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This contract was initiated to determine the aeroelastic stability
limits of articulated and unarticulated helicopter rotor systems at
high forward speeds. The four primary modes of aerocelastic instability
(classical flutter, stall flutter torsional divergence, and flapping
or flatwise bending instability) were investigated. The possibility

of a flap-lag instability suggested by Dr. Maurice I. Young of the
Vertol Division, The Boeing Company, was investigated as a special case
of flapping instability.

The results are published as a five-volume set; the subject of each
volume is as follows:

Volume 1 Equations of Motion
Volume II Classical Flutter
Volume III Stall Flutter

Volume IV Torsional Divergence
Volume V Flapping Instability

These reports have been reviewed by the U. S. Army Aviation Materiel
Laboratories. These reports, which are publighed for the exchange of
information and the stimulation of ideas, are considered to be tech-
nically sound with regard to technical approach, results, conclusions,
and recommended parameter ranges for accurate usage.
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SUMMARY

The purposes of this research program were to extend or develop anaslytical
methods for determining rotor blade aeroelastic stability limits and to
perform stability caleulations over a range of design and operating vari-
ebles for articulated and nonarticulated configurations. The usefulness
of simpler analytical methods is investigated by comparing results with
operating bounderies from the more elaborate analysis.

In the part of the investigation presénfed in this volume, analytical study
was made of the effects of high forward speed on the flutter character-
isties of helicopter rotor blades.

Linearized equations of motion were used to represent the dynamics of the
rotor blades. The aerodynamic forces were obtained by using a fixed

azimuth approach with fixed-wing two-dimensional compressible flow aero-
dynamic coezfficients.

Flutter speeds and flutter frequencies were calculated for two model heli-
copter blades for which experimental data were available. One blade had
been tested in hover at high tip Mach numbers; the other, at high advance

ratios with low tip Mach numbers. Agreement between theoretical and ex-
perimental data was qualitative.

A parametric study was made of the effect on flutter speed of varying
blede chordwise elastic axis and center-of-gravity position, torsional

and flatwise bending stiffness, and blade mass ratio and feathering mass
moment of inertia.

The extended Normal Mode Transient Analysis wes used to perform blade re-

sponse calculations corresponding to blade configurations and flight con-
ditions for which classical flutter was calculated.
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FOREWORD

The investigation presented in this volume is part of a more general study
of rotor blade seroelastic instebilities, vhich is contained in five
volumes. The work was performed under Contract DA 4h-177-AMC-332(T) with
the U. S. Army Aviation Materiel Leboratories, Fort Eustis, Virginia.

Mr. Joseph McGarvey monitored the program for USAAVLABS.

The rotor blade nlassical flutter analysis presented in this volume was
developed at Sikorsky Aircraft by Mr. Clifford J. Astill, who also con-
ducted the study of parameter variations and the comparison with available
test data. Mr. Charles F. Niebanck, also of Sikorsky Aircraft, conducted
calculations with the method presented in Volume I, and compared the re-
sults with corresponding flutter calculations, which were carried out with
the method presented in this volume.

Volume I of this report contains the development of the differential equa-
tions of motion of an elastic rotor blade with chordwise mass unbalance.

Volume TII describes & stall rlutter analysis based on the calculation of
serodynemic work for a cycle of blade torsional vibration. Two-dimensional
unsteady airfoil test data were used in the evaluation of the aerodynemic
work. The analysis was used to generate stall flutter boundaries.

Volume IV contains the results of a study of static torsional divergence.
A set of design charis and the effects of a range of parameter variations
are presented. The results of the static divergence calculation are com-
pared with results celculated by using the method developed in Volume 1.

Volume V presents the results of a study of flapping and coupled flap-lag
in3tability. The results of a parametric study based on a single-degree-
of-freedom flapping or flatwise bending analysis are presented. Compari-
sons are made with results from the more elaborate analysis developed in
Volume I. The analysis developed in Volume I was used to deterrine the
coupled flap-leg response of a rotor to a number of sudden control chenges.
The results of these calculations are also presented in Volume V.
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blade section, ft

coordinates of a point on the elastic axis in the
x,Y,2z coordinate system, ft

coordinates of a generic point in the x,y,z
coordinate system, ft

distance of the center-of-gravity aft of the
elastic axis, ft

distance of the balance weights shead of the 25% chord, ft

equivalent center-of-gravity location, defined on p. 85
and in Reference 14 , ft

distance of the center-of-gravity aft of the elastic
axis, ft
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distance of the center-of-gravity aft of the elastic
axis prior to a variation in mass balance or elastic
axis position, ft.

transformed aerodynemic demping matrix

transformed aerodynamic stiffness matrix

natural frequency variation coefficient

variation of the natural frequency of the ith
mode, rad/sec

vertical deflection of blade tip due to blade
flapping and bending

distance of the center of gravity above
the elastic axis, ft.

displacement of a generic point on the chord
line in direct flow, f%t.

amplitude of a sinusoidal variation in zg

displacement of a generic point on the chord
line in reverse {flow, ft.

amplitude of a sinusoidal variation in Zs

pitch displacement, rad

shaft angle of attack, deg

blade flapping angla, rad

blade coning angle, rad

bending slope in the X~y plane

bending slope in the y-z plane

distance of the elastic axis aft of the aerodynamic
center divided by the radius of gyration about the

pitch axis

plunging and pitching deflection column matr:ix
at the 25% chord

distance of aerodynamic center aft of the 25% chord
position prior to an arbitrary variation, ft

xxi
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3
5 Ar spanwise width of a blade segment
L\ 4, change in radial position of points off the elastic
1. axis due to edgewise bending slope, ft.
a A, change in radial position of points off the elastic
B axis due to flatwise bending slope, ft.
1 A3 change in radial position due to curvature of
. the elastic axis, ft.
1 [A] aerodynemic center varistion matrix
3
bi € distance of the blade mid-chord aft of the
5 axis at a blade section under consideration
-
{ n distance along the radius, nondimensionalized
El by reference length
3 " 771 innermost nondimensional radius at which aerodynamic
) forces are effective
: . Tp outermost nondimensional radius at which aerodynamic
forces are effective
4 6 phase angle between bending and torsion displacements,
deg
i Be blade local elastic twist, rad
ﬁ ae' no,ndimensiona.l rate of blade local .lastic twist,
e = d(Be) /7 d(r/R)
B¢, one-half peak-to-pesk value of 8
ep
(9(,‘.,,,,,)S collective pitch measured at 75% rotor radius, deg
(9{,‘0,‘)5 collective pitch measured at 80% rotor radius, deg
99:0 elastic twist at blade tip, deg
n advance ratio, p = V/QR
7" blade mass density ratio, Mwm = m/p77'b2
\ P density of the air at the desired altitude, slugs/ft3
1 P blade structural density, slugs/ft3
il Ps, density of the air at sea level, siugs/ft3
i xxii
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air density ratio Op =p/pg
nondimensional time

mode shape matrix used in calculating the
generalized inertia metrix, ft.

azimuthal angle of blade in rotor disc,
zero downwind, rad.

solution frequency, rad/sec

reference frequency, rad/sec

flutter frequency, rad/sec

solution frequency used when calculating Zé , rad/sec

ith mode natural frequency at a rotor speed Qk
rad/sec

ith flatwise bending natural frequency, rad/sec

ith torsional natural frequency,rad/sec

nonrotating rigid-body pitch frequency, rad/sec
nonrotating first flatwise bending frequency, rad/sec
rotor rotational speed, rad/sec

rotational speed at which the input modes are
determined, rad/sec

refers to a balance weight whose mass and
position are variable

refers to the center-of-gravity position
refers to the elastic axis position
refers to vertical translation

refers to the ith degree of freedom (mode or
generalized coordinate)

refers to the element in the ith row and jth
column of a matrix
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SUPERSCRIPTS

F

refers to the jth degree of freedom (mode or
generalized coordinate)

refers to the kth blade segment or the corresponding
blade station which is situated on that segment.

When applied to a structural parameter, it implies
that the quantity is the contribution for that segment,
instead of the contribution per unit span

refers to the leading edge

refers to the last of a number of degrees of
freedom considered

refers to a nominal value
refers to the outermost blade segment

refers to the r th degree of freedom (mode or
generalized coordinate)

refers to a reference value
refers to a rotation in pitch

refers to a mass property of the blade itself, exclusive
of & balance weight whose mass and position are variable

refers to an undeflected blade position
refers to the 25% chord station
refers to the 50% chord station

refers to the 75% chord station

refers to forward flow

refers to vertical translation

refers to reverse flow

refers to rotation about the 75% chord

refers to an aerodynamic center position prior to
an arbitrary variation

refery to an aerodynamic center position after an
arbitrary variation

xxiv
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refers to a metrix of blade inertial properties appro-
priate to either a local vlade station or a local blade
segment. Units of the matrix elements are then per unit
length or per segment respectively

refers to a matrix of generalized structural coefficients
appropriate to either a local blade station or a local
blade segment. Urits of the matrix elements are per
unit length or per segment respectively

DERIVATIVE NOTATION

f(1)
f(1)

MISCELLANEOUS

(7}
n
dn

first derivative of a function with respect to real

time, f(t) = df(t)/dt

second derivative of a function of time with respect
to real time, f(t) = d2f(t)/dt?

denotes the transpose of any matrix [P]

denotes that a function n is a vector

denoies a virtual change in any function n
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INTRODUCTION

In the past, classical flutter of helicopter rotor blades h.: not been a
serious problem because it has been customery to place the blade elastic
axis eand the center of gravity on or near the 25% chord point. This means
that the elastic axis, the axis of aerodynamic centers, and the center-of-
gravity axis are effectively coincideat, thus eliminating coupled bending-
torsion flutter and also single-degree-of-freedom flutter. Of course, the
axes ere never exactly coincident; but for small deviations from coinei-
dence, the application of suitable flutter criteris is sufficient to guard
against the possibility of the occurrence of classical flutter.

Placing the three axes in coincidence involves some penalty in weight and
increased complexity. To provide improved structural efficiency, con-
sideration is being given to moving the axes apart, such as occurs with
fixed wings. Once the axes are no longer in approximate coincidence, the
blade becomes very susceptible to classicel flutter and at the same time
not very amenable to a flutter clearance based on the application of
flutter criteria. Therefore, flutter calculations have to,be undertsken;
this requires the use of an aerodynamic theory. The vtlade tip Mach numbher
of some current helicopters approaches unity for ce2rtain flight conuitious
so that compressibility effects are very important. As yet, no genersl
unsteady aerodynamic theory exists for helicopter rotor blades operating
at high tip Mach numbers and high advence ratios. Therefore, when flutter
calculations are made for these flight conditions, some approximate aero-
dynamic theory has to be employed.

In addition to the tendency for modern helicopter rotor blades to operate
at high tip Mach numbers and high advance ratios, some current designs
call for the rotor to operate in unusual flight conditions. For example,
the stopped rotor compound helicopter requires that the rotur be stoppzd
at the transition speed, at which time the lift is trancferred to a pair
of fixed wings. During the last few revolutions before the rotor stops,
each blade as it passes through Y = 270° becomes effectively a fised
wing traveling in reverse flow at the helicopter transition speed, wi%t
the elastic axis at 75% chord. This immediately raises the possibility of
low-speed flutter. This term is applied to the single degree of freedom
classical torsional flutter that occurs when the still air nodal line of
a fundemental mode lies on or near the 75% chord point. With the nodal
line in this position, it is possible for flutter to occur at very low
airspeeds. In the past, this type of flutter was mainly of ecademic in-
terest and consequently theoretical and experimental studies ¢t this
phenomenon are noticeably absent from the literature. However, uith the
advent of stopped-rotor helicopters, low-speed flutter will have to be
given serious consideration. The methods developed in this study are
directly applicable for this condition.

Thus, for current and future helicopter rotor blades, classical flutter

calculations begin to acquire the same importance as they have in she past
for fixed wings. The present study is part of the current efforti that is
being made in this direction. The study is strongly oriented tcward pro-

b S e

[

-~



e e ML b s [

viding a method for rapidly obtaining estimates of rotating blade classical
flutter speed and the effect un the flutter speed of verying parameters
such as blade chordwise elastic axis position. Such a method is mandatory
for design use, where introduction of new blade concepts requires that the
classical flutter solutions be attempted with the best available method of
analysis. Consistent with the approach, the fixed azimuth method was
chosen in conjunction with the use of a digital computer to obtain solu-
tions to the equations of motion. This is in contrast to some recent
studies which have used an analogue computer to integrate the equations of
motion with time varying coefficients. The fixed azimuth approach is an
expedient way of converting the time varying coefficients to fixed coef-
ficients which are more convenient for digital computation. It is probably
the major assumption made in deriving the equations of motion. With a
rotating blade, the first two aerodynamic effects listed below result in
time varying coefficients in the equations of motion.

1. The dynamic pressure varying azimuthally for p >0 .

2. The indicial aerodynamic response due to the varying
of the velocity field azimuthally for u >0

3. There is 2 phase lag between the occurrence of maxiwmum
angl+« of incidence and the resulting development of maximum
"1iZv when the blade executes simple harmonic oscillations.
This phese lag is the result of indicial aercdynamic response
to the varying geometric angle of attack; for simple harmonic
ogcillations, it is integrated to give an in-phase and
quadrature response.

4., The aerodynamic forces are determined by multiple
nonplanar shed wakes.

The fixed azimuth approach considers a particular azimuth angle only. The
instantaneous velocity of the blade at this azimuth angle is considered to
apply for all time, that is, ~0O<t < @O ,» and the aerodynamic
forces are calculated in accordance with the assumption. Hence, only the
third effect is taken into account, the lag effects being derived from
fixed-wing theory. The neglect of the first two effects causes the coef-
ficients in the equations. of motion to be time invariant. The analogue
computer studies referred to above considered only the first effect, so
that steady-state aerodynamics were used. So while the coefficients in the
equations of motion were time varying, all but the first effect wes neg-
lected. 1In this respect it should be noted that when steady-state aero-
dynamic coefficients are used, it is not possible to predict single-degree-
of-freedom classical flutter which depends on unsteady aerodynemic lag
effects.

The fixed azimuth classical flutter study btegins with the derivation of the
equations of motion, end the presentation of the set of assumptions and
approximations upon which the equations are based. These equations of
motion are used to calculate the flutter speeds of sets of model rotor
blades for which experimencel ..sults are available for correlation. Then

2
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the method described in this volume is appliad to the investigation of the
change in flutter speed due to a change in varicus parameters. Finally,
the results of a number of calculations made with ihe more elaborate
Extended Normal Mode Transient Analysis described in Volume I are presented

and compared with the corresponding fixed azimuth classical flutter calcu-
lations.
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ASSUMPTIONS

The equations of motion are linearized by assuming that the
linear and angular displacements of a blade element are small.

Strip theory is used to compute the aerodynamic forces. This
implies that the pressure distribution on any chordwise strip
of & blade is the same as if that strip were part of a two-
dimensional blade which performed the same motion everywhere
as the strip under consideration. Thus, the interaction be-
tween strips is not accounted for.

The aerodynamic forcas are calculated using a fixed azimuth
approach. This method considers & particulaer azimuth angle
only. 'The instantaneous velocity of the blade at this azimuth
angle is considered to apply for all time, that is,-0<t <®©
The aerodynamic forces are calculated in accordance with this
assumption; as a result, the coefficients in the equations of
motion become time invariant. Also, the indicial aerodynamic

response associated with the changing velocity field is neg-
lected.

The asuumed two-dimensional oscillatory aerodynamic forces
acting on a strip are approximated by two-dimensionel fixed-wing
theory. This means that the following assumptions are made:

a. The steady angle of incidence is small and,
hence, well below the stall region.

b. Effects due to & nonplanar wake and inter-
action between shed wakes are neglected.

The contribution to the generalized stiffness of bending modes
due to radial flow is neglected. This means that the solutions
in the region of ¢ = 0° and 180° become increasingly less
accurate as advance ratio increases.
Zero steady state:

&a. Blade twist.

b. Blade pitch angle.

c. Blade lag angle.
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EQUATIONS OF MOTION

GENERAL DISCUSSIOR

The form in which the equations are cast for eigenvalue solution is in-
timately tied up with the notation used to represent the aerodynamic
forces. Measuring the blade displacements and the aerodynamic forces

at the 25% chord, then for simple harmonic motion, the 1ift L and moment

M acting on a blade segment of width Ar of a nonrotating blade in in-
compressible two dimensional flow, are given, as shown in Figure 1, by the
following equation:

L 1 L]|h 20k 1420k | | R
i 211b v b
ThSAT | M| T L 3. +{%)
b 2 8ila 0 | a
c/a c/4 1% ) cra
-
.| 0 e ||
+(%) o
O JL2]cn
(1)
where

C(k) = F(k) +iG(k) is the Theodorsen circulation function
k= wb/V 1is the reduced frequency parameter

A complex polar plot of C(k) is shown in Figure 2. The following
points should be noted:

1. The acceleration (inertia) coefficients are constant; thus,

the aercdynamic inertias are indistinguishable from structural
inertisas.

2. The velocity (damping) and displacement {stiffness) coefficients
are functions of the complex circulation function C(k). They
vary with reduced frequency k, but remain finite as k ranges
from zero (steady flow) to infinity (zero forward velocity).
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When these coefficients are incorporated into the flutter equations, it is
customary to modify them with the relations for simple harmonic motion;
nemely,

= iwq

0 O
1

i

€
N

Wal
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3
o
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where q is any displacement, such as a or h .

Two methods are widely used and result in different methods of presenting
the equations of motion. They are the "V-C method" and the "decay-rate
method" .

The V-0 method is used ir the United States. A discussion of this method
appears for example, on page 24l of Reference 1. The aerodynamic inertia,
damping and displacement coefficient matrices are combined to form r. single
aerodynamic complex stiffness matrix. The above equation (1) becomes

- -2i L d 2
L =200l - d[1s2cm)] - Zew)| &

L 3_ 1
e 8k @ | cra

(3)

Ty

The terms involving i =/~ were formerly damping coefficients. It
should be noted that

lim N L (1)

so that the aerodynamic coefficients become infinite for the case of steady
flow. This is due to the algebraic rearranging of the terms and does not
imply that the total aerodynamic forces become infinite. The coefficients
remain finite for the case of zero forward speea (k= ®) .
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With the serodynamic forces expressed in the above manner, the equations
of moticn can be put into the following form

{TA (I+|g) B4 }{q} {o} (5)

For a particuler value of the reduced frequency k, the coefficient matrix
[AU can be evaluated, and the eigenvalue yields the flutter frequency

w” aad the value of the structural demping coefficient g (assumed here
to be the same for each mode) required to keep the system oscillating with
simple harmonic motion. The forward speed V is found using w and the
value of k assumed when calculating the coefficient matrix [Au]

That is,

V= (l)wb = w(-%) (6)

The forward speed will be different for each mode. When the process is
repeated, assuming different values for k gives the familiar V-¢ plot, as

in Figure 3.

The decay-rate method is used in Great Britain. The complex aerodynamic
forces are rearranged into real coefficient matrices, with the relations
for simple harmonic motion being used, so that the equations become, with
forces and displacements referred to the leading edge,

y -L T W bb- ” 2rF  w[1+3F+8E] | |R
——————— = .*. .
Pp3Ar -hg- m 2 b F v[% + -%-F +-E—] a

-2mkG  w[2F-3ke] | | &
- kG %’[2F—3RG]. 2]

(7)
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again it should be noted that

kl-a.rg 'G_;((k—) =~ (8)

Some of the coefficients become infinite for both steady flow (k=Q)
and zero forward speed (k=) .

With the aerodynamic coefficients expressed in the above manner, the
equations of motion can be put into the following form:

[A]T{d} + (V[B]AERO+ [BR] ){q} + (VZ[C]AER0+[E]){q} - {O} (9)

V and V2 give the effect of dynamic pressure so that the variation of the
aerodynemic matrices [B]AERO and [C] AERO with k is due only to the
unsteadiness of the flow. This is in contrast to the V-g method where the
veriation of the complex matrix [A,] with k includes the effect of dynamic
pressure. This occurs because the dynamic pressure is expressed in terms
of the reduced frequency k according to

%

1V = w2(1p) (10)

In the V-g method, the w?  is divided out and appears only in the com-
plex eigenvalue

(%’3)2(|+ig) (11)

In the decay-rate method, the equations are solved by assuming a value for
k which allows all the matrices to be computed. That is, the degree of
unsteadiness of the flow at the flutter condition is assumed in advance.
Then for & particular forward speed V, the total damping matrix V[B]AERO

+ [BR] and the total stiffness matrix VZ [C]AERO + f{i‘.] are formed, and
the eigenvalue solution is obtained. This process is repeated for a number
of values for V and V2 but using always the same matrices [B]ueqo &nd

[C] AERO and, hence,the same assumed value for k. This gives a plot of tihe
exponential decay rate C/C¢ for each of the modes, as in Figure 4. The
decay rate is nondimensionalized with respect to the critical damping

rate in ‘the usual manner.
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When using the decay-rete method, the convention of plotting C/Cc¢ with the
stable region asbove the abscissu is usually followed. Il is of interest
to examine the relationship between the two methods. The two methods will
yield the same flutter speed and frequency. However, the variation of g
versus V will be different from the variation of C/C; versus V even
though they cross the abscissa at the same point. Sometimes an attempt is

made to convert C/Cc to ¢ using the relation
= ofL.
9= ) (12)

This is actually a contraction of the equation

9 = 2 (%)) (13)

which is exact for a single-degree-of-freedom system. However, the above
conversion has no justification for multi-degree-of-freedom systems.

