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SUMMARY

The purposes of this research program were to extend or develop analytical
methods for determining rotor blade aeroelastic stability limits and to
perform stability calculations over a range of design and operating vari-
ables for articulated and nonarticulated configurations. The usefulness
of simpler analytical methods is investigated by comparing results with
operating boundaries from the more elaborate analysis.

In the part of the investigation presented in this volume, analytical study
was made of the effects of high forward speed on the flutter character-
istics of helicopter rotor blades.

Linearized equations of motion were used to represent the dynamics of the
rotor blades. The aerodynamic forces were obtained by using a fixed
azimuth approach with fixed-wing two-dimensional compressible flow aero-
dynamic coefficients.

Flutter speeds and flutter frequencies were calculated for two model heli-
copter blades for which experimental data were available. One blade had
been tested in hover at high tip Mach numbers; the other, at high advance
ratios with low tip Mach numbers. Agreement between theoretical and ex-
perimental data was qualitative.

A parametric study was made of the effect on flutter speed of varying
blade chordwise elastic axis and center-of-gravity position, torsional
and flatwise bending stiffness, and blade mass ratio and feathering mass
moment of inertia.

The extended Normal Mode Transient Analysis was used to perform blade re-
sponse calculations corresponding to blade configurations and flight con-
ditions for which classical flutter was calculated.
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FOREWORD

The investigation presented iii this volume is part of a more general study

of rotor blade aeroelastic instabilities, which is contained in five

volumes. The work was performed under Contract DA 44-177-AMC-332(T) ith

the U. S. Army Aviation Materiel Laboratories, Fort 
Eustis, Virginia.

Mr. Joseph McGarvey monitored the program for USAAVLABS.

The rotor blade -lassical flutter analysis presented in this volume 
was

developed at Sikorsky Aircraft by Mr. Clifford J. Astill, 
who also con-

ducted the study of parameter variations and the comparison 
with available

test data. Mr. Charles F. Niebanck, also of Sikorsky Aircraft, 
conducted

calculations with the method presented in Volume I, 
and compared the re-

sults with corresponding flutter calculations, which 
were carried out with

the method presented in this volume.

Volume I of this report contains the development 
of the differential equa-

tions of motion of an elastic rotor blade with chordwise 
mass unbalance.

Volume iIl describes a stall flutter analysis based on the calculation 
of

aerodynamic work for a cycle of blade torsional vibration. Two-dimensional

unsteady airfoil test data were used in the evaluation of the aerodynamic I
work. The analysis was used to generate stall flutter boundaries.

Volume IV contains the results of a study of static 
torsional divergence.

A set of design charts and the effects of a range of parameter 
variations

are presented. The results of the static divergence calculation are 
com-

pared with results calculated by using the method developed in Volume I.

Volume V presents the results of a study of flapping and coupled flap-lag

instability. The results of a parametric study based on a single-degree-

of-freedom flapping or flatwise bending analysis are presented. Compari-

sons are made with results from the more elaborate analysis 
developed in

Vblume I. The analysis developed in Volume I was used to deterrine the

coupled flap.-lag response of a rotor to a number of sudden 
control changes.

The results of these calculations are also presented in Volume V.

v
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generalized inertia matrix, ft.

azimuthal angle of blade in rotor disc,
zero downwind, rad.

w solution frequency, rad/sec

WR reference frequency, rad/sec

Wt flutter frequency, rad/sec

IWa solution frequency used when calculatin-a . rad/sec

iwi  ith mode natural frequency at a rotor speed Rk
I rad/sec

Whi ith flatwise bending natural frequency, rad/sec

Ojai ith torsional natural frequencyrad/sec

we nonrotating rigid-body pitch frequency, rad/sec

nonrotating first flatwise bending frequency,rad/sec

Q rotor rotational speed, rad/sec

_ _ rotational speed at which the input modes are
determined, rad/sec

SUBSCRIPTS

b refers to a balance weight whose mass and
position are variable

CG refers to the center-of-gravity position

EA refers to the elastic axis position

h refers to vertical translation

refers to the ith degree of freedom (mode or

generalized coordinate)

ij refers to the element in the ith row and jth
coluimn of a matrix
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refers to the Jth degree of freedom (mode or

generalized coordinate)

refers to the kth blade segment orthe corresponding
blade Rtation which is situated on that segment.
When applied to a structural parameter, it implies
that the quantity is the contribution for that segment,
instead of the contribution per unit span

LE refers to the leading edge

ND refers to the last of a number of degrees of
freedom considered

NOM refers to a nominal value

NS refers to the outermost blade segment

r refers to the r th degree of freedom (mode or
generalized coordinate)

R refers to a reference value

a refers to a rotation in pitch

refers to a mass property of the blade itself, exclusive
of a balance weight whose mass and position are variable

o refers to an undeflected blade position

C/4 xefers to the 25% chord station

C/2 refers to the 50% chord station

3C/4 refers to the 75% chord station

SUPERSCRIPTS

F refers to forward flow

h refers to vertical translation

R refers to reverse flow

3 ) refers to rotation about the 75% chord

o refers to an aerodynamic center position prior to
an arbitrary variation

N refers to an aerodynamic center position after an
arbitrary variation

xxiv
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8 refers to a matrix of blade inertial properties appro-

priate to either a local blade station or a local blade
segment. Units of the matrix elements are then per unit
length or per segment respectively

A refers to a matrix of generalized structural coefficients
appropriate to either a local blade station or a local
blade segment. Units of the matrix elements are per
unit length or per segment respectively

DERIVATIVE NOTATION

i(t) first derivative of a function with respect to real

time, f(t) = df(t)/dt

f(t) second derivative of a function of time with respect
to real time, f(t) =df(t)/dt2

MISCELLANEOUS

P]I denotes the transpose of any matrix [P]

n denotes that a function n is a vector

8n denotes a virtual change in any function n
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INTRODUCTION

In the past, classical flutter of helicopter rotor blades h--z not been a
serious problem because it has been customary to place the blade elastic
axis and the center of gravity on or near the 25% chord point. This means
that the elastic axis, the axis of aerodynamic centers, and the center-of-
gravity axis are effectively coincideat, thus eliminating coupled bending-
torsion flutter and also single-degree-of-freedom flutter. Of course, the
axes are never exactly coincident; but for small deviations from coinci-
dence, the application of suitable flutter criteria is sufficient to guard
against the possibility of the occurrence of classical flutter.

Placing the three axes in coincidence involves some penalty in weight and

increased complexity. To provide improved structural efficiency, con-
sideration is being given to moving the axe6 apart, such as occurs with
fixed wings. Once the axes are no longer in approximate coincidence, the
blade becomes very susceptible to classical flutter and at the same time
not very amenable to a flutter clearance based on the application of
clutter criteria. Therefore, flutter calculations have to~be undertaken;
this requires the use of an aerodynamic theory. The blade tip Mach number
of some current helicopters approaches unity for certain flight conaitios
so that compressibility effects are very important. As yet, no general
unsteady aerodynamic theory exists for helicopter rotor blades operating
at high tip Mach numbers and high advence ratios. Therefore, when flutter
calculations are made for these flight conditions, some approximate aero-
dynamic theory has to be employed.

In addition to the tendency for modern helicopter rotor blades to operate
at high tip Mach numbers and high advance ratios, some current designs
call for the rotor to operate in unusual flight conditions. For example,
the stopped rotor compound helicopter requires that the roto r be stopped
at the transition speed, at which time the lift is trancferred to a pair
of fixed wings. During the last few revolutions before the rotor stops,
each blade as it passes through q1 = 2700 becomes effectively a fi.ed
wing traveling in reverse flow at the helicopter transition speed, with
the elastic axis at 75% chord. This immediately raises the possibility of
low-speed flutter. This term is applied to the single degree of freedom
classical torsional flutter that occurs when the still air nodal line of
a fundamental mode lies on or near the 75% chord point. With the nodal
line in this position, it is possible for flutter to occur at very lov
airspeeds. In the past, this type of flutter was mainly of ccademic in-
terest and consequently theoretical and experimental studies cf this
phenomenon are noticeably absent from the literature. However, -1ith the
advent of stopped-rotor helicopters, low-speed flutter will have to be
given serious consideration. The methods developed in this study are
directly applicable for this condition.

Thus, for current and future helicopter rotor blades, classical flutter
calculations begin to acquire the same importance as they have in ;.he past
for fixed wings. The present study is part of the current effort tha is
being made in this direction. The study is strongly oriented tow ad pro-
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viding a method for rapidly obtaining estimates of rotating blade classical

flutter speed and the effect in the flutter speed of varying parameters
such as blade chordwise elastic axis position. Such a method is mandatory
for design use, where introduction of new blade concepts requires that the
classical flutter solutions be attempted with the best available method of
analysis. Consistent with the approach, the fixed azimuth method was
chosen in conjunction with the use of a digital computer to obtain solu-
tions to the equations of motion. This is in contrast to some recent
studies which have used an analogue computer to integrate the equations of
motion with time varying coefficients. The fixed azimuth approach is an
expedient way of converting the time varying coefficients to fixed coef-
ficients which are more convenient for digital computation. It is probably
the major assumption made in deriving the equations of motion. With a
rotating blade, the first two aerodynamic effects listed below result in
time varying coefficients in the equations of motion.

1. The dynamic pressure varying azimuthally for ,L > 0

2. The indicial aerodynamic response due to the vaxying
of the velocity field azimuthally for a > 0

3. There is a phase lag between the occurrence of maximum
anglr. of incidence and the resulting development of maximum
111' when the blade executes simple harmonic oscillations.
This phase lag is the result of indicial aerodynamic response
to the varying geometric angle of attack; for simple harmonic
oscillations, it is integrated to give an in-phase and
quadrature response.

4. The aerodynamic forces are determined by multiple
nonplanar shed wakes.

The fixed azimuth approach considers a particular azimuth angle only. The
instantaneous velocity of the blade at this azimuth angle is considered to
apply for all time, that is, -cO < t < 00 , and the aerodynamic
forces are calculated in accordance with the assumption. Hence, only the
third effect is taken into account, the lag effects being derived from
fixed-wing theory. The neglect of the first two effects causes the coef-
ficients in the equations of motion to be time invariant. The analogue
computer studies referred to above considered only the first effect, so
that steady-state aerodynamics were used. So while the coefficients in the
equations of motion were time varying, all but the first effect was neg-
lected. In this respect it should be noted that when steady-state aero-
dynamic coefficients are used, it is not possible to predict single-degree-
of-freedom classical flutter which depends on unsteady aerodynamic lag
effects.

The fixed azimuth classical flutter study begins with the derivation of the

equations of motion, and the presentation of the set of assumptions and
approximations upon which the equations are based. These equations of

motion are used to calculate the flutter speeds of sets of model rotor
blades for which experimencal -sults are available for correlation. Then

2
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the method described in this volume is applied to the investigation of the

change in flutter speed due to a change in various parameters. Finally,
the results of a number of calculations made with the more elaborate
Extended Normal Mode Transient Analysis described in Volume i are presented
and compared with the corresponding fixed azimuth classical flutter calcu-

lations.
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ASSUMPTIONS

1. The equations of motion are linearized by assuming that the
linear and angular displacements of a blade element are small.

2. Strip theory is used to compute the aerodynamic forces. This
implies that the pressure distribution on any chordwise strip
of a blade is the same as if that strip were part of a two-
dimensional blade which performed the same motion everywhere
as the strip under consideration. Thus, the interaction be-
tween strips is not accounted for.

3. The aerodynamic forces are calculated using a fixed azimuth
approach. This method considers a particular azimuth angle
only. The instantaneous velocity of the blade at this azimuth
angle is considered to apply for all time, that is, -O< t < O
The aerodynamic forces are calculated in accordance with this
assumption; as a result, the coefficients in the equations of
motion become time invariant. Also, the indicial aerodynamic
response associated with the changing velocity field is neg-
lected.

4. The askumed two-dimensional oscillatory aerodynamic forces
acting on a strip are approximated by two-dimensional fixed-wing
theory. This means that the following assumptions are made:

a. The steady angle of incidence is small and,
hence, well below the stall region.

b. Effects due to a nonplanar wake and inter-
action between shed wakes are neglected.

5. The contribution to the generalized stiffness of bending modes
due to radial flow is neglected. This means that the solutions
in the region of If = 00 and 1800 become increasingly less
accurate as advance ratio increases.

6. Zero steady state:

a. Blade twist.

b. Blade pitch angle.

c. Blade lag angle.

I



EQUATIONS OF MOTION

GENERAL DISCUSSION

The form in which the equations are cast for eigenvalue solution is in-
timately tied up with the notation used to represent the aerodynamic
forces. Measuring the blade displacements and the aerodynamic forces
at the 25% chord, then for simple harmonic motion, the lift L and moment
M acting on a blade segment of width Ar of a nonrotating blade in in-
compressible two dimensional flow, are given, as shown in Figure 1, by the
following equation:

i I IL 20) 1+ 2CWk

7rpbAr -i [ ] + I

L. cj c/A L _jC _ C/4

0 0 aC/4

where

C(k)= F(k)+ iG(k) is the Theodorsen circulation function

k = cb/V is the reduced frequency parameter

A complex polar plot of C(k) is shown in Figure 2. The following
points should be noted:

1. The acceleration (inertia) coefficients are constant; thus,
the aerodynamic inertias are indistinguishable from structural
inertias.

2. The velocity (damping) and displacement (stiffness) coefficients
are functions of the complex circulation function C(k). They
vary with reduced frequency k, but remain finite as k ranges
from zero (steady flow) to infinity (zero forward velocity).

5



When these coefficients are incorporated into the flutter equations, it is
customary to modify them with the relations for simple harmonic motion;
namely,

qiwq

-w2q

(2)

where q is any displacement, such as a or h

Two methods are widely used and result in different methods of presenting
the equations of motion. They are the "V-g method" and the "decay-rate
method".

The V-g method is used it the United States. A discussion of this method

appears for example, on page 21 of Reference 1. The aerodynamic inertia,
damping and displacement coefficient matrices are combined to form r. single
aerodynamic complex stiffness matrix. The above equation (1) becomes

I -iCk 12~) ~ )I
rpb3 o 2 Ar [ 3 i

LbJC/4 L_ B- U a iCA

(3)

The terms involving i =/7 were formerly damping coefficients. It
should be noted that

Mim 0(k) -M i- (1)
k,-O k

so that the aerodynamic coefficients become infinite for the case of steady
flow. This is due to the algebraic rearranging of the terms and does not
imply that the total aerodynamic forces become infinite. The coefficients
remain finite for the case of zero forward speea (k= 00)
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With thE aerodynamic forces expressed in the above manner, the equations H1

of moticn can be put into the following form

rAj - =II)Bjq 0 (5)

For a particular value of the reduced frequency k, the coefficient matrix
[Au] can be evaluated, and the eigenvalue yields the flutter frequency

W aad the value of the structural damping coefficient g (assumed here
to be the same for each mode) required to keep the system oscillating with
simple harmonic motion. The forward speed V is found using w and the
value of k assumed when calculating the coefficient matrix [Au]

That is,

The forward speed will be different for each mode. When the process is
repeated, assuming different values for k gives the familiar V-g plot, as
in Figure 3.

The decay-rate method is used in Great Britain. The complex aerodynamic
forces are rearranged into real coefficient matrices, with the relations
for simple harmonic motion being used, so that the equations become, with
forces and displacements referred to the leading edge,

Pb 3Ar L 7r

(7)

7k

L



again it should be noted that

lir Gk)
k" O - (8)

Some of the coefficients become infinite for both steady flow (k"O)
and zero forward speed (k = CO)

With the aerodynamic coefficients expressed in the above manner, the
equations of motion can be put into the following form:

[A 'I+ (V[B]AO+ [B+o}

V and V2 give the effect of dynamic pressure so that the variation of the
aerodynamic matrices [BIAERO and [C]AERO with k is due only to the
unsteadiness of the flow. This is in contrast to the V-g method where the
variation of the complex matrix [Au] with k includes the effect of dynamic
pressure. This occurs because the dynamic pressure is expressed in terms
of the reduced frequency k according to

(2k (10)

In the V-g method, the wZ is divided out and appears only in the com-
plex eigenvalue

(..L) 'I+ ig) (1)

In the decay-rate method, the equations are solved by assuming a value for
k which allows all the matrices to be computed. That is, the degree of
unsteadiness of the flow at the flutter condition is assumed in advance.
Then for a particular forward speed V, the total damping matrix V [B]AERO
+ [BR] and the total stiffness matrix V2 [C]AERO + [E] are formed, and
the eigenvalue solution is obtained. This process is repeated for a number
of values for V and V2 but using always the same matrices [B]AERO and

CC]AERO and, hence,the same assumed value for k. This gives a plot of the
exponential decay rate C/Cc for each of the modes, as in Figure I. The
decay rate is nondimensionalized with respect to the critical damping{rate in the usual manner.



Whnen using the decay-rate method, the convention of plotting C/Cc with the
stable region above the abscissa is usually followed. It is of interest
to examine the relationship between the two methods. The two methods will
yield the same flutter speed and frequency. However, the variation of g
versus V will be different from the variation of 0/C versus V even
though they cross the abscissa at the same point. Sometimes an attempt is
made to convert C/Cc to using the relation

(1-2)

This is actually a contraction of the equation

I C NMg = 2rC W(13)

which is exact for a single-degree-of-freedom system. However, the above
conversion has no justification for multi-degree-of-freedom systems.

The question arose as to which of the above methods to use in the present
study. The velocity distribution across the blade varies with forward
speed for a constant rotor speed. If the helicopter forward velocity VH
is used in place of V, the above methods may be applied to the rotating
blade in the same way that they are applied to calculating fixed-wing
flutter speeds. However, the aerodynamic matrices are now a function of
the advance ratio /L, which has to be known in advance in order to be able
to calculate the matrices.

If the V-9 method is used, it is necessary to assume a value for
/-L= VH/QR ; and corresponding to the value of k = wb/VH chosen, the
flutter solution gives a value of VH for each mode. The corresponding
value of rotor speed is found from the equation

(1i4)

Thus, the rotor speed S1 will be different for each mode. In obtaining a
V1.-g plot, it is required .ithec that the rotor speed be constant or that
it vary in some prescribed manner with VH . In either case, it is most
unlikely that S1 for the :node of interest, calculated using the above
relationship, will follow the required variation. As it is necessary to
have S2 very close to its correct value, an iteration procedure is re-
quired.

When applying the decay-rate method, the forward velocity is stated; with
S1 known, then p i, known in advance. Only k has to be assumed, so that
the method of solution is basically the same for both fixed wings and ro-
tating blades. "ecause the solutions are obtained for specified values of
V and k, then from the relation

9



W=IV

(15)

this, in effect, means that the solution frequency w has been assined in
order to obtain a solution. It must be clearly understood that this im-
plies only that the degree of unsteadiness of the flow is assumed in ad-
"tance. For flutter not nvolving aerodynamic control surfaces, as is the
case with the present study, fixed-wing flutter solutions indicate that
the solution frequency and decay rate is relatively insensitive to the
assumed degree of unsteadiness of the flow. Hence, a reasonable guess at
the flutter frequency gives solutions sufficiently accurate for most
flutter investigations, especially when the approximate location only of
stability boundaries is required, and this comprises by far the major part
of most flutter investigations. Should a very accurate value of flutter
speed be required, or, alternatively, if the assumed flutter frequency
turns out to be very inaccurate, then one iteration using the calculated
flutter frequency is all that is needed to obtain satisfactory correspondence
between the calculated and the assumed flutter frequency.

It was decided that the decay-rate method of solution was more direct than
the V-g method for analyzing rotor blade flutter, and so this method was
adopted. One modification to the decay-rate method is necessary when it
is applied to rotating blades, and that is to recalculate the aerodynamic
matrices for each forward velocity, as they are now a function of advance
ratio.

