the plastic  zone  or work-hardening 

effects  would be  taken  into account. 
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E.     The Plastic Zone  CDERC and the Rigid  Core CBDC   (Figures   10b 
and   18) 

The solution of the plastic flow In CDERC has to start with 

the horizontal envelope of a lines DE. There Is no systematical 

study  of such   lines   In   literature. 

Again,   the representation  of the plastic  domain  In the  char- 

acteristic  plane has   to  start  with a  selection  of  the  character- 

istic  variables a,ß.     The zone CDERC Is  represented  In detail  In 

Figure  l8a. 

Let a,ß   In the  subreglon DQED be the  following   (Figure   l8a): 

a     Is  the distance between D and P"  on the  base  line DF   (a    =  s   „) 
P V  P P   ' 

and ß     Is  s   ,.    A  one-to-one correspondence  Is  thus established 

between points   In DQED and  the a,iS  plane.     The  Image  of DE In 

a,ß  plane  Is   obviously   the   line a. = ß   (Figure   l8b). 

Since 0 = 0 on this line It Is easy to ascertain that 0 has 

the  expression 

0 = a  - ß [6.6o] 

In  the  domain DQED. 

The Equations  [6.3],   [6.4],   [6.8]  and [6.9]   become now 
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av a 
öa    "   vß v„   =  0 

v     =  0 a C6.61] 

!£ 
ia 

+  X   =   0 

'4^-° 
All  the  functions  v   ,   v   ,   x and y  satisfy  telegraphic   equa- 

tions  of  the  type 

S3f 
öaäß -   f  =  0 16.621 

which admits  as  Green  function 

G(a,ß;ap.ßp)   =  Io     2 V(ap-a) (^ -ß ) [6.63] 

Hence,  all  the dependent  functions  may be  found,   In principle, 

by  Rlemann's  method. 

The plastic  domain CDQR   (Figure  18a) may be represented on 

the  same a,ß  plane by  selecting as  a variable  the 0 angle  on the 

base  line  CD.     With 0 = a  - ß   the region CDQRC Is mapped  on the 

lower part   of  the a,ß  plane   (Figure   l8b). 
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Both Images of CR (the wheel) and of RQE (the stress dis- 

continuity line) In the a,ß  plane are unknown, Including the de- 

tachment angle 9 . 
r* 

The functions v , v0, x,y and the location of CR and RE in 
CL p 

the characteristic plane have now to be found by using Equa- 

tions C6.6ll and the boundary conditions.  The latter are the 

following: (i)  On CD the velocity is known (u ■ u , v = 0^. 

(ll) On DE one of the velocity components is known, v = vQ - 0. 
P 

x and y are also known, x = s, y = o.  Hence, since 0 = s, one 

has x = a3 + ß3 = a'\f2,  y = 0. (ill) On RE the velocity com- 

ponents v , v have to match continuously the velocity in the 

free-surface region RETR which have been found previously.  More- 

over, since RE is a line of stress-discontinuity, it bisects the 

angle between the sliplines on its two sides (Figure l&a).  This 

is an additional condition of matching between the two plastic 

zones.  (iv)  The wheel CR is a streamline and x,y are interre- 

lated by the Equation x3 + y3 =1. 

Unfortunately the analytical solution of the problem by 

Riemann's method is very difficult since the boundary conditions, 

unlike the bow and free-surface regions, do not permit to march 

with the solution from one boundary.  The analytical approach 

leads to Integral equations for the dependent functions which 

have to be solved by matching the solution with the flow in the 

free-surface region. 

A finite difference solution is also difficult because of 

the unknown location of CR ana RE.  For this reason a detailed 

solution of the plastic flew in the region CDERD has been abandoned 

at this stage.  An approximate solution is presented In Section 7. 



HYDRONAUTICS, Incorporated 

-70- 

Finally, the geometry of the rigid core CBDC is determined 

from the solution of the flow in the bow region from one side 

(CB) and from the solution of the flow in CREDR from the other 

side (CD). 

The stresses on CR are found from the solution In CREDO 

starting from the free-surface where p = 1.  The pressure on the 

left hand side of the rigid core at C has to be found from the 

equilibrium of the rigid core.  When p  is known, the stress dis- 

tributlon in the bow region is totally determined. 
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THE APPROXIMATE DETERMINATION  OP THE 
DETACHMENT ANGLE 6     AND  OF STRESS 

r 
DISTRIBUTION ALONG THE WHEEL 

The detailed solution of the problem of plastic-flow beneath 

a wheel, discussed and exemplified In section 6 requires a large 

amount of computations.  Since the solution Is an approxi- 

mate one because of tne different simplifying assumptions under- 

lying the mathematical representation, It  is highly desirable to 

find a simple, approximate method of determining the forces on 

the wheel.  Such a method is presented in this section. 

A.  The detachment (or recovery) angle 9 

6^ may be found approximately from the continuity require- 

ments oetween the ß line CD and the line RE (Figures 10b and 19). 

Since tnere is no soil  flow across CR (the wheel) and DE, 

the flux through CD and RE have to be equal, i.e. 

R 

V cos ri ds [71] 

Since the mapping of RE on the physical plane is not Known, the 

relatlonsnlp [7.1]  in its exact form is of little nelp.  An 

approximate evaluation of the Integral may be obtained as follows 
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Pirstj Equation [7.1] is equivalent to 

R 

u h = / V cos rjd s« 

R 
„ COS T]   , 
V  f    dy 

cos ! 
[7.2] 

o 

r\  being the angle between the normal to RE and ehe velocity 

vector and £ the angle between the normal and x axis (Fig. 19). 

