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ABSTRACT

The general mathematical problem of the thermal entrance
region is formulated for a paralliel plate channel by Including the
effects of viscous dissipation, axial conduction, and wall blowing.
The associated eigenvalue problem is solved by the B. G. Galerkin
method and the results are presented for constant wall temperature,
It is shown that the particular method has distinct computational
advantages over the classical form of solutions. The constant wall
temperature case is investigated by employing the solutions of the
eigenvalue probiem, and it Is concluded that the wall blowing param-
eter has considerable effect on the temperature development. The
axial conduction term is also shown to have considerable effect on the

temperature development for low values of Peclet number.
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NOMENCLATURE
An Constant defined by Equation 43
Cp Specific heat at constant pressure
Ec Pseudo-Eckert number defined by Equation 16
Fn Modified eigenfunction defined by Equation 29
L Channei width
Nu(0) Nusselt number defined by Equation 63
Nu(D) Nusselt number defined by Equation 64
Nu Average Nusselt number defined by Equation 75
P Pressure
Pe Peclet number defined by Equation 16
Pr Prandt: number defined by Equation 16
Q Net heat transfer defined by Equation 74
Re Characteristic Reynolds number defined by Equation 16
T Dimensional temperature
T Buik mean temperature defined by Equation 59
T; Characteristic entrance temperature
u Non-dimensional velocity component defined by Equation 12
v Velocity component shown in Figure |
Ve Characteristic velocity defined by Equation ||
X Space coordinate shown in Figure |
y Non-dimensional space coordinate
z Non-dimensional space coordinate defined by Equation 12
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Bn Eigenvalues given in Equation 26

] Non-dimensional temperature define& by Equation 12

8m Non-dimensional bulk temperature defined by Equation 60
Q Excess temperature deflned by Equation 22

2, Eigenfunction given in Equation 26

K Thermal conductivity

v Kinematic viscosity

E Non-dimensional space coordinate defined by Equation 22
p Mass density

A Wall velocity parameter defined by Equation 16

¢ Dissipation function

¥ Non-dimensional dissipation function defined by Equation I5
by B. G. Galerkin function set defined by Equation 36
SUBSCRIPTS

w Wall conditions

o Entrance conditions

| Direction indicated in Figure |

2 Direction indicated in Figure |
3 Direction indicated in Figure |
® Denotes fully developed conditions
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CHAPTER |
INTRODUCTION

The heat transfer in laminar flow of an incompressible, non-
viscous fluid in the entrance region of a clrcular tube was first
Investigated analytically by Graetz (l)', under the assumption of
specified uniform wall temperature and fully developed velocity pro-
files. Prins, Mulder, and Schenk (2) solved the analogous problem with
plane paraliel plates substituted for the cylindrical tube wall,
Varlous authors (3-8) have extended analysis of the problem by considering
increasing complexity of the boundary conditions and velocity distri-
butions for circular tubes and parallel plates.

Abramowitz (9) and Sellars, Tribus, and Kiein (10) have pre-
sented In deta!l the classical mathematical solutions of the eigenvalue
problem encountered In the analysis of thermal entrance regions. These
authors concluded that the evaluation of the eigenvalues and the
eigenfunctions from the exact analytical expressions resulted in con-
siderable-computationai difficulties even in the cases of relatively
simple flow and thermal boundary conditions.

Sparrow and Stegel (1) introduced the successful application
of variational methods to the mathematical probiem for paralle! plate

channels and finite cross-sectional ducts and approximate solutions

INumbers in parentheses refer to similarly numbered references
in the bibliography.
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were found to be In reasonable agreement with the avallable exact solu-
tions for certain speclal cases. Direct numerical solutions for various
hydrodynamic velocity profiles in circular tubes were presented by

Kays (i2) who compared the results for the Graetz problem against the
exact solutions.

Hsu (13) presented an exact mathematical solution for the
entrance region laminar heat transfer including the effects of axial
conduction. The temperature solution for pipe flow corresponding to the
boundary condition of uniform wail heat flux was obtained. The corre-
sponding problem in parallel plate geometry was treated by Agrawal (14)
for the boundary conditions of constant wall temperature. The eigen-
functions were expanded as an infinite Fourier-sine series, and the
temperature solution corresponding to a Peclet number, Pe = |, based
on the mean velocity was obtalned. These authors concluded that the
effect of axial conduction was significant for low Peclet numbers.

LeCroy (15) investigated the feasibility of application of
the B. G. Galerkin method (16) to formulate approximate solutions for
the temperature development in parallel plate MHD channe! flows by in-
cluding the effects of viscous dissibafion, Joule heating, non-zero net
current, and axiai heat conduction.

The previously mentioned authors (|-15) Investigated the
thermal entrance region problem assuming channels and ducts with solid
walls,

The purpose of the present study is to develop approximate

solutions for the temperature development and local Nusselt number in
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parallel plate channe! fiows with wall blowing by the application of the
B. G. Galerkin method (16). The problem was formulated to include the

effects of viscous dissipation and axial heat conduction.
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CHAPTER II
ANALYTIC PROCEDURE

I. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Consider a fluid of constant properties flowing between
infinite parallel plates. The mathematical probiem Is formulated in the
Cartesian coordinate system (xl, Xo» x3), with X3 taken at the base of
the channel along the direction of the applied pressure gradient,
dP/dxz. The origin of the system is taken at the point of Intersection
of the x; axis with the plane at which the thermal entrance region
initiates, as shown In Figure I. It is assumed that there Is a constant
injection of fluid through the wall at X, = 0, and that there Is a con-
stant suction of fluid through the wail at X9 = L. The mass flow rate
due to Injection Is assumed to be equal to that due to suction producing
a velocity component, V,. It Is further assumed that the flow Is fully
developed at the thermal entrance plane.

For fully developed flow conditions and for a parallel plate
channel configuration of Infinite dimensions along x| and x5, with no
veiocity component along x; direction, it Is concluded that the applied
axlal pressure gradient, dP/dx3, is a constant,

The governing equations for fully developed, steady state,
incompressible flow of a viscous fluid with constant propertles for

intfinite paralle!) plates along the X direction are:
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7 Twz
Volxg) =V, Tgl%o)
—_—
B,(y) ) O (¥
T %3 dPlixy o
Ty (Xo) L
° By, g) V3(X2) .
T Volkp) =V, uty
X3
7Ty g

Fig. 1 Channel Geometry
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Continulty equation,

V2

which integrates into,

Vz(xz) = V,, = constant (2)
Momentum equation,
32V3 V3 | 3P
v (%) =y (x,) - = 0 (3
ax; 2 W 5x2 2 pIxXy

Energy equation,

oT T
g cp[%w ax, (X2exs) + V3lx) 5o ‘xz'*s’] -

e |23 22T + o (x0) (4)
;;7 (x7,x3) + ;;2'(x2,x3) ¢ (x2
2 x3

where the dissipation function, ®(x2), is given by,

3 2
Q(XZ) = pv E (Xz) (5)

The hydrodynamic boundary conditions on the velocity component,
Vz(x2), are determined according to the nonsl|ip conditions on the

stationary wails,

'V3(0) =0, V3(L) =0 (6)
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The temperature distribution Is prescribed at the thermal
entrance plane, X3 = 0, as a function of X2,

:evetame1sg bna 28idsivey gezelnciznanip priwcliolr ol nTlw

T(x2,0) = To(xy) (7)

{gxdypy S
and Is prescribed as equal tgﬁperafﬂﬁgé att bo#h walls: of *he'ﬁarallel

plate channel,

Wool . LA Aol LA
. TWE ST 'V TTTTTYITEY
TO,xg) =%, Mi,xg) =T, " ° (8)

S
The;remaining condition on the +empg§atpre-gjfifﬁgyfgen(q;wdefermlned

from the thermally fully developed condition, To(x3,X3), by solving

~4agmst eansttas ot dliw beteinczas suvisv aifezivetoersds & a1 gT ae.
the |imiting case, Xz * @, of the energy equation,
AexigT (nottudiatzib svwuts

& noltsup3 tngliggrq mj*ﬂGEEmvﬁﬂL_JZ{“‘ﬁ +2 $?xngi¢nﬂ.: adb (9)
9m033d ty|9v1139q=31 ,g nelteupd (noiteups yotens ardt bne

under the boundary conditions,

I.'SD
(&1 - () TR AS - () T
€ T0) = T, T (D =T, V‘ ' yb (10)

