

= ——

rm

AUl SSION fN_) R
levsTi WHITE SECT:N
\ooe BUFF SECTIQH []
Ly A" HOUNGED 0
JUSTIFICATION .

Massachusetts Institute of Technology

Project MAC

Ly

DISTRSHTION /AVAILAL ! 545 Technology Square

Cambridge, Massachusetts

BIET. RYAIL, ani T

l | 02139
!

] 1]
1}

ork rep()rted herLin was supported by Project MAC, an M.I.T. research
program sponsored by the Advanced Research Projects Agency, Depart-
ment of Defense, under Office Research Contract Number Nonr-4102(01).
The primary support for some of this work came from the M.I.T. de-
partments and laboratories participating in Project MAC, whose research
programs are, in turn, sponsored by various government and private
agencies. This support is acknowledged by specific mention of agency and
contract number in the appropriate sections.

Reproduction of this report, in whole or in part, is permitted for any
purpose of the United States Government. Distribution of this document

is unlimited.

Government contractors may obtain copies of this Progress Report, and
all Project MAC Technical Reports listed in Appendix D, from the De-
fense Supply Agency, Cameron Station, Alexandria, Virginia 22314. Re-
sponse will be expedited if requests are submitted on DDC Form 1, copies
of which are available from the office in your activity which has been
established as the focal point for requesting DDC services.

Other U.S. citizens and organizations may obtain copies of this report
from the Clearinghouse for Federal Scientific and T'echrical Information
(CFSTI), Siils Building, 5285 Port Royal Road, Springfield, Virginia
22151,

:

-

BLANK PAGE

{

-

————

—$

AD 687770

ADMINISTRATION

ARTIFICIAL INTELLIGENCE

COMPUTATION STRUCTURES

COMPUTER SYSTEM RESEARCH

ELECTRONIC SYSTEMS LABORATORY

GRAPHICS RESEARCH

INTERACTIVE MANAGEMENT SYSTEMS

MAN-MACHINE COMMUNICATION

PROGRAMMING LINGUISTICS

RESEARCH LABORATORY OF ELECTRONICS

SCHOOL OF ENGINEERING

SCHOOL OF HUMANITIES AND SOCIAL SCIENCES

SCHOOL OF SCIENCE

TECHNICAL INFORMATION PROGRAM

4

ii TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES
PERSONNEL

PREFACE

ADMINISTRATION
Project MAC Administration
Development of CTSS Resource Allocation Techniques

ARTIFICIAL INTELLIGENCE
Research on Intelligent Automata
Computational Geometry
A. The SEE Program
B. The Theory of Perceptrons
C. Connectedness and Serial Computation
D. Designing a Stereo Vision System
E. Theorem-Proven Programs
Chess and Game Trees
Mathematical Laboratory
Interactive Computer-Mediated Animation
Fourier Transform Methods in Image Processing
Structure of Atonal Music

COMPUTATION STRUCTURES

Resource Allocation in Multiprocess Computer Systems
Asynchronous Computational Structures

Flow Graph Schemata

Theory of Program Graphs

Asynchronous Cooperative Multiprocessing within Multics
A Radical Computer Organization

Phase Structure Grammars for Planar Patterns
Structure Theory of Finite-State Machines

Table-Driven Compiler System

COMPUTER SYSTEM RESEARCH

CTSS and Multics System Development
A, Introduction
B. System Integration Benchmarks
C. Performance Improvement
D. Other Efforts
. Hardware
F., Future Plans

vi
vi
vii
xiii

W

14
11
11
14
19
22
22
22
23
24
25
25

27
28
29
30
31
31
32
33
34
34

35
37
37
37
39
43
44
46

ey T e

TABLE OF CONTENTS (c ontinued)

ELECTRONIC SYSTEMS LABORATORY
Introduction (see also Graphics Research)
Computer-Aided Design Project

A, The AED Bootstrapping Process

B. CADET

C. Display Interface System

D. AED Cooperative Program
On-Line Simulation of Networks and Systems

A, CIRCAL-II

B. A Recursive Approach to the Computer Analysis of

Nonlinear Networks

C. Tearing Techniques

D. On-Line Simulation of Block-Diagram Systems
Project Intrex

A, The Augmented Catalog

B. Text Access

GRAPHICS RESEARCH
Display Systems Research
A, ESL Display Console
. ARDS Low-Cost Display
. Computer-to~-Computer Communication
Graphic Software

B
C
D
E. Related Display Technology

INTERACTIVE MANAGEMENT SYSTEMS

SIMPLE Project

Marketing Models

Behavior of Complex Systems

Computer-Aided Diagnosis

A Branch and Bound Algorithm for Optimizing with a
Simulation Model

Minimization of Machine~Dependent Routines
On-Line Data Analysis

MAN-MACHINE COMMUNICA TION
The TEACH System

Background

System Overview
Experience with Students
Pedagogic Problems
Economic Problems

. Evaluation

HEOQwW>

iii

47
49
49
50
o7
29
59
60
60

64
64
65
65
66
67

69
71
71
72

d
[]

78
81

83
85
87
87
88

89
90
90

93
95
95
96
100
101
102
102

iv TABLE OF CONTENTS (continued)

PROGRAMMING LINGUISTICS
Programming Languages

A, BCPL Maintenance
. The PAL Language
. Compiler Theory and Research
Extensible Languages
Formal Semantics

Hoaw

RESEARCH LABORATORY OF ELECTRONICS
Introduction
Stability Analysis of Continuous Systems
Automatic Machine Recognition of Human Erythrocyte Types
Mechanization of the Interpretation of Vaginal Smears
Thermodynamics and Self-Steepening of Light Pulses
Models of Language Perception
A, Program Function
B. Rule Tester Development
C. Proposed Research
Subtransit-Time Oscillations in the Avalanche Region of a
pn Junction
Computer Display of Smooth Slides
Simulation of the Cochlea
Document Room

SCHOOL OF ENGINEERING

The MAP System

Computer-Aided Design of Space Forms
Design of Three-Dimensional Cubic Curves
Two-Dimensional Stress Analysis

Analysis and Simulation of Multiport Systems

SCHOOL OF HUMANITIES AND SOCIAL SCIENCES
The COMCOM Project

SCHOOL OF SCIENCE
DISHPAN

TECHNICAL INFORMATION PROGRAM
Introduction

Physics Input Processing

Data Base Production and Management
Book Production

File Editing

105
107
107
107
108
108
109

111
113
113
113
115
117
117
118
P
119

120
120
120
121

123
125
126
127
127
128

131
133

135
137

141
143
144
145
146
147

TABLE OF CONTENTS (continued)

Research on Document Relationships
Special Bibliography Production

Code Conversion

Data Adaptation

Administrative Information Handling
Computer Production of Library Cards
Serials and Journals

Acquisitions and Accounting

Soft Copy Displays

Subsystem Tuning Aids

APPENDICES

A — Project MAC Memoranda

B — M.I, T, Theses

C — External Publication

D — Project MAC Technical Reports

AUTHORS INDEX

147
148
149
149
149
150
151
151
151
154

156
159
162
173

182

R

vi

b IR = >IN) B S L B AV

10
11

12
13

Table

LiST OF ILLUSTRATIONS

Phase I Multics and Initial Multics Size

The AED Bootstrap Process

An Example of Conversion Flow

Relative Sizes of IBM 360 Hexagon Fieces
Sizes of IBM 360 Programs and Tables
Basic Structure of CIRCAL-II

The CIRCAL-II Command Structure

Data Link for Remote PDP-9/ESL Console System
Sample ARDS Display
ARDS Display Terminal

Present and Planned Display Interface Systems

North Polar Stereographic Projections of Earth
North Polar Orthographic Projections of Earth

LIST OF TABLES

CTSS Price Structure
CTSS System Utilization Summary

Page

45

54

56
56
61
63

73
75
76
79

139
140

Page

- e

A —— e

PERSONNEL

FROM JULY 1967, TC JULY 1968
Committee On

Administration

Prof. R. M. Fano
- Director
Prof. J. C. R. Licklider
- Associate Director
Prof. M. M. Jones
- Assistant Director

G. D. Bernard
A. Bers

K. Biemann
W. L. Black
M. Blum

R. J. Briggs
S. C. Brown
D. C. Carroll
J. G. Charney
S. A. Coons
. J. Corbatd
J. B. Denuis
M. L. Dertouzos

Computation

Dean G. S. Brown (Chairman)

Dean R. A. Alberty
Prof. R. M. Fano

Prof. R. I. Hulsizer, Jr.
Prof. W, B. Kehl

Prof. C. L. Miller
Prof. P. M. Morse
Prof. C. F. J. Overhage
Dean W. F. Pounds
Prof. I.. D. Smullin

Academic Staff

J. J. Donovan
A. Evans, Jr.
R. R. Fenichel
J. W. Forrester
E. L. Glaser
G. A. Gorry

L. A. Gould

R. M. Graham
H. A. Haus

W. L. Henke

F. C. Hennie
R. A. Huwmphrey
1. d Pool

M. M. Jones

R. Kaplow

M. M. Kessler
7. Kohavi

E. Kuh

F. F. Lee

J. D. C. Little
C. L. L.

J. A, Mangano
W. A. Martin
G. H. Matthews
F. A. McClintock
H. 8. Mickley
J. H. Milligram
M. Minsky

—— e ey

e

viii

J. Moses

J. Narud (Visiting)

D. N. Ness

C. F. J. Overhage

S. Papert
R. R. Parker
R. P. Parmelee

H. M. Paynter

R. J. Abbott

M. C. Basile
G. W, Baylor
M. D. Beeler
W. Bennett

R. J. Bigelow
T. O. Binford
B. F. Boudreau
H. E. Brammer
M. F. Brescia
M. L. Cabral
R. H. Campbell
J. J. Cecil

T. B. Cheek

G. F. Clancy
R. W. Cornew
R. C. Daley

T. F. Dempsey
S. D. Dunten

Academic Staff (continued)

P. L. Penfield, Jr.

D. Prerau

J. F. Reintjes
R. C. Rcsenberg
J. H. Saltzer

M. M. Scott-Morton

T. B. Sheridan
L. D. Smullin

Non-Academic Research Staff

C. Duren

M. Eisner

M. N. Fateman
. G. Feldmann
. J. Gardner

Q

. Garman

. W, Gosper
. Greenblatt
D. M. Griffel

W T QW

H. F. Gronemann
J. A. Gunn

J. Harwitt

R. W. Henneman
J. H. Hewitt

F. B. Hills

P. Himot

J. T. Holloway
P. Johansen

E. R. Jensen

C. R. Sprague
K. N. Stevens
A. K. Susskind
R. L. Taggert
D. E. Troxel

J. Weizenbaum

J. M. Wozencraft

D. M. Jordan
R. L. Kusik
T. Lin

J. B. Lovins
C. Marceau

R. S. Marcus
P. Marmarelis
K. J. Martin
W. D. Mathews
S. D. McIntosh
E. W. Meyer
N. I. Morris
L. H. Morton
R. C. Nelson
W, Nissen

W. R. Nofsker
S. Ohayon

M. A. Padlipsky ’
R. B. Polansky

-

Non-Academic Research Staff (continued)

R. L. Rappaport
E. Rodriguez
S. Roe

. T. Ross
R. Ross

. D. Rude

. Samson

. M. Sheehan

. P. Skinner

H WU R SOl s o

P

Sommer

W. H. Southworth

J. W, Spall

L. Rosenbaum

C. Spielman
M. J. Spier
R. L. Stetson
R. H. Stotz
W. D. Stratton

M. R. Thompson

D. E. Thornhill
J. Tretiak

. C. Turnquist
H. Van Vleck

Vezza

@ >3 B0

. Voyat

V. Voydock

D. B. Wagner
J. F. Walsh

M. E. Wantman
J. E, Ward

. Ward
Webber
Weston
White

. Widrig

. Wolman

FPprpFaE e
<~ r8s Pz

. Zara

Instructors, Research Associates, Research Assistants and Others

J. W, Alsop

E. I. Ancona
R. Baecker

E. R. Banks
T. J. Barkalow
W. L. Bass

D. A, Belfer
J. R, Berdell
W. T. Beyer
A. K. Bhushan
J. W, Brackett
S. R. Brueck
R. H. Bryan

J. R. Carbonell

R. A, Carpenter
D. G. Chapman
E. Charniak

P, Choong

S. L. Chou

D. D. Clark

R. Crochiere

S. D. Crocker
J. A, Davis

H. Dietel

P. J. Denning
F. DeRemer
O. J. Dodson
R

. S. Eanes

M. Edelberg
R. Feiertag
M. Fisher

D. L. Flamm
J. C. Free

N. D. Fulton
R. C. Gammill
S. Geffner

M. A. Geller
G. W. Goddard
L. I. Goodman
A, J. Gottlieb
H. L. Graham
J. E. Green

"

Instructors, Research Associates, Research Assistants and Others

(continued)
R. S. Green B. R. Kusse L. Seligman
H. Greenbaum N. Leal-Cantu L. L. Selwyn
R. Greenblatt M. J. Lennon D. R. Slutz
R. P. Greer L. M. Lodish C. R. Smith
I. G. Greif F. L. Luconi T. L. Smith
A, K. Griffith M. E. Manove S. W. Smoliar
J. M., Grochow E. M, Mattison M. Speciner
K. Grossen P. D. McMorran W, Stallings
T. K. Gustafson P. F. Meyfarth J. Stinger
E. G. Guttmann J. R. Miller, III G. J. Sussman
A. Guzman G. H. Mitchell J. R. Sussman
J. A, Hamilton J. H. Morris, Jr, C. W. Therrien
K. Hatch A. Moulton R. H. Thomas
T. L. Hawk J. M, Nead R. C. Thurber
P. Hebalker R. R. Parker C. C. Tillman, Jr,
D. A. Henderson S. S, Patil H.-M. Toong
C. Hewitt D. N. Perkins, Jr. D. Vedder
R. Hodges K. P. Polzen D. H. Vanderbilt
N. Hoeg A, D, Pugh, III R. J. Wald
W. Hutchison H. A. Radizkowski, II R. N, Wallace
W. M. Inglis R. G. Rausch D, L. Waltz
G. P, Jessel C. L. Reeve C. Weissgerber
T. L. Jones M. Richards P, Wieselmann
M. E. Kaliski H. M, Schneider D. A, Wright
W. R. Kampe M. Schroeder C. Ying
L. J. Krakauer L. Selsnick I. T. Young

