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FOREWORD

This topical report on "Forging Loads and Stresses in Closed-Die Forging, Part
Two" covers the analytical work performed under Contract No. DAAG46-68-C-0 111 with
Battelle Memorial Institute of Columbus, Ohio, from December 30, 1968, to March 15,
1969.

This work was administered under the technical direction of Mr. Robert M. Colton
and Mr. Dennis Green of the Army Materials and Mechanics Research Center,
Watertown, Massachusetts 02172.

This program was carried out under the supervision of Mr. A. M. Sabroff, Chief
of the Metalworking Division, and Mr. H. J. Henning, Associate Chief of the Metal-
working Division. Dr. T. Altan, Senior Scientist, is the principal investigator.
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FORGING LOADS AND STRESSES
IN CLOSED-DIE FORGING

PART TWO

by

T. Altan, H. J. Henning, and A. M. Sabroff

ABSTRACT

The slab method of analysis for predicting forging stresses and loads has been
applied to longitudinal (axial) flow, i. e. , to extrusion-type forging. Both plane strain
and axisymmetric deformations were considered. The flow models, already discussed
in the Third Interim Topical Report, have been further studied, and the necessary
equations for general use are derived. The flash-line location has been shown to have
little effect upon maximum forging load if die-cooling effects are not too large. The
present study, along with the Third Interim Topical Report, represents a fundamental
method for obtaining detailed information on the mechanics of closed-die forging.

INTRODUCTION

During most closed-die forging operations, the metal being forged flows in several
directions, depending on the geometry of the dies. At the outset of deformation, the
metal flows most readily in the lateral direction until it meets enough obstruction(s) to
cause it to flow into the longitudinally (axially) oriented cavities that might be in the die(s).
If all of the horizontal avenues of escape are essentially blocked off, the metal is forced
to fill completely the longitudinal cavities. Increased friction can also restrict lateral
flow and promote longitudinal flow. Stated more technically, whenever the energy neces-

sary for lateral flow is larger than the energy necessary to promote longitudinal (or
axial) flow, the latter takes place and the die cavities start to fill.

The flash gap usually represents the most important obstruction to lateral flow.
Thus, the design of the flash geometry plays an important role in controlling forging
energy and in promoting die filling.

In the Third Interim Topical Report on "Forging Loads and Stresses in Closed
Dies - Part One", the lateral flow and die stresses occurring in closed-die forging were
analyzed particularly for forging in dies having a generally flat configuration (having
little or no longitudinal metal movement). This topical report is concerned with analyses
of flow and stress occurring while forging with dies having deeper, longitudinally
oriented cavities.

Together the two topical reports present a series of analyses useful for estimating
the flow and stresses in forging of more complex shapes. A Fifth Interim Topical Report
is being prepared to demonstrate how these analyses can be applied to practical forgings.
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While the derivations presented here require some extensive calculations, the
final analytical procedures developed are quite straightforward. Nevertheless, the use
of computers would be useful when applying the analytical procedures in day-to-day
operations.

GENERAL DERIVATIONS OF STRESS DISTRIBUTION AND
AVERAGE FORGING PRESSURE REQUIRED IN

EXTRUSION-TYPE, LONGITUDINAL FLOW

It is quite clear that there are no simple analyses applicable to the myriad of
shapes being forged everyday. However, when the most complicated shape is viewed as
being comprised of several connected components, each having a characteristic metal-
flow behavior, the analyses become more rational. The majority of forging shapes com-
prise one or more of the following basic situations in each of the connected components:

(1) Plane-strain, lateral flow

(2) Axisyrnmetric, lateral flow

(3) Plane-strain, longitudinal (axial) flow

(4) Axisymmetric, longitudinal flow.

The total load required for forging any part is then a summation of the loads required for
each component. The sections that follow are concerned mainly with the derivations of
analyses for those components of forgings involving longitudinal flow.

Plane-Strain, Longitudinal Flow

Figure 1 contains two sketches to illustrate plane-strain deformation with longi-
tudinal (axial) flow. The arrows in the upper sketch show generally how metal flows
both laterally and longitudinally (axially) in a rib-type die arrangement. The cross-
sectional view is taken through a long rib extruding front to back with respect to the
page. The metal flows into the vertical rib cavity as the dies close. The lower sketch
in Figure 1 shows the various symbols for expressing die geometry and stresses active
in the forging of such a rib. It should be emphasized here that the rib is considered to
be large enough that all of the metal flow is considered to be in the plane of the page.