At R It is reasonable to assume that the stress Jump is 

negligible and RE Is tangent to the characteristic RF.  q at R 

is L.own since the characteristic RF Intersects the free surface 

at TTA.  Hence I« ■ ifA + 0 , while TI„ = 0 .  From the other hand f SR   /     r        'R   r 
V at R Is the speed along the free surface and It has been found 

by solving the kinematic problem in RTFR (Section 6c).  For each 

given 0 , V- may be found in Appendix 1 (in the last line of 
r  R 

each group of results) taking into account that t = 7r/4 + 9    at R, 

H ,'nce the Integrand of [7.2] has a well determinated value at R, 

for a given 0 . r 

At E again V = u = 1 is known and there also ^ = ^ since 

the velocity vector is horizontal.  Th'J value of V(cos T]/COS |) 

being known at the two extremities, ä  reasonable approximation 

of the integral [7.2] is obtained by assuming a linear variation 

of the Integrand with y.  Hence, Equation [7.2] becomes 

u,h 
b 

1 
2 

1 + 
v,, cos e 
R     r 

cos(7r/4 + 0 )_ 
R [7.31 
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A few values of V- as a function of 0 , from Appendix 1, K r 
are given   In  the  following  table 

e v. 

5.1V 

11.2C 

?0.2C 

27° 

31.5C 

50. lu 1.08 

56.25° 1.20 

65.20° 1.35 

72° 1.76 

76.5° 1.5^ 

The quantity hD Is simply related to h (Fig. 19) by n 

h-, = h + 1 - cos 6 
R r 

17.4] 

Equations [6.35] and [6.37] relate u,h to 6    and ö, - 6 = -0 b     a     <-  a    wc 

Hence, In Equation [7.3] all quantities are functions Of B ,  6  . 

and <t> | and it permits the determination of 9     (recovery angle) 

for given 0  (slnkage) and <J>   (shear stress at bow).  Equa- a wc /   -1 
tlon [7.3] has been solved by tria  and error.  In  Figure 20 

the dependence of 0 on the shear stress on the wheel Is given 

for three sinkages z ■ O.O36, z ■ 0.134 and z = 0.293 corresponding 

to 0 = 15 , 0 =30 and 0 = 45 respectively.  Tne minimum 
as a 

slippage as function of z and x  is given in Figure 23. 

The examination of Figure 20 shows that 0  increases witn r 
slnkage and with x .  For small sinkages, as encountered In ap- 

w 
plication, and x =:  0.5.0  is of order 0 /2. r w     ' r a' 
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B.     The Stresses Along RC   (Figure  10b) 

As   stated   In Section  5e  the shear stress   Is  assumed  constant 

T   = T     along  the bow region AC,   and dropping  linearly along RC w 
from T   = T     to T   = 0 

N 

T   - TW   (1   -   0/0r)   (on  RC.   0 <  0  <  ep) [7.5] 

The  Isotropie pressure at  C,   on  the right  side of CD  (Fig- 

ures  12b and  l8a)   is   found  from  the  Integration  of  Equations   [6.1] 

and  [6.2]   along  the sliplines  RN and NC as 

Cr 
=   1   +   2 T + e 

4 r, 
-  * 

N (* n »    ) 
NC 

[7.6] 

the terms in brackets being the variation of 4» between R-N and 

N-C respectively.  The value of <t>  is unknown, but its range o 

variation is 0 < <t> . < ♦  , corresponding to N — D or to N -► C, 
N        wc 

respectively.     Assuming  the average value *., = ♦    /2 we obtain K ^ N wc7 

from Equation  [7.6] 

p       =   1   +  TT/2 +  20 
Cr ] 

[7.71 

The normal stress on the wheel at C, on the right side of 

CD, is [ Equation 3-7] 
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Cr 
p^     +  sin  2<f KCr wc 

{[+?■+ 20   )+ sin  2<t) [7.8] v 2 r' wc 

whero *  is related to T by *  = - 1/ 
wc w "  wc     / cos     T 

The type of variation of o     from c     = 0 at R  to  a    = a-    at 47 ^                                         w               w w Cr 
C   Is  not known.     From  the assumed  slipllne distribution  It  is 

reasonable to assume a   linear variation 

w        Cr 
v 

1  + T +  26     -  sin  2* 
2 r wc 

1   - 
r' 

(on CR,   o < e < e   ) [7.91 

Equations  [7.5]   and  [7.9]  gave the approximate distribution 

of shear and normal  stresses along the rear portion of  the 

wheel  CR as  a   function of 9,   9  ,   and T     (or  equivalently 4>     ). r      w v   M wc' 

C.  The Equl Ill-Hum of the Rigid Core CBDC (Figure 10b) 

In the rigid (elastic) core the maximum shearing stress has 

to be lesser than the yield stress anywhere.  The shape of the 

two lines CB and CD is only partially known.  CB is known from 

the solution of the bow region (Figure 16) while CD has to be 

found from the solution of the rear region.  Figure 16 shows 

that an acceptable approximation is to replace the lines CD and 

CB by two arcs of circles (Figure 21).  The two arcs are com- 

pletely determined by the known angles at C(<t>  ) and at B and D 
W c 
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(7r/2) and by the height h. The Isotropie pressure distribution 

Is also determined from the ß characteristic relationship [6.2] 

as (Figure 19) 

p = p„  »20   - 2T]   (on CB) K  ^Cr    wc    '   v 

P ^ PC£ - 2\c +  ^   (on CD) 

[7.10] 

The shearing stress distribution along the three sliplines CB, 

BD and DC is also known and given In Figure 21. 

All the stresses of Figure 21 are known excepting p ., the 

pressure at C on the left side of CB.  The equilibrium of the 

forces acting on the rigid case in horizontal direction will 

provide the value of pr.. 