The question arose as to which of the above methods to use in the present
study. The velocity distribution across the blade varies with forward
speed for a constant rotor speed. If the helicopter forward velocity Vk
is used in place of V, the above methods may be applied to the rotating
blade ir the same way that they are applied to calculating fixed-wing
flutter speeds. However, the aerodynamic matrices are now a function of
the advance ratio g, which has to be known in advzuce in order to be able

to calculate the matrices.

If the V-C method is used, it is necessary to assume a value for

= Vy/QR ; and corresponding to the value of k = wb/Vy chosen, the
flutter solution gives a value of Vy for each mode. The corresponding
value of rotor speed is found from the equation

_ Vv
Q= 4R (2k)

Thus, the rotor speed §) will be different for each mode. 1In obtaining a
Vy~g plot, it is required =2ither that the rotor speed be constant or that

it vary in some prescribed manner with Vy . In either case, it is most
unlikely that §)} for the mode of interest, calculated using the above
relationship, will follow the required veriation. As it is necessary to
have {} very close to its correct value, an iteration procedure is re-

quired.

When applying the decay-rate method, the forward velocity is stated; with

£  known, then /4 i’ known in advance. Only k has to be assumed, so that

the method of solution is basically the same for both fixed wings and ro-

tating blades. wecause the solutions are obtained for specified values ¢f

V and k, then from the relation
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this, in effect, means that the solution frequency w has been assamed in
order to obtain a solution. It must be clearly understood that this im-
plies only that the degree of unsteadiness of the flow is assumed in ad-
<ance, For flutter not .nvolving aerodynamic control surfaces, as is the
case with the present study, fixed-wing flutter solutions indicate that
the solution frequency and decay rate is relatively insensitive to the
assumed degree of unsteadiness of the flow. Hence, a reasonable guess at
the flutter frequency gives solutions sufficiently accurate for most
flutter investigaiions, especially when the approximate location only of
stability boundaries is required, and this comprises by far the major part
of most flutter investigations. Should a very accurate velue of flutter
speed be reguired, or, alternatively, if the assumed flutter frequency
turns out to be very inaccurate, then one iteration using the calculated
flutter frequency is all that is needed to obtain satisfactory correspondence
between the calculated and the assumed flutter frequency.

It was decided that the decay-rate method of solution was more direct than
the V-g methed for analyzing rotor blade flutter, and so this method was
adopted. One modification to the decay-rate method is necessary when it
is applied to rotating blades, and that is to recalculate the aerodynamic
matrices for each forward velocity, as they are now a function of advance
ratio.

Having chosen to use the decay-rate method, it was then necessary to choose
a definition of the aerodynemic coefficients. Various notations are used
in presenting the serodynamic forces, but none of these is entirely suit-
able for the prrsent study. Some take the factor 7 outside the equation
so that the stea y-flow rate of change of 1lift coefficient with angle of
attack becomes equal to 2. Others take out the factor 2 so that CLg =7

at kX = 0. TFor convenience, it was decided to take out a ‘actor of 2w s
giving CLy = 1.0 at k = 0 so that this term then becomes a measure of the
aerodynamic efficiency. The aerodynamic coefficients are defined as
follows again with reference to Figure 1:

1. o [ I 7
-1 -L =(V Zﬁ la hl+ \'4 Zh [a h
m ('b_) b (b) b
M ~my -m. : -m -m
. b _Jcsa N h R _Q_C/«; L h a_ _aJcM
(16)
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Here, the aerodynamic acceleration (inertia) terms have been combined with
the displacement of coefficients with the following relation being used:

2
Dgd = —w?Dyq = (%) [k?04] q (17)

Although for incompressible flow any acceleration coefficient Dy is a
constant, the equivalent displacement coefficient kal)a varies with k
and becomes infinite for zeio forward speed (k=0) . When the decay-rate
method is used, it is desirable that the variation of the coefficient with
cnange in k be a minimum in order to keep the calculated flutter speed
relatively insensitive to the value of k assumed in obtaining the solution.
Hence, it would be desirable to keep the acLceleration coefficients separate,
but the following two factors weighed against this:

1. 1In compressible flow, the acceleration coefficients become
complex functions of the reduced frequency k.

2. Most tables of compressible coefficiei:ts have already lumped
the acceleration coefficients in with the displacement
coefficients.

For incompressible flow, the above coefficients have the following form:

4y = Flk) (18)
lg = % +Fk) + 8K (29)
Ih= -k(GKk) + &) (20)
la= F(K) - k(G(K)+ &) (21)
-mp =0 (22)
“Mg*= % (23)
2
~Mp = ‘% (2h)
-mgq = -2k (25)
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It should be noted that

i o
s la = - (26)
and that
lim = -
v M (27)
im {q = —-®
k—"-noo a (28)
(Jim -mp) = - (29)
Jm{-ma) = = @ (30)

KINETIC ENERGY

Consider a set of axes (X ,Y , Z) fixed in the helicopter with the Z
axis coinciding with the rotor shaft axis and the X axis pointing aft,
as shown in Figure 5. Then consider another set of axes (X, Y , Z ) ro-
tating with the Y axis coincident with the blade under consideration. The
blade is assumed to have zero twist, zero steady pitch angle with the tip
path plane lying in the XY plene.

The coordinates of any point (X,y) on the blade are given by

[i] ) [cos;m —smﬂt][x]
y " LsinQt cosQt] Ly (31)

The kinetic energy T of the blade is given by

12




where dm is an elementary mass point at (%,y,z) on the blade.

. . . 2
T = %—f[xa+y2+za+ 20 (xy -yx) + Q(x2+y2)] dm (33)

BLADE

Generalized coordinates qq . Qp may be used to describe the displace-
ment of the blade relative to the rotating axes. That is,

X = x(q”--_!qn) (3h)

y {@ .---,q,) (35)
(36)

y

N
n

z (QIv-——sqn)

If the above terms are expanded in terms of a set of Maclaurin's series,
the following resuli is obtained.

_ % &
X=X *2(65-)0% + %ZZ(aqigqj)qaql' oo (37)
2
q +%ZZ(‘£‘)@"Q‘]‘)Q;QI oo (38)

LSS ( 8%z )
.+ . Q. e
Qi 2 Z l 5%5% q; q1 + (39)

vhere xo ,yo and 2o are the values of x , y and z when each a3
is equal to zero. The derivatives are also evaluated when q; equals zero.

Substituting into the expression for the kinetic energy and neglecting
higher order terms gives

T/ {TT a0 () (80 B (32 (3]
vea T % ad [ (8)(8), - (3).(30), ]
w3 Taa[)(3) « (EUE x (i) w55
228 Talul@l @l len o
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‘s This is
%i T = -'EZI;GMijdld] + Q Zin:Gi] qq + 22 Z;Tllquql
|
{ 0 ) quf ["o(%)o % (%)o]d’“
g] ' eLaoe
1 (k1)
,: vwhere )
e (L @ @WE.
: BLADE
| o = [ | (B3, - (@), (85).] em (13
) BLADE
=] @G BB+ lehisg), okl o
(L)
Note that GM” =GMji (45)
Gij = —Gj; (46)
Tij = Ty (87)

POTENTIAL ENERGY

The potential energy arises from the elastic deflection of the blade and
control system and from +iie motion of the blade in a gravitational field.
It is a function of the generalized coordinates q; and is shown as follows:

U = U(Q.|’ —-—1qn) (h8)
If Maclaurin's expansion is used, Eq. (48) may be expanded to give
2
= + -Q.l:'-) + I (._Q_L.J_..) . qa.
U= z,: (aqi W T2 ;; aq; aqj/o % 9 (49)
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where

Uo= U(0,---,0) (50)

U YN -=--.0
<aq‘>o aqi(o, ,0) (51)

and where higher order terms have been neglected. The gravitational
torces have a negligible influence on the perturbation daflections ql, and
so it is asgumed that the generalized spring forces

Rij = (ag?auqi )o (52)

do not depend on gravitational forces.

Hence,
Uu= U, + Z (_6_(;J_) i +éz,lz i Qi 9; (53)

LAGRANGEIS EQUATION OF MOTION

The equations of motion in the form of Legrange's Equation will be used
vhich, for the rth generalized coordinate q,, may be written

4 (4L) - &4 4L . e e-
dt aqr qr qr Qr ! N (54)

vhere Q; accounts for all forces not included in T and U. It may be
separated into an initial steady component (Qr)o and a perturbation
component AQy . Substituting the expressions for T and U into the above
equetion gives

% o g,

j J J

@), - ) ) Lo

- . = 2
+ 'Q'(Gjr Grj) q; + (Krj - & Tr]-) qj ]

(Qr)o + AQ,

(55)
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The steady generalized force (Qr), must be in equilibrium with the
initial elastic, gravitational, and centrifugal forces; that is,

u) g [ (22) 4 yo(2L ]
(GQro Qf Yo aqr o'*'Yo GQr)o dm = (Qr)° (56)
BLADE
Hence, the equation of motion reduces to
G o LA -— _ 2 _
(57)
The 'general'ized force AQr is due to

1. Aerodynamic forces acting on the blade
2. Mecheanical damping forces

They can be determined from the work done by these forces in a virtual
displacemnent using the relationship

- oW
AQr = 5ov (58)

The general form of the equations of motion having been obtained, & set of
generalized coordinates can be chosen and the general expressions can be
evaluated.
A new set of axis ( X, ,Y, ,Z, ) are introduced, which are fixed in the
blade as shown in Figure 6. The origin 0; coincides with the blade elastic
axis at the section under consideration. With each Qy equal to zero,
Ole coincides with OX
OlZl is parallel 0%
hy is the flatwise displacement of the elastic axis
hy is the edgewise displacement of the elastic axis

a i3 the blade pitch displacement

€ is the distance of the blade mid-chord aft of the
exis at the section under consideration

16




ogab  is the distance of the elastic axic aft of the mid-chord

Consider a generic point P(x,,y, , 2, ) of the blade. Then the x and
2z coordinates of P referred to the XZ axes are given by

Xp = € +agpb +hy + x,cosa + z;sina (59)
Zp = hz = x;sina + z,cosa (60)
For small angles,
~ az
cosa = |- = (61)
2
Then,
2
xp = (e +agb+x)+hy +z,0 - x,—%— (63)
2
Zp =z,+hz-x,a—z,%— (6L)

where third order terms in the deflection hy ,hy ,h; and @ have been
neglected. Finding an expression for Yyp will be accomplished in three
steps. The first of these is depicted in Figure T.

For this derivation, the effect of having (e *'GsAb) variable is neg-
lected, so that the undeflected elastic axis is taken as being parallel
to the OY axis

- dhx _ Al
Substituting for Xxp and  Xga and neglecting third order terms in the
modal deflections gives
- dhx

The second of the three steps is shown in Figure 8, where

- dhz _ _A2
fanys = dy ° Zp-zea (67)




Substituting for zp and Zg, and neglecting third-order terms in
the model deflections gives

A, = [z, - x,a] (—g—gz‘—) (68)

The third step considers apparert blade shoriening, A3
Let s ©be the arc length measured along the elastic axis

Then

- dx\2. (dz\2
ds = dy, |+(—d—;—) +(W) (69)

With expansion by the bt aomial theorem and with higher order terms being
neglected, the total blade shortening at station y is given by

- [7 (as-y)
A3 = A ds’dy (70)
Yyl 2 2
= L dx dz
Bs = 2,/; .(dy) ! (dy) ] dy (71)
yT 2 27
_ .an) (Lhz)
A3 'T'a'jo‘ L(dy + dy de (72)
Hence, the y coordinate of P referred to the XYZ axes is given by
Yo = 1= (8+82+03) (73)
) [x,+ M_[_]Q_hz_ly_qma dhz Y’
Yo T F % 2la] dy 217 XA\ gy Z Jo (dy) +(dy) dy
(7%)
That is, the coordinates of P referred to XYZ axes are given by
2
Xp = (€+OEAb+X|)+hz+Z|Q"X|'q2" (75)
dh dhz L (Y] (dng VP 2
o= v = [vr 2a] () = [a-na) (98) - 4[| (60f 2 [ oy
(76)
02
ZP - Z| + hz - X.CI - Z,‘é‘ (77)
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The displacements of the point P can nov be expressed as being due to

two generalized coordinates gq, and d,

This will give the form

of the coupling terms between the two generalized coordinates and will
allow the final equations of motion to be generalized by inspection to in-
clude any number of generalized coordinates.

Put

hX (y’i)

hz (y,1)

where q;(y)

a(y,t)

S

y)

gy ) + g3y q,t) (78)

gZ(y) q,(t) + g (y) afh) (79)

Fiy) qt) + Fa(y) qft) (80)
and  Fy(y) are respectively the edge-

wise, flatwise, and torsional mode shapes of the ith generalized coordin-
ate. Bubstituting into the expressions for xp , yp and zp and
neglecting third and higher order products of the generalized zoordinates

gives

Xp

(e+ogd+x) + (g} +2,F)q, + (g; +2,F,)q,

22 22
- $xF4 - xFRqq, - 3 x5q; (81)

) "‘:Fz(%%%‘) + '%‘,/;y {(%gyi)z‘”(%%i)z }dy] a; (82)
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Zp = Z, _(gf_xlFl) q t (gz-xle) q,

_ A 2 2 2
32, Fq, ‘Z|F|F2q|Qz"'2LZ|FzQz2 (83)
Differentiating the above expressions with respect to q, and q, and
evaluating the terms at q, = g, = 0 gives the following results:
(xplg = € +agab* X (8k4)
M) . ¥
(ach)o 9, * 2y (85)
ax X
(§2), = oi+ure (86)
(__a_z_xn) = - Fa
dq? /o th (87)
(_5'22_) = -x FF
3, 0y . 1 T2 (88)
o%x 2
= =xF
(5a2), = -nF (89)
(yP)o = r {90)
X 4
(), - [5(28) + ()]
09, /o tMdy N dy (91)
yp dg; %
3 S oIM\gy )t a\ey
Q2 /0 y y (92)
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] dV} (9%)

(95)
(%), = & {96)
(—%E%)o =9 xR (97)
(%%%)o = 927 xR (98)
(g_zqup)o= -af (99)
2
(_5%,'%2); pELE (100)
2
6qu§)o = -uf (101)

Thgse derivatives are now substituted into the generalized coefficients

Mii » Gjj > and Tj . Before this is done, it is convenient to
define the foliowing mass terms:

m = fbe dx, dz, (102)
mx = ffpbx‘dx‘dz‘ (163)
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mXg = mX + m(eg+ agpb) (10bL)
mz = f Py dx,dz, (105)
Iy ° ffpb 22 dx, dz, (106)
Iy, - f.Pbxlzldxldzl (107)
I;; = fbexzd"' dz, (108)

=l
"

yy ffpb (Z|2+ X|2)dX| dz, (109)

= Iyt Iy

where Py = blade structural density and the integration .L[ is over
the blade cross section .

The following relation will slso be used:

j;Rf(anzu ,ridm = j':[ff(x.,z, ,r),ab dx, dz, dr (110)
./c-)Rf(X|,Z| ,rldm = jc')R [ffpb f(x,,2, , 1)dx, d2.]dr (111)

where is now used instead of Y to refer tc the blade spanwise
coordinate.

GENERALIZED INERTIAS

Since thg generalized inert.a is being developed with respect to q, and
Q, , =l and j= 2 in this case.




GMU My /el[(%xg%%)o * (%%;L)o (‘:‘ )o * (%:J-;)o(%?;)o ] ém (122)

WA (G R G L RO AL

Z 2 d 4 4 x 4 X t 4

() (380) 1+ [ (520)(300) + (S5 ] 1

x x .

3 + (%'?-J)(%OF") I + F.F.I,,}dr (113)
\ dgl “l dF r - -x —1

g . x 0 0 =-mf O é

f [Uf Ul e A ] 5 % o o m ollul"
o o I, I o o0&
g 0 0 Iy Ip O 0 {[§(o})
¥ .t m 0 o0 I, o

! o o o o o o]i&r

2 L 11 (11%)
"

b

; GENERALIZED GYROSCOPIC INERTIAS

The subscripts of Gjj are agein i=| and j=2 , as for the M,

mass property developed above in Eq. (112) through (11k).

oy -oe [ (G 62), - (), () em (115)
o [ (o (G0) -ar (8] - [ar(858) -1 (51 ] e
+[(8) 6 -G 6] 1o+ () 6 -39 R 1} @ (116)
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0 = Ixx “lg Y &F
o o o o o ofjF (117)

x - M 2
Giz F[v. g B, df] o o o o o ofle]e
0 0 -mr -mX O o}l o
o m o © e Of[f(}
x X
, o} mR 0 0 I, Ollf @)
) )
o 0

GENERALIZED CENTRIFUGAL STIFFNESS COEFFICIENTS

The subscripts of Tjj are i=i and =2

, as for the OM; and
Gy2

mass properties developed above in Eq. (112) through (117).

I

Tij= Tip = ./; [(ai;%) (g;:) + ('?ﬂ%) (%Y_p_) * (xo) (52%%2')0 * (y")o( :.zygz )0] dm (118)

TR

n 5

Tij=Te j;R<9:( gz m "‘[{(%g,i')f’ +(%g;;)F]( (e +agab)F, F]
‘ +[(9;‘Fz+9’z‘ﬁ)-{(%%'x')% +(d—f§) F-}f ]mi +{(dg )(ya%xl FF}Izz
P {(S0)02) o ()0} 1, + {(S)E82) + ) 1

] -ne [{@EE @@} ad e e

. d x dQX)
1 It will be seen that the mode shapes (-39,'—) and (7,72-
3 occur inside an integral with variable upper limit. This complicates
numerical calculations, and so the mode shapes are Lrought outside the

integral by changing the order of integration as follows:

L.RB(V)[ _[4; (u)du ] dv. = ’[%(u)[ '/:RB(v)dv] du

-
aSedimgliin g

(120)
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so that
R dg) )(dg dgz)(dgz)
} — 2L
.L‘m(”r[f{(du du )+(du du }du]dr
u /\du
R
uﬂé=/mrdr
r
Hence,

R z
- X x dg,)
T2 .4. [é.gzrn +-{(7§— F,

dr

dgz) i}
+(—2- F} rmg - (‘+°EAb)F| FZ mx

Hatrain) ma-{ (52 6+ ($8)e} rme +{(S0E8E) ) 1,

H{(8)(4). (
- {(5) (&)

R 4 X r
Tnz=j;[q,zgfd? %’}'F,df] 0 0 0
0 m 0
Y Y Lttt
0 Y La
0 m2 rmx
o o o
25

dgz dgl } { dg. dgz
L * 7}) +h Fz} Lix

dgz dg,) }:/ﬂ'b] dr

0 0 o-
(o) mz 0
Iz rmx 0
Ly~ Mb  -rmz 0
-rmz [I,, ) +°sAb)mi] 0
(0] 0 OJ

(121)

(122)

(123)

q: dr
qz

(92)
(gz)

(Fz) J

(12L)
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ARTICULATED RIGID BLADE NATURAL FREQUENCIES

Before proceeding any further, it is of interest to obtain the frequencies
of the rigid body flapring, lagging, end pitching modes due to the centri-
fugal force field. The equation of motion for a single degree of freedom

q, is given by

. 2
Myg, - Tyq, =0 (125)
and for simple hermonic motion al = -(Uqu so that
—
w =Ty
Q2 My (126)

where

R 2 dg? -
T, * j; [(g’:) m+2(-d—grL) FrmX - (e +oEAb)F',2mx

+2¢"F, mI - 2(—"(,‘*’—x) F, rm2 +{(d—3:1(-)2 - Ff} I,

r
1 [C AR (GRS DR D W
R
Mo = [mear (128)

(2]
=
]

= _/O‘R [{(g’,‘)z-r(gf)z} m - 2¢F, mX + 2q,F, m2

() 1 () (581 1 () iy o

(129)
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Rigid Blade Flapping Frequency

For a flapping mode

z . <
g, ° 0 0 <
z _ r-e
g, * R-e e <
z
%‘- : 0 0 <
.dif_ = __l—- e <
dr R-e -
dg’

X .