In the derivation for this plane-strain situation, it is assumed that the metal is in
static equilibrium under pressure from the downward force of the ram. In this case, the
metal flows laterally inward and outward on either side of the two "neutral surfaces"
located in the web of the forging (illustrated in the upper sketch of Figure 1). The signif-
icance of these neutral surfaces as they relate to the analyses of metal flow will be dis-
cussed in a later section.
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Longitudinal flow Lateral flow Ram motion
i4

Neutral surfaces

a. Example of Plane-Strain, Longitudinal Flow

We

V-3 I Stress
ye

4 U dy
ya

y y 04o yO
x Yb=0 0

Wb

b.Analytical Model of Plane-Strain, Longitudinal Flow and the Typical Stress Distribution

FIGURE 1. ILLUSTRATION OF AN ANALYTICAL MODEL OF PLANE-
STRAIN LONGITUDINAL FLOW OCCURRING IN FORGING
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Following Figure 1, from the static equilibrium the following relations are
obtained:

The lateral pressures acting on the cavity walls*

P = a + T tan Y (1)
U X

p a = a + T tan . (2)
x

The lateral stress distribution

a = K 2n + ax (3)
x K I Wb xe

where

We wb +K ly (4)

K = -(tan / + tan 6) (5)

2 2 2
K2 2 UK + '(2 +tan y + tan 6). (6)

The flow rules applied to the coordinates of Figure 1 give

2
a =C - 0 (7)y x -" -

Equations (3) through (7) illustrate that the lateral stress, cTx, and the longitudinal

stress, a., increase with increasing depth of fill y, with friction shear stress, m, and
with increasing draft of the cavity, i. e. , with increasing draft angles y and 6.

It should be noted that if the cavity is not completely filled, i.e., for aye = 0 at

y =Ye, the stress in lateral direction is determined from the flow rule to be as follows:

2
-= + + a at y = y (8)

xe =j3 ye

At the point where the cavity is just filled, (i. e. , we = wf in Figure 1) the longi-

tudinal stress, a , begins to be larger than 0. Here is the point where the analysis canye'
begin to introduce error by estimating values for ay that are too low.

*Symbols are listed at the end of this report.
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The forming load per unit depth in the direction of the ram motion is given for

p = Wb CT (y = 0): (9)

Thus, the forging load is obtained from Equations (7), (3), and (9):

P=wb Kln () + a xe (10)

To evaluate Equation (10), the values of We) K 1 , and K2 must be calculated from
Equations (4), (5), and (6), respectively. This represents a rather lengthy series of
calculations for a rib having a draft or taper.

The analysis can be simplified somewhat by assuming that the walls of the cavity
are not tapered. In this case

the draft angles y 6 = 0,

the rib widths wb = we = wf = w,

and the wall pressures Pu P = ax

The lateral stress distribution is given by

ZT
a = - -y+c . (+)x w xe

The forming load per unit depth at y 0 is given by

P = w (y (y = 0) w Y = Z y '12)
P~zay~=0) w e e

The forging load increases linearly with the friction shear stress, T, and the
filled cavity of depth, ye. In cases where the die cavity walls are both tilted in the same
direction, yet tapered towards each other, the Equations (3) and (10) are still valid for
calculating the lateral stress distribution and the forging load. The appropriate signs,
however, must be used with the draft angles 'y and 6, which are considered as positive
for the directions shown in Figure 1.

The forgoing derivations can be applied to the task of estimating the forces in
forging of long parts having ribs. In such cases, the metal flow is predominantly in a
given plane transverse to the center line of the rib except near the ends of the part where
the metal tends to flow along the rib cavity as well. This is where the metal is flowing
more radially, similar to that occurring in axisymmetric dies.

BATTELLE MEMORIAL INSTITUTE - COLUMBUS LABORATORIES



6

Axisymmetric Longitudinal Flow in an Annular Rib

Figure 2 contains two sketches to illustrate the directions of metal flow in the
forging of a disk having an annular rib. In the upper sketch, the arrows show in general
how the metal flows both radially and longitudinally (axially) in a die arrangement typi-
cally used for forging turbine components. The lower sketch in Figure 2, shows the
various symbols for expressing die geometry and stresses active in forging such a part.

Similar to the previous examples, it is assumed in this derivation that the metal is
in static equilibrium under pressure from the downward force of the ram.

