Random Numbers Fall Mainly in the Planes

George Marsaglia
RANDOM NUMBERS FALL MAINLY IN THE PLANES

by

George Marsaglia

Mathematical Note No. 582
Mathematics Research Laboratory
BOEING SCIENTIFIC RESEARCH LABORATORIES
August 1968
Abstract

Most of the world's computer centers use congruential random number generators. This note points out that such random number generators produce points in 2, 3, 4, ... dimensions which are too regular for many Monte Carlo calculations. The trouble is that the points fall exactly on a lattice with quite a gross structure. The paper gives details of the degree of regularity of such generators in terms of sets of relatively few parallel hyperplanes which contain all of the points produced by the generator.
Virtually all the world's computer centers use an arithmetic procedure for generating random numbers. The most common of these is the multiplicative congruential generator first suggested by D. H. Lehmer. In this method, one merely multiplies the current random integer I by a constant multiplier K and keeps the remainder after overflow:

$$\text{new } I = K \times \text{old } I \mod M.$$

The apparently haphazard way in which successive multiplications by a large integer K produce remainders after overflow make the resulting numbers work surprisingly well for many Monte Carlo problems. Scores of papers have reported favorably on cycle length and statistical properties of such generators.

The purpose of this note is to point out that all multiplicative congruential random number generators have a defect—a defect which makes them unsuitable for many Monte Carlo problems, and a defect which cannot be removed by adjusting the starting value, multiplier, or modulus. The problem lies in the "crystalline" nature of multiplicative generators—if n-tuples $(u_1, u_2, \ldots, u_n), (u_2, u_3, \ldots, u_{n+1}), \ldots$ of uniform variates produced by the generator are viewed as points in the unit cube of n dimensions, then all of the points will be found to lie in a relatively small number of parallel hyperplanes. Furthermore, there are many systems of parallel hyperplanes which contain all of the
points; the points are about as randomly spaced in the unit n-cube as the atoms in a perfect crystal at absolute zero.

One can readily think of Monte Carlo problems where such regularity in "random" points in n-space would be unsatisfactory; more disturbing is the possibility that for the past 20 years such regularity might have produced bad, but unrecognized, results in Monte Carlo studies which have used multiplicative generators.

Some notation: For any modulus m and multiplier k, let

\[r_1, r_2, r_3, \ldots \]

be a sequence of residues of m generated by the recurrence relation

\[r_{i+1} \equiv kr_i \mod m, \]

and let \(u_1, u_2, u_3, \ldots \) be that sequence viewed as fractions of m:

\[u_1 = r_1 / m, \quad u_2 = r_2 / m, \quad u_3 = r_3 / m, \ldots \]

Let \(\pi_1 = (u_1, \ldots, u_n), \pi_2 = (u_2, \ldots, u_{n+1}), \pi_3 = (u_3, \ldots, u_{n+2}), \ldots \) be points of the unit n-cube formed from n successive u's.

Theorem. If \(c_1, c_2, \ldots, c_n \) is any choice of integers such that

\[c_1 + c_2 k + c_3 k^2 + \cdots + c_n k^{n-1} \equiv 0 \mod m, \]

then all of the points \(\pi_1, \pi_2, \ldots \) will lie in the set of parallel hyperplanes defined by the equations

\[c_1 x_1 + c_2 x_2 + \cdots + c_n x_n = 0, \pm 1, \pm 2, \ldots \]

There are at most
of these hyperplanes which intersect the unit n-cube, and there is
always a choice of c_1, c_2, \ldots, c_n such that all of the points fall
in fewer than $(n,m)^{1/n}$ hyperplanes.

Here is a table of $(n,m)^{1/n}$ for the most common values of m, powers of 2:

Upper Bound for the Number of Planes Containing All n-tuples

<table>
<thead>
<tr>
<th>m=2^16</th>
<th>n=3</th>
<th>n=4</th>
<th>n=5</th>
<th>n=6</th>
<th>n=7</th>
<th>n=8</th>
<th>n=9</th>
<th>n=10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73</td>
<td>35</td>
<td>23</td>
<td>19</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>m=2^24</td>
<td>465</td>
<td>141</td>
<td>72</td>
<td>47</td>
<td>36</td>
<td>30</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>m=2^32</td>
<td>2953</td>
<td>566</td>
<td>220</td>
<td>120</td>
<td>80</td>
<td>60</td>
<td>48</td>
<td>41</td>
</tr>
<tr>
<td>m=2^35</td>
<td>5907</td>
<td>952</td>
<td>333</td>
<td>170</td>
<td>108</td>
<td>78</td>
<td>61</td>
<td>51</td>
</tr>
<tr>
<td>m=2^36</td>
<td>7442</td>
<td>1133</td>
<td>383</td>
<td>191</td>
<td>119</td>
<td>85</td>
<td>66</td>
<td>54</td>
</tr>
<tr>
<td>m=2^48</td>
<td>119086</td>
<td>9065</td>
<td>2021</td>
<td>766</td>
<td>391</td>
<td>240</td>
<td>167</td>
<td>126</td>
</tr>
</tbody>
</table>