9, * dr ° Fo= 0

where the flapping hinge is at r = e. 1In addition, Ixx =

Then,
—ﬂ,=(;t?[%-+e%
GM,, = (R_Ie)2 I,
-f%- = I+ e%%%

where

R 2
IB =_/; m(r-e) dr

R
Sg =_/; m(r-e) dr
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(130)

(131)

{132)

(133)

(13k4)

(135)

(136)

(137)

(138)

(139)
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Rigid Blade Lagging Frequency

For a lagging mode,

g = 0
¢ = e
X
'?T' = 0
dof . 1
dr R-e
dg?

gf= drl=F'

where the lagging hinge is at r=e
Then,

In addition, I,, = O.

-Tll (R?e)Z Se
6 I
My =
1] (R-e)
w . [ 38
Q Ig
where
R 2
Ig = ./; m(r-e) dr
R
Sg -fm(r—e)dr
e

(1hy)

(1h1)

(1k2)

(143)

(1L4)

(145)

(1h47)

(1L8)

{(1L49)
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Rigid Blade Pitching Frequency

For a pitch mode F, = |
glz—-—=g'=——-=0 (150)

In addition, it is assumed either that the center of gravity is coincident
with the elastic axis (i.e., %20 ) or that the elastic axis is coinci-

dent with the OY axis, (i.e., € + aggb=0). Then,

"‘T” = IZZ - Ixx (151)
M, = (152)
._("L -
Q
(153)
where
J[R
Ixx = A Tyxdr (15k)
I RI
s dr
2z o % (155)
for a plane lemina, Ixx is zero, therefore w/Q =1,

DISSIPATION FUNCTION

In order to avoid the use of complex coefficients in the equations of
motion, energy dissipation is assumed to occur due to viscous structural
demping, which is the usual assumption made when using the decay-rate
method. For the small amount of structural damping present in metal blades
(@ = 0.03 approximately) it makes little difference if into the equations
of motion one puts hysteretic structural damping with ¢ = 0.03 or viscous
siructural damping with C/C¢ = 0.015. Hence, the generalized structural
damping force acting in the rth generalized coordinated can be represented

in the form

8Q, = -Dgrrgr (156)
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It is convenient to obtain Ogrr from the single-degree-of-freedom
relation

Dgrr = Qra/ “Mrr ws SMrr = gr wr *Myy (157)

where 6M,, = generalized inertia of the mode used as the rth
generalized coordinate
wr = natural frequency of the rth mode
gr = structural damping coefficient of the rth mode

ELASTIC STIFFNEES

The elastic energy due to smell bending and torsional deflections of a
blade can be expressed as

T *j: [EI;(%".‘)! +EL, (%;'?‘)' + GJ (—:,’7"-)2 + Ks (%%)!_/:Rﬂtmr dr] or (158)

Note that the units of EIx , EI; , and GJ must be consistent with
those of the deflections. The last term on the righ:c arises from the
initial tension stresses in the blade. k, is the polar radius of
gyraetion of the tensile cross section. The generalized elastic stiffness
can be expressed as a part independent of the rotational speed and
a part dependent on £ . These are, respectively,

2 R 2 2 2, \2
- 1 d°h; /d°h da 2]
K'i aqiaqj{Z‘/(; [Elz( er) t Ely drg) t GJ (dr ) 1 dr (159)
2 _ Qz L R 2 ia_afR 2 ] }
Q Ly = 35,09, {[zj;KA(dr) i Qmrdr| dc (160)
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A generalized elastic tension stiffness coefficient L, is determined
from the potential energy Eq. (162) by expressing the torsional deflections
in the modal form of Eq. (8q) and then differentisting as indicated in

Eq. (160].
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TOTAL STRUCTURAL STIFFNESS .

It will be assumed that the generalized modal inertia and natural fre-
quency of each of the modes ore known for the blade rotating in a vacuum
at a particular rotor speed §g . Then the integration implied in
Eq. (159) for the formulation of the kﬁ elements can be avoided.

In general, the mode shapes used as generalized coordinates will be con-
sidered to be scmirigid, a term used in fixed-wing flutter to mean that

the same mode shapes are used for all forward speeds. Irrespective of
vhether the generalized coordinates are arbitrary modes or orthogonal

modes at zero forward speed, they will be arbitrary modes to some extent

for non-zero forward speeds. However, if a sufficient number of generalized
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coordinates are used in the solution, then for any forward speed these
arbitrary modes will give the correct coupled mode shapes. The question
is: Just whaet comprises a sufficient number? Fortunately, the effect of
forward speed on the mode shapes is small, so that quite often two gener-
alized coordinates are capable of giving a good approximation to the
flutter speed. In addition to the effect of forward velocity, it is
necessary 8lso to consider variations in the mode shapes due to changes in
any other parameter which affects the mode shapes. Here the assumption

of semirigidity is not always so satisfactory, as it may require the use
of an excessive number of generalized coordinates. In such cases, it is
better to use a reduced number of modes and to assume the modes to be semi-
rigid over only a liuited range of variation of the parameter and to use
new mode shapes for the generalized coordinates as necessary.

The concept of semirigidity can be applied also to rotating blade flutter
where rotor speed enters as one of che parameters sffecting mode shapes.
In this case, it is desirable to be able to assume semirigidity with re-
spect to both forward speed and rotor speed. This is facilitated if each
mode involves displacements in 1 degree of freedom only; that is, if each
mode is & pure mode. It has been found in practice that modes involving
only pure flatwise bending, or pure edgewise bending,or pure torsion have

shapes which vary little over a wide rauge of forward velocity and rotor
speed.

Considering the mode shapes tc be semirigid, the totel structural stiffness
acting in a generalized coordinate is composed of an elastic stiffness
which is constant and an elastic tension stiffness and centrifugal stiffness
which are both proportional to Q? . Suppose that the modes are calcu-
lated for rotational velocity g . Let wg be the natural frequency
of the ith mode and Mjj the corresponding generalized inertia. Then the
generalized total structural stiffness at the angular velocity R is
given by

[Cs], = [GMiiwsi] = [k]+ a}[L] - Q&[] (165)

where

is a diagonal matrix of generalized masses multiplied
[ GM wa ] by the corresponding natural fr:quencies squared,
it =Ry appropriate to the rotational cpeed Qg .

is the generalized elastic bending and torsion
stiffness matrix

Sf;[L] is the generalized elastic tension stiffness matrix

is the generalized centrifugal stiffness matrix
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coordinates are used in the solution, then for any forward speed these
arbitrary modes will give the correct coupled mode shapes. The question
is: Just what comprises a sufficient number? Fortunately, the effect of
forward speed on the mode shapes is small, so that quite often two gener-
alized coordinates are capable of giving a good approximetion to the
flutter speed. 1In addition to the effect of forward velocity, it is
necessary also to consider variations in the mode shapes due to changes in
any other parameter which affects the mode shepes. Here the assumption

of semirigidity is not always so satisfactory, as it may require the use
of an excessive number of generalized coordinates. In such cases, it is
better to use a reduced number of medes and to assume the modes to be semi-
rigid over only a liuited range of variation of the parameter and to use
new mode shapes for the generalized coordinstes as necessary.

The concept of semirigidity can be applied also to rotating blade flutter
vhere rotor speed enters as one of che parameters affecting mode shapes.
In this case, it is desirable to be able to assume semirigidity with re-
spect to both forward speed and rotor speed. This is facilitated if each
mode involves displacements in 1 degree of freedom only; that is, if each
mode is a pure mode. It has been fournd in practice that modes involving
only pure flatwise bending, or pure edgewise bending,or pure torsion have
shapes which very little over a wide rauage of forward velocity and rotor
speed.

Considering the mode shaepes tc be semirigid, the totel structural stiffness
acting in a generalized coordinate is composed of an elastic stiffness
which is constant and an elastic tension stiffness and centrifugal stiffness

which are both proportional to Q2 . Suppose that the modes are calcu-
lated for rotational velocity QR . Let wpg be the natural frequency
of the ith mode and M;jj the corresponding generalized inertia. Then the

generalized total structural stiffness at the angular velocity &g is
given by

[Cs],= [ GMﬁw;i] = [k]+ Q&[L] - @&[ 7] (165)

where
is a diasgonal matrix of generalized masses multiplied
[ GM wa ] by the corresponding natural frcojuencies squared,
it R appropriate to the rotational cpeed Qg .

is the generalized elastic bending and torsion
stiffness matrix

Qﬁ{[_] is the generalized elastic tension stiffness matrix

is the generalized centrifugal stiffness matrix
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AERODYNAMIC GENERALIZED FQRCES

The velocity of the airstream relative to the axis X, Y, Z fixed in the
helicopter is specified by the two components, as shown in Figure 9.

vy, is the velocity in the direction of the X axis
WMo 1is the velocity in the direction of the (-2Z) axis

The velocity of the airflow relative to the blade is given in terms of the
tried of unit vectors €, ep, E% fixed in the blade, where

»

liesd along the blade radial axis

2ol

is in the plane of the shaft axis 0Z anu the
rotating -axis OX

g, completes the right-handed triad

Then, with rieference to Figure 9, the velocity of the airstream relative to
the blade is ziven by

Vo= (vy cong cosy - Vo SInfg) € - [vH siny + .Q.(e+?cosBs)]é’2

-—

- [ Vi SinBg cosy + vp COSBS] €3 (170)

The air velocity component in the e; direction represents radial flow along
the blades; for the aerodynamic model being considered, it does not produce
any aerodynamic force. Hence, it is neglected. The megnitude of the air
velocity normel to the blade is therefore given by

v "u\/I vy sinyg +.0(e +\F cos;:«}s)]2 + [VH sinBgcosy + chosBs]z (171)

The coning angle Sg is included in the derivation of the aerodynamic
coefficients. After these coefficients had been programmed, it was realized
that the inclusion of the coning angle Bg  would complicate unnecesgarily
the derivation. of the structural coefficients, and so it was deleted.

Hence, there /is the inconsistency in that the coning angle is included in
the aerodyngmic coefficients but not in the structural. This inconsistency

"is removed %y always specifying Bg =0 .

With Reference to Figure 10, the virtusl work done by the lift L and the
moment Mcs acting on an airfoil section of width d, due to a
virtuel displacement is given by

8W = -L3h + M/, Sa (172)
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vhere Q and Qg are the generalized aerodynamic forces due to
. vertical displacement and pitch respectively.

Hence,

o] 5

The aerodynamic coefficients we.e previously defined by the equation

-L = -2mpb’dr {(
Mesa
b

where

—A— — —
(o /] o o-

e — —
] m "

Also, by definition,

where

5) (0] {8} + (¥

L"mh -m

[
L2 c/4

EA bnzj: fj(f)qj (1)

ZF}\)q(t)
J

bg f;(r) = “giz(r)
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QhSG%)+-Qa8a

[ [01(3}}

(173)

(174)

(175)

{176)

(177)

(178)

(179)

(180)

(181)

(182)

e
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Therefore,

‘That is

fi- - faofla
Foo " Full .

Gno (183)

at the 25% chord end at the elastic axis are related ty

{8} - [% -

where

“-! c/4

(V3

(18k)

(185)

(187)
(188)
- (% +e)
. (189)
o
b
br | (190)
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Gl = [ 6 o T
b R FND] (291}
{Q} =T a 7

| o | (192)

Similarly,

foa} - [ ()M (o] { o2} o

G CIRRIEY
L a (19h)
Combining equations (175), (176), (188), and® {194) gives
2 ) |
{ae} = -zm{%) v"er[a] [ec][H] |(¥) [B]Mladled{e}
+(§) o] [H][edoul{a}
(195)
When the following substitutions are introduced
T 7’2.'_ (196)
ar = Ldn (197)
/ Ir.
(%] = o 3x (o e [H] [6} [l [ac] (o] (398)

[ = ofoulfec] (4] [o] [#] [ad [ou] (199)
[B]AERO ® ,[7:706\}/;) [x,] d7 (200)
[C]AERO ) _/,; 7:(}('\7%)2["2] dn (201)

and when integrated to find the generalized force due to the whole blaae,
the equations become

o} = -zm i {GIE @ELF) o
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PROVISION FOR MASS BLLANCE

Mass balance, which is distributed radially along the blade, is considered
separately irom the mass of the basic blade structure. When this is done,
the following expressions for the structural coefficients are cbtained in

[e] Elyr P, } @] er (203)

matrix notation:

[°w]

| oot |
(]

[ I
1]
~—
©
[ A

~—
—
S,
h:s
+
—te
>
Qo
—
@
[ |

. [@]er (201)

—
-
——
n

-/:[(bll{s["h +t"8[L]b} [‘I’T dr (205)
.{,‘ R[‘I’],{S[TL + tn-a[T]b} (@] ar (206)

where: subscript ¢ refers to the basic blade structure, subscript b refers
t0 thé mass balance weight, and t; is a nondimensional parameter to vary

—
-

[ S )
"

the smount of blade mass balance. For th=0 mass balance effects become

zerc. The form of EGM¢ ------ [Tb can be obtained by inspection of
the expressions for [GM , [6],[t] »end [T] obtained previously.

The matrix A[GMd;] and the other matrices on the right hand sides of

Eq. (203) through (206) are determined by using expressions which nre com~
pletely analogous to those found previously without consideration of sep-
arate mass balance.

BROVISION FOR VARIATIONS IN BLADE PARAMETERS

The provision to vary the following parameters is now incorporated into
‘the expressions for the coefficients: ™

1. Frequencies of the modes used as gereralized coordinates.
2. Blade chordvwise center-of-gravity position.
_ 3. Blade chordwise elastic axis position.

. Blade chordwise aerodynamic center position.

Variation of Blade Modal Frequencies

- The generalizéd st%'uctural stiffness at the rotor speed R is given by
[Cs)p = [GMii wR,J . The modal frequency wg; is considered in-
creased by the amount y, Wy where wy; is specified for each

D S U
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mode and vy, is an overall var.etion factor. The new structural stiff-
P ness is then given by

[Co]a= [ oMiiCwn+ wew” | (207)

oot oy N

L]

N

Variation of Blade Chordwise Center c¢f Gravity and Elastic Axis Position

The structural model to be used when changing the center of gravity and
elastic axis positions is as follows: .

T R

The chordwise center-of-gravity position changes GQue to a mass balance
weight which is moved chordwise. The total mass of the blade remains un-
changed, as do the mass and incrtial properties of the fixed portion orf
the blade. The fixed or basic part of the blade and the balance weight
are entered into the structural cnefficients as separate components, with y
the magnitude of the balance mass made variable through use of the coef-
ficient tp .

R

The input mode shapes, frequencies, and generalized inertias remain un-
changed. The effect of an elastic axis shift is to:

1. Change the mass moment and inertia ebout the elastic axis, but
not the mass moment and inertia about the center of gravity.
This effect will be taken into account when blade inertias are
calculated.

2. Change the aerodynamic-center-to-elastic-axis distance. This
is taken into account by changing the value of ag, when
the aerodynamic coefficients are calculated.

With reference to Figure 11,

tb&’x' is the distance the center of gravity of the mass
balance weight is shifted afst.

tob Aoz, is the distance the elastic axis is shifted aft.
Then, for the balance weight,

- -l -
xb - xb + 'be - ?e bAOEA (208)

and for the basic blade,

Re = R - tybAagy (209) i




o

The elastic axis distance aft of the mid-chord is given by

= ]
OEA“‘ OEA+ 'Q AQEA (210)

~ First, the changes in the blade inertias referring toc the new vosition of

the elastic axis are calculated.

The mass moment per unit spen of the balance weight prior to the applica-
tion of the coefficient t, is

< o/ -
mbxb = My Xy + mb( fbAX - fe bAaEA) (211)
The seme quentity for the basic blade is

m¢Xg = m¢i$ ~ mgtybAag, (212)

The balance weight edgewise mass moment of inertia per unit span is

- - 1\2
Lazy = Tazy o + my(%)° + 2(1, A% - tybAags) mp %y

+ mp(1pAX - 1,bAag,)? (213)
Iz, = Izzy + 2(1,A% - fybAoga)m¥. + my(1p0% - febAags)? (214)

The-corresponding quantity for the basic blade is
. 1
224 = Iz[z¢ - 21ebAagymgXe + mg (1ebAag,) (215)
The balance weight product of inertis per unit span is
Ixzb = Ixzch + rnb[-x-é +(1bA-x- - febAOEA)]-Z.b (216)
. I ) _
Ixzp = Ixzp + mp(1pAX - tgbAaga)Z), (2:7)

ko




The corresponding quantity for the basiec blade is

Ixzg = Ixzg - tabAagamgZ (218)

The inertial prcperties my 2y and Ixxp for the balance weight and
mz and Ixx for the basic blade are not changed. The changes in
the aerodynamic coefficients due to shifti..g the elastic axis arz now
calculaved., This is done by changing the value of dg, used in the
calculation of the [H] matrix, which is thereby redefined as

[H] = [(,) _(fngf f,Aa‘u)} -

Variation of Blade Chordwise Aerodynamic Center Position

In addition to arbitrary variation of the position of the zerodynamic
center there is also a shift in the aerodynamic center due to reverse flow.
These effects willi be considered separately. Consider first an arbitrary
variation in the position of the aerodynamic center. Suppcse the aero-
dynamic center shifted aft a distance tgb§,; , @s shown in Figure 12.

In classical flutter, changes in litt and moment due t. very small motions
of the blade are considered. For steady flow, the cerodynamic center is
not coincident with the center of pressure except for airfoils with a zero
steady moment at zero lift. However, when considering incremental changes,
the aerodynamic center and the center of pressure become coincident. In
flutter, the two terms are used interchangeably and usually refer to the
point through which the incremental lift force acts, for nonoscillatory
motion. This definition of the aerodynamic center means that for oscilla-
tory motions there will in general be an oscillatory moment acting at the
aerodynamic center (center of pressure). A shift in the aerodynamic cen-
ter is defined to be such that the forces and moments acting at the old
position of the aerodynamic center are transferred unchanged to the new
position of the aerodynamic center,

That is, o
-L N = -L Y
I} M
b b (220)

where the quan.ities on the right hand side are applied at a distance Ab
aft of the 25% chord and the quantiries at the left hand side are applied
at a distance (Ab + tgb8ac) aft of the 25% chord, as showr on Figure 12.
The position of the aerodynamic center will be denoted henceforth hy using
the superscript notation above.
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If the relation between forces and moments at the 25% chord and at the
aerodynemic center is considered, we have, for the two aerodynamic center
positions,

Lol @ =] 0 0 [-L °

Mczg |

b A ! l%

(221)
and

. 1 r 1702
Le|N o= ] of |-T|"

Mou| | (arig®) ! T
| b L J R (222)

Combining Eqs. (220), {221), and (222), after some algebraic manipulation,
gives

Jolea|N = | 1 0 ||-Len|©
MC/:} 1ad | Mc/a
°b b

(223)

Previously, the aerodynamic coefficients were defined inh terms of the lift
and moment sbout the 25% chord as follows:

- erprie {0 ] {8} + 4P [0)o})

(22h)

The aerodynamic coefficients consistent with the new aerodynsmic center
position are defired to be

o = -emerter (B (8} (47 ] 2)}

Mc/a

b (225)
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Substituting Eqs. (22h) end (225) into (223) and setting the respective
coefficients of {3} and {3} equal., gives

[A] [b] (226)
[a][o] (227)

o o
| I | | SR }
-3 =z

it 1]

where

1S | '
l_ (228)

Consider now the effect of reverse flow. Only those quantities that affect
the aerodynamic coefficients are involved, since the structural coefficients
are the same for forward and reverse flow. Inspection of Figure 13 shows
the following relations between forward and reverse flow:

(dhyt teAag, )= = (ak# telag,)" (229)
(hEA)R = (hEA)F (230)
(o) = -(a) (231)

where superscript F refers to forward flow and superscript R refers to re-
verse flow .

The change in sign of the pitch angle @ shows up as & change in sign
of the torsion mode shape Fj through the equation

a = Ej:Fi aj (232)

Reverse flow is 3aid to occur when the component of the air velocity in the
(-82) direction, as previously defined, is negative. That is,

ve = sing vy +8(e+Fcosfg) <O (233)
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Hence, when Vx <0 , reverse flow is allowed for in the following way:

o 1. Change the sign of {0fs + teAog)  in the matrix
H so that it becomes

[H] = |1 —[%-(oé; teAag)]

0 |
(234)
2. Change the sign of Fj in the second row of the matrix
[Gm so that it becomes
[GM] RN I P ¥
(=F)- - -~ - (-Fno (235)

Similar changes are also made in [H]I and [GM]I .