The horizontal force from the pressures on CD is 

h * 

r rwo 
H
CD "   (pCr + 2*wc " 2^dy " TÜTV- (Pcr

+2V-2Tl)cOST^ 
/ wc / 

COS 4» „ 

- h|pp  - 2     "C ^   ■ „   j [7.10] ,rCr    sin <t>    sin <t>  ' wc      wc 

The same type of computation gives for the pressure resultant 

on CB 

/       cos <t> 
HCB ■ h K + 2 ttoft ' ^^  ' \ wc       wc 
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The resultant of the  shearing  stresses   is 

cos  4) 
H    - 4i - 4h s 

wc 
sin ♦ 

wc 

The equilibrium requires 

[7.12] 

HCD + Hs - HCB ■ ü 7.13] 

Introducing the expressions [7.10], [7.11] and [7.12] into [7.13] 

and after some algebraic manipulations, it is found that 

PCi5 = PCr = PC 
[7.14] 

i.e. the pressure at C is transmitted unchanged though the rigid 

core.  This shows that the rigid core is effectively not in a 

plastic state, in which case p would increase.  Hence from Equa- 

tions [7.7] and [7.14] 

p  =1+^+26 Ki.      2    r [7.15] 

D.  The Stresses Along CA (Figures 10b and 13a) 

A method of determining the stress distribution by the exact 

integration of the quasi-static equations has been presented in 

Section 6d.  The inspection of Figure 1JI, which shows the image 

ol' the line AC in the characteristic plane, reveals that the 

curve may be approximately replaced by a straight segment between 
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A and C.  The equation of this stralghtllne Is (Figure 13c) 

a + _— ß + e£ = o 
wc 

[7.16] 

From the other hand <t>, p and 9 are related to a,ß  by Equa- 

tions [6.40], [6.42] and [6.58].  From these equations and [7.16] 

we find that along CA 

<t> 
<t>   =     1  - 

wc 
a  -  (fc 

wc 

P - P, 
2[1 + e wc a [7.17: 

I 

0   = 1   - wc a 

Replacing p by its value of Equation [7,lb],   p Is ex- 

pressed as function of 9 along the wheel by 

1 + 
p .- 1 + 5 + 20 -2 r 2     r 

wc 
1 + 

9i 
4> wc 

1 - /-\ 

[7.18 

where 6     (Figure  13a)   is  related   to  sinkage and  shearing  stress 

at A  through Equation   [6.34] 

9.   =  Q     +4)       =9     +- cos~     T 
£ a wc a       2 w [7.19] 
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Summarlzlngj the stress distribution along the bow portion 

of the wheel is given by 

T   - T (AC,    -0     <   0   <   0) 
w       x a ' 

. 

[7.20] 

a 
w 

-  p  -  sin  2<t) 
wc 

l+J+20     +sin2^ 
2 r wc 

9+241 
+   2 -^-g — 0   (AC,-0a   <   0   <  0)     [7.21] 

Equations [7.20] and [7.21] give the  stress distribution in 

terms of 0., 0 , 0 and T . 
r  a     w 

The last point to be clarified is that of the rigid wedge at 

the boWj delimited by the free-surface and the slipline AB 

(Figure 13a). 

The  pressure at A   is   (from  Equation   [7.17]   with  0  =  -0   ) 

pA   ■  1  + 5 +  29     +29     +   44) 
A 2 r a wc 

[7,22] 

This  result   is   independent  of  the assumption  of  linearity of  tne 

line AC   in   the  characteristic  plane. 

Hill   (9)   has  shown   that   the rigid   wedge  at   the bow  is   ef- 

fectively   in  a rigid    (elastic)   state  if 

FA  <  1   +  3-   -   20£ [7  23] 
• 
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the sign  equal   corresponding  to a  plastic state given by a 

centered   fan  at A. 

Hence,   from  Equations   [7-22]   and   [7.23]   we  find  that 

0     < ^T  -   20     -   3<D r        4 a wc [7.24] 

For 0  larger than the limit of Equation [7.2k]   the soil at 

bow cannot sustain In a rigid state the stresses generated by the 

wheel.  Then the plastic flow extends upstream causing probably 

bulldozing effects. 

The application of condition [7-24] to the relationship 

between 0 , 0  and *  in Figure 20 shows that [7.24] is violated 
r  a     wc 

only for the largest slnkage (0 = 45 , z « 0.3) and at small 
3 

shear stress between the wheel and the soil (low slippage).  The 

corresponding region is shaded in Figure 20.  The conclusion is 

that the picture of steady flow assumed in this work is probably 

not possible for driven wheels at sinkages larger than z = 0.3. 

We have not found in literature [5]j [l8], [22] examples of tests 

In which larger slnkage values have been realized. 
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FORCES  ACTING ON  THE WHEEL AND  THE 
MINIMUM SLIPPAGE COEFFICIENT 

Equations   [7.5],   [7.9],   [7.20]  and  [7.21]   gave the approxi- 

mate  stress  distribution  on  the wheel.     The  distribution  Is 

represented  In  Figure  22  for  the  example  discussed  In Section  6 

(0    = 30°,   z « 0.134,   *       - 35°,   T    - 0.3JO-     Prora the diagram v   a - wc '     w / 

Of  Figure  20 It  Is  found  that  the rec  very angle  Is  0    = 17.2   . 

The normal   stress   Is  discontinuous  at  C,   the  Jump due  to 

the rigid   core being  2  sin  2*     .     As  the  shearing  stress  on  the we 
wheel   Increases   this   Jump  diminishes.     The  normal   stress  c?     has K w 
Its maximum value at the bow and drops along the wheel.   The 

Isotropie pressure Is continuous along the wheel.  For the same 

slnkage, bat a perfectly rough wheel (T  = l) the normal stress w 
distribution is continuous and 0 is larger, 0 =23 (Figure 22). 

The shearing stress is, by assumption, constant along AC and drops 

to  zero  from C  to R. 

The  forces  acting on  the wheel  may be  easily   found by 

integrating  the  stresses,   0   being  the  integration  variable  in 

the range  -0    < a <V 
A.  The Vertical Force W (Flotation, Figure 22) 

The vertical force acting on the wheel has four components 

W ■ Wi + Wa + W3 + W4 [8.1 
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w where Wj Is the vertical projection of the normal stress a 

acting on AC, W2 results from a on CR, W3 from T on AC and W4 

from T on CR. All these components but W4 are directed upward 

(positive). 