For example, in a binary computer with 32 bit words, $m=2^{32}$,
fewer than 41 hyperplanes will contain all 10-tuples, fewer than
566 hyperplanes will contain all 4-tuples, and fewer than 2953 planes
will contain all 3-tuples. (The generator $r_{i+1} = kr_i \mod 2^{32}$ will
produce 357,913,941 independent points in the unit 3-cube and
theoretically, the smallest number of planes containing all these
points is about 10^8, in contrast to the bound of 2953.)

The theorem can be proved in 4 steps:

Step 1. If

$$c_1 + c_2 k + c_3 k^2 + \cdots + c_n k^{n-1} = 0 \mod m,$$
is an integer for every i, and thus

Step 2. The point $\pi_i = (u_1, u_{i+1}, \ldots, u_{i+n-1})$ must lie in one of the hyperplanes

$$c_1x_1 + c_2x_2 + \ldots + c_nx_n = 0, \pm 1, \pm 2, \pm 3, \ldots$$

Step 3. The number of hyperplanes of the above type which intersect the unit n-cube, $0 < x_1 < 1, \ldots, 0 < x_n < 1$ is at most

$$|c_1| + |c_2| + \ldots + |c_n|,$$

and

Step 4. For every multiplier k and modulus m there is a set of integers c_1, \ldots, c_n (not all zero) such that

$$c_1 + c_2k + c_3k^2 + \ldots + c_vk^{v-1} \equiv 0 \mod m$$

and

$$|c_1| + |c_2| + \ldots + |c_n| \leq (n!m)^{1/n}.$$

To prove Step 1, note that the sequence r_1, r_2, \ldots can be put in the form, using the greatest integer notation $\lceil \rceil$,

$$r_1, kr_1-m[kr_1/m], k^2r_1-m[k^2r_1/m], k^3r_1-m[k^3r_1/m], \ldots$$

and thus the sequence u_1, u_2, \ldots may be written
Clearly, if \(c_1 + c_2 k + \cdots + c_n k^{n-1} \) is a multiple of \(m \), then
\[c_1 u_i + \cdots + c_n u_{i+n-1} \]
will be an integer.

Step 2 follows immediately from Step 1, and Step 3 is easily verified.

Now for Step 4. We want to prove that there are integers
\(c_1, c_2, \ldots, c_n \) not all zero such that
\[
c_1 + c_2 k + c_3 k^2 + \cdots + c_n k^{n-1} \equiv 0 \pmod{m}
\]
(1)

and
\[
|c_1| + |c_2| + \cdots + |c_n| \leq (n! m)^{1/n}.
\]

To do this we transform the problem so that it becomes a standard one in the geometry of numbers: every solution to (1) can be expressed (uniquely) by the relation

\[
(c_1, \ldots, c_n) = (t_1, \ldots, t_n)
\]

where the \(t \)'s are integers. Thus the problem is to show there are integers \(t_1, \ldots, t_n \) not all zero such that
\[
|mt_1 - kt_2| + |t_2 - kt_3| + \cdots + |t_{n-1} - kt_n| + |t_n| \leq (n! m)^{1/n}.
\]
This follows from a general theorem on linear forms by Minkowski, using the basic result that a symmetric, convex set of volume 2^n in n-space must contain a point (other than the origin) with integral coordinates. Elegant, elementary proofs are now available; see, e.g., Hardy and Wright \(^2\), p. 394-396, p. 413 or Cassels\(^1\), p. 150-153.

Step 4 together with the steps 1-3 complete the proof of Theorem 1—every multiplicative random number generator produces n-tuples of uniform variates which lie in at most $(n!m)^{1/n}$ parallel hyperplanes. Furthermore, any choice of c_1, \ldots, c_n which satisfies congruence (1) will provide a set of at most $|c_1| + \cdots + |c_n|$ parallel hyperplanes which contain all of the n-tuples produced by the generator. Similar results can be established for congruential generators of the type $r_{i+1} = kr_i + c \mod m$.