Following Figure 2, the equilibrium in axial z direction yields the following:

- (a +da) [(ro + dr ) 2 - (r. + dri) 2] T +(G (r 2 - r. 2

dz dr. dr
cos Cos Y 2-- (r ) - T+.cos 6 . cos 6 Zr (ro +2)

dz dr. dz dr
pi cos -• siny7 (r.i + 1 -P 7os 6 sin 6 27 (ro +- ) = 0. (13a)

The subscripts i and o refer to inside and outside surfaces, respectively. By neglecting
high order differentials and after simplifying, Equation (13a) results in:

+C (2 r.dr. 2 r dr ) + dc (r. 2 - r 2) - 2Tdz (r. + r )Z 1 1 0 0 Z 1 0 1 0

- 2Pidz tan y ri - 2podz r tan 6 = 0. (13b)

In a similar manner, the equilibrium in radial direction gives, Figure 2,

Pi = r + T tany (14a)

Po Cr + T tan 6. (14b)

From Figure 2 it is seen that

r i = rib + z tan / and dr. = dz tany (15a)

ro = rob - z tan 6 and dro = - dz tan 6. (15b)

BATTELLE MEMORIAL INSTITUTE- COLUMBUS LABORATORIES
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Longitudinal flow
in forging with

Ram motion

a. Example of Axisymmetric Forging With Annular Rib

z

Zf

p"dz

<p ro.Ir •"Z

I 4r rob

b- Analytical Model of Axisymmetric Longitudinal flow

FIGURE 2. ILLUSTRATION OF AN ANALYTICAL MODEL FOR LONGITUDINAL
FLOW IN AN AXISYMMETRIC DIE HAVING AN ANNULAR RIB
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The substitution of Equations (14a), (14b), (15a), and (15b) into Equation (13b) results
in the following differential equation:

da
-- z z (C z 2 + Bz + A) + zD + E = 0 (16a)dz

or do
z zD + E-c Zz + E (16b)

dz Cz 2 + 2Bz +A Cz 2 + 2Bz + A

where

A = rob 2 -r 2 (17a)A = rb " ib

B = - (rib tan y + rob tan 6 ) (1 7b)

C = tan 2 6 - tan 2 Y (17c)

D = 2 C _ rtan-- + Ttanc 6 (17d)

E = Z (r tan 6 + r tan r b (17e)E = 2 ob ta ib tag ib cos2-1 rob cos26- '

and introducing

2 1/2
F (CA- B (rib tan y + rob tan 6). (17f)

The integration of Equation (16b) results in:

D 2DB 1 F-B -Cz

-- In (A + 2Bz + Cz2) + (I - -- ) I In +1 (18)
z 2C )+2F F + B + Cz (

Equation (18) represents the axial-stress distribution inside the die cavity shown
in Figure 2. The axial stress, Oz, increases within the material itself from zero to its
maximum value as the depth of fill, z, decreases from z = zb = 0, shown in Figure 2.
The subscripts b and e refer to beginning and end of the cavity depth, respectively. The
axial stress, oz, at the rib entrance, z = 0, reaches its highest value when the rib is
completely filled.

The symbol, I, in Equation (18) designates the integration constant, which is
determined from the condition: az = 0 at z = ze, when the cavity is not completely
filled. Thus, from Equation (18),

BATTELLE MEMORIAL INSTITUTE - COLUMBUS LABORATORIES



9D~n 2 LeBe2 F1 -B Cze2= - e--)-2F In F + B + Cze (19)

Using the yield condition or = Gz + 7, and the Equations (14a) and (14b), the radial
cavity pressures, pi, and, po, can also be determined (referring to Figure 2).

The forming load at z = 0 is given by the following:

= 7T (rob 2- r ) z (z = O) (20)

where oz is obtained from Equations (18) and (19) for z = 0,

z = In + 1 - (- ) In F - B)(F + B + Cze
A 2 B Ae + Cze2 ( In LF+B)F-B-Cze]. (21)

The above expressions, derived for calculating the stresses and the load in the forging of
an annular rib, are considered to be too complicated for practical use, unless the cal-
culations are carried out by a computer.

A reasonable approximation of forging loads can be obtained if the tapers, i. e. ,
the draft angles, are neglected (shown in Figure 2). In this case, y = 6 = 0,
Equation (16 e), is simplified to:

daZ ( rr2 )+2-(r +r. 0 (22)
dz 0 - 0 1

The solution of Equation (22) is as follows:
2T

T r -T (ze - Z). (23)Z r - r.
0 1

Equation (23) illustrates that the axial stress, a , in the cavity (Figure 2), in-
creases linearly from the top towards the bottom of the cavity. The axial stress, Crz,
is directly proportional to the friction stress, 7, and inversely proportional to thickness
of the annular-rib cavity as expressed by rO - ri (Figure 2).

