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ABSTRACT

PURSUIT-EVASION DIFFERENTIAL GAMES

by John B. Berger

ADVISER: Professor J. Zaborszky

January, 1968 . v

Saint Louis 30, Missouri

Diffgrential game theory is applied to several

clasSes of pursuit-evasion problems. For these

fferential games the dynamics of the participants
are describeéd by linear nonstationary differential
equations.

One class of c¢ifferential games that was formu-
lated and studied is the differential game, where the
evader has to cut maneuver a pursuer, if it is to
strike the tsvget that the pursuer is defending.

This differential game will be called the differ-
ential endgame.

The differential endgame's payoff functional
is the square of the terminal engagement miss
distance welghied against the difference of the
pdrtlclvants control energies, spent during their
respective flight times. The evader's target
constraints are the position coordinates of the
target and the evader's kinetic energy as it
strikes the target.
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The necessary and sufficient conditions for
the existence of a saddle point, and the partici-
pants' control algorithms are determined for
this differential endgame.

For this type of differential endgame when
the intercept and target times, and the pursuer's
initial position and velocity vectors, constrained
in magnitude, are unknown, the. relationships. that
determine these parameters are depived.

For a class of differential games, which
results when the evader's target constraints and
postengagement flight time are not considered, it
is shown how the relationships that determine the
intercept time and the pursuer's initial state
are used in determining when the pursuer is
launched.

Another class of differential games, formu-
lated and studied in this dissertation, is the
one where an additional pursuer is cooperating
with the primary pursuer that is trying to
intercept the evader. Here the payoff functional,
which 1s constrained by the inner product of the
terminal miss vector between the cooperating
pursuer and the evader, is the square of the
terminal miss distance between the primary
pursuer and the evader, weighted against the dif-
ference of théir control energies. For this
différential game the two point boundary value
problem i#s derived and solved.
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. PURSUIT-EVASION DIFFERENTIAL GAMES

1. _INTRODUCTION

%.1 HISTORICAL BACKGROUND
' In 1954 Isaacs (1, 2)* studied the pursuit problem by
trying to -determine the optimal path for a pursuer in order

to intercent manéuverable targets. Isaacs' formal and
hueristic approach, which was similar to Bellman's dynamic
programming method, initiated the study of differential
games.

In 1957 Berkovitz and Fleming (3) applied the calculus
of variations technique to a class of differential games.
Later Berkovitz (4) gave a rigorous treatment -of a wider

‘class of differential games, based upon the calculus of
variations. Here Bérkovitz obtained the riecessary con-

ditions that must exist along a path résulting from the

use of optimal strategies of the two adversaries, by

relating the differential game problem to a Bolza problem

with differential inequalities added as side constraints.

“*The numbers in parentheses indicate references in the
Bibliography..
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Berkovitz also developed a sufficiency theory which in
principle verifies fhe existence of a saddle point.

Kelendzheridze (5) studied the problem ¢J two maneu-
verable adversaries to which he determined the minimax
time it takes for the pursuer to capture an evader. Here
he used the minimax analogue of the Maximum Principle to
determine the necessary conditions for optimality.

Ho, Bryson, and Baron (6,7), assuming-the existence
of a saddle point, used variational techniques to derive
conditions for capture and optimality of a linear class of
differential games. These conditions depend on the
authors' definition of the relative controllability matrix.
Baron (8), assuming the existence of a saddle point, derived
conditions for capture and optimality for a linear class
of differential games where the adversaries have limited
energy £esources or where the magnitudes of the control
forces are limited. Baron also derived necessary and suf-
ficient conditions for a class of nonlinear differential
games. Gahzhiev (9) solved a similar version of the
proolem that was studied by Ho et al (6,7) but without the
relative controllability condition.

More recently Meschler (10) and Chattopadhyay (11)
have formulated pursuit—evasion problems where the objec-
tives of the evader are not only to avoid interception of

the pursuer but slso to strike the target, the pursuer is

defending.
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Meschler has formulated his pursuit-evasion problem as
a differential game. Its payoff is the square of the
terminal miss distance. The dynamics of the participants
are represented by linear time-invariant differential
equations and the participants' control force components
have specified magnitude constraints. Here the extremum
of this differential game is determined analytically by
dynamic programming. A serious drawback of this differ-
ential game is “that it was optimized with respect to one
compo;ent of the participants' control vectors. Meschler's
work was published after the solutions for this dissertation
were obtained. In the pursuit-evasion problem studied by
Chattopadhyay, although it contains the notion of the
pursuer defending the evader's target, it is not a differ-
en?ial game because the trajectory ¢f the evader is pre-
determined.
1.2 SCOPE OF INVESTIGATION

One .of the objectives of this dissertation is to apply
differential game theory to the endgame problem. The -end-
game problem is d.fined as the terminal flight stage of an
offensive missile that tries to penetrate its targét by
out maneuvering a maneuverable pursuer. This class of
differential games will be called the differgntial endgame.

For this differential endgame the payoff functional
is the square of the terminal engagement miss distance,
weighted against the difference of the control energies,
spent-by thé participants during their respective flight

times.
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The dynamics of the participants are described,by-
linear time-varying differential equations. The evader's
target constraints are the position coordinates of the
target and the evader's target speed which is a measure of
thg evader's "terminal kinetic energy.

For this differential endgame the necessary and suf-
ficient conditions for the existence of a saddle point are
derived by the calculus of variations method. From these
necesgary conditions =ontrol algorithms are developed for
the participants.

Meschler (10) is the only one who studied the endgame
problem in terms of differential game theory. His work
was published after the solution to the differential
endgame problem proposed in Chapter 3 was obtained. In
Meschler's differential endgame the payoff functional is the
square of the terminal engagement's m&ss distance. The
dynamics of the participants are defined by linear time-
invariant differential equations. The target constraint is
« target zone. Here the minimax value of the differential
game is determined with respect 1o one component of the
participants' control vectors. This component of the
participants' control vectors is constrained in magnitude.
This differential endgame is solved by dynamic programming.

In all previous classes of pursuit-evasion differ-
ential games important parameters such as the intercept
time, target time, and the pursuer's initial position and

velocity vectors were assummed to be some known values.
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In Chapter 4 these parameters are considered unknown and

they are determined via differential game theory. For
these differential_games.the pursuer's unknown position
and velocity vectors have constrained magnitudes. Here
the necessary conditions needed to determine these optimal
parameters are derived for these classes of differential
games. Also in Chapter 4 it is shown how the differential
game with its optimized parameters is used.to determine
when the pursuer is launched.

Finally, in Chapter § a class of differential games
involvirg two pursuers, trying to infercept an .evader, is
formulated. Th; two point boundary value problem, which
determines the value of this type of differential game,
is derived by the calculus of variations method. The
solution of this two point boundary value problem is

determined.
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2. DIFFERENTTAL GAMES

2.1 PARTICIPANTS' LINEAR NONSTATIONARY SYSTEMS
Both participants of the differential games studied in
this dissertation have linear, nonstationary, continuous

systems of the following form:

L4

*p

L]

X
e

F(t)x_ + 6 (t) u+n (2.1.1)
P D P P

Fe(t)xe + Ge(t) v + n, (2.1.2)

where X and X, are n-vectors describing the state of the
pursuer and evader respectively; u and v are m-vectors,
representing the control vectors of the pursuer and evader

respectively; n_ and n, are n-vectors, representing any

P
disturbance acting upon the pursuer and evader; Fp(t)
~and F,(t) are nxn matrices, continuous in t; and
Gp(t) and 6,(t) are nxm matrices, continuous in t.

The participants' state vectors are determined by
solving the set of differential equations, describing
their systems,

- t
_G) A O + . B . .
xp(t)-;p(t,to)xp(t0)+£0q3p(u,r)._Gp(r)u(r)+np(r):ldr (2.1.3)

t
xe<t>=§f.>e<t,t0>xe<t0>+[té:)e(t,r)[eeu>v<r>+ne<r)3dr (2.1.4)
0

where @D(t,to) and @e(‘c,to), the state transition matrices,

are the so’utions of the following set of differential

equations;
Qelt,ty) = FDt,t); k=p,e (2.1.5)

subject to the initial conditions

@k(to,t0> = I (2.1.6)

s O

5
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Since the state transition matrix is used to derive the
optimal solution of the differential games that are formulated
in this dissertation, it is appropriate to peoint out the fol-
lowing properties of the state transition matrix. Proof of

these statements is in (12).

1) By definition

Gre,e) = 1 (2.1.7)
2) The group property of the state transition matrix is
Oty ,tg) = ety Dty ) (2.1.8)

3) The inverse of the state transition matrix is

$re,m = Hro) (2.1.9)
In physical terms the participants' state vectors
represent their position and velocity components. The
position vector for the participants is defined as

X1 A%, 5 k=pse - 72.1.10)

where the 2mxm matrix A is partitioned into the mxm
identity and null matrices

A = [I:io0] (2.1.11)
The velocity vector, for the participants is defined as

Xpp = ka; k=p,e (2.1.12)

where the 2mxdm matrix, Q, is partitioned into the mxm
null and identity matrices
Q = f0ir] (2.1.13)
The participants' position, velocity, and control
vectors are considered to be three dimensional vectors for

the differential games studied in this dissertation.




A A momey Mk,

2.2 GENERAL DEFINI?ION OF A DIFFERENTIAL GAME

The basic differential game problem is nonrigorously
condensed from Berkowiiz (4) as follows:
For the payoff functional

. T
J = ‘I‘(x(T),T)+/ L{x,u,v,t)dt (2.2.1)
to .
and the participants!optimal strategies, u® and v¥,

determine W(xo,to), the value of J, such that:

W(xo,to) = MinMax J (2.2.2)
ueivev

subject to the constraints

x = Flx,u,v,t) (2.2.3)

X(to) = Xg (2.2.4)
and.

uelu(t), vev(t) (2.2.5)

Here x(t), which is defined as the state of the game, is
composed .of the pursuer's and the evader's state vectors,
and u and v are the control vectors of the pursuer and
evader, respectively. T is the fixed termination time of
the game,and the game's fixed time interval is [tO,T].
Y(x(T),T) is some terminal nonlinear function of the state
variables of the game,and L(u,v,x,t) is some nonlinear
penalty functional of the control energy spent by both
Playenrs.

Now a saddle point for the differential game is
defined as the pair_(u*,v*) satisfying the relation

J(u*,v) $ J(U*>V*> s J(USV*) (2.2.8)

P
o

t is assumed that MinMax J = MaxMin J
ueuvey v&EVuEU

}«-

T e cee g S e e e te e ——— o o =
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for arbitrary uw€U, v€V. If and only if (2.2.6) is satisfied,
u* and Vv® are optimal strategies and J(u*,v*)=W(x0,t0).
2.3 TFEEDBACK .CONTROL LAWS

There are two types of control strategies, one is
open loop control and the other is closed 1oop control.
The cpen loop contrcls are admissible controls which deter-~
mine the saddle point for (2.2.1) subject to (2.2.3-2.2.5)
The open loop controls are optimum for a particular initial

state and its corresponding optimal path.
(2.3.1)

]

u* hl(xo,to,t)

vE = h, (xg,tg,t) (2.3.2)

Closed loop optimal controls are optimum for any inisdial
state and any deviation from the optimal ncminal trajec-
tories along these optimal nominal tPajectories

u*=kl(x0,to,x,t) (2.3.3)

V:’::k2(X0,t0,X,t) (2.3.'4)

Although optimal closed loop controls, which are
determined by solving the Hamilton—JacoBi equation, are
more desirable than the optimal open loop controls, the
op¥imal open loop controls are determined because it is
easier to solve the two point boundary value problem than
the Hamilton-Jacobi equation. The optimal open loop con-
trols can approximate closed loop control by instanta-
neously and continuously computing optimal open loop
controls from'ﬁpdated measurements on the present state

of the game.
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These optimal open loop strategies are derived by the
calculus of variations method.
2.4 NECESSARY AND SUFFICIENT CONDITIONS

FOR THE DIFFERENTIAL GAME

The calculus of variations technique is used to derive
both the necessary conditions which must be satisfied if
a saddle point for the differential game exists,and the
set of sufficiency conditions. which determine the saddle
point. From the necessary conditions the optimal open
loop strategies are derived. The differential game's
value and the participants' optimal control strategies are

determined when

(11}

. B - :.’,:"‘ 4 . *
Min Max J = #in Max | W(x(T),T) + Jf [L(x,u,v,t)+

uEU vev weu vevl A
0
NF(x,u,v,t)- A x]at (2.4.1)
Now defining the Hamiltonian as
H(x,A,u,v,t) = L{x,u,v,t) + MNF(X,u,v,t) (2.4.2)

one can wéwrite the minimax operation (2.%.1) as

Min Max J_= Min Max | JfT SR
° X + . -\
WU vey  © oues vEVl W(x(T),T) .t(HbgA,J,v,t) A.X)dt}(2.u.3)
) 0
where tyo T, and x(to) are fixed, and x(T) is free.
The variation of J is written in the following form
_ 2 ' ;
AJC- 8JC+ ) Je ] (2.4.47
whereé8Jcis the first order variation and 82Jcis the second
order variation.
The necessary conditions that must be satisfied over

the time interval CtO,T] if J.has a saddle point for the
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3
H

strategies v = v* and u = u® are:
1) The Euler—ngraége equations and the boundary condi-
tions must be satisfied such that 8J is zero.
2) The analogous Legendre-Clebsch conditions satisfy
Jyu 2 0 - (2.4.5)
Jovs 0 ' (2.4.6)
3) Nonexistencé of a econjugate point for the accessory

minimax problem.

If J has a saddle point for the control strategies
u=u* and v=v® then the following conditions are
sufficient if they are satisfied simultaneously:

1) u® and v* satisfy the Euler-Lagrange equations
and their boundary conditions.

2) Along u® and v¥ (2.4.5) and (2.4.6) are satisfied
over the 1nterval [tg ,T1.

3) No conjugate points exist over the interval [tO,T] for
the accessory minimax problem.

2.4.Y Determination of the Euler-Lagrange

Equations and their Boundary Conditions

The variation-of the constrained payoff functional,

Jeo» excluding all terms higher than second order is

Y OFX(T) + SX(T)‘W;XBX(T),— A(T)'ox(T) +

c:
T . e
]
JC ((Hx A Hydy ¥ Hv8v)dt ¥
0]
T ] HxxquHxv X
ts§ 13 .
1/2 [ (ox'tbu'isvr lH K H oy at (2.4.7)
0 H H  H |y

VX vu vv
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Requiring the first order variation to vanish on an
optimal trajectory énd control leads to the Euler-ngrange
equations and their boundary conditions from which the
optimal strategies of the pursuer and evader can be deter-
mined. The first order variation is set to zero by
equating the coefficients of the variationals equal to

zero. This leads to the Euler-Lagrange equations

H,+ A" =0 (2.4.8)
= 2

H, 0 (2.4.9)

H, = O (2.4.10)

The set of terminal boundary conditions for the state

vector X(t) and costate vector A(t) are:
Wx - AMT) =0 (2.4.11)
x(tg) = x4 - (2.4.12)

Equations (2.4.8) and (2.23) are the differential equations
representing the unknown nth order state vector x(t) and

the unknown nth order costate vector A(t). Equation (2.4.11)
represents the terminal boundary conditions of the costate

vector, and equation (2.412) is the initial boundary con- ;

dition of the state vector. The solution of equations
(2.4.8~2.4.12) and (2.2.3) determines x(t) and A(t).
Knowing x(t) and A(t), the participants' optimal open loop
strategies are determined by (2.4.9,2.4,30)
2.4.2 Determination of the Analogous
Legendre-Clebsch Conditions
The Legendre cénditions that must be satisfied if a

saddle point exists are

e =~




= 2 L

- <
J,, = H,,$ 0 . (2.4.14)

These are a direct analogy to the two-sSided calculus
extremum problem.
2.4.3 Conjugate Point Problem

One of the sufficiency conditions that form the set
of sufficiency conditions is the nonexistepce of a conjugate
point along the optimal path. The following definition of
a conjugate point for the differential game is similar to
the one for the one~sided optimization problem (13).
Definition 1l: The point a(#a) is said to be conjugate to
the point a, if the Euler-Lagrange equations for the dif-

ferential game have a solution which vanishes for t=a and

t=za, but is not identically zéro. Another definition of
a conjugate point which can be used to formulate a pro-
tedure for determining the existence of a conjugate

point is Definition 2 : The point t=a is said to be
conjugate to the point t=a with respect to the payoff
functional of the differential game if it is conjugate to

tza with respect to its second order variation.