Having chosen to use the decay-rate method, it was then necessary to choose
a definition of the aerodynamic coefficients. Various notations are used
in presenting the aerodynamic forces, but none of these is entirely suit-
able for the present study. Some take the factor 7r outside the equation
so that the stea-y-flow rate of change of lift coefficient with angle of
attack becces equal to 2. Others take out the factor 2 so that CLa =7r
at k = 0. For convenience, it was decided to take out a factor of 27r
giving CLa = 1.0 at k = 0 so that this term then becomes a measure of the
aerodynamic efficiency. The aerodynamic coefficients are defined as
follows again with reference to Figure 1:

M -ml - •6 -mh  -ma a
-bJ c/4 _ J J L C/4 _ J 1- _C/4

(16)
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Here, the aerodjnami: acceleration (inertia) terms have been combined with
the displacement of coefficients with the followirg relation being used:

D q = WD4 q b()2 [k2-D4] q (17)

Although for incompressible flow any acceleration coefficient D4 is a
constant, the equivalent displacement coefficient k2 DI varies with- k
and becomes infinite for zeio forward speed (k= cO) . When the decay-rate
method is used, it is desirable that the variation of the coefficient with
'hange in k be a minimum in order to keep the calculated flutter speed
relatively insensitive to the value of k assumed in obtaining the solution.
Hence, it would be desirable to keep the acceleration coefficients separate,
but the following two factors weighed against this:

1. In compressible flow, the acceleration coefficients become
complex functions of the reduced frequency k.

2. Most tables of compressible coefficients have already lumped
the acceleration coefficients in with the displacement
coefficients.

For incompressible flow, the above coefficients have the following form:

= F(k) (18)

i Id = -+ F(k) + 6kC (9)

/h= -k (G(k) + ) (20)

O F(k-k(G(k)+ (21)

-mh = 0 (22)

-mo 2 . (23)

kz
-mh = - (214)

-ma =- -12 k2 16 (25)

• 11



It should be noted that

,ira la--CO
k-O

and that

lim /h = -(C2
k-CO (27)

lim -CC (28)
k-CO

limO (- mh) = - DO ( 29 )

lim (-ma)= - (3o)
k-cO (0

KINEIC ENERGY

Consider a set of axes , Y , Z ) fixed in the helicopter with the Z
axis coinciding with the rotor shaft axis and the X axis pointing aft,
as shown in Figure 5. Then consider another set of axes ( X , Y , Z ) ro-
tating with the Y axis coincident with the blade under consideration. The
blade is assumed to have zero twist, zero steady pitch angle with the tip
path plane lying in the 77 plane.

The coordinates of any point (R, ) on the blade are given by

[ J = [ co S t -s in fi t [ ]

The kinetic energy T of the blade is given by

T = f + + 2 ) dm

BLAOE
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where dm is an elementary mass point at (7, 7, z ) on the blade.

T fi + Y + Z+ 2 S1 x -y0) + 2(x2+y)] dm (3
BLADE

Generalized coordinates al •. qn may be used to describe the displace-
ment of the blade relative to the rotating axes. That is,

x x (q,, --- ,q) (3k)

y = y (q. - - nq) (35)

z = z (q,- -- ,qn) (36)

If the above terms are expanded in terms of a set of Maclaurin's series,
the following result is obtained.

II

Xi X

7q: 2 i aqi aqj (38)

,, ( zjo
• oqi jaqj qqj + '"(39)

where xo , Yo and zo are the valuesr of x , y and z when each qi
is equal to zero. The derivatives are also evaluated when qi equals zero.,I
Substituting into the expression for the kinetic energy and neglecting
higher order terms gives

... (,o,)o"~ (,J() o -(* o

+ 2l q°j, [ (,,1 1 - (,ko.1(,OU). ]
+ q,, [(" (,o,)o +  o(q)o 1 ) X

q1 ) + x. (o)
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This is

j q , 1+ Tij qqj

BLADE

(4i)

where

fA + ( a, +(~ (az )( 8 ' dmoLY ) \ aq aqi 0 \ a qjo0 (42)
BLADE

Gj(.x)0 (ay) (aY) aLx )] d m(13
aqj Va1q 0  Va-q dqj 43

BLADE

Ti °q~\q~ +'Y /a o + )o 1 dm

(44)

Note that GMij =GMji (45)

Gij = -Gji (46)

Tij = Tji (47)
POTENTIAL ENERGY

The potential energy arises from the elastic deflection of the blade and
control system and from +hie motion of the blade in a gravitational field.
It is a function of the generalized coordinates qi and is shown as follows:

U = U(l, --- ,q) (48)

If Maclaurin's expansion is used, Eq. (48) may be expanded to giveU O ( -)oq, + q, qj t _
S q aq aqj)oqiqj (49)

14



where

U0  U (0,-- - ,O) (50)

andw)r e hgheU (o,- -- ,o) (51)

and where higher order terms have been neglected. The gravitational
forces have a negligible influence on the perturbation deflections qi, and
so it is asoumed that the generalized spring forces

Kij = a U
aqi)o (52)

do not depend on gravitational forces.

Hence,

u~u 0  + , qi R ijqjqj (53)

7 I

LAG.RANGE S EQUATION OF MOTION

The equations of motion in the form of Lagrange's Equation will be used
which, for the r th generalized coordinate qr, may be written

d _r + Qr r= I,-- (54)
d aTqr qr (54)

where Or accounts for all forces not included in T and U. It may be

separated into an initial steady component (Qr)o and a perturbation
component AQr . Substituting the expressions for T and U into the above
equrtion gives

jI LGMrj 'j + (G jr-rj j + (K1rj -,Sl/,Trj) qj

+(ro-GJx(-r+Y(-qqro dm =((Qr)o + AQrIaqr)0Id
BLADE 0

(55)
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The steady generalized force (Qr)0  must be in equilibrium with the

initial elastic, gravitational, and centrifugal forces; that is,

au /0  L k 8q0 a 0 8q ALr (56)
BLADE

Hence, the equation of motion reduces to

IG M rjq4 - 2 a Grj 4lj + "Krj - d,j) q j =AQ r  r= 1,---,n

(571)

The generalized force A Or is due to

1. Aerodynamic forces acting on the blade

2. Mechanical damping forces

They can be determined from the work done by these forces in a virtual

displacement using the relationship

aw
AOr = a (58)

The general form of the equations of motion having been obtained, a set of

generalized coordinates can be chosen and the general expressions can be
evaluated.

A new set of axis ( X1 ,Y, ,Z1 ) are introduced, which are fixed in the

blade as shown in Figure 6. The origin 01 coincides with the blade elastic
axis at the section under consideration. With each qi equal to zero,

coincides with OX

01YI is parallel to OY

01 Z1 is parallel OZ

hz is the flatwise displacement of the elastic axis

hx  is the edgewise displacement of the elastic axis

a i the blade pitch displacement

E is the distance of the blade mid-chord aft of the
axis at the section under consideration

16



OEAb is the distance of the elastic axis- aft of the mid-chord

Consider a generic point P ( x, , Yi , z, ) of the blade. Then the x and
z coordinates of P referred to the XZ axes are given by

Xp = E +OEAb +hx + XCOSa + zsina (59)

Zp = hz - xsina + zicosa (60)

For small angles,

cosa- I-- (61)2

Sin a a a (62)

Then,
a2

Xp = (E+aEb+x)+hx +za -x-- (63)

Zp = Zi + hz - X1a - az- (64)

where third order terms in the deflection h x , hy ,hz and a have been
neglected. Finding an expression for yp will be accomplished in three
steps. The first of these is depicted in Figure 7.

For this derivation, the effect of having (E +GEAb) variable is neg-
lected, so that the undeflected elastic axis is taken as being parallel

to the OY axis

dhx A
tan Y, = d XP-XEA (65)

Substituting for Xp and XEA and neglecting third order terms in the
modal deflections gives

[X-+ zia] (dhx) (66)

The second of the three steps is shown in Figure 8, where

tn dhz Atny2 
= dy ZP ZEA (67)
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Substituting for Zp and ZEA and neglecting third-order terms in
the modal deflections gives

A? z, xia] (dhz) (68)

The third step considers apparent blade shoriening, £3
Let s be the arc length measured along the elastic axis

Then

ds+(d2+dz (69)

With expansion by the b .omial theorem and with higher order terms being
neglected, the total blade shortening at station y is given by

A A3  f (ds-dy) (70)

A = dx)+ (dz)] dy()
-dy Y (71)

A~ = f E(dx) + bz) Jdy (2
As Y (d-y V-d'l" j d (72)

Hence, the y coordinate of P referred to the XYZ axes is given by

yp = r - (A, +A,+A) (73)

= _ [X+zia](dx) - + __

(74)
That is, the coordinates of P referred to XYZ axes are given by

Xp (C +oEAb +x) +hz +zia - xi-C (75)

__hz I ' (j \ h
ldhif) [jXaVdy / f/L dy 12 + dy/i? dyyp= r- [xi-tza](-y)- [z,-x,] y -dYh Idy 2 + -- zy.2

(76)
a
2

Zp z, + hz xia - k77)

II



The displacements of the point P can now be expressed as being due to L
two generalized coordinates qI and q2  This will give the form
of the coupling terms between the two generalized coordinates and will
allow the final equations of motion to be generalized by inspection to in-
clude any number of generalized coordinates.

Put
hx (y,t) =g(y) q,(t) + g)y q2(t) (78)

hz (y,t) = gZ(y) q,(t) + gZ(y) q2(t) .(79)

a(y,t) = F,(y) q,(t) + F2(y) q2(t) (80)

where q (y) q'(y) and F, (y) are respectively the edge-
wise, flatwise, and torsional mode shapes of the ith generalized coordin-
ate. Substituting into the expressions for Xp , yp and Zp and
neglecting third and higher order products of the generalized 'oordinates
gives

Xp (E+oE.b+xl) + (gx +zF,)q, + (g' + z, F2)q2

-x FFq, - x1F,F2 q, q 2 XF2q' (81)

y, r-[xI(,[,, ) + z,(2
d2 rrXfdy q, X, (A-2 W

[z-,(~ .F (gX\ { +g 'i E I+ dg
dy dy X1  dy C ~ -7 j

+d \Y dy ]qyqI}
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Zp , -gZ -xF,) q, + (gz2 - x , F.) q 2q 22 2 2

z' F'q2 -z'F'F 2 qq2 - -z, F2 q2  (83)

Differentiating the above expressions with respect to q, and q2  and

evaluating the terms at q, q2 =0 gives the following results:

(Xp) o  E +OEAb+ Xi  (84)

, ( q g' + z,F,

6q, 0(85)

+ Z, F2 (86)
=q )o 9F (87)

a on-X 1( 7
kaq, aq21o = -x, F, F2  (88)

a o -z), = (89)

(YP)o r (90)

ay r (dgx z(dg
\ ( l)0 1 [: _[) + 2] (9?)
aq/o +1 dy ,

qz/o ,x  + zmka\dy /"d~y" (92)

22

_qi2 -L) - x, F, 1--L~
dk dy

d.N+ (da. dj 9]
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___ - z, Ft(4) + F2 -_q) [F1 (AF d)p ZI F,-- d Fo2aq qaqz~o 7ayz y

_+f' [cd d jy dg Z dyj

" (95)

(Zp)o + z1  (96)

x xo g- x1 F (98) [
I)o= -z1 F2  (99)

8,aq2 1o -z,, F2  
(ioo)/o -zF-a (lO1)

I \q 2  (01

These derivatives are now substituted into the generalized coefficients
GM. , G- , and T1 je  . Before this is done, it is convenient to

define the following mass terms:

m =ffP dx1 dz, (102)

ffpbx dx dzI (103)
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ms  + m(es+aEAb)

my = ffpbz dxdz, (105)

'xx = ffPbz dxl dzi (106)

Ixz f bx Zdxdz (107)

I 'ZZ ffpb x2 dx, dz, (108)

yy ffPb (Z,+ )dx1 dz1  (i09)

Ixx+ Izz

where Pb = blade structural density and the integration JJ is over
1 the blade cross section .

The following relation will also be used:

f (xi , z, r)dm = f(x,,z, ,r)Pb dx, dz, dr (1lo)

Rf(XI.z, ,r)dm = R f(xl z r)dxldzI dr
-_-LJ ' pb ,LI, xuL~r(ii)

where r is now used instead of y to refer to the blade spanwise
coordinate.

GENERALIZE 1NERTIAS

I Since the generalized inert±a is being developed with respect to q and
q2  , i land j 2 in this case.

I
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• 4>~ftt;#, + ,,O,~ -( V, > F, )m, + (g.'F + g', F,) mY0M1'M1 .ft(~q ()(z ,,. ] din)#) (112)] ,,

+ () ) + F..F2,,}d. (113)

[ g, ' ".- F. m 0 0 0 -mR 0 z dr
0 m 0 0 ml 0 g

o 0 I. ,, I 0 0 (e)0 ~ 0 ~ 1, i!tId 0(0g;
-ml my 0 0 Iy 0 F,0, 0 % 0 0 0I F.)

GENERALIZED GYROSCOPIC INERTIAS

The subscripts of Gij are again j=I and j=2 , as for the OM1 2
mass property developed above in Eq. (112) through (114).

f [t9 (*ay N a din (115)
2 f

g.')Ina '(.) -g)]nix - e-

+ [ ( V ) ,, ( ,] F. -[(. ) , -( - 1,, } . 1 , (1 1 6 )
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I

.4

Go 0 0 0 0 0 1 dr
0 0 -mr -mI 0 0 g

0 my 0 0 ],, 0 (gz)
0 MRl 0 0 xz 0 (9~
0 0 - Inx "lXZ 0 0 F,
O 0 O 0 0 7

The~ are V =(anj2 0iL (117)

GENERALIZED CENTRIFUGAL STIFFNES COEFFICIENTS

The subscripts of Tij are i = I and j=2 ,as for the GM12. and

G 12 mass properties developed above in Eq. (112) through (117).

i!/rrF a._ __x ( ay 2 ap ~D\ I ~p)

TJoB L aq, aop vo-a'o(Xp)o *(YP)0' J] dm (18)

f Rdgx fdg~ (dg+
+ l\dr d / d r / C +  I3z ,\ drF\dr? J + xx

_ Ffdg1 tx _ X

+ ~ ~ m (g" ",4g .- f(d - + 1 r"J du +f(dg.' g u') F,)r  1

It wrill be seen that the mode shapes ( ) and ( dg8-)
occur inside an integral with variable upper limit. This complicates

numerical calculations, and so the mode shapes are brought outside the

integral by changing the order of integration as follows:

R V[ d fr f VdV] dU

S(2du

V d u IT d 19



sothat 
-

frnM(r) r IJ'LkT 1 072)~ du]jdr

~Jo L\du du du duJ"') du (121)

=jr d (122)

Hence,

T 1 fR [gxgxM +{(1 F (Z r iz m EoEbFF

L' r\d r F \rd Id2 Fj ~ 7 \ ~ ~ x

{(x)d~ x drgx (123

*1i

2 ' dr d r ~ dj 20 0[I d

odg IAt xz m0

Id- o i I ~ ~ f _ m 0 + F. 2)
L r 0d 0r dr 2

xL x

(dg) + (gr 9(123)
1-- g'd

zg' Ir x F25



4ARTICULATED RIGID BLADE NATURAL FREQUENCIES

Before proceeding any further, it is of interest to obtain the frequencies
of the rigid body flapping, lagging, and pitching modes due to the centri-
fugal force field. The equation of motion for a single degree of freedom
q1  is given by

M,,q', - S22 TI q , = 0 (125)

and for simple harmonic motion -W2q, so that

-M, (126)

where

R [(g.) L)(,rm i (C t OEAb) FII m

S( dgxx -(dIX2

I r) dr

x z z 2 x2 z 2

+2 dr IdrlXZ ) + I z rIx )2 r/ \ J>r (127)

rRm rdr (128)

,, 0[{(g,)2+(g)2} m-2g, F m + 2gx F, ml

Z(dgZ2  
2  (d (dg) d 1(dg, Ix+ 2. d,. ̂  x x , I +F2

+ xx d -T" I "/Izz + Fz I yy dr

(129)
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Rigid Blade Flapping Frequency

For a flapping mode

g 0 0 <r <e (130)
z r-e e < r s R

gZ R-e - -R(131)

dg ,
dr - 0 0<r<e (132)

d I e _< r < R
dr R-e (133)

x dgx
g :T F, 0 (134)

where the flapping hinge is at r = e. In addition, Ixx 0

Then,

-T,, : 2(R-e)[ +S (135)

GM (R-e)2 (136)

- I-- (137)

where

I e R m(r-e)2dr(18

SP m(r-e) dr

7(139)
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Rigid Blade Lagging Frequency

For a lagging mode,

g - 0 0 _< r _<e W 4)

x = r-.._e
R-e (141)

x
d91 0 0 :5r :e
dr (12)

dr R-e e(r1R

z dg,g91 dr F1 0 (.14)

where the lagging hinge is at r = e In addition, z z  0

Then,

-T, = (R-e)2  S8  (h5)

GM,, =
(R-e) (6)

i e 18r

where

f8 R m(r-e)2dr (!Lb)

SO  m lr-e) dr
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Rigid Blade Pitching Frequency

For a pitch mode F, = I

1 dgr I d1  -0 (150)
dgzr d rX

In addition, it is assumed either that the center of gravity is coincident
with the elastic axis (i.e., Y=O ) or that the elastic axis is coinci-
dent with the OY axis, (i.e., 6 + oEAb= 0). Then,

-T,, = IN - Ixx (151) 4

Mzz + Ixx (152)

1+ff
" I Qzz/ (153)

where

Ixx = Ixxdr (154)

Izz =  Izz dr (155)

for a plane lamina, Ixx is zero, therefore w/ = 1

DISSIPATION FUNCTION

In order to avoid the use of complex coefficients in the equations of
motion, energy dissipation is assumed to occur due to viscous structural
dmping, which is the usual assumption made when using the decay-rate
method. For the small amount of structural damping present in metal blades
(g = 0.03 approximately) it makes little difference if into the equations
of motion one puts hysteretic structural damping with g = 0.03 or viscous
structural damping ,rith C/Cc = 0.015. Hence, the generalized structural
damping force acting in the rth generalized coordinated can be represented
in the form

Ar Dgrrqr (156)
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It is convenient to obtain Dgrr from the single-degree-of-freedom
relation

Dgrr gr GMrrcr 6Mrr gr wr Mrr (157)

where rMrr = generalized inertia of the mode used as the rth

generalized coordinate

Wr = natural frequency of the rth mode

gr = structural damping coefficient of the rth mode

ELASTIC STIFFNESS

The elastic energy due to small bending and torsional deflections of a
blade can be expressed as

IU *i [Elz -2 + E Ix(- ' + GJ (dO / + K ida fR, 1rdr
0 k dr E rr K, * jmd] (158)

Note that the units of EIx , EIz , and GJ must be consistent with

those of the deflections. The last term on the righL arises from the
initial tension stresses in the blade. kA is the polar radius of
gyration of the tensile cross section. The generalized elastic stiffness

can be expressed as a part independent of thc rotational speed n and
a part dependent on S . These are, respectively,

a2  _f R[ d2hz 2  /d2h x2 /d\ 12"] d}
K,1  dq 2J LEI 2 + EIxdr) t GJ dr .dr (259)

2dI R 2  2 C 1e2 q.8q. L2 A)f2 mrdr] drL'i aqiaq} LL- (o160G)

I
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A generalized elastic tension stiffness coefficient L12  is determined
from the potential energy Eq. (162) by expressing the torsional deflections
in the modal form of Eq. (80) and then differentiating as indicated in
Eq. Q.6ol. }J

'4~( F J A 1a)JfR2d(
LJU KA dr R2Mrdr dr (161)

fR1L KA J21 q + F 2  Mr~.J r dr dr(12

Hence

____ t RzK/dRdF,,,,,. df,,,, . o , ) )d,
S1L i, *)d(163) I

,f t go 0 0 0 0 0o ,Z dr

It il a Fthat t m o i an n r

siderd tobe smiriid, o ter used in fie-wn o flut t enta

hte h eeaie o oriae ar aoir modes or orthogonal

3164

TOTAL STRUCTURAL STIFFNESS

It will be assumed that the generalized modal inertia and natural fre-
quency of each of the modes are known for the blade rotating in a vacuum

Sat a particular rotor speed SIR .Then the integration implied in
SEq. (159) for the formulation of the kij elements can be avoided.