J. F. Kramer

B] h--'rf_“

T. F, Callahan
D, E, Eastlake

G. Andrews
C. Brandon
K. Carley
J. Cohan

. Crowley
. A, Degan
. Hoeft

J I =

R. Hill
N. F, Stone

C. S. Alles

J. C. Anderson
M. E. Baker

C. J. Carter

L. Cavallaro

B. Chis

J. M. Constantine
K. F. Diamond
L. Frechette
C. D. Graceffa

Technical Assistants

R. Fidler

Operating Staff

Kulick

. Lang
McGillivary
McNamara

Monaco

INCIEC RIS

Moore

Technicians

Machinist

Administrative and Supporting Staff

D. L. Jones

F. Jones

E. Kampits

D. Kontrimus

L. L., Maddaus
. L. McLean

. C. Morr

B

E, T. Moore
S

B, Mutnick

xi

G. L. Rosen

D. Murphy
G. Noseworthy
M. Pagliarulo
D. Peasglee
E. Reardon

J. W, Waclawski

R. G, Splaine

J. E. Pifiella

E. M. Roderick
D. C. Scanlon

L. 8. Sloan

M. Stallings

S. L. Stone

K. M. Tomaselle
M. Webber

C. M. White

xii

. Adleman

N
F. Bates
D

. J. Cameron

. T. Doherty

. Engelmann

. Forte

Gluckstern

. J. Hebert

. L. Lane
S. Lorch
R. J. McDowell
M. T. McGuire

)
K
A
R. B.
H
G

C. Mercer

. A,
: Ay,
5 g
o Ok

Meyer
Miller
Nagai

Quarton

. Scinicker

. Silver

. J. Stone
. R. Strickler

R
G
A
G
A. Sasaki
P
R
P
w

I. Wenger

S. Zurnaciyan

Resident Guests

System Development Corporation
Union Carbide Corporation

Ferranti Limited

Raytheon Mfg. Company

MITRE Corporation

Yale University

UNIVAC Div., Sperry Rand

Shell Development Company

Sandia Corporation

Massachusetts General Hospital
Honeywell EDP

Massachusetts General Hospital
Informatics, for Rome Air Defense Command
IBM Corporation

Harvard University

The Boeing Company

Massachusetts General Hospital
ElectroTechnical Laboratory of Japan
Swiss Federal Institute of Technology
MITRE Corporation

Harvard University

Shell Development Company
Raytheon Mfg, Company

Northrop Corporation

———

TR i T ——

xiii

PREFACE

Project MAC was organized at the Massachusetts Institute of Technology
in the spring of 1963 for the purpose of conducting a research and develop-
ment program on Machine-Aided Cognition and Multiple~-Access Computer
Systems, It operates under contract with the Office of Naval Research,
acting on behalf of the Advanced Research Projects Agency of the Depart-
ment of Defense,

The broad goal of Project MAC is the experimental investigation of new
ways in which on-line use of computers can aid people in their individual
intellectual work; whether research, engineering design, management, or
education, One envisions an intimate collaboration between man and com-
puter system in the form of a real -time dialogue where both parties contrib-
ute their best capabilities. Thus, an essential part of the research effort is
the evolutionary development of a large, multiple~access computer system
that is easily and independently accessible to a large number of people, and
truly responsive to their individual needs. The MAC computer system is a
first step in this direction and is the result of research initiated several
years ago at the M.I.T. Computation Center,

Project MAC was organized in the form of an interdepartmental, inter-
laboratory '"project' to encourage widespread participation from the M.I.T.
community, Such widespread participation is essential to the broad, long-
term project goals for three main reasons: exploring the usefulness of on-
line use of computers in avariety of fields, providing a realistic cornmunity
of users for evaluating the operation of the MAC computer system, and en-
couraging the development of new programming and other computer tech-
niques in an effort to meet specific needs,

Faculty, research staff, and students from ten academic depart-
ments and two interdepartmental research laboratories are participating in
Project MAC, For reporting purposes, they aredivided into fourteen groups,
whose names correspond in many cases to those of M.I.T. schools, de-
partments and research laboratories. Some of the groups deal with re-
search topics tha* fall under the heading of computer sciences; others with
research topics which, while contributing in a substantive way to the goals

of Project MAC, are primarily motivated by objectives outside the computer
field,

Xxiv

The purposeof this Progress Report is tooutline the broad spectrum of
research being carried out as part of Project MAC. Internal memoranda of
Project MAC are listed in Appendix A, and MAC-related theses are listed
in Appendix B. Some of the research is cosponsored by other governmental
and private agencies, and its results are described in journal articles and
reports emanating from the various M.I.T. departments and laboratories
participating in Project MAC. Such publications are listed in Appendix C of
the report, Project MAC Technical Reports are listed in Appendix D,

Robert M. Fano

Cambridge, Massachusetts

ADMINISTRATION

Project MAC Administration

A. Personnel Changes
B. CTSS Operations
C. GE 645 Operations

Development of CTSS Resource Allocation Techniques

|

2 ADMINISTRATION

Academic Staff

R. M. Fano - Director M. M. Jones - Assistant Director

Jd. C. R. Licklider - Associate Director

Administrative Staff

H. E. Brammer J. A, Gunn

M. L. Cabral T. H. Van Vleck

Research Assistant

L. L. Selwyn

ADMINISTRA TION 3

Project MAC Administration - Malcolm M. Jones

A, PERSONNEL CHANGES

Several significant changes in Administrative personnel occurred
during the past year. On 1 September 1967, Mr. Richard G. Mills,
Assistant Director of Project MAC, was appointed Director of Informa-
tion Processing Services for M.I.T., a new position created to coordi-
nate all the education, research, and administrative computational needs
of the M.1. T. community. Mr. Mills continues his association with Pro-
Ject MAC as Consultant to the Director.

Malcolm M. Jones, Assistant Professor of Management in the
Alfred P. Sloan School of Management, was appointed Assistant Director
of Project MAC to replace Mr. Mills. As a member of the Sloan School
of Management research group, Professor Jones has been active in Pro-
ject MAC since its inception. He continues to devote a portion of his
time to teaching and research activities in the Slcan School.

On 1 January 1968, Mr. A, J. Saltalamacchia resigned as Admin-
istrative Assistant to the Director to become the Associate Publisher of
Computer Design magazine. Mr. H. E. Brammer, formerly a member

of the Intelligent Automata group within Project MAC, took over some of
Mr. Saltalamacchia's duties. As part of the realignment resulting from
the departures of Messrs. Mills and Saltalamacchia, Mr. M. L. Cabral
was named Business Manager for Project MAC and put in charge of all
day-to~day business activities of running Project MAC.

On February 15, 1968, Professor J. C. R. Licklider of the Elec-
trical Engineering Department was appointed Associate Director of Pro-
ject MAC. Professor Licklider's initial responsibility was directed
toward formulating plans for strengthening and broadening the research
program of Project MAC.

B. CTSS OPERATIONS

The most significant change in the administration of the Project
MAC CTSS system during the past year was initiating system use charges
on 2 January 1968. Formerly, there had been no charge for usage, but
access to the system had been restricted to those who were closely
associated with Project MAC.

The CTSS administrative utility programs were modified to carry
additional information, and new programs were written to record re-
quisitions authorizing expenditures, produce monthly bills, and terminate
users who ran out of funds or reached their termination date. The charges
for CTSS were the same as had been in effect on the duplicate CTSS system

k]

e ———— e

4 ADMINISTRATION

run by the Information Processing Center and are listed in Table 1. These
charges are computed daily and applied to each vser's balance: if a user

is out of funds he is not permitted to log in the following day. Memoran-
dum MAC-A-259, dated 17 January 1968 describes the charging policy

in detail.

During the first half of the reporting period — 1 July 1967 to 31
December 1567 — CTSS users required a total of 2,214 hours of CPU
time and were logged in for a total of 55, 384 hours. During the remain-
ing time — 1 January 1968 to 30 June 1968 — CTSS users required i, 959
CPU hours and 43, 146 console hours, and were charged $356, 979 for the
CPU time used, plus $206, 409 in fees for console, access, disk storage,
user-file-directory space, and disk editor usage, for a total charge of
$563,388. During the latter period, the total operating expenses were
$539,301. The number of users of CTSS showed a steady decline from
285 in January to 243 by June, due partly to the dollar charges, bui more
because of official policy not to allow any new users on the system, since
the Project MAC CTSS system was to be terminated as soor as the need
for it by the Multics group diminished.

No significant system softwzre changes, other than those required
to improve the billing system, occurred during this pericd and the hard-
ware reliability remained at a very high level. Table 2 summarizes the
overall time statistics for the system.

C. GE 645 OPERATIONS

During the past year, hardware logic bugs were discovered and
corrected in the processor and GIOC subsystems. Also, several prob-
lems with the high-speed drum led to its replacement in September 1967.
However, by December 1967, the 645 system was running reliably in a
dual configuration. In December 1967, General Electric agreed to pay
for half of the 645 configuration, enabling the system to be run as two
separate 645 systems. It was agreed with GE that if any hardware units
were down for maintenance, the two systems would be reconfigured, giv-
ing first priority to maintaining a usable Multics system, at the sacrifice
of downing the GECOS system.,

Development of CTSS Resource Allocation Techniques - Lee L. Selwyn

The objective of this project is to develop on-line interactive
techniques for computer resource allocation, whereby a user may have
direct communication with system administration in ordering the unique
mix of available computer resources that best meets his requirements.

Starting with the design of an experimental system used for the Sloan
School of Maragement Group (see MAC-PR-4, Appendix D) a new scheme

R

ADMINISTRA TION

. i N

TABLE 1
t CTSS PRICE STRUCTURE
} Prime Shift $300/hour
. 8 am - 6 pm
Evening Shift $200/hour
6 pm - 12 pm
Midnight Shift $200/hour
12 pm - 8 am
Weekend Shift $200/hour
8 am Sat. - 8 am Mon.
FIB Shift $200/hour
(Foreground-Iniiiated Background)
Disk Editor $200/hour
- Disk Space $.0067/record/day
User File Directory $1/UFD record/day
[Access Fee $1/day
Console Hours $4/hour for all console hours

exceeding 40 times the total
CPU hours on all shifts.

o=

ADMINISTRA TION

*swrex3o1d jo uorInoexs yojeq TBUOTIUdATOD £q pasn aw) a9Induwiod 943 ST 3wy punoadyoeqg
‘STEUTULIS) 9j0wWal uroxy Surjeasado a1doad £q pasn swt] 399ndwod 3Y) ST 3WI) 9aWI-UuQ it

JIUOW YOed W SINOY JO I8qUINN [EJO] = 9SBT,

[0oTj 022 OoT] ¥¥L [ooT] 022 oo ¥4 [001] 969 L oT) ¥ qIuoly /sanoy Tejol
[oFzce [0¥ L62 fodzse odotvy (27062 [(0g89¢e (amoq 5 s1p1) awry 19910
[8]¢s [8]e6c fo]c¥ [8]¢c¥ [81es [2]es W] S0UBRUSIUTEIY
[2# so¢ [egvee [e¥) vog [8€) €82 [ogje¥e [e¥] e2¢ swr] padiey) 1e1oy
[€]¢2 [¥Je2 ®Jjez ®J12 [¥Joe [€]s2 auIt], punoadyoeg
(68 €82 (67 c9¢ 69182 [c€) 292 BHL1e [0 862 W] sm-uQ

WL pasxeyd
89, aunp 89, ABN 89, 11ady 89, YoIBIN 89, ATeniqed §9, Axenuep +

00T ¥5L oot oz. (00T 3L [oo1] 022 [001] ¥t [oo1] ¥%2 Yo /sInoy [e10],
[¥} oge [sd cve 07 662 [9d 62¢ Gdvee [vJevz (wnoqq 3 atpr) swny 38y10
[6] %9 [8]6¢ BJ19 ENPAS [ifos [o1]9L sun] souEuUaIUTEIY
27 6% [P s1¢ [2gvse [o7vee [sgot¥ [oger¥ suny, padiey) 110y
[e]¥e ¥]ie [Elee RS EREE R dwr], punoadyoeg
[¥¥ see [0%] 282 [H1se [1¥]662 [67]¥o¢ [0g]e2e suny aur-uo

PPHL pasreyd
L9, I9qUIad3(Q L9: ISQUIBAON L9, I18q0300Q L9, Jaqualdag L9, isnany L9, Ainp
+[Juaoa9g] sanoy

AHVININAS NOILVZITILA WAISXS SSI1D

¢ dTdVL

- ——

ADMINISTRA TION 7

was devised involving one new CTSS command (BUYTIM) and about a half
dozen support programs. The BUYTIM package is available to user
groups at Project MAC on an optional basis; only those groups desiring
the facility need adopt it.

Besides providing an individual user with the capability of purchas-
ing allocations of computer time and disk storage space with funds budg-
eted to him, the system also provides a convenient structure for manage-
ment of user groups. Management functions may occur at any of several
distinct levels. The highest level, wherein general budgetary decisions
and the decision to add new groups to the C'TSS system are made, is re-
served for Project MAC Administration. The user group leader can use
BUYTIM to: add and delete individual users within individual projects
(problem numbers); allocate funds available to his group among individual
problem numbers; and establish limits, for each problem number, on the
aggregate amount of computer resources that may be obtained, even where
funds may be adequate to exceed these limits. The user group leader can
also assign some, or all, problem numbers in his group to a common
pool of resources, or establish individual pools for each number. By N
this means, large projects, with several users, have been provided with b
the ability to manage their own use of computer resources, whereas the
smaller problem numbers, consisting of, perhaps, a single user, may
have this function performed for them by the group leader.

Where an individual problem number is to assume some role in its
management functions, the system provides for several levels of control
within the problem number. These include fairly powerful capabilities,
from reassignment of funds and change of password, to total restriction
against any user allocation changes. Individual users may be provided
with the ability to change allocations of other users in the same problem
number, and within this may be permitted or denied the ability to change
funds allocations, passwords, time, or disk.

It is intended that the experience gained in the design and operation
of this allocation system will be applied directly to the operation and
management of the Multics system.