2.4.4 Procedure for Determining the
Existence of a Conjugate Point
If the necessary conditions exist such that the first.
variation vanishes, the tctal variation of the payoff
functional (2.2.1) is reduced to the following
T H._H. H 8%
A%:SX(T)"{’XXSX(TH/ [8x't Surs v 1|, 1 Vs, lat (2.4.15)

'to ux Huu HUV

Hyy Hyu Hyyl|8V
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subject to the constraints

ox = FXBx + Fu8u+ Fv.5v (2.4.16)

8x(t0) = 0 (2.4.17)

Now according to Definition 2 a test is devised to determine
whether corlﬁugate‘points exist for the quadratic functional
(2.4.15) subject tto the cunstrainis defined by (24.3.6) and
(2.4.17), This procedure is called the accessory minimax
problem. This is analogous to the one-sided accessory
minimum(maximum) problem (14).
2.4.4 Accessory Minimax Problem

Adjoining the differential constraint of equation

(2.436) to the fuadratic second order variational

H . H. H. |[6x

T XX Xu "Xv

AJF8%(T) W, 5% (T)+ [ { (ox':gu'tsv' B H_ H |[suf +
[
0 Hvx Hvu va v
BN (F, 8x+F_SU+F, bv-5%)} at (2.4.18)
and redefining
0x = y (2.4.19)
Su = 7 (2.4.20)
Sv = v (2.4.21)
oA = 1 (2.4.22)
the Hamiltonian for (2.4.18) is
[H H STy
o XX XU XV
H“‘:navﬂht):[. ylen tiw ']lH n +
uv uu uv
Hvx vu v
1 e K - .
o (ny+runprvy) (2.4.23)
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and

Y (y(TY,T) = EX(T)' VyuSx(T) (2.4.24)
The second order variation can be written as
L\Jc = Y (y(e),T)+ fT( H(;L,n,V,y,’c)—#'s'I)dt (2.4.25)

To

Now the necessary conditions for an extremum ofqu:are the

Euler-Lagrange equations

y = Fyyt Ea+ F v (2.4.26)

H, * moz 0 (2.4.27)

H,7 = 0 (2.4,28)

H, = 0 (2.4.29)
subject to the boundary conditions

y(to) =0 (2.4.30)

m(T) = llly(y(T),T) (2.4.31)

It is possible to devise the following test for the

existence of conjugate points.

From (2.4.31) one sees that

there are 2n unknowns and n equations.

Assuming that (24.3)

is linearly independent, one can in principle
unknowns in terms of the n unknowns which are
free unknowns are labeled as yi(T).Y(TL which
of the column vectors yi(T),is defined as

- -

Y(T) = [yl(T)"'yn(T)] -

solve n
free. The

is composed

(2.4.32)
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Now corresponding to these choices of yi(T) vectors, one
can determine the #i(T) vectors from (2.4.31) and form the

matrix;

A(T) = E#l(T)”';zn(T)] (2.4.33)

After obtaining matrix solution of the Euler-Lagrange

it n — ———. ot + omann

equations (2.4.26-2.4.29) with boundary conditions Y(T) and
A(T), if Y(t) becomes singular at some time t during the

E % interval[to,TJ,then a conjugate point of Y(t) exists on

A‘ the interval [tO,Tj.

; : 2.5 SUMMARY

The purposes of this chapter are:

1) To define the dynamics of the participants for the

y E type of differential games studied in this disser%atidn.
| <:> 2) To illustrate the general concept 'of the differential

g game and the techniques for determining the necessary

and sufficient conditions for the differential game.

)

ra
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3. DIFFERENTIAL ENDGAME

3.1 INTRODUCTION

The endgame problem is one where an offensive type

o B i v s %W, R

missile has to out maneuver an antimissile if it is to

TR AT

{ strike its tapget. It is the purpose of this chapter to

place the endgame problem within the framework of differential

game theory. This particular type of differential game will
S ~ be called the "differential endgame". The necessary and
sufficient conditions for the existence of the differential
endgame's saddle point are determined.
3.2 FORMULATION OF THE DIFFERENTIAL ENDGAME

The special class of differeptial endgame to be studied

is as follows:

;2 <:> For the payoff functional
+ " 2
’ =2 r tATAL - m 8
i J=3 [xp(Tl)~xe(Tl)] A Apr(Tl) Xe(lx)]
] T, T,
: +1/2 Jr u'R (t)udt - 1/2 J[ v'R (t)vdt (3.2.1)
| o ‘o
l

and the participants' optimal strategies, u* and v¥,
; determine W(xp(to),-xe(to),to),the value of the game, such
that

Wik (t.),x (t.),t.) = Min Max J (3.2.2)
p 0°°7e*"0°°"0 wEU vev

RS & v e )

subject to the constraints

xp=Fp(t)xD+Gp(t)u+nP Q3.2.3)

= ) xe=Fe(t)xe+Ge(t)v+ne (3.2.4)

-

Xp(-to) = XDO - - (30205)

.4":’
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xe(to) = X0 | (3.2.6)
%,y (T,) = 0 2.
xg 5 (Tp) 1%, (T,) = V2 (3.2.8)
and
u,vERs. . (3.2.9)

e b o e

represent the position

where the state vectors, xp and xg,

and velocity components of the pursuer and evader; the
control vectors, u and v, represent the components of the
pursuer's and evader's acceleration commands; np and Ne
represent any disturbance vectors such as the earth's
gravitationadl field; R3 is the three dimensional open
Euclidean space; the 6x6 matrices, Fp(t7 and Fe(t), and the
6x3 matrices, Gp(t) and Ge(t),are continuous in time; Rp(t)
and Ré(f) are 3x3 positive definite matrices, continuous in
time; a2 is a weighting factor.

The differential endgame considered in this chapter
has a finite duration of(Tz—tOL ty being the fixed com-
mencement time of the game, and T2 being the evader's fixed
target time. The differential endgame has a finite engage-
ment interval (Tl—fox Tlibeing the fixed terminal engagement
or intercept time. The postengagement time interval of the

differential endgame is(T —Tll

2 .
For the differertial endgame the payoff functional
proposed by (3.2.1) is the engagement's final miss distance,

squared, weighted against the difference of the control

energies spent by the participants. The pursuer's control

i o e PP
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energy is spent over the engagement interval and the evader's
control energy is spént over the duration of the game. When
interception occurs the evader's postengagement trajectory
is the optimal path it would have if it were not destroyed.
Both participants have linear nonstationary dynamics,
defined by the differential constraints (3.2.3, 3.2.4).
In order to facilitate the application of the method
of Lagrangian multipliers the evader's differential con-
straint over the postengagement interval is converted to an
integral constraint

%o (T, =BT, , T )% (T, )+

T
2 .

{(Qe(Tz,t)[Ge(t)v(‘cHne(t)]dt; T,< t§,,»T2 (3.2.10)
1

where @%}Tz,t) is the evader's state transition matrix and
%(T;) and %,(T,) are the evader's state vectors at the
ihteréépt and target times respectively.

The evader's target constraints are expressed by
(3.2.7, 8.2.8). Equation (3.2.7) defines xel(Tz), the
evader's target position vector, which is the origin of the
differential endgame's coordinate system. By specifying
.the inner product of the evader's target velocity vector
(3.2.8) represents a measure of the evader's kinetic energy
as it strikes the target.

In conclusion, the interpretation of this differential
endgame is that at some fixed time, T, the pursuer tries

to intercept an evader, which is attempting to penetrate
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the pursuer's defense in order to strike its target af some
fixed time T,. Both participants have limited energy
sources. An open-loop version of this endgame problem is
considered since the optimal control forces of the partic-
ipgnts are considered only as functions of time.
Variational calculus as applied to one--sided optimal
control »roblems (14, 15) is applied to the differential
endgame problem as follows. Vector Lagrangian multipliers
Ap and}\.e are introduced in order +o adjoin the differential
constraints (3.2.3) and (3.2.4) to the payoff functional
(3.2.1) over the engagement interval. Also the vector
Lagrangian multipliér i adjoins over the posténgagement
interval the integral constraint (3.2.10) to (3.2.D, and
the scalar Lagrangian multiplier 7 adjoins the evader's
target constraint (3.2.8) to (3.2.1). 1In terms of the
differential endgame's constrained payoff functional, the
differential endgame is mathematically expressed as

. . ; 2
Min MaxJ_ _Min Maxja m , . m
{~—[xp(11)~xe(Tl)]'A'A[xp(Tl)-xe(ll)]

weU vev © “ueu vevl?
I

+ f [1/2u'R_(£)u=L1/2v'R_(t)v+A_'(F_(t)x_+G_(%f)u+n_-x_)
g u'R, (tu VIR (TIvedg ( p( x:*6, t)u ny%p

. ARy 2
+ 2" (F (0% 46 (£)vin ~% JGT+0/2(x ;) (T,) "%, (T,) =V )
Ht [x (7)) B (T, , T )% ()]

T
2 .
- [ /2w R v (T, 6 (6 (t)ven ) at) (3.2.11)
T
1

o [ TEr s ek e il g e et iy e St 1 8. o e B Tl v ot o
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3.3 DETERMINATION OF THE EULER-LAGRANGE EQUATIONS

FOR THE DIFFERﬁNiIAL ENDGAME

Applying variations, Su and 8v, about a particular
3 pair of controls, u and v,the total variation of the dif-
ferential endgame's constrained payoff functional Jc is

. Iy |
. AJE[a (xp(Tl)—xe(Tl))'A‘A~Ap'(Tl)]8xp(Tl)

#la® (g (T) )=x_ (1) DA AN (T )=y (T) 2Ty ) 1Bxe (T )

3 +LIQ! +mx (T B, (T,)
‘ T
fl 1 4 1 (+))8 1 -y A )
+ L [Cu' R (E)+A 7@ (£))Bur (-viR (1) + A 16, (£))BV

+(Xp'fﬁ;Fp(t))axp+(Xé'+Ae'Fe§t))8xe]dﬁ

T
O = [ PR T, )6, (0) 16V at

H

2 '
+a /2[5xp(Tl)—8xe(Tl)] A'A[SXP(T1)~8xe(T1)]

5

+n/28xe2(T2)‘8xe2(T2)

IR T = i ey

T R_(t) O Su T
+1/2 fl'EBu':Sv‘][ P ][ :’dt-l/2 f 28v'Re(t)5v dt (3.3.1)
t, 0 =R (%) v Ti

5 Frox:AJc the necessary and sufficient conditions for

the existence of a saddle point for the differential end-

3 | gamé's payoff functional are determined. Of primary
interest are the necessary conditions which result in the
determination of the Euler-Lagrange equations and their

. associated boundary conditions. These necessary conditions
are derived by requiring the first order variations of’AJC

to vanish. Table 1 summarizes these necessary conditions.
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Table 1

Differential Endgame's Necessary Conditions
Required for §J to Vanish

Varia-
tional Coefficients of Variationals Equated to Zero
R -IE ! =0 - + L2
Bu a'RO(EIRA,'6,(£)505 o< € LTy (3.3.2)
t - . ]

ov
vIR(t) * p (T, , )6, (tE0 Ty <t Ty (3.3.4)

s 1y =0: 1. & < .3.5
Sxp Ap +AP P(1:) 3 T t ‘I‘l (3.3.5)
§xg  A'HA T (£)=05 g £t s Tl (3.3.6)
1 2 ' -
SXP(Tl) Ap (Tl)—a [xp(Tl)-xe(Tl)] A'A=0 (3.3.7)

bx_(T;) ~Ag' (T +al[x (T )=xg (1) 114 A+ (T, T )=0(3.3.8)

Sxe(Tz) nxez(T2)+#2=0* (3.3.9)

4Phe (3x1) partitioned vector, p,, is obtained by pre-
multlplylng +he (6x1) vector, g5 by the matrix Q.
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The complete set of Euler-Lagrange equations is fsrmed
by combining the differential constraints of the partic-
ipants (3.2.3) and (3.2.4) with the necessary conditions
(3.3.2-3.83.6). The boundary conditions for the unknown vari—‘
ables of the Euler-Lagrange equations are formed by combining
the known boundary conditions(3.2.5-3.2.8) with the necessary
conditions (3.3.7-3.3.9). Therefore the Euier—Lagrange

equations are:

s 1 F e o —e cor 7 () o Tkl
p| I'p p T D p|l {'p
%o 0 Fot) 0 Ce(t)RIMWG ()] {xe| |ne
7 - 1 ) * 0
0 9 _F 't 0
kp i Fp t) AP
Alloo 0 0 ~Fg' (1) Al o
e] L ' S8 L
for toété T, (3.3.10)

! - y - ,"'l t Al .
% =F _(t)x =6 (IR ()6, ' (t)D(T,,t)n +n, 3 for
S . L]
Tl< t..Tz . (3.3.11)
The boundary conditions for the state vectors, xp and x_, the

costate vectors, AP and Ae, in terms of the constant costate

vector p and the scalar Lagrangian multiplier n are:

x_ (t,) X
[_P_ 0 ]: [_PQ] (3.3.12)
xe(to) L Xeg
xel(TZ) = 0 (3.3.13)
nx_,(T,) = -k, : (3.3.14)
- _ 2
Ap(ll) = a A'A[xp(Tl)—xe(Tl)] (3.3.15)

— e = . -— i e R i A g e = - - - -
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2 > _
Ke(Tl)+a éLA[xp(Tl)—xe(Tl)]ﬁib(Tz,Tl) p=0 (3.3.16)
1 4 - 2
XeZ(T2) Xe2(12) = VT (3.3.17?
The simultaneous solution of these linear differential

equations and their nonlinear algebraic set of boundary

nd-

ul]

equations yiélds the costate wvectors X ke' and .y
the scalar Lagrangian multiplier 7n. With thé determination
of these Lagrangian multipliers the optimal strategies for
the participants and tbe differential endgame‘é value can
be determined.
3.4 SOLUTION OF THE EULER-LAGRANGE EQUATIONS

The solution for the costate vectors of the Euler-
Lagrange equatiomns (3.3.10) defined over the engagement
intefval [to, Tl] is

Ay = @k'<Tl,t~)Ak(Tl); k = p,e (3.4.1)

where é%c'(Tl,t)~ére the transition matrices for the costate
vcctopg, Ap and A, and Ap(Tl) and Ae(Tl) are the unknown

costate vectors' corner conditions. The participants'

state vectors at Tl in terms of the corner condition

vectors are:

l,to) 0 xp(tofl

E 1+
0 G lTy,ty) xe(tO)J

0 Ap(Tl), k§(Tl,t0)
+ ) (3.4.2)

0 Mg(Tytg) || AT)| k(T 1)

where the controllability matrices are cdefined as

T
M(Ty Lt [, Ve ORIOGUOPIT, ;1)dt k=p, & (3.4.3)
t
0

k71

[opr—
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and the 6x1 column vectors kk(Tl’to) due to the disturbance

vectors ny are
T
e - 1. ey
Ky (Ty5%0) = f D (T >tInydts k=p,e (3.4.4)
t

0
The solution of the Euler-Lagrange equation (3.3.11)
A defined at t=T2 in terms of the unknown costate vector p
and the evaders unknown terminal engagement state xe(Tl) is
%o (Ty)=@ (Ty s T; Ik (Ty ) =M (T, , Ty Itk (T, ,T ) (3.4.5)

where the 6x6 controllability matrix is defined as
T .
: 2, -1
£ Me(T,, Ty )= { GelTyEIBe (R () GLE)@, @, ,t)dt  (3.4.6)

L

d

: 1

! and the 6x1 column vector ke(T2>T1) due to the distur-

bance vector ng. is

T
@, o . 2R o ;
| kg(T,,T;)= f Do (T, ,t)In dt (3.4.7)

T

LIEX" haum» e ey

Therefore, by solving for the unknown corner condition
vectors‘,}\p('rl) and }\e(Tl),and the costate vector p, the solu-
tion of the Euler-Lagrange equations are obtained.

g 3.4.1 Determination of the Costate Vectors'

(o

i Corner Conditions

T

With the use of the evader's boundary condition

0

3 x (T,)=G (T, )Ty )% (T ) =M (T, , Ty otk (T,, Ty ) (3.4.8)
: -1/ Ko

!

3 The costate vector p is expressed in terms of the evader's

s

unknown terminal engagement state xe(Tl) and the unknown

Lagrangian multiplier 7 as:
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/F[Me('l‘z,‘l‘l)—l/nQ'Q'] {u (T2,T )xg (T1)*ky (T, Tl)} (3.4.9)
Substituting for xe(Tl) ¥ becomes, in terms of the
evader's corner condition costate vector Ae(Tl) and the
scalar Lagrangian multiplier 7:

m "'l SN ) .
=¥, (T,,7)-1/1Q'Q] {(ye(‘12,io)xe(t0)+
S 0 !;’: m
(_!_)e(Tz,Tl)Me(Tl,to)}\e(ll)w\j;)e(Tz,ll)ke(T s )tk (T,,T )} (3.4.10)

Substituting the-unknown vectors- xe(Tl), xp(Tl) and p
giver: by (3.4.2) and (3.:.10) into the corner condition
equations (3.3.15,3.3.16) the unknown variables in the

corner condition equations are reduced to AP(Tl), Ae(Tl)

and 7. The corner conditions become
vty e SN Ty ) )
L—azA‘A“ﬁp(T ,tg) 1 U-[a®AtA-K() I, (T )| | A ()
.ng'A { -a?A'A f D (T, ,t,) 0 x_(t,)
__________ Q 12 (_p_ 0
I _2 a

-a“A'Aj a“A'A -K() [ 0 (Tl,t ) Xe(‘o)

k (Tt ) [ o i
4 _p_"L’2C7 _[_ - (3.4.11)

ke(Tl,tO) LK(n) )(1-,1 )k (; Tl>
where the matrix K(7) is defined as

N m m =21z

K= (T,,T,) [M,(T,,T)-1/7Q' Q17 ®U(T,,T,) (3.4.12)
In shorthand form (3.4.11) is rewritten as
B(U)A(T1)= C(U)x(t0)+£(n) (3.4.13)

The corner condition costate vectors )gp(Tl) and Ae(Tl) are
determined as functions of the unknown parameter 7 as

Ay (T)=008U3BG ™ (e Mt d+{(m) (3.14.14)
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TP

X;<Tl>=[u;018<n>“* <§<n>x<t0>+-£<7;>5' (3.4.15)
where the order of the null and identity matrices are 6x6
for the three dimensional coordinate system.