In general, the mode shapes used as generalized coordinates will be con-
sidered to be semirigid, a term used in fixed-wing flutter to mean thatI

~the same mode shapes are used for all forward speeds. Irrespective of

, hether the generalized coordinates are arbitrary modes or orthogonal
modes at zero forward speed, they will be arbitrary modes to some extent

1 for non-zero forward speeds. However, if a sufficient number of generalized
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coordinates are used in the solution, then for any forward speed these
arbitrary modes will give the correct coupled mode shapes. The question
is: Just what comprises a sufficient number? Fortunately, the effect of
forward speed on the mode shapes is small, so that quite often two gener-
alized coordinates are capable of giving a good approximation to the
flutter speed. In addition to the effect of forward velocity, it is
necessary also to consider variations in the mode shapes due to changes in
any other parameter which affects the mode shapes. Here the assumption
of semirigidity is not always so satisfactory, as it may reqaire the use
of an excessive number of generalized coordinates. In such cases, it is
better to use a reduced number of modes and to assume the modes to be semi-
rigid over only a liAited range of variation of the parameter and to use
new mode shapes fo' the generalized coordinates as necessary.

The concept of semirigidity can be applied also to rotating blade flutter
where rotor speed enters as one of che parameters affecting mode shapes.
In this case, it is desirable to be able to assume semirigidity with re-
spect to both forward speed and rotor speed. This is facilitated if each
mode involves displacements in 1 degree of freedom only; that is, if each
mode is a pure mode. It has been foard in practice that modes involving

only pure flatwise bending, or pure edgewise bending,or pure torsion have
shapes which vary little over a wide rsage of forward velocity and rotor
speed.

Considering the mode shapes to be semirigid, the total structlaal stiffness
acting in a generalized coordinate is composed of an elastic stiffness

which is constant and an elastic tension stiffness and centrifugal stiffness
which are both proportional to S22 Suppose that the modes are calcu-
lated for rotational velocity SR . Let R be the natural frequency
of the ith mode and Mii the corresponding generalized inertia. Then the
generalized total structural stiffness at the angular velocity Q2R is
given by

[cs]R,12 = [K 2L - 2[](165)

where
-0 ] is a diagonal matrix of generalized masses multiplied

S2  by the corresponding natural frz-,uencies squared,L'"ii i appropriate to the rotational ,rpeed nR

K] is the generalized elastic bending and torsion
K stiffness matrix

e4L] is the generalized elastic tension stiffness matrix

14[T] is the generalized centrifugal stiffness matrix
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coordinates are used in the solution, then for any forward speed these
arbitrary modes will give the correct coupled mode shapes. The question
is: Just what comprises a sufficient number? Fortunately, the effect of
forward speed on the mode shapes is small, so that quite often two gener-
alized coordinates are capable of giving a good approximation to the
flutter speed. In addition to the effect of forward velocity, it is
necessary also to consider variations in the mode shapes due to changes in
any other parameter which affects the mode shapes. Here the assumption
of semirigidity is not always so satisfactory, as it may reqaire the use
of an excessive number of generalized coordinates. In such cases, it is
better to use a reduced number of modes and to assume the modes to be semi-
rigid over only a lkmited range of variation of the parameter and to use
new mode shapes fot the generalized coordinates as necessary.

The concept of semirigidity can be applied also to rotating blade flutter
where rotor speed enters as one of che parameters affecting mode shapes.
In this case, it is desirable to be able to assume semirigidity with re-
spect to both forward speed and rotor speed. This is facilitated if each
mode involves displacements in 1 degree of freedom only; that is, if each
mode is a pure mode. It has been found in practice that modes involving
only pure flatwise bending, or pure edgewise bending,or pure torsion have

shapes which vary little over a wide ranige of forward velocity and rotor
speed.

Considering the mode shapes to be semirigid, the total structtral stiffness
acting in a generalized coordinate is composed of an elastic stiffness
which is constant and an elastic tension stiffness and centrifugal stiffness
which are both proportional to S1 . Suppose that the modes are calcu-
lated for rotational velocity nR . Let WRI be the natural frequency
of the ith mode and Mii the corresponding generalized inertia. Then the
generalized total structural stiffness at the angular velocity QR is
given by

[ =]R [ GMW2] =[K]+ I 2 L - [T] (165)

where Iis a diagonal matrix of generalized masses multiplied
by the corresponding natural frzqquencies squared,

j"ii i appropriate to the rotational !:peed aR

K] is the generalized elastic bending and torsion
K] stiffness matrix

d4L] is the generalized elastic tension stiffness matrix

n[T] is the generalized centrifugal stiffness matrix

tR
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AERODYNAMIC GENERALIZED FORCES

The velocity of the airstream relative to the axis X, Y, Z fixed in the
helicopter is specified by the two components, as shown in Figure 9.

VH, is the velocity in the direction of the X axis

)10 is the velocity in the direction of the (-Z) axis

The velocity of the airflow relative to the blade is given in terms of the
triad of unit vectors e, U2, e fixed in the blade, where

-e lies along the blade radial axis

-e, is in the plane of the shaft axis OZ aru therotatifiigaxis OX

e2 completes the right-handed triad

Then, with rieference to Figure 9, the velocity of the airstream relative to
the blade is liven by

(VH cs-[v.osvs- v0sI c0) + vc ](VHCOS8iCOS V Sl',1) l [VHsinV' + (e+fcosI35)]e

I [VH sin9scos +VD COSPS] e (170)

The air ve3ocity component in the el direction represents radial flow along
the blades; for the aerodynamic model being considered, it does not produce
any aerodynamic force. Hence, it is neglected. The magnitude of the air
velocity normal to the 'blade is therefore given by

V vH. smnq* +41(e +7 Tcos/s)] 2+ [ VH snstf/3c0s4 + VDCOSIGS] (171)

The coning angle as is included in the derivation of the aerodynamic
coefficients. After these coefficients had been programmed, it was realized
that the inclusion of the coning angle Rs  would complicate unnecessarily
the derivati6n of the structural coefficients, and so it was deleted.
Hence, there is the inconsistency in that the coning angle is included in
the aerodyn~nic coefficients but not in the structural. This inconsistency
is removed .y always specifying / s = 0 .

With Reference to Figure 10, the virtual work done by the lift L and the
moment Mc/4 acting on an airfoil section of width dr due to a
virtual displacement is given by

8W -LSh + Mc, 4 a (172)

34



fi

8w = b -LS,.,) + MC,4  1a7)

8W = Qh8(16t) + Q,8a (174)
where Oh and Qa are the generalized aerodynamic forces due to

vertical displacement and pitch respectively.

Hence,

a bj (175)

The aerodynamic coefficients we ,e previously defined by the equation

- "-27"pb dr +/ /+ % [D] {8}}

C/4] (176)

where

I-IM6fi M(ill 177)

a CA (179)
Also, by definition,

hEA bRZ fj(r) qj((
c = " 5t)qj(t)

" (181)

where

bR fi (r) =- gilr (182)
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Therefore,

Ut]EA 10 bjI ~ 0 F(lF3N
qND J 13

Tbte displacements at the 25% chord and at the elastic axis are related by

C/4 EA- (+EA) ba (18h)

aC4 a EA (185)

That is

= k -(i+a 1EA 16

a CA 0 _JaEA(186)

+"1 bR l [f(90I DI __ ____ ____ _ - ~ - _ __ _ _____(1 8 7 ) _
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[GMK J
[ M - , . .. .

fq} ; q,

(192)

Similarly,

=Q} [()[M]'.B][H]J[ Q{h (1.9h) ,
{Q" [

Lb M r. ] H Qh

Combining equations (175), (176), (188), andtl9 ) gives

{Qq} = B2r - d[,][B [] (y)[] [c][GM]{q}

(195)
When the following substitutions are introduced

p
Ps, (196)

dr ldn (197)

x, -b -[Gmft[Bci [H] [b] [HI [BC] [GM](i)

[X2] cr[Gm]/[Bc] [H]'[D] [H] [Bc] [Gm] (:L99)

AERO [X d q'
771 (200)I8]AERO R) [X2 d7? (200)

and when integrated to find the generalized force due to the whole blade,
the equations become

fQqj. = -VR/ [B] J41 +[C (202)

37



-PROVISION FOR MASS BALCE

Mass balance, which is distributed radially along the blade, is considered

separately 1tom the mass of the basic blade structure. When this is done,

the, followlng expressions for the structural coefficients are obtained in
matrix notation:

[GM] Jj4(' t3[MJ]+ in'8[IM]b [4)] dr 23

[G fR[ (]a[], + tn'[G].j} [cZldr (204)

[L] f [Z]{ [L], + tn8[LQ [cD] dr(25

-[T] fRc]8[] + tn-'[TI b} '[(D]dr(26

where. subscript 0 refers to the basic blade structure, subscript b refers
t6 the mas balance weight, and tn is a nondimensional paxmeter to vary

the amount of blade mass balance. For tn = 0 mass balance effects become
zero. The form of [G - can. be obtained by inspection ofthe expressions for , , , and [i] obtained previously.

The matrix A[GM ] and the other matrices on the right hand sides of

Eq. (203) through (206) are determined by using expressions which are com-

pletely analogous to those found previously without consideration of sep-
arate mass .balance.

-PROVISION FOR VARIATIONS IN BLADE PARAMETERS

The provision to vary the following parameters is now incorporated into

bhe expressions for the coefficients:

1. Frequencies of the modes used as generalized coordinates.

2. Blade chordwise center-of-gravity position.

3. Blade chordwise elastic axis position.

4. Blade chordwise aerodynamic center position.

Variation of Blade Modal Frequencies

The generalized structural stiffness at the rotor speed SIR is given by
[Cs]R = i I . The modal frequency WRi is considered in-

creased by the amount Yr Wvi where w., is specified for each

38
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mode and Yr is an overall var..ation factor. The new structural stiff-

ness is then given by

Variation of Blade Chordwise Center of Gravity and Elastic Axis Position

The structural model to be used when changing the center of gravity and
elastic axis positions is as follows:

The chordwise center-of-gravity position changes due to a mass balance
weight which is moved chordwise. The total mass of the blade remains un-
changed, as do the mass and incrtial properties of the fixed portion of
the blade. The fixed or basic part of the blade and the balxnce weight
are entered into the structural coefficients as separate components, with
the magnitude of the balance mass made variable through use of the coef-ficient tn

The input mode shapes, frequencies, and generalized inertias remain un-
changed. The effect of an elastic axis shift is to:

1. Change the mass moment and inertia about the elastic axis, but
not the mass moment and inertia about the center of gravity.
This effect will be taken into account when blade inertias are
calculated.

2. Change the aerodynamic-center-to-elastic-axis distance. This
is taken into account by changing the value of a EA when
the aerodynamic coefficients are calculated.

With reference to Figure 11,

t bL7 is the distance the center of gravity of the mass
balance weight is shifted aft.

teb AaSA is the distance the elastic axis is shifted aft.

Then, for the balance weight,
-I

b b + tbAx -e bAEA (208)

and for the basic blade,

x te bAa (209)
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The elastic txi5 distance aft of the mid-chord is given by

aEA aEA+ to AaA (210)

First, the changes in the blade inertias referring to the new position ofthe elastic axis are calculated.

The mass moment per unit span of the balance weight prior to the applica-
tion of the coefficient tn is

r'bXb m rbRb + Mb( tlC " to bAaEA) (211)

The same quantity for the basic blade is

mOX - mp t. bAaoA (212)

The balance weight edgewise mass moment of inertia per unit span is

1ZZb IZZbCC + mb(Rb)2 + 2 (tbAx. to bAaEA)mbxb l

+ mb (tbAx - to bAaEA)2  (213)

IZZb =ZZb + 2 (tbAY - tebAaEA)mbxb + mb(tbAX - tebAaEA) (214t)

The-corresponding quantity for the basic blade is

'zz$ 1 Iz z - 2tobAaEA m-R + m,(tebAOEA)2  
(215)

The balance weight product of inertia per unit span is

Ixzb= IXZbcG + Mb[xbl +(0bAX - tebAOEA)]Zb (216)

Ixzb = Ixzb + mb(tbAR - tebAaEA)Zb
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The corresponding quantity for the basic blade is

Ixzp = IXz- tebAOEAm,0, (218)

The inertial properties mb Zb and 1xXb for the balance weight and,
my and Ixx for the basic blade are not changed. The changes in
the aerodynamic coefficients due to shifti-.g the elastic axis sie now
calculated. This is done by changing the value of aEA used in the
calculation of the [H] matrix, which is thereby redefined as

[H] [' (±oAteoJ

o0 (219)

Variation of Blade Chordwise Aerodynamic Center Position

In addition to arbitrary variation of the position of the aerodynamic
center there is also a shift in the aerodynamic center due to reverse flow.
These effects will be considered separately. Consider first an arbitrary
variation in the position of the aerodynamic center. Suppcse the aero-
dynamic center shifted aft a distance ta bBAc , as shown in Figure 12.

In classical flutter, changes in lits and moment due t%, very small motions
of the blade are considered. For steady flow, the aerodynamic center is
not coincident with the center of pressure except for airfoils with a zero
steady moment at zero lift. However, when considering incremental changes,

the aerodynamic center and the center of pressure become coincident. In
flutter, the two terms are used interchangeably and usually refer to the
point through which the incremental lift force acts, for nonoscillatory
motion. This definition of the aerodynamic center means that for oscilla-
tory motions there will in general be an oscillatory moment acting at the
aerodynamic center (center of pressure). A shift in the aerodynamic cen-
ter is defined to be such that the forces' and moments acting at the old
position of the aerodynamic center are transferred unchanged to the new
position of the aerodynamic center.

That is, N N

b b (220)

where the quanities on the right hand side are applied at a distance Ab
aft of the 25% chord and the quantiries at the left hand side are applied
at a distance (Ab + tabBAc) aft of the 25% chord, as shown on Figure 12.
The position of the aerodynamic center will be denoted henceforth by using
the superscript notation above.
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If the relation between forces and moments at the 25% chord and at the

aerodynamic center is considered, we have, for the two aerodynamic center

positions',

[ (221)

and

LC/4 0 -

C/4 _) (222)

Combining Eqs. (220),-(221), and (222), after some algebraic manipulation,
gives

[-Lc1 N [01 FLc/410

L' [ LM 94 (223)
Previously, the aerodynamic coefficients were defined in terms of the lift

and moment about the 25%' chord as follows:

ELC/4T 0 27rp b~dr {&(1) [b] {~} + ~ [~{}
M CA
L (224)

The aerodynamic coefficients consistent with the new aerodynamic center

position are defined to be

LC4] N -27rpbdr {y) [6]N + (y [D]{}

L b (225)
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Substituting Eqs. (2211) and (225) into (223) and setting the respective
coefficients of an equal, gives

~jN [A] 16] (226)

[D] [A] [D (227)
where

(228)

Consider now the effect of reverse flow. Only those quantities that affect
the aerodynamic coefficients are involved, since the structural coefficients
are the same for forward and reverse flow. Inspection of Figure 13 shows
the following relations between forward and reverse flow:

(a/+ teAaA) - (u + teA.) F  (229)

(hEA) R = (hEA)F (230)

(a)R = - ) (a) (231)

where superscript F refers to forward flow and superscript R refers to re-
verse flow.

The change in sign of the pitch angle a shows up as a change in sign
of the torsion mode shape Fi through the equation

a Fj qj (232)

Reverse flow is said to occur when the component of the air velocity in the
-e ) direction, as previously defined, is negative. That is,

Vx sin VH + S1 (e +Fcosis) <0 (233)
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Hence, when Vx < 0 , reverse flow is allowed for in the following way:

1. Change the sign of (aEA + teAa ) in the matrix
[H] so that it becomes

[H] [ -[4-(0'6+ teAaEA)]] 2k

- (234)

2. Change the sign of Fi in the second row of the matrix
[GM] so that it becomes

[GM] -- - -- -ND J(25
(-Fl)(-FNO ( 235 )

Similar changes are also made in [H]' and [GM]'

SPAtWISE INTEGRATION OF THE COEFFICIENTS

So far, the generalized forces acting in a mode have been expressed in
terms of integrations across the blade span. The same procedure has been
followed in the definition of the generalized mass and stiffness coef-
ficients. In practice, the integrations are replaced by finite summations,
using the trapezoidal rule. The blade is divided into segments or strips,
each of which extends from the blade leading edge to the trailing edge,
and whose radial or spanwise dimension is a suitable fraction of the blade
r dius. The segments are labeled k =I to k = Ns from root to tip, re-
spectively. Considering the structural coefficients and, for convenience,
using the form of the coefficients written in matrix notation gives

R [ I A] [4 ] dr N [ [I ]K [c]K ArK (236)
0 k=l

The matrix A[a] represents any of the structural coefficient matrices.
In addition,

M (r) =  mdr (237)
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is replaced by

MY Im (rK+ - LAr ( )ArK+ m r Arn (238)
n=K+l

The values of m in Eq. (238) are expressed in mass per unit span and
are appropriate to each finite segment. When the integrals are replaced

by finite summations, it is convenient to change the definitions of the

mass terms m , m7 etc., from "per unit span" to "per segment". The
definition of Mk is not changed, since it refers not only to a local
part of the blade, but also to a summation involving all parts of the
blade outboard of a particular segment. Because of this, the value of MK
cannot be given easily as input data on the basis of a contribution from
each seLtnent, and its value at each segment is computed by the program.
Let m , me etc., be the inertias per unit span when integrating. Let
mk , mkR etc., be the inertias per blade segment when a finite summa-
tion is used. Let [a] be per unit span. Let [ ] be per blade segment.
Then, the above equations become

R  
NS

fRAr 2:'A~
kk I=

(239)

MK "mK(rK+L~rK) + - mnrn (24o)
nK+l

and any element of [a]k containing Mk is multiplied by Ark .
When the aerodynamic coefficients are considered,

[ ]ero= f?. )[Xl]dt7  " p'S VR [xI]1 (  (2),1)

aero 1V% K: V" (24)

where

[IIk O-A77k kbR,-)LGm]' [Eoc]jH]'[ALik L.k [Hk L'UCk [GMIk (2h3)

X2]k OrA77k [Gm]'~[BCk [H ]k [Alk [D~k [H~k [Bc]k [GM]k (244)
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NONDDMNSIONALIZING THE EQUATIONS OF MOTION

The equations of motion as developed so far can be put in the form

[ Aj]"} + [Brj]{ I + '[Cr]q

=- 0 R [BI +[C]J (2415)

where [AS] [B] and [Cs] are the total structural coef-
ficients.

The equations are now multiplied by 27.psLb , /_ and the
nondimensional time r is introduced by the relation

F J bR (2416)

so that

d = d(i)d2 (V) 2 d2  (247)
dT bR d = R2

After some rearranging, the equations become

[ As a dQ (R[ B

27rpS btR I d T2  T)V 2 rpb 41 +f B ~ d JCOII-'

+{ .) [ c]re[C] } {O} q1 0

(248)

FINAL FORM OF THE EQUATIONS OF MOTION

The final for.m of the equations of motion can now be stated, as follows:

[A]T.} [BT q}+[ {qJ } }(219
-d2q , I+I T de1
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where

{q} is a column matrix of generalized coordinates........qNo

(v) t (250)

8T=[D] -2 [G] + [B]AR (251)

[C]T [CS]R + -(2 ){[L] [r] } + [c]AERO (252)

[A]T JAG + A{[GMbk} (253)IT Psb4 7 tn,

[Dg] 2 b xi]K (256)

2"['pGb [ K-i G]k +  6[G

4 , In 4 1 br, (258)
2 27rpSLb/ VRJ K1l~jk

K:

2 7rW)bl [2

SL] V 7"rp (7 \R/ f Ok + ZL bkl (258)

$7pL R' K91

2 n'sbT VR' K11

A RK,- I(RX ]260)
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+ (9X FkI + 9X Fl) Mok !,k +(dgk dgi IX~~
+i k dr dr) '

dr dr)r d
drk (Z)P + (Fki Fkj)(Iyy)o (61

(gX dr(262)

dk d
c (Fl) T (g (78iD)(23

o9x1 0 (Ixx)) (Ixz k 0 0

-( ~k M~)k 0m)~ 0 0 ('YYx)oK 0

0 0 0 0 0 0 (26")
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(AGoki (dgk x g

gkj kj - g g.) #

-g dgX FkI)(XX),

+ d g kl _ _ _z

(-r Fkj - r ~ ki)(1XZ~ok (265)3

'[G k~ 0 0 0 0 0 0
o 0 -(MZ)ok -h)-ok 0 0o (M7)k 0 0 (I), 0
o (MR)ok 0 0 (xok 0
0 0 -(IXX)ok -(IXZ)o 0 0
o 0 0 0 0

(267)
(L-ok)ij dFkI dFk1  k k 2 ,I, r 2 8

dr dr kk^oAr(28

[zjk 14-]k [zk (269)

j []0 0 0 0 0 0
0 0 0 0 0 0-
o 0 0 0 0 0

o ~~k (270)
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('Tok~j (g9' 9'j M~p + ('F + g' k)Mko

- r FkJ drx1k F)llk oo

+ dri1 Fk+ dgk1 )k ro Mo'

( dgk~ dgX r

dr dir' [(IZZ-)Ok - j~kArkJ

+ (dlx~ dgz, +dgkxj dgzk1
(-r -jF + dr -Fr ) (IXZ) O

+ Fkl Fkj [(IXX)Ok (ZZ)k- 6+ +aEAb)MO19,k] (271)

'[TIOk -0 0 0 0 0 0

o M4, 0 0 (Mi)ok 0
o 0 [(I.I)#k-v*(.kk] (I~z)okk 0

0 0 (,Zo z)p-t~k - (r ME)k 0

0 (mz)ok (rMl)ok -(rmf)Pk [(Ilx)Ok -(IZZ)ok- (C+EAbXM7)ok] 0

0o 0 0 0 0 (23
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The expressions for the mass balance coefficients are identical to the
expressions given above except that subscript p is replaced by b.