B

ARTIFICIAL INTELLIGENCE

Research on Intelligent Automata

Computational Geometry

A,

Gl S

The SEE Program

The Theory of Perceptrons
Connectedness and Serial Computation
Designing a Stereo Vision System

Theorem-Proving Programs

Chess and Game Trees

Mathematical Laboratory

Interactive Computer-Mediated Animation

Fourier Transform Methods in Image Processing

Structure of Atonal Music

AL}

10 ARTIFICIAL INTELLIGENCE

Academic Staff

M. Blum W. A, Martin S. Papert
M. Minsky J. Moses

Non-Academic Research Staff
R. J. Abbott R. Greenblatt Jd. S. Roe
G. W. Baylor R. W. Henneman P. Samson
M. D. Beeler P. Himot C. Spielman
W. Bennett J. T. Holloway G. Voyat
T. O. Binford W. R. Noftsker J. L. White
R. W. Gosper

Instructors, Research Associates, Research Assistants and Others

R. Baecker C. Hewitt D. N. Perkins, Jr,
W. T. Beyer T. L. Jones C. R. Smith
E. Charniak L. J. Krakauer S. W, Smoliar
S. D. Crocker M. J. Lennon M. Speciner
S. Geffner M. E. Manove G. J. Sussman
A. K. Griffith G. H. Mitchell D. L. Waltz
A. Guzméan
Guests
A. Forte - Yale University R. Silver - MITRE Corporation

K. Engelmann - MITRE Corporation

P TN e —

ARTIFICIAL INTELLIGENCE 11

Research on Intelligent Automata - Marvin Minsky and Seymour Papert

The largest sector of research in our group is still the study of me-
thods for providing machines with greater visual and manipulative capabil~
ities. Our general approach to this goal was described in last year's
progress report. We expect, some time in 1969, to demonstrate some
practical capabilities of automatic, visually guided manipulation, by show-
ing the computer a structure made of children's blocks, and having it
build a functional duplicate. Details of this work are described separately
in the Status Reports of the Intelligent Automata Project, and in many of
the Artifical Intelligence group memoranda available through our office,

Computational Geometry -~ Marvin Minsky and Seymour Papert

Preoccupation with theoretical aspects of machine vision has led us
to crystallize a general concept we call "computational geometry'. This
is a new mathematical speciality concerned with the complexity of compu-
tations necessary to recognize various properties of geometric objects,
The rapid evolution of discoveries in this area has given us hope that it
will lead to new directions for "computer science' in general, by providing
subject matter that combines intuitive clarity and practical importance,
with close connections between classical parts of mathematics — geometry
and algebra, We believe the widely recognized conceptual fragility of cur-
rent ''theories'' about computation is due in large part to their attempt to
build upon excessively abstract principles of automata theory and linguistic
structure, without enough concern for thorough understanding of particular
problem areas in relation to particular machine structures, The following
sections show some examples,

A, THE SEE PROGRAM

Computational requirements lead to geometric questions of an entirely
new sort, such as surely never occurred to Euclid. Consider the need to
analyze a scene in which some of the objects partially obscure others,

The methods described in last year's report presupposed a computer
1nodel or description of each kind of object — cubes, pyramids, etc. Since
then it has become clear, in further work of Adolfo Guzman, that this infor-
mation is not wholly necessary, Indeed, computations are usually much
simpler if based on a more abstract and general theory of the appearances

A

L

vy

12 ARTIFICIAL INTELLIGENCE

of objects, Earlier methods were based on partial recognition of the bodies

such as the scene below:

Here, where all objects are rectangular solids, and do not occlude one

another badly, we can discover the objects by the extremely local process
of locating all the ''Y-joints," Each object contains at most one such dis-

tinctive feature, This could, of course, fail because of perspective:, as in

which could be a cube, or in

(for we require each of the three angles of a Y-joint to span less than 180
degrees), A more serious failure is in the case of occlusion, as in

where one of the Y-joints is completely hidden from view, But the great
power of programs capable of hierarchical decisions is illustrated by the
possibility of first recognizing the small cube, the removing it, then ex-
tending the hidden lines, and so discovering the large cube!

Y ‘T'
The program develgl/)ed by Adolfo Guzman proceeds in a rather different
way; his idea is to treat different kinds of local configurations as provid-

ing different degrees of evidence for "linking'' the faces that meet there,
For example, in the following three types of vertex configurations

I 1 1
ﬁ<‘ % 1 ,%
Y arrow T
the "Y' provides evidence for link*ng I to II, II to I, and I to ITlI, The
"arrow" just links I to II, Becaus: a "'T" is ordinarily the result of one
object occluding part of another, it is not regarded as evidence linking I

to III, or II to II (and it is also neutral about I and II). Using just these

ARTIFICIAL INTELLIGENCE 13

rules, we can convert pictures into associated groups of faces as follows:
We represent Y links by straight lines and arrow links by curves.

DB
4 - &
9-8& .

k]
AP
<M

So far, there has been no difficulty in associating sets of linked faces with
objects. The usefulness of the variety of kinds of evidence shows up only
in more complicated cases. In the example 5

B- 0
' A, A

we find some "false" links due to the merging of vertices on different ob-
jects. To break such false connections, the program uses a hierarchical
scheme that first finds subsets of faces that are very tightly linked (e. g.

by two or more links). These 'nuclei" then compete for more weakly linked
faces. There is no competition in Examples 1-4, but in 5 the single false
links between the cubes are broken by his procedure. In Example 6, if

a very simple "competition' algorithm were not adequate here, one could
also take into account the negative evidence the two T-joints provide

against linking I-III and II-IiI,

(2)

wbes!

14 ARTIFICIAL INTELLIGENCE

We have described only the skeleton of his scheme; Guzman uses several
other kinds of links, including evidence from collinear T-joint lines of the
form

and the effects of some vertices are modified by their associations with
others. This variety of resources enables the program to solve complex
scenes like that illustrated at the beginning of this section.

Full details will appear in Guzman's doctoral thesis to appear in the
spring of 1969. The surprising power and elegance of this algorithm sug-
gests that there will come a rich theory of the geometry of object clusters.
Further evidence for this comes from the discovery of simple heuristics
that seem to generate plausible hypotheses about missing lines in pictures
of complex scenes.

B. THE THEORY OF PERCEPTRONS

For several years, we have bcen interested in finding a theoretical
basis for assessing abilities and limitations of the Perceptron and similar
machines. These are highly parallel computation schemes that attempt to
recognize complicated inputs by 1) computing many properties of the in-
put that are relatively easy to recognize, and then 2) basing a decision on
some relatively simple combination of the results of the first stage, such
as a comparison of weighted sums of evidence for each competing alter-
native possibility.

Our interest in such machinesis not basedon very much concern for their
practical possibilities, for these are very limited. However, itis our
conviction that these mactines are nonetheless of critical importance as
theoretical models, because if we cannot thoroughly understand such simple
computers, we can have little hope of obtaining good theories of more
powerful and general computers. (The '"theory of computability' for

I

——

ARTIFICIAL INTELLIGENCE 15

"universal' machines is totally unsatisfactory in the context of any real
practical problems.) Fortunately, we have obtained a wide variety of
theoretical conclusions about perceptrons, and these are given in detail
in a new book (Perceptrons: an Introduction to Computational Geometry,
M. Minsky and S. Papert, M.I.T. Press, 1969).

We will summarize some of the results here. First, let us define
a perceptron of order K:

Let R be a part of a two-dimensional plane. Let X be an arbitrary
black-and-white "picture (i.e., asubset of R — any point in X is con-
sidered to be black, and the rest of R white). Let ® be a set
{4) » $', @", . . .} of predicates — functions whose values are 0 or 1
— each of which depends on no more than K points. Finally, choose for
each ¢ a number a ¢ and define

V&) = 1if2a8(X) <o
=0 ifz%cl)(X) <9

(This definition includes the concept of "threshold", as in

Lag ¢ (X) <6
if we allow one of the ¢ functions to be a constant.)

Now we ask whether a perceptron can recognize a "pattern'. For
example is there a perceptron such that Y (X) = 1when X is a square (or
convex, or connected) and y (X) = 0 when X is not a square (or not con-
vex, or disconnected)? Our analytic methods depend mainly on replacing
the geometric concept of a pattern by the algebraic properties of the trans-
formations that preserve the features that concern us. We cannot give a
full example of how this is done for geometric concepts, but the following
sketch shows how the algebraic theory works in a fairly simple case.

Chapter references point to corresponding sections in the book Perceptrons.

Theorem 3.1 (Chapter 3) Informal Version

Suppose the retina R has a finite number of points. Then there is no
perceptronza¢¢ (X) > 6 that can decide whether or not "the number of
points in X is odd'" unless at least one of the ¢ 's depends on all the
points of R.

Thus no bound can be placed on the orders of perceptrons that com-
pute this predicate for arbitrarily large retinas. To realize it, a percep-
tron must start with at least one ¢ that looks at the whole picture! The
proof uses several steps,

v

16 ARTIFICIAL INTELLIGENCE

Step 1: In §1.1- §1.4, we define ""perceptron", "order", etc., more pre-
cisely, and show that certain details of the definitions can be changed with-
out serious effects.

Step 2: In §1.3 we define the particularly simple ¢ functions called "masks'',
For each subset A of the retina, define the mask ¢ A(X) to have value 1 if

the figure X contains or 'covers' all of A, value 0 otherwise. Then we
prove the simple but important theorem (81.5) that if a predicate has

order 2 K (see §1.3) in any set of ¢ functions, then there is an equivalent
perceptron that uses only masks of size > K (see §0.2),

Step 3: To get at the parity — the ""odd-even" property —we ask: What re-
arrangements of the input space R leaves it unaffected? That is, we ask
about the group of transformations of the figure that have no effect on the
property. This might seem to be an exotic way to approach the problem,
but since it seems necessary for the more difficult problems we attack
later, it is good first to get used to it in this simple situation. In this
case, the group is the whole permutation group on R —the set of all
rearrangements of its points.

Step 4: In $2 we show how to use this group to reduce the perceptron to
a simple form. The group-invariance theorem proved in §2.2 is used to
show that, for the parity perceptron, all masks with the same support
size — that is, all those that look at the same number of points — can be
given identical coefficients. Let B . be the weight assigned to all masks
that have support size = je)

Group-invariant coefficients for IR| = 3 parity predicate.

Step 5: It is then shown (in §3. 1) that the parity perceptron can be written

in the form
< | x|
28 (15) >

where |X| is the number of points in X, k is the largest support size,
and (I)Ji) is the number of subsets of X that have j elements,

|

ARTIFICIAL INTELLIGENCE 17

Step 6: Because

<n>= 2 (n)(n-1) - -+ (n-pu)

J

is a product of j linear terms, it is a polynomial of degree j in n,
Therefore we can write our predicate in the form

P (|X])>o,

where P, is a polynomial in|X | of algebraic degree < k., Now if [X|is an
odd numklfer, P (X|) >0, while it |X|is even, P (X[) 0. Therefore,
in the range 0 <|X| < |R|, P, must change its dirdction IR| - 1 times.
But a polynomial must have degree > |R| to do that, so we conclude that

k 2|R|. This completes the proof.

i

This shows how the algebra works into our theory. For some of the more
difficult theorems we need somewhat more algebra and group theory.

Here are some of the positive results: that certain patterns have certain
orders,

Patterns of Order 1

§0.8 "The center of gravity lies to the left of a certain given point on the
X-axis, "

2.4 Other similarly defined properties of moments, in fixed coordinate
systems. Includes "The area of the image is less than A."

§1.5 Linear threshold inequalities.

§1.4 "The image is exactly a certain one', or "differs from it by not
more than a given area A, "

18 ARTIFICIAL INTELLIGENCE

I Patterns of Order 2

‘ §7.3 '""The figure is symmetrical about a fixed point in the plane. "

§7.9 "Two figures, on two given lines, are congruent under translation, '
(The coefficients diverge, however, as the retina size grows,)

!
!I
l} 81,6 "The area of the image lies in a certain range, "
§6.2 "The figure lies within an axis-parallel line. "
§0.8 "The moment of inertia of the figure exceeds some threshold, "

Patterns of Order 3

8§7.10 "Two figures on two given lines are translation-equivalent with
bounded coefficients Wi "

86.3 '"The image is a convex figure."
§6.3 "The image is an axis-parallel rectangle. "
§7.7 '"The image is a square." (Coefficients diverge)

§6.3 Any two instances of figures not translation-equivalent can be
distinguished.

Patterns of Order 4

g |

8§7.7 '"The image is a square parallel to the axis." (Bounded coefficients)
§6.4 '"The image is a circle. "

§7.5 "The image has a vertical axis of symmetry." (Coefficients diverge)
(Believed to be unrecognizable in any order for bounded coefficients)

§7.4 Reflection symmetry on a line,

§5.8 "The Euler Number — that is, the number of Components minus the
number of Holes — exceeds a given number, "'

ARTIFICIAL INTELLIGENCE 19

Patterns of Order 5 (or possibly one less)

§8.3 "There is a certain number of convex objects." (No holes permitted)
§8.3 "The total curvature of all the boundaries lies in a certain interval, "

§7.5 "Two plane figures are equivalent under translation." (Unbounded
coefficients)

Patterns of Order 6 (probably)

§7.8 "Two plane figures are equivalent under translation and dilation, "

The remarkable thing about the above results is that the order
remains fixed, regardless of the size of the retina. But for other patterns,
the order increases without bound as the retina is made larger, and it is
fair to say that these are, in a practical sense, outside the conceptual
ability of perceptron-like machines, These include:

Patterns of Unbounded Order

§3.1 "The number of occupied retinal cells is odd." (The order is known
to be equal to the number of points in the retina,)

§5 "The image is a single connected whole. ' (The order is known to
grow faster than,/N, probably grows as (1/2)N.)

5.8 All topological properties except simple functions of the Euler
Number. For example: 'one part of the image lies within a hole
inside another part" cannot be recognized,

§4.0 Certain simple Boolean combinations of pairs of first-order patterns,
This and §3.1 show strikingly how perceptrons differ from serial
computers, for these patterns are very easy for serial machines,

§6.6 Very few of the finite-order properties mentioned above remain
finite order in the context of other figures, or of noise,

C. CONNECTEDNESS AND SERIAL COMPUTATION

Our deepest results in the Perceptron theory are concerned with the
geometric — or rather, topological — properties of connectedness,
Because we felt that there was some inherently serial — or recursive —
character to connectedness, we decided to investigate the computational
geometry of this concept in the context of other mixtures of serial and

\
I

e

20 ARTIFICIAL INTELLIGENCE

parallel machine structures, including Turing Machines and Iterative
Arrays. Some of these are discussed in Chapter 9 of Perceptrons. We
can give here an example of one such result,

Terry Beyer has investigated the time nece ssary to compute
V connected 1D @ Situation that provides a different and perhaps more
natural model for parallel geometric procedures. Suppose that each
square of a retina contains an automaton able to communicate only with
its four neighbors. It can also tell the state (black or white) of its square.
The final decision about whether the figure is connected or not is to be
made by some fixed automaton, say the one in the top left-hand corner,
On the assumption that the states change only at fixed intervals of time,
we ask how many time units must pass before the decision can be mude,
It is obvious that on an n x n retina this will take at least 2n time units,
for this is the time required for any information to pass from the bottom
right corner to the top left. It is not difficult to design arrays of automata
that will make the decision in the order of N time units, where N is the
area of the retina. Beyer's remarkable result is that (2 +€)/N is suf-
ficient, whére e can be made as small as one likes by allowing the automa-
ton to have sufficiently many states,

Thus the order of magnitude of time taken by the array is proportional to
/IN] » which is intermediate between the times taken by the single serial
machine (N) and the most general type of parallel computer which is
known to take < (log N)2. (Perceptrons, Chapter 9)

The following gives an intuitive picture of Beyer's algorithmic process,
The overall effect is that of enclosing a component in a triangle as shown
below, and slowly sweeping it into the northwest corner by moving the
hypotenuse inward,

AN

Each component is comvressed to one isolated point before vanish-
ing. Whenever this event takes place, it can be recognized locally and the
information transmitted through the network to the corner, Thus the con-
nectedness decision is made positively or negatively, depending on whether
such an event happens once or more than once. More precisely, the com-

pression process starts by finding the set of all "southeast corners' of the
figure.

