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ABSTRACT

The methed of quasilinearization is a combination of the properrizs
of the high-speed digital computer with established linearization
techniques in such a fashion that it can be used as a method of
identifying parameters. The maihematics used in the program is

developed in detail and an example is civen of itTs use,

Essentially the method is an efficient device of scarching for
unknewn parameters existing in a set of alcebraic or differential
equations. The mathematical concepts are historical but the com-
bination of historical mathematics with the hipgh-speed digital

computer yields new and useful results.
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1. GENERAL DESCRIPTION

In manv computer applications there is a set of test data Yii
(value of some civen function o at a time sample ti) from -n experiment
and a mathematical mndel of the experiment that takes the form,

(1.1 g (x(t)) 3 = 1, N\K

;
where x(t) is constrained by N first order differential enuations.
®
(1.2 x(t) = fix(t),t:¢)
with initial ronditions x(to\. The veactors x{t). f(x(t),t:c) and ¢ are
.3 t) = e
il x{ z (xl(t),xz(t), ,xn(t))
(1.4 fixit),t;c) = (Fl(x(r),t;c),fz(x(t),t:c),...,fn(x(t\,t:c)l

1.5) €= (C)y Coun €L € 1 € SPTR <N

The first | components of the vector ¢ represents a <et of L
unknown initial conditions and the l+1 to 1+K components of ¢ are unknown
parameters of a civen set of differential equations., Determinine the
vector ¢ from test data would provide a complete mathematical model of
the experiment .

One method to determine ¢ would he to select it in seme sort of
intuitive wav, substitute it into (1.7), inteerate (1.2), v o<titute this
valne of x(t) into (1.1} and then compar¢ with the known test (data Yii‘
From the results an intuitive cuecs< could be made for anethes ¢ that
wicht bring ﬁj(x(ti))clnﬂor to the test d~tn Yii' A search of th vne
i< time consuming and requires cuessing as ono—nvprnachn< the concent of
a "eood fit,"

Pichard Bellman [1] has described a method that nses the commuter

to <earch for a vector ¢ that minimizes the equation,

NP NK
(1.6) Sie) = > ; A.(r (x(t 1) - ¥ 7
AN Y s ] ' 1 J"
= jel
-1- !
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where ¥(t) s determined from x t) = f{x(t),t ) with initinl conditione

Y(tn\ andd A ioare relative weichte of NK differert functione e (vit)Y)

1

This resoart deseribes tiic theorsy veod in the CAL sampnter prosran

that searchee for the minimum of etinng (1 6V The nwacres s ppiaingl e
obtrined 2t Gty and then medificd extersively by Dro tohn T Tleck tn
imnroe the convercence technicues for a eiven colution,
; 2
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2.1 Approximations and Assumptions

In equation (1.5} the components of vector ¢ are assumed to

be composed of I unknown initial conditions and K unknown parameters.

Althoueh the equation ni(x(r)) in manv cases will be simply
ni(x(r\) = xi(t), for the purpese of heina ceneral wi(x(t)) is considered
as any function of x(t) that mav be approximated hy 

7 ’ C(x(t
P g5 ( '( »10‘) |

(2.1.1) ('J(X(t)) = ‘ﬂ_i(X(t)O) + (Xk(t) - Xk('r)n) ~ X,;\ i

k=1

where x(t)0 is the wvector pcnerated by assumine (or calculatine} an initial
vector ¢, (1.5), and inteerating (1.2) over the desired ranpe of the
inderendent variable t. It is about this nominal vector x(r)o that the

(1)

linearization (2.1.1}) tak~s place

Suhstituting (2.1.1) into {1.6) pives

’

NP Nk
‘ D n(x,(1) ) s

S(e) = N G ) L) - T - -

(¢) > ) } ‘)J[ﬁ} x(t.))) (x (£ -x (£ ) 3 in]
i=] 1=1 k=1

t2.1.2)

where
xk(t)o = the nomiral op present k-th component of the vector x(t).
Xk(r) = the improved k-th component of vector x(t).

lLet

{2 . Ay o = 4

1.3) B E (0 s € (0

where
€=k(t\ = n correction on the vector component x, ().