Without considering the draft angles, the radial pressure acting on the cavity
walls will be as follows:

p = Or = z + . (24)

The forging load at z = 0 is

P =Tr (r0 2 -ri 2 ) Cz (z = 0) T(ro + ri) T ze5)
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From this equation it is seen that neglecting the draft angles greatly simplifies the
load calculation. These derivations apply, for example, to the analyses of flow and
forces active in forging of a typical rib- and web-structural forging.

Axisymmetric Longitudinal Flow in a Central Shaft

Many aircraft and automotive-gear-type forgings are typically represented by the
two sketches shown in Figure 3 which illustrates the directions of metal flow in the
forging of such parts. In the upper sketch, the arrows show generally how the metal
flows both radially and longitudinally (axially) in such a die arrangement. The lower
sketch of Figure 3 shows the various symbols for expressing die geometry and stresses
active in forging such a part.

In the derivation for this case, the metal was considered to be in static equilibrium
under pressure from the downward force of the ram. The metal tends to flow out
radially at first until it reaches enough resistance to cause it to flow into the shaft.
Similar to the previous derivations, the equilibrium conditions are expressed for the
axial state of stress as follows:

(oY + dc ) (r + dr) 2 T + 7T r - dz c yZ7r
z z z Cos%

dz p sin y' Znr = 0. (26a)

For y' = 6, rb =radius of the shaft at z = 0.

After simplification and by neglecting the high order differentials, Equation (26 a)
transforms into

Za dr + da r + ZTdz + 2dz p tan ýy = 0. (26b)
z z

From the geometry of Figure 3,

dr = - dz tan y,
r = rb - z tan y'

Further, the equilibrium in r direction gives

P = ar + 7 tany' ,

or with the flow rule, ar - z= -i,

p=a - + T tan . (27)
z

BATTELL.E MEMORIAL INSTITUTE - COLUMBUS LABORATORIES
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Longitudinal flow Ram motion

a. Example of Axisymmetric Forging With Central Shaft

z

'-lrz =

r

b. Analytical Model for Axisymmetric Longitudinal Flow

IFIGURE 3. ILLUSTRATION OF AN ANALYTICAL MODEL FOR LONGITUDINAL
FLOW IN AN AXISYMME TRIG DIE WITH A SHAFT AT THE CENTER
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Substituting Equation (27) into Equation (26b) gives, after simplification,

da 2z 2z Ztan-y- 2T (1 +tan (28)
dz (rb - z tan y)

The integration of Equation (28) with the consideration of the boundary condition
gives,

2 (r -mtany
=2 I[T (1 + tan 2y) -- 7tan y] In z tan ) (29)

(Tz = tany rb z

Equation (29) describes the axial-stress distribution in the shaft, Figure 3. It is
seen that, as expected, the axial stress, a z, increases with increasing draft angle, y,
and with decreasing depth of fill, z.

The forging load at z = 0 is

2

P=7T r a (z = 0)
b z

22 2[r (1 + tan r a tan -] n
= l[ rb ln b (30)

btan ' r b - ze tan -

The stresses and the forging load given by Equations (28) and (30) will be greatly
simplified if the taper of the shaft is neglected, i. e. , Y = 0, re = rb. In this case, the
average thickness of the rib can be considered. The axial stress is then given by the
following:

27a = - (z - z) (31)z rb e

The radial pressure is

p=r =a +7) (32)r z

and the forging load at z = 0 is

27

7[ rb2 e = 27T r z - (33)
b rb b e

BATTELLE MEMORIAL INSTITUTE- COLUMBUS LABORATORIES
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DETERMINATION OF FLOW MODELS IN
STEEP-SIDED DIE IMPRESSIONS

To complete the analysis so far, the analyses for states of stress in situations
must also be considered where the die cavity is essentially filled, but the dies have not
yet closed.

The determination of flow models representing metal flow into a smaller flash
cavity in plane strain and in axisymmetric forgings with flash were discussed in the
Third Interim Topical Report. In those cases studied, however, it was assumed that
the lower and upper depths of the die cavity were large enough to permit the theoretical
shear surfaces to form, i. e. , in Figure 4 the following conditions hold:

h-t h
2- u

and (34)

h-t

The subscripts u and ý refer to upper and lower dies, respectively.

Flow Models for Formation of a Thin Flash

The discussion given below applies to plane strain as well as axisymmetric forg-
ing. When the forging is thin enough that the conditions (34) are not satisfied, the flow
models seen in Figures 5a, 5b, and 5c might exist where the flash center line is not at
the center of the total cavity depth. In cases of Figures 5a and 5b, the upper shear
surfaces are free to form while the lower horizontal shear surface is essentially re-
placed by the die surface. For given die geometry, if it is assumed that the depth of
the upper cavity is sufficiently large, the theoretical metal flow model will be one of
the models described in Figures 5a and 5b. In the flow model of Figure 5c, the height,
h, of the deformation zone is essentially determined by the die geometry.

