.

RL R 1429

A ™1 A CC "N r TAAl N\ NnIiiacrr CYTYATE rAliawTw
A VUCLADO Ur IWUTFROADL JDSQI1IAIL EUUAI
by
N N Vahl
Ve Ve NAllI
March 1969

Fte Sy

AD 687269

This document has been approved for public release and sale;

e
its distribution is unlimited.

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND




longer needed.
the originator.

wlw]

estroy this report when it is no
~ a4 -~ A- ~“u e N -
O NnoOU revurt 1L LO

The findings in this report are not to be construe
an official Department of the Army position, unless
so designated by other authorized documents.



td
0w

£

£

H

=

ARCH L

1)
+3
-
Q

RES R

REPORT NO. 1k429

\RCH 1969

G. D. Kahl

Exterior Ballistics Laboratory

This document has been approved for public release and sale;
its distribution is unlimited.

RDT&E Project No. 1TO061102A33D

=
0
2
rg
(@]
a
=
"t
s
£

-
¥-
¥
*
L4
[
P

M
¥

*
-

w)
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A CLASS OF TWO-PHASE STATE EQUATIONS

The properties of a particular class of elementa
state equations are found to be simply related. The class includes
some familiar equations, such as the Van der Waals,

+

.
E RV

ol
Clausius types,

»
<

Conditions for stable equilibrium are given, and some examples are

compared. A table of values is included which can be used with

ot
*'4

elementary transformations to find the equilibrium coexistence

properties of any member of the set. A drawback for this type

equation along the critical isotherm is noted.
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T NTRODUCTION

- e AdV LAV VRV |

There exists a substantial number of elementary pressure state
equations which predict a liquid-vapor phase transition and a critical
point. It is the purpose of this paper to show that many of these,
though not all, belong to a single class, and that the various thermo-
dynamic predictions between class members are simply related. Some
familiar equations belong to this group, including the Van der
Waals-Maxwell, [V-M], equation, which will serve as the basis for
comparison. A direct method can be demonstrated relating the limiting

1 __

values of thermodynamic quantities

LY

n the critical region.

e

The form of equation treated here is
P(V,T) = (RT/[V-b(T)]) - a(T)/[V+e(T) (1)

where V2 b (T) > - ¢(T), and T > 0; P, V, and T are pressure, specific
volume and temperature, respectively. R is the gas constant, and a(T),

b(T) and c(T) are analytic functions of positive T. Some restrictions
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be positive and larger than -c(T); and a(T) must be positive for all T

less than some value exceeding the critical temperature, T., in order

(ol ]
that b(T)
\ Vs

€,
to produce a critical point. It is shown in the Appendix t

must be a constant, which is henceforth assumed.

Eq. (1) is expressed in reduced form by use of the scaled

1<

— S - m/m L R Sy «r lex ] IR -
P/Pe, ¥ = T/T., N = 1/a = V/V, (this notation corresponds

variables B

to that of Reference [1], with subscript ¢ denoting critical value) as

a
u v
\

¢, B=b/V, and C(y)=c(T)/V.. It follows that

~

—
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&
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ositive for a range of Y larger than unity. The variables
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B, v, M and @ all are unity at the critical point. It is seen that

- £\ dmmamey St rm o mw AL o 22 - - o ORI S 1 r a . . 1
Q. \1) approximates the ideal gas equation wnen v pecomes very large.

In order that the state of the system be stable, certain relations
must hold for the thermodynamic functions®*. These are: Cy > O, where
/20N

Cy 1is the specific heat at constant volume; and (;%)” < 0, except at
3T/ oy

the critical point. At the critical point, the conditions become
(B _ o _ (328
57y = 0 = \S®/y -

Imposing these latter conditions at the critical point, one

obtains the relations:

4+ amamatiina Ar = 1 My o +1 Farmatd
cemperaoure, vy = L. 1aus, T 1 G

compressibility, Z..

One observes that for ¥ < 1, there is a domain of (M,Y) where g%
from Eq. (2) is positive, contrary to the stability requirement.
Thus, Eq. (2) cannot represent a stable thermodynamic pressure function
in thi ,
ent of T, replaces Eq. (2) as the pressure function here. The usual
)

method of defining B, (Y) so it is continuous with the B(T,y) of Eq. (2)

(A i 4 UiiT NSAWT L (VR

is by means of the Maxwell rule: for any fixed v £ 1

H1(Y)
] B(M,v)aN = By (v){M (v) - N3 (¥)3, (1)
M ()
with
ar oY = arfMmo oY — . ()
Py Y PlliasY) Pa\Y/ .