Since dx - cos 0 d6 and dy - sin 966,   the expressions of the 

W components, according to Equations [7-5]; [7-9], [7.20] and 

[7.21] ^.re 

Wi = a dx = 
w 

0. + $ 
(1 + 5+ 20 + sin 2*) + 2 wc I wc  _ 

cos 6ä0 

A 

\ 6A  +  ^wc 
1 + f + 20r + sin 2*>\  sin 0a - 2 §  _ ^C   (l-0Qsln0Q-cos 9j a a 

[8.2] 

R r 

W2       -   /a..dx  -/     (1  + f +  20r  -  sin  24.wc)   |l  "  eH    cos  0de 

1   -  cos 
d  + Z +  oe     -  sin  24>     ) 
»2 r w r'- wc 

[8.3] 
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w3 = - 

A 

Twdy sin  ed0  - T   Z  =  cos   2P     (1-COS  0   )     [8.4] 
W wc a 

R 

r. W4   =  -   /   rdy 

A 

c 
r 

*   (1 77-)   sin  0dö  -   cos   2< 0   ' wc 

s Ln  0 

8.3] 

Hence.,   by samraation,   W  is   expressed   in  a   closed   form as  a 

I'unctlon of  0     (sinkage),   ♦       or T     (shearing  stress  on  the wheel 
a wc w 

related   to  slippage),   0     (recovery angle)  and  6.,     Since 0     is 
V JO ± 

itself  a   function of 0     and  T     (Figure 20)  and   tne  same  is  true 
a w   v 

for 6.   (6.   ^  G     r (t     )   the  flotation  is    in   fact   a   function  of 0 
,0   v   Ü a wcy a 

and T     solely. 
w 

In  Figure  23  the dependence of W on  r     and   z   Is  represented ft 
graphically.     Tne values   nave  been  obtained   by using  Figure 20 

for'  finding  Ö     and  Equations   [8  2]-[8  b]   for  W, 

Tne  computations  snow   that   tne  rriajor part   of  W is,   of  course, 

given   by Wj. ,     As   tne  shearing  stress T    and   the  slnKage  2  increase, 

however,   the other component;a  of W 'nay reach as muCfi as  30 per'- 

cent of  its  value.    Tne neglection of the r.ormaJ   stresses on  the 

rear  portion as  assumed   by bekker,   theory,   is  not   Justified  in 

this   case,. 
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As   expected W Increases  sensibly with the slnkage.     An   In- 

teresting  feature  Is   the drop  of W,   for a  given  slnkage,   with T , 

I.e.   with   the slippage.     A   computation  of an  "average"   stress  ob- 

tained  by dividing  the flotation W  to  the  contact  length 9^  + 6   . 

based  on  the  results  of Figures   20 and  23,   shows   that  W/fc    + 0J 
d       1 

has an average value of 3-9 {for  15° < 0
a < 

45O,10O < <t>wc < 40°) 

with deviations of maximum ± 13 percent. 

B. Horizontal Force H (Resistance, Drawbar Pull, Figure 20) 

The horizontal force, considered positive if it is resistive 

and negative, if it is propulsive, has again four components 

H = R + Hs + Ha + H4 [8.6] 

where R results from a on AC, H2 from a on CR, H3 from T on w w 
AC and H4 from T on CR (Figure 22). 

The expressions of the different components of H are as 

follows 

■     ~ h^y =. 

e 

\   ~    *        wc „ 
1 + 7r/2 + 20  + sin 2$   + 2 7 7  6 

i   wc 
sin Gde 

(1 + TT/2  + 20  + sin 2* J(l-cos 0 ) wc 

i wc 

wc 
(0  cos 0  - sin 0 ) v a     a       a 

18.7] 
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-   (1  +  7r/2  +  26     -  sin  2<D      ) v ' r wc' 

sin e 

c 
-   1 [8.8] 

o 

H3   =  -   /  T  dx ^    -T   /    cos  0d9  =  - T     sin  0     =  -   cos  2<t>       sin  9 w a wc « 

[8.9] 

=  cos   2<t> 
cos  0     -   1 

r 
wc 

[8.10] 

The  force R  Is  a  resistive one,   the other  three  forces  are 

propulsive.     Again,   for a  given  slnkage and T     the  values  of H 
W 

may be  found  through   the relationships   between  0     and  0  ,   T   . J K raw 
In  Figure  24  the value  of H as  a  function  of x     (or t     )   for 

w   v wc' 
different  slnkages   Is  represented,   as  well   as   the value of R. 

In  usual   terminology R   Is   the  resistance,   H  Is   the minus  draw- 

bar-pull  and H-R   Is   the  traction. 

• 



HYDRONAUTICS,   Incorporated 

■86- 

As   expected  the resirtance Increases with  the slnkage.     For 

a given  slnkage,   both total  forces and resistance drop as the 

shear stress  Increases,   but  the total  force drops  faster becoming 

negative  (i.e.   drawbar pull) at high values  of T    and low values 

Of   2. 

C.     The Torque M 

The torque acting on the wheel arises only from shearing 

stress.  It Is given, therefore, by 

n        o   » 

- hd9  = T  / de + /  T  1+^- 
/    w /   /  w i  e K   = hi 

A 

de 

= T H 6     f rf-1 ■ cos 2* a        2 I wc 9a +- 
[8.11] 

D.  The Minimum Slippage 

The relationship between the assumed constant T = x along r w 
the wheel (on AC) and the slippage has been discussed In Sec- 

tion 6d.  Only a detailed analysis of the boundary layer between 

the wheel and the plastic zone may reveal the true nature of this 

relationship.  At this moment one may use an empirical relation- 

ship between T and S.  At any rate, the analysis (Section 6d) 

has shown that a minimum slippage is necessary in order to main- 

tain positive shear stress along the entire wheel.  From Equa- 

tion [6.39] S  is given by m 
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Dl 

Sin 0 
[8.12] 

SlnU      I   +  sin e wc I ( 

I.e.    S     Is  depending on slnkage and on  r     (or,   otherwise  stated m w   v 

T    depends  on S       and  slnkage). 