(n

x(t)o ts the nominal or |.resent value of vector x(t).
x(ti\ is the valuc of the vector x(t) at t = ¢t

'

-3-
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Assume that & k(r) may bhe approximated by the linear expression,

B K
s 4
2.1.4 €. (t) = ho(t) o+ N S ¢ k=1, v
(2.1.4)  €,(1) > $hy s (0) > Ym0
i=1 1=l
where
Si = corrections to unknown initinl conditions
Y. = corrections to the unknown parancters
3
Thus ,
. (2
A AR s 8.0 125 2
C0 0 undated 10 ¢ present cuess J -

216 c = . € % 1eh
(.10 (j imdated Cjo PTESENt oless * y'il, DR e
and the functions hki(r) and rki(r) are solutjons to the linear
differentiat ceuations ),

N
. M EN (0
(2.1.7) h, . (tY) = - - h_(t), (R B |
R e A n
‘ 1 1)
wvhere h It ) = n (
ny o
A\
[y . .
ce . ; 2 f - Jf =1, K
R I r,.. = . r {t) + Ce e
Nt — ’bxn 1 }\]“_ | NI S

where v (t )} = 0
Ny oo

It 1s assumed that <(t) can he lincarized <o that to u first

arproximation the corrections € krr) depend linearly on 8. and K
1 1

(1Y Wwherz these ditterential ecuations and their initial
from will be shown in Section

R

{2y

conditions come
vo(t ) c = x (t )
10

) AL 00
L = Fk(x(t),r;t] here and in the sequel.
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and when converrence is ohtained

2.1.9) Si--*u, Y. —— 0,
i
2.2 lirearization of thce
linearivation of the differential <vstem (1.2) vields
(21.7y and (2,1.8),

rewrite for converiepce enuation (1.0,

]
(I ft) = fixit), t-¢)
where the initial conditions,
(2.2.0) x.(t . A x. =z c.arc eiven initial conditien pucsses
it jo i
IR I B
and
-
2.2 3N - ATC 21VEN NATrameter cuesses
1 10 ‘
N R D U
known initial conditions, 1fF anv. are
a A - . ’ .
(2. Vit ) o= ox S O
1 0 1o .
line the movcced anitial conditroare 2 0 2 tho aneesed varamotar
(2 2 3 apd the Anpen any b g conditions (2 AV Y nteerats 07 0 Y Fpen gL
Oy
tot = T OFipt Tame) oand wtare the soloton 1t 3 ol v o anaced time vt
t -t . o€y st e iy SYAREEE AT RN
! ©
Panearizans oaatione (2.0 10 abage et oandg o srvee
o o~ )
\ T
. -
. 24 2
f2258) vty ox fivigr v - R A AN AN
A 0" - N . YN
- 2. / . ‘
-
n-)

and

M fferertial

€

To show how these differentinal

k

coanations

(t) ——=~ 0

Fountions

cortatinns

are derived,
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Substitution of ecuations (2.1.3) and (2.1.6) into (2.2.5}) rives,

N K

(2.2.6) ;kmﬁ . ék(r)sznmo) ‘2__1 ), i - .
n=} 2 Xn n n= 2 |

Suhstitutine (2.1.4) into (2.2.6) and collectine terms of 3

and Y, rives,
]

L N
g —.I ? fL
(2.2.7M ; Cfho () - . h (rﬂ +
1=1 ! L h n=] K4 “n n
K r
Y. |r (v - . ?»f‘ Thitt) ?-f}‘ = 0
i L | S AR ;) C“ﬁ
i=l n=]

Fauatine the coefficients of J.j and ‘Y' equal to zero oives the differential

eanations (2.1.7Y and (2.} . 8Y,

For convenience of no*azion 5A, Y., hk.(t) and rk_(t)
1 ) )

will »» redefired as,

(~.2.8) doo= 4 S
v" .‘

RS - ’

(2.2.% d..‘ ‘L )‘] o= | 1N

(2.2, 10 ] =

({ 10 nk’(t\ s hkj{r’ 1 b, k 1, N
(221 W (t) = v (Y s o+ 1, A ko= 1.,

ks A
baquations (2.2 8Y - 72211 mav now bhe used to define ecuation (2.1.47 as,
Ih=]+K
(2.2.10 ¢ L(:\ = ) ko= 1. N

P

Jd.ow,{t
ik
el -
i=1

1nd the differential <et of equations (2.1.7) and (2.1.8) hecomes,




ég §
e
. 77 ot 5 f
(2.2.14) wk. = 2 DiEA wni + "’ék ) =hLel, X, k=1,N
- 1 9%y : ? j
To establish the initial conditions for equations (2.2.13) and (2.2.14)
-~ note that atr t = o equation (2.1.3) is,
. 2.2 18 = Y (3 { =
; 2.2.15) xk(to) xk(f(y0 + k(tn), k 1,1
L

and equstion (2.1.5) is

T

(2.2.160) X (1) = x (r )+ 3 i

T

which implies that at ¢t = t

.