’__l
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The quantities ﬂa(v) and Th (Y) are points on the saturated liguid
vapor loci, respectively. For any fixed ¥ < 1, the domain Ty <

is the region where liquid and vapor coexist at the same pressure,

1 e R RO PR I L R | (3 PO - D N Y
tenperacure, &ana chnemical ilre opouniaaries ©

itia
region are also defined by Egq (4). The use of the Maxwell rule

implies that the Helmholtz free energy is a unique analytic function of

YV and M whane Ba. (1) 30 +ha =
vV Qidilu 4 wicere LDYe \4L/ Lo wIT M

on®., With

i e v i

ct

hig
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analyticity, Eq. (4) insures that the pressure and chemical potential

are continuous functions of V and T across the coexistence boundaries.

dynamic variable within the coexistence region, while a subscript &

will refer to the value outside coexistence.

TT mmA -n-m-nr\nu mMTANC
1l 10ANOD VIV LLVIND

For compactness, let

£(y) = 3[B+C(Y)I/A(Y) . (5)
F T as > :IL a_&B wmavad mmarrasm A rnAatTHESera Awn +ha aoatahtT34ar mammiwamand S o
s gn_ uS v e X ve yUDJ—U-LVC, Vi Ll Louvavidldlu LC\.iLL.LLClllCL.I.U SO
violated. From Eq. (2),
7 B8 _ _ (v/M-BR)1-¢(N.v)} (6)
g a'ﬂ T T ONY/ LTRSS STEN sV /s A\
where
G(M,y) = (9/4) A(Y)(M-BFR/(v[M+]®) . (7)

Since both Z. and Y are positive, Eq. (6) shows %%L is negative,
providing G(M,y) is less than 1 for any T 2 B. This latter condition
is easily satisfied when A(y) is negative; but A(y) was previously

required to be positive for all Yy less than some value Y, exceeding

T L1 ra A r-JP E PN nfn .

ne. i1 'Dlis ra.‘tg o1 Yy L1:Coy \U < Y < YOI’ u\l],Y}

—— LS e . T P
POS1itTive ana la,b

o]

is
a maximum value with respect to M, G, (y), at N = 3B+2C(Y), where

=
| ]



Gw (Y) = A(y)/[3v(B+C)] = 1/[ve(y)]. (8)

Forcing vf(y) > 1 for Yo > Y > 1 will insure that %%i is non-positive s

.) in
v)

or v < 1. one wishes to satisfv

Rl | 5 VAT waseit A SYLELy H

. - s Le_ n oA L. - /
coexlstence, 'ne mathemagtlical 1unction 'a'r"""‘ of Bgq.

l?'.l

the (M, ain of

A,-\

Y)
2) must there-
fore have zeros in this domain, so Yf(y) <1 for vy < 1. At Y =

vf(y) is unity, as may be seen from the relations already given for

X(‘v’) = (3//8)//{'2-: f‘z(Y)A(Y)]s (9)
and the transformations
u(y) = v£(y), (10)
v(M,y) = [N+ (y)]/[£(V)A(Y) ], (11)
W(n,Y) = B(“)Y)/X(Y)’ (12)
VAY = 0 L.\ Iarf N\ AR
walyY) = B, \Y)/AlY), \i13)

with the convention that w(T,y) has a subscript 8 when B(TM,v) does,

one finds that Eq. (2) transforms into
w(v,u) = {Bu/(3v—l)} - 3/v° . (14)
Moreover, for any fixed u < 1, Eq. (4) transforms into
ALY {'l \
i \"“/
r ¢ Na N o1y .\ (e
] w(v,uldv = w, (u) v, (u) - v, (u)s (15)
Va (u)
e . - o \ = A N \
with w(v, ,u) = w, (vy ,u) = w(vy,u) = wy (v, ,u) = A(u;.