There would be little changee§2 fqe furfpgrﬂm?f?imftlggl(gequgpmenf of
q_".‘\_l 7 " l'
the probiem if the +herma! bouﬁda&y condrﬁlons on the“channel walls were

assumed to be constant wali temperatures qﬁ unequal value,
(M) (¢)Y + {3,¢) {;; +

1l. NON-DIMENSIONAL PROBLEM
21 noitonut noitocglizzib 2aainoiznemibh ot 9uerw

The mathematical system is non-dimensionalized based on the
S
cqrgtant pressure gradient by defining aiggqrééﬁeﬁnstﬂc=vekoelfy, v
L /0

as
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2
N T
Ve = - &% o ()

with the following dimensionless variables and parameters:

X2 X3 Vz(x2)
y=r’ z=r’ u(y)=—v’;—'

5 = T(xz,X3) - Tw T° - Tw
= °=
O- w ’ o- w ’
¥y) L2 (%) (12)
- 0 |
Vo cgrE=Ty 00

where Tg Is a characteristic value associated with the entrance temper-
ature distribution, Tgo(xs).
The dimensionless forms of the momentum equation, Equation 3,

and the energy equation, Equation 4, respectively, become

2
d d
d—y;- (y) - ch a-;- (y) 2 - | (13

20 30 32¢
Pe [u(y) 37 (y,z) + 3y (y,zJ]= ‘a—yz (y,z)

2
+ %;- (y,z) + ¥(y) (14)

where the dimensionfess dissipation function Is

. du 2
¥{y) = Pr Ec W (13)
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In Equations 13 through 15 the dimensionless parameters are defined as:

v.2
Ec = CTTT‘E_"T_T = Pseudo. Eckert Number
P''o T 'w
pVcCpl
Pe = —'EEE— = Peclet Number
Pr = Eﬂigg = Prandt| Number
Vo .
A= T = Wall Velocity Parameter
c
Ve L
Rc = cv = Characteristic Reynolds Number
vy L
ReA = 3 = Wall Blowing Parameter (16)

The boundary condition for the dimensionless velocity u(y), becomes
u(0) = 0, ull) =0 (7))

and the thermal boundary conditions for the dimensionless temperature,

o(y,z), at the thermal entrance, and at the walls are:
8ly,0) = 85(y), 0(0,z) =0, o(L,z) =0 (18)

The remaining boundary conditlon required to complete the sofu-
tion is determindd from the thermally fully developed dimensionless

temperature distribution, 6,(y),

o ly) = 1M a(y,2) (19)

2 >+ >
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Solving the Iimiting case, z + », of the non-dimensional energy equation,

Equation 14, the mathematical system becomes,

d2e, de,,
Tr (y) - Pr RcA Iy (y) + ¥(y) =0
Y
ew(O) =0, e“(|> =0 (20)

The solution for the fully developed dimensionless temperature distri-

bution, Equation 20, is given In Appendix B.

lll. GENERAL METHOD OF SOLUTION

Since the fluld properties are assumed to be constant, the
dimensionless momentum equation for the velocity profile, uly), is
independent of the energy equation. The solution of Equation I3 for

uly) is given in Appendix A as

_ | | - oRcAy
u(y) = -R-C—;\ y - W (21)

Hence, the dimensioniess energy equation represents a linear, non-
homogeneous, partial differential equation with variable coefficlents
subject to the given boundary conditions.

Defining a new Independent variable, &, as the dimenslonless
axial coordinate scaled by the Peclet number and a new dependent
variable, Q(y,z), as the dimensionless excess temperature which is the
difference between the local temperature and fully developed temperature

distribution, 6_, as:

10
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aly,£) = 8ly,z) - 8 (y) (22)

the energy equation, upon substitution of Equation 22 into Equation 14,
becomes

uly) 22 (v.e) + P2 (v £) - 2%q (y,E) - 2% ty,£)
Yy 35 Y, =] Y Y:E EZ‘ E —7'_2' YDE

326, 26,
= [;;2—-(y) - PrR:A 5;—'(y) + ¥y (23)
The bracketed term on the right hand side of Equation 23 identically
vanishes ‘according to the fully developed solution of the mathematical
system, Equation 20, hence the differential equation for the dimension-
less excess temperature, Q(y,£), reduces to a homogeneous partial
differential equation with variable coefficients,

2 2
uty) 32 (y,e) + P R == 3Q =970 | 3°q
y Y,E r W (y,5) — (y,£) + F?Ef (y,&) (24)

35 3y

with boundary conditions:

f(y,0) = f5(y) = 65(y) = 6,(y)

Q(0,8) =0, a(l,) =
lim  g(y,e) = 0 (25)
E >

11
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The general solution of the differential equation, Equation
24, can be constructed as an infinite series of the form:

€0 ' _B E

E: (n) n
Qly,E) = a Qn(y)e (26)
n=|

where the eigenfunctions, ﬂn(y), and the associated eigenvalues, Bn’

are to be determined from the homogeneous eigenvalue problem,

d2q, d@n Bn2
;;z-<y> = PR gy () + | B, uty) + 57 [ nty) = 0 (27)
with the boundary conditions
2,0 =0, 2() =0 " (28)

A simplification of Equation 26 is possibie by defining a new set of

eigenfunctions of the form,
Fty) = " FRAY g ¢y) (29)

Hence the eigenvaiue prob'em reduces to,

d2F Bn2 Pr2r.2)2
5;72-(y) + 1 B, uly) + P:2 - Ec Faly) =0 (30)

Fa(0) =0, F (1) =0

The general solution of the differential equation, Equation

24, becomes

12
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- SPrRAY  -Bnt
aty,0) = ) al™ Foyde o

n=1

(31)

Since axial conduction and wall blowing effects are included,
the general form of the differential equation, Equation 30, does not
satisfy the conditions of the classical Sturm-Liouville system with a
comp lete set of eigenfunctions which are orthogonal with respect to
the weighing function u(y). If we assume that F,(y) and Fp(y) are two
characteristic functions which are solutions of Equation 30 and let n
and By, be the corresponding eigenvalues, assuming m # n, then the

integral relation between the associated elgenfunctions becomes

(8 - By J[ uly) Fply) Fply) dy
o

B2 - Bp2 |
+ —Pez——f Faly) Fo(y) dy = 0 (32)
A .

Equation 32 reduces to the Strum-Liouville system safisfying the ﬁro-
perty of orthogonality for the |imiting case of Pe + =, hence the present
problem may be considered as a more general class of eigenvalue problem

of thermal entrance regions.

13
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. CHAPTER lII
APPROXIMATE SOLUTION OF THE EIGENVALUE PROBLEM
BY B. G. GALERKIN METHOD

The analytical construction of the exact solutions for the
eigenvalue problem of thermal entrance regions is difficult even in the
case of hydrodynamic conditions with the axial conduction term and wall
blowing being neglected. The eigenfunctions, for this restricted class
of Sturm-Liouville systems, are obtained as infinite series of Bessel's
tunctions of various orders which create considerable computational
difficulties. Since the present problem represents a more generalized
class of eigenvalue system, one expects at least the same amount of
mathematical complexities in the construction of the exact solution.
Al'though numerical solutions of the eigenfunction differential equation,
Equation 30, are possible, the two point boundary conditions, together
with the unknown Bns necessitates simultaneous iterative schemes for the
eigenvalues and elgenfunctions which resuit in extensive computational
effort.

‘ It is proposed to obtain a finite set of approximate eigen-
values and associated eigenfunctions for Equation 30 by the application
of the B. G. Galerkin method. Let {@k(y)} be a selected set of functions
with continuous first and second order derivatives in the range,

0 Sy S|, that satisfy the homogeneous boundary conditions identically

for ali k. The selected function set must satisfy the conditions

14
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¢ (0) = O, ¢k(|) =0 (k=1,2..... N) (33)

The approximate solution for F,ly) is constructed as a linear

combination of the finite set of functions {4, (y)} as:

N
F y) = Z ai'™ oity) = a (M 1y + ... 8 (M) g (y) (34)

Since the set ¢k(y) identically satisfies the boundary con-
ditions, Equation 33, for all k, Fn(y) also satisfies the homogeneous

boundary conditions. Substituting Equation 34 into Equation 30 gives

the following,

N d2¢i an PFZRCZAZ
ai(n) E;z— (y) + [BnU(V) + . - ) ¢;{y)f = 0 (35)

The non-dimensionalized velocity profile, uly}, is not
necessarily symmetric about the channel center|ine; therefore, the
eigenfunctions, Fnly), are expected to yfeld non-symmetrical solutions,
Considering the form of the boundary conditions, Equation 33, a

+figonome+ric function set, {¢k(y)}, is selected as:
¢ly) = sin k =
k=1,2,3, .... N (36)

Following the method of B. G, Galerkin, that is, multiplying

Equation 35 by the functions of the set, ¢, (y) = sin kny, and
k

-
.