In Figure  23  the dependence of    S       on x    and  z  Is   repre- 
m     w 

sented graphically.  For a given slnkage  S  Increases with T , 
m w 

the increase being very fast at high t  (" > 0.8) 

The flow pattern suggested In this report for a driven wheel 

Is possible only for S > Sm .  At lower slippage coefficients 

the wheel starts to skid.  For tne small slnkages encountered in 

applications and moderate T  the required minimum slippage are of 

the order 0.35 - 0.40.  At lower- values the wheel 1, no more 

totally slipping and a different solution has to be contemplated. 

For driven wheels without lateral spuds , a slippage coef- 

ficient of 0.35 - 0.40 Is not nigh ana it may be said that the 

present solution covers the whole practical range of slippages 

for driven wheels (l8). 
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9.     DISCUSSION OF  RESULTS 

A. Comparison With  Experiments   (General) 

As   stated  in  Section  2b,   the existing  experimental  results 

are not adequate  for a   quantitative verification  of the present 

work.     Adequate experiments  for  this  purpose have to  fulfill   the 

following requirements:      (i)   the soil   behavior has   to be  con- 

trolled and  known   (homogeneity,   stress-strain relationship,   in- 

compressibllity).     A   soil  behaving as   close as  possible  to   the 

plastic-rigid model   has   to  be used,   (11)   the wheel  shape and 

motion  has  to be similar  to  those assumed  here,   i.e.,   two-di- 

mensional,   steady and  with  correct scaling of the inertial  num- 

ber H   (ill)  accurate measurements  of velocity distribution  in 

the  soil  body and  stress  distribution along  the wheel  have  to  be 

carried  out. 

Since no  experimental data  satisfying  these requirements 

have been available,   only a  qualitative  comparison  between   the 

trends  shown  by actual   experiments and   the  theory  Is  possible. 

Quantitative  comparison   is  also  made when  possible. 

B. The Recovery Angle 

For  the  first  time an approximate  theoretical  method  of 

predicting  the magnitude of  the recovery angle 6    has  been  pre- 

sented.     The values  of Q    seems  high when  compared with general 

accepted  values of 6     =5     -  6   .     One has   to  keep  in mind,   how- 

ever,   that  this   latter  value is  based  on  experiments  with wheels 

of   finite width  In  which   case a  rut  is   created and part of  the 
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sol]   is  moved  sldewlse.     Thus   causes,   obviously,   a   reduction of 

0   .     Moreover,   If  the  soil   is   compressible   (as  assumed  In Bekker's 

theory)  again  smaller  values  of  0     will  be observed. 

In the experiment of (l8) (Figure 25) done with wide rollers 

in clay, values of 0 of 16 have been observed; in (22) 0 seems 

to be even higher, so that our results are by no means beyond the 

practical   range,   for  the stipulated  condition. 

The   increase of 0     with T   ,   i.e.   with  slippage,    (Figure  20) 

seems  intuitively  correct.     One would  expect  that  at   stall  9 

will  reach   its  maximum value  0     = 
r 

0  even for S  — I. 
a m 

In our results 0 is below 
r 

It must be, however, emphasized that the 

stall cannot be regarded as a limit case of flow and experiments 

tend to confirm it (see (21)). 

C.  The Normal Stress Distribution and the Flotation W 

The maximum normal stress a  has been found at the bow A 
w 

(Figure  22  is  an  example).     The  measurements  of   (10),    (15)   show 

that high   values  of a     exist  at   the bow,   contradicting Bekker- 
w 

Bernstein assumption (Figure 25). The maximum Is close to the 

bow in (15), but near the bottom in (l8) Experiments in sand 

also show that the maximum is between the bottom and the bow. 

In discussing the work-hardening effect it will be shown that 

axlmum a  has In fact to be displaced fror 
w r 

will be closer to it as the slippage increases 

the maximum a    has In fact to be displaced from the bow, but it 
w 
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No stress discontinuity has been observed in the measure- 

ments available to us, but a gradual drop of a from the bottom 

to the rear has been measured in both (15) and (18) (Figure 25). 

The discontinuity is a crude approximation for this high drop. 

The flotation W (Figure 23) has values of the order found In 

(5), being somehow higher.  Since the experiments in (5) have 

been carried out with narrow wheels, the discrepancy is expectable. 

An effect observed in the same experiments (5) but ignored by 

Bekker's theory and empirically considered by Reece (13) in theory 

on wheels in sand is the drop of flotation with slippage.  The 

present theory has predicted this effect (Figure 23).  Moreover, 

its reason Is quite transparent.  As T , i.e. the slippage, in- 

creases, the angle 6.   =  6    + $       (Figure' 13a) decreases and the 
Ju 3     W G 

slipline AC approaches the wheel.  Since the magnitude of the 

pressure at the bow A depends on the bending of this slipline, 

the peak value of a ■ <J , decreases as the slipline approaches W    WA r rr 

the wheel. The above effect may be expressed in a slightly dif- 

ferent form by asserting that for a given W the sinkage will in- 

crease with slippage. 

The normal   stress  vary along  the wheel,   which Is  different 

of Uffelmann's   assumption  of  constant   1     (l8).     The average 
w v  ' 

normal stress W/(9  + 0 ') -i-3 of order 3.9 in the present results 
3 r1 

compared  with   the  value  of order 5.7 assumed  by Uffelmann   (l8). 

Our  value Is  much  closer  to  his  measured  value of 3.6   (Figure 25). 
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D.     Resistance and Drawbar  Pull 

The high normal  stress  at  rear  Is  the main  resistive factor. 