SPANWISE INTEGRATION OF THE COEFFICIENTS

So far, the generalized forces acting in a mode have been expressed in
terms of integrations across the blade span. The same procedure has been
followed in the definition of the generalized mass and stiffness coef-
ficients. 1In practice, the integrations ere replaced by finite summations,
using the trapezoidal rule. The blade is divided into segments or strips,
each of which extends from the blade leading edge to the trailing edge,
and whose radial or spanwise dimension is a suitable fraction of the blade
rédius. The segments are lsbeled k=! to k=Ns from root to tip, re-
spectively. Considering the structural coefficients and, for convenience,
using the form of the coefficients written in matrix notation gives

Ne

[¢] o] [o] & - 2 [a],°[e], [2], o, (236)

k=l

R

/

‘The matrix A[o] represents any of the structural coefficient matrices.
In addition,

R
M(r)= j; mrdr (237)
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is replaced by

Ng
Mg =-;-m (ry+ }ArK)ArﬁZ“m rn Qg (238)
NEK+

The values of m in Eq. (238) are expressed in mess per unit span and
are appropriate to each finite segment. When the integrals are replaced
by finite summetions, it is convenlent to change the def:.nltlons of the
mass terms m, mX etc., from "per unit span" to "per segment". The
definition of My is not chenged, since it refers not only to a local
part of the blade, but also to a summation involving all parts of the
blade outboard of a particular segment. Because of this, the value of My
cannot be given easily as input data on the basis of a contribution from
each segment, and its value at each segment is computed by the progranm.
Let m, mX etc., be the inertias per unit span when integrating. Let
my , mgX etc., be the inertias per blade segment when a finite summa-

tion is used. Let [a] be per unit span. Let [G] be per blade segment.
Then, the above equations become

[e]felar = 2 [0 4e] el o, = 3 [o]%[e o],

(239)
N
{ |
Mk = 3 mg(re*7Ar) + i Mnfy (240)
n=K+l
and any element of [ 6] containing M, is multiplied by Ark .

When the aerodynamlc coefficjients are considered,

aero f( X| d’7 22(&) [X;]K (241)
[clm R ACERN )

R Kl
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+  NONDIMENSIONALIZING THE EQUATIONS OF MOTION

The equations of motion as developed so far can be put in the form

[ac] {83} + [oa){8t} + [ec]{ s}
=“27TPSLb2Va2 { ]Miq}} (245)

where [As] [Bs] and are the total structural coef-~
ficients.

S _bﬂ—)z
The equations are now multiplied by awpg b4 (Vn and the
nondimensional time Tt is introduced by the relation

(Y
T = :E%) t (246)
so that
d _ (\nyd d? _ (Vg\2 _d2 2k
dt ’(bR)dr '&Tﬁ'('&%) dr2 (247)

After scme rearranging, the equations become

it R Gl a]m}{%}

2

{8) [ty ] +[eden o} -

(248)

FINAL FORM OF THE EQUATIONS OF MOTION

The finsl form of the équations of motion can now be stated, as follows:

(LA} (o] {@} e [l a}= {0} (249)
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where

{q]-is u column matrix of generalized coordinates q,~°°--""
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(251)

(252)

(253)

(25k)

(255)

(256)
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(AM(;»«)IJ = (gﬁgfl + gﬁlgfl) M¢k — (QilFm + gkjin)m¢kx¢k

y d
(gnFn‘*' gki kl)m¢kz¢“ +( d&rf)(lx")qﬂ‘
d dg&
( -a—-l drm) (Ixz) g
x
ki dgk
+ (T‘ “d'l)(IZZ)qbk + (Fy ij)(Iyy) (261)
A _ s
[M]M (d’]k [M]a [q’]u (262)
O S T
k Iy, ke qkup
Q:[ g:g d g:ND
L. Z
flon)  glow) ar (okn)
& (k) £{o%) s
Fxi Fre d Fino
. d
E‘ﬁ (Fa) g (Fee) ar {Fiwo) (263)
a[M]# = M 0 0 0 ('m)‘t)¢k 0
0 Mgk 0 0 (mi)qu 0
0 Y (TIxxdgx  (Txdg O O
0 o) (IXZ)¢k (IZZ)¢3 Y 0
~(MmR)gx (M2 0 0 (IYY)qsk 0
o 0 0 0 © 0 (26h)
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dgii x dg )
T T e o mee
dg:; X dg,f )
+ (F kj WJ ki ) Mepi: Zgpx

Lo

dgg; dgk
o fg - 5 Fki)(IXZ)¢k (265)
[G]qbk [q)]k (266)
0 0 0 0 0
0 '(mi)¢k '(mi)¢k 0] 0
(magx 0 O (g O
(M) 0 0 (Ixz)# 0]
0 = (Zxx)k "(Ixz)gu 0 0]
0 0 © 0 ° | (267)
(Kax)” MM, g B, (268)
3
[L]qbk (2], (269)
0 0 0 0 0
0 0 o) 0 0
0 0 0 0 )
0 0 0 0 0
0] 0 0] 0] .0
0 0 0 0 kfk‘,ﬂ,#Ar! (270)
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(9% 9k) mex + (aFy + 9gFa) MenZex
dgx . dgx _
- (S, - Fu) ok M
dgy -
+ 30Fy ) bk MapkX gy

(dgy; dg
5 Trkl) kax)qu - J”bq»k/-\rk]

dgp: dgh:)
+ ( drki _(j_kl)[(lzz-)43k -J”b:pkArk]

|' »
dgiy dgiy . dgiy dgfzi)
+(Tr‘ o t I ar /(Ixadex

+ Fyi Fyg [(IXX)qsw" (Lzz)gx - (e +GEAb)m¢'&¢k]

(211)
- Te], 1), o],

(272)

= —0 0 o o 0 0_

0 mg O 0 (m2)gi 0

o o [(I“)#k""mi"‘Ark] (Iu)¢x (fmi)¢x 0

o o (Teadgx [(Iz,m-mﬂm,] - (rma)gx o

0 (mIgx  (rmR)gn “{emz)gx [(I,.)¢k"(1u)¢u"(€+Onb)(m'i)#] 0
e e ° ° °f  (em
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The expressions for the mass balance coefficients are identical to the
expressions given above except that subscript ¢ is replaced by b.

(Wl = onm(5) o ool (W [a) [8], [, [ee]. [oul,
[xz]k = ohn [GM]: [Bc]k [H]nl( [A]k [D]k [H]k [Bc]k [GM]k

[6]k = _Qﬁ la |
:mﬁ - m&_k
[ D ]k = Flh la—
My Mg L
[ .
[a) = o
taSx |
— -

e
po 4
| SO ]
=
]
]
I
—
-
i+
o
[@]
M«
>
=<
+
ot
>
=}
m
>
>
—,
L

51

(274)

(275)

(276)

(277)

"(278)

(279)
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Reverse flow:

i Vik = sinfrvy « £ (e +TxCOs ,Bs) <o (282)
Then use the negative sighns in the expressions for [H]k and [quk .

Examples of the application of the reverse flow relations are given in
Table 1.

The cases listed, except those at My= 0.3, show satisfactory agreement
betwee - the coefficients from differ«at references, and the reverse-flow
relations are satisfied. At My= 0.8, Reference 7 satisfied the reverse
f ow relation for calculating h  but not the relation for calculating

h . For this case; the greatest discrepancy was in the coefficient
(-mg ) , a few values .Gf which are given in Table II.

A large proportion of the tabulated coefficients come from Reference 7,
and it is unfortunate that these coefficients in many cases satisfy only
partially the reverse-f.ow relations.

When first published (R:ference 5), they were criticized for not satlsfy
‘theése relations. Subsequently, an smended tabulation appeared (Reference
6), and it was cluimed that this deficiency had been corrected.

About the same time, Réference T appeared; it gave a much more complete
table of coefficients, but without claiming that they satisfied the
reverse-flow relations. It was assumed that they did; indeed, comparison
between the coefficients tabulated in Reference 7 and the revised coef-
ficients in Reference € show them to agree exactly or with differences
confined to the last décimel place. The matter was not pursued any
further, though it would certainly be of interest to do so.

With the reverse~flow ryelations, it was possible to sort out the coef-
ficients satlsfectorilw, and a table of coefficients was prepared. These
coefficients are given in Table XII. It will be noticed that the coef-
ficients for MN 1.05 6éxhibit smell oscillations with respect to k.
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AERODYNAMIC COEFFICIENTS

GENERAL DISCUSSION OF AERODYNAMIC COEFFICIENTS

The aerodynamic forces acting on a rotor blade appear, in the equations of
motion in the form of the matrices [b] and l.D where

[8)=T4  la

=~ Mg ~Mg |k (283)
[D ]k= by |

My Mg |k (284)

That is, at each blade station, eight aerodynamic coefficients are required
to specify the aerodynamic forces acting on the blade segment. Each of
these coefficients is in general a function of the reduced frequency param-
eter k= wb/Vy and the Mach number. Depending on the forward velocity
and the advance ratio, the value of k and My at any stelion will
be, in practice, within the range 0 < k < ® “and OSMysS I

For certain combinations of Vy and M , k and My will have large
variations across the blade, so that it is necessary to form a table of
aerodynamic coefficients covering a wide range of k and My . The values
of k and My for each segment are calculated, and by interpolation the

corresponding value of each of the eight aerodynamic coefficients is
obtained.

A search of the literature located tables of incompressible and compressible
main surface aerodynamic coefficients in Referemces 2, 3, 4, 5, 6, 7, 8,
and 9. The subsonic compressible coefficients were obtained either by
direct iteration of Possio's integral equation or by expanding the solution
as an infinite series of orthogonal Mathieu functions. Either method of
solution has the characteristic that the convergence becomes poorer as k
and My increase. Because of this, the range of k for which tabulated
derivaetives are available decreases as My  increases. This is normally
not a restriction, since the range of k values across the blade also de-
creases as the blade tip Mach number increases. However, the particular
method used to interpolate for the coefficients at a blade ntation requires
that the coefficients be tabulated for the sume values of k for all Mach
numbers. Because of this, full use was made of the available tabulated
coefficients for the higher Mach numbers but not for the low Mach numbers.
This restriction is most severe for incompressible flow, where the aero-
éynamic coefficients are available over the intervel O£ k< ® , This
semi-infinite interval can be tabulated by transforming it into finite in-
terval 05k <1 by a transformation such as k = k/k+p and by tab-
ulating the coefficients for all Mach numbers versus k instead of k.
However, for the present study, each of the eight coefficients is tabulated
for My =0, .35, .50, .60, .70, .80, .90, .95, 1.0, 1.05 at each of 27
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different values of k beiween k = 0 and k = 0.7,

For reasons which will be discussed below, the last row of the tabulation
was repeated twice, giving 29 k values. Thus, the tabulation ccusists of
2320 values of the coefficients. It was stated previously that the vari-
ation of the aerodynamic acceleration coefficients with change in k for
compressible flow was one of the reasons for including the acceleration
coefficients with the displacement coefficients. If they had been kept
separate, it would have been necessary to store 3480 instead of 2320 values
of the coefficients in the hlgh—spned store of the computer when, even with
2320 values, space was at .a premium,

The value of some of the coefficients epproaches infinity as k—0
or @ . These limiting cases will be considered for incompressible
flow, but the same principles epply for all Mach numbers.

The case k = 0 is considered first. The 1lift due to pitch rate in this
case is given by

L= 2mp B ar() 4. 4 (285)
'yhere
= [_i_ + FlK).# ﬁik).] (286)

“For simple harmonic motion, this becomes

L = 2mpy BBAr {(%) [£+FW]e + (¥ [ %‘g)G(k"]_a} (281)

where
w 1is the solution frequerdy
wy 1s the soltftior; fiequency assumed when calculating ! é

‘The cage of &= wgb/V. =0 , that is, steady~flow aerodynamic is now
considered. In prar“..lce, steady snd oscillatory flows occur with w/wqg =13
and considering tié fact that 0.5 < F(k) < | and -0.188 < G(k) <0

the a.bove, equatians show that the theory predicts finite airloads for all
values of k. It is the artifice of using w/wg #1 in particular
wg=0 , for the aerodynemic associated with vibration modes w# 0O
that leads to apperently infinite airloads. If w/wq = | and since
F(k) = 1 , G(k‘" 0, and @ =0 for w=wg=0 the above equation
gives L =0 at = 0, so that the contribution to the steady-state
loading due to l & is zero. This same result can u. Ob-
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tained with w/wy #1 if [[&]kgo = -0, is replaced by [[&].k:o =0 -
That is, it is quite valid to tabulat« [& =0 at k = 0, and this was
done in the table of aerodynamic coefficients.

The difficulty that occurs in the case k = ® has been discussed before
and is due to lumping the acceleration coefficients with the displacement
coefficients. If the components due to inertia were neglected then the
displacement coefficients such as -mg would remein finite a5 k —= @
because

-mg = -k () (288)

is due solely to the inertia coefficient mg =3/16 . The effect of
acrodynemic inertia is generally considered to be of secondary importance,
and the contribution of the aerodynamic inertias will be progressively re-
duced to zero by making all coefficients constant above My ='0.7. This
avoids the uncertainty of extrapolating curves from k = 0.7 to = 3, say,
when the curve at k = 0.7 is almost vertical. To keep the coefficients
constant, the tabulated values of the coefficients at k = 0.7 are repeated
twice and labeled k = 0.8 and k = 0.9 respectively. This causes the linear
extrapolation routine to calculate values for the coefficients which are
the same as those at k = 0.7. The effect of progressively neglecting the
aerodynamic inertias above k = 0.7 is further reduced by noting the follow-
ing from the relation V = wb/k : as k increases, V decreases,

s0 that the region k>0.7 is fortunately associated with very low
dynamic pressures, which cause the coefficients for k > 0.7 to make
only a very smell contribution to the equations of motion.

Two dimensional theory gives infinite airloads for steady flow at My = 1.
This singularity disappears for oscillatory flow (k # 0) or with the
inclusion of finite span effects. The choice has to be made between tab-
ulating coefficients at My=1, k=0 for a particuiar aspect ratio or
simply meking all coefficients zero. For simplicity, the latter was decided
upon io that the tabulated coefficients cannot be used for steady flow at
MN = .

- NOTATION .

It is necessary to transform the tabulated coefficients available in the
. previously stated references so that they conform to the notation for this
study. These transformations are now reviewed.

Each reference, in general, uses different symbols when defining the coef-
ficients, so for convenience the defining equations will be stated in terms
of the notations already adopted for lift, pitching moment, semichord, elc.
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by
t =l |-L =
: p 2 bV3Ar
l_’(%' JLE

with the relations
2pbV2Ar

2pbV3Ar

and for simple harmonic¢ motion,

also
L] = |
) ]
¥ %
Jc/a
W1 L LT
2b 2
i, a o
L JLe
Then the equations beccme
o - Y =
Tpva | =(¥) zx| !
- lL L
b |cra | 2
2 .
e N
]
"z

S ————————— T 25 s Tt e TS T

()=

(4+i147)

(il

(27rp bsAr)[('\f{,‘)

"
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The coefficients trom Reference 2 will be converted first anrnd are detined

(41 48)

(289)

(290)

(291)

(292)
(293)

(29k)

(295)

(296)
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the following relations between the coefficients are obtained:

The damping coefficients are:

I la sk [ of| 4 L4 || -4

.me -m- 2 —mll _mll
m;, m 3 2 mz ma 0 2

"

N
i

,—L— ( £
-mp =5 [ ~myf’ - ]
[z(-ma)- {z&u( m)} +§I]

The stiffness coefficients are

I la] = [ ol 4 -

a
-m,  -mg -%. 2 ||-m} -m§ |{ O 2
ll
b= 2%
1!
Za:%(a-1f)
5T

(297)

(298)
(299)

(300)

(301)

(302)

(303)

+30k)

(305)
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W

oy - -,',-[(-mi)"éé] . (306)
_ma='l1'r'{2("’“2l 'Lz[lo:*(‘"‘f) *%']}

. (307)

" " 1 " ! ' t
The coei:ficiehts z Za , -m}_ s, =Mg lz ’ la s —Mmz
and -mg are tebulated in Tables 2 through 24, pages 34 through 4l of
Reference 2.

The coefficients in Reference 3 are defined by

[ B e = La+ L La+il b
4pbV2K2Ar . ( 2) ( ? 4) b
M (My+i Mg Ms+ i M
3 P KT I R ] | L
and
_— -t = Uil a+itl) || &
4pbVZK2Ar (tivic) . (Lseic) |1
M ' ool 1ol
1) (M) + im My +iMy) || @
LE ! 2) ( 3t 4) LE (309)
but: only the primed derivatives are tabulated. »
The following relations are used:
apbV¥iPhr = (2mpb3Ar) [(%)2- R K ]w (310)
apbV2kar = (2mpb3ar) [(%—) 2.2 (311)
For simple harmonic motion,
w(g) = 5 (312)
iwa = a (313)
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-4 = | 0 -L
M ! 1]
- B
LN LE (314)

o
I
-
ob

LE

L c/4 (315)

Then the following relations between the coefficients are obtained:

The damping coefficients are

e / /
b da| =& | ofl¥l L1 -4
mi  -mg -3 LM k2mylfo !
JL : (316)
2.1/
lh = & (K1) (317)
2./ 2.1
by =& (KLa-F K" L2) (318)
2 2. 1 24/
2 Y | i 2/
-mo= A (Mg [EM L] £ R 1) (320)
The ¢tiffness coefficients are
b | =& oW KB, -3
-m -m - ]| ke k2millo I
h a x ' 2 (321)
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{ W— [' = [(tne*it)  (lar* ile)

lh = '%‘( k2 L)) (322)

log=2 (L5 - Lu2l) (323)
-mp, = & (M -4 L) (324)
o= (@Mt [kzMIl+kal‘l3]+4|;_k2Lll) (325)

/ / / /
The coeff:.cients k Lz , K L4 , KMy, KM, KL, , KLs,
kle and k% M3 are tabulated in Table I, page 9 of Reference 3.

The coefficients in References i and 9 are defined by

oz

l.'g' c/4 (Mg + 'Mhl) (Mgp* iMgr) | @ /& (326)

The following relations are used:

mp b wiAr = - (2'"’P b3A’) [' (%—)%] w (327)
3 2 - 3 V k2
mp b wAr = - (27er A') ["(‘3)2"2'] (328)

For simple harmonic motion,

()= 4 (329)
iwa = a (330)
Then, the following relations between the coefficients are obtained;
The damping coefficients are
b s B el
-Mp =My Mz My (331)
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The stifiness coefficients are:

I &

-my, -m,
In

la

-m,

-m,

The coefficients Lpy ., Lay ,

and MQR
Reference 9.

The coefficients in References

I
-
"

mpb V2 Ar

oz

c/2 (

mé+img) (m£+img) a

>.
1
'
——
=
f
o>
-t

Mh: » Mar , Lhg » Lag » Mng

are tabulated in Reference 4 and pages 409 through 413 of

5, 6, and 7 are defined by

(ki +ikd) (kp+ ikp ) b

c/2
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(332)

(333)
(334)

(335)

(330)

(337)

(338)

(339)

(340)

(3k1)
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'rrprZAr = “(ZWPbSAr)[_(%) ‘é‘R‘]‘"
mpbViAr = —(2mpb Ar) [—(%)2%]
-L

"
O
L
oz -
o
~
n

’ JE7'C/4 '% |

Then the following relations between the coefficients are obtained:

The damping coefficients are

[ a]--E[ o[ wl[ &
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(343)

(3hb)

(3k45)

(346)

(347)

(348)

(349)
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The stiffness ocefficients are ;
/ !
hoda|=-(D]1 of|xe {1 £
| /
MR ~Mg 5 I Mg My 0 I (351)
!/ . /
= (%) ke (352) ]
= (V] 2 Ly |
ba = ~(3)(ky +3Kg) (353)
f
- = | !
My = '(f)(ma'*"é'ka«) (35L)
- = (1 I / / 12,1 f
mg = = () (my + [mg+ ky |+ (£) ke ) (355) |
The coefficients in Reference 8 are defined by ?
!
. o
S I RO R (Y (Ly+il%) h
4pb V'K Ar M a
i T4l 1, ... 5
b 1. g (M, +iMp) (Mgt iM) | a LE (356)

Note the similarity to i1he definition used in Reference 3.
same procedure as that for Reference 3, the following relations between

the coefficients can be obtained:

The damping coefficients are

lﬁ by | = ('z'rr—k) ' 011 Le

_mﬁ
lf\ = ’z'ir& (Lz)

by = B (L, -41,)
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-my = -?‘-,-,.‘5- (Mé—-'éi_,,_) (360)
eme = 2K (aal _ ATpal 1 {
&= T (M4‘E[Mz+'-4] + Z‘ii—z) (361)

The stiffness coefficients are

2
= /
b la (2—#-) 1oof|n G -
-mp  -mg -5 M o Miflo
2 ' 3 (362)
2
. 2k
o= (L) (363)
2k% 1 _ 1
o = S (L3~ 3L) (364)
2
. 2k I
- mh = T (Ml - le) (365)
= 2K A
ma = G- (Mg~ 2[M1+L3]+ zLi) (366)
Not only are the available tabulated coefficients in differing notations,
but they also cover varying ranges of k and My . A computer program
was written to transform the coefficients into the required notation and to
sssemble the coefficients in order of k and My . There is a degree

of overlapping in the resulting tebulation because, for particular combin-
ations of k and M , coefficients are available from more than one

source. This overlapping permits a check vo be made of the accuracy of the
coefficients..