A

ARTIFICIAL INTELLIGENCE 21

In this theory the refinal points are taken to be

a square checkerboard-like array. Two black
* * 1 squares are connected if they share a common
edge, or are in chain of squares so connected.
* (Diagonal corner-contact does not count as a
— connection,)
+ +
The center square is a southeast corner if the

South and East are empty. All other squares
shown may be empty or full.,

In the compression operation, each SE corner is removed, while
inserting a new square when necessary to preserve connectedness as
shown below:

T(x)

r
&

(because,

woulid break
the connection).

The diagonal lines show how repetition of this local process does
squeeze the figure to the northwest.

Repeated applications of this operation eventually reduce each component
to a single point, The next figure shows how it (narrowly but effectively)
avoids merging two components,

il

22 ARTIFICIAL INTELLIGENCE

It is easy to see that a component within a hole will vanish (and be counted)
just in time to allow the surrounding component to collapse down, We do
not know any equivalent process for three dimensions. (Consider knots!)

We believe that further investigations of this sort should lead to a
deeper understanding of parallel computation in general and of the pntential
role of such processes in practical artificial and biological visual systems,

D. DESIGNING A STEREO VISION SYSTEM

Another example of computational geometry is the reconstruction of
a three-dimensional scene from stereo views. In very simple cases — for
example where the scene consists of a single point or line segment — the
problem belongs to prospective geometry. But scenes such as those shown
in discussing SEE raise different problems. One possible approach is to
make an analysis using SEE on each stereo view and then match identified
objects. Another "pure" approach is to use the stereo match as a means of
object identification. In practice, a real vision system would try touse a
mixture of both, In this case a new kind of difficulty arises; that of
manipulating data of varied kinds and varied degrees of reliability.

David Perkins has been developing for his Ph, D, thesis a program-
ming system for handling complex net-like data structures that could allow
information of diverse sorts to be built up in the course of exploring a
scene. The stereo problem is being used as the subject-matter for the
system.,

E. THEOREM-PROVING PROGRAMS

We are concerned about adapting automatic heuristic deductive
programs to problems with large and diverse data base S. Gerald Sussman
has programmed a classical theorem-prover based on the resolution
principle and has begun to gain experience with the introduction of heur-
istics of a more specific sort than are usually employed. Carl Hewitt, at
the other extreme, has developed a system and language called PLANNER
to permit the most diverse possible operations that might be used in proofs.
Neither project is yet sufficiently advanced to warrant detailed analysis of
results.

Chess and Game-Trees - Richard Greenblatt

During the year, substantial progress was made on Mechanical
Chess — a domain that has long been of great interest to workers in
Artificial Intelligence. The program, known as MACHACK VI, has
achieved the level of ability of an average amateur player and has been

ARTIFICIAL INTELLIGENCE 23

accepted as an honorary member of the American Chess Federation. The
clear superiority of this program over all previous ones is interesting both
theoretically and as a visible demonstration of programming techniques
and systems, (See Greenblatt, Appendix C.)

For a long time we have hoped to see a clarification of the theory of
non-terminal Evaluation functions in game-playing, tree-search programs,
One's first inclination is to try to interpret the E-function as an approxima-
tion to an estimate of probability of success, improved by the look-ahead
procedure. No one has been particularly successful at making this inter-
pretation workable. Some promising results on probabilistic strategy theory
are given in a recent thesis by David Johnson,

Mathematical Laboratory - William A. Martin and Joel Moses

It has been our long-term goal to develop a man-machine system for
amplifying the effectiveness of a mathematician working on either applied
or abstract theoretical problems, This project is proceeding in several
directions, to bring together such systems as the previously-reported
Integration system of J. Moses, the Symbolic Mathematical Laboratory of
W. Martin, and the Mathlab of C. Engelman. A two or three-year project
is planned, leading to an on-line system to aid in carrying out complex and
tedious symbolic calculations, and to build up an active store of knowledge
about mathematical algorithms and heuristic methods. We are preparing a
monograph on symbolic algebraic manipulations, Martin is pursuing the
theory of parsing context-free expressions, both as pure theory and in
connection with an on-line parser for hand-written mathematical formulae,
Moses is developing a simplification system of advanced power that will,
for example, be able to convert

1 + 2 log (sin®2y + x + cos‘ly) + log2 (1+x)
log (1+x) + 1

to
1 + log(1+x).

With this, it should be feasible to implement a powerful decision procedure
for integration due to Risch; the system should be able to integrate

1
log 7 - 2 logz+z+1

+
(logzz + z)2 logzz + 2z

H

24 ARTIFICIAL INTELLIGENCE

to

—clogz =, log (logzz + z)

logzz + 2z

A program, called SARGE, which drills students in freshman calculus
integration problems has also been written by Moses. Students are supposed
to type step-by-step solutions to an integration problem. The computer
checks the correctness of the justification (e.g., substitution of variables)
given for each step. Sometimes, though rarely, the computer can give a
reasonable description of the type of mistake the student made in an errone-
ous step.

Interactive Computer-Mediated Animation - Ronald M. Baecker

Standard techniques of man-machine graphical communication have
been supplemented with the capability for immediate viewing of a synthesized
animation sequence. These were constructed using three special-purpose
animation systems which have been implemented with the interactive graph-
ics capability of the Lincoln Laboratory TX-2 computer,

The concept of a table-driven algorithmic synthesis of an animated
display has been developed as an approach to the specification of picture
dynamics. The tables, called movement descriptions, abstract aspects of
behavior that recur over extended intervals of time in a particular animated
display., Rhythm descriptions express patterns of the triggering, pacing,
coordination, and synchronizing of picture change,

Techniques of control that particularly exploit the interactive environ-
ment have been developed. The animator is coupled to the film under con-
struction, both through the sketching and graphical editing of static pictures
of dynamic behavior (expressed by movement descriptions), and through
the dynamic mimicking of desired behavior. The animator's dynamics are
expressed through stylus, push-buttons, and other devices; the language
may be used to construct animated visual displays, to build system tools
that aid the construction process, and to implement special-purpose
animation systems.

Computer time and support for this research have also been provided
by the M.I.T. Lincoln Laboratory, under a contract from the Advanced
Research Projects Agency.

£

ARTIFICIAL INTEI. LIGENCE 25

Fourier Transform Methods in Image Processing - Berthold K. P. Horn

The two-dimensional Fourier transform has been used widely in
optics for the evaluation of image-forming systems, yet has been used
infrequently in pattern recognition and perception studies. It was thus of
interest to find areas of image processing to which the Fourier transform
could profitably be applied. Although the Fourier transform has many
useful properties that indicate its use in image processing (such as trans-
lational invariance) many of these are shared by other functions,

The Fourier transform was found to be useful either in spectral
analysis of small image areas, or as a global image-transformer in:

1) focusing an optical device,

2) restoring a degraded picture,

3) resulution heyond the usual limits,

4) edge detection in a preprocessing pass,
5) confirmation of edges in a given position,
6) least-squares filtering the the presence of noise,

7 dynamic range reduction.

No conclusions have been reached about the usefulness of Fourier
methods in texture description or curvature detection, A computer
program was developed for the PDP-6 to allow experimentation on images
read in through the on-line computer "eye' and the Fast Fourier Trans-
form method was used in this program,

Structure of Atonal Music - Allen Forte

Some aspects of this project, which is concerned with a general
structural description of so-calied atonal music, have been presented in
Progress Report III and, more extensively, in MAC-TR-39, (See Appendix
D.) During the past year the score-reading program, which parses an in-
put string representing standard music notation, was improved in the direc-
tion of greater generality and efficiency, and more effective tools were
developed to deal with certain basic problems of musical analysis. In
particular, the notion of time-point states has led to a solution to the
problem of segmentation (the determination of structural units) and has
suggested some useful ways in which relations between such units might be
displayed. The task of constructing an appropriate model for this music

remains difficult, Work done thus far has suggested several possibilities
which are currently being programmed.

g

it U VU Y

LANK PAG

#

} &
i .
1

{
¥

i

e =

o

27

COMPUTATION STRUCTURES

Resource Allocation in Multiprocess Computer Systems
Asynchronous Computational Structures
Flow Graph Schemata
Theory of Program Graphs
Asychronous Cooperative Multiprocessing within Multics
A Radical Computer Organization ‘,'
Phase Structure Grammar for Planar Patterns

Structure Theory of Finite-State Machines

Table-Driven Compiler System

28 COMPUTATION STRUCTURES

Academic Staff

J. B. Dennis Z . Kohavi

F. C. Hennie C. L. Liu

Instructors, Research Associates, Research Assistants and Others

R. A, Carpenter P. Helbalker L. Seligman

P. J. Denning D. A, Henderson D. R. Slutz

M. Edelberg F. L. Luconi D. H, Vanderbilt

J. A, Hamilton S. S, Patil C. Ying
N——— 7

Resource Allocation in Multiprocess Computer Systems - Peter J. Denning

The dynamic allocation of limited processor and main memory re-
sources in a user community has been investigaged, as a supply-and-
demand problem, in four phases. (See MAC-TR-50, Appendix D.)

First constructed was a model for program behavior; such a model
is needed, because one's ability to analyze an entire computer system, and
indeed one's philosophy of resource allocation, depends on understanding
program behavior. The model constructed — the working set model — is
based on locality, the concept being that, during any interval of execution,
a program favors a subset of its information; a working set being a dynamic
measure of a computation's set of favored information, A working set
storage management policy allocates processors to a computation if and
only there is enough uncommitted space in main memory to contain its
working set. Under such a policy, a computation acquires and releases
storage as needed, independently of other computations. Because com-
putations are thus made statistically independent, it has been possible to
derive many detailed properties of such policies, both in shared and un-
shared situations. A problem plaguing many contemporary computer
systems is thrashing, i.e., the collapse of system performance due to
excessive paging. The working set model provides an explanation for this
phenomenon and reveals preventive methods.

A

COMPUTATION STRUCTURES 29

In the second phase, the properties of system demand were defined
and studied., A computation is regarded as the basic demand-making
entity, placing demands jointly on processor and main memory resources,
Its system demand is a pair (processor demand, memory demand),
where its processor demand represents its immediate processor require-
ment (intensity and durationj, and its memory demand represents its
immediate main memory requirement (its working sot size),

In the third phase, the properties of dynamic system balance
were defined and studied. Computations that demanded resources were
segregated into two classes: the standby set, to which the use of system
resources is temporarily denied, and the balance set, to which the use
of system resources is granted. A system is balanced when the total
system demand of the balance set matches the system capacity. A balance
policy is one of resource allocation which regulates membership in the
balance set so that balance is maintained. Balance policies are formulated
as mathematical programming problems whose solutions are found dy-
namically by the scheduler., Bounds on the system capacity required to
implement fair balance policies were found. We have shown that, in
computer systems which page on demand from a drum, the scheduler
must give top priority to maintaining memory balance. In this relatively
special case, the mathematical programming has a simple solution,
which is exhibited as an algorithm for the scheduler.

In the fourth phase, these ideas were applied to design and adminis-
tration of multiprocess systems. An important equation relating hardware
configuration (i.e., relative Processor and memory capacities) to program
behavior and secondary memory access time has been derived. An exten-
sion of the working set model provides criteria for managing multilevel
memory systems. The need for pooling processor hardware at a fine
level of detail was demonstrated as a prerequisite for obtaining the proc-
essor capacity that will be needed in future systems. Finally, appropriate
measures of system performance were investigated.

In general terms, this work is intended to fulfill three goals. First,
it represents a new approach to modeling the behavior of computational
processes in complex environs. Second, it provides a general, unified
philosophy about resource allocation and sharing. Most importantly, the
work is intended to enkindle new thinking about the design, the analysis,
and the administration of multiprocess computer systems.

Asynchronous Computational Structures - Fred L. Luconi

Two trends have begun to appear in the design of modern digital
equipment: one toward the increased use of modular systems, the other
toward concurrent or paprallel Processing. Tle '"computational schema"
model was developed as a tool for dealing with these trends.

w

TSN

2
Hhng

30 COMPUTATION STRUCTURES

(See MAC-TR-49, Appendix D.) This mathematically formulated schema
provides a descriptive discipline in which to represent computational
structures,

The theory of systems from which the schema model evolved is not
concerned with state behavior, but with activity described by chains of
consequences. Each basic operation in a schema is assumed to react in-
dependently only to that information in the system to which it has direct
access. The result is that computational schemata — unlike conventional
programming languages — can be used to represent systems in which
several asynchronously communicating processes may proceed concur-
rently. Also, one does not have to deal directly with total system states
that, in practical systems, are unmanageably large in number,

In addition to representational attributes, computational schemata,
have interesting mathematical properties. We developed a theory of asyn-
chronous intermodule communication which implies important and useful
properties of modular systems. In particular, output-deterministic Sys-
tem behavior was related to conditions on subsystem communication,

The theory of computational schemata has several interesting appli-
cations. It provides a basis for a digital system design language. It's a
tool in developing methodologies of modular hardware and software design.
And most important, it injoins other attempts to create new mathematical
concepts in the field of information processing.,

Flow Graph Schemata - Donald R. Slutz

A model called a "flow graph schema'" — an extension of work by
Karp and Miller* — has been formulated aud studied extensively. Model
components are a set of memory cells, a set of operations, and a control.
The memory cells store values, and the operations are used to effect
transformations over these values. Each operation is able to read values
in certain cells and write values into certain (not necessarily distinct)
cells. Sequencing of various reads and writes is governed by a control.
The model operates asynchronously and allow: for parallel computation.
A flow graph schema is an uninterpreted model for a computation in the
sense that no specific meaning is associated with its operations or the
quantities manipulated. The research covers three principal topics.

The first topic concerns determinacy. A model is determinate if
results of a computation depend only on initial values and not on any model
timing properties. Necessary and sufficient conditions for determinacy
have been worked out, and a decision procedure was devised for testing
these conditions in a large class of flow graph schemata,

*Karp and Miller, Parallel Program Schemata, IBM Research Report
RC 2053, IBM Research Division, April 1968

_ Laaas

o\

COMPUTATION STRUCTURES 31

The second topic is equivalence of schemata. We have shown that
equivalence is generally undecidable, but for a large class of determinate
glow graph schemata, equivalence is decidable. The decision procedure
involves flow graph schemata that are in a maximum paralle] form, which
can always be found for flow graph schemata in this class,

The third topic concerns equivalence preserving transformations on
the control structure of a flow graph schemata. Sufficient conditions for
equivalence were formulated that depend only on the portion of the struc-
ture to be transformed. A procedure was devised to test these conditions,
and the problem of obtaining a maximum parallel form through a sSequence
of local transformations was considered.

A brief evaluation of ~urrent and future computational systems is
made, in terms of the results obtained for flow graph schemata, and a
number of interesting extensions of this work are suggested, in a Doctoral
thesis to be published as MAC-TR-53,

Theory of Program Graphs - Jack B. Dennis, Fred L. Luconi, and
Suhas S. Patil

The studies of Luconi (see this section) and Rodriguez (see Rodriguez,
Appendix B) have provided the basis for developing an exposition of com -
putation schemata and program graphs for undergraduate instruction*,

This effort has produced a simplified version of the theory chat starts
from a limited model suitable for the description of digital hardware, and
extends this model by stages to encompass features, such as recursion
and information structures, essential to the descriptions of algorithms in
general., Thus the research carried on by the Computation Structures
Group is strongly interacting with the current effort to formulate a quality
undergraduate curriculum in Computer Science.