Eq. (14) has exactly the form of the reduced Van der Waals pressure

d-l\-ii - aca - Vaae e atmeileis LA E 7 = 1D U
function, providing one interprets w, v, and u as reduced pressure,
volume, and temperature respectively. All the functions ws, w,, u, and

v, are unity at the critical point where M=1and v = 1.
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The Jacobian, J = of the transformations of the independent
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Jacobian is

7 = {1+ -g;.-ﬁ-,/f(y)}/A(v), (16)

and where J or J™! is neither zero nor infinite, the mapping is single
valued. It will be assumed in the further development that for v < 1
this maepping is single valued, so the necessary conditions on A(Y), B
and C(v) to accomplish this purpose will be assumed henceforth. The
thermodynamic properties of any state equation of this class for v < 1
can now be expressed in terms of those corresponding properties known
the [V-M

~ r
for th Lv—'} system, and

The method for finding the properties in the coexistence region,
including their limits at the critical point, is that demonstrated by
Barieau}. For fixed u s 1, Eq. (14) vecomes a cubic polynomial in v;
one finds from it the largest and smallest values of v (wvi(u) and
va (1), respectively) which simultaneously satisfy Eq. (15). Letting

E = 1/v, one then obtains, for u <1,

Wa(glsgs) = §‘§3(3'§3'§-)9 (17)
Bu(E€y ,83) = (B14€3)(3-€1)(3-83). (18)
Differentiating both sides of Eq. (15) by u results in the differential
equation:
w4 3 E. - FEL(6-F.-E.): (19)
* au = Wi J515a T 5153\9753751 /s \+~2/



similarly differentiating Eqs. (17) and (18), and using Eq. (17) gives

one

w L - g (3-681)/(3-261 -85), (20)
&y
u R - g, (3-65)/(3-285 -1 ). (21)

The relation

the corresponding ones of Reference {1] used to display properties of

the [V-M] fluld, providing w,, u, and § here are replaced by B, v, and

Proceeding analogously, and defining y = €3 - 1 and x = 1 - &,
one can use Eqs. (14), (15), (17) and (18) to obtain y as a function of

x; this function can be expanded in the power series

mih~ e

where Barieau finds & =1, agfl/5, and a. =l/ The value of

Ty

a4 was

subsequently evaluated by the present author to be 19/350

A1l quantities €, E;, w,, etc., (as functions of u) have been
tabulated previously for the [V-M] system. They may be used to find
limiting thermodynamic values in the critical region for any equation

of the class considered here; a brief table is in the Appendix.

Some inverse transformations are

- 1/a, = v, £(v) AY) - C(Y), (351,3) (24

1L



Bs (T]"Y) = Wg (V’U)X(Y) (25)

Ba(y) = wy (w)x(v) (26)
B - x{(3m) (320), + (2) @)} +wtr) £ o)
Ly - x(y) {E (g—\n} () & (28)

From Egs. (27) and (28), it can be seen that {—%lillll}n is equal to

- /= \

d
——Li—l s because it is known from the Van der Waals function that at the
T,

pt ('v 11) = (l

ALy Vg

(g?iﬁl&ll __and Qﬂliil are each equal to four; and (c) (QEEJ is zero.
\ou A au - oV /u
Therefore, for any equation of this class, the temperature derivative
of the vapor pressure function is continuous at the critical point with
+hat+ AF +ha

S
vlic -1 L

(¢

When A(y), B an (v) are specified, one can recognize some
well-known state equations Some examples are shown in Table I.

Example 6, with A(y) a linear function of Y, comes from an equation

recently suggested by Martin®*¥, When c(y) is a cons tant, as is true
ti

~

for all equations in Table I, one can use the definitions to show that

L1

unity. In the following, certain thermodynamic

l'/l

A
) 1S

low
predictions for some of these examples will be compared.

A comparison is made in Figure 1 of the reduced density on the

15



Table I.

a. Shown in the form P(V,T) =

constants ay,

by and cy for the number (j) equation.