Substituting (3.%.12) and (3.4.14) into (3.4%.10) the
costate vector p is expressed in term$ of the parameter 7

as
u:éB%T T,) K{p)IM (T, ,t IEO‘U]B(n)_l (Cmx(t )+£( ))
et t1°%92 N el*1:% H ; <o n

+ t)e(Tl,to)xe.(t0>+}<e (Tl,t0)+<pe(Tl,T2>ke (T, ,Ty)] (3.4.16)
The parameter 7 is determined by substituting the evader's
target boundary condition (3.4.8) into the evader's kinetic
energy target constraint (3.2.8).

oy v 2 ,
xaz(Tz)'xez(lz)—l/n 1 Qu=Vy, (3.4.17)
By substituting p (3.4.16) into (3.4.17) the evader's target

kinetic energy constraint (3.4.17) is expressed in terms of

the scalar multiplier 7 .
2 2 _ < i
l/n\u'Q‘Qy—VT z :z; P = 0 (3.4.18)
i=

The value for m is determined by extracting the roots of
(3.4.18).

Equation (3.4.18) represents an exact polynomial, L
depends on the weighting matrices, Rp(t) and R, (t), and the
matrices, F (t), Gk(t); k=pse, defining the dynamics of
the participants.

In the Appendix 8.1.5 it is shown that when

0Ou .
B =[0 0]; k=p,e (3.4.19)
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0 .

0]
Re(t) = » [UJ; k= p,e (3.4.21)
the degree of the polynomial (3.4.18) expressing the
evader's kineti; energy constraint is six.
3.4.2 Determination of the Control Algorithms

for the Pursuer and the Evader

From the necessary conditions (3.3.2, 3.3.3) requiring

8Jc to vanish the open loop optimal strategies for both %he

pursuer and the evader over the engagement time interval

are:
o —1 ! = ! . m

V#=R, (t)Ge(t) g}e(Tl,i) Ae(ll) (3.4.22)
e -1 by =1

u"--Rp (f)Gp(i) Q%(T1>t) Ap(Tl) (3.4.23)

Substituting the known corner condition vectors
(3.4.14) and (3.4.15) into (3.4.22, 3.4.23), the control
algorithms for the participants over the engagement interval

are ;

W o = | . -1
vi = RAe)6l () Py ,0) [00UIB) ~Lemxntey)+dem) cave. 2u)

P PR x . -1
wh ==Role)e) (1) @)(Ty,1) [U301BC) ™ (el )+f(m) (3.4.25)

These time-varying optimal strategies are functions of the
initial state and initial parameters of the endgame.

The evader's optimal strategy over the postengagement
interval is derived from one of the necessary conditions
(3.3.4), requiring 8Jc to vanish. This strategy is expressed
as

e o - -l e & m e =
vis —R(£) 776, (£)D (T, , ) (3.4.26)
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Substituting for g, given by (3.4.9), (3.4.26) becomes
vz -Rg(t) lee! (13" (T, 1) D! @ T, KX
[x (T 24 (Ty , T, )k (T,,T)] (3.4.27)
where the evader's state vector xe(Tl) is considered as
% the evader's initial state vector to be measured during the
postengagement intervel. The scalar multiplier 7 is
é determined by substituting the vector p, defined by
3 (3.4.9) into the cvader's terminal kinetic energy constraint
i (3.4.17).
These strategies do not take into account errors
such as noise from radar measurements and the approximations

of the exact dynamics of the participants. The uncer-

tainties due to these errors during the endgame's duration

ESEN ot

can be reduced by continuously measuring the initial state
of the participants and updating the initial parameters of
‘ the differential endgame. ]

i 3.5 NECESSARY AND SUFFICIENT CONDITIONS

i FOR THE DIFFERENTIAL ENDGAME

The necessary conditions that must be satisfied over

oYl s v et

the differential endgame's time interval,[to,TZJ,if the
payoff functional, J, defined by (3.2.1} has a saddle
point for the strategies ,uzu®* and v=v¥ are:

3 1) The Euler-Lagrange equations and their boundary con-
ditions must be satisfied when the first order vari-
? ation onBJc is equated to zero. Thig has been pre-

A (:) viously accomplished in Section 3.2,
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2) An analogous Legendre-Clebsch condition for the saddle
point must be satisfied over the time interval of the
differential endgame.

3) Nonexistence of a conjugate point for the accessory
minimax problem over the time duration of the differen-
tial endgame must be shown.

If J has a saddle point for the control strategies,

u =.u®¥ and v = v¥*, then the three previous necessary

conditions are sufficient if they are satisfied simulta-

neously.

3.5.1 Analogous Legendre-Clebsch Conditions for

the Differential Endgame
With reference to the variation of the constrained
payoff funectional (3.3.1), when the first order variation

8Jc vanishes,AJc becomes

2 - 2 m » f
8°J =a /2[8>r:p(’l‘l)—8xe(11)]'A‘A[S:up(']’.‘l)-8><_€3(Tl)]-r

T
1 m 1 1 ale
n/28xe2(T2) 8xez(12)+l/2 J/. du Rp(L)Sudt
o

2
172 [ Tvtrg(trsvat (3.5.1)

to .
Another necessary condition for J to have a saddle point
with respect to the control strategies (u, v) is that the
second order variational terms with respect to Su must be
nonnegative and the second order variational terms with

respect to 8v must be nonpositive. These conditions are

satisfied if
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g t)2 0 .5,
. Rp( ) | (3.5.2)
R (t) 2 0 (3.5.3)

These conditions are analogous to the one-sided optimiza-
tion problem (13).

! 3.5.2 Conjugate Point Problem

The final necessary condition for the existence of a

| saddle point (u®,v¥*) is the nonexistence of a conjugate
point for the accessory minimax problem of the differential
endgame.

' 3.5.2.1 Accessory Minimax Problem

. 2
The accessory minimax problem is Mgﬁ MSa:; 8 Jo =

Min Max}_2 R
5u 8v{a /2[8xp(Tl)—8ke(T1)]'A'A[BxP(Tl)—Sxe(Tl)]

+U/28xe(T2)'Q‘Q8xe(T2)
T, R (t) 0 ou”
+ 1/2 Jf [8u'i &v'] PO R (tJ[Sv]jt
o
T

0
T, ‘
-1/2 av'Re(t)avdt} (3.5.5)
T

subject to the constraints
g 8%x_=F_(t)5x_+G_(t)8u (3.5.6)
; D p( Bxp p(L)

S ‘ BXe=Fo (1) B2 +6 ()8 tg S t £ Ty (3.5.7)

T
_ - 2 .
;| 8, (T,)=QT,, 1) 8x (1)+ [ 2B (T),1)6, (£)6v;

B
m . & I'd
; x Ty < t < T2 . £3.5.8)
(:) dx_(t,)
! R0 (3.5.9)

s e s e e o on
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O%y1 (Ty) =0 . (3.5.10)
%, (T5)Q'QE%x (Ty) = 9 (3.5.11)

where the payoff functional for the accessory minimax
problem is the second order variation of the differential
endgame's constrained payoff functional (3.2.11); the dif-
ferential constraints (3.5.6, 3.5.7) and the integral
constraint (3.5.8) represent the perturbated dynamics of
the participants, due to the variationals du aid §v; the
boundary condition constraints (3.5.9-3.5.11) represent

the perturbated boundary and target constraints due to the

"variationals Su and 8v.

If the solution of the Euler-Lagrange equations that
results from M%ﬁ M2382Jc does not vanish, then the non-
existence of a conjugate point is assured.

Adjoining to 82Jc,the differential constraints,
(3.5.6, 3.5.7) by SKP and 8A,, the integral constraint
(3.5.8) by Op,and the target constraint (3.5.11) by &7,

the accessory minimax problem becomes

Min Maw) _2 . -
Su ‘av{a /2[8xp(TI)—8xe(Tl)] A‘A[8xp(11)—8xe(T1)]

+U/28xe(T2)'Q'QSXe(T2)+3nxe(T2)'Q'QBxe(Tz)

T

H + - 1 N tr .t __.'

+ .4; (1/28u Rp( You-1/28v Re(t)8v+bkp (rp( )éx +Gp(t)8u bxp)
+8, " (F, (1)8x, 4G, (1)8v-8%_Jar+8pu' (8x_(T,)-P(T,,T,)8x_(T,))

o
- [ (2r28v1R, (08usdu (T, 006, (0)8v) at (3.5.12)

P

1
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Applying variational calculus to (3.5.12) the varia-
tion of 82J is
M%) = 8(8%T )+ . L L 4 (3.5.13)
wherc 8(82Jc) is the first order variation of 82Jc, A
necessary condition required for the existence of a saddle

point for 82Jc is
5(5%3) = 0 (3.5.14)
The necessary conditions satisfying (3.5.14) are in

Table 2.

3.5.2.2 Solution of the Accessory Minimax Problem

Before proceeding to establish the test for the
existence of a conjugate point it 1s necessary to eliminate
the unknown costate vector &p from the corner condition
equations (3.5.22) and (3.5.23). With the aid of the neces-
sary condition (3.5.19) defining the optimal control ©dv
over  the interval (Tl,TzL and the integral constrgint

(3.5.8) the boundary condition for Ox,(t) is written as

8x,( [ ° ° ] . ( )8x%_(

X (Ty )=l e — = — = | = |- = =] 2O (T,,T,)8%_(T,)

&2 [:o‘n/nxezcrz) 1/,,5;12J‘ e 21 el

-Me(Tz,Tl)Su _ (3.5.15)

Solving for §u

. -lg = m
8#=[Me(T2,?B-1/nQ'Q] l‘)(lZ’Tl)Sxe(Tl)

"~

+87]._;...........— (3.5.16)

Substituting-8pu in the corner condition equations (3.5.22-

3.5.23) the corner condicions become:

. e e Wy an e = - - - —- . - - -
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; Table 2

O 2

! Necessary Conditions for §(§°J) to Vanish

| \

' Varia-

‘ tional Coefficients of Variationals Equated to Zero
| 3(8u) %?(t)8u+Gp'(t)8kp=0 (3.5.17)

f “Re (£)8V+G, ' (1)BA, =05 ¢ SEET, (3.5.18)

i 8(6v) ’ o

’ ~Re (£)8V-Gy (1) Qu(T,,t) su =03 T,<tET, (3.5.19)

| A ESA TE_(1)=0 (3.5.20)
AT OLEp) A TEBA TR (R0

: b : - ] .

8(8xg)  OAg +8Ag Fo(t)=0 (3.5.21).

8 (8x,(Ty) ) —8§p'<T1)+a2E8xp<Tl)—5xe<Tl>]'A'A=o (3.5.22)

~ e e

5(8%g(T)) ) -BA(T))'-a’[8x (T))=0x (T D]'A'A
—5p@QéT2,T1)=0 (3.5.23)

|
;
; 8 (8%g,(Tp)) M8xy o (T )+01%y, (T )4 811,20 (3.5.24)
!
i
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2

1

a’A'A -a’A'A
1 T

—a’ara a’AtA-Q (T, Ty ) [M (T, ,T) ) -1/ Q" QIADL(T, , Ty ) dx Ty )

, 0 - o e s —— e
S T | I — 5
: - 1 .o o (3.5.25)
g 3”¢%<T2:T1)[“e(T T )= lh7Q Gl LJ % (sz
- { .
- where SA(Tl) and 8x(Tl) are defined as
(52 (T.)
, sAT) =| Pt (3.5.26)
: . _5}‘e(T1)
[ 5x_(T.)
, Sx(T)) = plt . (3.5.27)
i 8xe(11)

From the corner condition equations (3.5.25) one can solve

for the unknown corner condition of the costate vectors,

BAP(Tl) and BAe(Tl),and the constant costate vector g in
<:} terms of the unknown state vectors,8x (T')'and Sx (T ).

Now specifying the free unknowns &x, (Tl), k =p, e, as m,

the system of the free unknowns, X(Tl) is

X(T;) = [ml. coom 3= T (3.5.28)

The system of the corner condition costate vectors A(Tl)

is 2 9
a“A'A ~a“A'A .
A(Tl) o I ) + C (3.5.29)
-a"A'A [a®ATA-K(7)]

where the matrix C is composed of the number of coclumn

g vectors equal to the number of free unknown column vectors

1

m.,. These column vectors which are partitioned into two

6x1 column vectors are defined as:




-

PN T I (3.5.30)
> - -1E--

O 8n.®,' (Ty,Ty) (Mg (T,,T1)-1/Q' Q1™ [17n%, (T,

Substituting the m, vectors into (3.5.16) the system of

costate vectors composed of Sﬂi becomes

M= &, (T),T,)[K(1)+C] (3.5.31)

3 Now for the accessory minimax problem, the system of Euler-

Lagrange equations over the engagement time interval

} [ty»T,] is
‘ — e -1 — e
» F (t) 0 -G_(t)R_(% G_'(t

E : p( b ) o ) p () z- <
, - '
; 0 F(t) 0 Ge(t)Re(t)Ge(t{
g = } (3.5.32)
i ’ 0 0 -F_'(t ' 0 ,
; A ) p ) A
' B _.0 0 0 ~Fe'(t)

<:> subject to the boundary conditions X(Tl) and A(Tlh defined

by (3.5.28) and (3.5.29). The solution of the Euler-

Lagrange equations over the engagement time interval is

: ] 7% (t,T,) 0 0 0
f x| |F
; 0o Q(t,T,) 0 0
% ) 0 0o - &1 o |-
| - o
L U0 M (T, ,t,) 0
- p 1o X(T, )
00U 0 M(Ty,ty) s
(3.5.33)
00 U 0
A(Tl)
- 00 0 U N

Substituting the corner condition equations (3.5.28,

<:> 3.5.29) into (3.5.33)

™~
t

e e . S S
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) ('tx,'l ) 0
X(t) = D ! - X
0o G ee,1p) ]
oo o T2 %0 0 [(m2A'A -a%ara . c} , ‘
o 2 2 5
0 ~M  (Ty,tg){-a™A'A a A'A-K(UJ
t0_<_ t £ T, (3.5.34)
oL

As shown by (3.5.30) the matrix C is a function of the
unknown scalar Lagrangian multipliers 3nih 8ni is determined
as follows: substituting 8xe(T2) obtained from the neces-
sary condition (3.5.24%) into the target constraint (3.5.11)
one obtains

, 1 m = [ t
Snxez(T2) X9 (TH) = =% ,(T,) Spy (3.5.35)
Substituting for 8#2,(3.5.35) becomes
1 - oK (n
Onrg 9 (Ty) " %gp(Ty)==x o (T)) QW T (Ty ,T))KM)B%, (Ty)
t D m S
- 80/m0Q, (T, , T KMP T, ,T))x (T,) (3.5.36)

Solving for 85 and using the terminal kinetic energy
constraint

X5 (Tp) ' QD (T ,T,)K(1)8%, (T,)

87): - 5 = — (3.5.37)
\' fre
VT +l/"Q$2'(TlﬁTz)K(n)QPéll’Tz)xe(Tz)
Now for each selection of the column vector m,
- H ] m
5y, - Xg o (T5) Q@ (T, T, )K()m, 5558
s I T F{ ~ o ) ¥ . .
i V,I{.l/an_)e(Ll,Tz)K(n)gge(ll,‘lz)xe(l‘z)

Over the postengagement interval X (t) is Gefined as

Xe('t) = q)e(Tz,‘t) - Me(t’Tl)M (3.5.39)

e |
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3.5.2.3 Conditions for Nonexistence of a Conjugate Point
The solution of the Euler-Lagrange equations X(t) for
the accessory minimax problem does not vanish, and con-

sequently no conjugate points exist, if
9o

. M_(Ty,t0) 0 [la%a'n  -a%a'a \
det {U + | P 1 ) +C
0 -Me(Tl,tO) \ -a“A'A a“A'A-X(m) /
#0, T, £ t4 T, (3.5.40)
det{ ¢ (Ty,t)+M (£, T)M} # 0, Ty< t< T, (3.5.41)

3.6 EXAMPLE OF A DIFFERENTIAL ENDGAME

Here the framework of the differential endgame is
defined by specifying the dynamics of the pursuer and
evader and their weighting matrices,Rp(t) and R, (t). For
this particular differential endgame, which was programmed

on the digital computer, the dynamics of the participants

both have the identical forn:

X1 [0 U % | 0

. = [0 . + " uk(t) + é 3 k=p,e (3.6.1)
pre X

k2 k2 32
Xy (E4) X .
_kl -0- = k10 3 k:p>e (3.6.2)
%5y (tg? X120

The partitioned (3x1l) state vectowvs, X1 and X, represent
the position and velocity vectors of the participants
respectively. The components of the (6x1) disturbance
vec*‘cors.,np and n,, represent the acceleration of gravity.