15
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integrating over the range, 0 Sy S |, the |inear system of equations

. becomes:

N
Bn2  Pr2rg22
). ai("’{snlﬂk.” +[i7- —=2 - iZ2 kDb =0 3D

The expressions for the integrals in Equation 37 can be obtained by
analytical Integration using the velocity distribution, u(y), given in

Equation 2] as:

ifi#k,

|
Ik, ) = J{' u(y)sin iny sin kny dy =

(o)

| J1= (=1)itk L 3
RX(™ 2r (+Z 7 (1-k)2

_._RCA_ [l_ '(_I)i+keRCA] | -
2(eRcA. ) RoAAZ + (i+k)2a2

|
(38)
Re2A2+(1-K) 242 J}
iF 1=k,
I,u,i)=% :IT" (__'__)',_(GRCA -
c 2teRcropy | |
| RcA ]
1 (39)
R} RAA? + 4i2y2 )}

16
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and,

|
I,(k,0) = J[ sin imy sin kry dy = %- 81k (40}

(o
where aik s the Kronecker delta. Therefore, Equation 37 becomes a
homogeneous system of linear equations for the undetermined linear
combination constants, a,("). If a non-trivial solution is to exist
for the al(“)'s, hence giving F (y} a non-trivial solution, the
determinant of the coefficient matrix must vanish identically for each

B

nl
' Pr2R 232
Bn PreRea .2 2] . }
Det BnI (k,1) +[—77 —_—— - |4 I-(k,i)( =0 (41)

Equation 4. represents a poiynomial of at most 2N degree in
Bn» with possibly N distinct positive roots. A set of (N-1) linearly
independent equations for ai(")'s exists for each B, evaluated as a root
of Equation 41 which may be solved in terms of one of the unknown |inear
combination constants, aj("), which will remain undetermined. Selecting
the particular undetermined constant as a|(n) = AL, the linear system of

equations for the remaining constants ai(") becomes:

N
an PrZRCZAZ .
Z BnI|(k,1) +[;2- —_— - 1252 Io(k,1) ci("’ =
i=2

B2 Pr2R.2)2 2
BnIj(k, 1) + 7 —_—- I,(k, 1) (42)

17
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where

(n) 2

k=2,3,...N (43)

Equation 42 is a non-homogeneous system of |inear equations
which can be solved to determine the cI(")'s for each B, evaluated as
a root of Equation 41. Hence the approximate elgenfunction, Faly),

associated with Bn becomes

N
Faly) = A, Z c;(M sin fay (44)

where c,(“) = |, and the ci(")'s are known from the solution of Equation
42. Substituting Equation 44 Into Equation 3l yields the approximate

solution for the dimensionless excess temperature, Q(y,£), as:

K

N
aly,t) = Z An {e!fPch’W Z ¢;{M sin iny} e Bnk (45)

n=1 i=

where K is the maximum number of distinct eigenvalues evaluated as the
roots of the determinant, Equation 41,
By applying the boundary conditions given in Equation 25 the

remaining K number of constants, A,, can be determined from

18
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K
Q(0,y) = Z A, oPrRIY Z c'(") sin tny ¢ = Q5(y) (46)

n=|
which represents the function noty) as a linear combination of known
continuous functions, 2,(y), in the range 0 Sy S |, Since the finite
set ¢I(y) = sin iny satisfles the necessary regularity conditions, An
can be determined by the application of an extension of the Weierstrass

approximation theorem (17). That is, multiplying Equation 46 by R y)

and integrating over 0 £y S |, the system of equations becomes:

K
Z An [Itm,m] = Ltm) (47)

where the integrals are defined as:

I N
PrR.Ay
I(m,n) -[l: ¢ sin |1ry][z (M 5in jnyJe < ay (48)
° =

N
LPrR.AYy
Q (V)[Z (M <in inyjl e dy (49)

L({m) =

ot~

where
cI(m) = cl(n) = 1; Q,(y) = o,(y) - o_(y) (50)

The integrals of Equations 48 and 49 may be evaluated by analytical
integration using the fully developed temperature, 0,(y), as presented

in Appendix B,

19
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Since cl(m"s were previously determined, Equation 47 repre-
sents a non-homogeneous system of K |inear equations in K unknowns which

can be solved for the A,'s to complete the approximate solution for the

excess temperature distribution.

20
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CHAPTER IV
NUMERICAL RESULTS FOR THE ASSOCIATED
EIGENVALUE PROBLEM

The general method, developed in the previous chapter, was
applled to the associated eigenvalue problem, Equaf[on 30, with two
finite sets of trigonemetric functions, N = 8 and N = I6. Using the
finite set, N = 8, the eigenvalues for all cases under consideration
were obtained. A second set, N = 16, with the Pecléf number, Pe = |,
was used to check the convergence of the method by comparing the results
with the first set, N = 8.

The eigenvalues, B,, were determined by evaluating the roots
of the determinant containing Bn» Equation 43, by the Gaussian reduction
technique on the maximum element of the matrix. Using an incremental
set of B vaiues, the determinant was evaluated within a selegfed Bmax
range. The approximate location of a root was indicated by a change in
sign of the value of the determinant between two increments. The gxacf
values of B, were calculated by a controlled successive iteration scheme
based on the regula-falsi method. A maximum number of twenty iterations
were allowed with termination check on eight digit accuracy for two
successively calculated values for each root of the eigenvalue.

The numerical calculations were performed by a CDC 1401B
mode! computer on single precision level of eleven floating point num-

bers. The maximum desired values for the eigenvalues were bounded by
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Bmax = 2900 for the case of Peciet number, Pe = «, by Bmax = 6000 for
the case of Pe = 100, and by Bnax = 600 for the cases of Pe = 10 and |I.
These ranges of Bnax Were selected for calculation after the initial
Investigation of the eigenvalues with wall blowing, RA = 0.1, for the
case of Pe = », Except for the case, Pe = », the range of Bmax was
large enough to yield 8 and 16 roots for the two finite sets of
trigonemetric functions. The calculations were carried out paramet-
rically for Prandt! number, Pr = 0.01, 0.1, !, 10, Peclet number, Pe = =,
100, 10, 1, and wall blowing parameter, ReA = 0.1, 1, 5, 0. For a

_given set of parameters Pr, Pe, and R, the average computational time
required for a complete set of elgeﬁvalues was |.0 minutes for the
function set N = 8 and 4.5 minutes for the function set N = 16.

The eigenvalues, calcuiated from the determinant, Equation 43,
are presented in Tables | through V, for parametric values of the Peclet
number, Prandtl number, and the wall biowing parameter, RcA.

Inspection of the data presented in Tables | through V indicates
that the Peclet number has a strong effect upon the value of the eigen-
vaiues. For the Peclgf number, Pe = », only three and four eigenvalues
exist in the range 0 < g < 2500, see Table I, Table il presents data
for Peclet number, Pe = 100, and eight roots are noted to exist in the
range 0 = B S 6000, For the low Peclet numbers, Pe = 10 and Pe = 1|,
the range 0 = Bn 2 600 yields eight roots for the N = 8 set and sixteen
roots for the N = 16 set. A comparison of a particular eigenvalue, B;,

for the various Peciet numbers shows that there is a marked decrease

in the eigenvaiue magnitude as the Peclet number is reduced. For the

22
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EIGENVALUES FOR Pe = «, N = 8

AEDC:TR-69-58

Bn
n Pr- RCA'-'o.' RcA=| RGA'=5 Rcl=lo
| 0.01 9.05047¢1) 9.21134(1) 1.26480(2) 2.03400(2)
2 0.0l 4,351619(2) 4,39061(2) 5.95464(2) 9.,31460(2)
3 0.0l 1.02892(3) 1 .04656(3) 1.41640(3) 2.20617(3)
4 0.0l 1.88233(3) 1.91454(3) 2.58979(3)
| 0.!0 9,05050(1) 9,21365(1) 1.27262(2) 2.08364(2)
2 0.10 4.31620(2) 4,39088(2) 5.96389(2) 9,37328(2)
3 0.10 1.02892(3) | .04659(3) 1.41739(3)  2.21245(3)
4 0.10 1.88234(3) 1.91457(3) 2.59082(3)
| 1.0 9,05276(1) 9.44365(1) 2.04845(2) 6.81109(2)
2 {.0 4.31646(2) 4,41790(2) 6.88590(2) [.51393(3)
3 1.0 1.,02895(3) 1.04947(3) 1.51625(3) 2.83737(3)
4 1.0 1.88236(3) 1.91757(3) 2.69375(3)
¢ 10,0 9.27888(1) 3,22358(2) 7.07480(3)
2 10.0 4.34301(2) 7.09066(2) 8.43610(3)
3 10.0 1.03170(3) 1.33630(3) |.00050(3)
4 10.0 1.88531(3) 2.21626(3)