Example state equations and transformations

[RT/(V-b)] - a(T)/(V+c)?, with

For all shown

{except No. (1), where both b and a(T) are zerol, by = Ve [1-1/(b4Z¢)]
and cy = Ve [-1+3/(8231; ny = (9/64)(RT, )*/Pc.
?33 Name P(V,T) ay Ze
(1) | Tdeal Gas RT/V - Undefined-
(2) | van der Waals| [RT/(V-b)]-8e/V° 3 = 3/8
(3) (traEslated) [RT/'VJB) ~ag/(V+ca )? 3 ng > 1/h
Van der Waals
(4) | Berthelot [RT/(V-by ) J-aq /(TV?) 3 ngTe = 3/8
(5) 1 Clausius [RT/(V-bg ) ]-ag / [T(V+cg )? 3 ngTe > 1/4
(6) | Martin*(A) [RT/(V-bg ) ]-ae (4 Tc-T)/(V+ce )? ne /Te >1/
(7) | Martin (B) [RT/(V-bry ) 1-87 (5 Te-2T)/(V+er )® no /T > 1/
b. Same state equations 1om1tt1ng No. (1)} in the reduced form
B = (1/2.){[y/(R-B)] (9/8)A(Y)Kﬂ+c )2}, where B = P/Pc,
y = T/T. and N = T/T,. For all shown here, B = 1 - 1/(kZ),
C = - 1+ 3/(8Z ) {independent of v}, and X(v) = 1/£(vy)
1?35 ZcA(Y) Zc £(v) (%%*\) ir= (i—iil"r
L_r(2) 3/8 = 3/8 1 4
(3) 3/8 > 1/k 1 I
(4) 3/(8y) = 3/8 Y 7
(5) 3/(8v) > 1/b Y 7
(6) (L-v)/8 > 1/ | 3/(k-y) 5
(7) (5-2v)/8 >1/4 | 3/(5-2v) 6

16
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Teble I, using the given functions with Eq. (24); similar plots for
examples 3 and 5 of Table I can easily be obtained from those of 2 and

4 respectively, when the value of C; is assigned.

B. Vapor Pressure, (y s 1).

T~
Ly

por pressure,
the [V-M] vapor pressure at the reduced temperature u, and the specific

transforming function X(y). These are shown in Figure 2. For state

the vapor pressure is the same function of y. Thus, the state

equations numbered 2 and 3 in Table I have the same vapor pressure, as

C. Heat of Vaporization.

For T < T., the latent heat of vaporization AQ, (T) is found by
using the Clapeyron relation, 4q, (T) = T Vi (T) - V5(T)]; in

reduced variables this becomes

8o, (T)/[RTe ] = Z ¥ i’l M (y) - Ts(y)] . (29)

7

8, (T)/[RT. ] = {Aq, (T)/[RT, 1} 0{( )n/fe(v)}

+.
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where the first factor on the right is the latent heat of vaporization
for the [V-M] equation at the reduced temperature u. The functions

w, (1), v1(u) and v, (u) are also known; as with the vapor pressure
function, the heat of vaporization is the same function of y for state
equations having the same f(Yy) and X(y). Comparisons are shown in

Figure 3; the values for the Berthelot and Clausius equations become

-

(0¢]
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Figure 2.

(7

®
i

Vapor pressure vs. temperature for equations numbered
in Table I. Vapor pressure is independent of Z, for

the examples shown.
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Latent heat of vaporization vs. reduced temperature
for equations numbered in Table I. Latent heat is
independent of Z. for examples shown.
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unrealistically large at small y. Obviously, AQA(T) vanishes at T = T,

/\ U
A5, (T/, is s

>

r all equatio y of vaporization, mpl
computed from AQ, (T) by using T 45,(T) = 4q, (T).
D. Specific Heat at Constant Volume, C,.
With E(V,T) the internal energy for unit mass (here taken to be
/3TN
the molar mass) the stant volume specific heat is C, (V,T) = K%%) R
- v
<
so that (ag”\ 22 E . The form of C, within coexistence is C,, (V,T)
v /¢ oVoT VART =/
and it differs from that of the single phase, Cyg (V,T). By
differentiating the thermodynamic relation
oP
()Tr = (ﬁ = P’ (31)
\NO L/ v
32K 32 P
one obtains STV (—Eg) 5 using reduced variables and equating the

above mixed derivatives, one gets:

|/
3

(Ca/R) _ (azs >ﬂ : (32)

Performing a partial integration with respect to T, one obtains

Cya (M,¥)/R = Cy (Y)/R + YF(T,v) (33)

/2 \
where, with a prime hereafter signifying (%;),

F(M,y) = £(9/8)/[M+c(v) PHA M+c(y) P -[2A°C’+Ac” I[M+C(Y) ]

+ 2 a(c’)?} . (34)

o
Here Cy(T) is the specific heat of the single phase at very low density

N 2w e TM ) = 0. famn
L s D\NsY ) Viy 10X

AMA“_ ~a ey

€ ‘Tenmperagure

PEERN

Co(T) is 3R/2. Since Cy, must always

d

e positive in the single phase,



~f. T4 . o
C(vy). It is for

from Eq. (34) one obtains

A2
O _Fp
o)

a
If ¢’(y) and A”(Yy) are identically zero, then va and F(M,v)

are identically zero in the single phase.