From an inspection of the table, it would be seen that although good agree-
ment was obtained in the majority of cases, a significant minority of cases
remained in which discrepancies of various megnitudes existed between the
coefficients., In particular, for Mpy= 0.8, the discrepancies were large
and it was not obvious as to which were the correct coefficients. 1In an

attempt to sort out the accurate from the inaccurate coefficients, it was

decided to apply reciprocal flow relations to all of the availsble coef-
ficients.
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RECIIRNCAL FLOW RELATIONS FOR UNSTEADY, COMPRESSIBLE FLOW

For an airfoil executing small oscillation in a nonstationary compressible
invisecid flow,the relationship between the pressure acting on the airfoil
in direct flow and the pressure acting on the airfoil when it travels in
the reverse direction is given by Reference 10. From Figure 1k,

ff P w ds ff P wds (367)

PLANFORM PLANFORM

where

F is the pressure difference across the
airfoil in direct flow

P is the pressure difference across the
airfoil in reverse flow

w is the vertical velocity in direct flow
of the air in contact with the airfoil

w

is the vertical velocity in reverse flow
of the air in contact with the airfoil

and where Egs. (348), (370), (372), and (37k4) define direct-flow quantities
and Eqs. (369), (371), (373), and (375) are reverse flow quantities.

W = (Va‘i aj- ) 2g (368)
Wos (Vg5 (369)
and for simple harmoniec motion
zg = zgqe™! (370)
Zg= T (371)
W= w, elwt (372)
W s Wgel! (373)
Hence,
Wg = (Vga;{ + iw) Zgq (37h)
Wy = ("Vba} +iw) Zgq (375)
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in which case the reciprocal or reverse flow relation becomes

JI ewe - [f Bua 0

PLANFORM PLANFORM

The application of this relation to a two-dimensional airfoil is now con-
sidered.

‘Most unsteady aerodynamic theories, in particular those on which the tab-
ulated coefficients are based, neglect airfoil thickness effects and so
‘replace the airfoil by a flat plate of zero thickness. This, of course,
gives rise to singularities at the leading and trailing edges, the singu-
larity at the trailing edge being removed in the usual menner by the appli-
cation of the Kutta condition. With this model, a two-dimensional airfoil
presents the same shape to the airstream irrespective orf whether it i- in
direct or reverse flow. Hence, if the airfoil executes the same motion in
both direct and reverse flow, the pressure distribution cver the airfoil
is the same for both flows; that is, p = '['5 , and the airfoil will ex-
perience the Sédme 1lift and moment.

With Reference to Figure 15, the following Egs. (377) through (381) are
obtained for direct flow.

2g= —(hestxare'! (3717)
Hence.
H 25a= ~ (et xa) (378)
So: that

- a .
Wq = (Va; +iw) 2 (379)
Wg = — [VQ + iw(th + XQ)]i (380)
oh da ;
since % and 'EE vanish,
. H X
wa® =V [ (@hgser (1+58%) o] (s60)
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With reference to Figure 15, the following equations (382) through (386)
are obtained for reverse flow.

AR SEANOCLE o iy

Zg = =(hgpu-xa)e ot (382)
3
4 Hence
:
ts
a -—
E Zgq= —(hep- xa) (383)
:
Z so that
: - d .. t=
.-q = - [VQ + iw ( hc/4"xa)] (385)
2 - .
; Wo = =V [(hesq +(1- 1) ] (386)

Eqs. (387) and (388) consider pure translational motion in direct and
reverse flow:

’ Wg = -V ('i'\‘/”') hc/4 (387)

Wz -V (4%) hess (388)

when the reverse flow theorem for two dimensional flow is applied,

Pwg dx P wqdx
CHORD 2HoRD (389)
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Hence,

P [ -v() nlex - Z B[V (40 hose] o (390)
CHORD OR

" defining

HORD CHORD (391)
then the equation gives

h_ ,-h

L= L (392)
This stetes that the 1ift due to pure translational motion is the seame in
direct and reverse flow, & result deduced previously from physical consid-

erations.

Pure translational motion in direct flow, and pitching about the 75% chord
point in reverse flow are expressed as follows:

wo ==V ({2)hess (393)

Wa = =V(I- 8 x), (39%)

If Wy eand Wg are substituted into the revers. flow theorem

f P'{ -v(I - —i\‘f-x)a }dx fﬁ{*V(—i\,@') hcm}dx (395)

CHORD CHoORD
defining
h
Lera= | Pdx (396)
CHORD
~a(3) _
Lsgsa = | Pdx (397)
CHORD
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Ly
i 13
E@ 8 h °
i “Mcs = | Pxadx (398) :
. % CHORD
%‘ } Then the equation gives
- h
h .. Mcs ] -a (%)
L + _— = | .hC4
1 [°’4 R e (399)
: $

where

E G e

h ie the 1ift at 25% chord due to pire
Lcg  trenslational motion in direct flow

hdh is the moment at 25% chord due to pure
c/4 translational motion ir direct flow

-a(¥s)
L3c/a

is the lift at T75% chord due to pitching
motion about 75% chord in reverse flow

As shown previously for & twc-dimensional wing,

-a(%) a ()
Lacra = Lacn (400) j
Hence, the reverse-flow relation becomes:

e

G

h
h M ~al¥)
[ Lo + k=0 = ik Loess (F)

PR

(k01)

al3/) "
Expressions can now be obtained for L2M~ ) M:M and L yg/ i
in terms of the aerodynamic coefficicnts which were defined by the equation. -

ML I Rl
-mh a

T G T

-Me -ma a - B
. b lesa h a c/4 Ma c/4 (%02) v
1 !‘s
! If the relations for simple harmonic motion are applied, the equation
can be put in the form
|
-1 -L = | ikdg +{ ikl + 4, b ,
Z7pVEDAr RO @ b
M . .
t M -my ) - -m.}J -
3 . LD Jen ik(-mg)-my, ik (=mg ) m0.| La' c/a (403)
T
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The equation can now be transformed so that it is in terms of forces and
displacements at the T5% chord point.

Eﬂp——;‘,b—&, oL |1 of|ikbi+d iklg + La LR
'%1' 3¢/4 - ] ik (=mg ) -my ik (mg)=ma|| O ]| 3c/4
(kob)
From these two equations, it can be shewn that
h .
Lew = 2mp Vibar [ikdy + 4y ] (54) (405)
h
‘M 2 . h
_Eca = =2mwpV bAr [|k~(-m,;) -mh] (—%ﬂ) (Lo€)
(3)
L‘;c,: = 2mpVibAr [l O] riklﬁ +dy ikdg+ 4o HERP
| ik (=mg) =m, ik(‘m(z)'ma_l ! (%07)
al¥q .
L3(;/4 = Zﬂpvszr [lk(la'zh) +(!a'lh) ]a (408)

Substituting into the reverse-flow relation and dividing through by
2mp vZb Ar gives

{Gkdy +4y) - ik[ik Emg) - my ] }(E;))a

= ik [ik (bg-4p) + (la-lh)](ﬁgﬂ)a (409)

Separating the equation into real and imaginary parts gives

{4+ ¢ [-4 + da - mj 1}
+ ik {lﬁ - [—Zh+la—mh]} =0 (410)

Equating the real and imaginary parts to zero gives the reverse-flow re-
lation in terms of the aerodynamic coefficients.

by = -yt -my (411)
Ly = -k [-dp + da-my (412)
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It will be noticed thut the coefficients (~Mg) end (-Mgq)

are missing from the above equations,so that the reverse flow relation
provides no check on the tabulated values of these coefficients. Although
ithe reverse flow relation obtained above corresponds to that given in
References 11 anl 10, it was hoped that by considering additional motions
in direct and reverse flow, additional reverse i.iow relations containing
the missing coefficients would be obtained. To this end the following ;
motions were considered, and the correspending reverse-flow relations were
found to be as follows:

Rrwet it A Ml N R s e

Pitching about the 25% chord point in direct flow;
pure translational motion in reverse flow.

! . all) h M

SR DI U

Vel B A RS ST NI A et U AN S S R R X A

Pitching about the 25% chord point in direct flow;
pitching sbout the 75% chord point in reverse flow.

()
ath ] [ oo o
Lesa +ik—S4 |q = L3c/4+ikm o
o L b () -

However, these additional relations gave the same relations between the
coefficients as obtained before. The search was not continued beyond
this stage but it would be very useful to obtain a reverse~flow relstion
involving (~mg) and (-mg ).

ey

It is possible to state the reverse-flow relations in the notations of the
referencesfrom which the tabulated coefficients were obtained. For
reference, they are listed below:

o L
O RNSS 7 A B gt e e P, 20

Reference 2

I i l

3 Zz = "'2k [—ZZ + la - mz ] (hlS) k
] $
y | " ! ! / j
] = 2t-4 +4!) -m ¢
: 4 [ 4 o z ] (416) ;
3 §
1 i
S | ‘
. %
] {

T1 <
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Reference 3
KU = -k [-26L, + KL, + M) ]
KL= k[-26° L + KL + KM, ]
Reference L

Reference 9

Lhe = =k [-Ln; *Lg + M, ]

Lhy = K [’Lha tlog Mhn]

Reference 5, 6
Reference 7

! i

i
kg = -k (kp +mg)
kY = Kk (ki + mG)

Reference 8

'Ll

-k [—2L2+L'4+M;]

Lo = k [-2L, + LU + M, ]

12

(417)

(418)

(119)

(420)

(h21)

(422)

(423)

(h2k)
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b GENERAL PROCEDURES FOR OBTAINING FLUTTER SOLUTIONS
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The following is a brief summary of the steps involved in obtaining flutter
solutions, and it includes an outline of the computer program.

T e TR 3

The geometry of the blade is stated, including the spanwise breakdown of
the blade into segments, as required for the numerical integration. Then
the mass properties of the fixed portion of the blads and of the mass
balance weight, if any, are input. The remaining structural data to be
stated include such things as the position of the mid-chord of the blade

- aft of a radial reference axis and the chordwise position of the blade
elastic axis and center of gravity in relation to the mid-chord.

Nt b
N R i

TPt £ B e €

0chgo F oL A

Up to 10 generalized coordinates may be chosen to describe the vibration
characteristics of the blade. The modes used as generalized coordinates

are assumed to have fully coupled flatwise, edgewise,and torsional displace-
ments. These modes can be elastic or rigid-body modes. If modes are chosen
vhich have one or two of these freedoms missing, the flatwise, edgewise,and #
torsional displacements must still be specified for each mode, with zero ’
displacements being input for the missing freedoms. The natural frequency,
structural damping and generalized modal inertie must also be stated for
each mode.

i
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e

All coefficients in the equations of motion are calculated by the program. y
The structural and aerodynemic forces on each blade segment are calculated '

and then summed across the blade span to find the generalized force acting

in each of the generalized coordinates. Th. structural coefficients are

: stored after being calculated and are recalcuvlated only if the mass data or
mode shapes are altered. However, the aerodynamic coefficients are recal-

4 culated for each eigenvalue solution. To calculate the aerodynamic coef- -
3 ficieats, the reduced frequency k = wb/V (which is based on an assumed .
3 flutter frequency w ) and the Mach number at each station are found. Then,

from the table of aerodynemic coefficients contained in the program, the

values for the coefficients at each blade station are found by interpola-

tion. ”

The major variable in the program is helicopter forward speed. Up to 10 veloc-
ities may be input at & time. The secondary variables are: !

) 1. Modal frequency. !

2. Amount of mass balance.

AN AN A S AR e R
-

3. Position of the mass balance weight.

e
.

Aerodynamic center. J
5. Elastic axis position.

s 6. Assumed flutter frequency.
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T+ The set of generalized coordinates used for the solution.

Item (7) needs some explanation, since generalized coordinates are not vari-
ables in the same sense as mass balance. Suppose a set Q = (q, an )

of generalized coordinates is input, where ng 10 . Then, any subset
of Q may be chosen for solution, the generalized coordinates selected
being stated as part of the input data. This facili*y is used when it is
desired to find out the contribution tnat certain generalized coordinates
are making to the flutter mechanism. In particular, if uncertainty exists
as to how many vibration modes to input to the program, then extra modes
may be included. After initial solutions are made to determine the contri-
bution to the flutter mechanism of these extis modes, they may be dropped
from all subsequent calculations if their contribution is found to be small.

In addition to the above varisbleg, all or any part of the input data may
be changed. However, the process is not as straightforward as changing the
secondery variables.

After each eigenvalue solution correspounding to a particular value of for-
ward speed, the results are printed out for each eigenvector in the follow-
ing form:

Frequency in cycles per minute.
Decay rate C/C¢ .
Strength vectors.

If the decay rate C/C¢ is positive, then the mode is stable; if negative,
then the mode is unstable and is undergoing divergent oscillations. If, as
eirspeed increnses, the frequency of a mode drops to zero, this means that
there is a divergent aerodynamic force acting against the elastic and cen-
trifugal restoring forces so that the net restoring force is reduced to
zero. For higher airspeeds, the modal frequency will remein at zero but

the divergent aerodynamic forces are now predominant and the mode suffers
static divergence. The strength vectors, or eigenvectors, give the relative
proportion of the generalized coordinates in each coupled mode corresponding
to a particular eigenvalue, and also the phase angle between the generalized
coordinates. The eigenvectors quite often assist in the interpretation of
flutter solutions.

After the eigenvalue solutions have been obtained for the specified set of
forward speeds, a digitel plot is made of the results. Three plots are
made in the following order:

1. Frequency w versus decay rate C/C¢ R
as shown in Figure 16.

2. Decay rate C/Cg¢ versus forward velocity Vy
as shown in Figure 17.
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3. Frequency w versus forward velocity V,
as shown in Figure 1T.

The first plot is used to identify the eigenvalues. The eigenvalues cor-
responding to the first forward velocity are plotted as 1, those correspond-
ing to the second forward velocity as 2, and so on up to the tenth forward
velocity (if input), the corresponding eigenvalues being printed as Q .
The first plot is thus a root locus plot with forward velocity as the
running parameter. The eigenvalues are identified by their wvealues at the
lowest forward velocity, and then the variation of the eigenvalues with
increasing forward velocity can be traced. Usually the numbers correspond-
ing to a particuler mode will be grouped together as shown and can be iden-
tified by inspection. If ambiguity exists, it can often be resolved by
noting the variation of the eigenvectors with increasing forward velocity;
if this fails, the ambiguity can always be resolved by obtaining further
eigenvalue solutions, with sufficiently small increments in the forward
velocity. However, a reasonable estimate of the flutter speed can often be
obtained in spite of any ambiguity, in which case the ambiguity need not be
resolved.

In the second end third digital plots, the eigenvalues are plotted as an
asterisk. When the eigenvalues have been identified by using the first

plot, the corresponding points in the remaining two plots may be identified.
This enables curves to be drawn, which give the variation of decay rate and
frequency with changing forward velocity for each mode. Flutter occurs if

a curve falls below the axis C/C¢=0 . Static divergence occurs if a

curve meets the axis w=0 and C/Cc <0 .

Sometimes, two or more eigenvalues have the same value within the accuracy
of resolution of the digital plot. In this case, they are plotted as O.
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DOCUMENTATION OF COMPUTER FROGRAM

Items completing the following documentation of the classical flutter com-

puter program are available at the U. S. Army Aviation Materiel Labora-
tories, Fort Eustis, Virginia.

1. Short description of problem.
2. Description of solution method.

3. Equations used in computer solution are given by
reference to this report.

k. Definitions of input symbols in ‘orogram.
5. Definitions of generated symbols in program.
6. Definitions of output symbols in program.

T. Listing of program source deck,
sample input, and sample output.

8. Running instructions for program and
estimate of ruaning time.

9. Statement of type and configuration of computer used in
the program development, ineluding any special features.

10. Neme and level of programming language used in the program.

Copies of the program source deck and a sample input deck are also available
at USAAVLAES.

The following basic information is supplied here to permit potential users
to evaluate the usefulness of the program for their purposes.

The-program determines rotor blade flutter speeds, frequencies, and mode

shapes, using classical flutter theory in conjunction with the fixed azimuth
assumption.

The generalized structural inertie, gyroscopic coupling, and centrifugal
stiffness coefficients are obtained for use in the Lagrange equations of
motion, with arbitrary modes being used as degrees of freedom. The gen-
eralized aerodynamic coefficients are obtained by using standard classical
flutter theory. The resulting equations of motion form an eigenvalue
problem, which is solved by Tarnove's method. The eigenvaliies are complex,
in general, and define flutter frequency and modal damping. The condition
that modal damping is zero defines the flutter speeds, and the eigenvectors
define the flutter mode shapes.
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The program is designated EL80 and is intended for use on the UNIVAC ]
1108. The source program is written in the FORTRAN IV language. It is ]
divided into two parts, EL80OA and E480B, which can be executed independently B
ELBOA solves the actual flutter equations, while E4803 provides punched card
aerodynamic coefficient data for E480A. Each separate case of ELUBNB re-

¥

£

;

)

} quires 20 seconds of machine time, and E480A requires about .l seccnd for
{ each eigenvalue solution with a three-degree-of-freedom case.
i
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COMPUTER SOLUTION TEST CASE

A test case was prepared to check the computer solution. It is taken from
Reference 12, and involves the pitch-plunge flutter of a two-dimensional
airfoil. The equations of motion can be put into the form

.
LI, LA | I R PV . % G Y 3 | R I I

2mpg by Z 2mpg b3/ n 2mpg bVal  2mpg bEVE { h
g-mi 2 la Fz aa 0 Iawinz(l')'z)
21\'ps,_bg& 2wp, bRl 2mpg b2 VZ{ Ga °
. (h25)
where

a, = generalized coordinate of the mode consisting
-of pure vertical translation

Qg = generalized coordinate of the mode consisting
of pure pitch about the pitch axis

n"\
<
]

distance of the elastic axis aft of the aero-
dynamic center

fea = radius of gyration about the pitch axis

wh = natural frequency of the ] generalized
coordinate
Wqg = natural frequency of the qq generalized
coordinate
Ia = Iyy (426)
Z = 2(-2‘—'3) I r| (T)V_'a)2
TR () \P (27)
T
m b (428)
bg = b (429)

It will be noticed that there is no structural or aerodynamic damping
present in the equations of motion and that the asymmetry of the stiffness
matrix is clearly apparent. This asymmetry has the potential to cause the
frequencies of the undamped vibration modes to coslesce. Fiutter occurs
at the airspeed at which the frequencies of the undamped modes become
equal. The relationship of the various axes is shown in Figure 18. The
airfoil dats are listed in Table III.
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Substituting these airfoil data into the eguations of motion yields

12516 -18774{| g, | + | .5751x107*  -.47962 x 10722 rq,; = |0
-1.8774 14125 || g, 0 0l6123 (1= .1792) [qa 0

(430)

where Z = .03968 (v/33.8)2 with V in knots.

The asirfoil data were input to the computer progrem, and the above coef-
ficients were compared with those calculated by the program for a range of
values of V. In all cases, the coefficients were identical within the
accuracy of the desk machine calculetiors.

The eigenvalue solution to the test case is given in Figure 5 of Reference
12. The results were converted into the notation of the computer program
output, and the two methods of solution were compared in Figures 19 and 20.
Within the accuracy with which solutions could be read from Figure 5 of
Reference 12, the two methods of solution give identical results. In
particular, the flutter and divergence speeds as quoted in Reference 12 are
compared in Table IV with those obtained by the computer program.

To run the test case with the computer program, it was necessary to use a
special tabulation of the aerodynamic coefficients. The tebulation ccn-
sisted of the set of coefficients given in Table V.

This set is the same as would be used for a solution using,conventional
aerodynamic coefficients at My = 0, k = O except that <h = 0 instead
of 1. This means that the lift-curve slope of dC_/da = 27w for & uni-
form vertical translational velocity is replaced by zero, thus eliminating
all aerodynamic demping. It is use of h = 0 which gives the flutter
solutions in Figures 19 and 20 their unusual appearance.

The test case was also run with the tabulsated set of 2320 aerodynamic coef-
ficients previously described. This served as a partial check on the ise

of this table of coefficients in the computer program. The solution was

run specifying My = 0, k = 0 and the results are compared in Figures 21
and 22 with the computer solution obtained through simplified aerodynamics.
In passing, it may be noted that the simplified theory is not & good approx-
imation for this test case. This is probably due to the fact that the
flutter is of the milder type and that the twc modal frequencies do not
cross.