The numbers in the parentheses represent j0¢m
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TABLE I
EIGENVALUES FOR Pe = 100, N - 8
Bn

n Pr RCA = 0.1 RcA = | RcA =5 RcA = 10

| 0.01 8.40486(!) 8.53422(1) 1.10910(2) 1.54939(2)
2 0.01 3.20737(2) 3.23936(2) 3.79159(2) 4.49716(2)
3 0.0l 6.05883(2) 6.10039(2) 6.78216(2) 7.58133(2)
4 0.01 9,04658(2) 9.09514(2) 9.84295(2) 1.06941(3)
5 0.0l 1.20875(3) 1.21374(3) 1.29333(3) 1.38189(3)
6 0.0! 1.51554(3) 1.52089(3) 1.60436(3) 1.69500(3)
7 0.0l |1.83986(3) |1.84438(3) 1.92000(3) 2.00883(3)
8 0.01 2.15079(3) 2.15650(3) 2.24295(3) 2.33185(3)
| 0.10 8.40488(1) 8.53621(1) 1.11522(2) 1.58011(2)
2 0.10 3.20738(2) 3,23952(2) 3.79595(2) 4.51588(2)
3 0.10 6.05883(2) 6.10051(2) 6.78529(2) 7.59420(2)
4 0.10 9.04658(2) 9.09324(2) 9.84535(2) 1.07038(3)
5 0.10 1 .20875(3) 1.21375(3) 1.29352(3) 1.38267(3)
6 0.10 i .51554(3) 1.52089(3) 1.60452(3) 1 .69566(3)
7 0.10 1.83986(3) |.84439(3) 1.92014(3) 2.00939(3)
8 0.10 2,15079(3) 2.15651(3) 2.24308(3) 2,33235(3)
I 1.0 8.40684(1) 8.7345% (1) 1.69123(2) 3.92222(2)
2 1.0 3.20753(2) 3.25542(2) 4,21879(2) 6.17795(2)
3 1.0 6.05895(2) 6.11247(2) 7.09277(2) 8.84479(2)
4 1.0 9,04667(2) 9.1026i(2) 1.00829(3) i.16431(3)
5 1.0 | ,20876(3) 1.2145£(3) 1.31279(3) 1.45908(3)
6 1.0 1.51555(3) 1.52154(3) | .62070(3) 1.75993(3)
7 1.0 1.83987(3) 1.84995(3) 1.93409(3) 2.06479(3)
8 1.0 2.15079(3) 2,:5700(3) 2.25539(3) 2.38'24(3)
| 10.0 8.60264(1) 2,60327(2) 2.12674(3) 4.72485(3)
2 10.0 3.22333(2) 4,70391(2) 2.25070(3) 4.81060(3) "
3 10.0 6.07087(2) 7.24537(2) 2.37492(3) 4.88838(3)
4 10.0 9.05603(2) 1.00082(3) 2.50961(3) 4,96462(3)
5 10.0 1,20952(3) 1.28920(3) 2.66530(3) 5.05057(3)
6 10.0 1.51619(3) 1.58482(3) 2.84497(3) 5.15268(3)
7 10.0 1.84043(3) 1.90026(3) 3,04767(3) 5,27047(3)
8 10.0 2.15128(3) 2,20570(3) 3,27985(3) 5.42832(3)

The numbers in the parentheses represent 1oln)
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TABLE 1l
EIGENVALUES FOR Pe = 10,N = 8
Bn
n Pr Rek = 0. Rch = | Rch =5 Rch = 10
| 0.0l 2.64449(1) 2.65257C1)  2.77959(1)  2.91402(1)
2 0.0t} 5.84972(1) 5.85633(i) 5.95883(i1) 6.06866(1)
3 0.0i 9.00428(1) 9.01076(1) 9,11090(i) 9.21679(1)
4 0.0l 1.21497(2) 1.21562(2) 1.22564(2) 1.23616(2)
5 0.0l 1.52927(2) 1.52992(2) 1.53998(2) 1,55050(2)
6 0.0l |.84348(2) 1.84414(2) 1,85424(2) 1.86476(2)
7 0.0l 2.15787(2) 2.15852(2) 2.16852(2) 2.17900(2)
8 0.01 2.47204(2) 2,47270(2) 2,48281(2) 2.49330(2)
| 0.10 2.64449(1) 2.65296(t) 2.78935(1) 2.95304(1)
2 0.10 5.84972(1) 5.85652(1) 5.96375(1) 6.08832(1)
3 0.10 9.00428(1) 9.01089(1) 9.11418(1)y 9,22991(1)
4 0.10 1.21497{2) 1.2i563(2) 1.22589(2) 1.23715(2)
5 0.10 1.52927(2) 1.52993(2) 1.54018(2) 1.55129(2)
6 0.10 i.84348(2) 1.84414(2) 1.85440(2) 1.86542(2)
7 0.10 2.15787(2) 2.15852(2) 2.16866(2) 2.17956(2)
8 0.10 2.47204(2) 2.47270(2)  2.48294(2) 2,49397(2)
| 1.0 2.64488(1) 2.69155(1) 3,64735(1) 5.67200(1)
2 1.0 5.84991(1) 5.87614(1) 6.4373[(1) 7.8!454(1)
3 1.0 9.00442(1) 9.02399(1) 9.43664(1) 1.04606(2)
4 1.0 1.21498(2) i.21661(2) 1.25026(2) 1.33196(2)
5 1.0 1.52928(2) 1.53072(2)  1.55975(2) 1.62815(2)
6 1.0 }.84349(2) 1.84480(2) 1.87074(2) i.92994(2)
7 1.0 2,15788(2) 2.15909(2) 2.18268(2) 2.23512(2)
8 1.0 2.47205(2) 2.47320(2) 2,49522(2) 2,54255(2)
| 10.0 2,68345(1) 5.39442(1) 2.48045(2) 4,98478(2)
2 10.0 5.86952(1) 7.59931(1) 2.54481(2) 5.01800(2)
3 10.0 9.0(752(1) 1.02538(2) 2.64012(2) 5.06728(2)
4 10.0 1.21596(2) 1.31139(2)  2.76692(2) 5.13500(2)
5 10.0 1.53006(2) 1.60756(2) 2.92161(2) 5.22061(2)
6 10.0 1.84414(2) 1.90931(2) 3,10020(2) 5.32329(2)
7 10.0 2.15844(2) 2.21464(2) 3.29898(2) 5.44213(2)
8 10.0 2,47254(2) 2,52014(2) 3.51451(2) 5.57627(2)

The numbers in the parentheses represent 1o{m
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TABLE IV