Asynchronous Cooperative Multiprocessing within Multics -
Prakash K. Hebalkar

Existing systems do not allow for cooperative multi-processing,
i.e., computations consisting of several concurrently operating processes
which actively use shared data-bases. If all data references were fully
synchronized to avoid conflict, such computation would be possible. Cur-
rently, however, such synchronization is nearly impossible., Wten asyn-
chronous operation of processes is permitted, output-functionality — i, e, ,
the propcrty that results of a computation are reproducible — becomes
the chief consideration; but it is difficult to obtain in practical systems.

*J. B. Dennis, et al, notes for M, I, T, Course 6.232 "Computation
Structures', Department of Electrical Engineering, 1968

2
Héeg

— e e

32 COMPUTATION STRUCTURES

The model for output-functional cooperative multiprocessing de-
veloped by Van Horn (see MAC-TR-34, Appendix D) has been used as
the basis for a subsystem of Multics that would ensure the output-function-
ality of multiprocess computations (See Hebalkar, Appendix B.)

Operation of processes on segments is controlled, using the Multics
access checking mechanism, so that conflicting data references are con-
strained to produce unique sequences of values. Procedures for use in
this control of access, and for the creation and deletion of processes in
a convenient manner, have been defined in detail,

The proposed subsystem ensures that all computations performed
within that environment will have reproducible results with minimal re-
strictions, Multiprocessing in the subsystem requires fairly substantial
units of computation by each process to attain efficient performance, as
access control is implemented by software means,

A Radical Computer Organization - Jack B. Dennis

In a paper presented at the IFIP Congress 1968*, two trends are
cited as being most important in determining the architecture of future
large-scale computers. One is the increasing need for computer designers
to obtain greater performance through the use of parillelism in computer
operations, The other is the increasing dominance of programming costs
relative to the cost of computer hardware. The paper argues that these
factors will eventually necessitate computer architecture radically dif-
ferent from the forms familiar to us during the first two decades of
stored-program machines. In particular, the ability to couple independently
written programs together to form larger programs — a system property
called "programming generality'" — requires that systems implement
location-independent means of referencing information. The attainment
of efficient use of memory and processing equipment in such systems
requires exploitation of parallelism within programs.

*J. B. Dennis, "Programming Generality, Parallelism, and Computer
Architecture", Proceedings of IFIP Congress 1968 (Also as Computation
Structures Group Memo No, 32, Project MAC, M.I, T, , August 1968

COMPUTATION STRUCTURES 33

The outline of a computer design which could meet these requirements
is given in the paper. The design is based on the use of program graphs
(which exhibit parallelism in a computation) as the representation of
programs, and a general model for hierarchical information structures,

Phase Structure Grammars for Planar Patterns - D, Austin Henderson

The problem of providing a precise Specification for classes of
two-dimensional symbolic patterns, such ag all mathematical expressions
like

1

(ﬂ ":“ xef) (zfn f(z) dz)

2,04

X +y +

has been studied, One approach is to define special symbols indicating
spatial position, to be inserted between symbol strings to as to trans-
form the problem to one of string syntax, whicl may be handled by known
methods, A similar approach has been suggested by Anderson*, in which
the special symbols are replaced by complex positional predicates, In
studying character recognition, Narasimhant used head-tail patterns to
define sets of letters, placing them together, according to algorithmic
pictorial rules, to generate larger patterns.

A review of these and similar techniques for pattern specification
has led to formulation of an approach based on g2neralizing the notion
of phrase-structure grammars to planar or higher-order arrangements
of symbols, The syntactic types are now thought of as being n-dimensional
aggregates of symbols (two-dimensional patterns in the case of mathe-
matical notation), Positional relations between such aggregates are ex-
plicity indicated, in contrast to the implicit left and right juxtaposition
relationships in phrase-structu-e grammars,

*R. H. Anderson, "Syntax-Directed Recognition of Hand-Printed Two-
Dimensional Mathematics", presented at ACM Symposium on Interactive
Systems for Experimental Applied Mathematics, August 1967

iR. Narasimhan, "Syntax Directed Interpretation of Classes of Pictures",
pbresented at ACM Workship on Programming Languages, August 1965

34 COMPUTATION STRUCTURES

The problem of pattern specification is recognized as being separ-
able into two related but distinct problems, that of lexical analysis
(determining which terminal shapes exist and what their relationships to
each other are) and syntactic analysis (collecting terminal symbols and
aggregates into higher-level aggregates and identifying their syntactic
type). The fundamental form of grammatical rule used is a pattern re-
placement, analogous to the rule of a context-sensitive grammer., The
notation closely parallels the AMBIT/G programming language, Re-
stricted forms and notation were developed for the context-free case,
providing a specification language which may be considered the Backus-

Nauer Form for two-dimensions. Some notations for specifying highly
context-sensitive pattern languages were examined, and a two-dimensional,

regular-expression-like notation was developed.

Structure Theory of Finite-State Machines - Chung L. Liu

The structure theory of information transducers was studied, A
certain class of information transducers, including all finite-state
machines, is characterized by lattice functions describing the transforma -
tion of input information to output information, These transducers can be
further classified by their characterizing lattice functions being isotone
functions, join homomorphisms, meet homomorphisms, and lattice
homomorphisms, Correspouding to these lattice functions, algebraic
systems known as pair algebras can be defined, The mathematical
properties of pair algebras, and their applications to the structure
thcory of finite-state machines, were investigated,

A problem concerning the structure of stochastic finite-state
machines was also studied, A stochastic finite-State machinc is said to
be dcfinite if its state probability distribution is independent of its initial
state probability distribution after a finite number of transition steps,
An algorithmic procedure for testing the definiteness of stochastic
finite-state machines was found,

Table-Driven Compiler System - James A, Hamilton, Chung L. Liu

Previous work on compiler systems was extended. A generalized
translator system was designed and implemented, with efficicney and
flexibility as primary objectives, The salient features of the system are:
(1 a highly machine-like, table-driven compiler which allows the
designer to specify his own translation algorithm in terms of primitive
operations which are well matched to the problem; and 2) a table gencrator
which provides a low-level, assembly-type language in which to cxXpress
these primitive operations, Details of the translator system, together
with a working compiler designed as an illustracive example, were des-
cribed in a Master's thesis by J. A. Hamilton, (See Hamilton, Appendix
B.)

35

COMPUTER SYSTEM RESEARCH

CTSS and Multics System Development

A,

B.

Introduction

System Integration Benchmarks
Performance Improvement
Other Efforts

Hardware

Future Plans

| : 36 COMPUTER SYSTEM RESEARCH

Academic Staff

i F. J. Corbats A. Evans, Jr. R. M. Graham
J. J. Donovan E. L. Glaser J. H, Saltzer

Non-Academic Research Staff

f R. H. Campbell . W, Meyer M. J. Spier
ol Jd. H. Cecil N. I. Morris M. R. Thompson
! G. F. Clancy M. A. Padlipsky M. C. Turnquist
R. C. Daley S. Ohayon T. H. Van Vleck
S. D. Dunten R. L. Rappaport V. Voydock
' M. N. Fateman S. L. Rosenbaum D. B. Wagner
R. J. Gardner T. P. Skinner M. E. Wantman ’
G. Garman W. H. Southworth S. H. Webber
C. Marceau J. W, Spall D. R. Widrig
K. J. Martin
Instructors, Research Associates, Research Assistants and Others
E. 1. Ancona R. Feiertag M. Schroeder ‘
o D. D. Clark H. Greenbaum R. H. Thomas
H. Deitel J. M. Grochow
| Guests
! N. Adleman - System Development Corporation
’ H. J. Hebert - Shell Development Company
C. Mercer - Informatics, for Rome Air Defense Conmimand
A, Sasaki - ElectroTechnical Laboratory of the Japanese
! Government
P, Schicker - Swiss Federal Institute of Technology

W. R. Strickler - Shell Development Company

COMPUTER SYSTEM RESEARCH 37

CTSS and Multics System Development - Fernando J. Corbato

A. INTRODUCTION

From July 1967 through June 1968 , the Computer System Re-
search Group devoted its attention almost entirely to Multics system
development, The Multics (Multiplexed Information and Computing
Service) system is a collaborative venture of Project MAC, the General
Electric Corporation, and Bell Telephone Laboratories, on the GE 645
computer. As personnel from each group are involved with most of
the efforts on the system as a whole, no attempt will be made in this
report to separate out one group's contribution to the overall progress
of Multics, The only activity of the Computer System Research Group
not directly related to Multics — and one which is gratefully
acknowledged — was the consultation and supervision of maintenance
and accounting activities for CTSS (the Compatible Time-Sharing
System) provided by Thomas Van Vleck, in addition to his work on the
Multics Project,

At the beginning of the reporting period, the initial Multics sys-
tem planning and design was essentially complete. Therefore, the
primary effort expended during this period was directed toward imple -
mentation issues. As discussed below, certain redesign work was
performed; but, on the whole, the production and integration of indi-
vidual modules was the primary concern. "Integration' of the system —
that is, causing separately coded modules to perform properly in the
system environment — is a major task in any system development,
Despite a high degree of planned, functional modularity in the Multics
design, integration was still found to be a major effort, since Multics
contains a large number of modules, with complex interdependencies.

B, SYSTEM INTEGRATION BENCHMARKS

As related in last year's report, various "benchmarks" have been
defined to gauge development pregress. The first of these, called
"Phase .5", was actually achieved in June of 1967; we recapitulate
here, as the Phase .5 system offers the context for the remaining
benchmarks. The system's fractional designation was due to the fact
that it was a pre-Multics System. That is, the environment in which
the system operated was not a true Multics "process' one, but a
"pseude-process" environment which used an adaptation of the GECOS
monitor. Interaction was provided through the operator's typewriter
on the GE 645, The Phase .5 system comprised the Basic File System
of Multics. As this subsystem is considered to be fundamental to
Multics, it received the earliest attention in both design and

£y |
i rg |

38 COMPUTER SYSTEM RESEARCH

implementation. The Phase .5 system demonstrated the workability of
the Multics notions of segmentation and paging, as well as the work-
ability of the hierarchical file system structure.

By December of 1967, the ""Phase 1" system had been demon -
strated. Self-iiitializing from a reel of tape, this system not only
operated it, but itself established, a Multics "process' environment.
The Phase 1 system comprised one process, with intecaction furnished
through a standard Multics console. In addition to the Basic File Sys-
tem, early versions of the Input/Output System and the Command
System were present. However, the Traffic Controller was not as yet
present; hence, the Phase 1 system possessed no multi-programming
or multi-processing abilities. The command repertoire was limited to
simple commands, primarily dealing with file sysiem functions.

Phase 1 was, though, the first '"real" Multics system.

An early version of the Traffic Controller was integrated with the
Phase 1 system in March of 1968, thus demonstrating the ability to
perform multi-programming and multi-processing, and also allow new
processes to be created by the working Multics system. Commands
were executed by several users working from several consoles. The
final major module to be integrated during the reporting period was
Access Control, in May of 1968. This module furnishes protection of
segments in two distinct senses. First, supervisor segments are
partitioned from user segments by a series of "protection rings'',
Access to supervisor segments is limited to defined points that are
"gates' in the protection "walls". As the segments which constitute
the Multics supervisor are themselves part of each process, this first
form of protection may be thought of as intra-process protection. The
second sort of protection which Access Control provides is that of
"inter-process" protection; that is, the ability to mark individual seg-
ments, whether or not they be members of the supervisor, as being
protected from users other than their creators.

By the end of the reporting period, the Demonstrable Initial
Multics benchmark was near completion. All of the modules necessary
to fulfill the definition of the system (essentially equivalent to the
"Initial Multics" binchmark described in 1ast year's report) were avail-
able, but further debugging and integration tasks remained to be per-
formed. The performance requirement for this system is the ability to
support about eight users doing useful work for a reasonable time (on
the order of a few hours) before encountering a system difficulty which
must be debugged off-line. Shortly after the Demonstrable Initial
Multics benchmark is achieved, a further benchmark, called Limited
Initial Multics, is expected to be reached. At this point, final

COMPUTER SYSTEM RESEARCH 39

integration and development work will be performed, essentially under
just the Multics system. That is, there will be no further dependency
upon CTSS for source file creation and editing., (Under Limited Initial
Multics, there will for a time probably be some need for the GECOS
environment, for a certain amount of compilation and system tape
generation, until the system compiler and assembler are performing
efficiently under Multics.)

A version of the system is expected to be available to members of
the Project MAC user community, beyond the Multics development
workers, early in 1969.

C. PERFORMANCE IMPROVEMENT

In parallel with the integration tasks discussed above, a major
effort has been directed at improving the performance of each version
of the system as it evolved. (A performance improvement is either a
means of furnishing more rapid response to a given user or a means of
allowing more users to employ the system simultaneously.) There are
two broad categories of performance improvements: redesign of
selected modules, and the application of certain optimizing strategies.

The optimizing strategies, in turn, are of two sorts: The first
and more obvious is that of improving the compiler for the language in
which the bulk of the system is encoded. During the year, the EPL
(Early PL/I) compiler was subjected to close scrutiny, and its code
generation improved, Further, increased understanding of the com-
piler on the part of the programming staff allowed for recoding,
especially of commands, in order to employ optimal tactics. With the
latest version of EPL, an enlightened programmer could reduce pro-
gram bulk by some 50 percent or more. The importance of improve-
ments to the compiler cannot be overstated: in at least one case,
recoding and recompiling led to a reduction to one fifth the previous
size. At the same time, a full, optimizing PL/I compiler is under
development, When available, this compiler should "automatically"
afford considerable further code tightening. The second, less obvious
strategy is "binding'". This technique all the combining of separately
compiled segments into single segments. Binding improves system
efficiency in several ways: linkage faults are reduced in number,
missing segment faults are reduced in number, and the bookkeeping
necessary for maintaining segments in a process is minimized. By the
end of the reporting period, a large number of the segments comprising
the current version of the system were bound,

-

S

40 COMPUTER SYSTEM RESEARCH

, The redesign of various system areas proved to be especially

« fruitful in improving system performance. This is particularly true

! because initial encoding of a given system portion is often of "first

l draft" nature; that is, after completion of a system area, the consequen-

cies of a functional specification are fully evident. In the case of a

simple module, the normal procedure is for a programmer to iterate

the design in his head, trying out alternatives and eventually settling on

| the choice which works out most effectively in the situation. In the case

of a large functional area, however, this iteration is usually beyond the

capacity of even gifted programmers. The only recourse then seems

- to be to try out the design, evaluate the performance, isolate the dif-
ficulties and, in a deep sense, understand better the process that is

I being programmed. In this way the next iteration of design is possible
and recoding can commence. Historically, this effect is not unfamiliar:
for instance, the initial versions of the Fortran compiler for various
machines were quite large and cumbersome, and required rather ,
large-scale development efforts to produce; contemporary Fortran ;
compilers, benefitting from some ten years of iteration, can be sur-
prisingly compact, and are produceable by one- or two-man teams.
The point is that the initial implementation of a (functionally) large
program tends to be primarily concerned with causing the desired
functions to be performed at all; causing them to be performed in an
efficient, "tight" fashion is often relegated to the status of a second,
discrete step.