This was the only test case in which & check was made of the solution fre-
quencies and decay rates. However, many more check cases were run to

verify that the coefficients in the equations of motion were being calcu-
lated correctly and that the various facilities availeble in the program
were working correctly. The number of geneialized coordinates used in these

checks varied from 2 to 10, the latter being the maximum number for which
the flutter solution was pfogrammed. & er 1or
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CORRELATION OF CLASSICAL FLUTTER CALCULATIONS
WITH AVAILABLE EXPERIMENTAL DATA

DISCUSSION OF EXP?ERIMENTAL DATA AVAILABLE FOR CORrELATION

Correlation with experimental blade flutter date obtained at high Mach
numbers and high advance ratios had been intended. However, no such data
could be located in the l**erature on the subject. Instead, the choice
lay between results obtained by NASA Langley, Referenc . 13, for a model
rotor in hover (p=0) for high Mach numbers, and results obtained by
Cornell Aeronautical Leboratory, Reference 16, for a model rotor in essen-
tially incompressible flow at high advance ratios. As the emphasis of the
study was on the effect of compressibility, it was decided to use the re-
sults obtained by NASA Langley for hover. The Cornell Aeronautical Labora-
tory results were used for further correlation.

Correlation could be attempted with only part of the NASA Langley data, as
a large part of it weas obtained with high pitch angle settings, so that
the blade was either undergoing stall flutter or at least operating at
angles of incidence for which classical flutter theory is not valid.

CORRELATION WITH NASA LANGLEY EXPERIMENTAL RESULTS

The correlation was divided into three parts, each part using a different
blade configuration. The blades used were designated NACA 23012 1(R),
NACA 23012 2(F) and NACA 23012 2(R). The main rotor and blade character-
istics are stated bhelow.

The tests were conducted i-. the Langley vacuum sphere with a single artic-
ulated blade. Thus, the blade operated at the hover condition. The density
and speed of sound of the testing medium could be varied. There was no lag
hinge and no data were given for edgewise motions; so the blade was assumed
to be rigid in th ' edgewise direction. All blades tested, for which corre-
lation was attempted, had an NACA 23012 eirfoil section. The blades were
considered to be rigid in flatwise bending and torsion for the inner 8
inches of radius. The remaining 38 inches of radius was considered as a
uniform cantilever having the properties given in ‘fable VI.

Difficulty was encountered in getting the calculated nonrotating elastic
bending frequencies to correlate with the measured values stated in Table
VI. The cantilever torsion frequencies presented no difficulty. Even-
tually, it was decided to increase the blade EI so as to give a first
bending frequency equal to the measured value and to ignore any difference
between calculated and measured second bending frequencies. The required
values for EI are those stated in the table. This approach was Just-
ified in that flutter occurred between the flapping and torsion modes, with
very little participetion of the elastic bending modes.

Before proceeding with a discussion of the correlation results, mention will
be made of the convention used to refer to the coupled blade modes obtained
from the eigenvalue solution. The labeling of the coupled modes follows the
conventional practice of referring to a mode by the name of the generalized
coordinate with whieh it becomes identical as the airspeed approaches zero.
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This assumes, of cuurse, that the generalized coordinates are normal modec.
Ntherwise, the coupled mode will always be & combination of two or more gen-
eralized coordinates. As airspeed increases, the proportion of the general-

ized coordinates in any coupled mode will vary. Kence, a "torsion" mode
will start out as being predominantly torsional; but by the time flutter or

static divergence occurs, it may be predominantly flepping. !Hence, the

statement that torsional divergence occurs is not meant to imply that the
mode sh.pe was torsional when the instability occurred but rather that the

coupled mode that suffered instability started out at zero airspeed as be-
ing & torsion modc. ]

Correlation Using NACA 23012 1{(R)
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Flutter occurred at lcw Mach numbers. This case was run because resulis
were available for very small blade pitch angles. Ths caleulated and ex—
. . perimental results are compared in Figure 23, where both reduced flutter
» speed Vpogr/bw and the ratio of the flutter frequency to blade first
: natural torsional frequency are plotted as a function of blade pitch angle.
| The curve of reiuced flutter speed separates the stable and unstable re-
' gions, with the unstuble region lying above the flutter curve. As the blade
pitch angle is increased, the reduced flutter speed drops slightly at first
and then rapidly as the blade epparently begins to stall. As the pitch
1 angle is further increased, the reduced fiutter speed decreases until some
! minimum value is reachel. Furtl.er increases in pitch angle result® in a
rather sharp rise in the reduced flutter speed. The curve of frequency
ratio shows that a reduction in the value of the reduced flutter speed is
accompanied by an increase in flutter frequency.

The portion of the flutter curve corresponding to low pitch angles defines

the region of classical flutter, .hereas the portion of the curve correspond-
ing to high pitch angles defines the region of stell flutter. As shown by .
the frequency ratio curve, classical flutter occurred at a frequency lying i
between the flapping and torsion mode frequencies corresponding to the fact g
that the classical flutter resulted frow coup..ing of the flapping and tor- :
sion modes. On the other hand, steall flutter occurred at a frequency very i
neerly equal to the first torsional natural frequency corresponding to the f#
fact that stall flutter is a predominauntly torsionel oscillation.

The calculated values are valid for smell pitch angles only, and the results
were plotted for (8ogr)s = 0° . It can be seen that reasonadle correla- ,
tion of flutter speed was obtained but that the flutter frequency wes con- f
siderably lower than the experimental values. This discrepancy will be
considered again later.

Correlation Using NACA 23012 2(R)

Figure 24 presents the comparison of the experimental and calculated results.
The reduced flutter speed now includes the ratio./p/p, which was introduced
to reduce the scatter of the experimental results obtained at different den-
sities of the testing medium. The reduction in scatter occurs because the
experimental flutter speeds occurred at approximately constant dynamic pres-
sure, that is at constant equivalent airspeed. The reduced flutter speed is
plotted against the blale tip Mach number, veriations in tip Mach number be-
ing obtained by varying the speed of sound in the testing medium from approx-
imately 500 fps to 1000 fps. The calculated results show the reduced

flutter speed decreasing slowly at first, then more rapidly as the tip
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Mach number increases from My = 0.2 to My = 0.7 .
Then the reduced flutter speed decreases more slowly until a minimum occurs
at Mt = .9, after which it begins to increase rapidly. This beneficial
effect of increasing Mach number is due to the rearward shift in eserody-
nemic center as the Mach number increases and can be explained as follows.
The negative aerodynamic spring acting in the torsion mode is composed ol
two parts. The first is a function of the aerodynamic center-to-elastic-
axis spacing and is the usual. negative aerodynamic spring encountered in
fixed~wing flutter. The second part is proportional to the square of the
rotor RPM and is a function of the aerodynamic-center-to-center-of-gravity
spacing (Reference 1, pp 153 through 156). With the 2{R) blede, the
elastic axis is at 26.5% chord; for low Mach numbers, the aerodynamic
center is at 25% chord sc that the negative aerodynamic spring due to the
aerodynamic-center-to-elastic-axis spacing is negligible. Hence, the only
negative aerodynamic spring in the torsion mode is due to the aerodynemic-
center-to-center-of-gravity spacing. This is large since the center of
gravity is 10.8% chord aft c¢f the 25% chord. Hence, as rotor RPM is in-
creased, the frequency of the torsion mode decreases as can be seen in
Figure &5. The torsion mecde becomes coincident in frequency with, first,
the second flatwise mode; then, the first flatwise mode; and, finally, the
flapping mode. As the torsion mode frequency crosses a bending mode fre~
guency, it has the opportunity to couple with that mode to produce flutter.
Whether it does or not is a function, among other things, of the dynamic
coupling between the bending and torsion modes and the amount of damping
in each of the modes. For ithe case under consideration, flutter occurred
only when the torsion mode frequency crossed the flapping mode frequency,
as can be seen in Figure 26.

‘At transonic Mach numbers, the aerodynamic center moves aft, thereby de-
creasing the aerodynamic-center-to-center-of-gravity spacing, and hence
reducing the negative aerodynamic spring in the torsion mode. Thus the

frequency of tne torsion mode decreases more slowly as a function of rotor -

RPM as the aercdynamic center shifts aft. This delays to higher values of
rotor RPM the point 2t which frequency coincidence and, hence, flutter
occur. As long us the center of gravity is rot too far aft, a Mach number
will eventually be reached where the torsiosn mode frequency no longer de-
creases with increasing rotor RPM and may even begin to increase. 1In
either case, if the torsion mode frequenc} has not come close to the flap-
ping mode freduency, then flutter is eliminated. From Figure 2, it can
be seen tha% the beneficial effect of high Mach numbers was much more pro-
nounced with the experimental results than with the cslculated values; this
indicates that perhaps the aerodynamic center moved aft faster on the test
blade than was implied by the theoretical aerodynamic coefficients.

In passing, it can be stated that the above mechanism by which coupled
bending-torsion flutter occurs with a rotating blade is quite general. The
mechanism can be described in the following way. A negative aerodynamic
spring must exist in the torsion mode to cause its frequency to decrease
w#ith increasing rotor RPM. A rnegative aerodynaemic spring will result when
the elastic axis, or the center of gravity, or both, are aft of the aero~
dynamic center. As the torsion mode frequency decreases, it will cross the
bending :modes from the highest to the lowest frequencies. With each cross-
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ing, there is the possibility thet flutter will occur; and with each
successive crossing, -his possibility increases because the potential to
flutter is greatest w:th the low-frequency bending modes. Also, there is
quite a chance that alter the torsion mode has crossed the lowest bending
{or flapping) mode, its frequency will drop to zero, at which point static
divergence occurs, as shown in Figure 25. Thus, if flutier occurs, there
is a good chance that static divergence will occur at a slightly higher
rotor RPM. In fact, if flutter does not occur until after frequency coin~-
cidence has occurred, as is sometimes the case, then static divergence may
occur before flutter.

Returning to Figure 24, it can be seen that reasonable correletion of .
flutter speed occurred for the lower blade pitch angle (namely, (fogr)s
= 7.29) but that the calculated flutter speed is unconservative when com-
pared with the experimental results for the larger pitch angle (nemely,
(Bo.8r)s = 11.2°). The drop in the measured flutter speed at the higher
pitch angles is consistent with the results given in Figure 23 and would
indicate that the flutter mechanism is changing from classical flutter to
stall flutter. The frequency curve in Figure 24 shows that for both values
of blade pitch angle, the flutter frequency was approximately equal to the
nonrotating blade torsion frequency, which indicates that perhaps the
flutter mechanism for the instability at the lower pitch angle was also
more in the nature of stall flutter.

Correlation Using NACA 23012 2(F)

Blade 2(F) is very similar to blade 2(R) considered in the previous sec-
tion. The main difference is that the center of gravity has been moved
forward so that it is 2.5% chord aft of the elastic axis instead of 10.8%
chord. The comparison of experimental and calculated flutter speeds is
given in Figure 27. Comparing the results for blade 2(F) with those for
blade 2(R) given in Figure 24 shows that decreasing the center-of-gravity
offset has caused the reduced flutter velocity for the experimental res ilts
to increase slightly,but that the reduced flutter velocity for the calcu-
lated results has almost doubled. Again, the measured flutter frequencies
are considerably higher than the calculated valves. The most disturbing
aspect of the lack of correlation is that the predicted flutter speed is
considerably higher than the measured values, that is, the predicted flutter
speed is unconservative. The discrepancies between the measured and calcu-
lated values as outlined above could be attributed to the model blade's
experiencing stall flutter, since the transition from classical to stall
flutter is marked by the following characteristics:

1. The sensitivity of flutter speed to center-of-gravity
offset decreases and practically disappears.

2. The flutter frequency increases considerably.

3. The flutter speed decreases considerably.

Items 2. and 3. can be seen in Figure 23.
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Satisfactory correlation of reduced flutter speed was obtained for blades
1(R) and 2(R), both of which had a large center-of-gravity offset. The
lack of correlation of the flutter frequency for blades 2(R) and 2(F) and
the unconservative reduced flutter speed calculated for blade 2(F) could
be explained by assuming that the flutter mechanism was stall flutter
rather than classical fiutter. Such an explanation, however, cannot be
used to explain the lack of correlation of flutter frequency when consid-
ering blade 1(R). Hence, it was decided to attempt to correlate with the
experimental flutter results stated in Reference 1k.

CORRELATION WITH CORNELL AERONAUTICAL LABORATORY EXPERIMENTAL RESULTS

The test equipment consisted of a single-blade hydraulically driven rotor
mounted above a test trailer which was towed along an airport taxistrip.
Blade chordwise center-of-gravity position was adjusted by means of lead
welghts housed in a cylindrical pod at the blade tip. Two features of the
blade were somewhat unusual. One was the location of the blade elastic
axis at 4l% chord. This gives a large negative aerodynemic spring in the
torsion mode due to the large aerodynamic-center-to-elastic-axis spacing.
In this respect, the blade is more akin to a fixed wing. The other feature
was the very low frequency of the rigid body pitch mode. This frequency
was varied during the testing. Otherwise, the Cornell model blade was )
similar to the NASA Langley model blade. The blade was untwisted and ar-

ticulated in flapping with a zero offset flapping hinge. There was no lag

hinge and since no data were given in the edgewise direction, the blade

was assumed to be rigid for edgewise deformations. With respect to flat-

wise bending and torsion, the blade was also assumed to be rigid out to a

biade radius of T inches. The characteristic blade parameters are given

in Table VII.

From the blade characteristies it appears that the blade had small center-

of-gravity offset, as the center of gravity was only 1.5% chord aft of

elastic axis. However, the pitch frequency was much lower than the canti-

lever torsion frequency, so that flutter occurred as a result of coupling

between the flapping and rigid-body pitch modes. Hence, for the unbalanced

blade, with the feathering axis at 25% chord, the center-of-gravity offset !
was 16% chord, which, in combination with the low pitch frequency and the

large negative aerodynamic spring in the pitch mode, resulted in flutter

at low forward speeds and rotor RPM. Because of the very low rotor rota- !
tional speeds employed, flutter was obtained up to u = 0.7 at relatively

low forward velocities, with a blade tip Mach number always less than 0.3.

Correlation was attempted with the results given in Figures 10(a), 10(b),
and 10(c) of Reference 16. The structural parameters varied were blade
pitch frequency and blade chordwise center-of-gravity location, the latter
being varied by meaans of balance weights added to a pod at the blade tip.

A diegram of the pod and the balance weight positions is given in Reference
1k, The parameters corresponding to the correlation cases are given in
Table VIII.




T

Rk

==

where

W, is the nonrotating first flatwise bending frezquency

Gbo is the nonrotating rigid-body pitch frequency

i; is the distance of the balance weights ahead of
the 25% chord

Xe is the equivalent center-of-gravity location. It is

¢ defined in Reference 1k as the chordwise center of
gravity iocation of a rectangular blade having a uniform
mass distribution such that the ratio of the pitching-
flapping product of inertia to the flapping inertia is
the same as that of the nonuniform blade being studied.

9880 is an alternative measure of the inertial coupling

+/988 0g,8, between the flapping and pitch modes, defined in
Reference 1k.

e . 1 9 g6,
£ - ags - 190505 (431)

The experimental data of Figure 10(c) in Reference 16 is for the case of
no added '.eights, and represents flutter of the uniform unbalanced blade.

The results given in Figure 28 pertain to data for the flatwise to torsion
frequency ratio W¢,/wg, = .63, with wg, = 132.5 radians/ss_c. The
rotor speed at which flutter occurred is denoted by £ , and wg, is
the nonrotating rigid-body pitch frequency. Hence, raising the flutter
speed § corresponds to decreasing the value ot Wwg,/§ . Nondimen-
sionalizing the flutter speed $§ with respect to the pitch frequency

Wy,  eallows experimental results obtained at different values of wp,
to be plotted together, as the flutter speed is roughly proportional to

Wy, - It can be seen that the predicted flutter speeds agree very well
with the measured values. The calculated flutter speed corresponding to a
particular value of i was obtained by simultaneously increasing forward
speed and rotor speed so as to keep L constant. For example, the re-
sults corresponding to p = 0 are given in Figures ) and 30. Figure 29
is a plot of the coupled modal frequencies versus { , and Figure 30 is
a plot of the corresponding modal decey rates. The decay rate of the flap-~
ping mode changes at @ = 345 RPM from being convergent to divergent,
giving a flutter speed of 345 RPM. The results are of particular interest,
as, from the frequency and damping curves, it would appear that the flutter
occurs between the flapping and first bending modes. This was the only
case in which this occurred, and it was also the only case for which the
pitch frequency was above the first flatwise bending frequency. A detajiled
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investigation was made of this case, from which it was deduced that:

1. The only modes to couple together to give flutter were
flapping and rigid-body pitch. The resulting flutter
frequency and decey rate were a good approximation to
the five mode solution.

2. The addition of first flatwise bending to the flapning-
pitch binary gave a solution almost identical to the
five mode solution.

3. The second flatwise bending mode and cantilever torsion
modes made a negligible contribution to the flutter
mechanism and could have been deleted from the analysis.

Thus, flutter was due to coupling of the flapping and rigid-body pitch
modes as was to be expected, and this was found to be the flutcter mechanism
for all of the cases that were studied.

The results given in Figure 31 pertein to data for the lower pitch fre-
quency; they can be compared directly with Figure 10(c) of Reference 16.
The pitch frequency of the blade has been reduced from 132.5 rad/sec to
64.5 rad/sec so that the nonrotating pitching frequency is now lower than
the nonrotating first flatwise bending frequency, with the w¢,/ g, = 1.3l.
The variations of the coupled modal frequencies and decay rates with in-
creasing airspeed and 2 for # = 0.5 are given in Figures 32 and 33
respectively. These variations are typical of the variatioas in coupled
modal frequency and decay rate that were obtained in all the remaining
cases. It can be seen that, due to the large negative aerodynamic spring
in the pitch mode, the pitch mode frequency decreases rapidly with in-
creasing airspeed or & . Flutter occurs near the airspeed at which
the pitch mode frequency crosses the flepping mode frequency. It can be
seen that the flutter is extremely violent, the decay rate of the flapping
mode changing from C/Cc = 0.30 (stable) to C/C¢ = 0.0 (flutter)
with an increase in rotor speed of only 13 RPM. This is to be expected
with pitch-flap flutter, especially with the large aerodynamic-center-to-
center-of-gravity and pitch-axis-to-center-of-gravity offsets. After fre-
quency coalescence o f the pitch and flapping modes, the frequency of the
pitch mode continues to decrease until flapping divergence occurs. In
some of the other cases, the frequency of the pitch and flapping modes
remained almost equal after flutter occurred, and static divergence did
not take place.

In Figure 31, it will be noted that the calculated results are now scmewhat
conservative; that is, the calculated flutter speed is lower than the ex-
perimental flutter speed. Also plotted is the flutter speed calculated in
Reference 16. It can be seen that the calculated flutter speed of the
present study lies between the measured value and the value calculated in
Reference 16.