Drawbar-pull  has  been  obtained only for small   slnkages  and   high 

slippages   (Figure  24).     No   experimental  data   for  rims  have been 

found,   excepting   (l8). 

Experiments  with  towed  wheels   tend to  show  that  Irrespective 

of  the  type of  tested  soil,   the  experimental  data  group  satis- 

factory  In a  diagram In  which R/W   (resistance     over    flotation) 

are  plotted as  a   function  of sinkage.     Firth   (6)  has   found  from 

different measurements   for  cylindrical  wheels   that a  good  fit 

for   towed  rigid  wheels   is 

S-* 
n 

z' 
2R, [9.1] 

with  K =  0.75 and n - 0.45. 

Based on the results of Figures 23 and 25 the values of R/W 

as a function of z for different T  have been plotted on a w 
logarithmic paper   (Figure  26).     The dependence  is  well  approximated 

by  straight line   which have approximately the  same slope of n=0.5. 

The  value of K differs  with  slippage,   being  lower at  high slippages 

For T     = 0.19,   i.e.   relatively low  shear stress,   K = 0.71.   Hence, w 
the  present  theory provides   values  quite close  to   those  found  for 

towed  wheels. 
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E.  Influence of Work-Hardening, Compressibility and Side Effects 

It Is a well established fact that clay shows a dependence 

of the yield stress on the strain which resembles work-hardening, 

I.e. an increase of the yield-strest: with the strain. 

The qualitative Influence of the work-hardening has been con- 

sidered in different sections.  It is worthwhile to recall these 

effects and to discuss them briefly here. 

A first effect is the diffusion of the discontinuity line AC 

which becomes a zone of transition rather than a line.  At this 

stage It is difficult to estimate the thickness of the transition 

layer, but this may explain some upstream deformations not en- 

countered in a rigid-plastic model. 

Another effect Is reflected in the normal stress distribu- 

tion.  Since the pressure increases with strain, it Is expected 

that at the bow A the pressure will be lower than the value given 

by the rigid-plastic model and will increase rapidly along the 

wheel, reaching the rigid-plastic value In the region of high 

strain. 

The compressibility of the soil will cause changes in the 

flow pattern.  An apparent effect is the creation of a rut (i.e. 

the diminution of 0 ) and additional dissipation in compaction. 

A narrow wheel creates a three-dimensional flow pattern. 

Experiments (21) show that the flow beneath the wheel exhibits 

the same features as In the case of a roller.  A rut is now, 
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howeverj   possible.     For   this  reason and  due   to  side  effects   the 

flotation will probably be lower than  In  the two-dimensional   case. 

■ 

Future  theoretical   work which will   Incorporate these  effects 

Is   suggested  In  section   11. 

F.      Energy Considerations 

The  equation  of   energy  is   in  the  case  of  an  incompressible 

material  a  simple  transcription of  the    momentum equations 

and  it  is,   therefore,   not  very helpful   in  the  study of the me- 

chanics  of motion.     It   is useful   for finding,   for Instance,   the 

temperature  changes   in   the material-which  Involves  additional 

empirical  data   on thermal   properties. 

Since it  is    usual      to  express  some results  found  from  the 

momentum    equations     In     terms     of     energy,   it will  be worth- 

while to  examine  briefly the energy balance  in  the  case of  soil- 

wheel   interaction.     Considering  the  soil   body   (Figure  l),   one   can 

apply the equation  of mechanical   energy  to  a   control  volun.e 

delimited     by:     a   vertical  section  1-1   far upstream,   a   vertical 

section  2-2 far downstream   (    both     from  the  free-surface  to 

Infinity downward),   the  free-surface and   the  soil-wheel   inter- 

face.     One of  the  basic  assumptions  underlying  this  work is   that 

of uniform  flow  and  unperturbed  free-surface  far  from  the wheel. 

In       this   case  the  energy  flux  through  sections  1-1   and  2-2  is 
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!§_ = u ' / (a  ' - a 0
, )dyl [9.2] dt   o ^ v xl    x2 ' L v  J 

The free-surface Is stress-free; there is no energy flow 

across it. 

Work is done on the soil-wheel Interface by shearing stress 

solely.  The work rate is 

dEg 
dt ' "w = V ' / Tds [9.3] 

The  energy  equation  states   that 

dEi  + dEs  m dEd [ g ^ ^ 
dt        dt dt 

where 

——-    is   the  rate of  energy dissipation. 

From  the   momentum equation 

j"(cxl'   -  ^x-^dy'   - H' [9.5] 

where H1 is the total horizontal force acting on the wheel.  By 

definition 

/ xds = - M' [9.6: 
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— /i\ ' ri ' where M' is the torque acting on the wheel.  Also V* w 
Hence^ Equation [9.^] becomes 

H'U ' - M'tD'r1 - ^- o at [9.7] 

Since in the case of a driven wheel the torque M' is applied 

to the wheel in clockwise direction, M' < 0.  H' is positive if it 

is a resistance and negative if it is a drawbar pull. 

Equation [9-7] states the simple result that the work done 

by the horizontal force and the torque are equal to the dissipa- 

tion . 

Dissipation occurs in the plastic-rigid model in the plastic 

zone  solely.  This zone has to be divided in three regions: 

the narrow transition layer between the rigid and plastic zone 

(considered a discontinuity layer), the bulk of the plastic zone 

and the boundary layer at the soil wheel interface. 

The dissipation In the transition layer // T ' (c^V/än )dnds 

where s and n are directions along and normal  to the transition 

layer respectively and V is the tangential velocity.  For a 

perfect plastic material and no inertial effects T' = k' and 

/(öV'/än) dn ■ 5V1 (tne velocity Jump).  Tne matter is more com- 

plex when work hardening and inertial effects are considered, 

but it will not be discussed here. 
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The dissipation in the plastic zone has been discussed in 

Section 3P. 