The weighting matrices are dizgonal ones of the form
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R = v [U]; k = p,e (3.6.3)

i 3.6.1 Control Algorithms for the Participants
The control algorithms for the participants of this
endgame are specifically formulated as foliows. For the

( pursuer the components of the (3xl) control force are

: (1)Y= - . T X . : < < .6.
o uJ(i) Tlxplj ll)/rp3+'ApoTl)/rpj)t° tg &t 2Ty (3.6.4)
E For the evader the control components are
+ - . < ¢+t< 7
: vt (Tl)‘elj(Tl) Aezj(Tl))/rej (Aelj(Tl)/rej)t, to_ t= T,
g J - Do . <
- (TzﬂijFﬂéj)/rej+(#2j/rej)t, Tl <t & T2
i
j - 1’3 (306-5)

The components of the corner condition costate vectors,
Ap(Tl) and Ae(Tl),and of the costate vector p which -are
defined by (3.%#.,1%) and (3.4%.15) are explicitly formulated
in the Appendix 8.1. |
é 3.6.2 Determination of the Lagrangian Multiplier.7m .

With reference to the boundary condition (3.4.17) the
5 target kinetic energy constraint is expressed in terms of

the (3x1) partitioned costate vector P In Appendix 8.1.5

the components of this partitioned costate vector are
rational fracticnal polynomials in terms of Lagrangian

multiplier %) . Thus the scalar product of Hy with itself

¢ s 2 o o e, <

‘ yields a sixth order polynomial function of 7.
Because of the degree of this polynomialis greater
than one, it appears that the existence of multiple values

of M would cause great difficulty in determining the true

1Y

| inaocenont s o mnar o

saddle point for the differential endgame. But, fortunately
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this polynomial generates one root which can be used
for the determination of a saddle point. In the numerous
cases of differential endgames that were simulated on *he
digital computer four of the roots of the M dependent poly-
nomial were always complex. Of the two real roots, there
results the evader's target velocities which are of the
same magnitude bul of opposite direction. Thus from a
physical viewpoint one of the real roots 1s meaningless
for it assumes that the evader can reverse its direction
during the postengagement period.
3.6.3 Differential Endgame Simulated on the
Digital Computer
For this particular differential endgame the initial

state of the participants are

50000. (ft) ] 150000~ (£t
1000. 5000.
. 70000. , . 1 _ | 90000,
%, (tg) 7000, (Ft/sec) |3 Xe(To? = | _100n0. (£/sec)| 368
- 100. 100.
50. J - 200,

The other parameters of the endgame are: the terminal
engagement time, leis 8.4 seconds; the target time, T, is
20.7 seconds; the evader's target speed is 9000 ft/sec;

the weighting coefficient, a2, is 13 the evader's weighting
matrix, R (t) is 60{U] and the pursuer's weighting matrix
Rp(t) is rp[U]; 1 gzﬁ)é 120. For these weighting matrices
the participants' contrcllability matrices satisfy the
following relationship

L -
Mo(T, .t = (

e l;‘\-ol p/re)MpA(‘Tl ,to) (3 o~607)

.r‘fﬁn:t«! .
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where (rD/re) is called the evader's controllability factor.
The effect of the controllability factor upon the terminal
engagement miss distance and the participants' maximum
control accelerations are studied.

Figure 1 shows how the terminal miss distance increases
with an increase in the evader's controllability factor.
From Figure 1 one can relate the evader's conirollability
factor to the intercept capability of the pursuer's war-
head. Tor this differential endgame the evader can Se
intercepted regardless of the evader's controllability
factor if a nuclear warhead is used (16).

Figure 2 illustirates how the participants' maximum
control accelerations vary with respect to the evader's
controllability factor for this particular differential
endgame. The pursuer's maximum control acceleration occurs
at the commencement of the differential endgame. 'The
evader's maximum control acceleration occurs at the
terminal engagement time. From Figure 2 the participants'

control capability can be related to the structural design

of the participants' airframes.

o - = —_— ——— P —
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Figure 1. Evader's Controllability Factor Versus

Terminal Engagement Miss Distance
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SUMMARY OF THE CHAPTER

The principal contributions contained in this chapter

Formulation of the terminal endgame between an offensive
missile and its pursuer within the framework of dif-
ferential game theory.

Determination of the necessary and the sufficient
conditions for the existence of a saddle point for
the differential endgame problem.

Determination of optimal open loop strategies for the
participants of the differential endgame.

Through an example it is illustrated how the dif-
ferential endgame can be used in determining certain
design specifications such as structural éapab%lity

and the pursuer's warhead.

e 4y
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4. PARAMETER OPTIMIZATION FOR NIFFLRENTIAL GAMES

4.1 INTRODUCTION

For the differential endgame studied in Chapter 3 the
pursuer's initial state vector, the intercept time, and the
target time are fixed values. Now it is proposed to study
the differential endgame whose intercept time, target time,
and pursuer's initial state vector are unknown. Here the
relatiﬁnships that determiné these unknown parameters are
derived.

For the class of differential games studied\py Ho
et al ( 6), the pursuer's initial state vector and terminal
engagemeht time are fixed values. This class of dif-
ferential games is formulated where the pursuer's initial
state vector and the terminal engagement time are unknown.
The relationships that determine these unknown param-
zters are derived.

For the differential game it is shown how the deter-
mination of the intercept time and the pursuer's initial
state via differvential game theory is used to determine
when the pursuer is launched.

4,2 PARAMETER OPTIMIZATION FOR THE DIFFERENTIAL ENDGAME

For the participants' optimal strategies, .u®
and v¥# and the differential endgame's payoff functional
J = a2/2[xp(Tl)-xe(Tl)]'A'A[xp(Tl)-xe(Tl)J

I, - T,
+1/2 u'RD(t)udt—l/2 jp v'Re(t)vdt (4.2.1)

t T
0 -0
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subject to the constraints

ip:yp<t>xp+ep<t>u+np (4.2.2)
%, =F (£)x +6, (t)vin, (4.2,3)
xe(t0)=xeO (4.2.4)
xpl(to)‘xpl(t0)=R02 4.2.5)
xp2<t0>'xp2<t0>=v02 (4.2.6)
%1 (T,)=0 ' (4.2.7)
%o (T,) % (T,)=Up" (4.2.8)
u,v€R3 . (4.2.9)

determine the differential endgame's parameters, Tl’ T2,
and xp(td) such that W(xp(to), xe(to), to), the value of
the differential endgame, is determined by

_ Min Max J
= ueU Ve (4.2.10)

W(xp(to),xe(to),to)
subject to the constraints (4.2.2-4.2.9).
The state vectors, xp and Xgo represent the position
‘and velocitylcomponents of the pursuer and evader; the
control vec:tors, u and v, represent the comporients of the

pursuer's and evader's acczleration command. ; np and n,

represent anry disturbance vector such as the earth's

_gravitational field; R3 is the 3-dimensional open

Euclidean space; the 6x6 matrices, Fp(t) and Fe(t% and the
6x3 matrices, Gp(t) and Ge(t),are continuous in time; Rp(t)

and Re(t) are 3x3 positive definite matrices, continuous

. . 2 . S e s
in time; a” is a weighting factor.
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The differential endgame has an unknown duration
(Tz—to), e being the fixed comrencement time of the game,
and T2 being the evader's unknown target time. The par-
ticipants have an unknown engagement interval (Tl-to), T,
being the unknown terminal engagement or intercept time.
The unknown postengagement inierval is (T,-T4).

For the differentiél endgame the payoff functional is
the engagement's final miss distance, squared, weighted
against the difference between the pursuer's control energy,
spent during the engagement interval and the evader's
control energy, spent during the duration of the endgame.

Both participants have linear nonstationarcy dyramics,
defined by the differential constraints (4.2.2, 4.2.3).
Over the postengagement interval the evader's differential

constraint (4.2.3) is converted into the integral constraint

T
2 .
xe(T2)=q%(T2,Tl7xe(Tl)+ 4£ C%(Tz,t)[Ge(t)v(t)+ne] dt
1
< < o
Tl t = 12 (4.2.11)

where Q%(Tz,t) is the evader's state transitiop matrix, and
xe(Tz) and xe(Tl) are the evader's unknown state vectors at
T. and T,.

The evader's target constraints are its target position
(4.2.7) and its kinetic energy as it strikes the target
(4.2.8). The pursuer's unknown initial state vector xp(to)
is composed of its initial position vector xpl(to) and
velocity vector X%

D2
these vecters are constrzined by (4.2.5,4.2.6). These

(ty). The square of the magnitudes of

— L Chmen - R e © & e = — . — _
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magnitudes represent the distance and speed of the pursuer
at the initiation of the differential endgame. Vector
Lagrangian multipliers, xp and Ae,are introduced’ in :order
to. adjoin the differential constraints (4.2.2,4.2.3) to the
payoff functional (4.2.1). The vector u adjoins the
integral constraint (4.2.11) to the pavoff functional
(4.2.1). The scalar multipliers 7u, N and nv.adjoin the
evader's kinetic energy constraint (4.2.8) and the dinner
product constraints of the pursuer's initial position and
velocity vectors (4.2.5,4.2.6) to the payoff functional
(4.2.1).

The diffepential éndgame is expressed as

MinMaxJ _MinMax{ 2 or e
NEWVEY g UvEy 12 /Zpr(Tl)~xe(Tl)]‘A'A[xp(Tl)-xe(Tl)]
T ,
1l ) o .
+ .{;‘[1/2u'Rp(t)u—l/Zv'Re(i)V+§p'(Fp(t)xp+Gp(t)u+np?xp)
+Ae'CP;(t)xe+Ge(t)v+ne-xe)]dt

. - 2 5. s _y 2
+Qb/2(xpl(t0)' (LO)—R0 )+nvﬁg(xpzﬁt0)'x to) )

. (
%01 p2"

2 N , .
N/ 2% 5 (Ty) ' % o (T)) =V, )+u'[xe(Tz)—QZ(Tz,Tl)xe(Tl)J

T
2

- .4~ (1/2v'R eIV §), (T, 1) [6 () vin, D) dt } (4.2.12)
1

4.2.1 Derivation of the Relationships that Determine the
Intercept Time, Target Time and the Pursuer's |
Initial State

Applying variations,du and §v, about a particular pair

of controls,u and v, the first order variation of the

- ~ — e e e e - ————— e N N ——

LS DU
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: <:> differential endgame's constrained payoff functional
(4.2.12) is

-_2‘.
8Jc-[a (xp(T;)—xe(Tl))'A'A-Ap'(Tl)]Sxp(Tl)

AN T ey

2 " - ' ] } SN - .
#La® (x, (T =% (1)) A A=A (T )= 'y (5T ) 163 (T, )
+L#§+nxéQ(T2)] &% (T,)

)

+Dny %00 CE) A, (gD 18% ) (£0)+Dn x§2<t0>+x§2<t0>15x ,(t,

+[1/2u(Ty )'R (Tydu (T y+a?[x p(Ty) =% (T TATALR (TP, (T ) 18Ty
/ +00%,5(Ty) "%, (T,)=1/2v(T,) 'R _(T,)v(T,) 16T,

Jf 1[<u'RP<t>+A'G (T))8ut (v R (t)+A_'6_(£)I8v
0
+(Ap'+Ap'Fp(t))SXP+(Xe“+Ae'Fe(t))Serdt

T, - ‘
i f2.[v'Re(t-)w'q)e(Tz_,t)Gg(t)]‘avqt (4.2.13)

O -0

The relationships that determine the intercept time

o Rataa ) Vapiec i et iaat Iy . Y

) Tl’ target time T2, and the pursuer's initial stéte

vector xp(to) such that

WOx, (tg) 5%, (E) stg) = ’fgg ’Jf‘_;“]c (4.2.14)

are the Euler-Lagrange equations and their boundary con-
ditions. The Euler-Lagrange equations and their boundary
conditions are determined by the differential endgame's
constraints (4.2.2-4.2.8) and the hecessary conditions

that result by requiring 8J to vanish. Table 3 summarizes

the necessary conditions required for 8J to vanish.

R R S N B e T B S e R L e e I N e S L P O L B A e A T T A i il S S b T

.
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Table 3

Necessary Conditions Required for §J to Vanish

Variational Coefficients of Variationals Equated to Zero - -

du W'R (t)+A_'6 (£)=0; t. € tS T (4.2.15)
P ) P P )=03

0= 1
~v'R_(t)+A 16 (t)=2; tg ¢ ¢ Ty (4.2.16)
o v'Rg(’t*“”v"J-@e(Té,t)‘Ge('t)=0; T, <t T, (4.2.17)
, b, ;p'%‘ _$=0; to‘ﬁ ts T (4.2.18)
&%, 5\e'+.5.e\, =F’éf’t)='0;~ tg Sts T, (4.2.19)
f; %7 (tg) /90 0 Ia et
3 e %00t L o 1/n0) Ap2 (o))
O Y s el A (e (4.2.20)
| 8, (T)) Ap'(Tl)zaZTXP(Tl)exe(Tl)]'A'A=0 (4.2.21)
8xe(Tl)» A;}(Tl)+a2[xp(Tl)-xe(Tl)]'A'A |
'@, (T5,T;)=0 (4.2.22)
8%,9(T,) DX (To)+i,=0 (4.2,23)
8Ty 1/2u(T;)'R (T))ulTy)
+a? [x (P )-xo (T) )T ATALR, (T, )-%, (T, )30 (4.2.28)
8T, nxe2<T2)'i32<T2>-1/2v(T2>'Re<T2{v(T2)=o (4.2.25)




o

[ - 51 -

E

: The Euler-Lagrange equations are

Q ’.‘; -Fp(t) 0 -(-‘ip(t);‘,l_;‘(_:l;)Gp'(t) 0 BNER ’Tr:iP
k| 0 Fov 0 6y (IRICIG " (t) x| [ng

; ‘ :\P = 0 o0 —F, G 0 1% o

C A b o o 0 ~F e ] iad o

: for ty St STy (4.2.26)
and

v Rg2F, (1)% =6 (D)RLCE)G ' ()R (T, ,thu+n_

T, <t s, | (4.2.27)

The boundary -conditions are

xe(‘to)'-'-‘xeo ) (4.2.28)

§ | %, (Eg) ==L/, (€0) (4.2.29)

e %o (tg) ==L/ 5 () (4.2.30)

E Xy ' (g)x ) (£0)=Ry? (4.2.31)

’ xgp! (EgI% 1 (E )=V , (4.2.32)

. X7 (Ty)=0 (4.2.33)

: NXg 5 (Ty)Hiy= 0 (4.2.34)

: X9 (T)) %o, (T)2Vp 2 (4.2.35)

& AG{T) )=a ATADx (T))-x (T )] ' (4.2.36)
Ao (Ty)=a”A'ALx (T))-x (T ) 1-) ' (T,,T; =0 (4.2.37)

; . 1/§u(Tl)'RP(Tl)u(Tl) ' .

S +a [xp(Tl)-xe(Tl)J'A'A[xp(Tl)—xe(Tl)]=0 (4.2.38)

: MXgp(Ty)' Xy o (Ty)=1/2V(T,) 'R _(T,)V(T,)=0 (¥.2.39)

i The solution of the Euler-Lagrangg equations (4.2.26)
defined at Tl in terms of the participants' unknown boundary
states,xp(Tl) and xe(Tl)? and their unknown corner condition

7 vectors, Ap(Tl), Ae(Tl) are

- et e 2 fmm . e 4 e o ew ot i e e o O YN
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Ak(Tl)=¢k'(t0,T1)Ak€to)z k=p,e ‘ (4.2.40)
X (T )5, (Ty st ¥, () =M (T3, T )A (T Ik (T, t5)  (H.2.41)

- ‘ R .
%o (Tp )=, (Ty 5t I (£ )4M_(Ty,t DA (T Ik (Ty 1) (B.2.42)
where @K(Tl ,/1:0)) and CI)k' (*L"O,Tl); k=p,e are the transition
matrices for the state anhd costate vectorsj ithe control-
lability matrices are defined as

T

. . - bﬁ‘ 1 ™, 3 "'1( ! !
M@y teds TGy DG ORIDE, 0B ¢y ,t)at;

0
k=p,e . (4.2.43)

and the column vectors k, (T, ,t)3 k=p,e due to the dis-
turbance vectors n, are

T
kk(Tl,t0?='_/~Qi(Tl,t)nkdt; k=pse (4.2.44)

o

The solution of the Euler-Lagrange equation (4.2.27)

defined at T2 in terms of the evader's unknown state

_xe(Tl) and costate vector p is

X (Ty)=Q, (T, , T ) (T ) =M, (T5, T I +k, (T, ,T;) (4.2.45)
where the contrdllability matrix is defined as

T
2 .
- N -] m .
M (T,,T)= f Q. (Ty> )6 CEIRLCEIE, (IR, (Ty,t)dt  (4.2,46)

Ty

and the column vector ke(Tz,Tl)'due-to the disturbance

vector._ne is

: T
2 .
Ko(TpsTpd= [ QUT, tIn dt (4. 2.47)
T
The relationships that determine the Lagrangian

mulu*pliers,APﬁTl), A (T and p in terms of the unknuwn
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‘parameters,Tl, T, and 3p(t0);were derived in Section 3.4.