The experimental data of Figure 10(b) in Reference 16 is for the partially
balanced case, with the results shown in Figure 34. The calculated flutter
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speed is now lower t..an buth the measured value and the value calculated
by Cornell. For higt advance ratios, both calculated values are extremely
conservative with re:pect to tl.z measured flutter speed. For example, at -

= 0.5, the rolational flutter speed calculated in Reference 14 is
.50 times the measured rotational flutter sp2ed. The calculations of the
present study give a rotational flutter speed 139 times the measured rota-
tional flutter speed
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The Reference 16 results were obtained by using an analogue solution, and
the stability of the rotating blade was considered; whereas the present
study uses the stopped-rotor approach, the solutions being obtained with
the rotor stopped at an azimuth angle of Y = 90°, which is considered
to be the most unstable azimuth angle with respect to clagsical flutter.
Hence, there is an irherent degree of conservatism in the stopped rotor
approach; ideally, solutions should be obtained for different positions
around the azimuth angle with the resulting meximum and minimum flutter
speeds bounding the actual flutter speed. For exrample, the region of in-
stability mey extend over an azimuth angle of 60°. While the blade is
passing through this region, its oscillations will be diverging. For the
| remaining 3000 of rotation, they will be dying away. The flutter speed T -
would be obtained by integrating the buildup and decay of the oscillations |
for one revolution, flutter occurring when the oscillation amplitude at 1
the end of the 360° rotation was equal to the amplitude at the beginning.
However, this approach was beyond the scope of the study.
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Referring again to Figure 34, one can see thot the measured flutter speed :
l occurred at a constant value of rotor =peed (for @y, constant) inde-
pendent of the advance ratio. That is, the measured flutter rotor speed
did not vary with forward velocity, which is a very surprising result.
The coefficients in the flutter equations are obtained by integrating
blade structural and aerodynamic properties, including the mode shapes,
across the span. With a fixed wing, this integration or averaging process
for & simple planform results in a good definition of flutter speed through
use of the wing properties at the 75% span. A similar effect would be ex-
pected for a rotating blade for which, in addition, the airspeed varies
spanwise. The flutter speed of a rotating blade would then be a function |
of the airspeed at some spanwise station, say 80% span, and would be in- ‘
dependent of the combination of rotor speed and forward velocity giving
the velocity at the station. Both sets >f calculated results behave in i
. this manner. As forward speed increases, the rotor speed at which flutter . )
occurs decreases, so that flutier occurs at the same value of average blade
airspeed. However, the measured flutter speeds in Figure 34 seem to in-
dicate that the flutter mechanism depends predominantly on rotor speed and 1
is not influenced by changes in the average airspeed of the blade. This
trend of the experimental results certairly deserves to be investigated
thoroughly, as it seems to indicate that some aspect of the flutter mech-
anism is missing from the theoretical flutter calculations.
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The results given in Figure 35 pertsin to the almost completely balanced
blade of Figure 10(a) in Reference 16. The flatwise to torsion frequency
3 ratio is W¢, / Wy, = 1.03, and the torsion natural frequency is ;
? i Wg, = 65.9 rad/sec. Again, the test results show that flutter
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occurred at constant rotor speed. The digital solutions are so conserva-
tive as to bear little relation to the measured results. Flutter still
consists of pitch flap coupling, and the gquestion arises as to why flutter
occurred between flapping and pitch when the inertia coupling between these
modes is almost zero. If one looks at the change in the measured flutter
speed with changing mass balance as given in Table IX, it can be seen that
the measured flutter speed increased by a factor of 4 from the unbalanced
to the fully balanced zase, whereas the calculated flutter speeds increased
only slightly. It is this insensitivity of the calculated results to
changing mass balance that makes the correlation so poor for the fully
balanced blade. In Figures 34 and 35 the results have been plotted for
the case where the mass balance coefficients were not added to the equa-
tions of motion. Again the insensitivity of the calculated flutter speed
to changing mass balance is apparent.

The results given in Figure 36 pertain to the balanced blade of Figure
10(a) in Reference 16 with the flatwise to torsion frequency ratio

Wg, /Bg, = L.bk and t*3 natural torsion frequency wp, = 46.9 rad/sec.
Agein the insensitivity of the calculated flutter speed to changing mass
balance has caused the calculated flutter speed to be extremely conserva-
tive.

SUMMARY OF CORRELATION WITH NASA-IANGLEY AND CORNELL TEST RESULTS

The correlation with Cornell test results was begun because of the poor
correlation of flutter frequency that occurred with the NASA-Langley model
results. The frequencies at which the Cornell model blade fluttered are
not stated, and so a comparison of calculated and measured flutter fre-
quencies camnot be made. However, it was hoped to achieve satisfactory
correlation of flutter speed, which is much more important than flutter
frequency. From the above review of the correlation with Cornell data, it
can be seen that this was not achieved. The overall correlation is cer-
tainly encouraging, but in some areas questions remain to be answered. For
cases where it is reasonably certain that the model blade was undergoing
classical flutter, the calculated flutter speed was in every case either
equal to or below the measured flutter speed. This conservative nature of
the calculated flutter speed is important. It may cause concern unnec-
essarily, but it gives assurance that classical flutter will not occur
below the calculated speed.

The emphasis of the study was on the effects of compressibility at the
h’gh advance ratios at which present-generation nelicopters are operating.
It was for this purpose that the compressible aerodynamic coefficients
were assembled and used in the computer program for obtaining flutter solu~
tions. However, because of the lack of test data, the correlation had to
be made with cases involving either high Mach numbers in hover or very luw
Mach numbers in hover and in forward flight. In fact, quite a few of the
cases were for the hover condition involving low tip Mach numbers for which
a satisfactory unsteady aerodynamic theory exists (Reference 15 ). It is
expected that use of the Loewy coefficients in these cases would improve
the correlation obtained.
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It is unfortunate that test results were not available for the high Mach
number, high advance ratio flight regime; not only is this the area where
a proven method is needed to predict classical flutter speeds, but it is
also the area where the compressible aerodynamic coefficients used in the
computer solution are considered to bz applicable. On the other hand, the

validity of these coefficients for the hover case with low tip Mach numbers
is questionable.

It is felt that the methods developed during the present study can be used
as & design tool in evaluating blade flutter speeds and in determining the
sensitivity of the flutter speed to changes in design parameters. It is
suggested thet the compressible serodynamic coefficients be replaced by

Louwy ccefficients for cases involving low tip Mach numbers with low ad-
vance ratios.
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EFFECTS OF VARIATIONS IN PARAMETERS

DESCRIPTION OF BASIC CONFIGURATION

It was decided 4o use the NACA 23012 2(F) model blade described in
Reference 13 for the parametric variations, with tl.» same variations being
considered for the two cases where the blade root is considered fixed and
articulated. The rotor speed and chordwise center-of-gravity position
were adjusted to give reasonably strong flutter at about p = 0.25.
Otherwise, if flutter is week, small changes in parameters are likely to
have a very stahilizing effect; whereas with viclent flutter, large changes
in the parameters may have little effect in reducing the flutter. Initial
solutions attempted to adjust the speed of sound so that at p = .50,
the Mach number was unity. This is equivalent to testing the model blade
in a gas such as Freon, for which the speed of sound is much less than in
air. However, varying the speed of sound had a confusing effect on the
flutter speed, so this attempt was not pursued and the solutions were run
with the speed of sound equal to 1116 ft/sec. Therefore, the blade tip
Mach number at which flutter occurred was relatively low. Air density was
set at its standard sea level value. All cases studied were for the ad-
vancing blade.

The main parameters defining the nominal case for the articulated and
hingeless blades are given in Table X.

‘The blade is considered to be rigid for the first 8 inches out from the
rotation axis. For the remaining 38 inches, the blade is uniform and the
structural date refer to the uniform part of the blade. The parameter
variations that were considered are summasrized in Table XI. In the case
numbers, A refers to the articulated blade and R to the nonarticulsced
(rigid) blade. It will be noticed that each parameter is varied individ-
ually from the nominal case; simultaneous variations are not ccnsidered.
The variations for the articulated blade are considered first.

The results are presented in the form of stability boundaries such as those
shown in Figure 39. The advance ratio p at which instability either
begins or -ends, is plotted versus the parameter under consideration. For

a particular curve, the unstable region is always abcve the curve except
for the ct ‘e where a loop occurs. In this case, the wnctable region lies
inside the loop so that as advance ratio increases, instability occurs on
crossing the lower boundary and stability is regained on crossing the upper
boundary. The stable region of interest is the area lying below the flutter
curves and is that region in which a practical heiicopter blade must oper-
ate. The u.per boundary of this region is shown sheded in thre diagrams.
Some of the curves are drawn in as broken lines to indicate that only the
form of the variation is known, not the exact shape and position of the
curves. The precise location of the curves can always be determined by
obtaining additional flutter solutions. This was not attempted, as all
information required from the parametric variation is contained in the
broken curves.
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RESULTS FOR THE ARTICULATED BLADE

For reference, the variation of the solution frequency and decay rate ver-
sus rotor speed is given in Figures 37 and 38,respectively,for the nominal
blade operating in hover. The blade flutters at 1190 RPM, at which speed
the torsional mode anil flapping mode frequencies are almost equal.

Cases 1.Al and 1.A2 of Table XI consider two elastic axis positions in
addition to the nominal position; the results are shown in Figure 39.
Figure 39 also shows a number of additional results, which were obtained
to permit better definition of the instability boundaries. With the
elastic axis at 25% chord, the major contribution to the negative aevo~
dynamic stiffness is the aerodynami:-center-to-center-of-gravity spacing,
and this contribution is unchanged as the elastic axis is shifted aft.
However, moving the elastic axis toward the blade trailing edge increases
the aerodynemic-center-to-elastic-axis spacing, which begins to maxe a
sizeable contribution to the negative aerodynemic stiffness, thereby caus-~
ing a reduction in the torsional divergence speed. The reduction in the
elastic-axis-to-center-of-gravity spacing from 13% to 3% chord and finally
to -T% chord (center of gravity ahead of the elastic axis) has eliminated
flutter of the first flatwise mode, raised the flutter speed of the flap-
ping mode, and eliminated flutter below the torsional divergence speed.

As the elastic axis moves from 37.1% chord to 37.2% chord, the roles

played by the flapping and torsional modes are interchanged, but there is
no discontipuity in the curves as a result of this switch. On the root
locus plots generated by the program, the flapping and torsional modes
approach each other when the advance ratio increases, and for some special
value of elastic axis position between 37.1% and 37.2% chord, they will
meet tangentially from opposite directions. At this point the flapping

and torsional modes have identical frequency, damping, and motion. Further
increases in the advance ratio cause the root locus paths to leave the
point of intersection at right angles to the incident paths. It is then
arbitrary as to which of the retreating paths is termed the flapping or
torsional mode. As the advarce ratio is increased, one of the modes
reaches a divergent instabilisy and then the other reaches a flutter in-
stability. The onset of these instabilities provides the points on the
boundaries in Figure 39 where the flutter instability end the divergence
instability modes interchange. With the elastic axis forwerd or aft of
this special position, the flapping and torsional branches each break awvay -
without reaching a point of intersection. In this case, the modes can, as
usual, retain the designations assigned for p = 0. For forward positions
of the elastic axis it is the torsionsl mode which meets the w = 0 axis
and therefore suffers static divergence, whereas for aft positions it is
the flapping mode which meets the w = 0 axis.

The switch in the stability of the torsional and flapping modes is & result
of the change in the model coupling that occurs as the elastic axis is
shifted aft. This effect is examined in Figures 40 and 41, in which the
amplitude ratio q,/qq and the phase angle are plotted versus advance
ratio, for both the flapping and the torsional modes. Figure 40 considers
the elastic axis at 25% chord, and it can be seen that in hover, the flay-
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ping mode hegins as a predominantly flapping motion q; /qg = 16 while
the torsional mode beings as a predominantly torsional motion qn/qq = 0.6.
As advance ratio increases, the amount of torsional motion in the flapping
mode increases, and, simultaneously the amount of flapping motion in the
torsional mode increases so that the modal ratios of the two modes approach
each other. At u = .35, the two ratios become almost identical. A
similar effect oceurs with the elastic axis at US5% chord, Figure 41; how-
ever, in this case the amount of flapping displaceument in the torsional
mode is greater in hover than with the elastic axis at 25% chord. It can
bé seen that the mode with the smaller phase angle at hover is the one
which suffers static divergence.

The effect of moving the elastic axis aft may be summurized by saying that

the effeet is to increase the flutter speed but to cause a decrease in the .
static divergen~e speed. An optimum location for this blade occur,ed with

the elastic axis in the range 32% to 40% chord. f

Cases 2.Al, 2.A2, 2.A3, and 2.Al4 of Table XI consider four center-of-
gravity positions in addition to the nominal position; the results are !
shown in Figure k2. ]

As the center of gravity moves aft the static divergence speed decreases
uniformly, corresponding to the fact that increasing the aerodynamic-
center-to-center-of-gravity spacing causes a corresponding increase in the
negative aerodynamic stiffness acting in the torsion mode.

A threshold value for the center-of-gravity offset occurs, below which
flutter will not occur. Once the threshold value is reached, the flutter
speed decreases steadily as the center of gravity moves aft. However, the
sensitivity tc center-of-gravity offset decreases at the same time so that
the flutter curve flattens out.

Cases 3.A1 and 3.A2 of Table XI consider two torsional stiffnesses in
adaition to the nominal value, the results are shown in Figure 43, ‘

Increasing GJ raises the torsional divergence speed as expected. It also
has the effect of raising the flutter speed until finally the flapping mode
appears to flutter above the static divergence speed. In fact, increasing
GJ may have eliminated flapping flutter because for GJ/(GJ)nom = 1.328,
frequency coalescence of the torsional and flapping modes occurs at p

= ,366 yet flutter has not occurred by the time static divergence sets in
at p o= by, Sometimes, however, flutter does not begin until after
freguency coincidence has occurred. For example, at GJ/(GJ)yom = 1.,
frequency coincidence of the torsional and flapping modes occurs at fL

= ,235, but coupled flapping-torsion flutter does not begin until p = .27.
Also, the difference in rotur speed at which frequency coincidence and
static fivergence occur decreases with increasing GJ, as can be seen from
Figure i}, Hencs, it is more likely that the flutter sets in after tor- !
sional divergence has occurred rather than that flutter has been eliminated.

Ceses U4.AL and 4.A2 of Table XI consider two blade flatwise bending stiff- f
nesses in aldition Lo the ncminal value; the results are shown in Figure 45.

|
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Increasing EI has eliminated the flutter involvirg the first flatwise
bending and torsional modes. However, the other flutter mode involving
mainly the rigid-body flapping and torsional modes shows little change
with increasing EI , as is to be expected. Hence, increasing the
flatwise bending stiffness will raise the flutter speed and perheps will
eliminate flutter modes involving elastic flatwise bending; however, it
cannot help toward increasiig the fiutter speed of flutter modes in which
fletwise motion is duz principally to rigicd-body flupping.

Cases 5.A1 and 5.A2 of Table XI consider two blade mess variations in
addition to the nominal; the results are shown in Figure L6.

Changing the blade mass has comparatively little effect on the static
divergence speed. The main effect is to cause a change in the fiutter
mode. For a blade mass distribution half the nominal value, the flutter
mode involves first flatwise bending, while for a blade mass dis*ribution
twice the nominal value, the flutter mode involves rigid body flapping.
Based on the results obtained in cases 5.A1 and 5.A2, it is expected that
the flutter speed of the light blade (half the nominal mass) could be
raised substantially by increasing the blade bending stiffness. By com-~
parison, the heavy blade should be relatively insensitive to changes in
the flatwise bending stiffness.

Cases 6.A1 and 6.A2, of Table XI consider two variations in blade pitching
inertia, in addition to the nominal value; the results are shown in Figure

47.

Increasing or decreasing la from its nominal value reduces the stable
operating range of the rotor. In fact for Ia/(Ia)yom < 0.4 and
Ia/(Ia)yom > 2 , the rotor suffers flapping flutter for u 2 O .

so that there is no stable operating region.

RESULTS FOR THE NONARTICULATED BLADE

For reference, the variation of the solution frequency and decay rate ver-
sur rotor speed is given in Figures 48 and 49, respectively, for the nom-
ina. blede operating in hover. The blade flutters at 1160 RPM, followed
by static divergence at 1L00 RPM. Also shown in Figure 50 is the variation
of the critical advance ratio versus rotc. speed. As expected, the higher
the rotor speed, the lower the advance ratio at which instability occurs,
until finally the olade flutters in the hover condition for Q = 1160
RPM. This is in contrast to the Cornell experimental flutter data in which

instability occurred at approximately constant rotor speed irrespective of
the advance ratio.

Cases 1.R1 and 1.R2 cof Table XI consider two elastic axis positions in
addition to the nominal position; the resulis are shown in Figure 51. The
resulic are similar to those of the articulated case, and the comments
made for that case apply also to the hingeless blade. However, because

the hingeless blade does not have a flapping mode, the following equiv-
alence of modes exists:
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Articulated Rotor Hingeless Rotor
Flapping First Flatwise
First Flatwise Second Flatwise
Second Flatwise Third Flatwise

Thus, for example, the behavior of the nonarticulated blade's second flat-
wise bending mode should be compared to the first flatwise bending mode of
the articulated blade, since the mode shapes and frequencies will tend to
be approximately the same. It should be noted that the results shown in
Figures 39 and 51 are applicable to the blades considered, end it should
not be concluded that the results are typical for all practical ranges of
the various blade parameters.

Cases 2.Rl, 2.R2, 2.R3, and 2.RlL of Table XI consider four center-of-
gravity positions in sddition to the nominal position; the results are
shown in Figure 52. Again, the results are very similar to those of the
articulated case, and the comments made for the articulated blade apply
also to the hingeless blade. Only one static divergence speed is shown
(namely, at 13% center-of-gravity offset) because, for all other center-of-
gravity offsets, the highest value of 4  for which solutions were ob-
tained was below the divergence speed. If solutions had been obtained

for higher values of p , then static divergence would have occurred in
every case. It should be noted that no flutter instability was found, for
the range of 4 considered, in the case of the 2.5% center-of-gravity
offset. Therefore only the solutions for the remaining 4 cases appear in
Figure 52.

Cases 3.R1l and 3.R2 of Table XI consider two torsional stiffnesses in
addition to the nominal value; the resulis are shown in Figure 53. The
results are similar to the corresponding results for the articulated blade.
The difference may be attributed to the fact that the torsional frequency
does not decrease as rapidly with increase in u  for the hingeless
blade as it does for the articulated blade. This result applies to the
particular configuration treated, and should not be applied to blades of
conventional stiffness.

Cases 4.R1 and 4.R2 of Table XI consider two blade flatwise bending stiff-
nesses in addition to the nominal value; the results are shown in Figure
54, Increusing the EI raises the frequency of the first flatwise mode
bringing it closer in frequency to the torsional mode. As a result, fre-
quency coincidence of these two modes occurs at inereasingly lower values
of as BEI incr:ases, which causes a reduction in the flutter speed.
There is probably no simple explenaticn for the increase in the torsional
divergence speed with increase in EI, since torsional divergence occurs
well above the flutter speed. Hence, by the time it occurs, the first
flatwise and torsional modes are so strongly coupled that one cannot in-
terpret changes in torsional divergence speed in terms of singie-degree-of-
freedom results for & torsional mode.
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Cases 5.R1l and 5.RZ of Table XI consider two blade mass variations in
addition to the nominal; the results aere shown in Figure 55. Changing
blade mass again ceuses an indicated switch in the stability of modes.
The results are cousiderably different in detail from the corresponding
results for the articulated blade. However, the practical result is the
same; namely, that changing blede mass does not significantly alter the
stable operating r~nge of the blade.

Cases 6.Rl and 6.R2 of Table XI consider two variations in blade pitching
inertia in addition to the nominal value; the results are shown in Figure
56. The results are almost identical to the corresponding results for
the articulated case except that, as noted before, the second flatwise
mode does not flutter in the hingeless case.
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SIGNIFICANCE OF CLASSICAL FLUTTER ANALYSIS AND RESULTS

The method of solution developed for this study has proved to be versatile
and well suited to design use. A number of assumptions end approximations
were made when deriving the equations of motion. It was considered that
the resulting simplified equations should still be able to predict flutter
speeds with acceptable accuracy. It was initially intended to check these
simplified equations by comparing the solutions with experimental flutter
data obtained from blades operating at high tip Mach numbers and advance
raetios. As explained previously this was not possible. The correlation
that was attempted proved encouraging, but many questions remain to be
ansvered. What is still needed is to be able to correlate with a large
body of accurate experimental test data at high advance ratios and tip
Mach numbers. The estimated accuracy of experimentaily determined rotating
Yinde flutter speeds is rarely stated, if ever. Thus, in a correlation
stuay, the experimental results have to be assumed to be accurate. Yet,

‘ the possibility of inaccuracies existing in the experimental results is
considerable. Examples have occurred in the past where, for the simpler
cagse of two-dimensional airfoils oscillating in incompressible flow, dis-
crepancies between measured and calculated flutter speeds were removed by
improvements in the experimental technique. In addition, there is the
possibility that a measured flutter speed may nol be due to classical
flutter. It would be more satisfactory if the solution to the simplified
equationd and the experimental determination cf flutter speeds could be
made part of one test program.

The limited correlation that was attempted showed that the calculated
flutter speed was always conservative for those cases in which it was
reasonably certain that the flutter mechenism was classical flutter. At
times, the results were so conservative as to be of little use in predic-
ting flutter speeds. It may be puinted out that a considerable difference
exists between attempting to predict accurate flutter speeds and a param-
etric study in which the effect on the flutter speed due to changing
paremeters is investigated. In the latter case, which is usually the major
portion of a fiutter investigation, the accuracy of the solutions is of
secondary importance. The main interest is the detection and approximate
location of any regions of instability. The accurate evaluation of their
extent is of secondary importance. The major requirement for parametric
variations is that the equations of motion 2lways give conservative flutter
solutions. Then the method is capable of locating all regions of insta-
bility, with the calculated boundaries enclosing the true boundaries, the
difference between the two being a function of the degree of conservatism
of the flutter solution. The possibiiity of missing an instability is then
confined to incorrect choice of the parameters. From past experience and

* with an understanding of the flutter mechanism, a great deal of information
can be obtained from such investigations, and it can be applied toward
obtaining a flutter clearance. This use of indirect methods was widespread
before the introduction of electronic computation aids; it will have to be
relied on at present for helicopter blade flutter in tue high-speed flight
condition until either a more satisfactory aerodynamic theory is developed
or existing approximate theories can be checked experimentally over a wide
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range of flight conditions. Until these improvements become available, it
is considered that the simplified equations of motion developed in this
study represent an acceptable method for investigating the flutter charac-
teristics of a helicopter blade in high-speed flight; it is believed that
this method is suited for design use where speed of solution is essential.