The following areas underwent major redesign and/or extensive
recoding during the reporting period:
ios Tin The logic required for processing a missing page fault was
reduced, from a time consumption of some 90 milliseconds
to a time consumption on the order of 15 milliseconds.
(Note that the 90 milliseconds figure itself represents a
i reduction, through recodings of the earlier logic, from a
level of some 200 milliseconds.)

2. Several iterations of the typewriter 1/0 system reduced it
from over 40K instructions in length to fewer than 10K
instructions.

3. The Shell — the command language interpreter and primary
module of the Command System — was reimplemented, re-
ducing its bulk from over 20K instructions to fewer than 3K.

N

COMPUTER SYSTEM RESEARCH 41

10,

A new version of the standard context editor command was
produced, of fewer than 3K instructions, a reduction from
over 50K instructions.

The amount of "wired-down core' — that fraction of
memory which must be reserved for the system-wide in-
formation and code necessary to process a page fault non-
recursively — was reduced by virtue of various redesign
efforts from more than 130K to less than 80K. (Also, addi-
tional functions are performed at this reduced level which
were not performed in the previous version,)

The Core Control module — responsible for finding and
freeing blocks of memory into which new pages are
brought — was redesigned, reducing the number of instruc -
tions required from some 24K to about 1K. (Recoding and
recompilation of the earlier version had resulted in a 5K
version, again demonstrating the gains experienced via
EPL improvement.) The Core Control data base was re-~
duced from about 12K words to about 2K words by the
redesign. A further redesign is projected which will
eliminate Core Control as a separate entity, subsuming its
functions under other parts of the File Systen.

The "GIM" — the interface module between the 1/0 system
and the Generalized Input/Output Controller (GIOC) — was
reduced from some 65K instructions and data to some 8K
instructions and data after one large redesign.

The "Drum DIM" — the interface module between the File '
System and the high-speed drum — went from about 65K
words of instruction and data to about 15K as a result of |
recoding and recompilation, then to some 2K through a re- “
design. A further redesign is projected which will reduce

the total number of instruction and data words to approxi-
mately 1K, !

A redesigned version of the Inter-Process Communications
facility requires some 10K, down from over 40K. Further !
simplifications are expected to result in an TPC of about 4K,

The Segment Management Module (SMM) — responsible for '
locating segments in the file hierarchy by symbolic name, '
and maintaining the relationship information in regard to

fon|

42 COMPUTER SYSTEM RiZSEARCH

segment names and numbers — underwent drastic rethink-
ing. Originally an independent module of over 30K instruc-
tions, with an extensive dedicated data base, the SMM
became a portion of the Basic File System comprising some
5K instructions, while the data base was eliminated com-
pletely, its functions being included in an existing data base.

11. A global change in system logic was the combining of link-
age sections for many segments into single linkage
segments. This ""combined linkage segment' approach
radically reduces the number of segments (and consequent
bookkeeping) in a process. An indirect measure of the
results of this change was that system initialization time
decreased by one half when it was installed.

12, Finally, the amount of time necessary for the system to
initialize itself was reduced, by virtue of extensive re-
thinking and recoding, to approximately 5 minutes from
over 45 minutes.

With the exception of the page fault path and system initialization,
direct timing figures are unavailable. However, one of the conse-
quences of a paged environment is that space reductions automatically
lead to time reductions because of the smaller number of page faults
incurred by smaller modules. (Fewer instructions also require less
time to execute, of course.) A further advantage which accrues is that
with each user process made smaller, the number of multi-program-
mable processes in a given amount of core increases. Thus, the
reductions in bulk cited serve both of the performance improvement
goals mentioned earlier: each process expends less time, and more
processes can be accommodated.

The implications of the performance improvement efforts under-
taken merit further discussion, in the general context of principles of
system design and development. Although in practice they are not
necessarily separate, let us consider first recoding, then redesign. _
There are two points to be made about the coding problems. First, -
despite the fact that the use of a high-order language continues to be
very valuable, as discussed in previous reports, it does leave the
project somewhat vulnerable to the chosen compiler's inefficiencies.
Having a compiler which generates good code early in the history of a
project is particularly desirable because it facilitates resolution of the
ambiguity as to whether performance is being hampered by the design
or by the implementation. Second, even with a good compiler, coding

-

COMPUTER SYSTEM RESEARCH 43

"style'" is a factor which is often not given enough importance. There
are frequently alternate ways of encoding the same algorithm, and
superior and inferior ways must be identified. The point at issue here,
which may be obvious, is that certain encodings invoke more elaborate
mechanisms and code constructs from the compiler than do other
encodings.

The implications of the redesign work are less obvious. However,
it may be observed that even the extremely competent people working
on the project experienced difficulties in seeing in advance the full con-
sequences of a given design of a given functional area, Many times, an
initial design of a iunctional area was found to rely too heavily on
structural modularity, and the improved design turned out to be a
single unit (segment) in place of a number of units (segments). That is,
the consequences of a compact design seem to be far easier to grasp.

It is possible that the solution to this problem lies in expending far
more effort on reviewing and mentally "stepping through" system de-
signs than is typically done. The difficulty with this approach is that
it is very hard to evaluate a design without actually using it. There-
fore, what seems to be needed is a judicious balance of pre- and post-
implementation design iteration,

D. OTHER EFFORTS

In addition to the integration and performance improvement tasks,
various other efforts were performed during the year. Foremost among
these was continued expansion of the command repertoire, beyond the
immediate needs of the various benchmark systems. Development work
took place upon numerous compilers, including FORTRAN, FL (a Function
Language developed by the General Electric staff), the full PL/I
mentioned earlier, BCPL, and SNOBOL. Also, planning was begun for
implementing the AED language under Multics.

Several additions were made to EPLBSA, the system assembly
language, during the year: nwltiple location counters were added;
relocation bits for binding were implemented; the ability to produce a
symbol segment was added; and commented linkage sections are now
produced.

The following development tools were implemented: A 'tape
daemon', which allows magnetic tape input and output under the
Demonstrable Initial Multics System; a new version of the ""merge
editor", which is used for creating input tapes to GECOS for compila-
tion and assembly, for use under Multics; and a new version of the
Multics System Tape Generator, also for use under Multics. The

44 COMPUTER SYSTEM RESEARCH

latter two features are especially important to the Limited Initial Multics
system, which is to operate independently of C1'SS. Also, a Multics
Bootload Operating System (MBOS) was produced; this system allcws

the operations staff to perform consecutive system tests and take dumps
when necessary, as well as to record the state of a running system for
subsequent restoration.

In the area of documentation, it may be noted that the Multics
System Programmers' Manual grew from 373 sections at the beginning
of the year to 586 sections by the end of the year, with total pages
going from 2,258 to 3,470. In addition, Professor Elliot Organick's
Primer for Multics Sub-System Designers has continued, with three
chapters already published and three others in advanced draft states.
Finally, detailed planning and some initial writing of a Multics Users'
Manual began during the year; this manual to be available at the advent
of the Operational Initial Multics System as the primary public source
of usage information about the system.

Figure 1 oifers a bar chart depicting the growth of the system
during the reporting period. The units are pages of source code. By
the end of the reporting period, the checked-out code in the system —
exclusive of translators — totalled some 350,000 instructions.

E. HARDWARE

As to be expected with prototype hardware, there were some
transient instabilities during the year. The only major difficulty
encountered was with the magnetic surface of the drum, which had
flaked, requiring a replacement unit.

The two-processor configuration at Cambridge was partitioned
into a ""GECOS machine" and a "Multics machine'". The former, which
has 128K of core at its disposal, is employed for compilation and
assembly runs, as well as for module check-out in the pseudo-process
environment. The latter, which has 256K at its disposal, is used for
"bootloads" — that is, for testing in the Multics environment by
initializing the system from tapes, beginning with a figurative or
literal push of the bootload button — and for console sessions in which
the current version of the system is used for productive work.

In the fall of 1968, it is anticipated that "Phase B'' production
model hardware will be brought in.

45

COMPUTER SYSTEM RESEARCH

i1
i
t

A

9Z1S SOUMN [eNIU] Pue SO | 8Seqq T oandig

(3L YWI1153) S39Vd AIGODNN

S$39Ovd Q3aod
QILVYOILINI ANV QILVAITOSNOD 13V ANV “JIA0EIV ANV GINDIHD-LINN JdV LVHL S3IOVvd

a0

(SYOLVISNWVAL 4O JAISNTOX3I) IOV 300D IDINOS
0081 0091 oovl 0,074 0001 008 009 ooy 00¢ 0

L N l l J | I 4 1 i
T

J | ¥ T T | LI L]

8961 INNC O€

8961 1ddV 1

8961 "NVI 1

£961 "100 1

L961 ANl €

——
-
L o
e
-
E
e
——
-

0081 0091 oorl 00zl 0001 008 009 ooy 00¢ 0

46 COMPUTER SYSTEM RESEARCH

F. FUTURE PLANS

It would perhaps be of interest to summarize the future plans dis-
cussed previously. Improvement of system performancs will continue
to be a major goal; important modules of the supervisor for which re-
designs are already under development are Page Control and Traffic
Control. A second area of performance improvement is the PL/I com-
piler now being implemented; when available, this compiier will be
employed to re-compile the existing system, producing optimized code
which in turn will decrease execution time of the system in general.
Among the benchmarks, the most imminent is Demonstrable Initial
Multics, a version of the system which will permit system programmers
to perform productive work (as distinguished from mere system test-
ing) under Multics itself. Next will come Limited Initial Multics, at
which point development work becomes independent of CTSS. After
that, the remaining dependency on GECOS (for additiona! compilation
and assembly ability) will be removed, and Multics will become avail-
able for use by members of the Project MAC user community; at which
time it is anticipated that the system's command repertoire will, as
CTSS experience dictates, expand rapidly. Both the command reper-
toire and the supervisor itself will, of course, still be the concern of
the system programmers as well.

-

Sow>

ELECTRONIC SYSTEMS LABORATORY

Introduction

Computer-Aided Design Project

The AED Bootstrapping Process
CADET

Display Interface System

AED Cooperative Program

On-Line Simulation of Networks and Systems

A'
B.

C.
D.

CIRCAL-II

A Recursive Approach to the Computer Analysis
of Nonlinear Networks

Tearing Techniques

On-Line Simulation of Block-Diagram Sysicms

Project Intrex

The Augmented Catalog
Text Access

Display Systems Research

(This work is reported in the next section -
Graphics Research.)

47

i

s

48

M'

Lo

GO Bl el 2

mZEPADRP

F
D
J
R
G.
R
R
A
I
S

L. Dertouzos
A. Gould

. Bigelow

J
. F. Brescia

B. Cheek
W. Cornew
G. Feldmann
B. Hills
Johansen

L. Kusick

ELECTRONIC SYSTEMS LABORATORY

Academic Staff

J. Narud (Vieiting) J. F. Reintjes
C. F. J. Overhage A, K, Susskind

Non-Academic Research Staff

P. Marmarelis D. E. Thornhill
R. C. Nelson A, V ezza

R. B. Polansky J. F. Walsh

J. E. Rodriguez J. E. Ward

D. T. Ross T. S. Weston
J. R. Ross B. L. Wolman
R. H. Stotz R. V. Zara

W. D. Stratton

Instructors, Research Associates, Research Assistants and Others

K. Bhushan
H. Bryan
G. Chapman
DeRemer
S. Eanes

. Edelberg

D. Fulton
L. Graham

. Bates

. J. Cameron

. T. Doherty

. B. Gluckstern

L. Lane

. J. McDowell
. A, Meyer

. T. Nagai

. Wenger

. Zurnaciyan

Miss I. G. Greif C. L. Reeve
K. Hatch T. L. Smith
W. Hutchison J. Stinger
W. M. Inglis J. R. Sussman
G. P. Jessel C. W. Therrien
M. E. Kaliski D. Vedder
K. P. Polzen
R. G. Rausch
Guests

-~ Union Carbide Corp

- Ferranti Limited

-~ Raytheon Mfg. Co.

- UNIVAC Div., Sperry Rand
-~ Sandia Corp.

- Honeywell EDP

- IBM Corp.

-~ The Boeing Co.

- Raytheon Mfg. Co.

- Northrop Corp.

-

g g

ELECTRONIC SYSTEMS LABORATORY 49

Introduction - John E. Ward

The Project MAC time-sharing system continues to stimulate the
research activities of a substantial number of faculty, staff, visiting staff,
and graduate students of the Electronic Systems Laboratory. In addition,
a number of other graduate and undergraduate students have found oppor-
tunities for thesis research in connection with MAC/ESL activities.

During the past year, MAC-related activities in ESL included re-
search in display system technology, programming systems and languages
for computer-aided design, computer-aided electrical network design, and
library information retrieval (Project ntrex). Display System Research
is described beginning on page 69, and the other topics are discussed in
this following section. .

Part of the display research in the Electronic Systems Laboratory is
directly supported by ARPA through Project MAC — other MAC-related
research in the Electronic Systems Laboratory is supported by a number I
of other agencies, including: Air Force Materials Laboratory, WPAFB,; L)
the National Aeronautics and Space Administration; the National Science
Foundation; the Council on Library Resources, Inc.; the Carnegie Founda-
tion; and the American Newspaper Publishers Association.

Computer-Aided Design Project - Douglas T. Ross

The M.I.T. Computer-Aided Design Project is engaged in a program
of research into the application of the concepts and techniques of modern
data processing to the design of mechanical parts, as an extension of auto-
matic programming (APT) systems for numerically controlled machine
tools. Whereas part programming is a relatively bounded domain which
permitted a single, standard APT program and language, the problem of
designing large systems such as aircraft is so complex that no one design
program or language can be constructed that will serve all the varied
needs. In fact, it is clear that a very large number of design languages
and programs will be required, each tailored to a specific aspect of the
overall design process. Since the time and effort needed to construct each
such language and program — and make it available on computers of various
types — could equal that of the entire APT development is traditional
methods were used, the major effort of the project for the past several
years has gone into developing techniques for automating as much of the
processes of constructing specialized languages and programs, and moving
programs from one computer to another, as possible. The result is the
AED (Automated Engineering Design) family of programming systems, in-
cluding: the AED-1 System, whose domain is general programming,

oY

50 ELECTRONIC SYSTEMS LABORATORY

compiling, anc operating of programs on essentially any large-scale com-
puter; the RWORD System, which builds a lexical processor; the AEDJR
System, which builds a parsing processor; and the CADET {Computer-
Aided Design Experimental Translator) System, aimed at a generalized
approach to computer-aided design applications.