They’ are expressed as

e dat 200 iy Ay
I[L»aA AML(T) ) a”A'AM (T, ,t)) ] [Apcrlm )
:n», 2 -1 24 . R -
=a‘A Agp(Tl,to) U-[a AfA~K(n)JMe(T¥,10) Ag Ty
aZA%A. -a?A'A BAT, ot ) p- x_(t, )
[ !‘ { 1[% l, 0 ] [ p OJ
2 . 2 .
L-a®aAA a"A'A-K(n2, 0 QT 5%y ﬁxe(to)d
Tk (T, ,tn) 0 * ,
+ [ P, 1"0 ] - [ _ ] (4.2.48)
ke {Ty st g)] K(n)q%(Tl;T2>ke(T2,Tl)_

- 3 -1 ; i
B2 DM (T Ty =1/ Q" Q17{ Py (T st (4@ (T s Ty MM (T 5t (TN (Ty)

+Q (T, T Mk (Tt )4k (T, T ) (4.2.49)
2 2_ L i
/771" Q' Qu-Vp" = ,Z% pyn= 0 : (4.2.50)
X= :

The parameters, T,,

(4.2:48-4,2.50) and the following set of boundéry conditions

Tzrand ip(To),are determified when

are solved simultaneously:

%, (tg)==6Cn_,m I (tg) (4.2.5%)
1/2u(T;) 'R (T, DulT;)
+a’x (T))=x,(T)) 1 A'ALX (T))-% (T;)]=0 (4.2.52)
Mg (Ty) % o (T))=1/2v(T,) 'R (T, )IV(T,)=0 (4.2.53)
u<T1>=-Rp’1<Tl>cp'<T1>AP<T1> (4.2.54%
3 V(T )=R(T 6, (T A(T) (4.2.55)
v(T,)=-R]L (T,)6,"(T,)n : (4.2.56)
Ap<t0)'Gggr,nv>AﬁAe(nr,ngoxp<t0)=R02 (4.2.57)
xp(ta)ﬁG(nr,qv)Q"Qc<nr,nv)xp(t0>=v02 (4.2:58)
O %5 (T )=F (T )% (T))46, (T7JuCTy den, (T;) (4.2.59)
;

e e e o e s i e e A e 22t - e e




- o - — Ea = = - - - 5
bl -
- &
. - 54 - ' A
« . }

| (j) xe(Tl)=FeKTl)xe(Ti)+Ge(T1)v(Tl)+ne(Tl) _ (4.2:60).

X (Ty)=F (T )%, (T)) 4G (T))v(T, D #n (Ty) (4.2.61)

Ap(EQ)=d ! (Ty B )N (Ty ) . (4.2.62)

x (T =@ (Tt )% (g )+M (T 42 A (T )4k (T, ) {@.2.53)
xp(T1)=q%(Tl,to)xp(to)-MP(Tl,tO)AP(Tl)+kp(Tl,t0) (4.2.64)
g (T, )= (T, , Ty D (T )M _(T, Ty Mk (T,,T1 ) (4.2.65)
The boundary conditions (4.2.51-4.2.56) are the neces- . :
sary conditions in Table 3. The boundary conditions
(4.2.57, 4.2.58) are the inner product constraints of the
pursuer's initial position and veloécity vectors. The - <
boundary -conditions (4.2.59 - 4,2.61) are the participants'
differential constraints défined at times,T, and T,. The
boundary  conditions (4.2.62-4.2.66) are the solutions of
(j} the Euler-Lagrange equations in. terms of the unknown boundary
- vectors of the state and costate vectors.
4,2,2 Example of the Differential Endgame with
3 7 Unknown Intercept énd Target Times ,
- Presented here is a differential endgame whose
; intercept time, Tl, and target time, T,, are unknown.’
% The relationships that determine the boundary conditions
for the Euler-Lagrange equations and the time parameters,
T, and T,, are (4.2.48-4,2.50), (4.2.52-4.2.56), (4.2.59~
4.2.61) and (u.z.éa;u.z.ss), The dynamics of both partic-

-

ipants have the form

%, [0 UK 0° 0
.k1]= [ ] [k1]+ [ ]’“k #1: 5 kep,e (4.2.66)
Xeod L0 0Jix,ol LU .

3
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50,000.5¢ | {150,000, £ k
"1,000. | | s,000.
70,000. | 905000, ‘
0 T 7,000.ft/sec p%0=-10,900.ft/sec (4.2.87)
- 100. ‘ 100.
'_ 50. . L. - 200. _
The other parameters of the differential endgame are:
a2:1 (4.2.68)
R, () = 90[UT (4.2.69).
R (t) = 60[U] ¢4:2.70)
7000 £ Vg Ift/sec S 10,000. (4.2.71)

Thz procedure for solving the differential endgame
problem when its intercept 'time.Tl and. target time T, are
unknown is shown in Appeu&i¥ 8.1.5. TFor this differential
endgame the effect of the evader's target speed upon the
intercept time, target time, value, and the terminal
engagement miss distance are analyzed. Figure 3 shows the
variation of target and intercept times versus the varia-
tion of evader's target speed.

Figure 4 shows how the:parﬁiqipahts' control energies,
spent over the duration of their flight times,and the dif-
ferential endgame's value vary with the evader's target
speed. These curves are normalized with respect to the
results that occur when the target speed is-10,000 ft/sec.
For the target speed of -10,000 ft/sec the pursuer's and

7 7

evader's control energies are 1.39 x 10" and 8.32 x 10

~units, and the value is -§.42 x 107 units.

B e —T e eI = e e e
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(:) Figuré ‘5 illustrates how the terminal miss distance

i
!
E
{
{
l varies with the evader's terminal speed. Here the varia-
; tion of target speed has slight effect upon the intercepf
f

time and the value of the differential game.

Kl

i . Figures 4 and 5 pdint out that when the evader is
required to spend its control energy in reducing its
kinetic energy, part of this energy is used in avoiding

interception. This conclusion is supported by the fact

that; both the pursuer's control energy and the terminal

b s

engagenent miss distance  incredse as the target's terminal
speed decreases. The fact that increase of the pursuer's
control -energy partially eliminates the effect of the
increase of the evader's control energy and the terminal
‘<:> miss distance, explains the Slight variation of the value

k‘: - - as the evader's tavrget speed is reduce.

b
q

4.3 ‘PARAMETER OPTIMIZATION FOR THE DIFFERENTIAL GAME
For the participants' optimal strategies, u* and v¥,
: ' : and the differential game's payoff functional

- 2 ' , { .
J=a /2[xP(T)-xe(T)]'A A[xP(T)rxe(T)]

4 T
I +1/2 jr [u'R_(£)u-v'R_(t)vldt (4.3.1)
i /¢ P e
g 0
é - subject to the constraints
K ’ . . ) \ .
- - K¢ ¥ + - + (uoaoz)
é xp Fpﬁt)xp G ﬁt)u np
i > xe=Fe(t)Xé+Ge(f)v+ne ‘ (4.3.3)
i C oy -
3 - ) ' _ 2

2

xpz(xoy'xpz(t0)=vo (4.3.6)

_ '
M)
1 eyt ammmr s . o ettt 1




u, VERS (4.3.7)
determine the pufsuer's initial state vector, prtO) and
the intercept time T, if it exists, such that ‘

W(xp(to),xe(to),to),the value of the differential game ,is

determined by

_Min MaxJ
W(xp(toi),xe(-to'),to *WeU VeV (4.3.8)

subject to the cornstraints defined by (4.3.2-4.3.7).

The state vectors, xp,and"xe,ﬁepresent the: position

and velocity componerits of the pursuer and evader; the

[ et aptud
o

control vectors, u and v, represent the components of the
‘ participants' acceleration commands; np and‘ne represent
- -any disturtiice vector such as the earth's gravitational

f field; R3iis the 3-dimensional open Euclidean space; the

p—

f (:) 6x6 matrices, Fp(t) and Fe(t), and the 6x3 matrices,
Gp(t) and Gé(t)) are continuous in timej Rp(t) and ﬁé(t)
are 3%x3 positive definite matrices, cdntinuous in time;
a2 is a weighting factor.

The differential game has an-unknown~duration[(T-ﬁo),

t, being the fixed commencement time Of the game: and T

being the unknown terminal engagement time.

'Thg differential game's payoff functional (4.3.1) is
the engadgement's final miss distance, squared, weighted
against the difference between the participants' control
energies. Both participanis have .linear nonstationary
dynamics, defined by the; differential constraints (4.3.2,

~4.3.3). The pursuer's initial state vector is composed

of its unknown position and velocity vévtors, xp1(t0) and




TS T

R it

TR S T T

A A By r AV T AATR eI TS ER WL« TR T TR T S mE— e == T S TR TR TR TR

e e e

-61-

xpé(t0>' The square of the magnitudes of these vectors
are constrained by (4.3.5,&.3.5). These magnitudes
represent the distance and speed of the pursuer at the
initiation of the differential game. o

Vector Lagrangian multipliers, Ap and A, are
introduced in order to adjoin the differential constraints
(4.3.2,4.3.3) to the payoff functional (4.3.1). The
scalar multipliers, n, and n_, adjoin the pursuer's
quadratic magnitude cénstraints of its initial position

and velocity vectors (4.3.5,4.3.6) to the payoff functional

(4.3.1). The differential game is expressed as

Min MaxJ__Min Max 2. . ,
WEU VeV STwEU vev {a /2[xp(T)—xe(T)]A'A[xp(t)—xe(T)]

. 2 . Wy 2
tnr/Z(xpl(to)'xplgto)-Ro)+nvA2(xP2(tp)'xp2$t0)-vo )

a
+ ./‘ 1/72u'R_(t)u-v'R_(t)v+A _'(F «(t)x_+G_(t)utn_-x_)
Z, L p(_) e( v Ap ¢ p( ) o ~p( p~*p
tn : — o .
+ A (T (£)% 46, (£)vin, xe_ndt} (4.3.9)
4.3.1 Derivation of the Relationships that Determine
thé Intercept Time and the Pursuer's Initial State
Applying variations,du and §v,about a particular pair

of controls,u and v,the first order variation of the dif-

ferential game's constrained payoff functional (4.3.9) is
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L 83 =[a®(x {T)-x_(T))'A'A-A(T)16x_(T)
: <:> c P e P P
+[a? (x, (T)-x, (1)) A A=A, (1) 1% (T)

4 ’ 4!
+[nrx£1<t0)+APl(to)]axpft0)+gnvxéz(t0>+kpz(t0)38xp2(to)
+1/2[u(T)'Rp(T5u(T)-v(T)'Ré(T)v(T) +
2az(xpi(T)-—xe(T))'A'A(ip(T)-ie('T))JS’I'

T
* [ ButR(EI+AL G T )Bu (VIR (EDTA, 6 (£))8Y
%o
L #CAPA T E (£)8% (A 1A T (£))8%  Jat (4.3.10)

. The relationships that determine the terminal engage-
ment time, T, and the pursuer's initial state vector,

xp(to), such that

Min MaxJ
uCu vgv

"~ are the Euler-Lagrange equations and their boundary con-

<:> ditions.

The Euler-Lagrange equations and their boundary

w(xp(to),xe<t0),t0>= (4.3.11)

conditions are determined by the differential -game's
constraints (4.3.2-4:3.6). arid the necessary conditions
that result by requiring 5@65t0~vanish. Table 4 summarizes

the mnecessary conditions required for 8Jc to vanish.

' E The Eﬂier-Lagrange equations are
¢« ™ = =1 ] -"1'-—1 -
X JF_(t 0 -G_(t)R_(t Y g
b p( ) p( ) p( )Gp(t) N 0 6P np
3 o -l (&
k X, | 0 F (1) 0 G, (BIR(LIG (%) xe4-ne
0 0 —F_'"(t A (4.3:12)
Ap Fp (t) c 12 0
[ R _ ' 1
ASL L_O v 0 Fo (t) 2| D& Q
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: | ) Table U

e Table b

: Differential Game's Necessary

' Conditions Required for 8J_  to Vanish

) Variational .Joefficients of Variationals Equated to Zero

4 ' {r \ (

3 u'R_(t)+x_'6_(t)=0 4.3.13)

if Su p( )+)\p GP( ) ¢

. -yt . = o

u Sv v Re(t)*‘)\e'Ge(‘t) 0 (4.3.14)

- ,

- P Y4A'E_(£)=0 (4.3.15)

; % X, Ap Ap Fp(t)

) i .

4 ] 1 - [

o Bx, A HA'E_(1)=0 (1.3.16)

- |

E x_. (L) /.U 0 YA_,(t,)

F 8x (o) [ pl 0] * f r pl °]= (4.3.17)

4 xp2(t0)\ 0 1/, 'Apz(to)

f 20 ¢ , ,

: ox_(T T)-x_(T)]'A'A-A_(T)=0 (4.3.18)

E gp( ) a [xp( ) xe( )] P( )

i : &l - VATAL - :

1 O Bx (1) allx (T)-x (T)]'A'A-) (D=0 (4.3.19)

BT 1/2[u(T)'R (Tu(D)-v(TY'R (TIV(D)]

: 2 i Carare l. _ ,

3 +a [xp-,(T) x (T)]'A A(xP(T) %, (T)1=0 (4.3.20)

-
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é <:> The boundary cgnditions are: _ .
5 ‘ x (tg)=x, ‘ ¢4.3.21) f
‘ xpl(t0)+l/"r§pl(t0)=0 (4.3.22)
xp2(t0)+1/nvxp2(t0):o C (4.3.23)
% (£0) "%, (R, _ (4.3.24)
xp2(t0>'xp2¢t0)=v02 ' (4.3.25)
AP(T>éa25'A[xP<T)-xe(T>J ) (4.3.26)
A (TI==a’ATATx (1) (T)] (4.3:27)
l/ztu(T)iRP(T)u(T)év(T)'Re(T)V(T)T

,:2 - : tal ’ _.., - o
+a (xp(T) xe(T)] A A[xp(Tl) xe(Tl)]-O (4.3.28)
& The solution of the Euler-Lagrange equations, defined
at' T in terms of the state and costate vectors' boundary

conditions are:

where QO _(T,t,) and '"(T,t,); k=p,e are the transition
X 0 k 0

= {Zuaten

{ O At IR (Tt ) AT k=p,e (4.3.29)
3 XP(T)=Q%(T,tO)xP(t0)-MP(T,tO)AP(?)+kP(T,t0) (4.3.30)
' xe(T)=¢£(T,t0)xe(t0)+Me(T,t0)Ae(T)+ke(T,t0) (4.3.31)
|

matrices for the state and costate vectors; the control-

lability matrices are -defined as

5 T
»’ ' M (T,tg)= f(B((T,t)Gk(t)R-}}(t)G]:(t)Cﬁ('(T,t)dt; k=p,e (4.3.32)
t
0

% ’ . and the cclumn vectors kk(T,to); k=p,e due to the dis-

| turbance vectors n, are:

T
K (Titg)s  [BT,Onat;  kepe (4.3.33)

Ty
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Substituting Ap(to)—(u.3.29) into the boundary con-
ditions (4.3,22,4.3.23) the pursuer's initial state vector
is expressed in terms,Ap(T),as ‘

X (t )=a t ) .
p{T0)=-6Cm,sn XD (T, DA (T) _ (4.3.34)

where

1/ U 0
T ] (4.3.35)

em_,m,) e[
vt Lo 1/

With the use of (4.3.34) xp(T) is defined as
Ty = :
xp( )

- [ (TG (1 o1 OB (T 5t I+ (T, 1) I CTI*R L (Ty8) (43,36
Substituting for xe(T) and XP(T)’ (4.3.31) and (4.3.36),
into the boundary conditions (4.3.26,4.3.27), the boundary

condition in terms of APFT), A(T), 7, and 7 -are:

rea? ' 2 , :
fura®AtADM (Tt )+, (Tt )6 ny, 0 DT, ) 1 a"AT AM (T, %)

X
N . 2 X ) B ‘l 2 ;
-a A'A[MpgT,tp)+q%(T,t0)G(nb,nv) (T,ty)] U-a"A'AM (T, t)
= ) .[2‘., _ o 2
A_(T) 0 -~a*A'AQ(T,t,)j O a"A'Alk_~k_)
[P , ) Q% | P €1 (4.3.37)
l}e(T) - lo a A"AQE(T°¢01 %o (tg) [a"A'Alc k)

The parameters, Tl-and xp(tok are ‘determined when
(4.3.37) and the following set of boundary conditions .are
solved ‘'simultaneously:
xp(to)ﬁ-G(nr;nv)xp(fq? (4.3,38)
1/2u(T)'RpﬁT)u(T)-l[Zv(T)'Re(T)v(T)

2 3 N\ ATS v = 3.
+a ExP(TdTge(T)]'A A[xp(T) %, (T)1=0 (4.3.39)
“liinn o . :

Ser I T N, 4.3.1}0)'
u(T) RPl (l)Gp ( )AP(I) (
V(T):Re, (T)Ge(T)Ae($) ) (4.3.41)

. ) . 2
Ap(to)'G(nr,nv)A'AG(nP,nv)Ap(to)-Ro (4.3.42)

Ap (gD "B my,,m, )01 Q8 A )=V (4.3.43)

s e o
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xp(T)=.Fp(T)_xp(«T)+Gp(T)u(.T)+np(T) (4.3.44)
Xo (T)=F (T)x ()46 _(T)v(T)+n_(T) (4.3.45)
A (tg)= ()*(T )2, (T) (4.3.486)
(T) QTstg)xy (1: MM (T, 1) (T)+k (T,t, ) _ (4.3.47
;xp.('r)=c§>;}:(+,ﬁoz).xﬁrcitcl).zmpjg_'11,_ )_A_piii‘ztkp('r to)  (L.3.48) T

The boundary conditions (4.3.38-4,3.41) are the necessary
conditions in Table 4. The boundary conditions (4.3.42.
4.3.43) are the inner product constraints of the pursuer's
“initial position and velocfty‘bectors. The boundary
> conditions (u.a.uu;u.s.ué) are the participantsi dif-
ferential constraints defined. at time, T . The boundary
conditions (4.3.46-4.3.48) are the solutions -of the Euler-
Lagrange equations in terms of the unknowh boundary
(:) vectors of the state and costate vectors.
4.3.2 ‘Launch Logic Example for the Differential Game with
the' Pursuer's Inhitial State and Intercept Time Unknowr,
Examples of differential games are presented where the
intercept time and pursuer's initial position -and velocity
vectors are unknown. The initial position and velocity
vectors are constrained by thé square of their magnitudes.
For these differential games the participants'
dynamics are defined in the X-Y plane of the cartesian

coordinate systém as

3 B I | P [o 0
. i 0 0 Sk U uk +} i 'k:p’e (l{'.o 3049)
*12 ‘ K2\ of
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the weighting matrices are defined as

g ‘ Rpll(wti)’=r‘p[U3=90'[U] (4.3.50)
R, (t)=r_[U1=60[U] - (4.3.51)
g e The other unknown Pafameters are the weighting coef-

g ( ) - Fieient, azél; the pursuer's initial distance,

R)=125,700 ft; and the pursuer's initial speed,
V0=10¢VQQ ft/sec. f%he evader's initial state is varied
a%xéifunution of launch delay, Ato. Launch delay is the
time the pursuer delays in achieving its initial state
with'respec{ to its earliest possible launch time. The
evader's trajéctory is illustrated in Figure 6.
The results for the differential game are determined
by solving for the boundary costate vectérs, AP(T) and
<:) Ae(T), These boundary conditions are defined in
Appendix 8.2 iin terms of the unknown intercept time for
the parameters specified by (4.3.49-14,3.51), The

computational scheme used in determining the intercept

L2 32V

time is shown in the Appendix 8.2.1.