[X2 -Jk = 0??6k[Gm]k [BC~Jk [H]' [Alk [D]k [H]k [BC]k [GMIk (275)j

[ k Lk (276)

For D = Fh la]
I-mh -Mat L (277)

tAS k1

(278)

[H I = [i [4±aA teaEAk)]] 29

[BCk EA' .b)

f0

L (279)

L o bR
(280)

(281)
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Reverse flow:

if Vxk s--- 41VH (+?KCOSPS) < (282)

Then use the negative sigps in the expressions for [H]k and [GM]k

Examples of the application of the reverse flow relations are given in
Table 1.

The cases listed, except those at MN= 0.9, show satisfactory agreement
betwee- the coefficients from differk nt references, and the reverse-flow
relations are satisfied. At MN- 0.8, Reference 7 satisfied the reverse
f ow relation for calculating Nh but not the relation for calculating
,h For this case, the greatest discrepancy was in the coefficient
(-ma) , a few values cf which are given in Table II.

A large proportion of the tabulated coefficients come from Reference 7,
and it is unfortunate that these coefficients in many cases satisfy only
partially the reverse-f:Low relations.

When first published (R~ference 5), they were criticized for not satisfying
these relations. Subsequently, an amended tabulation appeared (Reference
6), and it was claimed that this deficiency had been corrected.

About the same time, Heference 7 appeared; it gave a much more complete
table of coefficients, but without claiming that they satisfied the
reverse-flow relations. It was assumed that they did; indeed, comparison
between the coefficients tabulated in Reference 7 and the revised coef-
ficients in Reference 6 show them to agree exactly or with differences
confined to the last decimal place. The matter was not pursued any
further, though it would certainly be of interest to do so.

With the reverse-flow relations, it was possible to sort out the coef-
ficients satisfactorili, and a table of coefficients was prepared. These
coefficients are given'in Table XII. It will be noticed that the coef-
ficients for MN= 1.05 dxhibit small oscillations with respect to k.

N
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AERODYNAMIC COEFFICIENTS

GENERAL DISCUSSION OF AERODYNAMIC COEFFICIENTS

The aerodynamic forces acting on a rotor blade appear in the equations of
motion in the form of the matrices [6] and [D where

[6]Ik= [
D -m k (283)

F/[h a]
Mh -ma] k (284)

That is, at each blade station, eight aerodynamic coefficients are required

to specify the aerodynamic forces acting on the blade segment. Each of
these coefficients is in general a function of the reduced frequency param-
eter k= wb/Vy and the Mach number. Depending on the forward velocity
and the advance ratio, the value of k and MN at any st!ion will
be, in practice, within the range 0 < k cO and O MN5 I.

For certain combinations of VH and /L , k and MN will have large
variations across the blade, so that it is necessary to form a tableof
aerodynamic coefficients covering a wide range of k and MN . The values
of k and MN for each segment are calculated, and by interpolation the
corresponding value of each of the eight aerodynamic coefficients is
obtained.

A search of the literature located tables of incompressible and compressible
main surface aerodynamic coefficients in References 2, 3, 4, 5, 6, 7, 8,
and 9. The subsonic compressible coefficients were obtained either by
direct iteration of Possio's integral equation or by expanding the solution
as an infinite series of orthogonal Mathieu functions. Either method of
solution has the characteristic that the convergence becomes poorer as k
and MN increase. Because of this, the range of k for which tabulated
derivatives are available decreases as MN increases. This is normally
not a restriction, since the range of k values across the blade also de-
creases as the blade tip Mach number increases. However, the particular
method used to interpolate for the coefficients at a blade station requires
that the coefficients be tabulated for the same values of k for all Mach
numbers. Because of this, full use was made of the available tabulated
coefficients for the higher Mach numbers but not for the low Mach numbers.
This restriction is most severe for incompressible flow, where the aero-
dynamic coefficients are available over the interval 0:5 k 500 . This
semi-infinite interval can be tabulated by transforming it into finite in-
terval 05k 5 I by a transformation such as k k/k+p and by tab-
ulating the coefficients for all Mach numbers versus k instead of k.
However, for the present study, each of the eight coefficients is tabulated
for MN = 0, .35, .50, .6o, .70, .80, .90, .95, 1.0, 1.05 at each of'27
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different values of k between k = 0 and k = 0.7.

For reasons Which irill be discussed below, the last row of the tabulation
as- repeated twice, ,giving 29 k values. Thus, the tabulation consists of
2320 values of the coefficients. It was stated previously that the vari-
ation of the aerodynamic acceleration coefficients with change in k for
compressible flow was one of the reasons for including the acceleration
coefficients with the displacement coefficients. If they had been kept
separate, it would have been necessary to store 3480 instead of 2320 values
of the coefficients in the high-speed store of the computer when, even with
2320 values, space was at a premium.

The value of some of the coefficients approaches infinity as k - 0
or 09 . These limiting cases will be considered for incompressible
flow, but th e same principles apply for all Mach numbers.

The case k = 0 is considered first. The lift due to pitch rate in this
case is given by

LS 2rb3 ()ld (285)

where

+ FWk). C'ki (286)

'For simple harmonic motion, this becomes

L PL b3Ar {-)[ +F()]d + (V~) Wi ()(oa} 2

where

w is the solution frequcyd

wc0 is the solution fVequency assumed when calculating 1

The case of <k Wo b /V -0 , that is, steady-flow aerodynamic is now
considered. In pra(,tice, steady and oscillatory flows occur with j/wo = I
and congiari.g the fact that 0.5 < F(k) _< I and -0.188 G(k) < 0
the above, equations show that the theory predicts finite aiiloads for all
values of k. It is the artifice of using w/wo 4 I in particular
Wa = 0 , for the aerodynamic associated with vibration modes w 0

that leads to apparently infinite airloads. If w/wa = I and since
F(k) I , G(k=O,., and di =0 for W=Wa=O the above equation
gives L = 0 at k 0, so that the contribution to the steady-state
loading due to 4 is zero. This same result can b. ob-
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That is, it is quite valid to tabulate 16 = 0 at k = 0, and this was
done in the table of aerodynamic coefficients.

The difficulty that occurs in the case k = CO has been discussed before
and is due to lumping the acceleration coefficients with the displacement
coefficients. If the components due to inertia were neglected then the
displacement coefficients such as -ma would remain finite a, k -- O
because

-ma 16) (288)

is due solely to the inertia coefficient ma =3/16 . The effect of
aerodynamic inertia is generally considered to be of secondary importance,
and the contribution of the aerodynamic inertias will be progressively re-
duced to zero by making all coefficients constant above MN -- 0.7. This
avoids the uncertainty of extrapolating curves from k = 0.7 to = 3, say,
when the curve at k = 0.7 is almost vertical. To keep the coefficients

constant, the tabulated values of the coefficients at k = 0.7 are repeated
twice and labeled k = 0.8 and k = 0.9 respectively. This causes the liner
extrapolation routine to calculate values for the coefficients which are
the same as those at k = 0.7. The effect of progressively neglecting the
aerodynamic inertias above k = 0.7 is further reduced by noting the follow-
ing from the relation V = (cb/k as k increases, V decreases,
so that the region k > 0.7 is fortunately associated with very low
dynamic pressures, which cause the coefficients, for k > 0.7 to make
only a very small contribution to the equations of motion.

Two dimensional theory gives infinite airloads for steady flow at MN = 1.
This singularity disappears for oscillatory flow ( k 0) or with the
inclusion of finite span effects. The choice has to be made between tab-
ulating coefficients at MN = I , k =0 for a particular aspect ratio or
simply making all coefficients zero. For simplicity, the latter was decidedupon so that the tabulated coefficients cannot be used for steady flow at

MN = I

NOTATION

It is necessary to transform the tabulated coefficients available in the
previously stated references so that they conform to the notation for this
study. These transformations are now reviewed.

Each reference, in general, uses different symbols when defining the coef-
ficients, so for convenience the defining equations will be stated in terms
of the notations already adopted for lift, pitching moment, semichord, etc.
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The coefficients from Reference 2 will be converted first and are defined
by

-____ -L (1' + z
a j I[I

p2 b V2Ar

I + (m/ +im/1)Jj
LE ) -( a ) LE (289)

wth the relations

2pbV2Ar = (2trpb3Ar ) (20I I~.L~.L
b JUVL1W (290)

2pbv2Ar = (2PbAr) rtbJf' (291)

and for simple harmonic motion,

i~a : a(293)

also

-- 2 2b

C/4 LE (29h )

a0 2 a

LE L/ CA(295)

Then the equations beccme,] =(o) 1 ][ z',M;.
"rp 'J - "" "_

-M 0 - -a CA(296)
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t
If this is compared with the defining equation,

/ C 4 [4 C]A - "m)2[/ fJ ], 4  (297)

the following relations between the coefficients are obtained:

The damping coefficients are:

-]-m: I -mjJo ] (29t
-[ ( 2 - m  -M"_L (3M) 0 2

V,7ma_ JLa - (

l :(300)

(301)

The stiffness coefficients are I

-M 2_1_ -MI.l°<

I
5h 7 ,303)

ih<,= I Z' - ) o
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lh M' z(306)

- " in2 1 - 1 a +(-) +a z 8 (37)

The coefficients Z , la -mz , -ma , IZ , a , -mz
and -m are tabulated in Tables 2 throu,3h 2d, pages 34 through 41 of
Reference 2.

The coefficients in" Reference 3 are defined by

1 --L (i,,j+ i L2) (L3+ iL4 ) .b
4pbV?-k2Ar [

A (M,+ i M) (M 3 + iM4) a

b LA EA (308)

and

-= (L+iL/) (L/+i t4) 1
4pbY2 k2A~r

[T LE [ (M + iM2) ( +i )jaj~ 39

but--only the primed, derivatives are tabulated.

The following relations are used:

1WX. (310)
4pbV2 "k2 Ar = (27rpb Ar) 2 --. k2

4pV2k~r (ar bt ~ ~7[r')~ ~ (311)

For simiple harmonic motion,

b b (312)

iwa a (313)
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1 0
I M

I- 1C/4 (31h)L
J1 C/ (315i)

Then the following relations between the coefficients are obtained:

The damping coefficients are

7 -mj L J? L2 LJo

(316)

4 ' W(k2 L') (317)

( 2 4-k 2 I!2) (318)

M (k 2  L-7rk 2 L7 (319)

2 2 I 2 I2LI-m. 2(2/_,[k M2 kL4] + 2 30
7r ( Tk (320)

The :tiffness coefficients are

K ia 1f[ ] (321)
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h ~#k2 L!) (322)

The cfilow sin re f ncs 4n9 are defined b

[r

"rPbw -Ar : -2"rpbAr) [(-) Ik (327)

7rp blwAr - ((,)2..] (328) !

For simple harmonic motion, ,

,,w(+) -+ (325)

iia = (330) "

Then, the following relations between the coefficients are obtained:
The damping coefficients are

[_ 4 -[ h 1,
-rMhI Mcj (331)
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(k) Lhj (332)

i = - LaI (333)

-M - ( ,MhI (334)

-k) mai (335)

The stiffness coefficients are:I:: I
Lh Y /LhR La~j]
mh MC MhR MaR (336)

S= -- LhR (337)

(k2 "
/a =  )LaR (338)

h k2  hR(39

ma -a (340)

The coefficients Lh " , Lai , , Ml , LhR , LR , hR
and MaR are tabulated in Reference 4 and pages 409 through 413 of
Reference 9.

The coefficients in References 5, 6, and 7 are defined by

7'p b V2 Arb

m (m / ,+ o) (m+ ,m
c/2 c/2 (31)

61

iK



The following relations are used:

rp bV 2A (7r r (342)

rpbV 2  -(27rp1?Ar) [V) 2

[4
14 b -c/?(347)

a 0 1/a
C/2 CAk (345)

Then the following relations between the coefficients are obtained:

The damping coefficients are

2(346)

ml : ,-- a + ka(3)

-M& = - /- /+ 1 Lmol+ k/Ib] +(-721 k. (350)
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The stiffness ocefficients are

mh -M I ) 0 1

I!

Uf, a -( 1 L-o (351)

i =--L')(k' + 'o (35)

-M h -=()M' + k'-) (354)

The coefficients in Reference 8 are defined by

L (L + Li iL2) (3 + '4

2____ 2) (~i~
4p b V k Ar

Ne ILE [(MI+ 'M/ (M' + M' L) LE (356)f

Note the similarity to the definition used in Reference 3. By use of the
same procedure as that for Refer:ence 3, the following relations between
the coefficients can be obtained:

The damping coefficients are

LM6 -m&j 2 jLM2 M4JL 0j (357)

9 - (358)

la 4 (L'- ,,) (359)
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- - (M-L 2 ) (360)

-4- (M '. [M',+! 4 ] + ,) (361)

The stiffness coefficients are

2k 2

L L iLM0 L (362)

2k (L ) (363)

2k 3-(L' -2,) (364)

-mh 2 (M- 'L) (365)

-mrn- 2k2 (Ml- [M+,J+ "1 )
-Ma [41131+-L (366)

Not only are the available tabulated coefficients in differing notations,
but they also cover varying ranges of k and MN . A computer program
was written to transform the coefficients into the required notation and to
assemble the coefficients in order of k and MN . There is a degree
Of overlapping in the resulting tabulation because, for particular combin-
ations of k and M , coefficients are available from more than one
source. This overlapping permits a check to be made of the accuracy of the
coefficients.

From an inspection of the table, it would be seen that although good agree-
ment was obtained in the majority of cases, a significant minority Qf cases
remained in which discrepancies of various magnitudes existed between the
coefficients. In particular, for MN= 0.8, the discrepancies were large
and it was not obvious as to which were the correct coefficients. In an
attempt to sort out the accurate from the inaccurate coefficients, it was
decided to apply reciprocal flow relations to all of the available coef-
ficients.
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RECdr: OCAL FLOW RELATIONS FOR UNSTEADY, COMPRESSIBLE FLOW i
For an airfoil executing small oscillation in a nonstationary compressible
inviscid flow,the relationship between the pressure acting on the airfoil I
in direct flow and the pressure acting on the airfoil when it travels in
the reverse direction is given by Reference 10. From Figure 14,

i PWds f Pwds (367)

PLANFORM PLANFORM

P is the pressure difference across the
airfoil in direct flow

P is the pressure difference across the
airfoil in reverse flow

w is the vertical velocity in direct flow
of the air in contact with the airfoil

is the vertical velocity in reverse flow
of the air in contact with the airfoil

and where Eqs. (368), (370), (372), and (374) define direct-flow quantities
and Eqs. (369), (371), (373), and (375) are reverse flow quantities.

(ax at Z5 (368)
a Vx , at izs  (369)

and for simple harmonic motion

Zs = Zsae Wt (370)

YZs swe J t (371)

w = w. eIWt (372)

W = W'-ae t
(373)

Hence,

Wa = (V~ I+ iw) Z

ax(V+w~s (375)
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in which case the reciprocal or reverse flow relation becomes

ff P-dsff ; w a ds (376)
PLANFORM PLANFORM

The application of this relation to a two-dimensional airfoil is now con-
sidered.

Most unsteady aerodynamic theories, in particular those on which the tab-
ulated coefficients are based, neglect airfoil thickness effects and so
replace the airfoil by a flat plate of zero thickness. This, of course,
gives rise to singularities at the leading and trailing edges, the singu-
larity at the trailing edge being removed in the usual manner by the appli-
cation of the Kutta condition. With this model, a two-dimensional airfoil
presents the same shape to the airstream irrespective of whether it i- in
direct or reverse flow. Hence, if the airfoil executes the same motion in
both direct and reverse flow, the pressure distribution cver the airfoil
is the same for both flows; that is, p = p, and the airfoil will ex-
perience the same lift and moment.
With Reference to Figure 15, the following Eqs. (377) through (381) are

obtained for direct flow.

z s  (hc/4+ xa) e it (377)

Hence,

Zs = - (hc/4+xa ) (378)

So that
wa= (v, + i6) Zsa (379)

wa =- [VC + iW(hc 4 + Xa)] (380)

since and LC vanish,

ax ax vnih

Wo -- v [(.)h +(I+IX) a] (381)
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With reference to Figure 15, the following equations (382) through (386)
are obtained for reverse flow.

s =  (hc/4 "a) e J (382-)

Hence

zsa -(hci 4 - xa) (383)

so that

( CT±wX s (384)

Wa - Va + iw( hc, -xa)] (385)

Wa= -V [( )hC/ 4 +(I- 'w)a] (386)

Eqs. (38r) and (388) consider pure translational motion in direct and
reverse flow:

W13 -V (-L hc/4  (387)

Wa -v (LU) hc/i4  (388)

when the reverse flow theorem for two dimensional flow is applied,

f PWadx fPwadx (389)

CHORD CHORD
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Hence,

fVr [-VO hc 4] dx (390)L CHORD ~IRD
defining

CHORD CHORD ( 391 )
then the equation gives

(392)

This states that the lift due to pure translational motion is the same in
direct and reverse flow, a result deduced previously from physical consid-
erations.

Pure translational motion in direct flow, and pitching about the 75% chord
point in reverse flow are expressed as follows:

Wa hv ( c/4 (393)

W v, -x)I (394)

If WO  and Wa are substituted into the revers, flow theorem

f p{-V(I - )a }d. f J-V(~ ) hC/ 4} dx(35
C IORD CHORD

defining

h
Lc/4 J P dx (396)

CHORD

L3C/4 =JPdx (397)

CHORD
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h
Mc/4 Px dx (398)

CHORD

Then the equation gives

Lc/4 + ik A = ik L hc/4)

jwhere
h is the lift at 25% chord due to Ti re

LC/4  translational motion in direct flow

h is the moment at 25% chord due to pure
Mc/4 translational motion in direct flow

-a( 3/4 ) is the lift at 75% chord due to pitching
L3 C/4 motion about 75% chord in reverse flow

As shown previously for a two-dimensional wing,

-a(3/4) a(4)
L3c/4  = 3C/4oo)

Hence, the reverse-flow relation becomes:

[LhMc 41 L (3/4)
LC 4 + ik a = ik 3 C 4

h h Q(3/4)
Expressions can now be obtained for LC4., Mc/4  and L3C/4
in terms of the aerodynamic coefficicnts which were defined by the equation.

27pbL~ Fi (V) 4 +~F- +(V) [h ~ 1
Lb c,4  L m m a JaC/ Mh -mai a C/4 (402)

If the relations for simple harmonic motion are applied, the equation

can be put in the form

2-pVL KkIF + 1h ik1 6  1 [la
c/4 ik(-mf)-mh ik (-im6 )- La.JC/4 (03)
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The equation can now be transformed so that it is in terms of forces and
displacements at the 75% chord point.