In the boundary layer near the wheel the dissipation equals 

/x^co'r' - V ) ds, where V is the soil velocity. 

In any computations based on energy considerations special 

attention has to be paid to the dissipation in the two thin layers 

which may account for a large part of the total dissipation. 

G.  Extension of the Method to Different Stress Conditions 
Along the Wheel 

The solution of the plastic flow in the bow region (Sec- 

tion 6D) has been obtained by using the condition of constant 

shear stress x = x along the wheel on AC. w 

There is no major difficulty in solving the problem with 

an arbitrary distribution of x along the wheel, provided that 

the same picture of the sllpllne field is adopted. 

In section 6d the x boundary condition was used in order 

to locate the image of the line AC in the characteristic plane 

(Figure 14). 

Assume that a relationship between x and 9 (position on the 

wheel -0 < 0 < 0) is given 
J 

x(0) [9.8] 
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Equation   [4.7]   relates  T  to <t)  and  0.     Hence,   from Equa 

tlons   [4.7]   and   [9.^1   we  have 

T(e) = cos 2 {<t>-e) [9.9] 

which permits to determine <t>-9  along the wheel as a function 

of *.  From the other hand Equations [4.8] which reflects the 

fact that the wheel Is a streamline, gives 

v 

V 
a 

tg (t-e) [9.10: 

Since $   is related to a, ß by Equation [6.4o], V
A/

V on the 

wheel may be computed for a given T(9).  The same procedure as 

In the case of constant T permits the location of the AC line in 

the characteristic plane (Figure 14). 

This general procedure applies to frictional conditions, for 

instance, in which T IS proportional to 0 .  Since a is a known 
^  ^ w w 

function of a, ß again is relatively easy to find the points in 

the a,ß plane which satisfy the assumed condition. 

A dependence of T along the wheel on the strain of the 

thin plastic laver adjacent to the wheel may also be treated in 

the same way.  The strain is depending on the difference between 

the wheel velocity V and the plastic velocity, and the location 0, 
w 

If T is a known (say empirical) function of strain, again a re- 

lationship between v and v may be formed and the position of aß 
AC  may be determined. 
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Concludlng, as long as the stress condition along the wheel 

may be translated In a kinematic condition for v , v , * - it Is 
a ß 

relatively easy to solve the plastic flow problem in the bow 

region. 

At the present stage, because of the lack of sufficient ex- 

perimental or theoretical evidence, it seems unjustified to go 

beyond the assumption of constant r. 
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io.    SUMMARY AND CONCLUSIONS 

A comprehensive theoretical solution of the soil-wheel 

Interaction Is for the first time presented.  The soil flow Is 

steady and two-dimensional, the wheel is cylindrical and rigid. 

Only the case of a driven slipping wheel is considered.  The 

soil Is assumed to be incompressible and to behavelikea rigid- 

plastic material, which may be approximately valid in the case 

of a soft saturated clay. 

The flow of the soil in the region beneath the wheel Is 

solved by Integrating the equations of motion with appropriate 

boundary conditions.  For the first time the Influence of the 

inertial terms is discussed.  Although the solution Is obtained 

with the aid of the quasi-static equations, the flow field is 

built such that inertial influence is taken into account at 

discontinuity lines and points where the inertial effects are 

the most important. 

In essence a plastic soil developes high normal stresses 

on the wheel, responsible for flotation and resistance, in the 

following way:  The soil flowing beneath the wheel is under- 

taking large deformations which cause a plastic flow; In a plastic 

region the maximum shear stress Is everywhere equal to the yield 

stress; the equilibrium of an element moving along curved stream- 

lines requires pressure gradients In order to sustain the shear 

stress.  These pressure gradients build up in high pressures be- 

near.n the wheel . 
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An approximate solution of the plastic flow problem is pre- 

sented.  The recovery angle, the vertical and horizontal forces 

acting on the wheel are found in an analytical form as functions 

of the sinkage and the magnitude of the  shear  stress on the 

wheel boundary.  The latter Is related to the minimum slippage 

coefficient, necessary to maintain positive shear stress on the 

wheel. 

The solution permits for  given wheel radius, vertical 

load and shear stress on the wheel (or minimum slippage) to de- 

termine the sinkage and the horizontal force.  The procedures, 

using the analytical expressions or the graphs, is the following: 

for given vertical load (W ) radius (r1) yield stress (k1) and 

shear stress along the wheel (T'W) (or minimum slippage S ) the 

sinkage z=z,/r, Is found from Figure 23.  Figure 24 permits the 

determination of the resistance R' and the total horizontal 

force HI  Figure 20 gives the recovery angle 0 . 

The results exhibit all the trends well known from experi- 

ments (like dependence of flotation on sinkage and slippage), 

without using the artificial empirical assumptions adopted In 

previous theories. 

Although some quantitative agreement between the present 

theoretical results and measurements has been found, more and 

better experiments are necessary in order to validate the theory. 

For this reason the present work has to be regarded as a pre- 

liminary study. 
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The plastic-rigid  theory has  proved  itself as  an   useful 

tool   of analysis   of  soil-wheel   interaction.     The results   so   far 

obtained   encourage  the  continuation  of  theoretical   investiga- 

tions  which  will   further advance   the  understanding  of  the  vehicle 

dynamics  and  provide  sound   foundations   to  a   field  of applied  me- 

chanics  dominated  by  empiricism   In  the past. 
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11.  SUGGESTIONS FOR PuTJRE INVESTIGATIONS 

The review of the literature and the theoretical analysis 

carried out in this report suggest some directions of special 

Interest to be followed In future Investigations of soil-wheel 

Interaction In soft soil. 