Within coexistence, T < T¢, Va(T) < V;(T), the specific heat is
Cya (V,T); it can be found by using E, (V,T) and P, (V,T) in Eq. (31),
integrating it at fixed T < T from Vs (T) to some V within coexistence,
and differentiating the result by T. Both E,(V,T) and Cy,(V,T) are
linear functions of V. Using the fact that the internal energy and
pressure functions are continuous across the boundary of coexistence,

one can obtain in reduced variables

{cya (V,T) - CY(T)I/R = YD) (36)
Where
Py) =T, “ () {(2B2) -~ B, () + vE (e ) (VD T () 1. (37)
W\dy /M=, A J A

In general (%%l>ﬂ is not equal to B,’(Y) at (Ms,Y), so the constant

volume specific heat exhibits a discontinuity across the coexistence

are functions of u, one can use the inverse

oe]
()
d
}—J
]
s
o)}
t
=
@
ct
oy
1
'f"l

f
e the terms to obtain:

N
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P(M,y) = {T(v,u)lok (v) + (3-E5)(84-€, Mk (v)-(3-285-€ N ()} (38)

n
S 1’

+ {(Ea-8)/(8a)Hu 20 1 (v) +uwy kg (V) + ¥E; (8o ,v).

Here the k; are functions of ¥, and:

k {u’/r}3; k,

1 =
&

32X[C' P/ [£2A]; Ky

62.u’'C X/

ka

Az, [Xu” + 2x'u’]

ke = AZ¢X"; and with m = €, /[fA],

point is easily found because both § and §;, become equal to §; there,

and the second and third terms vanish. The critical value of

{r(1,1)}, is known to be 4.5, and neither k_(y) nor F, (1,1) is infinite
1
there. Therefore, I'(N,y) is always finite at the critical point, and

state equations of this class cannot show an infinite C,, here, as

suggested by some experimental data. Along the saturated liquid locus

(E=£.). the third term of R (28) vani shes When ¢/
\S=%s3 /s e thlird Term o kL 30} vanlshe when C

m
D
~
0
0
oy
:
3
D
3
&)

for all example equations in Table I), Eq. (38) simplifies along the
saturated liquid locus, (Mz,y), to:

T(Ma,y) = {T(va,u)do{u’/r32+(9/8) €4 (u) {va”/[£a1}. (39)

E. Vaporizing Signal Speed
The speed of a small amplitude adiabatic expansion wave (with

partial vaporization) propagating into the saturated liquid5 is denoted

by a, (Vs,T), and is equal to Vs =+ {T/Cy, (V5,T)}2; in reduced notation,
Wl
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=

A comparison of these speeds is shown in Figure 4 for the sample

equations numbered 2, 4, and 6 in Table I, with the assumption that

a P IR ~d
U

~ 1 Ac 4+ A A
g, valuko ¢ vl i1

The predicted thermodynamic properties of coexistence for this

class of elementary state equations are seen t0 be conveniently done in
terms of the known [V-M] system. The use of different functions A(Y),
B and C(y), might improve the agreement between prediction and obser-

tiag Alaco A
I1Ls Cldaeo U

ct

ration. However,

+n armmwmer aa +tha +hiwnd Trar Nf
LO Valy ao uLuc uvuiird vai

Leve)
pyywcoil

S
large as five’. With th

is restriction, however, this class equation is
useful in giving a qualitative survey of some subcritical transition
properties of liquids and gases.



Table II. Critical point wval igna
m esp

ues for des ted
State equation numbers worr pond t
of Table I. Value of CV was assumed

3R/2 to compute last column.

Equation a’B 3°%B 1
No. v ¥ (Cyu-Co)/R  (Cys-Cy)/R  a,/(RTc)2
> 92 0 bk 0 612
J =t
3 9 2 0 h 2 0 1.633 7
L 32 -5' -6 20 n 21 .563
32 £ -6 20 ¢ 2 ¢ 1.501 z
6 17 % 0 8 0 1.622 Z.
7 26 % 0 12 2 ‘ 1.871 7,

N
\
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Vaporizing signal speed of the saturated liguid for
equations numbered in Table I. The curve shown for
No. 6 was computed for Z. = 1/3.. The value 3R/2

was used for Ce .
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R. E. Barieau, Phys. Rev. Letters 16, 297 (1966).