LbJ3c/4 L [ Llc/4V' ih(m)-mh ik (-m)- m I II

(14o4)

From these two equations, it can be shown that

hC1 2rV b~r [iklfic +421I!L a (40 5)
2 -irp V 2  [bik'(-m -M] (/4) (o)

3c/4= 2wpV= b Ar L ] [ik4 i id,+ 1-m,
Lik(-mfi) ik (-ma)-mJ LIj (407)

a(3/4 2 ( Z Z-.
L3c/4 2vpV b Ar Iik(- 1 ( 4 -Ih) ]ca (108)

Substituting into the reverse-flow relation and dividing through by
27Tp V? b Ar gives

{(I k l + Ih) ik[ik (-mI)-mh] }a(--)

- ik [bk ((409)+)(o-1h]( )a (10)

Separating the equation into real and imaginary parts gives

{Ih + k' [-4+ -mf }

+ ik { 4- h+l -mhJ} 0 (+4a0)

Equating the real and imaginary parts to zero gives the reverse-flow re-
lation in terms of the aerodynamic coefficients.

S -1h + a -mh (411)

Ih -k' -h + -ml] (1412)
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It will 'be noticed that the coefficients (-m) and (-ma)
are missing from the above equations,so that the reverse flow relation
provides no check on the tabulated values of these coefficients. Although

the reverse flow relation obtained above corresponds to that given in
References 11 and 10, it was hoped that by considering additional motions
in direct and reverse flow, additional reverse fLow relations containing

the missing coefficients would be obtained. To this end the following
motions were considered, and the corresponding reverse-flow relations were

found to be as follows:

Pitching about the 25% chord point in direct flow;
pure translational motion in reverse flow.

a '04) (h ,/4ik Lc/4  =b L 0 /4 + ik a (13)

Pitching about the 25% chord point in direct flow;
pitching about the 75% chord point in reverse flow.

a( ) M/1 Fa(V/4)'
M a (hl1) ct'

coefficients as obtained before. The search was not continued beyond
this stage but it would be very useful to obtain a reverse-flow relation
involving (-rn ) and (- ma).

It is possible to state the reverse-flow relations in the notations of the
references from which the tabulated coefficients were obtained. For
reference, they are listed below:

Reference 2

4 -2k [a+ %/-mz] (415)
/z 2 [-/z + a  m, h6

r~i
z 2 a +t m

(1416)
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Reference 3

' k -k [-2k U + k L + k2M2 ] (417)

k2  k 'k L' + k' L'3 +k2 M, (1118)

Reference 4

Reference 9

LhR = -k [-Lh1  +Lai 4Mhz] (419)

Lh = k [-LhR + L aR + MhR] (20)

Reference 5, 6

Reference 76

/ II IIl"

ka = -k (kb +ma) (421)
II I ' J

ka / k (k' (422)

Reference 8

-l k [-2L2 +L 1
4 2i (4-23)

L = k -2L, + + M] (424)
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GENERAL PROCEDURES FOR OBTAINING FLUTTER SOLUTIONS [V
The following is a brief summary of the steps involved in obtaining flutter
solutions, and it includes an outline of the computer program.

The geometry of the blade is stated, including the spanwise breakdown of
the blade into segments, as required for the numerical integration. Then

the mass properties of the fixed portion of the blade and of the mass
balance weight, if any, are input. The remaining structural data to be
stated include such things as the position of the mid-chord of the blade
aft of a radial reference axis and the chordwise position of the blade
elastic axis and center of gravity in relation to the mid-chord.

Up to 10 generalized coordinates may be chosen to describe the vibration
characteristics of the blade. The modes used as generalized coordinates
are assumed to have fully coupled flatwise, edgewise,and torsional displace-
ments. These modes can be elastic or rigid-body modes. If modes are chosen
which have one or two of these freedoms missing, the flatwise, edgewise,and
torsional displacements must still be specified for each mode, with zero
displacements being input for the missing freedoms. The natural frequency,
structural damping and generalized modal inertia must also be stated for
each mode.

All coefficients in the equations of motion are calculated by the program.
The structural and aerodynamic forces on each blade segment are calculated
and then summed across the blade span to find the generalized force acting
in each of the generalized coordinates. Th% structural coefficients are
stored after being calculated and are recalculated only if the mass data or
mode shapes are altered. However, the aerodynamic coefficients are recal-
culated for each eigenvalue solution. To calculate the aerodynamic coef-
ficients, the reduced frequency k = wb/V (which is based on an assumed
flutter frequency w ) and the Mach number at each station are found. Then,
from the table of aerodynamic coefficients contained in the program, the
values for the coefficients at each blade station are found by interpola-
tion.

The major variable in the program is helicopter forward speed. Up to 10 veloc-
ities may be input at a time. The secondary variables are:

1. Modal frequency.

2. Amount of mass balance.

3. Position of the mass balance weight.

4. Aerodynamic center.

5. Elastic axis position.

6. Assumed flutter frequency.
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7. The set of generalized coordinates used for the solution.

Item (7) needs some explanation, since generalized coordinates are not vari-
ables in the same sense as mass balance. Suppose a set 0 = (q, q,)
of generalized coordinates is input, where n <_ 10 . Then, any subset
of Q may be chosen for solution, the generalized coordinates selected
being stated as part of the input data. This facility is used when it is
desired to find out the contribution tnat certain generalized coordinates
are making to the flutter mechanism. In particular, if uncertainty exists
as to how many vibration modes to input to the program, then extra modes
may be included. After initial solutions are made to determine the contri-
bution to the flutter mechanism of these extia modes, they may be dropped
from all subsequent calculations if their" contribution is found to be small.

In addition to the above variables, all or any part of the input data may
be changed. However, the process is not as straightforward as changing the
secondary variables.

After each eigenvalue solution corresponding to a particular value of for-
ward speed, the results are printed out for each eigenvector in the follow-
ing form:

Frequency in cycles per minute.

Decay rate C/C •

Strength vectors.

If the decay rate C/Cc is positive, then the mode is stable; if negativ
then the mode is unstable and is undergoing divergent oscillations. If, as
airspeed increl'ses, the frequency of a mode drops to zero, this means that
there is a divergent aerodynamic force acting against the elastic and cen-
trifugal restoring forces so that the net restoring force is reduced to
zero. For higher airspeeds, the modal frequency will remain at zero but
the divergent aerodynamic forces are now predominant and the mode suffers
static divergence. The strength vectors, or eigenvectors, give the relative
proportion of the generalized coordinates in each coupled mode corresponding
to a particular eigenvalue, and also the phase angle between the generalized
coordinates. The eigenvectors quite often assist in the interpretation of
flutter solutions.

After the eigenvalue solutions have been obtained for the specified set of
forward speeds, a digital plot is made of the results. Three plots are
made in the following order:

1. Frequency w versus decay rate C/Cc
ai shown in Figure 16.

2. Decay rate C/Cc versus forward velocity VH
as shown in Figure 17.
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3. Frequency w versus forward velocity VH
as shown in Figure 17.

The first plot is used to identify the eigenvalues, The eigenvalues cor-
responding to the first forward velocity are plotted as 1, those correspond-
ing to the second forward velocity as 2, and so on up to the tenth forward
velocity (if input), the corresponding eigenvalues being printed as 0
The first plot is thus a root locus plot with forward velocity as the
running parameter. The eigenvalues are identified by their values at the
lowest forward velocity, and then the variation of the eigenvalues with
increasing forward velocity can be traced. Usually the numbers correspond-
ing to a particular mode will be grouped together as shown and can be iden-
tified by inspection. If ambiguity exists, it can often be resolved by
noting the variation of the eigenvectors with increasing forward velocity;
if this fails, the ambiguity can always be resolved by obtaining further
eigenvalue solutions, with sufficiently small increments in the forward
velocity. However, a reasonable estimate of the flutter speed can often be

obtained in spite of any ambiguity, in which case the ambiguity need not be
resolved.

In the second and third digital plots, the eigenvalues are plotted as an
asterisk. When the eigenvalues have been identified by using the first
plot, the corresponding points in the remaining two plots may be identified.
This enables curves to be drawn, which give the variation of decay rate and
frequency with changing forward velocity for each mode. Flutter occurs if
a curve falls below the axis C!C c = 0 . Static divergence occurs if a

curve meets the axis w = and C/Cc < 0 .

Sometimes, two or more eigenvalues have the same value within the accuracy
of resolution of the digital plot. In this case, they are plotted as 0.
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DOCUMENTATION OF COMPUTER PROGRAM!

Items completing the following documentation of the classical flutter com-
puter program are available at the U. S. Army Aviation Materiel Labora-
tories, Fort Eustis, Virginia.

1. Short description of problem.

2. Description of solution method.

3. Equations used in computer solution are given by

reference to this report.

4. Definitions of input symbols in program.

5. Definitions of generated symbols in program.

6. Definitions of output symbols in program.

T. Listing of program source deck,
sample input, and sample output.

8. Running instructions for program and
estimate of running time.

9. Statement of type and configuration of computer used in
the program development, including any special features.

10. Name and level of programming language used in the program.

Copies of the program source deck and a sample input deck are also available
at USAAVLABS.

The following basic infoimation is supplied here to permit potential users
to evaluate the usefulness of the program for their purposes.

The-program determines rotor blade flutter speeds, frequencies, and mode
shapes, using classical flutter theory in conjunction with the fixed azimuth
assumption.

The generalized structural inertia, gyroscopic coupling, and centrifugal
stiffness coefficients are obtained for use in the Lagrange equations of
motion, with arbitrary modes being used as degrees of freedom. The gen-
eralized aerodynamic coefficients are obtained by using standard classical
flutter theory. The resulting equations of motion form an eigenvalue
problem, which is solved by Tarnove's method. The eigenvalues are complex,
in general, and define flutter frequency and modal damping. The condition
that modal damping is zero defines the flutter speeds, and the eigenvectors
define the flutter mode shapes.

76



The program is designated E480 and is intended for use on the UNIVAC
1108. The source program is written in the FORTRAN IV language. It is
divided into two parts, E480A and E480B, which can be executed independently
E480A solves the actual flutter equations, while E4803 provides punched card
aerodynamic coefficient data for E48OA. Each separate case of E480B re-
quires 20 seconds of machine time, and E480A requires about .1 seccnd for
each eigenvalue solution with a three-degree-of-freedom case.
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COMPUTER SOLUTION TEST CASE

A test case was prepared to check the computer solution. It is taken from
Reference 12, ani involves the pitch-plunge flutter of a two-dimensional
airfoil, The equations of motion can be put into the form

mZg 2  
M____ 2 ,(g) -m '~g) F [1[(1 m(( - 2~ I _M 1( 1 K

44jb~ 2 MSbR h 2TSbV1 7psbV/ qh 0 ~ 5

where
qh = generalized coordinate of the mode consistingof pure vertical translation

qa = generalized coordinate of the mode consisting
of pure pitch about the pitch axis

re"= distance of the elastic axis aft of the aero-
dynamic center

r = radius of gyration about the pitch axis

wh = natural frequency of the qh generalized
coordinate

= natural frequency of the q generalized
coordinate

Ia - 1yy (h26)

m
'of p "trP"-  at (t28)

bR b (h29)

It will be noticed that there is no structural or aerodynamic damping
present in the equations of motion and that the asymmetry of the stiffness

matrix is clearly apparent. This asymmetry has the potential to cause the
frequencies of the undamped vibration modes to coalesce. Flutter occurs
at the airspeed at which the frequencies of the undamped modes become
equal. The relationship of the various axes is shown in Figure 18. The

airfoil data are listed in Table III.

la YY (428



Substituting these airfoil data into the equations of motion yields

1,2516 - .8774jj + [57151 X 10-4  -.47962 xI02_Z

1.8774 14.125 0 .016123(1-.79Z) q (3 )

where Z = .03968 (V/33.8)2 with V in knots.

The airfoil data were input to the computer program, and the above coef-
ficients were compared with those calculated by the program for a range of
values of V. In all cases, the coefficients were identical within the
accuracy of the desk machine calculations.

The eigenvalue solution to the test case is given in Figure 5 of Reference
12. The results were converted into the notation of the computer program
output, and the two methods of solution were compared in Figures 19 and 20.
Within the accuracy with which solutions could be read from Figure 5 of
Reference 12, the two methods of solution give identical results. In
particular, the flutter and divergence speeds as quoted in Reference 12 are

compared in Table IV with those obtained by the computer program.

To run the test case with the computer program, it was necessary to use a

special tabulation of the aerodynamic coefficients. The tabulation ccn-
sisted of the set of coefficients given in Table V.

This set is the same as would be used for a solution using conventional
aerodynamic coefficients at MN = 0, k = 0 except that 4h = 0 instead.
of 1. This means that the lift-curve slope of dCL/da = 27r for a uni-

form vertical translational velocity is r placed by zero, thus eliminating
all aerodynamic damping. It is use of 4 = 0 hich gives the flutter
solutions in Figures 19 and 20 their unusual appearance.

The test case was also run with the tabulated set of 2320 aerodynamic coef-
ficients previously described. This served as a partial check on the uLse

of this table of coefficients in the computer program. The solution was
run specifying MN = 0, k = 0 and the results are compared in Figures 21,
and 22 with the computer solution obtained through simplified aerudynamics.
In passing, it may be noted that the simplified theory is not a good approx-
imation for this test case. This is probably due to the fact that the
flutter is of the milder type and that the twc modal frequencies do not
cross.

This was the only test case in which a check was made of the solution fre-
quencies and decay rates. However, many more check cases were run to
verify that the coefficients in the equations of motion were being calcu-
lated correctly and that the various facilities available in the program
were working correctly. The number of generalized coordinates used in these
checks varied from 2 to 10, the latter being the maximum number for which
the flutter solution was programmed.
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CORREILATION OF CLASSICAL FLUTTER CALCULATIONS
WITH AVAILABLE EXPERIMENTAL DATA

DISCUSSION OF EXPERIMENTAL DATA AVAILABLE FOR CORi'ELATION

Correlation with experimental blade flutter date obtained at high Math
numbers and high advance ratios had been intended. However, no such data
could be located in the l'terature on the subject. Instead, the choice

lay between results obtained by NASA Langley, ReferenL_: 13, for a model
rotor in hover (i= 0) for high Mach numbers, and r. ults obtained by
Cornell Aeronautical Laboratory, Reference 16, for a model rotor in essen-
tially incompressible flow at high advance ratios. As the emphasis of the
study was on the effect of compressibility, it was decided to use the re-
sults obtained by NASA Langley for hover. The Cornell Aeronautical Labora-
tory results were used for further correlation.

Correlation could be attempted with only part of the NASA Langley data, as
a large part of it was obtained with high pitch angle settings, so that
the blade was either undergoing stall flutter or at least operating at
angles of incidence for which classical flutter theory is not valid.

CORRELATION WITH NASA LANGLEY EXPERIMENTAL RESULTS

The correlation was divided into three parts, each part using a different
blade configuration. The blades used were designated NACA 23012 l(R),
NACA 23012 2(F) and NACA 23012 2(R). The main rotor and blade character-
istics are stated below.

The tests were conducted i-. the Langley vacuum sphere with a single artic-
ulated blade. Thus, the blade operated at the hover condition. The density
and speed of sound of the testing medium could be varied. There was no lag
hinge and no data were given for edgewise motions; so the blade was assumed
to be rigid in th. edgewise direction. All blades tested, for which corre-
lation was attempted, had an NACA 23012 airfoil section. The blades were

considered to be rigid in flatwise bending and torsion for the inner 8
inches of radius. The remaining 38 inches of radius was considered as a
uniform cantilever having the properties given in Table VI.

Difficulty was encountered in getting the calculated nonrotating elastic
bending frequencies to correlate with the measured values stated in Table
VI. The cantilever torsion frequencies presented no difficulty. Even-
tually, it was decided to increase the blade EI so as to give a first
bending frequency equal to the measured value and to ignore any difference
between calculated and measured second bending frequencies. The required
values for EI are those stated in the table. This approach was just-
ified in that flutter occurred between the flapping and torsion modes, with
very little participation of the elastic bending modes.

Before proceeding with a discussion of the correlation results, mention will
be made of the convention used to refer to the coupled blade modes obtained
from the eigenvalue solution. The labeling of the coupled modes follows the
conventional practice of referring to a mode by the name of the generalized
coordinate with which it becomes identical as the airspeed approaches zero.
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This assumes, of culirse, that the generalized coordinates are normal modes.
Otherwise, the coupled mode will always be a combination of two or more gen-
eralized coordinates. As airspeed increases, the proportion of the general-
ized coordinates in any coupled mode will vary. Hence, a "torsion" mode
will start out as being predominantly torsional; but by the time flutter or
static divergence occurs, it may be predominantly flapping. Hence, the
statement that torsional divergence occurs is not meant to imply that the
mode sh.pe was torsional when the instability occurred but rather that the
coupled mode that suffered instability started out at zero airspeed as be-
ing a torsion modc.

Correlation Using NACA 23012 1(R)

Flutter occurred at lc Mach numbers. This case was run because results
were available for very small blade pitch angles. Thc calculated and ex-
perimental results are compared in Figure 23, where both reduced flutter
speed VO. 8R/bw and the ratio of the flutter frequency to blade first
natural torsional frequency are plotted as a function of blade pitch angle.
The curve of reduced flutter speed separates the stable and unstable re-
gions, with the unstable region lying above the flutter curve. As the blade
pitch angle is increased, the reduced flutter speed drops slightly at first
and then rapidly as the blade apparently begins to stall. As the pitch
angle is furthier increased, the reduced flutter speed decreases until some
minimum value is reached. Furt*er increases in pitch angle result in a
rather sharp rise in the reduced flutter speed. The curve of frequency
ratio shows that a reduction in the value of the reduced flutter speed is
accompanied by an increase in flutter frequency.

The portion of the fltter curve corresponding to low pizch angles defines
the region of classical flutter, .'hezeas the portion of the curve correspond-
ing to high pitch angles defines the region of stall flutter. As shown by
the frequency ratio curve, classical flutter occurred at a frequency lying
between the flapping and torsion mode frequencies corresponding to the fact
that the classical flutter resulted fro coup.ing of the flapping and tor-
sion modes. On the other hand, stall flutter occurred at a frequency very
nearly equal to the first torsional natural frequency corresponding to the
fact that stall flutter is a predominantly torsional oscillation.

The calculated values are valid for small pitch angles only, and the results
were plotted for (80.8R)S = • It can be seen that reasonable correla-
tion of flutter speed was obtained but that the flutter frequency was con-
siderably lower than the experimental values. This discrepancy will be
considered again later.

Correlation Using NACA 23012 2(R)

Figtire 24 presents the comparison of the experimental and calculated results.
The reduced flutter speed now includes the ratio/p/po wbich was introduced
to reduce the scatter of the e:tperimental results obtained at different den-
sities of the testing medium. The reduction in scatter occurs because the

experimental flutter speeds occurred at approximately constant dynamic pres-
sure, that is at constant equivalent airspeed. The reduced flutter speed is
plotted against the blale tip Mach number, variations in tip Mach number be-
ing obtained by varying the speed of sound in the testing medium from approx-
imately 500 fps to 1000 fps. The calculated results show the reduced
flutter speed decreasing slowly at first, then more rapidly as the tip
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Mach number increases from M1 0.2 to Mt = 0,7
Then the reduced flutter speed decreases more slowly until a minimum occurs
at Mt = .9, after which it begins to increase rapidly. This beneficial
effect of increasing Mach number is due to the rearward shift in aerody-
namic center as the Mach number increases and can be explained as follows.
The negative aerodynamic spring acting in the torsion mode is composed o.
two parts. The first is a function of the aerodynamic center-to-elastic-
axis spacing and is the usua., negative aerodynamic spring encountered in
fixed-wing flutter. The second part is proportional to the square of the
rotor RPM and is a function of the aerodynamic-center-to-center-of-gravity
spacing (Reference 1, pp 153 through 156). With the 2(R) blade, the
elastic axis is at 26.5% chord; for low Mach numbers, the aerodynamic
center is at 25% chord sc that the negative aerodynamic spring due to the
aerodynamic-center-to-elastic-axis spacing is negligible. Hence, the only
negative aerodynamic spring in the torsion mode is due to the aerodynamic-
center-to-center-of-gravity spacing. This is large since the center of
gravity is 10.8% chord aft of the 25% chord. Hence, as rotor RPM is in-
creased, the frequency of the torsion mode decreases as can be seen in
Figure 25. The torsion mode becomes coincident in frequency 'With, first,
the second flatwise mode; then, the first flatwise mode; and, finally, the
flapping mode. As the torsion mode frequency crosses a bending mode fre-
quency, it has the opportunity to couple with that mode to produce flutter.
Whether it does or not is a function, among other things, of the dynamic
coupling between the bending and torsion modes and the amount of damping
in each of the modes. For the case under consideration, flutter occurred
only when the torsion made frequency crossed the flapping mode frequency,
as can be seen in Figure 26.