In the flow models seen in Figures 5a and 5b, to calculate the stress distribution
and the load with the equations given in the Third Interim Topical Report, the following
parameters must be determined:

(a) Height of deformation zone, h

(b) Angle of upper shear surface, a•

(c) Angle of lower shear surface, 3.

BATTELLE MEMORIAL INSTITUTE- COLUMBUS LABORATORIES
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Upper die

Neutral i
surface

h I "
SI I - X

-I h-

A A- 57907

Lower die

FIGURE 4. FLOW MODEL REPRESENTING METAL FLOW INTO FLASH
(DIE CAVITY HAS SUFFICIENT DEPTH FOR THEORETICAL
SHEAR SURFACES TO FORM)
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Neutral L
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FIGURE 5. FLOW MODELS ILLUSTRATING POSSIBLE DEFORMATION
ZONE WHEN FLASH IS NOT AT CENTER

(AXISYMMETRIC AND PLANE STRAIN)
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Following Figure 5a and using the derivations given in the Third Interim Topical Report,
the longitudinal stress at the neutral surface, A, is,

K2  t C2  h' 1/
KyA KIn t + i In h + il + + (35)

where

a =D longitudinal stress at plane D, independent of the parameters
°yD h, a, and/B

K - (tan a + tan/B) (36)

2 c" 2 2
K2 - 3 UK + f -3(2 + tan a + tan /) (37)

CI =-tan a (38)

2 2
C? = 3 tan a + T +- (I +tan a•) (39)

T = f0, friction shear stress with 0 <f< 0.577 (40)

and from the geometry of Figure (5a),
hI

h' = t + ta- (tan a + tan/3) (41)

i= L -(h -h' ) h4
tan a tan/ " (42)

Following the flow model described in Figure 5b, the stress, GyA, at the plane, A,
would still be given by Equation (35), but with the following values for the constants:

KI, as in Equation (36)

K2 , as in Equation (37)

C1 = - tan (43)
2 - "2

C 2 = (71 a tan P + T"+ CT (I + tan /) (44)

T, as in Equation (40),

and from the geometry of Figure 5b,

[h - (hI + t)]

tan = (tan a• + tan /) (45)

i = L - hi/tan P . (46)

BATTELLE MEMORIAL INSTITUTE -COLUMBUS LABORATORIES
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For given die dimensions and for given friction factor, f, the flow model which
results in minimum amount of deformation energy or which gives the smallest values
forithe stress, GyA, Equation (35) will be valid. Equation (35) can be expressed in
dimensionless form by dividing all lengths by the flash thickness, t, to give

yL t, t , =, /' " (47)

Equation (47) was derived from Equations (35) through (46) for the flow models
illustrated in Figures 5a and 5b. It is seen, in Equation (47), that the dimensionless
increase of the longitudinal stress in the cavity is a function of the die geometry and of
the parameters h/t, 2, and P. For various values of die with L/t and lower die depth,
h,/t, Equation (47) was minimized to obtain the parameters h/t, a, and A defining the
flow model. The results are given in Tables 1 and 2 for two different values of the
friction factor, f. The value for theoretical height hth in the tables corresponds to the
height of the deformation zone, h, for the case of Figure 4. It is significant to note that,
if the flow stress, 7, is assumed to be constant throughout the deformation zone, the
location of the flash with respect to upper and lower die surfaces does not influence the
increase in longitudinal stress, ayA - cyD, in the die cavity. The geometry of the flow
model does not vary and consequently the total forging load should not vary significantly
with the position of the flash.

The values given in Table 3 were obtained by assigning a 30 percent higher value
to the flow stress 7 at the lower die material interface to simulate the increase in flow
stress, F due to die chilling (for instance steel for 100 C chill). The a, P, and h/t values
describing the flow model in Table 3 indicate that the dimensionless stress increase in
the die cavity, Cy A - ayD, becomes slightly larger when compared with the same tool
geometry but with lower interface shear-stress T values (in Table 2). The location of
the flash, however, still does not significantly influence the magnitude of the stress in
the die cavity.