« Do Landau and E. M
ress, Ltd., London,

Lifshitz, Statistica 1 Physics, Pergamon
958), pp. 60-62, 262-26L.

ae M
~~e
[

R. B. Griffiths, Phys. Rev. 158, 176 (1967), especially
Appendix B.

J. J. Martin, Ind. and Eng. Chem. 59, 34 (Dec. 1967).

Martin uses the forms {his Eq. (28) i

I\/\l\ — {)I Al\ /Q7 D — f\QE/ﬂ anAaA N

present notation}
Y/)/V4g 9y D = VO Le allld U\ = 1ti

n
) = u-+/ Z¢ , and cautions
4
y rE =2 B = 0, will hold only
B O|| dlr’ ’ v

hat

c‘}-

the critical conditions, vy =B =1

for Z, = .335. He sometimes gives up these critical conditions to
obtain a better overall fit to experimental P, V, T data outside
coexistence. A, V, Grosse uses this same form with Z, = .27 to
describe approximately the properties of cesium, tInorg. Nucl.
Chem. Letters u 261 (1968)?

F. D. Bemnnett, Phys. Fluids 8, 1425 (1965).
L. P. Kadanoff, et. al., Rev. Mod. Phys. 39, 395 (1967).
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{(9/8) ry/(N-B)}{ 2B’ + v(B')®/(N-B)}.

Qinpa N -~
S1ingee o C

would contribute a dominant negative value to C,g(V,T), unles

s
were identically zero. Because of the stability condition C, (v,T

it 1s then nece:

l/]

sar

hat B(v) be a constant.

e«
<+

required on A(y) and C(Y), but they are not as simple. With
M+c(y)]™', and the definitions L(y) = 2a”(y), M(y) = 2A’'Cc’+ AC”
and N(v) = 2AC”, then Eq. (33) becomes

Cya /R = CJ/R + (9/8) vx {L(y) - xM(y) + N(v)}, (A-1)

where, for y < 1, the permissible x range over a positive interval from
Otoxy =+ [B+C(Y)]™ <+ e for v < 1, permissible values of x range

over a similar interval, excluding, however, a sub-interval corres-

ponding to T values within the coexistence region. {For this sub-inter-
val, the proper expression for Cy is Cy,, given by Eq. (36)}. Eq. (A-1)
is a cubic n x, and can have a variety of shapes, depending
(v), M(y) and N(yY). The functions A(y) and B(y)

¢y is always positive. This requirement is

)

. .
101S S 1 1l

ITI. Reduced Variables for the [V-M] Fluid

The set of values given in Table III for the [V-M
e

used with the transformation equations to compare

29



Table III. Reduced values o
saturation dens
press
u §3 3
1.000 1.0000 1.0000
.998 1.0902 .911k40
99k 1.1571 BL773
-990 1.2035 .80k5L
.98 1.2894 . 72669
.97 1.3558 .668L44
.96 1.4121 .62042
.95 1.4617 .57901
.93 1.5482 .50931
.90 1.6573 JL2s7h
.85 1.8071 .31973
.80 1.9327 . 23967
.75 2,042k 17721
.70 2.1h0k4 .12802
.65 2.2296 .89L475x%107t
.60 2.3116 .59778x107}
.55 2.3875 .37580x10"}
.50 2.4585 .217h7x107t
.45 2.5251 .11217x107!
.40 2.5879 .49109x107
.35 2.6L75 .16875x107%
.30 2.70k2 .39907x1073
.25 2.7583 51259x10~%
.20 2.8012 22296x107°
.15 2.8602 41565x107
10 2.9083 21612x107+2
.0l 2.9640 5682Lx107*
0.00 3.0000 0.00

Maxwell state equation




thermodynamic predictions for any state equation belonging to this
class. TFive significant figures are given for every function except u,
which is assumed to be exact. These values were computed at this
laboratory with the assistance of D. C. Mylin and F., H. MacIntosh. R.
Barieau’ gives a much more extensive tabulation of various thermodynamic

properties for the [V-M] fluid for .25 < u < 1.0. For these u, the

[@¥]
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