EIGENVALUES FOR Pe = 1, N = 8

B

n
n Pr ReA = 0,1 Reh = | ReA =5 Rer = j0
| 0.0l 3.08773(0) 3.08870(0) 3.10347(0) 3.11848(0)
2 0.0l 6.23850(0) 5.239;9(0) 6.24992(0) 6.26149(0)
3 0.01 9.38181(0) 9,38248(0) 9,39287(0) 9,40383(0)
4 0.0l 1.25239(1) 1.25246(1) 1.25350(1) 1,25458(1)
5 0.0l 1.56658( 1) 1,56665(¢) 1.,56768(1) 1',56875(1)
6 0.01 I.88075(1) 1,88082()) 1.88185(¢) 1.88293¢(])
7 0.0l 2.19492(1) 2.19499(|) 2.19026(1) 2.19709(1)
8 0.0l 2,50909(1) 2.50916(1) 2.51019(1) 2.51126(1)
i 0.10 3.08773(0) 3.08909{0) 3.,11331(0) 3.15762(0)
2 0.10 6.23850(0) 6.23939(0) 6.25484(0) 6.28115(0)
3 0.10 9.,38181(0) 9.38261(0) 9.39616(0) 9.,41696(0)
4 0.10 1,25239(1) . 25247(1) 1.25374(1) 1.25556( )
5 0.10 i.56658(1) i .56666{1) 1,56788(1) 1,56954¢ )
6 0.10 1.88075(1) i.88083(1) 1.88202(0) 1.88358(1)
7 0.!0 2,(9492¢() 2.19500(1) 2.19616(1) 2,19765(1)
8 0.i0 2,50909(]) 2.50916(:) 2.51037(i) 2.51175{})
| 1.0 3.08813(0) 3.12823(0) 3.97665(0) 5.88148(0)
2 1.0 6.25905(0) 6.25905(0) 6.72896(0) 8.00794(0)
3 1,0 9.3819440> 9,.39573{0} 9,.71878{0) 1.06478{1i)
4 1.0 1.25240(1) 1.25346(1) §.27812(1) 1.35038( 1)
5 1.0 1.56659( 1) [ .56744(|) 1.58745¢(1) 1,64640(1))
6 1.0 i.88076(]) i.88:48(1) | .89836(1) §.94811(0)
7 1,0 2.19493(i) 2.19556(1) 2.21018{1) 2.25321(1)
8 1,0 2,50909(1) 2.50965(1) 2.52259( 1) 2,56051(1)
| 10.0 3.:2726¢0)} 5.85193{0) 2.5(580(1) 5.00748(})
2 10.0 6.25836(0) 7.985810(0) 2.57441(1) 5.03713(1)
3 0.0 9,39506(0) i.06266(1) 2.66855(1) 5.08594(()
4 i0. 0 1.25339( ) 1.3482871) 2.79491(1) 5.15342{)
5 10,0 1.56738( ) i.64431(1) 2.94940{1) 5,23889(1)
6 10.0 1.88142(1) 1.94601(1) 3.12788(1) 5.34147(1)
7 10,0 2.19549(1|) 2.25511(1) 3.32649(1) 5.46022(1)
8 10.0 2.50959(j) 3.54185(1) 5.59410(1}

2.55841(1)

The numbers in the parentheses represent jo<n)
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TABLE V
EIGENVALUES FORPe = I, N = 16
Bl'l
n Pr ReA = 0,1 Red = | RA = 5 Rer = 10
I 0,0! 3.08773(0)  3.08870(0) 3.10347(0)  3.11848(0)
2 0.0l 6.23850(0)  6.23919(0) 6.24992(0) 6.26149(0)
3 0,0l 9.38181(0)  9,38248(0) 9.39287(0)  9.40383(0)
4 0,0l 1.25239C1) 1.25246¢1)  1.25350(1) 1.25458(1)
5 0.0l | .56665(1) 1.56665(1)  1.56768(1) 1.56875(1)
6 0,0l 1.88075(1) 1.88082(1) 1.88185(1) 1.88293(1)
7 0.0l 2.19492(1)  2,19499(1)  2.19602(1) 2.19709(|)
8 0.0l 2.50909(1)  2,50915C1) 2.51019(1) 2.51126(1)
9 0,0l 2.82325(1)  2,82332(1) 2.82435(1) 2.82542(1)
10 0.0l 3.13741C1)  3.13748(1)  3.13851¢1)  3.13958(1)
I 0.0l 3.45157¢1)  3.45164(1) 3.45267(1) 3.45374(1)
12 0.0l 3.76573(1)  3,76580(i) 3.76683(1) 3.76790(1)
i3 0.0l 4.07989(1)  4,07996(1) 4,08206(1) 4,08206(1)
i4 0.0l 4.39405(1)  4,39412(1) 4,39515(1) 4.39622(1)
i5  0.0i 4,70822(1)  4,70828(1) 4,70931C1) 4.71038(1)
16 0.0l 5.02238(1)  5.02244(1) 5.02347(1) 5.02454(1)
I 0.10 3.08773(0)  3.08909(0)  3.11331(0)  3.15762(0)
2 0.10 6.23850(0)  6.23939(0) 6.25484(0) 6.28115(0)
3 0.10 9.38181(0)  9.38261(0) 9.39616(0) 9.31696(0)
4 0.10 1.25239(1) 1.25247¢1)  1.25374(() 1.25556(1)
5 0,10 1.56658(1) 1.56666(1) 1.56788(1) 1.56954(i)
6 0.10 1.88075(1) 1.88083(1) 1.88202(1) |.88358(1)
7  0.10 2.19492(1)  2,19500¢1) 2.19616(1) 2.19765(1)
8 0.10 2.50909(1)  2.50916C1) 2.51031C1) 2.51175C1)
9 0.10 2.82325(i)  2.82332(i) 2.82446(1) 2.82586(1)
0 0.10 3.13741(1)  3.13748(1)  3.13861(1)  3,13997(1)
I 0.10 3.45157¢1)  3,45164(1)  3.45276(1) 3.45410(1)
12 0.10 3.76573(1)  3,76580(1) 3.76691()) 3.76823(!)
13 0,10 4.07989(1)  4.07996(1) 4.08107(¢1) 4.08236(1)
14 0,10 4.39405(!)  4,39412(1) 4.39522(1)  4.39650(1)
I5  0.i0 4.70822(i)  4.70829(1) 4.70938(i) 4.71064(1)
16 0,10 5.02238(1)  5,02245¢1) 5.02353(i) 5.02479(1)
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TABLE V (Continued)

8I'l
n Pr Re = 0.1 ReA = | Red = 5 Red = 10
I 1.0 3.08813(0)  3.12823(0) 3.97665(0) 5.88148(0)
2 1.0 6.23870(0)  6,25905(0) 6.72896(0)  8,00794(0)
3 1.0 9.38194(0)  9.39573(0) 9.71878(0) 1.06478(1)
4 1.0 1.25240(1) 1.25346(1)  1.27812(1)  1.35038(1)
5 1.0 1.56659(1) 1.56744(1)  1.58745(1)  1.64640(1)
6 1.0 1.88076(1) 1.88148(1)  1.89836(1) 1.94811(1)
7 1.0 2.19493C1)  2.19556(1) 2.21018¢1) 2.25321(1)
8 1.0 2.50909(1)  2.50965(1) 2.52259(1) 2.56050(])
9 1.0 2.82325(1)  2.82376(1) 2.83538(1) 2.86928(1)
10 1.0 3.13742(1)  3.13788(1)  3.14844(1) 3.17912(1)
i 1.0 3.45158(1) 3,4520001)  3.46170(1)  3,48972(1)
12 1.0 3.76574(1) 3,76613C1)  3.77511(1)  3.80091(1)
13 1.0 4,07990(1)  4.08027(1) 4.08864(1) 4.11255(1)
14 1.0 4.39406(1)  4.39441C1) 4.40225C1)  4.42455(1)
15 1.0 4,70822(1)  4.70855(1) 4.71594(1) 4.73683(1)
i6 1,0 5,02238(1) 5.02269(1) 5.02969(1) 5,04935(!)
| 10.0 3.12726(0) 5.85193(0) 2.51580(1) 5.00748())
2 10.0 6.25836(0) 7.98581(0) 2.57441(1)  5.03713(1)
3 10.0 9,39506(0) 1.06266(1) 2,66855(1) 5.08594(|)
4 10.0 §.25339(1) 1.34828(1) 2.79491C1)  5.15342(1)
5 10.0 1.56738() 1.64431 (1)  2.94940¢(i) 5.23889(})
6 10.0 |.88742{]) 1.94601 (1)  3.12788(1) 5.34147([)
7 10.0 2.19549(1) 2.25111¢1)  3.32648(1) 5.46021(1)
8 10.0 2.50958(1) 2,55841(1) 3.54184(1) 5,59410(1)
9 10,0 2,82369(1)  2.86719(1) 3,77109(1) 5,74205(i)
10 10.0 3.13781C1)  3,17702¢1) 4,01184C1) 5,90303(1)
1 10.0 3.45194(1)  3,48762(F) 4.26215(1) 6.07600{1)
12 10.0 3.76607¢1)  3.79881(1) 4,52044(1) 6,25995(1)
13 10.0 4,08020( ) 4.11045(1) 4.78541(1) 6.45396(1)
14 10.0 4,39434(1)  4,42245(1) 5.05602(1) 6.65715(i)
15 10,0 4,70848(1)  4,73474(i) 5.33140(i) 6.86870{1)
16 10,0 5.02262(1)  5.04725¢(]) 5.61084(i) 7.08786(!)