In the flow model shown in Figure 5c, the height of the deformation zone, h, is
determined by die dimensions. The longitudinal stress at the neutral surface, A, is,

K 2  t C2 h' •
ya - ln - + - ln - + 2 T- + a(48)
yA K1  hl h yD'(8

where

ayD = longitudinal stress at plane D, independent of the parameters
a and P

K1 , as in Equation (36)

K2 , as in Equation (37)

C 1 , C 2 , as in Equations (38) and (39), respectively for 2< <

cl C2) as in Equations (43) and (49), respectively for 2>
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TABLE 1. RELATIONSHIPS BETWEEN DIMENSIONLESS HEIGHT, h/t, AND
ANGLES cc and /A, WHICH DEFINE THE FLOW MODEL FOR GIVEN
CAVITY LENGTH, L/t, AND LOWER CAVITY DEPTH, hi/t,
(FRICTION SHEAR STRESS AT LOWER DIE INTERFACE:
T = 0. 404 5)

Symbols presented here are illustrated in Figure 5.

Dimensionless
Increase of Stress

in Cavity,
0•, /3, OyA - aYD

L/t hj/t h/t hth/t degrees degrees Z_8_/V_3-

3.0 0.54 1.62 2.2 35 25 4.66

0.27 1.54 -- 25 25 4.66

0.14 1.49 -- 25 35 4.63

0.07 1.90 -- 25 35 4.65

6.0 1.48 3.44 4.16 35 25 7.24

0.74 2.69 -- 25 35 7.11

0.37 2.50 -- 35 35 7.13

0.18 2.98 -- 35 35 7.24

12.0 3.24 6.51 7.87 35 45 9.88

1.62 5.21 -- 35 45 9.75

0.81 4.9 -- 35 35 9.88

0.40 5.01 -- 35 35 9.99

24.0 6.57 12.17 14.89 35 45 12.56

3.29 9.49 -- 35 45 12.48

1.64 8.76 -- 45 45 12.65

0.82 11.51 -- 45 35 12.89

48.0 12.88 24.18 28.17 45 35 15.28

6.44 22.19 -- 45 45 15.27

3.22 16.40 -- 45 45 15.45

1.61 21.94 -- 45 35 15.71
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TABLE 2. RELATIONSHIP BETWEEN DIMENSIONLESS HEIGHT h/t, AND
ANGLES a and /3, WHICH DEFINE THE FLOW MODEL FOR GIVEN
CAVITY LENGTH, L/t, AND LOWER CAVITY DEPTH, hi/t,
(FRICTION SHEAR STRESS AT LOWER DIE INTERFACE:
T = 0. 577 5)

Symbols presented here are illustrated in Figure 5.

Dimensionless

Increase of Stress
in Cavity,

., /3, ayA - ayD

L/t hg/t h/t hth/t degrees degrees Z2 / ,/

3.0 0.54 1.91 2.2 25 25 5.12

0.27 1.77 -- 25 25 5.11

0.14 1.68 -- 35 25 5.17

0.07 1.54 -- 35 25 5.22

6.0 1.48 3.46 4.16 25 35 7.61

0.74 3.17 -- 35 35 7.61

0.37 3. 12 -- 35 25 7.76

0.18 2.92 -- 35 15 7.90

12.0 3.24 6.51 7.87 35 45 10.28

1.62 5.59 -- 35 35 10.27

0.81 5.26 -- 35 25 10.54

0.40 6.27 -- 45 25 10.79

24.0 6.57 12.17 14.89 35 45 12.99

3.29 10.28 -- 35 35 13.06

1.64 12.38 -- 45 35 13.36

0.82 11.51 -- 45 25 13.67

48.0 12.88 22.90 28.17 35 45 15.76

6.44 22.19 28.17 45 45 15.86

3.22 23.63 -- 45 35 16.17

1.61 21.94 -- 45 35 16.55
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TABLE 3. RELATIONSHIPS BETWEEN DIMENSIONLESS HEIGHT, h/t, AND
ANGLES a, and A, WHICH DEFINE THE FLOW MODEL FOR GIVEN
CAVITY LENGTH, L/t, AND LOWER CAVITY DEPTH, hý/t,
(FRICTION SHEAR STRESS AT LOWER DIE INTERFACE:
T = 0.577 x 1.3 U)

Symbols presented here are illustrated in Figure 5.