At transonic Mach numbers, the aerodynamic center moves aft, thereby de-
creasing the aerodynamic-center-to-center-of-gravity spacing, and hence
reducing the negative aerodynamic spring in the torsion mode. Thus the
frequency of tne torsion mode decreases more slowly as a function of rotor
RPM as the aerodynamic center shifts aft. This delays to higher values of
rotor RPM the point at which frequency coincidence and, hence, flutter
occur. As long us the center of gravity is not too far aft, a Mach number
will eventually be reached where the torsion mode frequency no longer de-
creases with increasing rotor RPM and may even begin to increase. In
either case, if tho torsion mode frequenc1 has not come close to the flap-
ping mode frequency, then flutter is eliminated. From Figure 24, it can
be seen that the beneficial effect of high Mach numbers was much more pro-
nounced with the experimental results than with the calculated values; this
indicates that perhaps the aerodynamic center moved aft faster on the test
blade than was implied by the theoretical aerodynamic coefficients.

In passing, it can be stated that the above mechanism by which coupled
bending-torsion flutter occurs with a rotating blade is quite general. The
mechanism can be described in the following way. A negative aerodynamic
spring must exist in the torsion mode to cause its frequency to decrease
with increasing rotor RPM. A negative aerodynamic spring will result when
the elastic axis, or the center of gravity, or both, are aft of the aero-
dynamic center. As the torsion mode frequency decreases, it will cross the
bending modes from the highest to the lowest frequencies. With each cross-
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ing, there is the possibility that flutter will occur; and with each

successive crossing, this possibility increases because the potential to

flutter is greatest w:th the low-frequency bending modes. Also, there is

quite a chance that after the torsion mode has crossed the lowest bending

(or flapping) mode, its frequency will drop to zero, at which point static

divergence occurs, as shown in Figure 25. Thus, if flutter occurs, there

is a good chance that atatic divergence will occur at a slightly higher
rotor RPM. In fact, if flutter does not occur until after frequency coin-

cidence has occurred, as is sometimes the case, then static divergence may

occur before flutter.

Returning to Figure 24, it can be seen that reasonable correlation of

flutter speed occurred for the lower blade pitch angle (namely, (80.8R)s
= 7.20) but that the calculated flutter speed is unconservative when com-
pared with the experimental results for the larger pitch angle (namely,

(eO.BR)s = 11.20). The drop in the measured flutter speed at the higher
pitch angles is consistent with the results given in Figure 23 and would
indicate that the flutter mechanism is changing from classical flutter to

stall flutter. The frequency curve in Figure 24 shows that for both values
of blade pitch angle, the flutter frequency was approximately equal to the
nonrotating blade torsion frequency, which indicates that perhaps the
flutter mechanism for the instability at the lower pitch angle was also
more in the nature of stall flutter.

Correlation Using IUACA 23012 2(F)

Blade 2(F) is very similar to blade 2(R) considered in the previous sec-
tion. The main difference is that the center of gravity has been moved
forward so that it is 2.5% chord aft of the elastic axis instead of 10.8%
chord. The comparison of experimental and calculated flutter speeds is
given in Figure 27. Comparing the results for blade 2(F) with those for
blade 2(R) given in Figure 24 shows that decreasing the center-of-gravity
offset has caused the reduced flutter velocity for the experimental ref ilts
to increase slightly,but that the reduced flutter velocity for the calcu-
lated results has almost doubled. Again, the measured flutter frequencies
are considerably higher than the calculated values. The most disturbing
aspect of the lack of correlation is that the predicted flutter speed is
considerably higher than the measured values, that is, the predicted flutter
speed is unconservative. The discrepancies between the measured and calcu-
lated values as outlined above could be attributed to the model blade's
experiencing stall flutter, since the transition from classical to stall
flutter is marked by the following characteristics:

1. The sensitivity of flutter speed to center-of-gravity
offset decreases and practically disappears.

2. The flutter frequency increases considerably.

3. The flutter speed decreases considerably.

Items 2. and 3. can be seen in Figure 23.
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Satisfactory correlation of reduced flutter speed was obtained for blades
l(R) and 2(R), both of which had a large center-of-gravity offset. The
lack of correlation of the flutter frequency for blades 2(R) and 2(F) and
the unconservative reduced flutter speed calculated for blade 2(F) could
be explained by assuming that the flutter mechanism was stall flutter
rather than classical flutter. Such an explanation, however, cannot be
used to explain the lack of correlation of flutter frequency when consid-
ering blade l(R). Hence, it was decided to attempt to correlate with the
experimental flutter results stated in Reference 14.

CORRELATION WITH CORNELL AERONAUTICAL LABORATORY EXPERIMENTAL RESULTS

The test equipment consisted of a single-blade hydraulically driven rotor
mounted above a test trailer which was towed along an airport taxistrip.
Blade chordwise center-of-gravity position was adjusted by means of lead
weights housed in a cylindrical pod at the blade tip. Two features of the
blade were somewhat unusual. One was the location of the blade elastic
axis at 41% chord. This gives a large negative aerodynamic spring in the
torsion mode due to the large aerodynamic-center-to-elastic-axis spacing.
In this respect, the blade is more akin to a fixed wing. The other feature
was the very low frequency of the rigid body pitch mode. This frequency
was varied during the testing. Otherwise, the Cornell model blade was
similar to the NASA Langley model blade. The blade was untwisted and ar-
ticulated in flapping with a zero offset flapping hinge. There was no lag
hinge and since no data were given in the edgewise direction, the blade
was assumed to be rigid for edgewise deformations. With respect to flat-
wise bending and torsion, the blade was also assumed to be rigid out to a
blade radius of 7 inches. The characteristic blade parameters are given
in Table VII.

From the blade characteristics it appears that the blade had small center-
of-gravity offset, as the center of gravity was only 1.5% chord aft of
elastic axis. However, the pitch frequency was much lower than the canti-
lever torsion frequency, so that flutter occurred as a result of coupling
between the flapping and rigid-body pitch modes. Hence, for the unbalanced
blade, with the feathering axis at 25% chord, the center-of-gravity offset
was 16% chord, which, in combination with the low pitch frequency and the
large negative aerodynamic spring in the pitch mode, resulted in flutter
at low forward speeds and rotor RPM. Because of the very low rotor rota-
tional speeds employed, flutter was obtained up to p. = 0.7 at relatively
low forward velocities, with a blade tip Mach number always less than 0.3.

Correlation was attempted with the results given in Figures 10(a), 10(b),
and 10(c) of Reference 16. The structural parameters varied were blade
pitch frequency and blade chordwise center-of-gravity location, the latter
being varied by means of balance weights added to a pod at the blade tip.
A diagram of the pod and the balance weight positions is given in Reference
14. The parameters corresponding to the correlation cases are given in
Table VIII.
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where H

00, is the nonrotating first flatwise bending frequency

- o is the nonrotating rigid-body pitch frequency

7b  is the distance of the balance weights ahead of
the 25% chord

7E is the equivalent center-of-gravity location. It is

c defined in Reference 14 as the chordwise center of
4gravity location of a rectangular blade having a uniform

mass distribution such that the ratio of the pitching-
flapping product of inertia to the flapping inertia is
the same as that of the nonuniform blade being studied.

O'G8o is an alternative measure of the inertial coupling

/a,,9_8,0 between the flapping and pitch modes, defined in
Reference 14.

C - 3b 01360 .053 (431)

The experimental ±ata of Figure 10(c) in Reference 16 is for the case of
no added .eights, and represents flutter of the uniform unbalanced blade.

The results given in Figure 28 pertain to data for the flatwise to torsion
frequency ratio U,/ 80 = .63, with 80 = 132.5 radians/sec. The
rotor speed at which flutter occurred is denoted by S1 , and -080 is
the nonrotating rigid-body pitch frequency. Hence, raising the flutter
speed SZ corresponds to decreasing the value or UY80 /S . Nondimen-
sionalizing the flutter speed S1 with respect to the pitch frequency

W0 0 allows experimental results obtained at different values of U80
to be plotted together, as the flutter speed is roughly proportional to

Z80  . It can be seen that the predicted flutter speeds agree very well
with the measured values. The calculated flutter speed corresponding to a
particular value of p. was obtained by simultaneously increasing forward
speed and rotor speed so as to keep /L constant. For example, the re-
sults 2orresponding to p. = 0 are given in Figures ) and 30. Figure 29

is a plot of the coupled modal frequencies versus S , and Figure 30 is
a plot of the corresponding modal decay rates. The decay rate of the flap-

ping mode changes at S1 = 345 RPM from being convergent to divergent,
giving a flutter speed of 345 RPM. The results are of particular interest,
as, from the frequency and damping curves, it would appear that the flutter
occurs between the flapping and first bending modes. This was the only
case in which this occurred, and it was also the only case for which the
pitch frequency was above the first flatwise bending frequency. A detailed
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investigation was made of this case, from which it was deduced that:

1. The only modes to couple together to give flutter were
flapping and rigid-body pitch. The resulting flutter
frequency and decay rate were a good approximation to
the five mode solution.

2. The addition of first flatwise bending to the flapping-
pitch binary gave a solution almost identical to the
five mode solution.

3. The second flatwise bending mode and cantilever torsion
modes made a negligible contribution to the flutter
mechanism and could have been deleted from the analysis.

Thus, flutter was due to coupling of the flapping and rigid-body pitch
modes as was to be expected, and this was found to be the flutter mechanism
for all of the cases that were studied.

The results given in Figure 31 pertain to data for the lower pitch fre-
quency; they can be compared directly with Figure 10(c) of Reference 16.
The pitch frequency of the blade has been reduced from 132.5 rad/sec to
64.5 rad/sec so that the nonrotating pitching frequency is now lower than
the nonrotating first flatwise bending frequency, with the 1.3.8o = 1.3I.
The variations of the coupled modal frequencies and decay rates with in-
creasing airspeed and a for / = 0.5 are given in Figures 32 and 33
respectively. These variations are typical of the variations in coupled
modal frequency and decay rate that were obtained in all the remaining
cases. It can be seen that, due to the large negative aerodynamic spring
in the pitch mode, the pitch mode frequency decreases rapidly with in-
creasing airspeed or S1 . Flutter occurs near the airspeed at which
the pitch mode frequency crosses the flapping mode frequency. It can be
seen that the flutter is extremely violent, the decay rate of the flapping
mode changing from 0/Cc = 0.30 (stable) to C/Cc = 0.0 (flutter)
with an increase in rotor speed of only 13 RPM. This is to be expected
with pitch-flap flutter, especially with the large aerodynamic-center-to-
center-of-gravity and pitch-axis-to-center-of-gravity offsets. After fre-
quency coalescence ,f the pitch and flapping modes, the frequency of the
pitch mode continues to decrease until flapping divergence occurs. In
some of the other cases, the frequency of the pitch and flapping modes
remained almost equal after flutter occurred, and static divergence did
not take place.

In Figure 31, it will be noted that the calculated results are now somewhat
conservative; that is, the calculated flutter speed is lover than the ex-
perimental flutter speed. Also plotted is the flutter speed calculated in
Reference 16. It can be seen that the calculated flutter speed of the
present study lies between the measured value and the value calculated in
Reference 16.

The experimental data of Figure 10(b) in Reference 16 is for the partially
balanced case, with the results shown in Figure 34. The calculated flutter
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speed is now lower t..an buth the measured value and the value calculated
by Cornell. For hig advance ratios, both calculated values are extremely
conservative with re.pect to tLa measured flutter speed. For example, at

S= 0.5, the rotational flutter speed calculated in Reference 14 is
.50 times the measured rotational flutter speed. The calculations of the
present study give a rotational flutter speed 139 times the measured rota-
tional flutter speed

The Reference 16 resalts were obtained by using an analogue solution, and
Athe stability of the rotating blade was considered; whereas the present

study uses the stopped-rotor approach, the solutions being obtained with
the rotor stopped at an azimuth angle of j = 900, which is considered
to be the most unstable azimuth angle with respect to classical flutter.

A Hence, there is an inherent degree of conservatism in the stopped rotor'1 approach; ideally, solutions should be obtained for different positions
around the azimuth angle with the resulting maximum and minimum flutter
speeds bounding the actual flutter speed. For example, the region of in-
stability may extend over an azimuth angle of 600. While the blade is
passing through this region, its oscillations will be diverging. For the
remaining 3000 of rotation, they will be dying away. The flutter speed
would be obtained by integrating the buildup and decay of the oscillations
for one revolution, flutter occurring when the oscillation amplitude at
the end of the 3600 rotation was equal to the amplitude at the beginning.
However, this approach was beyond the scope of the study.

Referring again to Figure 34, one can see th,;t the measured flutter speed
occurred at a constant value of rotor speed (for W--1 constant) inde-
pendent of the advance ratio. That is, the measured flutter rotor speed
did not vary with forward velocity, which is a very surprising result.
The coefficients in the flutter equations are obtained by integrating
blade structural and aerodynamic properties, including the mode shapes,
across the span. With a fixed wing, this integration or averaging process f
for a simple planform results in a good definition of flutter speed through
use of the wing properties at the 75% span. A similar effect would be ex-
pected for a rotating blade for which, in addition, the airspeed varies
spanwise. The flutter speed of a rotating blade would then be a function
of the airspeed at some spanwise station, say 80% span, and would be in-
dependent of the combination of rotor speed and forward velocity giving
the velocity at the station. Both sets Df calculated results behave in
this manner. As forward speed increases, the rotor speed at which flutter
occurs decreases, so that flutter occurs at the same value of average blade
airspeed. However, the measured flutter speeds in Figure 34 seem to in-
dicate that the flutter mechanism depends predominantly on rotor speed and
is not influenced by changes in the average airspeed of the blade. This
trend of the experimental results certainly deserves to be investigatedthoroughly, as it seems to indicate that some aspect of the flutter mech-

anism is missing from the theoretical flutter calculations.

The results given in Figure 35 pertain to the almost completely balanced

blade of Figure 10(a) in Reference 16. The flatwise to torsion frequency
ratio is /S= 1.03, and the torsion natural frequency is

8090 65.9 rad/sec. Again, the test results show that flutter
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occurred at constant rotor speed. The digital solutions are so conserva-
tive as to bear little relation to the measured results. Flutter still
consists of pitch flap coupling, and the question arises as to why flutter
occurred between flapping and pitch when the inertia coupling between these
modes is almost zero. If one looks at the change in the measured flutter
speed with changing mass balance as given in Table IX, it can be seen that
the measured flutter speed increased by a factor of 4 from the unbalanced
to the fully balanced 2ase, whereas the calculated flutter speeds increased
only slightly. It is this insensitivity of the calculated results to
changing mass balance that makes the correlation so poor for the filly
balanced blade. In Figures 34 and 35 the results have been plotted for
the case where the mass balance coefficients were not added to the equa-
tions of motion. Again the insensitivity of the calculated flutter speed
to changing mass balance is apparent.

The results given in Figure 36 pertain to the balanced blade of Figure
10(a) in Reference 16 with the flatwise to torsion frequency ratio
'7, /@ 8 0 = 1.144 and t' natural torsion frequency w60  = 46.9 rad/sec.
Again the insensitivity of the calculated flutter speed to changing mass
balance has caused the calculated flutter speed to be extremely conserva-
tive.

SUMMARY OF CORRELATION WITH NASA- kNGLEY AND CORNELL TEST RESULTS

The correlation with Cornell test results was begun because of the poor
correlation of flutter frequency that occurred with the NASA-Langley model
results. The frequencies at which the Cornell model blade fluttered are
not stated, and so a comparison oI calculated and measured flutter fre-
quencies cannot be made. However, it was hoped to achieve satisfactory
correlation of flutter speed, which is much more important than flutter
frequency. From the above review of the correlation with Cornell data, it

can be seen that this was not achieved. The overall correlation is cer-
tainly encouraging, but in some areas questions remain to be answered. For

cases where it is reasonably certain that the model blade was undergoing
classical flutter, the calculated flutter speed was in every case either
equal to or below the measured flutter speed. This conservative nature of
the calculated flutter speed is important. It may cause concern unnec-
essarily, but it gives assurance that classical flutter will not occur
below the calculated speed.

The emphasis of the study was on the effects of compressibility at the
high advance ratios at which present-generation ±.elicopters are operating.
It was for this purpose that the compressible aerodynamic coefficients
were assembled and used in the computer program for obtaining flutter solu-
tions. However, because of the lack of test data, the correlation had to
be made with cases involving either high Mach numbers in hover or very luw
Mach numbers in hover and in forward flight. In fact, quite a few of the

cases were for the hover condition involving low tip Mach numbers for which
a satisfactory unsteady aerodynamic theory exists (Reference 15 ). It is
expected that use of the Loewy coefficients in these cases would improve

the correlation obtained.
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It is unfortunate that test results were not available for the high Mach -

number, high advance ratio flight regime; not only is this the area where
a proven method is needed to predict classical flutter speeds, but it is
also the area where the compressible aerodynamic coefficients used in the
computer solution are considered to be applicable. On the other hand, the
validity of these coefficients for the hover case with low tip Mach numbers
is questionable.

It is felt that the methods developed during the present study can be used
as a design tool in evaluating blade flutter speeds and in determining the
sensitivity of the flutter speed to changes in design parameters. It is
suggested that the compressible aerodynamic coefficients be replaced by
Louwy coefficients for cases involving low tip Mach numbers with low ad-
vance ratios.

It
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EFFECTS OF VARIATIONS IN PARAMETERS

DESCRIPTION OF BASIC CONFIGURATION

It was decided to use the NACA 23012 2(F) model blade described in
Reference 13 for the parametric variations, with th.a same variations being
considered for the two cases where the blade root is considered fixed and
articulated. The rotor speed and chordwise center-of-gravity position
were adjusted to give reasonably strong flutter at about L = 0.25.
Otherwise, if flutter is weak, small changes in parameters are likely to
have a very stabilizing effect; whereas with violent flutter, large changes
in the parameters may have little effect in reducing the flutter. Initial
solutions attempted to adjust the speed of sound so that at L = .50,
the Mach number was unity. This is equivalent to testing the model blade
in a gas such as Freon, for which the speed of sound is much less than in
air. However, varying the speed of sound had a confusing effect on the
flutter speed, so this attempt was not pursued and the solutions were run
with the speed of sound equal to 1)16 ft/sec. Therefore, the blade tip
Mach number at which flutter occurred was relatively low. Air density was
set at its standard sea level value. All cases studied were for the ad-
vancing blade.

The main parameters defining the nominal case for the articulated and
hingeless blades are given in Table X.

'The blade is considered to be rigid for the first 8 inches out from the
rotation axis. For the remaining 38 inches, the blade is uniform and the
structural data refer to the uniform part of the blade. The parameter
variations that were considered are summarized in Table XI. In the case
numbers, A refers to the articulated blade and R to the nonarticulaced
(rigid) blade. It will be noticed that each parameter is varied individ-
ually from the nominal case; simultaneous variations are not ccnsidered.
The variations for the articulated blade are considered first.

The results are presented in the form of stability boundaries such as those
shown in Figure 39. The advance ratio /.L at which instability either
begins or ends, is plotted versus the parameter under considfration. For
a particular curve, the unstable region is always above .,-he curve except
for the cL.e where a loop occurs. In this case, the zrIcable region lies
inside the loop so that as advance ratio increases, instability occurs on
crossing the lower boundary and stability is regained on crossing the upper
boundary. The stable region of interest is the area lying below the flutter
curves and is that region in which a practical he±icopter blade must oper-
ate. The uer boundary of this region is shown sha4ed in the diagrams.
Some of the curves are drawn in as broken lines to indicate that only the
form of the variation is known, not the exact shape and position of the
curves. The precise location of the curves can always be determined by
obtaining additional flutter solutions. This was not attempted, as all
information required from the parametric variation is contained in the
broken curves.
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RESULTS FOR THE ARTICULATED BLADE

For reference, the variation of the solution frequency and decay rate ver-

sus rotor speed is giren in Figures 37 and 38,respectively, for the nominal
blade operating in hover. The blade flutters at 1190 RPM, at which speed

the torsional mode and flapping mode frequencies are almost equal.