N
ék”o) = k.

1 Since é‘k(rn! = é. at t = to. the initial conditions fer the
i~ srt of lirearized differential enquations (2,1.7) and (2.1.8) are:
2?0 A b <J
y { ! = Q% 1 = T N
- (2.2.17 “kj‘ro' k i 1, L k 1, N
o e ] [ W s - S - r -
. (2.2.18) *kj‘ro) = 0 j=bL+1, K ¥=1, N
’ 2.3 Selving For (orrections to dnknown Initial Conditinns
B and Unknown Parameters .
lisine equations (2.1.3) and (2.2.12), equation {2.1.2) may he
ﬁ exnressed as,
NP ONK LK .
] ——— ..h_, ? 9
. g.(x(ti) 2
z (2.3.1) S(d) = Pila xr) o d > Wo(t)..d L oy,
L : [ j i‘o R m km* i Dx n
: izl 3 m=1 k=1 k
‘- NP NK 1.K N .
‘B AV oo (x(t. ) 2
b . (2.3.2) sf(d)y =, il / d W (B L.y ,«,.u(m}
: il j=1 m=1 M =1 moiy L ii i i
-7-
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Satting,

g—vN ?
o, (X(t ))
. .J._
(2.3.3) njm(ti]: ka(t ) ? X
k=1
(2.3.2) hecomes,
NP NK - v 5
(2.3.8) S() = ?- > )1 ? (]m nim(fi)-in-Pj('((ti)o)]
=1 i= m=1

The set of d_'s that make (2.3.4) a minimur are determined hv
m
takin~ the »artial of S(c) with respect to d"1 and setting these partials

to ~ern, Thus

NP Nk lk
? S{d) 'x 2
‘ - - ‘ v ‘:
—2(\ o 4_\ EL“_-I-* L (f )- (Y f'i(!((fi\(') "',i‘\‘(ti 0
(2.3.5) ko= 1, IK
or,
LA NI ONK
L d B " (t')"-,(f.) =; : j ? HY e (x(t )oYe  (t. )
p— i 1:} P i k9 TS o] IR 1 ki
LY
= E ka dm = “k k=1, IK
m=1
{2.3.6)

where

{(2.2.7M - E : 2 : ﬁ\' e, (t.Ye. (t.))
AL R N

i= j:)

2 z ;$ [_ '-rj(X(fi)O)"ji(riﬂ

i=1l j=l

Solvine the linear set of algebraic equations (2.3.6) in the

1k unknowns dm ovives the corrections tn the iritial conditions and parameters .,
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3. COMPUTER FLOW DIAGRAM

TP — e e aw

In Figure 1 a very gencral computer flow diagram is represented.

The purpose of this diagram is not to explain all the details of the pro-

gram but to pive a general idea how the equations developed in Section 2

are procrammed. A brief description of the seven blocks shown in Fipure 1

is as follows:

1%

Read Input Data requires that the user furnish an initial
guess for the vector ¢ or a subroutine that produces a set
of initial guesses from the data {equation (1,5)}). This
amounts to furnishing L initial puesses to the unknown
initial conditions and K initia: puesses to the unknown
parameters. Known initial conditions, system constants, and

test data must also be furmished.

Selving equation (1.2) for a complete solution over the
interval (to,T) is performed by a numerical integration
scheme thot is part of our present CAlL computer facility,
The results of this inteperation are stored temporarily in
core. Svmholically, this solution is callei x(t}o (1t is

imnortant to note ti. . x(t t .
, te ti . x(t)_f x(t))

Solve linearized equations and accumulate elements of

matrices E and D,

Solves a set of L + K linear equations given hy (2.3.6) for
the L. + K unknowns di. The di’ i =1, L+K are corrections

to the i unknown initial conditions and the K unknown
parameters,

Correct the initial guess for vector ¢ by,

c. = c. + (. i = 1,1
i i 1

for the parameters.

-10-
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6. *» cufficient condition for converyence of rthe vector c

is lac /e & & for i =1, L+ X. € is a paraneter

chosen by the user. Special convergence tests and modifi-

cations of the di are included to nprevent larpe corrections

from disturbing the solution.