The numbers in the parentheses represent 10(n)
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low Peclet number, Pe = |, the N = 16 set provides twice the number of
eigenvalues as the N = 8 set In the range 0 < 8, S 600 with the approx-
imate maximum value, Bmax = 90. Since the magnitude of the eligenvalues
is the controlling factor in determining the truncation polnt in the
Infinite series solution, Equation 26, the calculations for the temper-
ature development may be In considerable error, if the number of eigen-
values is not sufficient to assure the convergence.

The wall blowing parameter, R.A, is noted to also have consider-
able effect on the magnitude of the eigenvalues for a particular com-
bination of Peclet and Prandt! numbers. The magnitude of 8 tends to
increase as the value of the wall blowing parameter Increases. Inspec-
tion of the data presented In Tables i and Il for Peclet numbers, Pe = «
and {00, reveals that there is a relatively large increase in the values
of the eigenvalues as the wall biowing parameter Increases from RoA =
0.1 to RA = 10. In Table | for Prandtl number, Pr = I, the eigenvalue,
B)» Is seen to Increase from approximately 90 to 680 as the wall blowing
parameter Increases from 0.1 to 10, It Is also noted that the change in
magnitude of the elgenvalue with respect to the wall blowing parameter is
Increased as the Prandt| number changes from Pr = 0.0l to Pr = 10. These
same effects are noticed but to a lesser extent in Tabies (11 through V,
for Peclet numbers, Pe = 10 and |, In Table IV for Prandtl number,

Pr = |, the eigenvalue, By, Is seen to increase from approximately 3 to
6 as the wall blowing parameter increases from 0.1 to 10. For the
large values of wall blowing parameter and Prandt| number, Rch = 10

and Pr = |0, Tables Ill and IV Indicate a small difference in value for
!
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succesSive eigenvalues within the finite set of functions, N = 8, The
range for Peclet numbers, Pe = 10 and I, is, respectively, 49.8 < Bn
< 55.8 and 50.0 < B, < 55.9 for the first eight elgenvalues.

One of the interesting characteristics of the present method
is that the elght elgenvalues, which Is the maximum number that can be
evaluated from an eight by eight determinant, compare extremely well
with the first elght eigenvalues evaluated from the N = |6 set, for the
case of Pe = |, Hence, it Is sufficient to start the solution for the
elgenvalue problem with the N = 8 set, and later increase the number of
approximating set to N = 16 If It becomes necessary to calculate

additional eigenvalues,
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CHAPTER V
ENTRANCE REGION TEMPERATURE DEVELOPMENT

The eigenvalues evaluated by the B. G. Galerkin method in the
previous chapter were used to determine the temperature development
under constant wall temperature conditions for a specified unfform
entrance temperature, T,(xp) = Tg. The linear combination constants,
c'("’, associated with the eigenfunction, F,(y), were evaluated from the
reduced system of linear equations, Equation 42. For each particular
value of B, a set of c[(")'s was obtained by use of the Gaussian re-
duction technique on the plvotal element of the coefficlient matrix.

The analytic and approximate solutions for the fully developed

temperature, 6,_(y), are given in Appendix B. The approximate B. G.

Galerkin method solution,

M
6,(y) = PrEc elsPr'Rcly Z D; sin iny (51)

was used since an extensive simplification in the evaluation of the
required integrais for the A,'s was possible. In the present study,
twenty terms were used to determine the fully developed temperature
given in Equation 5i, The final form of the dimensionless excess
temperature, Equation 45, becomes,

T(y,8) =T, Tuly) - T, (52)
e ) o v
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or,

K N "BnE
T(y,E) = T, ) Z A, oMPrRAY Z CI(I‘I) sin lwy {e
n=|

I=I
FREA
+ Prec ¢ TichY ?f Dy sin Iy (53)
=

The system of simultaneous equations for the evaluation of the

Ap's is from Equation 47

K
Z Ap CItm,m] = L(m)
n=1

Following the general procedure as outlined In Chapter 1ll, the
necessary integrals for the evaluation of the An's by the Weierstrass

approximation theorem are evaluated by analytical integration as,

| N TN
I(m,n) = f [Z Ci(n’ sin IW][Z Cj(m, sin Juy]ePchxy dy =

N N P
y Yy et (M m _";2’; [(_|)I+J oPrRcA _ ,] .

| |
[(PPRCA)Z + (1-])%5% (Pr'Rt,_.A)2 + (HJ)Z,"?] (54)
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and

| M N
L(m) =f|—PrEce”PrRCAVZ Dy sin iny Z cJ(m, sin Juy|e'rRcAy dy =

° '=| J=|

s
Z cj(m’ AL [(-IJJ eFReh _ l]

(fPchl)z + 4jéns
J=1

N
PrEc Z Z cj("') D; P_rgi (1)) oPrRex _ |] .
=1 j=

| !
[(PchA)z + =% (PrRcA)? + (|+J)2w2] (35)

where,
¢yt = ¢ (M =y (56)

from the definition of the eigenfunctions Q,{y), and constants, Ane
Since the linear combination constants, ci(“), are completely determined
for the set of eigenfunctions, the integrals, Equation 54 and Equation
55, are readlly evaluated for solution of A,'s from the system of |inear
equations.

The. system of |inear equations was solved by the Gaussian re-
duction scheme for various values of the parameters Pr, PrEc, and R.).

The excess temperature was evaluated at twenty-one points across the

channe! for different axial locations, £.
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The development of the dimensionless temperature, 8(y,£), along
the channel [s presented In Figures 2 through |2 for various values of
wall blowing parameter, R.A, Prandt! number, Pr, and the product of the
Prandtl and the pseudo Eckert numbers, PrEc. For various axlal loca-
tions, &, profiles are given for values of the Peclet number, Pe = =,
100, 10, and 1.

The effect of the wall blowing parameter on the dimensionless
temperature profiles is shown in Figures 2 through 10 for Prandt! number,

Pr

!. The hydrodynamic case with no wall blowing is approximated by
the conditions presented In Flgures 2 through 4., 1t Is noted that these
condltions, in which R.A = 0,1, produce profiles which are approximately
symmetrical about the channel centerline. tInspection of the data pre-
sented In Figures 5 through 9 shows that the excess temperature profiles
become more non-symmetrical as the wail blowing parameter Increases from
RA =1 to RA = 10. The maximum value of excess temperature for all
axial coordinate positions, £, Is observed to be displaced toward the
upper channel wall at y = |. This result is to be expected due to the
Injection of fluld through the lower channel wail, y = 0, with a Temper-
ature of Ty,. From Flgﬁre A-1, page 73, the wall blowing parameter is
noted to displace the velocity profile toward the upper channel wall, pro-
ducing greater velocity gradients near this wall. The displacement of
the velocity profiles resuits In greater heating due to viscous effects
In the region near the upper wall of the channel, which also tends to

produce non-symmetrica! temperature profiles. Inspection of the data

Indicates that the wail blowing parameter tends to decrease the magnitude
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Fig. 2 Temperature Profiles; Pr = 1, R.A = 0.1, PrEc = 10
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Fig. 10 Temperature Profiles; Pr = 1, RcA = 10, PrEc = 1000
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of the excess temperature profiles for a particular value of £, This
can easily be explained since increasing values of Rc.A decrease the mean
velocity of the fluid for a glven pressure drop, see Flgure A-2, page
74, which results In a lesser effect due to viscous dissipation.

Data are presented for three values of the product of the
Prandt! and pseudo Eckert number, PrEc = 10, 100, 1000. This parameter
represents the ratio of the dissipation in the fluid to conduction due
to the temperature difference between the entrance and the wal! con-
ditions. 1In each figure PrEc = 10 represents the case of strong cool-
ing effect due to large temperature difference between the entrance and
the wall conditions, and PrEc = 1000 represents the case of dominant
overall dissipation,

In the figures where the wal! blowing parameter, R = 0.1 and
I, the excess temperature profiles near the entrance region exhibit the
characteristic of a dip near the channel centerline. This character-
istic dip Is the result of the internal heat generation due to viscous
dissipation in the boundary tayer region which locally creates an
increase in the fluid temperature. For larger values of the wall bjowing
parameter, RcA = 5 and 10, this characteristic dip effect is diminlished
due to the displacement of the velocity profile toward the upper channel
wall. Figure 10, page 43, presents the case where the major portion of
the viscous dissipation occurs near the upper wail of the channel.