Cases 1.A1 and 1.A2 of Table XI consider two elastic axis positions in
addition to the nominal position; the results are shown in Figure 39.
Figure 39 also shows a number of additional results, which were obtained
to permit better definition of the instability boundaries. With the

elastic axis at 25% chord, the major contribution to the negative aero.-
dynamic stiffness is the aerodynami -- center-to-center-of-gravity spacing,
and this contribution is unchanged as the elastic axis is shifted aft.

However, moving the elastic axis toward the blade trailing edge increases
the aerodynamic-center-to-elastic-axis spacing, which begins to make a
sizeable contribution to the negative aerodynamic stiffness, thereby caus-
ing a reduction in the torsional divergence speed. The reduction in the

elastic-axis-to-center-of-gravity spacing from 13% to 3% chord and finally
to -7% chord (center of gravity ahead of the elastic axis) has eliminated
flutter of the first flatwise mode, raised the flutter speed of the flap-
ping mode, and eliminated flutter below the torsional divergence speed.

As the elastic axis moves from 37.1% chord to 37.2% chord, the roles
played by the flapping and torsional modes are interchanged, but there is
no discontinuity in the curves as a result of this switch. On the root
locus plots generated by the program, the flapping and torsional modes t
approach each other when the advance ratio increases, and for some special
value of elastic axis position between 37.1% and 37.2% chord, they will
meet tangentially from opposite directions. At this point the flapping
and torsional modes have identical frequency, damping, and motion. Further
increases in the advance ratio cause the root locus paths to leave the
point of intersection at right angles to the incident paths. It is then
arbitrary as to which of the retreating paths is termed the flapping or
torsional mode. As the advarie ratio is increased, one of the modes
reaches a divergent instability and then the other reaches a flutter in-
stability. The onset of these instabilities provides the points on the
boundaries in Figure 39 where the flutter instability and the divergence
instability modes interchange. With the elastic axis forward or aft of
this special position, the flapping and torsional branches each break away
without reaching a point of intersection. In this case, the modes can, as
usual, retain the designations assigned for t = 0. For forward positions
of the elastic axis it is the torsional mode which meets the w = 0 axis
and therefore suffers static divergence, whereas for aft positions it is
the flapping mode which meets the w = 0 axis. I
The switch in the stability of the torsional and flapping modes is a result
of the change in the modal coupling that occurs as the elastic axis is
shifted aft. This effect is examined in Figures 40 and 41, in which the
amplitude ratio qh/qa and the phase angle are plotted versus advance
ratio, for both the flapping and the torsional modes. Figure 40 considers
the elastic axis at 25% chord, and it can be seen that in hover, the flag-
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ping mode begins as a predominantly flapping motion qh /qa = 16 while
the torsional mode beings as a predominantly torsional motion qh/qa = 0.6.
As advance ratio increases, the amount of torsional motion in the flapping
mode increases, and, simultaneously the amount of flapping motion in the
torsional mode increases so that the modal ratios of the two modes approach
each other. At p. = .35, the two ratios become almost identical. A
similar effect occurs with the elastic axis at 45% chord, Figure 41; how-
ever, in this case the amount of flapping displacement in the torsional
mode is greater in hover than with the elastic axis at 25% chord. It can

be seen that the mode with the smaller phase angle at hover is the one
which suffers static divergence.

The effect of moving the elastic axis aft may be summarized by saying that
the effect is to increase the flutter speed but to cause a decrease in the
static divergen-e speed. An optimum location for this blade occur.'ed with
the elastic axis in the range 32% to 40% chord.

Cases 2.Al, 2.A2, 2.A3, and 2.A4 of Table XI consider four center-of-
gravity positions in addition to the nominal position; the results are

shown in Figure 42.

As the center of gravity moves aft the static divergence speed decreases
uniformly, corresponding to the fact that increasing the aerodynamic-
center-to-center-of-gravity spacing causes a corresponding increase in the
negative aerodynamic stiffness acting in the torsion mode.

A threshold value for the center-of-gravity offset occurs, below which
flutter will not oI.cur. Once the threshold value is reached, the flutter
speed decreases steadily as the center of gravity moves aft. However, the
sensitivity to center-of-gravity offset decreases at the same time so that
the flutter curve flattens out.

Cases 3.Al and 3.A2 of Table XI consider two torsional stiffnesses in
adaition to the nominal value, the results are shown in Figure 43.

Increasing GJ raises the torsional divergence speed as expected. It also
has the effect of raising the flutter speed until finally the flapping mode
appears to flutt.,r above the static divergence speed. In fact, increasing
GJ may have eliminated flapping flutter because for GJ/(GJ)NOM = 1.328,
frequency coalescence of the torsional and flapping modes occurs at 14
= .366 yet flutter has not occurred by the time static divergence sets in
at L = .45. Sometimes, however, flutter does not begin until after
-frequency coincidence has occurred. For example, at GJ/(GJ)NOM = 1.,
frequency coincidence of the torsional and flapping modes occurs at p.

.235, but coupled flapping-torsion flutter does not b ..gin until p. = .27.

Also, the difference in rotor speed at which frequency coincidence and
static divergence occur decreases with increasing GJ, as can be seen from
Figure 4h. Hence, it is more likely that the flutter sets in after tor-

sional divergence has occurred rather than that flutter has been eliminated.

Cates 4..41 and 4.A2 of Table XI consider two blade flatwise bending stiff-
nesses in adition to the nominal value; the results are shown in Figure 45.
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Increasing El has eliminated the flutter involvirg the first flatwisebending and torsional modes. However, the other flutter mode involving
mainly the rigid-body flapping and torsional modes shows little change

with increasing El , as is to be expected. Hence, increasing the
flatwise bending stiffness will rais( the flutter speed and perhaps will

eliminate flutter modes involving elastic flatwise bending; however, it
cannot help toward increasing the flutter speed of flutter modes in which

flatwise motion is dua principally to rigid-body flapping.

Cases 5.Al and 5.A2 of Table XI consider two blade mass variations in
addition to the nominal; the results are shown in Figure 46.

Changing the blade mass has comparatively little effect on the static

divergence speed. The main effect is to cause a change in the flutter
mode. For a blade mass distribution half the nominal value, the flutter
mode involves first flatwise bending, while for a blade mass distribution
twice the nominal value, the flutter mode involves rigid body flapping.
Based on the results obtained in cases 5.Al and 5.A2, it is expected tnat
the flutter speed of the light blade (half the nominal mass) could be
raised substantially by increasing the blade bending stiffness. By com-
parison, the heavy blade should be relatively insensitive to changes in
the flatwise bending stiffness.

Cases 6.A1 and 6.A2, of Table XI consider two variations in blade pitching
inertia, in addition to the nominal value; the results are shown in Figure
47.

Increasing or decreasing Ia from its nominal value reduces the stable
operating range of the rotor. In fact for Ia/(Ia)NOM < 0.4 and
Ia/(Ia)NOM > 2 , the rotor suffers flapping flutter for _ 0

so that there is no stable operating region.

RESULTS FOR THE NONARTICULATED BLADE j

For reference, the variation of the solution frequency and decay rate ver-
su rotor speed is given in Figures 48 and 49, respectively, for the nom-
ina,. blade operating in hover. The blade flutters at 1160 RPM, followed
by static divergence at 1400 RPM. Also shown in Figure 50 is the variation

of the critical Rdvance ratio versus rotc: speed. As expected, the higher
the rotor speed, the lower the advance ratio at which instability occurs,
until finally the olade flutters in the hover condition for S1 = 1160
RPM. This is in contrast to the Cornell experimental flutter data in which
instability occurred at approximately constant rotor speed irrespective of
the advance ratio.

Cases l.Rl and l.R2 of Table XI consider two elastic axis positions in
addition to the nominal position; the results are shown in Figure 51. The
resultc are similar to those of the articulated case, and the comments
made for that case apply also to the hingeless blade. However, because
the hingeless blade does not have a flapping mode, the following equiv-
alence of modes exists:
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Articulated Rotor Hingeless Rotor

Flapping First Flatwise
First Flatwise Second Flatwise
Second Flatwise Third Flatwise

Thus, for example, the behavior of the nonarticulated blade's second flat-
wise bending mode should be compared to the first flatwise bending mode of
the articulated blade, since the mode shapes and frequencies will tend to
be approximately the same. It should be noted that the results shown in
Figures 39 and 51 are applicable to the blades considered, and it should
not be concluded that the results are typical for all practical ranges of
the various blade parameters.

Cases 2.Rl, 2.R2, 2.R3, and 2.R4 of Table XI consider four center-of-
gravity positions in addition to the nominal position; the results are
shown in Figure 52. Again, the results are very similar to those of the

articulated case, and the comments made for the articulated blade apply
also to the hingeless blade. Only one static divergence speed is shown
(namely, at 13% center-of-gravity offset) because, for all other center-of-
gravity offsets, the highest value of i for which solutions were ob-
tained was below the divergence speed. If solutions had been obtained
for higher values of p. , then static divergence would have occurred in
every case. It should be noted that no flutter instability was found, for
the range of ji considered, in the case of the 2.5% center-of-gravity
offset. Therefore only the solutions for the remaining 4 cases appear in
Figure 52.

Cases 3.R1 and 3.R2 of Table XI consider two torsional stiffnesses in
addition to the nominal value; the results are shown in Figure 53. The
results are similar to the corresponding results for the articulated blade.
The difference may be attributed to the fact that the torsional frequency
does not decrease as rapidly with increase in u for the hingeless
blade as it does for the articulated blade. This result applies to the
particular configuration treated, and should not be applied to blades of
conventional stiffness.

Cases 4.R1 and 4.R2 of Table XI corsider two blade flatwise bending stiff-
nesses in addition to the nominal value; the results are shown in Figure
54. Increasing the El raises the frequency of the first flatwise mode
bringing it closer in frequency to the torsional mode. As a result, fre-
quency coincidence of these two modes occurs at increasingly lower values
of l1 as El incr.ases, which causes a reduction in the flutter speed.
There is probably no simple exple.naticn for the increase in the torsional
divergence speed with increase in El, since torsional divergence occurs
well above the flutter speed. Hence, by the time it occurs, the first
flatwise and torsional modes are so strongly coupled that one cannot in-
terpret changes in torsional divergence speed in terms of singie-degree-of-
freedom results for a torsional mode.
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Cases 5.R1 and 5.R2 of Table XI consider two blade mass variations in
addition to the nominal; the results are shown in Figure 55. Changing
blade mass again causes an indicated switch in the stability of modes.
The results are co;siderably different in detail from the corresponding
results for the articulated blade. However, the practical result is the
same; namely, that changing blade mass does not significantly alter the
stable operating r-nge of the blade.

Cases 6.Rl and 6.R2 of Table XI consider two variations in blade pitching
inertia in addition to the nominal value; the results are shown in Figure
56. The results are almost identical to the corresponding results for
the articulated case except that, as noted before, the second flatwise
mode does not flutter in the hingeless case.
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SIGNIFICANCE OF CLASSICAL FLUTTER ANALYSIS AND RESULTS

The method of solution developed for this study has proved to be versatile
and well suited to design use. A number of assumptions and approximations
were made when deriving the equations of motion. It was considered that
the resulting simplified equations should still be able to predict flutter

speeds with acceptable accuracy. It was initially intended to check these
simplified equations by comparing the solutions with experimental flutter
data obtained from blades operating at high tip Mach numbers and advance
ratios. As explained previously this was not possible. The correlation
that was attempted proved encouraging, but many questions remain to be
answered. What is still needed is to be able to correlate with a large
body of accurate experimental test data at high advance ratios and tip
Mach numbers. The estimated accuracy of experimentally determined rotating

b.Rde flutter speeds is rarely stated, if ever. Thus, in a correlation
stuay, the experimental results have to be assumed to be accurate. Yet,
the possibility of inaccuracies existing in the experimental results is
considerable. Examples have occurred in the past where, for the simpler
case of two-dimensional airfoils oscillating in incompressible flow, dis-
crepancies between measured and calculated flutter speeds were removed by
improvements in the experimental technique. In addition, there is the
possibility that a measured flutter speed may not be due to classical
flutter. It would be more satisfactory if the solution to the simplified
equations and the experimental determination cf flutter speeds could be
made part of one test program.

The limited correlation that was attempted showed that the calculated
flutter speed was always conservative for those cases in which it was
reasonably certain that the flutter mechanism was classical flutter. At
times, the results were so conservative as to be of little use in predic-
ting flutter speeds. It may be pointed out that a considerable difference

exists between attempting to predict accurate flutter speeds and a param-
etric study in which the effect on the flutter speed due to changing
parameters is investigated. In the latter case, which is usually the major

portion of a flutter investigation, the accuracy of the solutions is of

secondary importance. The main interest is the detection and approximate
location of any regions of instability. The accurate evaluation of their

extent is of secondary importance. The major requirement for parametric
variations is that the equations of motion always give conservative flutter
solutions. Then the method is capable of locating all regions of insta-
bility, with the calculated boundaries enclosing the true boundaries, the
difference between the two being a function of the degree of conservatism
of the flutter solution. The possibility of missing an instability is then

confined to incorrect choice of the parameters. From past experience and

with an understanding of the flutter mechanism, a great deal of information
can be obtained from such investigations, and it can be applied toward
obtaining a flutter clearance. This use of indirect methods was widespread
before the introduction of electronic computation aids; it will have to be

relied on at present for helicopter blade flutter in the high-speed flight

condition until either a more satisfactory aerodynamic theory is developed
or existing approximate theories can be checked experimentally over a wide
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range of flight conditions. Until these improvements become available, it
is considered that the simplified equations of motion developed in this
study represent an acceptable method for investigating the flutter charac-
teristics of a helicopter blade in high-speed flight; it is believed that
this method is suited for design use where speed of solution is essential.

The parametric study should be used with caution, as it has limited appli-
cability. In this respect, it may be noted that the equations of motion
have mary types of coupling terms, and any one may contribute critically.
For a particular class of blade or a particular flight condition, certain

. coupling terms will predominate; if vaiiations are made within this class,
the variations will have a characteristic form. However, for a different
class of blade or flight condition, other coupling terms will predominate
and cause the parameter variations to take on an entirely different form.
It appears that the center-of-gravity offset is one of the few parameters
that are important for most classes of blades. The same situation applies
to fixed-wing flutter. Parameter variations have been published consider-
ing straight, high-aspect-ratio wings with no lumped masses, traveling at
low subsonic speeds. However, these results do not apply if the wing is
traveling at high subsonic Mach numbers or if a flexibly mounted store is,
added to the outboard portion of the wing. These limitations do not de-
crease the usefulness of parameter variations in general, but they do mean
that a new set of curves has to be generated when investigating a new
class of blade or flight condition.
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EXTENDED NORMAL MODE TRANSIENT ANALYSIS CALCULATIONS
CORRESPONDING TO CLASSICAL FLUTTER INVESTIGATIONS

PURPOSES AND METHODS

The extended Normal Mode Transient Analysis was empl.yed to perform blade
response calculations corresponding to blade configurations and flight
conditions for which classical flutter was calculated.

The purpose of these calculations was to provide comparative results and
to obtain time histories of blade response over a complete rotor revolu-
tion, part of which was unstable from the standpoint of the fixed azimuth
classical flutter calculation.

It should be noted that the fixed azimuth classical flutter calculation
and the extended Normal Mode Transient Analysis are quite different in
their basic assumptions. As pointed out in the introduction of this vol-
ume, these fixed-azimuth classical flutter calculations consider pertinent
inertial and elastic blade structural effects, together with unsteady,
compressible aerodynamic loadings. These aerodynamic loadings include
phase lag effects which arise because of blade motions in an assumed steady
velocity field appropriate to a particular azimuth position. This assump-
tion permits solution of the flutter stability equations in a manner which
is mathematically similar to the usual fixed-wing flutter problem, since
the coefficients of the equations are constant in time. The extended
Normal Mode Transient Analysis, in contrast, integrates the blade differ-
ential equations of motion in a step-by-step fashion, considering pertinent
inertial and structural effects, as well as the time history of instantan-

eous aerodynamic loadings, including stall and compressibility effects.
These loadings, however, are so-called quasi-steady loadings. This refers
to the de ermination of aerodynamic loadings by steady-state airfoil data
and by the instantaneous relative velocity vector at the 75% chord point of
each blade strip. This excludes phase lag effects between motion and aero-
dynamic loading, which are usually included in flutter calculations. As
pointed out earlier, this precludes prediction of classical flutter in some
cases. However, the type of classical flutter arising because of aft
center-of-gravity location on a fixed wing can be predicted with quasi-
steady aerodynamic effects. Hence, it could be expected that the extended
Normal Mode Transient Analysis results would reflect classical flutter-type
instabilities due to aft blade center-of-gravity position.

Therefore, the blade configuration chosen was that used for the classical
flutter parameter study. This blade had a flapping hinge only for the
articulated case, and was assumed to be, rigidly built in for the nonartic-
ulated case. Edgewise motions were suppressed in both cases. In the
articulated case, rigid-body flapping, two flatwise bending modes, and one
torsional mode were considered. The natural frequencies of these modes
were 1.11, 2.69, 4.81, and 5.62 cycles per revolution, respectively. In
the nonarticulated case, three flatwise bending modes and one torsional
mode were considered. The natural frequencies of these modes were 1.43,
4.12, 8.48, and 6.14 cycles per revolution, respectively. In order to
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make the results comparable to those for the classical flutter calcula-
tions, the rotor was assumed to be very lightly loaded, with a collective

pitch setting of 10. A small loading of this magnitude was used to insure
that some blade excitation was present, which would make any tendency
toward instability more apparent. The shaft angle of attack for the rotor
was effectively zero. In common with the classical flutter calculation,
no cyclic pitch inp, -4 was considered. The normal full-scale Reynolds
nunber aerodynamic data were used, appropriate to an NACA 0012 airfoil.
Since blade angles of attack remained low, the blade response results of
interest were assumed to be unaffected by Reynolds number and airfoil
camber. V
The extended Normal Mode Transient Analysis was started with the blade at
the zero azimuth position. Starting values for articulated blade flapping
were estimated to be steady flapping angles in each case. The first flat-
wise bending amplitude was used in the same way for the nonarticulated
blade. Starting values for all other elastic modal velocities and dis-
placements were zero.

After starting in the above manner, the numerical integration of the blade
~equations of motion was allowed to proceed for a maximum of 10 rotor

revolutions. In many cases, the blade motions became cyclic with respect

to rotor azimuth prior to 10 revolutions after starting. In these cases,
the computer progran. automatically terminated the solution, since each of
the subsequent revolutions would have been identical if they had been cal-] Iculated.

*CONFIGURATIONS AND FLIGHT CONDITIONS STUDIED
it

The method described above was employed for each of the configuration
flight-condition combinations shown in Table XIII. Pertinent character-
istics of the blade were otherwise identical to the nominal blade config-
uration used in the classical flutter parameter studies.

PRESENTATION AND DESCRIPTION OF NORMAL MODE TRANSIENT ANALYSIS RESULTS

Time histories of flapping and .orsion modal displacements are shown in
Figures 57 and 58. Results are shown for various center-of-gravity
positions at each of the two advance ratios. The solutions for 7/Cb 0,
-.065, and-.0975 became cyclic within a few revolutions, as shown in Figure,
57 for Y/Cb =-.0975. All these solutions were similar, with somewhat
smaller flapping and torsional amplitudes for the E naller center-of-gravity
offsets. The solution for 7/Cb =-.130, shown in Figure 57, did not
become cyclic, even after 10 revolutions. A slowly decaying one-half-per-
revolution component can be seen in the torsion modal time history, with
every other revolution being similar. It appears that the motions would
not grow significantly larger if the solution were allowed to continue.
Note, however, that torsional motions are veyy much larger than for the

7/Cb =-.0975 case. Higher frequency components of approximately four
per revolution are visible. Figure 58 is similar to Figure 57, at an even
lower advance ratio. Note that the */Cb =-.130 case converges rapidly
at the lower Ldvance ratio. Setting the center-of-gravity position further
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aft, to R/Cb =-.165 and-.20, results in progressively more violent
oscillations of a complicated nature. These apparently grow with time un-
til blade destruction occurs.