7. Output is generated in a subroutine in the form of tables

and/or aranhs,

The success of the propram was due larselv to the inclusion of
techniques for handling subsets of the piven data which were expanded to

include the complete data as the prosress converged,

-11-
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Read Input Data

No

Solve Equation(l.Z)

for x(r,)o, to‘% t €T

~N

!

Solve Linearized Set
of Equations (2.1.7) «nd

(2.1.8)

Selve for dm's via

Equations (2.3.6)

|

Update Unknown
Initial Conditions and
Parameters via Equations

(2.3.8) and (2.3.9)

Test for Convergence
of dm's

!

Output

Computer Flow

Diagram

Figure 1
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IDENTIFICATION OF PARAMETERS EXAMPLE

The following problem of Aircraft Parameter Identification is
used here to illustrate the use of results developed in Section 2. For
this problem equation (1.1) is,

g (x(t)) = x,(v)
g (x(t)) = x,(v)
(4.1) g5(x(1)) = x4(t)
ga(x(t)) = x,(¢)

Where xl(t), xz(t), xs(t) and x4(t) are constrained by the set
of differential equations,

e

For this problem it is assumed that all initial conditions are
known and are:

(4.3) xj(t ) = 0 i=1, 4

Thus, there are no unknown initial conditions so that L = 0 in the identity

(1.5). In (4.2) there are 11 unknown parameters (ci, i =1, 11) so that
K = 11 in identity (1.5). The problem then is to find a vector c = (“l’cl"'cll)
that minimizes (1.6). The program does this provided an initial guess is
assumed or calculated. For this problem, the initial guess for the vector

¢ was calculated by using :pine functions [2].

4.1 Estimating Initial Vector c¢ By Spline Functions

Test data (designated by in (j =1, 4; i =1, 95) was given for

(1) xi = xi(t). i=1,4 here and in the sequel.




xl(ti)’ xz(ti), xs(ti) and x4(ti) at 95 equally spaced points. Using
this data spline functions were calculated. Substituting these splined
functions (designated by ?l(t), fé(t), ?S(t) and i;(t)) into equations

(4.2) and integratine gives the set of estimates.

e
veo] | o 11 5%« o
xl(ti) 0 1 0 o X
X (t.) 0 c c /tit\
x2 i cl 2 3 0 x2 dt C
4
< 4 fr"
. IR
xs(ti) .05467 Cg 6 -1 o Xs dt <
A fty\
{
Xy (1) 0 Cg ) 0| [Zo *a 9t 11
L o - I e L y
(4.4) i=1,35

S~
Forming a measure of the differences between in and xj(ti) squared as,

4 35
. 1 2
(4.5) E ) i § 3 K-y )
j=l  i=l
gives for
(4.6) 2E . k=1, 11
3%k
a set of eleven linear equations in the unknown Cyo k =1, Il1. This
A method proved to be an effective way to get an initial estimate for
vector c.
e 4.2 Equations Users Need To Furnish
j The user needs to provide the mathemstical model of the
. experiment such as is given by equations (1.1) and their partials with
N respect to X Further partials of equations (1.4) with respect to X

and ¢, are needed. Input data, system constants, and convergence test

constants are also needed.

. 4.3 Results

i
f - Figures 1 through 4 are the results of integrating equations (1.2)

; : -14-




o

1

p——— |

Wil

ot

[P

(after convergence of the vector c¢). The symbol x in the figures

indicates the in data points for j = 1, 4 and i = 1, 95 and the

continuous curves represent the final solutions of equations (1.2).

The vector components of c given on Figure 1 is the set of parameters

that this quasilinearization program converged to and this vector ¢

represents a local minimum of the function S(c) given by equation (1.6).
Some interesting things to note are that:

1., Equation (1.2) can be non-linear.

2. Initial guesses for ck's are not needed if cquations (1) are
linear in ck's (linear or non-linear in x). This was the
case described in 4.1.
3. If equation (1.2) is non-linear in ck's. a set of initial
guesses of the ck‘s is required. {In many cases slignt
changes in the math model will permit one to estimate ck's).
4. The program finds a local minimum of (1.6). Searching techniques

would have to be derived to find a global minimum.

It is the opinion of the authors that many estimation problems
can be solved by this method of guasilinearization. Simplicity of
application and specd (about 12 minutes to solve the above example) appears
to be some of its values. Combining the use of the high speed computer and
historical mathematics gives onethe tools to solve a host of identification
problems that in the past would have demanded many hours of a human guided

search techniyue to converge on a local minimum solution.

-15-
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