Dimensionless
Increase of Stress

in Cavity,

/, B cyA - ayD

L/t hL/t h/t hth/t degrees degrees 2a / -

3.0 0.54 2.09 2.2 25 25 5.41

0.27 1.9 -- 25 15 5.48

0.14 1.75 -- 25 5 5.53

0.07 1.68 -- 25 5 5.65

6.0 1.48 3.95 4.16 35 35 7.94

0.74 3.51 -- 35 25 8.05

0.37 3.12 -- 35 15 8.25

0.18 2.92 -- 35 5 8.39

12.0 3.24 7.48 7.87 35 35 10.57

1.62 6.11 -- 35 Z5 10.78

0.81 6.7 45 25 11.12

0.40 6.27 -- 45 5 11.39

24.0 6.57 14.15 14.89 35 35 13.31

3.29 14.1 -- 45 35 13.60

1.64 12.38 -- 45 25 13.97

0.82 11.51 -- 45 25 14.40

48.0 12.88 26.76 28.17 35 35 16.11

6.44 27.01 -- 45 35 16.38

3.22 23.63 -- 45 35 16.83

1.61 21.94 -- 45 25 17.38
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h•

h' = (tan a + tan) + t for a0< A (49a)
tan

h
ht = u (tan a + tan) + t for a > A (49b)

tan a

h
= L - u for a < P (50a)

1 tan a

h•
= for ax>/ . (50b)

1 tan

Equation (48) can be expressed in dimensionless form to give the dimensionless
increase in longitudinal stress:

U = G(f, Lit,-A -, , /y). (51a)

Equation (Sla) corresponds to Equation (47). For given dimensionless cavity length, L/t,

lower cavity depth, -, and height, h, and for a given friction factor, f, the angles a and

Swhich minimize the Expression (51) define the geometry of the flow model for those
given dimensions. Thus, for a specific application, the function, G, in Equation (51a)
must be numerically minimized to obtain the values of a and A that define the flow field.
The stresses and the forming loads can then be determined by the derivations given in
the Third Interim Topical Report. As a first approximation in estimating a and P, the
values given in Tables 1 and 2 can be used. It should be noted that with decreasing value
of the friction factor, f, the shear stress over the flat portion of the flow model,
Figure 5c, decreases and the material tends to flow in such a way to increase the length
of this flat zone. Consequently, for values of f < 0. 3, the angles a and A both can be
estimated to be 45 degrees.

In case the flash line is at the center of the die (refer to Figure 5c), the angles
a and P are equal. Equation (51a) transforms into

yA- G+ Za+2 t h L/t h/t - 1 (- Z 01,V3" =F 2, tan a I t- + 3(h/t 2 tan a• h/t (51b

Minimizing with respect to tan a

S- 0 results in tan aM 1I - (h/t - 1) V/3f (51c)

l tan a in h/t (h/t) '
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Equation (51c) gives the angle, a0M, which should define the flow model for a given
friction factor, f. The stresses and loads can then be calculated by using the deriva-

tions given in the Third Interim Topical Report.

Flow Models for Formation of a Thick Flash

The determination of a flow model representing the metal flow from a large cavity

through a thin flash gap was presented in the Third Interim Topical Report. In the flow
model representing the metal flow from a small forging into a fairly thick flash gap,
the ratio of the cavity width to flash thickness, L/t, is small. The following condition
holds:

L/t < 2 (5Z)

This condition, Equation (52), was already established in the discussion of metal flow
into a smaller cavity, in the Third Interim Topical Report. The discussion presented
below applies to plane strain as well as to axisymmetric deformation.

The three possible flow models - I, II, and III - are illustrated in Figures 6a, 6b,
and 6c, respectively. Figure 6d illustrates a possible flow model I in longitudinal flow.
The material will flow according to the model that results in minimum deformation
energy or minimum longitudinal stress, CyA, at the neutral surface, A. With the pres-
ent theory based on the slab method of analysis, the flow models I and II, Figures 6a and
6b, can be valid when the angle a• < 45 degrees (i. e. , for L/t < 0.5). When a > 45 de-
grees, the deformation is not upsetting but extrusion and the assumptions of the theory

would not hold.

Thus for L/t < 0. 5 and for the possible flow models I and II, ayA is given by the
following equations:

= z 1 + tana 1Ztana In - + Z (53)
yA . 2 tan an h 3 y C

where

CyC = longitudinal stress at the plane, C,

and from the geometry of Figure 6a

2 L~ t-h (54)

1 2 tan a

Substituting Equation (54) in Equation (53) results in

GayA- GyC (1 + tan2 z a± 2 tan c) In t L/t h/t (55)
2a/VT = 2 tan a h hit ' 2 tan ah/t
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Ram motion-' - L -- -f - - L - -

xI __Ix_ '

h i
I h

C \
A Neutral surface A -Neutral surface

a. Flow Model I, Lateral Flow (Thick Flash) b. Flow Model 3Z, Lateral Flow (Thin Flash)

Ram motion

aTr/

- tI I - !