The major emphasis during this year has been on the subject of
machine independence and the process required to convert the AED Sys-
tem programs to new and basically different computers through an almost
completely automatic computer technique called "bootstrapping'. Because
of the importance of this technique, which has alieady resulted in availa-
bility of the AED System ~n the IBM 360 and Univac 1108 computers, a
brief exposition of the bocistrapping process is presented.

In cooperation with the Graphics Research Giroup, a first-level pro-
gram to permit the PDP-7 to act as a buffer between the ESL Display Con-
sole and the 7094 time=-sharing system was completed and checked out,
and research continued into new and better ways to use the two computers
interactively.

The AED Cooperative Program, which began in 1964, is aimed at
transferral of research results to government and industry. Eight visiting
staff members from industry participated in Project activities during the
past year, making a total of 32 visitors from 22 companies since 1964.
Sixteen outside organizations received tapes and operating information for
the initial release of AED for use on the 360 and 1108 computers.

A. THE AED BOOTSTRAPPING PROCESS

Given the AED System operating on one computer, called the Host
Computer, the programs which constitute AED are compiled into a new
form which will operate ou another computer, called the Target Computer.
This process is outlined in the following sections.

1. AED Compiler Pieces

The AED Compiler is composed almost entirely of programs written
in the AED-O Language. The remaining portion is a minimum number of
additional, machine-language programs which handle a few operations that
are totally machine dependent and serve to interface the AED Compiler
with the machine environment.

Most of the AED-O Language source programs are completely ma-
chine-independent; i.e., they deal with operations that must be performed
on any computer. Machine-dependent data structures (called '"state beads'’)

R

=

ELECTRONIC SYSTEMS LABORATORY 51

describing the Target machine are all defined in a single progran: segment
that is inserted in the machine-independent programs by an INSERT state-
ment. A smaller number of the compiler's AED-O Language source pro-
grams deal with machine-dependent aspects of the compilation process.

The number of these programs depends upon the special machine chiarac-
teristics and how "'smart' the compiler is in the use of these characteristics.

In addition to the body of the compiler programs, there is a series
of packages of procedures which we call the "Support Package''. Each
portion of the Support Package handles one aspect of the system-building
process (dynamic storage allocation, string manipulation, etc.), and the
compiler's source programs make frequent use of these packages. In the
same way as the compiler source programs, the Support Package is
divided into AED-O Language source programs, both machine independent
and machine dependent, plus a few machine-language programs.

The bootstrapping process is most easily described in terms of a
pictorial representation which contains all of the relevant information in
a compact form. The following "triangle' symbols are used:

@ AED-0 Source Program
@ Mochine Longuage Source Progrom

v Binary Object Program (result of compiling

ond/or assembling one of the other forms)

The current AED Compiler generates character-string output for a
format accepted by the existing machine-language Assembler supplied with
the Target computer. In this way, detailed concern about binary bit pat-
terns is avoided for the initial bootstrap. Later, similar techniques may
be used to eliminate the Assembler step by producing bit strings directly
instead of character strings. At present, however, the compilation of an
AED-O Language source program into a binary object program is:

AED
@ Compiler — @ —3>» Assembler —> _}7

If a program contains machine-dependent statements, we write the letter
Hor T inside the triangle to indicate Host or Target dependence.

L]

52 ELECTRONIC SYSTEMS LABORATORY

Triangle representation of the six categories of programs of an AED
Compiler creates a hexagon, where the orientation of the triangles within
the hexagon depicts each program's category. The Support Package oc-
cupies the bottom half and the Compiler the top half. AED-0 source
programs are shown in the left-side (machine-dependent) and middle
(machine independent) sectors and machine-language programs occupy the
right-side sectors. The sectors for the graphical notation thus becomes:

‘h /“\
COMPILER

AED-0 Machine

Language Laonguage
SUPPORT
PACKAGE
v

By adding the H and T symbols to show machine dependence, and showing
the environment via a box around the hexagon, the representation for a
Host Compiler is:

N
/)

|
R
<D

—=>
input output
characters - ' _— characters
P A
H \\ H
g

operating environment

A

ELECTRONIC SYSTEMS LABORATORY 93

Using these conventions, the total process of moving from the Host
to the Target Computer is shown in Figure 2. Space does not permit an
explanation of this total process, but it is instructive to select one triangle
and follow its course through the diagram. Figure 3 shows the path of the
machine-dependent AED-O portion of the compiler from the original host
version to the final target version.

We see that steps 1 through 4 in Figure 3 prepare a compiler which
accepts AED-0 programs in the Host environment and produces output for
the Target machine (called the "H-T" compiler). Processing AED-0 pro-
grams through this H-T compiler then produces pieces of the desired
Target Compiler.

25 Relative Program Sizes

Up to now, nothing specific has been said about relative sizes of the
six hexagon pieces, and all six have been drawn the same size. To give a
better idea of the extent of true machine independence which has been
achieved in the AED Compiler — and of the reprogramming job involved in
the process — data for the May 1968 bootstrap to the IBM 360 Computer
are shown in Figure 4. The number of 32-bit binary machine words for
each of the six sectors of the Target Compiler is shown by a proportionally-
drawn arrow through the sector.

Figure 5 shows a breakdown based on programs and tables. This dis-
tincticn is of interest since tables are set up with little new thinking, where-
as programs require creative decisions on the part of the programmer.

The machine-independent AED-0 portion requires no reprogramming ex-
cept for a possible redesign of the state beads. Most of the "tables" are
automatically generated by the RWORD and AEDJR Systems on the Host
computer in the form of assembler macro calls. Therefore, the only step
required to convert the tables for a new machine is to reprogram the
macro definitions with Target machine information and process the macro
calls through the existing Assembler of the Target computer.

The size of the machine -dependent AED-0 program portion varies
considerably depending upon the computer. The 360 is by far the most
complex yet used in this regard, so the 7378 Program instructions required
for the 360 bootstrap should be taken as a maximum.

The portion labeled "Machine Language Programs' in Figure 5 will
shortly be reduced by the introduction of the AED version of the ASEMBL
output package (presently 1041 words of machine language). Also, some of
the number-conversion routines and other of the Support machine language
programs are most likely already available in the existing software for any

HOST COMPILER ————->

ELECTRONIC SYSTEMS LABORATORY

AED Campilations Machine
\ /—\ Longuo?e A
~ < Assemblies
@, 1 1 1
Zem AED Host Compiler
H H H
T T T 1 \um

Phase 2

"H-T" COMPILER

Phose 3

<€—— TARGET COMPILER

"

-

KEY:

is

M -
Q <

P

[

e
|
|
|
|
|
o
|
|

Target Assembler

T T

Dotted triangles indicote no manual changes (just "flush through*),

Solid triangles indicate possible simple changes ta program mechanics.

Highlighted triangles indicate reprogramming.

Figure 2. The AED Bootstrap Process

HOST ENVIRONMENT

€——————— TARGET ENVIRONMENT —-

ELECTRONIC SYSTEMS LABORATORY 95

WO @
(AN 3

[A <— This

\ Assembler

AVA <— Prepores This
N KV

H H T

@

Assembler

|
\®

A'A *— For This

1 T I

STEP 1: Reprogrom with target information.

STEP 2: Compile resulting programs on Host machine.
STEP 3: Assemble resulting programs on Host machine,
STEP 4: Lood new Host-resident compiler with reprogrommed pieces.

STEP 5: Rework progrem mechonics for target mochine,

STEP 6: Compile reworked progroms on Host mochine with
the compiler generated in STEP 4.

STEP 7: Assemble resulting programs on Torget mochine.

STEP 8: Lood target compiler with reworked programs,

Figure 3. An Example of Conversion Flow

e

=3

56 ELECTRONIC SYSTEMS LABORATORY

A 24,577

8580 ? 8009

1839
41"

V 5646

Figure 4. Relative Sizes of 360 Hexagon Pieces
(In 32-bit words)

Machine
Dependent

Machine
Independent

Machine
instructions

(thousands
of 32-bit
words)

8 7485

4715

ob— b o : -
AED AED Machine Machine
Progroms Tables Language Longuage

Programs Tobles

Figure 5. Sizes of 360 Programs and Tables

-

ELECTRONIC SYSTEMS LABORATORY 57

given Target machine. Thus a considerable part of this section can usual-
ly be "stolen" with little reprogramming effort.

3. Special 360 Conversion Improvements

During the process of reworking the old AED-0 Compiler logic to
serve as the framework of the machine-independent AED-1 Processor used
in the bootstrapping described above, a number of additional benefits were
derived. The AED-1 Processor is an essentially new compiler in several
important ways which will be of use when new AED-1 Language features are i
incorporated in the future. In addition, the techniques of using the AED-0
Language and AED Compiler features to express machine-independent
programs have been expanded greatly. Most of these techniques may be
used with any AED programs to achieve a higher level of true machine-
independence than has been achieved before.

.

The AED-0 Language itself underwent a few ininor alterations to
provide the basis for more rigorous computer environments in which more .
control information is needed than was required for the original 7094 ver- L3
sion. Such features as POINTER as a distinct data type, and the ability
to have procedure components called on the left of an assignment statement,
strengthen AED-0 as a general software language.

While the 360-oriented bootstrap was underway at M.L T., a bootstrap
to the Univac 1108 computer was completed by United Aircraft Corporation,
starting from source programs supplied by M.I. T. Since these systems
differ in various ways, it is planned to re-bootstrap both the 360 and 1108
systems so that a single Compiler is available on both machines. Also,
remaining parts of the AED family, such as the RWORD System, the macro
processor, etc., will be bootstrapped. A separate effort in cooperation
with Project MAC and other groups at M.I.T. will be to bootstrap AED to
the GE 645 (Multics time-sharing system). At the same time, the boot-
strapping process will be documented carefully so that computer manufac-
turers or other interested groups may perform other conversions with a
minimum involvement on the part of the M. I.T. Project.

B. CADET

The CADET System development continued as a parallel effort to the
machine-conversion project. As a first substantial step toward a CADET -1
System, we are attempting to build upon the Polyface Package, first demon-
strated at the Second AED Technical Meeting in early 1967,

Although the first version of Polyface used graphically displayed {
lines to demonstrate manipulation of graphics structures, the system is

fod

58 ELECTRONIC SYSTEMS LABORATORY

intended to provide generalized "modeling" of the structure of arbitrary
problems. Building upon the experiences gained from the initial Polyface
Package, the following specifications for the second version of Polyface
were formulated:

I The model is fully "common sub-expressioncd"; i.e. , each
distinctly entity occurs only once in the system no matter how
often it may be used.

2. The system only keeps track of incremental changes by means
of "variation beads', so that there is no redundancy.

3. The complete history of generation of a model is recoverable
from the model.

4. Not only the structure of the total model (which may represent
several alternate designs) is available, but also any substruc-
ture is uniquely isolatable at any time,

5. A generalized mouse algorithm has been devised which leaves
no "tracks' in the data structure of the model. That is, the
complete state of the mouse is contained within itself so that
any number of mice may be running simultaneously over the
same model without interference.

6. The encoding of variations so that a mouse knows which vari-
ations to obey is done in a very compact eptimum binary code
which uniquely identifies the precise location of a bead in the
structure of the entire model.

7. The beads of the model are Successively generated in the
natural construction sequence and are unchanged from the
time of creation; i.e. , there is no necessity to read back old
information and make modifications.

8. The structure of the model naturally matches the concepts of
zone structure, and the unique mouse path will provide the
hecessary timing for shuttling large structures in and out of
bulk store, when we get to that mode of operation.

Programming of the new Polyface package is well underway, and
checkout should begin shortly.

-

ELECTRONIC SYSTEMS LABORATORY 59

C. DISPLAY INTERFACE SYSTEM

The general approach to the display interface problem is intended to .
yield a machine-independent, display-independent, problem-independent, '
and operating-system-independent approach to the coupling of graphic dis-
plays to man-machine, problem-solving systems in time-sharing. During
the previous reporting period, the basic system for operating the ESL i
Display Console through the PDP-7 computer (attached to the data channel |
of the time-shared 7094) was made operational. The system structure uses
a minimal executive residing in the PDP-7, augmented by additional PDP-7
programs to suit the user's needs. As a first step in meeting these needs,
the PDP-7 was programmed to provide an exact duplicate of the features of
the present 7094 module which drives the ESL Console, so that existing 1
display programs will run in buffered mode without change. These pro- '
grams were debugged during the reporting period and have been in opera-

{ion for some time.

As the next step, work on the full-scale version of the Display Inter- .
face System was launched. Work began at the lowest and highest levels of N
the system simultaneously; i.e., the Communications Package for inter-
facing with the hardware was programmed, and work on devising a display
language was begun. The Communications Package is now debugged. The
package uses a display/program queue to perform two "simultaneous"
operations on the same display data, one by the real-time programs and
another by the display unit itself. The formulation of a hardware-
independent display language has also progressed rapidly. The AEDJR
"first-pass structure' appears to fit the problem extremely well, and work
on the remainder of the system continues.

This work has been done jointly with the Graphics Research Group,
and the reader is referred to page 78 for other details of the display in-
terface work,

D. AED COOPERATIVE PROGRAM

The AED Cooperative Program encompasses those aspects of the
overall M.I.T. Computer-Aided Design Project effort which are sufficient-
ly developed to merit industry participation. A major feature has been the
sponsorship by industry of visiting staff members who work with the M, 1. T.
staff learning the capabilities of AED while contributing to its improvement.
Past and present participants in the program number 32 people from 22
organizations. During most of the current reporting period, eight visitors
were in residence at M.I.T.

60 ELECTRONIC SYSTEMS LABORATORY

Eight copies of the initial 360 version of the AED System (compiler
plus AEDJR and subroutine packages) were sent to various companies,
even though the initial version of the AED-1 Compiler is incomplete. A
' more complete version will be ready for distribution shortly, and an even
greater demand is anticipated. Several copies of the 1108 AED System
were also distributed by Univac. The 360 version was also put on the
| Cambridge Scientific Center's CP/CMS (360 Time-Sharing System) now
available for general distribution to users of the IBM 360 Model 67 com -
puter. AED-0 is now available at M,I, T, on both the Project MAC and
IPC (Information Processing Center) 7094 time-sharing systems and on
the IBM 360 Model 65 (batch processing) at IPC, AED is used by many
research projects and thesis studies and was used in several academic
| courses in the spring term.

On-Line Simulation of Networks and Systems - Michael L. Dertouzos

The main objective of this research is effective use of present and
projected on-line computer utilities in designing electrical networks and
systems. This includes studies in the mathematical foundations of com-
puter-oriented network and system analysis, and the interactive features
essential for the design of networks and systems. In the case of networks
where relationships are primarily implicit, emphasis is placed on develop-
ing an integrated on-line circuit-design system, CIRCAL-II, which has
evolved from the earlier CIRCAL-I. In the so-called block-diagram
systems, where relationships are explicit, an '"equivalent'" on-line simu-

! lator LOTUS-1 is under development, in which analog or digital systems
are simulated as compositions of primitive functions and functionals.
fod!
A. CIRCAL-II

1 The first version of CIRCAL-II has been implemented. It is now
possible to: create a circuit, consisting of standard elements and nested
structures; analyze it, and have the results either plotted or printed;
and from this data make changes in either the network topology or some
parameter and then repeat analysis.