In this, example it is desirous to choose the pursuer's
Taunch delay and initial state such that the terminal miss
@ distance is minimum and also that the pursuer's terminal !

distance from the origin is greater than 155,000 ft.

™
o,

5 Figure 7 depicts the intercept time and the pursuer's
terminal distance versus launch delay. Figures 8 and 9

show how the terminal miss distance and! the pursuer's

t <:> estimated initial state vary with respeét to the pursuer's
- launch time deélay.

T T T T e e e i i e o o & 3 e e o -~ - - - —-
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3
A <:> From Figures 7 through 9 it is shown that if the pursuer
‘i delays its launch by three seconds, it obtairis the fol-
i
s lowing initial state:
- — -
' 106185. ft ‘
!
f 65950.
H X (to) = ('4.3.’52)
: P 8495, ft/sec
| s278. ]

- The intercept distance for the--differential game will be
28 ft.
4.4 SUMMARY OF THE CHAPTER
The principal contributions contained in this
t chapter are:
(1) Formulation of the differential endgame where
<:) the target time, intercept time, and the pursuer's
i . initial position -and velocity vectors are unknown.
The inner products of fhe pursuer's initial posi-
; tion and velocity vectors are constrained. The
i _ relationships that determine the intercept time,
; target time, and the pursuer's initial position
# : and velocity vectors are derived.
i (2) TFormulation of a differential game where the
* intercept time and pursuer's initial position and
velocity vectors are unknown. The inner products
of the pursuer's initial position and velocity
vectors are constrained. The relationships that
% - determine the intercept time and the pursuer's

X initial position and velocity vectors are derived.
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Application of ‘the differential game in the determi-~ .

nation. when the pursuer should begin the engagement

with the evader.

e o e e o
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5. . DIFFERENTIAL GAME WITH AN ADDITIONAL PURSUER

S.1 INTRODUCTION

" The differeutial game proposed here is one where an
additional pursuer is cooperating with the primary pursuer
that is trying to intercept the evader. The objective of
this cooperating pursuer is to help the primany pursuer
intercept the evader or to increase the evader's cost if
it is able to avoid interception. For this class of dif-

ferential games the two poiri boundary value problem is

derived from the necessary -conditions required for the

differential game's payoff functional to have a saddle
point. F om the solution of the two point boundary value
problem the value of the differential game is determined.
5.2 FORMULATION. OF THE DIFFERENTIAL GAME

WITH AN ADDITI{INAL PURSUER

The special class of differential games formulated

4in this chapter is as follows:-

If
v - /’ ) » £ - < ': . 7 ‘»
"xcpl(T) Xel(T)H < dzmH Nz (T) Il ' (5.2.1)
then for the primary pursuer's and evader's optimal
strategies; u* and v the differential game's
payoff functional

-2 \
J=a /2[xp(T)-xe(T)]'A'A[xp(T)-xe(T)]

T
+1/2 _/.[u'Rp(t)u-v'Re(t)v]dt (5.2.2)
t ;
0

subject to the constraints
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fﬁ 2 =F +G_ (t)u+n. ’ .2.3
" O XP P(t)xp .Gp(t)u np ) (5.2.3)

%3 o xe+Fe(t)xe+Ge(t)v+ne (5.2.4)

1 xp(t0)=xp0 (5.2.95)
: . xe(t03=xe0 . . (5.2.6)

| . l\- u,yGRs (5.2.7)

N . ) _ 2 )

¢ [xcp(T)—xe(T)J‘A‘A[xcp(T)—xe(T)]- liz | (5.2.8)

determine the differential game's value,

Wix_(t,9,%x (t,),t,), such that
p 0 e 0 0
Min MaX J (5‘2.9)

Wk Ctgdyx, (tg)ytg)=cy vey

GEIN SN rrs ki o)

subject to the constraints (5.2.3-5.2.8).
The state vectors, xp and'xe,,represent the position
i and velocity components of the primary pursuer and the
.evader respectively, and xcp is the state vector of the
<:> cooperating pursuer; the coﬁtrol véctors, u and v, represent
the components of the primary pursuer's and evader's

acceleration commands; n_ and n, represent any distrubance

P
veéctors, such as the earth's gravitational fiéld;’ﬁs,ig
the 3<dimensional open Euclidean spacej; the 6x6 matrices,
Fp(%)-and F (t), and the 6x3 mptrices,Gp(t) and: G_(t), are
f 7 continuous. in time; Rp(t) and Re(t) are 3x3 positive defi-
nite weighting matrices, continuous in t; and a2 is a
weighting factor. The differential game has a finite dura-
tion of (T-to) seconds, T being the fixed intercept time.
The differential game's payoff functional (5.2.2) is
- the terminal miss distance, squared, weighted -against the
difference bé‘twéen the primary pursuer's and evader's

control energies, spent during the engagement interval

- «sif( )
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<:> (tO,T). Both the primary pursuer and the evader have linear
nonstationary: dynamics, defined by the differential con-
straints (5.2.3,5.2.4)

HZmH is the minimum intercept distance allowed between
the codperating pursuer and the evader, if the evader is to-
avoid interception by the cooperating pursuer. If the

} inequility condition defined by (5.2.1) exists, then
.”xcpl(T)"xel(T)“ , the terminal miss distance between the
cooperating pursuer and the evader,is quadratically con-
strained by (5.2.8).

F o szT)H is the terminal miss distance that results
from determining W*(xp(to),xe(to),to) the value of the
differential game without thé cooperating pursuer by

\ & Min Max J .
<:> W'(xp(to) x.(tg),t 0?5 ueu vev (5.2.10)

subject to the constraints (5.2.3-5.2.7) J is the: payoff

 ———r——— p— —————— 1

functional, defined by (5.2.2). This differential game

has been studied in reference (6).

5.2.1 Terminal Miss Distance Constraint between the

Cooperating Pursuer and the Evader

Before playing the differential game defined by

o v n o —— — —

(5.2.1-5.2.8) the evader's terminal miss distance: con-

- —————

straint with the cooperating evader (5.2.8) is determined
i in terms of the evader's free terminal state xefT).

The cooperating pui.suer's control strategy is determined

x Min f _2
: <:> | 3 /2[xcp(T )-x, (T )]'A'A[xcp(T )-x,(T)]

]
+1/2 Jf cp Rgp (£)u | (5.2.11)




A R PP
1 - T e Do < - - - . ..
Ty TR M e e e @ dabn bl s e o b amiatnaad e PR il - - . . P .

; - 77 -
)
3 <:) subject to the constraints:
E . _ xcp=lcp(t)xcp+ch(t)u¢p+ncp (5.2.12)
: ch(to)=xcpq (5.2.13)
ucﬁsRs (5.2.14)
(’ where the state vector xép represents the position and

velocity components of the cooperating pursuer;‘xe(T),
the evader's unknown terminal state,representé the

cooperating pursuer's desired terminal state; ucp
represents the components of the cooperating pursuer's

acceleration commands; ncp represents the earth's gravita-

| tional field; R3 is the 3-dimensional Euclidean spacej; the

6x6 matrix Fcp(t) and the 6x3 matrix ch(t) are .continuous

in time; aip is a weighting factor and ch(t) is a 3x3

positivé definite weighting matrix, continuous in t. .

§ o ' The performance criterion to be minimized is the

square of the norm of the error of the cooperating ‘pursuer's
terminal position with respect to its desired terminal
position;weighted against the control energy, spent by the
cooperating pursuer. The dynamics of the pursuer .are

defined by (5.2.12).

The *érminal miss vector that results from minimizing
: ‘ the performance criterion (5.2.11) is derived in

Appendix 8.3 and is expressed as

[xcpl(T)~xel(T)J=A[xcp(T)—xe(T)]=

2 o [] "'1' )
Alutg, M (Titg)A Al (@%p(T,to)xcp0+kcp(T,t0)-xe(T)](5.2.15)

ea— -
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where\Q%p(T,to) is the transitionh matrix for the state
vector xcp’ MCP(T,tO), the controllability matrix,is
defined as

T 1 ' 6
Mp (Tstg)s J£ k(T80 (0IR e (3 (T,)ae (5.2.16)
O'

and the column vector ch(T,tO) due to the disturbance

ect is
vector ncp ‘

T
- o/ @ 7
kop (Tatg) L@CP(T’t)nCPdt (5.2.17)
0

In shorthand form the terminal miss distance between the

evader and cooperating pursuer (5.2.15) is

[y (T =gy (132K [ (7,50 )0, (1) ko (Tt ) -2 (TI] (5.2.28)
(:) where
- 2 -1 : .
Ky=AlUta M (T,tg)A'A] (5.2.19)

5.3 DETERMINATION OF THE TWO POINT BOUNDARY VALUE PROBLEM
FOR THE DIFFERENTIAL GAME WITH AN ADDITIONAL PURSUER
Vector Lagrangian multipliers, Ap and Ae, are

introduced in order to adjoin the differential constraints

(5.2.3,5.2.4) to the payoff functional (5.2.2). The scalar

multiplier, Y,Aadjoins the quadratic constraint of the

evader's terminal miss distance with the cooperating

pursuer (5.2.8) to the payoff functional (5.2.2).

Q
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The differential game is expressed as

Min Max g _Min Max} _
WEU vEV | © “ueu vev [xP(T) xe(T)]'A'A[xp(T)—xe(T)]

&Y/2[(xépdikb(T,to)+kcb(T,tQ)~xé<T))Kl'x

2
Kl((I)C,p(T,to)xcp0+}<cp(T,to)-xe(T))-.- Nz 1°]

T
) ' - 1] 1 Y
¥ ~.40[1/211 R, (EDU-1/2V'R (1) A (0% 46, (Hutn =% )
+Aé(?e<tyxe+ee<t>v+ne—ie>Jdt} (5.3.1)

Applying variations,fu and §v, about a particular pair
of controls, u and v, the first order variation of the
differential game's constrained payoff functional is
BT 2 ,
8J64-Apf(T;+a [xP(T)exe(T)]’A{A)SxP(T)

-\ - - 1AL
(-2 (T)-a [xp(T) xe(T)] A'A

-Y(xépO éL(T’t0)+kép(T’t0)'xe'(T))Kl'Kl 5xe(T)

T
+ ¢ : ,
jzo[(u'Rp(t)+Ap'Gp(t))8u+( VIR ()4, 6o (£))5Y
+Oh, VA TEL (08X H (R A JE ()8 Jat (5.3.2)

Necessary conditions required for the game's saédle point
are the coefficients of the variationals equated to zero.
The two point boundary value problem is the set of
Euler-Lagrange equations and their boundary conditions.
The Euler-Lagrange equations and their boundary conditions
are determined by the differential game's constraints
(5.2,3-5.2.6) and (5.2.8) and the necessary conditions
that result by requiring 3J to vanish. Table § summarizes

the necessary conditions for 8J to vanish.

I N S
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Table 5

Necessary Conditions for §J to Vanish

Vapiationals Coefficients of Variationals Equated to Zero

du

Sv

5x

op’

Ox

e

SXP(T)

8xe(T)

1 t = €5.3.3)

u'R, (1) 16, (£)=0 (5.3.3)

—v'Re(vt)'+)\e'Ge(t5=0 ~ (5.3.4)
N 1p - «3.5

Ay A, Fp(t)‘ 0 . (5.3.5)

Ao'+AyFo (1)=0 (5.3.6)
2‘_ - v

a [xp(T)—xe(T)]'A{A-A?CI)-O (5.3.7)

x (T 'K, ' xl-azft—scp('r>,~xe(tr) JrATA-), (T

's,-’)’[xc'P(to)(I)c'p(T.,toﬂkcp'(T,to)]Kl'KfO (5.3.8)

& -
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The Euler-Lagrange equations and their boundary

conditions are

2] Feo o e ke ) 0o
P P P P P N
e - 3
%, 0 F(t) 0 8, (OIRI(H)E! (1)
AT :
0 0 -F !
.p ‘ Fp (t) . 0
A, 0 0 0 ~F}(t)
xp(t0)=xp0
xé(t0)=xe0

Ap(T=a’AtALx (T)=x (D]

yx, (TI'K; 'K

RACANCIPIONNC RIDE JUNC SFORES WL
. _ 2

[xop (TI-%o (T) 1T ATADX  (T)-x (T)]= liz |

2 .
-a’lx (T)-x (D) 1'A'A<A ' (T)

(5.3,9)

(5.3.10)
(5.3.11)
(5.3,12)

(5.3.13)
(5.3.14)

The solhtion of the two point boundary value problem

(5.3.9-5.3.14) determines the optimal strategies of the

participants, the terminal miss distance, and the value of

this differential game.

5.4 SOLUTION OF THE TWO POINT BOUNDARY VALUE PROBLEM

The solution of the Euler-Lagrange equations (5.3.9)

defined at T in terms of the primary pursuer's and evader's

unknown state vectors,uxp(T) and xeCT),and their unknown

costate vectors,AP(T) and Xe(T),are:

S SEORICIN YW CIOFI ST

%o (T2 (T, )x, (2 V=, (T DA (T4 (T, )
X (TI=Q, (Tt )%, (o +M (T, £ A (TI+k (T, 1)

e e .

(5.4.1)

(5.4.2)
(5.1}.3)

g
K
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where @k(T,to) and i)k' (tO,T); k=p,e are the transition
matrices for the 'state and costate vectors; the contrcl-
lability matrices are defined as

. [ \ g :
M, (Tyt,)= l@k(T,t)Gk(t)Rk(t) 6 (XD, '@, t)at; ksp,e (5.414)

0
and the - -column vectors kfﬁﬁ,to); k=p,e -due to. the distur-

bance vectors n, are

T
k (Tyt )= ftcpk(tr,t)nkdt; k=p,e (5.4,5)
; .

The two point boundary valué problem is solved when
the multiplier vectors, AP(T) and Ae(TL and’ the scalar
multiplier, y, are determined. Substituting (5.4.2,5.4.3)
into the boundafy conditions (5.8.7,5.3.8) these boundary
conditions are expressed in terms of the multiplier vectors,
XP(T) and hé(T),apd”thé scalar mﬁltiplier,y.