The parametric study should be used with caution, as it has limited appli-
cebility. In this respect, it may be noted that the equaticns of motion
have mary types of coupling terms, and any one may contribute critically.
For a particular class of blade or a particular flight condition, certain
coupling terms will predominate; if variations are made within this class,
the variations will have a characteristic form. However, for a different
class of blade or flight condition, other coupling terms will predominate
and cause the parameter variations to take on an entirely different form.
It appears that the center-of-gravity offset is one of the few parameters
that are important for most classes of blades. The same situation applies
to fixed-wing flutter. Parameter variations have been published consider-
ing straight, high-aspect-ratio wings with no lumped masses, traveling at
low subsonic speeds. However, these results do not apply if the wing is
traveling at high subsonic Mach numbers or if a flexibly mounted store is
added to the outboard portion of the wing. These limitations do not de-
crease the usefulness of parameter varietions in general, but they do mean
that a new set of curves has to be generated when investigating a new
class of blade or flight condition.
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EXTENDED NORMAL MODE TRANSIENT ANALYSIS CALCULATIONS
CORRESPONDING T) CLASSICAL FLUTTER INVESTIGATIONS

PURPOSES AND METHODS

The extended Normal Mode Transient Analysis was empl.yed to perform blade
response calculations corresponding to blade configurations and flight
conditions for which classical flutter was calculated.

The purpose of these calculations was to provide comparative results and
to obtain time histories of blade response over a complete rotor revolu-
tion, part of which was unstable from the standpoint of the fixed azimuth
classical flutter calculation.

It should be noted that the fixed azimuth classical flutter calculation
and the extended Normal Mode Transient Analysis are quite different in
their basic assumptions. As pointed out in the introduction of this vol-
ume, these fixed-azimuth clessicel flutter calculations consider pertinent
inertial and elastic blade structural effects, together with unsteady,
compressible aerodynamic loadings. These aerodynamic loadings include
phase lag effects which arise because of blade motions in an assumed steady
velocity field eppropriate to & particular azimuth position. This assump-
tion permits solution of the flutter stability equations in a manner which
is mathematically similar to the usual fixed-wing flutter problem, since
the coefficients of the equations are constant in time. The extended
Normal Mode Trensient Analysis, in contrast, integrates the blade differ-
ential equations of motion in a step-by-step fashion, considering pertinent
inertial and structural effects, as well as the time history of instantan-
eous aerodynamic loedings, including stall and compressibility effects.
These loadings, however, are so-called quasi-steady loadings. This refers
to the de zrmination of aerodynamic loadings by steady-state airfoil data
and by the instantaneous relative velocity vector at the 75% chord point of
each blade strip. This excludes phase lag effects between motion and aero-
dynamic loading, which are usually included in flutter calculations. As
pointed out earlier, this precludes prediction of classical flutter in some
cases. However, the type of classical flutter arising because of aft
center-of-gravity location on a fixed wing can be predicted with quasi-
steady aerodynamic effects. Hence, it could be expected that the extended
Normal Mode Transient Analysis results would reflect classical flutter-type
instebilities due to aft blade center-of-gravity position.

Therefore, the blade configuration chosen was that used for the classical
flutter parameter study. This blade had a flapping hinge only for the
articulated case, and was assumed to be, rigidly built in for the nonartic-
ulated case. Edgewise motions were suppressed in both cases. In the
articulated case, rigid-body flapping, two flatwise bending modes, and one
torsional mode were considered. The natural frequencies of these modes
were 1.11, 2.69, 4.81, and 5.62 cycles per revolution, respectively. 1In
the nonarticulated case, three flatwise bending modes and one torsional
mode were considered. The natural frequencies of these modes were 1.43,
L.12, 8.48, and 6.1k cyc?es per revolution, respectively. In order to

93




Akt LA <A o e Lt i Y i b R s gt

Ve A R eoiis ™ K, T

.

" pentte Smtisson T w

[

make the results comparable to those for the classical flutter calcula-
tions, the rotor was assumed to be very lightly loaded, with a collective
pitch setting of 1°. A small loading of this magnitude was used to insure
that some blade excitation was present, which would make any tendency
toward instability more apparent. The shaft angle of attack for the rotor
was effectively zerc. In common with the classical flutter calculation,
no c¢yclic pitch inp»+ was considered. The normal full-scale Reynolds
nunber aerodynamic data were used, appropriate to an NACA 0012 airfoil.
Since blade angles of attack remained low, the blade response results of
interest were assumed to be unaffected by Reynolds number and airfoil
camber.

The extended Normal Mode Transient Analysis was started with the blade at
the zero azimuth position. Starting values for articulated blade flapping
were estimated to be steady flapping angles in each case. The first flat-
wise bending amplitude was used in the same way for the nonarticulated
blade. Starting values for all other elastic modal velocities and dis-
placements were zero.

After starting in the above manner, the numerical integration of the blade
equations of motion was allowed to proceed for a maximum of 10 rotor
revolutions. In many cases, the blade motions became cyclic with respect
to rotor azimuth prior to 10 revolutions after starting. In these cases,
the computer progran automatically terminated the solution, since each of
the subsequent revolutions would have been identical if they had been cal-
culated.

CONFIGURATIONS AND FLIGHT CONDITIONS STUDIED

The method described above was employed for each of the configuration
flight-condition combinations shown in Table XIII. Pertinent character-
istics of the blade were otherwise identical to the nominal blade config-
uration used in the classical flutter parameter studies.

PRESENTATION AND DESCRIPTION OF NORMAL MODE TRANSIENT ANALYSIS RESULTS

Time histories of flapping and .orsion modal displacements are shown in
Figures 57 and 58. Results are shown for various center-of-gravity
positions at each of the two advance ratios. The solutions for X/¢p, = 0,
-.065, and—. 0975 became cyclic within & few revolutions, as shown in Figure .
57 for X/c, =-.0975. All these solutions were similar, with somewhat
smaller flapping and torsional amplitudes for the s naller center-of-gravity
offsets. The solution for X/cy, ==.230, shown in Figure 57, did not
become cyclic, even after 10 revolutions. A slowly decaying one-half-per-
revolvtion component can be seen in the torsicn model time history, with
every other revolution being similar. It appeers that the motions would
not grow significantly larger if the soluticn were allowed to continue.
Note, however, that torsional motions are very much larger than for the
X/cp =-.0975 case. Higher frequency components of gpproximately four
per revolution are visible. Figure 58 is similar to Figure 57, at an even
lower advancs ratio. Note that the X/cp =-.130 case converges rapidly
at the lower advance ratio. Setting the center-of-gravity position further
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aft, to X/cp ==165 and-.20, results in progressively more violent
oscillations of a complicated nature. These apparently grow with time un-
t1il blade destruction occurs.

The nonarticulated blade cases were found to converge rapidly, even with
X/cp, ==130. The first flatwise response was 46% cof the articulated

blade flapping response, although the amplitudes of the nonarticulated

blade also- increased rapidly as the center of gravity was moved aft.

Figure 59 shows blade tip deflections during the last revolution of the
various solutions for the articulated blade at advance ratio = ,30.
Comparison with Figure 5T shows that most of the vertical tip deflection is
the result of rigid-blade flapping motion. Note that moving the center of
gravity aft results in higher average blade twist, which acts like an in-
crease in collective pitch.

In order to present the total elastic blade deformations, Figure 60 was
drawn for the articulated blade with advance ratio p = .30. Note that
the elastic blade deflections are essentially cyclic, with a large component
of twice rotor frequency. These deformations are the maximum value occur-
rirngon the blade and are proportional to bending and twisting stresses and
moments at that section of the blade.

Figure 61 is a similer plot for the articulated blade with advance catio

z = .15 and center-cf-gravity positions further aft. Note that for

X/¢p, =-.165 and-.20, the elastic deformations are noncyclic with azimuth
angle and that a predominate frequency of slightly less than three times
rotational frequency is present. Note that an enormous increase in the
amplitudes of the elastic deformations takes place as the center of gravity
is moved aft. It is probable that the deformations would continue to grow
if the solution were continued beyond 10 revolutions.

In Figure 62, the total elast’lc blade deformations are shown for the non-
articulated blade. This blade was stiff enough in flatwise bending to make
its behavior distinctly different from the similar articulated blade. The
bending deformation d2w /dx? consists almost entirely of one-per-
revolution bending. The blade has maximum torsional deflection at the ad-
vancing blade position. Note that this deflection could te considered an
incipient torsional divergence due to the aft center-of-gravity position.

In Figures 63 and 64, the one~half peak-to-peak nondimensional blade defor-
mations, which are proportional to stress or «lastic moments, are plotted
against center-of-gravity position for the articulated tlade. Figure 65 is
a similar pilot for the nonarticulated blade. Note that = rapid rise in
peek~to-peak deformations occurs for the articulated configurations as the
center of grevity is moved aft past certain limits. The corresponding rise
for the nonarticuluted bladc is similar but much less pronounced.
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DISCUSSION OF NORMAL MODE TRANSIENT ANALYSIS RESULTS
CORRESPONDING TQ CLASSICAL FLUTTER INVESTIGATIONS

In this subsection, appropriate comparisons will be made of the extended
Normal Mode Transient Analysis results and the corresponding fixed-azimuth
classical flutter vesults.

As pointed out previcusly, the Normal Mode Transient Analysis and the fixed-
azimuth flutter calculation are quite different in their basic intent and
analytical approach. In spite of this, some comparisons of the two sets

of results should be made. The aft center~of-gravity practical operating
boundaries predicted for the limited number of cases considered here do

show encouraging agreement between the two methods.

The most important direct comparisoun is thus of Figures 42, 63 and 64 for
the articulated blade, and of Figures 52 and 65 for the nonarticulated
blade. As is shown on Figure 42, flatwise-bending-torsion flutter occurs
at an advance p = .30 for a center-of-gravity offset of 11%, followed
by flapping-torsion flutter at a center-of-gravity offset of about 12.2%.
Figure 63 shows that the flatwise and torsion stresses increase rapidly as
the center of gravity is located aft of these two positions. Reference %o
Figures 57, 58, and 59, however, shows that the flapping motion of the
blades increases comparatively little. Inspection of Figure 60 shows fre-
quency components of the order expected for the flajwise-torsion {lutter.
Thus, some manifestations of the flatwise-torsion flutter predicted for the
idealized fixed-azimuth system appear in the Normal Mode Transient Analysis.
No particular evidence of a flapping-torsion flutter can be discerned. It
would be expected that the fixed-azimuth assumption would be more valid for
the higher frequency flutter modes. Similar observations can be made for
an advence ratio of u = .15, for which flatwise-torsion flutter is pre-
dicted at a center-of-gravity offset of 15% and flapping-torsion flutter at
an offsct of 17.5%. The flutter boundary for the nonarticulated blade
shown in Figure 52 corresponds to first flatwise-torsion flutter, which
corresponds to flapwise-~torsion flutter for the articulated blade. The
onset of this comperatively low frequency flutter for the fixed-azimuth
system is reflected in a fairly gentle rise in stress as center-of-gravity
offset increases.

On the basis of the above information, it can be expected that the fixed-
azimuth flutter celculations will be most accurate for .lassical flutter
frequencies greater than two times rotor frequency when the advance ratio
is greater than p = ,15. When flutter frequencies are smaller, the pre-
dictions of flutter speed are expected to be increasingly conservative.
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Speeds for the CAL Blade Model k4; Xg/C =.0036
We /g, = 1.03 .
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Figure 48. Variation of Solution Frequency With Change
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Blade; r = 0.
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Figure 51. Varying the Chordwise Position of the Elastic
Axis for a Nonarticulated Blade.
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ONE-HALF PEAK-TO-PEAK NONDIMENSIONAL
DEFORMATIONS,

Deformations Versus Aft Center-of-Gravity
Position; g = .30, A;g=0° , Bis=0°,
9.75R = 1.0° ’ as = 0° .
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FIXED AZIMUTH
—CLASSICAL FLUTTER 4
BOUNDARY ;
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CHORDWISE CENTER-OF-GRAVITY POSITION, X/Cp
Figure 65. One-Half Peak-to-Peak Nonarticulated Blsde
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TABLE I. EXAMPLE OF THE APPLICATION OF REVERSE-FLOW

RS

RELATIONS :
$
Calculated Using
My k  Reference Tabulated Reverse~Flow Relations
Ih I 4 Iy

TR e N, ooyt i i
R T o e s b O e A T

0 0.2 2 .72758  ,017730 .72756 017723

7 .72750  ,017750 «736L7 .017720

2 9 12760 017720 2760 017720

. 0.5 0.2 2 J76426 030701 613 ,030723

B l L7625  .030700 JTEk29  ,030682

o b. 8 0.1 2 1,00268  .038615  1.00209 038706

é 7 1.0155C +039200 1,01030 .039720
1

] 0.8 0.7 2 69096 068596 L6904 ,068628

1 7 63607 059300 .66570  ,059325

k 1,0 0.2 2 . 68508 .091657 .68510 .0016448

3 .68513  ,091848 .68511 091650

. 0.h75 u .526501  ,090162 .52501  ,090161

11 8 52501 090163 52501 ,090162

TABLE II. EXAMPLE OF ERRORS IN THE TABULATED
COEFFICIENTS
MN "'0.8

k -mg ( REF. 2 ) -mg ( REF, 7 ) |
0.020 —_— 1,6250
0,025 «58728 —_—
0,040 — 14928
0,050 «91i856 —_ )
0,100 +99870 1,16787 ,
04200 #96130 107725 i

| 167 ?
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TABLE III. AIRFOIL DATA USED FOR THE TEST CASE

Item Symbol Units
Blade-Chord 2b ft
Blade Mass pex Unit Span m slug/ft
Radius of Gyration About Pitch Axis Ta f
Aerordynamic Center Choxdwise
Position Aft of Leading Edge AC % choxd
Elastic Axis Chordwise Position
Aft of Leading Edge EA % chord
Center-of-Gravity Chordwise
Position Aft of Leading Edge CG % chord
Vertical Translation Natural
Frequency W, cpm
Pitching Natural Frequency wa, cpm
Lift Curve Slope CLa rad”’
Air Density P . 002378 slug/fi3
Rotational Speed 91 rad/sec
Azimuth Angle ' deg

168




PR N

T (g g AL g S

2k gh R st ey it

1 bt e g i d

TABLE IV. COMPARISON OF FLUTTER SPEEDS

SOURCE FLUTTER_SPEED DIVERGENCE SPEED

ft /sec | knots ft /sec knots
REF.12 307 181.8 416 246.3
E 480 - 182 2.7

TABLE V. AERODYNAMIC COEFFICIENTS USED FOR THE TEST CASE
My =00 k=0.0-"
{i la  -m - mg I la -my, ~mg
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
=
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TABLE VII. CORNELL AERONAUTICAL LABORATORY MODEL BLADE PROPERTIES

Item
Blade Number ( Reference 1l )
Chord
Flapping Hinge Radius
Outboard End of Rigid Section
Rotor Radius
Shaft Axis Chordwise Position
Feathering Axis Chordwise Position

Center-of -Gravity Chordwise
Position Aft of Leading Edge

Elastic Axis Position Chordwise
Position Aft of Leading Edge

First Flatwise Bending Frequency
(Calculated)

Second Flatwis. Bending Frequency
(Calculated)

First Cantilever Torsion Frequency
(Calculated)

Symbol

2b

CG

Wh
Wh

2

wa,

Value

3.5

L8

25

25

42,5

41.0

76.9

92l

6ho

Unit

in,
in,

in,

% chord

% chord

% chord

¢ chord

rad/sec

rad/sec

rad/sec
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TABLE VII. - Conrcluded

Tten

Symbol Value Unit

Rigid Body Pitch Frequency wg, 116,9~132,5 rad/sec
Plade Mass Density Ratio Eu 46.6
Flanping Mechanical Viscous
Damping Coefficient gh 0

o]
Rigid Body Pitching lode
Structural Viscous Dampine Coefficient 8a,, 0
First Flatwise Bending Mode
Structural Viscous Damping Coofficient &n, o)
Second Flatwige Bending lode
Structural Viscous Damping Coefficient £y .0l

2
First Cantilever Torsion llcde
Structural Viscous Damping Coefficient g, .0l

e e NN s T,

AN

sy vmy <y
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BB, cvsibrman o

=3/

Wl

= SR et v et
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TABLE VIII. CASES USED FOR CORRELATION WITH CORNELL DATA

W wg Xg 9o
, Ref 16 L ° a3 i
‘, Figg:n;:\lg. g, RAU/SEC “% Jagga 8,8,
| 10(a) 1.03 65.9 .0036  ~,00317
10(b) 1,05 69.0 »Oll e 101
10(0) 063 13205 0139 "'0338
‘. 10(c) 131 6h.5 139 ~+338

TABLE IX. EFFECT ON FLUTTER SPEED OF VARYING MASS BALANCE

16 —(I—.p;g_- . a¢| .Q/Eeo
;:ig‘::;n;:. 988 96,8, T # VMEASURED | £ 480 soLuTion

) 10(c) ~338 63 0.0 .25 .27
1. 10{c) =338 1.31 0.0 .33 e32

10(b) -, 101 1,05 0.0 56 -

10(b) - 101 1.05 0.2 - .29

10(a) -s00317 1,03 0.0 1,0 .35

10(a) -.00317 1.kl 0.0 1,0 -

10(a) -.00317 L.k 0.2 - ¢33

17h |
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, - TABLE X. BASIC PrOPERTIES OF THE BLADE USED FOR

é THE PARAMETER VARIATION STUDY

] Ttem Symbol  Value  Unit

; -— :

3

I Chord 2b L in,

A

3 .

h Articulated Blade Flanping Hinge Radius e 2.5 in,

Outboard End of Rigid Section 8 in,
Rotor Radius R 16 in,
Articulated Blade Rotational Speed Q 950 rpm
Nonarticulated Blade Rotational Speed Q 870 pm
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" PABLE XIII.

BLADE CONFIGURATIONS AND FLIGHT CONDITIONS
FOR EXTENDED NORMAL MODE ANALYSIS
CALCULATIONS CORRESPONDING 10 CLASSICAL
FLUTTER INVESTIGATIONS

. Articulated
Case or X
No ; K Ch,
. ‘Nonarticulated b
1 Articulated «30 0.0
2 Articulated .30 -, 065
3 Articulated .30 -.0975
l Articulated «30 «,130
5 Articulated .15 0.0
6 Articulated .15 -.130
7 Articulated o15 -.165
8 Articulated .15 -.200
9 Nonarticulated «30 0.0
10 Nonarticulated 30 ~e 097
11 Nonarticulated «30 - 130
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CONCLUSIONS

The simﬁlified equations of motion predicted flutter speeds which
were conservative when compared with experimental flutter data.

Torsional diveryence and classical bending-torsion flutter of a
rotating blade are closely related, with static divergence occurring
usually at a slightly higher speed than flutter.

As the blade tip Mach number apptroaches unity, the rearward shift
of the aerodynamic center has a stabilizing effect. The increase
in the flutter or divergence speeds was consicerably greater with
the experimental data than that which occurred with the calculated
speeds. This is atiributed to the rearward shift of the aerodynamic
centers being greater in practice than is implied by the aerodynamic
coefficients.
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RECOMMENDATIONS

The correlation study should be extended to help define in more
detail any limitations that exist in the simplified equations
of motion.

A program should be underteken which consist: of experimental
medsurement of rotor bladc classical flutter speeds at high ad-
vence ratios and tip Mach numbers, together with the csalculation
of the corresponding flutier speeds through the use of the sim-
plified equations of motion.

Aercdynamic coefficients taken from Reference 15 should be used
in place of the table of compressible aerodynamic coefficients

when the blade tip Mach number and advance ratio are low.

The effect on the aerodynamic stiffness and damping of bending
modes of the spanwise air flow along the blade should be invest-
igated.

The effects of blade twist and coning angle should be incorporated
into the blade structural coefficients.

The conservatism inherent in the fixed azimuth approach should
be investigated.

As the noxt step toward developing a more accurate unsteady aero-
dynamic theory applicable to high Mach numbers and high advance
ratios, an attempt should be made to modify the existing two-

-dimensional fixed-wing unsteady compressible flow theory to in-
.clude in an approximate fashion the effect of a nonplenar wake,

the effect on the circulation of the presence of more than one
wake, and the effect of a time-varying dynamic pressure,

The .experimental occurrence of flutter phenomena, which appear io
be a combination of stall flutter and classical flutter has been

noted. This type of combined flutter should be studied by analysis
and test.
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