As shown in Figure 6, the operations of CIRCAL-II may be col-
lected into three groups: 1) basic file system operations, 2) setup of a
data structure and subsequent analysis, and 3) output of requested data
and modification of the circuit under investigation. An important feature
in CIRCAL-I is the standardized data structure, developed in a Master's
thesis by James R. Stinger, which acts as a ''plug" into which any number
of analysis routines may connect. Similarly, the resul's from an analysis
are stored in a standard output array, upon which various types of output

e et e e

61

ELECTRONIC SYSTEMS LABORATORY

—— e —————————— — T —

II-TVOYID JO aanjoniis o1seg °*9 aandry

¥OLvEdd

4 |
|
_]
_
E_Fﬁ\: 3114 300W | _
11vadn _ _
= 34 300w _ _
[1
_ @ _ m:ﬂaﬂi _ — _
VOMYLS p————
_ . | | wosnsmdo e * $SIISONDVIa _
iAsia) o | _
AVERY | _ _
INIS4/10% TR o
| ’@ | j |
| _ _ |
S
WO2430 5
ﬁ - | | |
4
zﬂuuﬂmu_ — : a SISIN T {35y 4N |
NdlNo AVENY _ IWNLONWLS _ SIND 1 41511'NDI53a)
1NiINO _ viva THeio) H:_mu
== 9 ERT

indino

_ W3LSAS 34
_
_
_

1NdN) ¥3asN

62 ELECTRONIC SYSTEMS LABORATORY

programs (print, plot, display, etc.) can operate to present results to the
user. In addition, all parameters relevant to the output phase of operation
are stored in a ''mode file''. This permits a user to simply indicate incre-
mentally any desired changes and then perform re-analysis, rather than
having to each time specify, the entire set of necessary parameters. A
global diagnostic procedure is also provided which indicates to the
CIRCAL-II user the type of error encountered (out of about 86 types), and
whenever possible makes appropriate corrections.

The entire file system of CIRCAL-II is now in operation. Five types
of files have been specified: circuits, nested structures, functions, func-
tionals, and defined commands. These files may be created or modified
by use of the DESIGN command, which treats all information as a string
of characters without regard to its ultimate usage. Several other general
housekeeping ccmmands are available. These are: LISTF, which allows
a user to list all or a subset of his file directory; PRINTF, which prints
out the contents of a file; and ERASE, which deletes one or more of the
users' files. The command structure of CIRCAL-II is shown in Figure 7.

CIRCAL-II may employ any one of several analysis subprograms
which are stored in CIRCAL's files. The first such program, a basic
frequency analysis routine, was written to fully determine the generality
of the data structure and the overall modularity of the system. It is
significant that only three man-weeks were required to develop this pro-
gram, as opposed to several man years which were spent on CIRCAL-I,
This confirms one of the basic objectives for the design of CIRCAL-II, i.e.,
the realization of savings by a standard implementation of the large number
of common "overhead" programs present in on-line circuit design. Net-
works of up to 100 elements and 30 nodes, with several levels of nesting,
have already been analyzed.

Future work will entail the following steps. First, a number of
different analysis routiues will be implemented to broaden the scope of
CIRCAL-II. These will include linear-time-domain, nonlinear-transient
and statistical-sensitivity analysis. Second, CIRCAL-II will be used as a
forum for implementing two techniques which are nearing completion of
their theoretical stage, as detailed in the sections that follow. These
techniques involve the solution of nonlinear networks by tearing and by a
new recursive-structure method of analysis. Finally, an area of interest
centering on definitional commands will be implemented. These (DEFCOM)
features will act as a pseudo-user and will allow operations such as net-
work optimization to be done automatically.

-

ELECTRONIC SYSTEMS LABORATORY 63

na Does yes
FILE nin2
Enist

Print Print file
FILE NOT nl n2
QUND
(A
{A)
xit From CIRCEX
CIHCAL-H tEIRCAL_n GUTPLIT or XOUTPT ni
N o 2 Execulive)
pES s
s,
/ O
no . yes f
et mode Set mode) [o FILDE':Hi & v
el mode nin
lo INPUT o EDIT Exist 508 “I.TI’
‘\‘ Delete file CKT inlo core
- In2

INPUT/EDIT r

Updote mode
tile - EXPRESS
MODE

file - SLOW
MODE

Hove
CKT {Output "“"E“ﬂ"ha““
NEST Executive) g

File dala
siructure for
NEST

. Mod, I.,- dala
L struciure

Figure 7. The CIRCAL-II Command Structure

o

64 ELECTRONIC SYSTEMS LABORATORY

B. RECURSIVE APPROACH FOR COMPUTER ANALYSIS OF NON-
LINEAR NETWORKS

The object of this research is to develop methods for inversion of
direct functions in a direct non-iterative manner. With such methods,
an initial overhead would be expended for construction of the inverse
function, but the response to any excitation vector could then be easily
evaluated. Previous reports have described the development of an algebra
of functions by which the inverse function of a network can be expressed
in terms of the basic network-element functions. Function representations
obtained in this manner generally contain operations on functions of n-1
variables where n is the number of network nodes. Since the computa-
tional effort expended depends directly on the order (number of variables)
of the functions being manipulated, practical considerations dictate the
need for representation of the lowest possible order. For this reason,
the concept of network order has been developed and investigated.

Network order is based on extension to higher dimensions of the
familiar class of series-parallel networks, which have an elementary
recursive structure providing a direct means of constructing the inverse
function. Expressicns for the order of specific types of networks have
been determined. A result of particular importance shows that the order
of a complete graph on n-nodes is the integer q, such that 2/3 (n-1) € q
<£(2/3 n). This, in turn, provides an upper bound for the order of any
network on n-nodes. Future research is primarily concerned with improv-
ing order-determining techniques, and implementing these theoretical
concepts into practical analysis procedures in the CIRCAL-II program.

C. TEARING TECHNIQUES ..

Tearing is a method for solving networks by splitting them in pieces,
solving each of the pieces, and then constructing the solution of the entire
network from the solutions of the pieces. A question important to the
design of on-line circuit analysis program is, "How should networks be
torn so that they may be solved with a relatively small computational
effort?" A formal theory of tearing including a tearing model and related
algorithms is under development to treat this general question. Part of
this work is a Doctoral thesis investigation by Charles W. Therrien.

Tearing of a network is accomplished by separating the network
""at some nodes'' into a number p of disjoint pieces. The tearing model
postulates the existence of certain ""computation functions'' that provide
a measure of such quantities as the number of computer operations
required to invert the nodal admittance matrix of a linear network, the

-

ELECTRONIC SYSTEMS LABORATORY 65

number of iterations required to compute the solution of a nonlinear net-
work by a relaxation algorithm, etc. The computation required to solve
an N-node network by the method of tearing can then be expressed in terms
of the computation functions. The ratio of this computation to f(N), the
computation required to solve the network without tearing, is called the
computation ratio C.

Investigation of the computation ratio C has yielded several general
properties of 2-tears of N-node networks; for example, a lower bound on
the reduction of computation achievable by tearing. However, it does not
indicate the best way to tear a network. Several algorithms for locating
2-tears have been tried with reasonable results. A new algorithm now
under study has the advantage that there are nodegenerate networks for
which it fails to find a good 2-tear (unless the network has none).

Present work is directed toward speeding up this algorithm and extending
its application.

D, ON-LINE SIMULATION OF BLOCK-DIAGRAM SYSTEMS

This work involves the development of a general approach for on-line
simulation of a variety of block-diagram systems. These systems may be
analog, digital, or hybrid; with memory or memoryless; explicit or im-
plicit (i.e., possessing loops of elements); vector or scalar; or of a more
specialized nature, such as dynamic systems with integrators as memory
elements; and simulation may be conducted in one or more dimensions,
such as time and/or space. An on-line simulation program, LOTUS, has
been developed to realize the syntactical and organizational aspects of
simulating this wide class of systems.

The present version of LOTUS simulates explicit systems with inputs
and outputs defined on the real numbers. A user has the ability to define
these systems through an appropriate sequence of on-line commands which
interconnect primitive elements and/or nested structures into any config-
uration in which no two outputs are connected. The program has been
written modularly to permit future growth., Work is currently in progress
to make the current, limited, version of LOTUS more efficient, and use
the fundamentals of system representation to extend the power of the pro-
gram to handle all systems in the class specified above.

Project Intrex - J. Francis Reintjes

Project Intrex (Information Transfer Experiments) continued its
activities during the 1967-1968 academic year under the general direction

e e T e —— e

66 ELECTRONIC SYSTEMS LABORATORY

of Professor Carl F. J. Overhage, School of Engineering. It is the dual
purpose of the project to perform research and experimentation directed
toward the design of new library services that might become available in
the 1970 decade and to develop competence in the emerging field of infor-
mation transfer engineering.

Responsibility for the research activities of Intrex resides in the
Electronic Systems Laboratory, and the Intrex Group has channeled its
efforts towards preparing an experimental augmented catalog system and
an experimental text access system with which a selected community of
users will interact. Details of the research are contained in the Annual
Report of the Electronic Systems Laboratory. A summary is presented
below.

A. THE AUGMENTED CATALOG

The purpose of the augmented catalog experiments is to determine —
from actual library user response — the types of bibliographic data that
should be included in a computer-stored, remotely accessible catalog.
Preparation of this catalog is going forward in three groups within ESL —
the Catalog Input Group, the Computer Programming Group, and the
Console Group.

Catalog entries are prepared off-line on punched-paper-tape equip-
ment, and are then read into the MAC CTSS through the high-speed paper
tape reader of the PDP-7 display-buffer computer. As of 30 June 1968,
the Catalog Input Group had completed cataloging 5,300 documents in
selected areas of materials science and engineering. The initial experi-
mental data base will ultimately contain 10, 000 documents.

The Computer Programming Group is engaged in developing storage
and retrieval programs for the augmented catalog. The programs are
being developed in three phases. Phase I is for the Intrex staff to test
and evaluate various techniques of storage and retrieval. Phases II and
IIT are more advanced retrieval programs which will permit broader usage
of the data base by an interested sector of the M.I.T. community. The
Phase I programming has been completed and is being used to test how
well certain of our file organization, storage, and retrieval techniques
work. The Phase II system is in the final stages of debugging :nd should
soon be available for our community of users.

The Console Group has designed an experimental augmented-catalog
console, ond is presently completing the fabrication of console hardware.
The console is based on a drum-refreshed alphanumeric display with a
screen capacity of 2000 characters at a refresh rate of 60 frames per

- g
———r——— =T T

ELECTRONIC SYSTEMS LABORATORY 67

second. The character generator consists of a CRT flying-spot scanner
which produces a 10-line vertical scan of any of 256 characters on a film
mask. This scan-type generation was chosen to produce high-quality
characters, and to permit the large character repertoire and special
symbols needed for library work. For smaller character sets, a mono-
scope symbol tube can be substituted for the flying-spot scanner.

A Varian 6201 computer serves as a buffer/controller to drive up to
10 consoles from the drum, perform local display interaction based on
light-pen and switch inputs, and tie the console system to the main time-
sharing system over a dataphone connection. Initially, the connection to
CTSS will be at 1200 bits per second, but the system design permits
communication rates up to 50,000 bits per second. The display electronics
and the digital logic for the console are constructed and are currently i
undergoing tests, while most of the 6201 programs have been written and
debugged by simulation.

Lmm o e wm e e —— ——

B. TEXT ACCESS .

The research program to create and test a text-access system has
been sponsored by the Council on Library Resources, Inc. for the past
year. The purpose of the text-access experiments is to evaluate schemes
for giving a library user guaraateed rapid access to the full text of docu-
ments whether he is at the library or at a location remote from the
library.

The first experimental scheme envisions a central store of full text
on microfiche. The microfiche will be stored and retrieved using a modi-
fied Houston-Fearless CARD retriever with a capacity of 750 microfiche
(45,000 pages). The retriever is controlled by the 6201 computer, and
upon user demand a selected microfiche frame is located and electroni-
cally scanned by the flying-spot scanner. A 2000-line scan is performed
in one-half second, resulting in a 4.5 MHz video signal transmitted over
a coaxial cable to the requester's terminal. Each frame is sent on a
single-scan basis, preceded by a digital address code to select the proper
one of a number of terminals which share the same transmission line. It
is up to the addressed terminal to store the data in electrical or image
focm for display or permanent record.

Two terminals are presently being prepared for experimentation by
the Text Access Group. One is a 35-mm film station employing a high-
resolution cathode-ray tube and a camera/processor unit. The video sig-
nal received over the coaxial cable will be transformed to a short-duration |
image on the face of the cathode-ray tube for recording by a 35-mm camera.

68 ELECTRONIC SYSTEMS LABORATORY

The film will be automatically developed in a rapid-processor specially
modified for use with the Intrex terminal. The finished film can then be
examined by the user on a conventional microfilm reader.

The second terminal will employ a Tektronix Type 611 direct-view
storage tube. In this unit the received signal will be converted to a visi-
ble image that remains on the face of the storage tube until it is electri-
cally erased by the user. Currently, the quality of this image is marginal,
but we expect that it can be improved to yield a display that will be ade-
quate for brief scanning. Thus the user will be able to check the rele-
vancy of a document before requesting a permanent copy.

GRAPHICS RESEARCH

Display Systems Research

A. ESL Display Console

B. ARDS Low-Cost Display

C. Computer-to-Computer Communication
D. Graphic Software

E. Related Display Technology

69

e

5o me e ——

70 GRAPHICS RESEARCH

Editor's Note: The personnel of this section are a subset of participants
from the Electronics Systems Laboratory, and therefore are included in
that section's List of Personnel.

GRAPHICS RESEARCH 71

Display Systems Research - John E. Ward

The ESL Display Group has been performing research and develop-
ment in the field of computer-driven CRT displays and related equipment
for several years in support of the ESL Computer-Aided Design Project
and of Project MAC at M.I.T. During this time, the group has developed
a number of hardware devices, including: the ESL Display Console,
which is now connected to the Project MAC 7094 time-sharing system
via a PDP-7 buffer computer; a scan-conversion system, to convert
computer displays to TV format; and a low-cost remote graphic terminal
for time-shared computer systems., The following paragraphs describe
progress during the past year in improving these systems, developing
graphics system software, developing techniques for terminal and inter-
computer communications, developing hard-copy techniques, and planning
future display applications for the Project MAC Multics (GE 645) system.
(Also, see Kaplow, this volume,)

A. ESL DISPLAY CONSOLE

Previous annual progress reports have discussed the design and
construction of a special hardware interface that would permit a PDP-7
computer to be used as a buffer for the ESL Display Console, which
formerly was operated directly from a direct data channel of the Project
MAC 7094 time-sharing system. To expedite installation of the buffer
system, and maintain software compatibility for existing users of the
ESL Display Console, the interface was designed to splice the PDP-7
into th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>