Figures I} and 12, pages 44 and 45, are presented to show the
effect of the Prandt] number on the dimensionless excess temperature

profiles. Comparing Figure 8, page 41, with Figures Il and 12 In which
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ReA = 5, PrEc = 100, with the Prandt! number, Pr = 0,01, 0.1, and |, the
temperature profiles are noted fo become more non;symmefrical as the
Prandt| number increases with the maximum temperatures being displaced
toward the upper channel wall. The dimensionless excess temperature
profiles presented in Figures |l and 12, pages 44 and 45, are noted to
be very similar; however, the profiles in Figure 8, page 4|, when com-
pared to the lower Prandti numbers are seen to be considerably differ-
ent, The larger value of Prandt! number, Pr = |, is seen to have a
relativeiy strong influence on the excess temperature distribution.

It Is interesting to note that for the lower Peclet numbers,

Pe

100, 10, I, the complete temperature profile across the channel,

in a sense, lags compared to the temperature profiles at Peclet number,

Pe = », This effect can easily be justified by considering the fact
that the strong axial conduction at low Peclet numbers results in heat
transfer from the local cross: section to the entrance plane, in addition
to the cooling through the channel walls. Neglecting axial conduction
by assuming the Peclet number infinite which is most commonly treated In
the literature can introduce cons!derabie error in the temperature pro-

files for values of the axial coordinate, £ £ 1.0,
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CHAPTER VI
CALCULATIONS FOR THE BULK MEAN TEMPERATURE

AND THE LOCAL NUSSELT NUMBER

Since the temperature profj!es are not necessarily symmetric
about the channel centerline, the value of the local Nusselt number
based on the heat transfer through the upper wall, y = |, and through
the iower wall, y = 0, is expected +6 have different values. The

local Nusselt numbers for each wall are defined as:

Nu(0,x3) = LLTp(x5) - Ty J"! g;; (0,x3) (57)
and,
(L oxe) = -1 aT
NatLpxs) = ~UTytes) = T Zxg) (58)

where Tp(xz) is the local bulk mean temperature of the fiuid,
- vgixg) T )d
do '3X27 IiX2,X370x)

Tmix3) = (59)
fk V3(xp)dxy

Equation 59 can be non-dimensionaiized to yield a dimensionless bulk

mean temperature, 8,(E), as

!
om(®) = 003 " Tw - fo uty)ety, By

, ] (60)
° f u(yldy
o

The slopes of the temperature profile at each wall become,
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aT TS5 - Tw 26

WZ- (0,x3) = —— 3y (0,8) (61)
aT T8 - Ty 20 (62)
5 L) = ST B

Therefore the equations for the local Nusselt numbers become,

(0) 3y (08
Nu(0,€) = Nu = NU(O,XS) = _W- (63)
P Eg'("g)
= A = - (64)
Nu(l1,&) = Nu Nu(l,x3) 'Tm(f)—
Hence, a modified form of the local Nusselt numbers In terms of the
dimensionless temperatures becomes,
U ) 30,
Nu(0, &) —[Z u(y)dy] [ 37-(0,5) + s7—-(0)]
-1
[II u(y) Q(y,E)dy + f;u(y) Bw(y)dy} (65)
o
and
_ I 30 L
Nu(l,E) = - [Io u(y)dy] [W (1,8) + e (I)]
| -1
{fcl’ uly)Q(y,&)dy + ,fo u(y)ew(y)dy} (66)

Since the general expressions for Q(y,E) and 6,(y) are already
obtained, the terms in Equations 65 and 66 can be evaluated for each wall

as:
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M utyrdy = g [ - — o (67)
° RA 17 T-R* ~ RX

C

I o 4 K ~-Bn&
fo uly)aly,E)dy = == }E; Ap e N c; M
n= =

IR (Pre2)

-1 PrRA oyl 4PrRAAILe -t -3
(PrRA)Z + 41242 C(PrRaA)Z + 4124272
PrRAA o o) ]
_i[PrRer (-l - 1] ile 7 -t -
R.A - X
(1-e © HL(PrR A +41212 (1o © IR A% (Pre2) 2441 242] (68)
M PrRA (_pyl
1" utyre (pay = Sabrec E: o, {- 1T,
° <t T (PrReA) 2441252
PrRA .
4lPch*[e -n! - I] + ] _[e*fp"RcA -n'- |] -
[(PrRaMZ + 4124272 (1-eRM [ (PrR A 2+412n2]
A
[55— (Pr+2)]
- 1
R A

(l-e )ER 212(Pr+2) +41%%] (69)
a0 K N

3y (1,8 = }E; Ane Pn® ;E; ;M JFRA jn(apy] (70)

n= -
a8 M
_\_/:m Prec of TRcA Z D, Ir (- N} (71)
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K N
o0 - -Bné (n)
5y (0.8 = z: A, e Pn E: ;" in (72)
=| 1=
36, M .
W— (0) = PrEc Z Dl Im (73)
i=

An average Nusselt number, ﬁﬁ?x3), based on the net heat trans-

fer from the system can be defined as,

L
NU(x=) = Q (74)
3 KA(Tm - ij

where A is the total surface area of the system, The average Nusselt

number based on the previously defined Nusselt numbers for each wall .

becomes,
— — +
Na(e) = Natxs) = Q8D+ NulL,g) (75)
The dimensionless bulk mean temperature and the local Nussel+
number for wall blowing parameter, Re = 0.1, Prandt! number, Pr = |,

Peclet number, Pe = =, and product of the Prandtl number and pseudo
Eckert number, PrEc = 0, are plotted in Figures 13 and 14, These con-
ditions represent closely the hydrodynamic case which neglects effects of
wall blowing, viscous dissipation and axial conduction. These data are
in good agreement with those found in Reference 2 which are also plotted
in Figures 13 and 14. The agreement of the present data with those

found in Reference 2 indicates confidence in the data reduction procedure
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Fig. 13 Bulk Temperature Assuming No Viscous Dissipation or Axial Conduction
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used in this study.

The development along the axial direction, £, of +hé dimension=-
less bulk mean temperature, em(E), and the local Nusselt numbers,
Nu(l,E}, and Nu(0,£), for the upper and lower channel wall and the aver-
age Nusselt number, Nu(f), are presented In Figures 15 through 24 for
various values of wall blowing parameter, RCA, Prandt! number, Pr,
Peclet number, Pe, and the product of the Prandt| number and pseudo
Eckert number, PrEc. |

The effect of the wall blowing parameter on the dimensionless
bulk mean temperature Is shown in Figures I5a through 18a for Prandt|
number, Pr = I, It is noted that there is little change in the dimen-
sionless bulk mean temperature development as the wall blowing parameter
changes from 0.1 to |; however, the larger values of wall blowing param-
eter, R.AA = 5 and 10, tend to decrease the magnitude of the bulk mean
temperature for a particular value of £, As in the discussion of the
temperature profiles, this effect can be explained since increasing
values of R.A decrease the mean velocity of the fluid for a given pres-
sure drop which results in a lesser effect due to viscous dissipation.

Inspection of the bulk mean temperatures presented in Figures
I7a, 19a, and 2la for wall blowing parameter, RcA = 5, and Prandtl
number, Pr = 0.01, 0.1, and |, Indicates relatively small effect due to
changes in the Prandt! number. I+ can be shown that the fully developed

bulk mean temperature for the hydrodynamic case with no wall blowing Is

Ty - T
F—= = 0,00476 PrEc (76)
(o) W
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(a) Bulk Mean Temperature; (b) Local Nusselt Number
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Fig. 19 Heot Transfer Parameters; Pr = 0.01, R.A = 5

(6) Bulk Mean Temperature; (b) Local Nusselt Number
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Fig. 20 Heat Transfer Parameters; Pr = 0.01, R.A = 10

{a) Bulk Mean Temperature; (b) Local Nusselt Number
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Fig. 21 Heat Transfer Parameters; Pr = 0.01, ReA = 5

(a) Bulk Mean Temperature; (b) Local Nusselt Number
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Fig. 22 Heat Transfer Parameters; Pr = 0.1, RcA = 10

(s} Bulk Mean Temperature; (b) Local Nusselt Number
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(a) Bulk Mean Temperature; (b) Local Nusselt Number
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Fig. 24 Heat Transfer Parameters; Pr = 10, R\ = 1

(a) Bulk Mean Temperature; (b) Local Nusselt Number
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Equation 76 is in excellent agreement with the fully developed bulk mean
temperatures found in Figure |5a, page 55, for Prandt| number, Pr = |,
and wall blowing parameter, R.A = 0.1, which approximates closely the no
wall blowing case.