2

[ Ura®AAN (T,tg)  SAAM{TyEg) ]’AP(T)]
-a®ATAM (T,t0)  U-[a®AtAsyK) 'K M (T, %) [,\e(r)'
:"azA'ACDP(T,tO) --aZA'AcbgcT,to) rcp('to)
‘_—a2A'@P(T,t0) [a?ArA+yK, 'K ID:T, 1) ]1:;ae:('g0)]
+[a2§'A ,:2A'A | ][kpcw,%)]-y{ 0 ?][’-‘cp‘to)
-atATA atATAYK K Ik (Tt 0) ] I D, (TR KKK (Thtg)
(5.4.8)

The terminal miss distance constraint between the evader
and the cooperating pursuer is expressed in terms of AE(T)
as
- ' - =
[xcpl(T) xal(T)] [xcpl(T) %g1 (T)]
1o\t €4 Y0 - - 2
(x5 Aé(T)Mé(T,tO)]Kle[KZ Mo (T, A (T)]= iz I (5.4.7)
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where
Ky =@ (ot x ¥k o (Tt V=@ €Tyt Ix, ok (T, ) (5.4.8)

The boundary costate vectors, XPLT) and Ae(T), and the
scalar multiplier, y, are determined by sol.ing the simul-
taneous equations (5.4:.6,5.4.7). With Aﬁﬁr) and A (T)
known, the solution of the two point boundary value problem
is determined. Knowing the soiution of the two point
boundary value problem,it is détermined whether or not the
primary ptir'suer ijntercepts the evader.
5.5 EXAMPLE OF A DIFFERENTIAL GAME WITH

A COOPERATING PURSUER

For this differential game the dynamics of all partic-

ipants are defined as

ikl]'fﬂ U][xki] [O]U X -
R .+ k (5.5.1)
Xgd £0 0dlx I T Lyl
the weighting matrices are
Ry 4£)=r, [UJ=80[U]; k=p,cp - (5.5.2)
R, ()=, (U3=60[U] (5.5.3)
the weighting coefficients are :
aé; =a?=1 (5.5.4)
‘The initial state for all participants is
N N 99800, £t | [150000. £t
0 0 0
75200. 75200, | 30000.ft
*po © | 8079.ft/sec |Mep0” | 8079.ft/sec) ¥e6” |-10000.ft/sec
0 0 0
| segu. | Saos. B 1 -vo0. 5.5.5)

B |
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The results for this differential game depend on the
determination of the Lagrangian multipiiers,xp(T), Xe(T)
and Y. These Lagrangian multipliers are defined in
Appendix 8.4 in terms of the parameters sﬁecified by
(5.5.1-5.5.1. ‘

For this particular differeriidl game WZ(T)I ?vﬁ7u4 ft

while lIx (T)-xel(T)H = 1357 ft. The problem is to

cpl
determine the minimum value of HZmH such that
1357Ft « WZ_jl £ W74b ft (5.5.8)
and
k_' _5 e Jde
prl(T)»xel(T)H 2 HZmH (5.5.7)

Figure 10 illustrates how prI(T)—xel(T)H varies
with HZmH . From Figure 10 it is seen that the value of
IZ_ll =3125 £t satisfies (5.5.6,5.5.7)
5.6 SUMMARY
The -principal contributisn contained in this'chapter
is the formulation of a class of differential games where
an additional pursuer is cooperating with the primary ‘

pursuer that is- trying to intercept the evader.
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6. CONCLUSION

It is evident that differential game theory is an

effective tool for analyzing pursuit-evasion problems. Here

it is attempted to apply differential game theory to two

types of pursuit-evasion problems, the endgame problem and

the differential game with a cooperating pursuer. Also, it

is $hown how differential game theory is used to :determine

e

the differential game rparameters. such as intercept time,

pursuer's initial state., dnd, in the case of the differential

f : endgame, the target time.

Further areas of research resulting frém this
dissertation could be:

(1) A differential endgame with an additional pursuer;
cooperating with the primary: pursuer that is trying
to intercept the evader. ‘ -

(2) Development of a differential game theory that can be
applied to a differential game that has. more than

three participants..

o s T FrTyey
’ s - - B 0 Ay YT T T v———— e .
- it o,y G - M -3 L e ey e
.. A — T T—— e 4t T e 1 ey
b " W
- - . " e . -
. . . N

it A oy 3
v



R I T T LS iy - - N <. Aowrom

‘»5_1
. - 87 -

7. ACKNOWLEDGMENT

The author wishes to express his appreciation to the
National Aeronauties and Space Administration for the

fellowship which enabled him to work on this dissertation.

lans -

PR L PO T

i




< LARR I
IR A AL

88 -

.

8..

APPENDICES

i L)

.

_
.
H
i
,m“
w_,
-
i
M,
by
y,
[
O
i
I
3
i




rmf?'?r e

EEL X Siec it IR i

[t e v Sty watnd

- 89 -

APPENDIX 8.1

Determination of the Corner .Condition Costate Vectors
and the Postengagement Costate Vector in Terms
of the Specific Differential Endgame Parameters

Here the corner condition vectors, AP(Tl) and»&e(TlJ,
and the post engagement costate vector pu, as defined by
(34.1D and (3.4.16) , are expressed in terms of the specified
parameters of the differential endgame. These parameters
include the ipitial state of the game, target coﬁstraints,
participants' dynamics and the diagonal weigpting matrices
as specified in Section 3.6.

8.1.1 Determination .of B(n)-l

With reference to the participants' specified dynamics

(3;6J) and the di&éonal weighting matrices (3.6.3), the state

transition matrices and the contrdllability matrices are

defined in terms of partitioned diagonal matrices as

' krU A
Be(Ty5ty) = [g {J] 5 k=ps e (8.1.1)
s : 8.1.2)
Qe(T,, ;) [o b (
[kn/3n ) [0/l &
My (Tys tg) " | sKep,e (8.1.3)

2,5 .

3 2.

(r /3pej] (r /Zrej.]
. 2

 Fr /2rej] [r/rej]

(8.1.4)

%#The elements of the partitioned matrices represent the
general diagonal term.

g
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where the engagement interval is defined as
and the post engagement interval is defined as
H s - = ’ . 16
(T2 Tl) r (8.1.6)
The factor k must be chosen such that

r+ kr.= (T, - t.) (8.1.7)

2 0
In terms of the evader's state transition matrix and

controllability matrix over the post engagement interval

the matrix K(7) defined by (3.4.12) is expressed in terms

of partitioned diagonal matrices as

l2rej(f~r‘ej/77)] ]

I [Grej4r~2rej/n)

3 ) / ) - ~
r-in /) 2t g /1)

Gr‘ei(f—2r' ej/n ) ur‘ ej (T-3Pej/17)
r(r-urej/n)

[

—

2 (r -tp . /7)

b

The matrix B(n) defined by (3.4.11 is partitioned into
four (6x6) matrices which, in turn, are partitioned into
four (3x3) diagonal matrices. Therefore; the four (6x6)

partition matrices aré

) [1+aZ(kr)%/3p_ .1 [al(kr) /20 .:
Byp= Uta®AtA M_(Ty,t)= Pl PJ 1g.19)
p : (o] [ul
2 3 2 2,5 -
[a“(kr) /3» .1 [a“(kr)“/2r_.]
VA e e:
B,.=a’AtA M (T, ,t.) = J 3 1¢8.1.10)
12 e 1’70 ~[ (0] o1 3
] ft-a2¢xm3/3r_.1 [-a?(kr)720 7]
B,.= -a’A'A M_(T,,t.) = P3 Pj
21 p 1’707 . (8.1.11)
: Lol fol -
and
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Byp(M) = U -[aA'A - K(n)IM_(t,t,) (8.1.12)

(Byp(m)yy  (Byotm)y
(Byy(M))yy  (By,(m),,

(8.1.13)

where the following (3x3) diagonal matrices are defined as

(B. my.. = 1 - a2k313 k264k+35r—2k2(2k+3)pej7n ‘
221034 ’5;;5‘ VT - (8.1.14)
2 2 '
(B22(7))>12 = -azi‘kf) + 6k(k+1)f ekre§k+2)/ﬂ (8.1015)
' “tej (7= ure /1)
k2 (k+1)72 - 2k2(2k+3)p. .1/
(Byp())yy = Tey’ ™ (8.1.16)
; (r- L*I\e-Tﬂ,) g
j
k(3k+u4)r - 6X(k+2)rgs /7 (6.1.17)
(Byp(Mlgy = 1 ¥——r Toes /7 * e

Now in terms of the (6x6)'pértitionéd matrices

BOpy Y =f
1

- (By,(M)-ByyByy 12)321 11l<322(") ByyBy1By1o7
B(m™ L is partitioned into (3x3) diagorial matrices as

follows. The general diagonal terms of these partitioned

matrices are defined as

-1 - " RN K]

B:Lk(") = a;, @) + Bik(Jv)/n
ACT)

where A(j) and aikéﬁ) + By, (3)/n dre expressed as

3 1 =1, 43k =1, 14 '(8:1.19)_

)
n ‘ PJ €j
!

2 3 , ; 3
+ - 2 “(k+1)4p . + .~4o_. (k+ rov/ ..
) 12rpjreg (k+1)7+r, sa 230 (u 3k 5 ~tirg s (k1) 3] (/7 (8.1.20)

A(j)=Alﬂj)+

R

-1,
(By1-BypByp(MBy ) ™71 ~(By1-By, 22(")BZfB12 22(3.1.18)

= far, 0 (ktD) Y +a?k3(k41) [r, (k+1>3-rpj3r”

e r——
= e o My - wo— -
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a. ()48, ¢3)/m= 3p_.r [ext1dtra?k3 (ke1) e /30, ] :
- O 11437FP1137/m= SPh3%ey e i
L3 2,3 3 8.1.21) B
f +3rpjrej[ t(k+1) resta Kk (u+3Kk)r7/31/7n ( ‘
: . . o 2,2 43
a3 + B ,(3)/m = s1.5rgqa’k (1) .
L 2.2.2 3,2
+6rg5"a k% (k+1)°r /7 (8.1.22)
. R I P | :
a13£3)+ﬁ&3(3)/n = 'ijdxk (k+1)r
2.3, 0 .3 \
+rpjreja k“(3k+u)r/m ' (8.1.23)
. e 2.29.2 4.3
ap, (3) +By (77 = 1.5p @k 4KT-1)7
2,2 2,.2
+ . - r o (8.1.24)
SrPJreJa k“(2-k“)r"/n
B ' 03 k=1, 3, 4 (8.1.25)
a, (3) + B (i) = .
2k 2k Ay k = 2
B.. (%) ’
: . . 31
O a3l(j) + 7
=reja2k3(3k24uk+17r“-a2k3(ek2412k+u)rej2r3/n (8.1.26) (
B..,(3)
LY ) 2,2 3
a,(§)+—— = 1.57g5a'k @e+uk+1) 70 -
2.2 ,..2 ‘ ,
3a’k®(6k‘+12kty) | 2,2 (8.1.275

27 el
a ()+B,.(3)/Mm = [3r_.p (axZ+uk+1)r +alks (axZeuxe)T
33377 33t piFes ‘e
2,..2 9.3 2,002, 3 ‘
-[3rpjrej (6k“+12k+4)+a"k Te3 Cek“+12k+u)r"1/n (8.1.28)
BayD)_

$ ) 2.2 2,2 .3l
l—lBrpjrejk(kll)+[l.5a k rpj~6reja k (k+1)1r‘

% (3*

fhg. 2 2.2 4 , 2,242

5 2

. . 5 5 2.4 -
aul(a)+3ui(3)/n=-2a2k (t1drg, o428 k" (2Kt 3Drgy "1 /0 (8.1.30)
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- . AN e 2,4 b 2.4 2.3 \

O a5 (34 B X3 m=-3r ak" (et )7 432"k (2k43)r 5“7/ (8.1.81) ,

q : s SE N 2 2 2,5 5

) 4, 5(32+B 3¢ /M=0-6r v, K (k+1) r7-2r, 2k (k1)1 7]

- 2,2 : 2.2, 5 4

: + v L k(24307 42 +3) /% 8.1.32)

: 4 EGrPJrQJ k“(2k+3?) 2Pe3 ak"(2k+3) 171/ (

2 - :

: Byu3s a2 003

: @, (§) +—f— = {Brpjrej(1+3k +4k%)r +

i 2,3 2 4

: k =0 .t + L7

% 8"k lrgq-rp < +k (4kt3)rg 177}

4 2 2y 3

‘ -{&r_.r .%(2+3k%+2

, { T sTey (243K7+2K%)

- 2,3 2 3

: +2rg a’ko [2rg -2r v KT (2k+3) 17}/ (8.1.33)
8.1.2 petermiﬁation'of the Corner Condition Costate Vectors

% ' The solution for theé .corner condition costate vectors

{:) cerived in Section 3.4 is:

3 AT = B Hem x(ty) + L (8.1.34)

: With the aid of (3.%4.11) and (8.1.1-8.1.4) the column
vector, C(7) X(to) + X(n), is partitioned into 3x1 column
vectors:

- = -

E ckl(:l) + dkl(a)/'n o

g o m 3,

. cm x(ty) + Q) =| -Hrejf /M (8.1.35)

g . ' ckl(i)+dkl(j)/n

! ' ¥ 3.

. , 7 urejr /M anl

] whose general terms ckl(j)+dkl(j); k = 1, 4 are expressed as

é c, . (j)+d (j)/n=[fu~ur .f3/n](a2[x (t)-% . (t )]+

: O k143779 ej plji 0’ "¥e1i t0

= 2 , 7 )

3 a k7D, 0 (tg)=%gpy (£0)T) : (8.1.36)
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Cy9(3) + dy, (3)/m = 0 (8.%.37)

31(3)

2313+
(frale ¥ Dy g Cegd ok ) () 19 La%r P -dopg Iy (tg)

2,5 o . 2 ] s . 3
+[akr -Srej(2k+1)r ]Xezj(td)—G(J—l)(]-Z)Pij(k+l)f‘g}

2.3 2

~ 2,39,
+{ur g3 T L%y j(t0)+erP2j(¢0)J+[12rej -4ratru X o ()

ey ex]

2 2

+[12r~ej (k+1)r-u? e kf Ix e23 b)

+6(j~19£j—2)rejz(ktl)zrzg}/nu " (8.1.38)
and

: v = 4 2. ) 3. .

~(3-1) (3-2)m,05 Ger (3L P g) + {12m P g 4 ()

+12r,. 2(k+1)rx (t )+6r (k+1) 3g(§;15(j_2_5/n} (8.1.39)

Now -carrying out the matrix operation defined' by
:(8.1.34) the corner condition -costate vectors partitioned

into (3x1) column vectors are expressed in terms of 7 :

A (T)= 21 ey I+ D [as, (34,4 ()48, (3o, (I N1
L& k1l :zi k1l k1

u ! B -
+02 Binc3)d ¢3)) <1/n>zf/§r“Alcj)

+L78,(5)- 4rg r%, (5)21/m- [irgs 38,0 3m%; 1=1, ¥ (8.2140)

The j index ihdigates the components of Ai(Tl).
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?4 <:> o Apl(Tl) 'Al(Tl)h

’\-pz‘Tl) )‘2 (Ty).

: where ) . = (8.1.41)
A 3
o1 (T A (T

v . 7 m. -

ﬁ» 8.1.3 Determination of the Evader's Costate Vector During

F o the Postengagementi Interval

% . With reference to (3.4.16) the components of

the (3x1) partitioned costate vectors uliand o, are defined
in terms of the ccmponents of the corner condition costate
vectors as

~

Pl(j)‘= {12rej(r-réjﬁn)(xelj(t0)+6k+l)rxe2j(t0)

2poiarns 3y om o yiane2 bany) %)
+[5 (264337 "R ) (T )+3kr <k*2)*ezj‘T1)]‘5*qj

(t,)

0

#(321)045-2) (k+1)2r 2g/2)-62_,

J erj/f

ey 2 2 . ros s B
+Ek<r-gelj(Tl)+2krhe2j(Tl)]/2rej+@331)(3-2)(k+1)7g)§
108 7YmT . (8.1.42)
] e) .
~and
XL S it ., 2 3
PZ(J)-{-Sréixxelj(t0)+(k+l)rxe2j(§00+[k (2k43) 172 g5 (Ty)
2 vt mverain2.2
3k 5 (4 2) Mg o (T )1/ 6. +(5-1)(3-2) (k41D 7r Tg/2)

Hirg o7 (g s (£ I+ I r 2Ky S (T ) H2KPA L (T1) 1/ 20 o

3
+,(‘j,-1}').(j‘-wz‘)i(k,u') rg)}/ [r-yp e r/nl ’ (e.1.43)

e e e e . L e o - -— B e em e i
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8.1.4 Generation of the Target Kinetic Energy Constraint
as a Polynomial in- Terms of 7 '

With reference to (3,4.17) th- target kinetic energy:

constraint is

2 'y 2y 2 Y
(Y© By Hy = Ny (8.1.44)
Since
R = U (8010“5)
> rp[ ]
and
) - 4 . .l*
Re réIUJ (8.1.46)

The coefficients of the (1/7%) terms in the denominators
of the'corner condition costate vectors A(j) become
invariant wgth respect to the j index x

ACF) = A(L); j =1 (8.1.47)

If the components of &e(TI) are substituted in “2(j)’

(8.1.43) #,(3) has the form
2

. . . 2
anp(jd+a, (3)/m+a,(3)/n
0 -~ 12 2~ (8.1.48)

#y(3) = g
v botbl/n+b2/n +93/n .