In a broad sense It seems that three directions are of major 

Importance:  (l) work toward a better quantitative characteriza- 

tion of different soils Important In  mobility research  A 

mechanical characterization means mainly constitutive equations 

relating the stress and strain tensors Including strain-rate ef- 

fects.  The rlgld-plastlc equations represent one of the simplest 

types of models. (11) thorough laboratory work with wheels moving 

In carefully prepared and controlled soil with accurate measure- 

ments of velocity field and stresses on the wheel.  Experimental 

study of the boundary conditions at the soil-wheel Interface, 

(ill) theoretical work In which the soil-wheel problem Is attacked 

from basic principles, using existing Knowledge.  This type of 

work has to Incorporate new results acnleved In directions (i) 

and (11). 

The work presented here pertains to point (111).  In a narrow 

sense, the following theoretical aspects of soil-wheel Interactions, 

direct continuations of the present work may be contemplated 

(1)  Refinement of the solution in order to solve 

analytically the flow In the whole plastic region, 
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(2) Study of the Inertial effects by solving the B soond 

order approximation In the perturbation scheme. 

(3) Investigation of work-hardening effects. 

(J0  Extension of solution to towed wheels. 

(5) Study of motion in sand soil. 

(6) Study of three-dimensional effects for wheels 

of finite width. 

(7) Study of non-steady effects by incorporating 

local accelerations and the time factor in the equations of flow. 

Because of the complexity of the wheel problem we feel that 

the best way to estimate the above effects will be a study of a 

tracked vehicle, which is geometrically simpler.  We strongly 

recommend, therefore, that future work should starv with the ro- 

lution of plastic-rigid flow beneath a track with consideration 

of inertial, work-hardening, three-dimenslon^x and unsteady ef- 

fects.  The next immediate step should be the extension to the 

wheel problem, 
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APPENDIX 1 

THE VELOCITY COMPONENTS AND 
0 IN THE FREE -SURFACE REGION 

(FIGURE 12) AS FUNCTION OF 0,0 
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APPENDIX 2 

THE VELOCITY COMPONENTS AND <f> IN 

THE BOW PLASTIC REGION (FIGURE 12) 

1 
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APPENDIX 3 

THE MAPPING OF THE BOW PLASTIC ZONE 
(FIGURE 12) FROM THE CHARACTERISTIC PLANE 

ON THE PHYSICAL PLANE 

: 
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FIGURE 1 - A   DRIVEN .TWO-DIMENSIONAL WHEEL OVER 
A SEMI-INFINITE SOIL BODY 

mmtmr- 
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y '     (elastic shear-strain) 

a.   IDEAL ELASTIC-PLASTIC MATERIAL 
( FOR RIGID-PLASTIC  y '    = 0 ) 

r. 
strain y ' 

b.  WORK-HARDENING MATERIAL. 
(FOR RIGID WORK-HARDENING y ' «0, 

FOR RIGID-PLASTIC y'   =0/y
,. =0) 

e h 

r 

FIGURE 2 - TH" DEPENDENCE OF THE MAXIMUM SHEAR STRESS ON STRAIN 

■ 
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sfreamline 

FIGURE 3 - STRESS AND VELOCITY COMPONENTS IN CARTESIAN COORDINATES 

a ' 
/ 

a. CARTESIAN 
COORDINATES 

b.   MAXIMUM-SHEAR c.   PRINCIPAL 
STRESS DIRECTIONS DIRECTIONS 

FIGURE 4 - STRESSES AT A POINT REFERRED TO DIFFERENT DIRECTIONS 
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T=1 

a.  COMPRESSION b.   TENSION 

FIGURE 5 - PLASTIC FLOW ALONG A FREE SURFACE 

v ■ ^ 

a.   SLIPPING BOUNDARY 

(V>VW), RETARDED FLOW 

(|^ < 0), «/4>0 -e>o 
b.   SLIPPING BOUNDARY (V >Vw)/ ACCELERATED 

FLOW (^>0), o>^-e>--J- 

c.   SKIDDING BOUNDARY (V <V   ) 
w 

FIGURE 6 - PLASTIC FLOW ALONG A RIGID BODY 
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tangential velocity 
distribution 

rigid zone 

a. THIN PLASTIC LAYER 

67'= v'   - U ' cos<p 
GO 

b.  KINEMATICS OF 
DISCONTINUITY 

astic zone 

rigid zone 

c.  SHEAR STRESS 

F1GURE 7 - A UM OF VELOOTY D.SCONT.NU.TY AT THE BOUNOARY BETWEEN 
F1GURE7    ^„^^PLASTK: REGION 
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a.   A CENTERED FAN 

b.  A CENTERED FAN AT 

A CONCAVE CORNER 

FREE SURFAC 

c.  FLOW DETAIL IN SHEET-DRAWING 
(FROM   [8 p. 173]). AD-DISCON- 
TINUITY LINE, DAC - CENTERED FAN 

d.   FLOW AS IN c. , WITH INERTIAL 
TERMS CONSIDERED.   ( AD-DIS- 
CONTINUITY LINE) 

FIGURE 8 - FLOW IN A CENTERED FAN AND AT THE INTERSECTION 
BETWEEN THE FREE-SURFACE AND A RIGID BODY 
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a . plasti*- zon«» 1 

plastic zone 2 

I 

FIGURE 9 - A LINE OF STRESS DISCONTINUITY 
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u' =u 

U-l 

st 
0=0. 

u = l 

a.   FREE -SURFACE AND STREAMLINES 

shear stress 
acting on 

FREE-SURFACE 

hear stress acting on 
the rigid material 

B    D 

b.   SLIP-LINE FIELD 

' 

\ 

FIGURE 10 - QUALITATIVE REPRESENTATION OF 

THt PLASTIC FLOW PATTERN 
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streamline 

-   /^T" - 
«hear sVress on the 

the rigid material 

\ 

f/4 

^L. 3 T^/öV 

u = 1 

velocity triangle atT 

FIGURE 11 - AN INCORRECT SLIP-LINE FIELD 
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FIGURE 25 - MEASURED  NORMAL   STRESS DISTRIBUTION 
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