The nonarticulated blade cases were found to converge rapidly, even with
X/Cb =-.130. The first flatwise response was 46% of the articulated

blade flapping response, although the amplitudes of the nonarticulated
blade also increased rapidly as the center of gravity was moved aft.

Figure 59 shows blade tip deflections duxing the last revolution of the
various solutions for the articulated blade at advance ratio = .30.
Comparison with Figure 57 shows that most of the vertical tip aeflection is
the result of rigid-blade flapping motion. Note that moving the center of
gravity aft results in higher average blade twist, which acts like an in-
crease in collective pitch.

In order to present the total elastic blade deformations, Figure 60 was
drawn for the articulated blade with advance ratio /i = .30. Note that
the elastic blade deflections are essentially cyclic, with a large component
of twice rotor frequency. These deformations are the maximum value occur-
rirgon the blade and are proportional to bending and twisting stresses and
moments at that section of the blade.

Figure 61 is a similar plot for the articulated blade with advance ratio
= .15 and center-of-gravity positions further aft. Note that for

x/Cb =-.165 and-.20, the elastic deformations are noncyclic with azimuth
angle and that a predominate frequency of slightly less than three times
rotational frequency is present. Note that an enormous increase in the
amplitudes of the elastic deformations takes place as the center of gravity
is moved aft. It is probable that the deformations would continue to grow
if the solution were continued beyond 10 revolutions.

In Figure 62, the total elastic blade deformations are shown for the non-
articulated blade. This blade was stiff enough in flatwise bending to make
its behavior distinctly different from the similar articulated blade. The
bending deformation d2 w/dx2  consists almost entirely of one-per-
revolution bending. The blade has maximum torsional deflection at the ad-
vancing blade position. Note that this deflection could be considered an
incipient torsional divergence due to the aft center-of-gravity position.

In Figures 63 and 64, the one-half peak-to-peak nondimensional blade defor-
mations, which are proportional to stress or e.lastic moments, are plotted
against center-of-gravity position for the articulated blade. Figure 65 is
a similar plot for the nonarticulated blade. Note that a rapid rise in
peak-to-peak deformations occurs for the articulated configurations as the
center of gravity is moved aft past certain limits. The corresponding rise
for the nonarticulated blade is similar but much less pronounced.
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DISCUSSION OF NORMAL MODE TRANSIENT ANALYSIS RESULTS
CORRESPONDING TO CLASSICAL FLUTTER INVESTIGATIONS

In this subsection, appropriate comparisons will be made of the extended
Normal Mode Transient Analysis results and the corresponding fixed-azimuth
classical flutter results.

As pointed out previously, the Normal Mode Transient Analysis and the fixed-
azimuth flutter calculation are quite different in their basic intent and
analytical approach. In spite of this, some comparisons of the two sets
of results should be made. The aft center-of-gravity practical operating
boundaries predicted for the limited number of cases considered here do
show encouraging agreement between the two methods.

The most important direct comparison is thus of Figures 42, 63 and 64 for
the articulated blade, and of Figures 52 and 65 for the nonarticulated
blade. As is shown on Figure 42, flatwise-bending-torsion flutter occurs
at an advance L = .30 for a center-of-gravity offset of 11%, followed
by flapping-torsion flutter at a center-of-gravity offset of about 12.2%.
Figure 63 shows that the flatwise and torsion stresses increase rapidly as
the center of gravity is located aft of these two positions. Reference to

Figures 57, 58, and 59, however, shows that the flapping motion of the
blades increases comparatively little. Inspection of Figure 60 shows fre-
q7ency components of the order expected for the flatwise-torsion flutter.
Thus, some manifestations of the flatwise-torsion flutter predicted for the
idealized fixed-azimuth system appear in the Normal Mode Transient Analysis.
No particular evidence of a flapping-torsion flutter can be discerned. It

would be expected that the fixed-azimuth assumption would be more valid for
the higher frequency flutter modes. Similar observations can be made for
an advance ratio of p. = .15, for which flatwise-torsion flutter is pre-
dicted at a center-of-gravity offset of 15% and flapping-torsion flutter at
an offset of 17.5%. The flutter boundary for the nonarticulated blade
shown in Figure 52 corresponds to first flatwise-torsion flutter, which
corresponds to flapwise-torsion flutter for the articulated blade. The
onset of this comparatively low frequency flutter for the fixed-azimuth
system is reflected in a fairly gentle rise in stress as center-of-gravity
offset increases.

On the basis of the above information, it can be expected that the fixed-
azimuth flutter calculations will be most accurate for .lassical flutter
frequencies greater than two times rotor frequency when the advance ratio
is greater than 11 = .15. When flutter frequencies are smaller, the pre-
dictions of flutter speed are expected to be increasingly conservative.
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Figure 51. Varying the Chordwise Position of~ the Elastic
Axis for a Nonarticulated Blade.
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TABLE I. EXAMPLE OF THE APPLICATION OF REVERSE-FLOW
' RELATIONS

Calculated Using

I-IN k Reference Tabulated Reverse-Flow Relabions

h h

0 0.2 2 .72758 .017730 .72756 .0177237 .7275o .017750 .73647 .017720
9 .7276o .017720 .7?7750 .017720

0.5 0.2 2 .76426 .030701 .70,413 .030723
4 .76425 .030700 .76429 .030682
7 .76375 .029850 .77862 .029860

0.8 0.1 2 1.00268 .038675 1.002Q9 .038706
7 1.01550 .039200 1.014030 .039720

0.8 0.7 2 .69096 .068596 .69041 .068628
7 .63607 .059300 .66570 059325

1.0 0.2 2 .68508 .091657 .68510 .091648
3 .68513 .091648 .68511 .091650

1.11 0.475 h .52501 .090162 .52501 .090161
8 .52501 .o9o163 .52501 .o9o162

TABLE II. EXAMPLE OF ERRORS IN THE TABULATED
COEFFICIENTS

MN =0-8

Sk -ma REF. 2 )-ma W E. 7)

V 0.020 1.6250
0.025 .58728
o.o4o - . 1.4928o.o~o .94856
0.100 .99870 1,16787
0.200 .9613o 1.07725
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TABLE III. AIRFOIL DATA USED FOR THE TEST CASE

Item Symbol Value Units

Blade-Chord 2b 1.0 ft

Blade Mass per Unit Span m .16786 slug/ft

Radius of Gyration About Pitch Axis ra  .28 ft

Aerodynamic Center Chordwise
Position Aft of Leading Edge AC 25. % chord

Elastic Axis Chordwise Position
Aft of Leading Edge EA 30. % chord

Center-of-Gravity Chordwise
Position Aft of Leading Edge CG 42.5 % chord

Vertical Translation Natural
Frequency Wh, 218. cpm

Pitching Natural Frequency wa, 1090 cpm

Lift Curve Slope CL a 2 7r rad"

Air Density p .002378 slug/ft3

Rotational Speed S1 0. 0 rad/sec

Azimuth Angle 4' 90. deg
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TABLE IV. COMPARISON OF FLUTTER SPEEDS

SOURCE FLUTTER SPEED DIVEFGENCE SPEED
ft /sec knots f /sec knots

REF.12 307 181.8 416 246.3
E 480 - 182 247

TABLE V. AERODYNAMIC COEFFICIENTS USED FOR THE TEST CASE

MN 0.0 k: 0.0 -

iA - m a -h za -mh -m

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
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TABLE VII. CORNELL AERONAUTICAL LABORATORY MODEL BLADE PROPERTIES

Item Symbol Value Unit

Blade Number ( Reference 14 ) -4 4

Chord 2b 3.5 in.

Flapping Hinge Radius e 0 in.

Outboard End of Rigid Section 7 in.

Rotor-Radius R 48 in.

Shaft Axis Chordwise Position 25 % chord

Feathering Axis Chordwise Position 25% chord

Center-of-Gravity Chordwise
Position Aft of Leadirng Edge CG 42.5 % chord

Elastic Axis Position Chordwise

Position Aft of Leading Edge EA hl.O % chord

First Flatwise Bending Frequency wh, 76.9 rad/sec
(Calculated)

Second Flatwist, Bending Frequency Wh2  924 rad/sec
(Calculated)

First Cantilever Torsion Frequency wa, 640 rad/sec

(Calculated)
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TABLE VII. - Concluded

Item Symbol Value Unit

Rigid Body Pitch Frequency 0)o L6.9-132.5 rad/sec

lade Mass Density Ratio PM 46.6

Flanping Mechanical Viscous
Damjing Coefficient gho 0

Rigid Body Pitching Mode
Structural Viscous Damping Coefficient gao 0

First Flatwise Bending Mode
Structural Viscous Damping Coofficient ghl .0

Second Flatwise Bending Mode *

Structural Viscous Damping Coefficient 
<

h2

First Cantilever Torsion Node
Structural Viscous Damping Coefficient gal Ob

1
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TABLE VIII. CASES USED FOR CORRELATION WITH CORNELL DATA

Reference 16 0__0, E80 __E "Re"

Figure No. 380 RA/SEC Cb -) 00 80

10(a) 1.03 65.9 .0036 -.00317
10(a) 1.44 46.9 .0036 -.00317

10(b) 1.o5 69.o .oh -.101

10(c) .63 132.5 .139 -.338
10(c) 1.31 64.5 .139 -.338

TABLE IX. EFFECT ON FLUTTER SPEED OF VARYING MASS BALANCE

Reference 16
Figure No. 0EASURED E 400 SOLUTION

10(c) -.338 .63 0.0 .25 .27
10(c) -.338 1.31 0.0 .33 .32

10(b) -.101 L05 0.0 .56 -
10(b) -.101 1.05 0.2 - .29

10(a) -;00317 1.03 0.0 1.0 .35
10(a) -.00317 1.44 0.0 1.0 -
10(a) -.00317 I, .4 0.2 - .33
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TABLE X. BASIC PI'OPERTIES OF THE BLADE USED FOR
THE PARAMETER VARIATION STUDY

Ttem Symbol Value Unit

Chord 2b 4 in.

Articulated Blade Flanping Hinge Radius e 2.5 in.

Outboard End of Rigid Section 8 in.

Rotor Radius R 46 in.

Articulated Blade Rotational Speed a 950 rpm

Nonarticulated Blade Rotational Speed £ 870 rpm

!L
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TABLE XIII. BLADE CONFIGURATIONS AND FLIGHT CONDITIONS
FOR EXTENDED NORMAL MODE ANALYSIS
CALCULATIONS CORRESPONDING TO uLASSICAL
FLUTTER INVESTIGATIONS

Case Articulated

Nonarticulated cb

1 Articulated .30 0.0
2' Articulated .30 -. 5
3 Articulated .30 -.0975
4 Articulated .30 -.. 130

5 Artbculated .15 0.0
& Art culated .15 -.130o
'7Articulated .15 -. 165
8Articulat ed .15 -. ?00

9 Nonarticulated .30 0.0
10 Nonarticulated .30 -.0975
11 Nonarticulated .30 -. 133
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CONCLUSIONS

1. The simplified equations of motion predicted flutter speeds which
were conservative when compared with experimental flutter data.

2. Torsional diverbence and classical bending-torsion flutter of a
rLtating blade are closely related, with static divergence occurring
usually at a slightly higher speed than flutter.

3. As the blade tip Mach number approaches unity, the rearward shift

* of the aerodynamic center has a stabilizing effect. The increase

in the flutter or divergence speeds was considerably greater with
the experimental data than that which occurred with the calculated
speeds. This is attributed to the rearward shift of the aerodynamic
centers being greater in practice than is implied by the aerodynamic
coefficients.
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RECOMMENDATIONS

1. The correlation study should be extended to help define in more
detail any limitations that exist in the simplified equations
of motion.

2. A program should be undertaken which consistL of experimental
measurement of rotor bladc classical flutter speeds at high ad-
vance ratios and tip Mach numbers, together with the calculation
of the corresponding flutter speeds through the use of the sim-
plified equations of motion.

3. Aerodynamic coefficients taken from Reference 15 should be used

in place of the table of compressible aerodynamic coefficients

when the blade tip Mach number and advance ratio are low.

4. The effect on the aerodynamic stiffness and damping of bending
modes of the spanwise air flow along the blade should be invest-
igated.

5. The effects of blade twist and coning angle should be incorporated
into the blade structural coefficients.

6. The conservatism inherent in the fixed azimuth approach should
be investigated.

7. As the nuxt step toward developing a more accurate unsteady aero-
dynaic theory applicable to high Mach numbers and high advance
ratios, an attempt should be made to modify the existing two-
dimensional fixed-wing unsteady compressible flow theory to in-
clude in an approximate fashion the effect of a nonplanar wake,
the effect on the circulation of the presence of more than one
wake,-and the effect of a time-varying dynamic pressure.

8. The experimental occurrence of flutter phenomena, which appear to

be a combination of stall flutter and classical flutter has been
noted. This type of combined flutter should be studied by analysis
and test.

190

C _______



REFERENCES CITED

1. Fung, Y. C., An Introduction to the Theory of Aeroelasticity,
John Wiley and Sons, New York, New York, 1955.

2. Jordan, P. F., 'Irodynamic Flutter Coefficients for Subsonic, Sonic
and Supersonic Flow (Linear Two-Dimensional Theory), Great Britain
ARC R&M No. 2932. Aeronautical Research Council, Great Britain, 1953.

3. Nelson, H. C., and Berman, J, H., CalculationL on the Forces and
Moments for an Oscillating Wing-Aileron Combination in Two-Dimen-
sional Potential Flow at Sonic-Speed, NACA Report 1128 National
Advisory Committee on Aeronautics, Langley Aeronautical Laboratory,
Langley Field, Virginia, 1953.

4. Luke, Y. L., Tables of Coefficients for Compressible Flutter Calcu-
lations, Air Force Technical Report 6200, United States Air Force,
Air Materiel Command, Wright Patterson Air Force Base, Dayton, Ohio,
1950.

5. Timman, R., van de Vooren, A. I., and Greidanus, J. H., Aerodynamic
Coefficients of an Oscillating Airfoil in Two-Dimensional Subsonic
Flow , Journal or the Aeronautical Sciences, Vol. 18, No. 12,
December 1951. _

6. Timman, R., van de Vooren, A. I., and Greidanus, J. H., Aerodynamic
Coefficients of an Oscillating Airfoil in Two-Dimensional Subsonic
Flow, Journal of the Aeronautical Sciences, Vol. 21, No. 7, July 1954,
Reader's Forum.

7. National Luchtvaartlaboratorium, Tables of Aerodynamic Coefficients
for an Oscillating Wing-Flap System in a Subsonic Compressible Flow,
N.L.L. Report F 151, National Aeronautica2 Research Institute,
Amsterdam, Holland, May 1954.

8. Garrick, I. E., and Rubinow, S. I., Flutte. and Oscillating Air Force
Calculations for an Airfoil in a Two-Dimensional Supersonic Flow,
NACA Report 846 National Advisory Committee on Aeronautics, Langley
Aeronautical Laboratory, Langley Field, Virginia, 1946.

9. Scanlan, Robert H., and Rosenbaum, Robert, Introduction to the Study
of Aircraft Vibration and Flutter, The MacMillfin Company New York,
1951.

10. Flax, A. H., Reverse-Flow and Variational Theorems for Lifting
Surfaces in Nonstationary Compressible Flow, Jounal of the Aero-
nautical Sciences, Vol. 20, No. 2, February 1953, pp. 120-126.

191



1.w

11. Fettis, H. E., Comments on Aerodynanic Coefficients of an Oscilla-
ting Airfoil in Two-Dimensional Subsonic Flow, Journa± of the
Aeronautical Sciences, Vol. 19, No. 5, May 1952, pp, 353-354.

12. Zimmerman, N. H., Elementary Static Aerodynamics Adds Significance
and Scope in Flutter Analysis, Symposium Proceedings on Structural
Dynamics of High Speed Flight, Aerospace Industries Association,
April 1961, pp. 28-84.

13. Brooks, G. W., and Baker, J. E., An Experimental Investigation of
th.. Effect of Various Parameters Including Tip Mach Number on the
Flutter of Some Model Helicopt.!r Rotor Blades, NACA TN 4005,
National Advisory Committee on Aeronautics, Langley Aeronautical
Laboratory, Langley Field, Virginia, 1958.

14. Du Waldt, F. A., Gates, C. A., and Piziali, R. A., Investigation
of Helicopter Rotor Blades Flutter and Flapwise Bending Response
in Hovering, WADC TR 59-403, Cornell Aeronautical Laboratory,
Bif.alo, New York August 1959.

15. Loewy, R. G., A Two-Dimensional Approximation to the Unsteady
Aerodynamics of Rotary Wings, CAL Report No. 75, Cornell Aero-
hautical Laboratory, Buffalo, New York, October 1955.

16. Gates, C. A., and Du Wald F. A. , Experimental and Thenretical
Investigation of the Flutter Characteristics of a Model Helicopter
Rotor Blade in Forward Flight, Aeronautical Systems D:.vision,
Technical Report 61-712, Cornell Aeronautical Laboratory, Buffalo, o
New York, February 1962.

17. Theodorsen, Theodore, General Theory of Aerodynamic Instability
and the Mechanism of Flutter, NACA Report 496, National Advisory
Committee on Aeronautics, Langley Aeronautical Laboratory,
Langley Field, Virginia.

192



Unclnslifred
ScOrity Clasfication DOCUMENT CONTROL DATA R & D

(Security claselllcatlon of title, body of abstract and Indeuing arnotatlo must be entered when the o"all report ta claestiled)
1. ORIGINATING ACTIVITY (Corporate aulthWt) I1u. REPORT SI[%URITY CLASSIFICATION

Sikorsky Aircraft Unclassified

Division of United Aircraft Corporation 2b. GAOUP

Stratford. Connecticut
3. REPORT TITLEK

PREDICTION OF ROTOR INSTABILITY AT HIGH FORWARD SPEEDS

Volume II - Classical Flutter

4. OESCRIPTIVE NOT S (Type otrlepot and Inclusive dale.)

Final Report
S. AUTHORIS) (First name, middle Initial, last name)

Clifford J. Astill
Charles F. Niebanck

0. REPORT DATE 7a. TOTAL NO. OF PAGES 75. NO. OF RZEP

-February 1969 Z17 17
Se. COPITRACT OR GRANT NO. ea. ORICINATOR'S REPORT N.jM 09R(XI

DA 44-177-AlC-332(T)
b. PROJECT No. USAAVLABS Technical Report 68-18B

IFI25901AI3904
C. Sb. OTHER REPORT NO(S) (Any othoh mbors Matmar) be a esiend

this report)

dSER-5O469

10. DISTRIOUTION STATEMENT

This document has been approved for public release and bale; its distribution

is unlimited.

It. SUPPLEMENTARY NOTES f12. SPONSORING MILITARY ACTIVITY

Volume II of a 5-volume report U. S. Army Aviation Materiel Laboratories
AVoTRAmT oFort Eustis, Virginia

13. ASIeTRACT

) An analytical study was made, of the effects of high forward speed on the flutter
characteristics of helicopter rotor blades.

Linearized equations of mot 4 on were used to represent the dynamics of the roto;
blades. The aerodynamic forces were obtained by using a fixed azimuth e.pproach with

fixed-wing two-dimensional compressible flow aerodynamc coefficients.

Flutter speeds and flutter frequencies were calculated fortwo model helicopter blades

for which experimental data were available. One blade haLbien tested in hover at

high tip Mach numbers; the other, at high advance ratios with low tip Mach numbers.

Agreement between theoretical and experimental data was qualitative.

A parametric study was made of the effect on flutter speed of varying blade chordwise
elastic axis and center-of-gravity position, torsional and flatwise bending stiff-

ness, and blade mass ratio and feathering mass moment of inertia.

The extended Normal Mode Transient Analysis was used to perform blade response
calculations corresponding to blade configurations and flight conditions for which

classical flutter was calculated. (

DD . iAN WHICH 19

I • O@ WLIkTX P ON ARM USK.DDI No~ve J473 ON' E VO A4Y US.Unclassified
Vocurity CleaeificaUon



LINK A7 LINK 8 LINK C
KLy WORDS ..O. WY MOLE WY ROLE *W

Helicopter Rotor Blade
Flutter

JI

c -I

.... I

betiI7 Jmeifcmoffo i tS69

__________________________________________________________