Figures I5b through 18b, pages 55 through 58, with Prandtl|
number, Pr = |, demonstrate the effect of the wall blowing parameter,
RcA, on the development of the local Nusselt numbers. As was expected
from observation of the temperature profiles, the lower wall Nusselt

(0), is decreased and the upper wall Nusselt number, Nu(|),

number, Nu
Is Increased as the wall blowing parameter increases from 0.1 to 10,

From Figure 18b in which RCA = |0, the upper wall Nusselt number is

noted to be approximately 55 while the lower wall Nusselt number is

noted to be approximately 1.5 for the fully developed thermal conditions.
Similar differences in magnitude of the Nusselt number are noted for

axial positions, £, where the thermal profiles are not fully developed.

It can be easily shown that the hydrodynamic case with no wall
blowing has an average Nusselt number, Nu = 8,75, for fully developed
thermal conditions. The data presented in Figure I5b with Pr = | and
Rex = 0.1 approximate the case with no wall blowing, and the Nusselt
number at fully developed conditions agrees reasonably well with this
value,

Inspection of the data presented in Figures |5 through 18 indicates
the effect of the wall blowing parameter RcA, on the length of channel,

€, reauired to obtain fully developed thermal conditions. I+ is seen

that increasing values of the wall blowing parameter tend o decrease
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the value of the axial coordinate, £, required to produce fully developed
bulk mean temperatures and Nusselt numbers.

It is noted from the inspection of the curves for 'local Nusselt
number versus axial coordinate, E, that a decrease In value bslow that
for fully developed conditions exists for the product of Prandtl number
and pseudo Eckert number, PrEc = 10 and 100. This dip effect in the
Nusselt number indicates that the temperature slope at the channel walls
is decreasing at a more rapid rate than the decrease in the bulk mean
temperature. This result is due to the large temperature difference between
the entrance plane and the wall conditions for the lower values of the
PrEc product. For small values of axial coordinate, £, there is a
large temperature gradient local ized near the channel walls due to con-
ductive heat transfer to the walis. In Figure |4, page 53, for the
case with no viscous dissipation effects, the Nusselt number is noted
to exhibit a monotonical ly decreasing characteristic in the thermal

entrance region.

The effect of the Peclet number on the buik mean temperature
development is similar to that mentioned in the previous chapter con-
cerning the dimensioﬁless temperature profile development. It is seen
that for the low Peclet numbers, Pe = 10 and |, the attainment of fully
developed conditions lags as compared to the case of Peclet number, Pe =
«, Inspection of the data for the local Nusselt number reveals a similar
lag in development for the low Peclet number which again verifies the
importance of the axial conduction term which Is usuaily neglected iIn

thermal entrance region problems,
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CHAPTER VIl
GENERAL CONCLUSIONS

From the results of the present study, it is concluded that
mathematically the B. G. Galerkin method has distinct computational
advantages over the classical analytical and numericat fechniques in
application to the eigenvalue problems assocliated with thermal entrance
region analyses. The complete generality of the method, pertaining to
the form of the differential equation and the boundary conditions, makes
it possible to obtain solutions for the extended eigenvalue systems
resulting from the formulation of the problem by considering the e%fecfs
of the wall blowing parameter and the axial conduction term. From this
solution, expressions for the temperature distribution, bulk mean tem- |
perature, and local Nusselt numbers have been obtained.

Numerical results have been presented to show the effects of
the wall blowing parameter, viscous dissipation, and axial conduction on
the temperature and local Nusselt number development in +hé entrance
region of a parallel plate channel under constant Temperafure wall con-
ditions. The results verify the fact that for small Peclet numbers the
temperature profiles and local Nusselt numbers deviate considerably from
the previously treated cases of infinite Peclet number. The data pre-
sented also indicate the marked effect of the wall blowing parameter on

the temperature profiles and the heat transfer parameters.,
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APPENDIX A
SOLUTION FOR THE FULLY DEVELOPED VELOCITY PROFILE

The governing equation for the fully developed velocity pro-

file is a non-homogeneous |inear differential equation as follows from

Equation 13,
2
d”u du _
V(y) -Rclav(y) = -| (Al)

The complementary function for Equation Al is
= RcAy
ucly) = cje + ¢, (A2)

Using the method of undetermined coefficients let us find a particular

integral for Equation Al. We assume a particular solution of the form

up(y) = Czy (A3)
which yields,
= Yo

Application of the boundary conditions,

u(0) =0, u(l) =0 (A5)

results In the solution for the fully developed velocity profile as,
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(y) = o 1-:—2;552— (A6)
sy s sz- v - | - e cA A

It Is easily shown by application of L'Hopital's rule that the limit of

Equation A6 is,

Limit u(y) =

RCA + 0

which checks the ordinary channel flow solution without wail blowing.

ty - y2) (A7)

N |-

Profiles of the non-dimensionalized velocity as a function of the wall
blowing parameter, R.A, are presented in Figure Al. Investigation of
the effect of the wall blowing parameter on the fully developed velocity
profile resulted In the selection of R.A = 0.1, I, 5, and 10 for further
calculations.

The mean velocity, V,, is defined as

=1t - |
Vm = T fo Vsixg)dxy = V¢ Io uly)dy (A8)

A dimensionless mean velocity is defined as

(A9)

=
3
It
DB

which becomes

e (2-R M) - ReA - 2
un = —5 - (A10)
2R.AZ (1 - ofch

A plot of the non-dimensionalized mean velocity as a function of the

wall blowing parameter is shown in Figure A2, page 74.
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APPENDIX B
SOLUTION FOR FULLY DEVELOPED DIMENSIONLESS TEMPERATURE PROFILE

The governing equation for the fully developed temperature
profile is a non-homogeneous |inear differential equation as follows

from Equation 20,

S P e 2 (] (81)
G;z— {y)-PrR.A ——;—(y) = -Prkc dy (y
with boundary condition’s
B,(1} =0 , 8,(0) =0 (82)

Since the analytic solution for the fully developed tempera-
ture profile is a very complicated expression, an extensive simplifica-
tion in evaluation of the integral, Equation 49, is possible by using
the G. B. Galerkin method to obtain a series solution for Equation BI,

Defining a new function as
= o=%P
Goly) = " TRAY g_(y) (B3)

which is substituted into Equation Bl to yield,

d26_ PréR.22 W
;;z-(v)- —— G,(y) = -PREce 3PrRcAY [av.(yﬂ (B4)
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Assume an approximate solution of Equation B4 as

M
G, (y) = Z D" sin Iny (B5)
i=1

Substitute Equation B5 Into Equation B4 which gives,

M Pr2R 222
Z D{ 4 =1%22 sin jay - _15._ sin iny } =
i=|

av-(y)

~3P 2
- Prec o ¥ "R [du
(B6)

Following the method of B. G. Galerkin hence multiplying Equation B6 by

¢(y) = sin kny and Integrating over the range 0 Sy $ 1|

M
. PrZr.2)2
Z bJ [-Iznz - -—;.C_] I;(k,1) = -PrEcI,(k)

i=l

k=1,2,3, .... M (B7)

where the integrals are given by:

l
I (k1) = J'o sin iny sin kry dy = % 51k (88)
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= ! g FRAY [du 2 =
I,(k). Io e [EV'(V) sin kny dy

|l K PR ok
ey | - e (=" |+
Re“) PrzRC2A2+4k2n2] [ ]
B B
Red K 1| |- (RA-MPIRA) (| yki
| 1-eReA [ | (2RoA-PrRoA)Z+4K202
Re2A2 k (e 1y Ko (ZRA-EPFRCA)
X (89
(1-0 "2 (4RA-PrRcA) 244k2x2

Equation B7 is a non-homogenecus system of |inear equations which can
be solved to determine the Df‘s. Since I,(k,I) is the Kronecker delta

Equation B7 can be written as follows,

-2Prkc I2(1)

= (B10)
[_'2“2 ) PrZRCZAZ]
- a
f Df is redefined as,
=2I,(i)
D. == - (B11)
i [ 22 PréR 3%
-i - —g
then,
M
G,(y) = PrEc 2: D; sin Iny (B12)
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From Eauation 03 the fullv developed dimensionless temperature profile

becomes

o y) = eTTRAY g ¢y =

M
PrEc e? TRAAY 5‘ D, sin Iny (BI3)

The approximate solution for the present study was obtained by using

twenty terms., M = 20, in the series solution.
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