A
ý\\Neutral surfaces

c. Flow Model E1-, Lateral Flow
( Intermediate Flash)

d. Flow Model I in Longitudinal Flow

FIGURE 6. PLANE-STRAIN FLOW MODELS FOR MATERIAL
FLOW INTO A FLASH OR CAVITY
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Equation (55) expresses the increase in stress between the planes, C, entrance
into the die; and A, the neutral plane. It should be noted that Equations (53), (59), and
(55) are valid for flow model I (upper algebraic sign) and flow model II (lower algebraic
sign) of Figures 6a and 6b. The value of tan a, which results in minimum increase in
stress or deformation energy for a given height, h, and which minimizes Equation (55),
is obtained from

( A - C = 0
tan

to give

tanct = 1 + th-in t/h 2 (56)

Equation (56) is valid for both flow models I and II of Figures 6 a and 6b, where
aM is the angle which minimizes the expression (55). From Equation (56) it is seen
that the angle, aM, depends only on the height, h, of the deformation zone and on the
thickness, t, of the flash. The angle, aM, is independent of the distance, L, between
the neutral surface and the die wall as long as the geometry of Figure 6a or 6b exists,
i. e. , the condition (52), L/t < 2 holds.

The next unknown to be determined is the height of the deformation zone, h, or
the ratio, h/t. One could again minimize the equation (55) with respect to h and the
partial derivative:

y(TYA yC = 0 (57)

ýh

The solution of Equation (57) with Equations (55) and (56) would give the value of
height, h. The derivation, however, is very complicated and does not give an explicit
expression for the height, h.

The two forms of Equation (55) (with upper and lower algebraic signs) were
evaluated for various values of L/t > 0. 5 and for various values of h/t. Equation (56)
was used for calculating tan aXM for a given h/t. The values of h/t which minimized
Equation (55) are given in Figure 7a where L/t is used as parameter. Figure 7b repre-
sents the evaluation of tan aM from Equation (56) and h/t is determined in Figure 7a.

For L/t < 0. 5 the flow model III of Figure 6c is valid. In this case,

h' = t - 2L tan a' (58)

The increase in longtidutinal stress from plane C to plane A is:

ayA ayC il+ tan a' - 2 tana' I t
2 a /ý- = 2 tan a' hn -(59)
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Using Equation (58), the expression (59) was numerically minimized with respect
to tan a' and it was found that for all values of L/t < 0. 5, tan a' = 1 or a' = 45 degrees
gave the minimum values for Equation (59). These results are also incorporated in
Figures 7a and 7b, which essentially correspond to the Figure 14 of the Third Interim
Topical Report for L/t > 2.

CONCLUSIONS

The present study is a continuation of the Third Interim Topical Report. The
slab method of analysis has been applied to extrusion or filling type metal flow that
occurs in closed-die forging.

The flow models discussed in the Third Interim Topical Report have been ex-
tended further for more general application. The derivations showed that, after the
cavity is completely filled, the location of the flash line has very little effect upon
final forging load, provided cooling effects are not very large.

The flow of metal both from thin forgings into flash and from small forgings into
larger cavities has been studied in detail. This type of flow is particularly important in
the forging of metal into a rib, i.e., in extrusion-type forging.

The theory developed in the third progress report and the present report represent
reasonably reliable methods in predicting and analyzing forging mechanics, stresses,
and loads. Future work will consist of (1) applying the theory to specific forging
operations and (2) studying the heat generation and temperature changes in closed-die
forging. A forthcoming report will illustrate the application of the theory developed
in the Third and Fourth Interim Topical Reports to practical forging situations.

TA: HJH: AMS/j s
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LIST OF SYMBOLS

S= angle determining a theoretical flow model

0M = angle determining the flow model that results in minimum deformation stress

6 = draft angle

f = friction factor in T = f', 0..< f < 0.577

%1 = draft angle

h = height of a zone in upsetting

hu = depth of upper die cavity

hj = depth of lower die cavity

L = distance between neutral surface and die wall

P = forging load over a deformation zone

p = pressure acting perpendicular to tool-material interface

Pu = pressure at upper platen perpendicular to interface

pj = pressure at lower platen perpendicular to interface

ro, ri = outside and inside radii of annular cavity

ay, crx, cr, = stress in x, y, z directions, respectively (plane strain)

az, ar, Yt = stress in axial, radial, tangential directions, respectively (axial symmetry)

S= effective flow stress assum ed to be constant w ithin a deform ation zone

7 = friction shear stress at the material-tool interface

t = flash thickness

x = distance from a neutral surface in plane strain forging

w = longitudinal-cavity (shaft) width.
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