Now substituting the -components of pz(j) into (8.1.44) the
resultant rational fractional polynomialinterms of 1/9
is
‘ 3 9 .
L , 1% (ag(§)+ay (3) Mmraz(id/mAPev (6149)

: A 3.2.4
(by+by/M+b, /M +b /1) 2 5%

Now. by multiplying (8.1.49) by (bbn3+'bln2+b27)‘+b3)2 one obtaifis ’
a polynomial of the form

6 .
pi(j)nl = 0 (8.1.50)
i=1

e
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8.1.5 Précedure for Solving the Euler-lLagrange Equations
when the Intércept and Target Times Are Unknown.
With reference to (3.4.1,3.4.2) and (3.4.5) the solu-
tion of the differential endgame's Euler-Lagrange equations
depends on the determination of the vector multipliers,
Ap(Tl), Ae(Ti) and g, when the intercept and target times
are known. The relationships, derived in. Chapter 3, that

determine XP(Tl), Ae(Tl) and ¢ arvre:

JA (TS ) x. (t,)
Q(Tl) ,xe(to)
. _ “ . x5 (tg) 9
- 1 R . .A.:l_‘_QA . 2
p= ¢k (Ty, T, KM M (Ty ,t5) [0iUIB(N) \‘V(n{;e‘to) +4(n))

+Q (T 5t )%, (£ ) +k (T 504D, (T, T,k (T,,T;)] (8.1.52)

2 (8.1.53)

When the intercept and target times are unknown, the

.additional boundary conditions needed to determine the

intencept time Tl,:and the target time T, are:

u(T)=-R NI )G, (T IA(T)) (8.1.54)
V(T =R, H(T) )6, (T (T)) (8.1.55)
v(T2)=-Re’1(T2)G;'(T2)ﬂ (8.1.56)
§p6W1)=Pp(Tl)xp(Ti)+Gp(Tl)u(Tl)+np(Tl) (8.1.57)
X (Ty )=F (T )% (T))+6, (T IV(Ty ) +n (T} ) (8.1.58)
%o (T))=F (T,)x (T,)+6 (T, )V(T,)+n (T,) (8.1.59)

xg (T )=, (T )% CE M (T £ IA (T I 4K (Ty,ty)  (8.1.60)




L)’? e nen &5 - - - e e —aa S Pt [ e Y

"~ 98 -

!

i *P(Tflh@pwl’tO,)'xP(tO)"Mp(Tl’to)xp(Tl‘)J'kp(Tl’t‘o‘) (8.1.81)

O

; x4 (T)=Q, (T, , T (T)-M_(T,, T Ik, (T),T)) (8.1.62)

! ' 2 - TATA» — =

l/2u(Tl) Rp(Tl)u(Tl)+a [xP(Tl) xe(Tl)] A A[xp<Tl) xe(Tl)]-O(&L6$

"%g (T5) Q1 Q%o (T5)=1/2v(T)) 'R (T, )V(T,)=0 (8.1.84)
The procedure for -determining the multiplier vectors,

Ab(Tl), Ae(Tl) and g, and the intercept and target times is

as follows: )

‘ . ’ ""..’ ”

1) Choose a combination of discrete values for the intercept

and target times

i
i
; T1=T11+nATl; ﬁ‘:l’ LI '} 'X (8.1“. 65)
i
? T2:T21+nAEZ; n=1l,....k (8.1.66)
where T,. and T,. are the initial intercept and target i

1i 2i
times; AT1 and AT2 are the incremental changes of the

intercept and target times.

2) For any set of Tl and 12 values, Ap(Tl), Ae(Tl) and &
are determined by solving (8.1.51-8.1.53).

3) With the solution of (8.1.51-8.1.53) the boundary
conditions défined by (8.1.54-8.1.62) are determined.

4) Substituting the boundary conditions determined by

(8.1.54-8.1.62) into (8.1.63,8.1.64) it is determined

e et e e o e o+ -

whether (8.1.63;8.1.64) are satisfied simultanecusly.

§) If (8.1.63,8.1.64) are not satisfied :simultaneously,

; then T, and T, are updated. This procedure is
repeated for all combinations of Ty and T, values until

(8.1.63-8.1.64) are satisfied.

. e g e .
S e e S
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] . APPENDIX 8.2
E!O - |
b . Determination of the Boundary Condition Costate
g Vectors in Terms of the Terminal Engagement
{ Time and the Specific Differential Game Parameters
f' " - . The solution of the following equations, derived in
A Section 4.3, determines the boundary costate vectors,
3 AP(T) and AeCT),in terms of the terminal engagement time T.

xpm] _[u+a2A'@[rqp(T,,:ge)Kbp(T,to)Gcnr,,nvxbp' (T tp) aaran_(Tiep T
A (T, -aZAJA[Mp(¢,to)«$§<T,t0)G(nr,nv)¢b'(T,qp]§U-a2A'AMe(T,)

3 , 3 2 . :
5 AT ~a’ar s (1.t 0 . [RATaGg k) 52,1
? L 2AtAQ (Tt (t,) 2ptack -k ) o

0 a A e 3 0 Xe\to - a L e" p ly

A (T, (T 006! (nim JATAGCn i ), T (T, €023 (TI=R)? (8.2.2)

: . ' -y 2

O Ap" (DD (T,t0)6" (n4n 00 60, X, (T, (1I=v%(8.2.9)
. When the dynamics for both participants are specified
o as
é ; 0 Ulrx (0?
L [ [ e o
2 Xpod LO O0J1x, u
3 and the weighting matrices are specified as
f Rk(t)=rk[U]; k=p,e (8.2.5)
; (" the transition matrices for the participants become:
5 _ .
o U (T-t,)U
i L ‘n A
| Q1) = 3 k=p,e (8.2.6)
§ : 0 U
% and the controllability matrices for both participants

i become ¢

0

e
= A et s e —— e m - TR —
o ote T i e g . - — e - e emea e —— o o e > -
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(T—t0)3 (T~t0)2 1
N m - ‘ U U . = [
(:) Mk(x,to) = 3ry 2r) 3 k=p,e (8.2.7) |
(-t ) ? (T-t,)
= U —_—— U
| | % i
Substituting Q&KT’tO) and Mk(T,to); k=p,e into (8.2.1,8.2.2)

these relationships are reduced to

2 7 & 2 ' :
n? = 1/Ry" 2, Appi(T) (8.2.8)
1=1 .
n, = Ry(T-toM./Vy (8.2.9)

and the components of the costate vectors boundary con-

ditions become:

_.2 2 3
Aéli(T )=a erli(tp)+(T —to)xezi(to)l/[l+a (T -to) X.

(1/3r, - 1/3re)+a2(l+(T S VALISTL N R (8.2.10)
O _ ag (i) A |
Apli(T ) = bO(i)+b1(i)/nr 3 1=1,3 (8.2.11)
. where
. : az(T -t0)3
onl L2 ‘ ~
ag(i)=-a [xeli(t0)+(T-to)eri(tO)1[1+3re-a2(T -t0)3](8'2’13)
a2(T -t0)3 au(T -tODS
b,(1)=1+ +
3 2 3 8.2:1u4
0 Tp 3rp(3pe-a (T-to)‘) ( +14)
(T ~tgN,  , a(T ~tg)°
bl(i)=[1+ PR, [a“+ 5 —l (8.2.15)
0 3r -a (T —to)

L]

By substituting (8.2.11) into (8.2.8) there results
a second order polynomial in terms of Ny The roots of

% this polynomial determine two initial state vectors which

{_)

e - e o
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are symmetrical to each other with respect to the origin,
One root is superfluous from a physical viewpoint.
8.2.1 Proceduréxfor“Solvipg the Differential Game's Euler-
Lagrange Equations when the Terminal
Engagement Time Ts Unknown
With reference to (4.3.29-4.3.31) the solution of the

differential game's Euler-Lagrange equations depends on

‘the determination of the vector multipliers, XP(T) and

Ae(T). The relationships that determine AP(T) and Ae(T)

in termspof the terminal engagement time are (8.2.1-8.2.3).
When the terminal engagement time is unknowné the

additional boundary conditions needed t6 determine the

engagement time are:

w(T)=- P-l(T)Gb'(T)Aﬁ(l) B (8.2.16)
y(T)=Re‘1<T3eg<T)Ae<T> (8.2.17)
xe(T)=¢%5T,t0)xe(t0)+Mg(T,to)he(T)+ke(T,t0) (8.2.18)
x (D)= (T, 00 (0D (T5t0)A (TI+R (T, ) (8.2.19)
x_(T)=F_(T)x_(T)+G_(TIv(T)+n,(T) (8.2.20)
ip(?)=FP(FP)x§(T)+Gp(T)u(T94qp(T) (8.2.21)

1/2[u(T)'Rch)u(T)-v(TfRe(T)v(T)J
+a2[x§(T)-xe(T)JJA'A[§P(T)-§6(T)]=0 (8.2.22)

The procedure for determining the boundary costate
vectors and the terminal engagement time 1s as follows:
1) Choose a discreke value for the terminal engagement

time:




C e

2)

3)

4)

5)
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T=T,+PAT; n=l,...k (8.2.23)
where Tiis the initial terminal engagement time and AT
is the incremental change in the terminal engagement

time.

For a discrete value of T the boundary costate vectors

are detirmined by solving (8.2.1-8.2.3).

.With the determination of the boundary costate vectors

the boundary conditions determined by (8.2.16-8.2.21)
are determined.

Substituting the boundary conditions determined by
(8.2.16-8.2.21) into (8.2.22) it is determined whether
(8.2.22) is 'satisfied.

If (8.2.22) is not satisfied, then T is updated.
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APPENDIX 8.3

Determination of the Terminal Miss Distanée
Vector between the Cooperating Pursuer and the
Evader in Terms of the Evader's State Vector

The terminal miss distance between the evader and the
cooperating pursuer is determined by
Min'J_Min{ 2 o STt e

= acp/2[xcp(T) ge(T)J A A[xcp(T)exe(T)]

ucp U.cp !

+-1*/2»\~tf o cp(t)u dt} (8.3.1)
0 _ ‘

subject to the constralnts -

p (t)x p (t)ucp op ‘ (8.3.2)

(ty)=x ) (8.3.3)

cpd
where the state vector xcp‘represents the position and
velocity vectors of the cooperating punsuer;AﬁéTW, the
évader's terminal engagement position, is the cooperdting
pursuer's desired terminal position; the control
vector *ucp is the cooperating pursuer's acceleration
command ; ncp represents any disturbance vector such as the
earth's gravitational field; the €x6 matrix Pcp(t) and the
6x3 matrix G__(t) are continuous in time; ch(t) is a 3x3

cp
positive definite matrix continuous in time; abp is a
weighting factor; T is the fixed terminal time.
The cooperating pursuer's performance criterion J

is the square of the error norm between the cooperating

S
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pursuer's position and iis desired positior, weighted
against the energy spent by the cooperating pursuer. The
dynamics of the cooperating pursuer are defined by (8.3.2).
Adjoining the cooperating pursuer's differential

constraint (8.3.2) to the performance criterion by the
vector multiplier Acp’ the minimization of the performance
" eriterion is expressed as

MinJé:Minz

u u

2 LTy AT AT -
o o Aep /2[xcp(T) xe(T)] A A[xcp(T) X (T)]

f[l/zucp op (Vg AL (o (8 46 (£t #n )]dt}

o] ’!'1

(

The cooperating pursuer's terminal state is determined

e 35

\V
v

by solving the Euler-Lagrange equationsthat result from
minimizing\Jc. By the method of calculus of variations the
conditions necessary for an extremum is that the first order
‘variation. of vaanishes

- tATA_) ? \.3 3
8J= [a [x (T) X (TII'A'A ACP(TQJGXCP(T)

jr[(ucp cp(t) Aép cp(t»su

(A ' +ACPPcp(t))8xcdet=o (8_~.3.5)

The Euler-Lagrange equations which result from the dif-
ferential constraint (8.3.2) and the necessary conditions

resulting from equating the coefficients of the first order

wvariationals to zero are:
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v : P ('t) ) i
xcp _{Fep (t)R (t)G p( t) x0p,+ rcp (5.3.6)

Aol 0 —FCL(t) : A 0

subject to the boundary conditions

xcp(t0)=xcp0 (8.3.7)

- .. 2 | " .
t Abp(T)-acpA‘A[xcp(T)-xe(T)J (8.3.8)

The solution for Xaop defineéd at T is

. xgp(T)=®cp‘(T,t0)xcp0 p(TtgIA (Th 4k (Tyt) (8.3.9)
3 where ¢EP(T;t0)<is the transition matrix; Mcp(T’tO)” the

controllability matrix,is defined as

3 -1
op(TrE)" fq;cch )8, (RIS (XL (T, (8.3.10)
é and the column vector kcp(T,tol due to the disturbance
1
g ,(:) vector ncp‘ls
: . I
: kgp (Tot )= _{@cp('r,t)ncpdt - (8.3.11)
A 0o .
: Substituting for‘Acp(T),defined by the boundary con-
dition,(8.3.8) into (8.3.9)
¢ - 2
%o (D=0 (T,t00% g-al M (T,t0)ATALX, (T)-x, (T)]
(T,'to) (8.3.12)
Subtracting xe(T) from both sides of (8.3.12) and solving
) .
2 t for the error vector [x 1;'(T)-xe('l')]
E B 2 ) t "1
, [ (T) -x, (T 1= [U+anMcp(T,t0)A Al
] [ (T t )xcp0 p(m,to)-xe(T)J , (8.3.13)

B ——wo—oa - s~ —— o L= %

£ o aien Sopay “F"“ LA A S
| N
i
i
i

Jo o 5 - B et taa s TR e come o e ——_——




A

f

[

| e . o e — e
s e o aes

] Af"g ) : . b : . ) Vo
o ;
o -106 -
-
! 4

i The terminal miss distance vector between the cooperating

)

pursuer and the evader is obtained by premultiplying

! [xcp(T)—xe(T)] by the 3x6 matrix A.
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APPENDIX 8.4

Determination of the Boundary Costate Vectors
in Terms of the Specific Parameters for the
Differential Game with the Cooperating Pursuer

{ The solution of the following equations derived in

Section 5.4 deteimines the boundary costate vectorS,Ap(T) and

A (T
'[U+a2A'AMP(T ) a2A'AM (T,ty) AL (D)
~alA'AM_(T,t.) U-[a? A'A+}’1< Xy M, (T, ) Ao (T).
"a ArAD (T,t -a A'A (T, t ) X .
= q% ' q> ~e$t0)
[-a A'Acb ('1‘ tg) [a A'A+y1<l'1<lJ<I> (T,ty) pr(tc)
-aZAtA -aZA'A k (T,tg)] 0 0
1 o2 2 i ) X
. ; T . ) T
O L-aAra a®AtA+yK, Kl [k (Thtg) —l'Kl®cp(T’t0;) KK
x _(tg)
cp 0 (8.4.1)
kcp(T,tO)
[Kz“‘Aé(T)Me'(T,tO)JKl'Ki[KZaMe(T,tO)Ae(T)]
_ 2
=z Ik (8.4.2)
where
_ 2 : R |
xl-A[u+@¢§M¢p(T,t0)A'A] , (8.4.3)
50 ) and
K, @cpm )%, 0+k (Tyty)- cI) (Ty%g)x, 07K (Toty) (8.4.4)

When the dynamics for the participants are specified as

(8:4.5)

0 U] [x 0

JR)EW
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and the weighting matrices are specified as

C:} Rk(t)=rk[U]; kﬁp,cp;e (8.4.6)
the transition matrices for the participaﬁts become
U (T-t,)U ‘
q&(T,t )= 3. k=p,cp,e (8.4.7)
o™ o U '

and the controllability matrices for the participants

become
(T-t)  (T-ty)?
137 Y 75V )
M, (T,t )= k : k s k=p,cp,e (8.4.8)
(T-t,) (T-t,)
2r0 U T : U
K X

pnad o

Substituting @k'(T’tG) and Mk(T,to); k=p,cp,e into (8.4.1~

' 8.4.4) the boundary costate vectors are expressed in terms

§<:> of the unknown scalar Lagrangian multiplier, ¥y, as
: ' 3*Pp3 /Y
‘{ }spj(T) = '—L_*.m 5 J3=1,2,3 - (8.4.9)
i °p17%p2
% A3 (T = 05 §=4,5,6 : (8.4.10)
!
' a .+b ./vy

A.(T) = 21 _8J° . 5.1,2,3 (8.4.11)

€J cel+ce2 vy’ IS

Aej(T) = 03 j=4,5,6 (8.4.12)
: where
: iR N

apj-—a [ij (tO)-xe.j(t0)+(T—t0)(prﬂ(to)—xc'jﬂ(to)a"

3=1,2,3 (8.4.13)

| 3p (-t )% ral(r-t ¥
- gp . -0

boy=a s 3>< ‘3r I 3r']x

Pl PJ|3pn p+a (T~ t ) e e 4
»:D 35 2 .

— XOxg s ()=, o (£0)+(T10) (% o (g )=k o (£

’ 31’ p+a (T )3 1] 0 'eﬁTﬁ 0 Cp3+3

]-1,2,3 . (8.”’-1.“‘)
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e =1+a(T-t )3X [1/p -1/v. 1/3 (8.4.15)
pl -0 P e ot
2 2 3 3
| 3rcp ?fp+a (T-to) (Trto) ’
°p2' o +a2(T " )3 X T X 3T (8.4.16)
‘ep -0 P , e
_ a2(T--‘t:0)3 3rp+a2(T-1:0)3
3478p3 3rp / 3rp 1| 3 §=1,2,3 (8.4.17)
) 3Pcp
b .= r At )ex J(t)H(T-
3| an vaZ(rs 3 ><[xcpj( 0) xej( 0) ( to)x
cp 0 .
3 -a’(T-t.)° ap a%¢rt )8
Ce1™ ~ e)3r . - 2 E- 3 9p ro (8.4.19)
e . 3rp+a (T-to) e p
3rc 2 (T~t0)3
Ce2:[ 5 R 3] X 3 . (8.4.20)
: 3rcp+a (T—to) e

The unknown scalar multiplier Y is determined by sub-
stituting A (T) into (8.4.2) and solving for¥. For the
dynamics and weighting matrices specified by (8.4.5,8.4.6)
the evader's quadratic terminal miss distance constraint
zﬁith the :cooperating pursuer is exactly expressed in terms
of y as a second order polynomial. The root which. yields
the minimum change of control energy for the evader due o6
the cooperating pursuer is sought. The minimum change of
control energy is determined by comparing the evader's
control energy for the differential game with the cooperating
pursure to the evader's control energy-for the game played

without the cooperating pursuer (8J.

e e v = -~ - -

. T - oot s o e e o o =

o —— o v, - ——
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