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ABSTRACT \

In the present book three main topics are contained: 1) the gen-
eralized plane stressed state of anisotropic plates; 2) the bending of
anisotropic plates, and 3) the stability of unisotropic plates. The
majority of the solutions set forth in the book (particularly in the
chapters devoted to the planc problem) is due to the author hirmself .
'‘All problems discussed are only concerned with small elastic strains
of plates. The problems connected with the plastic plate deforma-
tions, with the behavior of the plates after the stability has been
lost, with temperature and other stresses in plates, etc., art not
treated in the book. These problems are still waiting for their
investigators. The material on the problem of transverse vibrations
of anisotropic plates which is known to the author is collected In

a special chapter., 1In view of the rather great material and the small
volume of the book the author endeavored to set forth things as con-
cisely as possible. The main attention was paid to the practical

side of the solutions presented; formulas and conclusions having
theoretical interest only Jere mostly given without derivation, with
indication of the literature where interested readers may find o
detailed discussion and proofs, In those cases where this was possi-
ble and interesting for the practice the results are brought into the
form of theoretical formulas, diagrams, anc tables,
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FROM THE PREFACE TO THE FIRST EDITION

Present-day teechnolopy makes use of anluolropic plactes, i.e.,

plates with different resistance to mechanical action: in different di-
rections, as consiructional elemente. To cuch pluates belongr nlates made
of' aviation plywood, delta wood, texolite, and a number of other mater-

1als. The experimental investipations of such a material as plywcod show

the great difference between the moduli of elasticity and the flexural

rigidities for the principal directions — along the grains of the cas-

ings (the external plywood layers) and across the grains. Cbviously, it

is not correct to calculate plywood plates for the sace of simplicity
with the help of formulas derived for the isotropic bedy; it 1s neces-
sary to derive special formulas on the basis of the theory of elasticity
of the anisotropic body for the calculaticns. Also those plates in which
the difference betweer the flexural rigidities for different directions L
has been created artificially may be regarded as anisotropic ones, as

corrugated plates or plates reinforced by corrugation, plates reinforced

by tightly located stiffening ribs, etc. Not only the constructor, but
also the physicist who works with plates cut out of crystals, e.g.,
with quartz plates, must encounter on the calculation of stresses and
strains in anisotropic plates.

The author of this work set himself the task of creating such a

bo. +which would possibly cover most of the present-day investigations

of problems concerning the strain of anisotropic plates and which could
serve as a means of instruction for engineers, constructors, physicists,

and other specialists working with anisotropic plates. 1

-1 - ;
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PREFACE TC THEL SECOND EDITION

oo theeory ot sberine aand ctreccen in anisotroplce plates has been
nuterours new investipations auring the time which has
clupced aftor the Ly whes the firct edition of the monograph "Aniso-
trople plato " (L-B7) e ut. A preat part of these investigations
carricd out , abcve all, in the USSF and, in particular, by the author
Nimeel? ref vs ¢ the plane problem  and 4 smaller part to the theory
of bending and stability plates.

Whoen preparing the sceond editlion the author endeavored to present
in tae book. If porsible, all new results known to him referring to an-
Ivotvoris vrates and beinr o7 practical anc theoretical interest. As a
result Lhie velume of the book has increased compared to the first edi-
tion. £ new chapter (in the second edition Chapter §) has been added,
it is devoted to an approximate method of studying the stresses in an-
isotropie plates weakened by holes which are nearly round or elliptic.
In porticular, the cases of holes similar to an equilateral triangle
and to a square with rounded angles, etc., were considered. Approximate
formulas for the determination of stresses near such holes in plates
strained by arbitrary forces, and, in particular, by stretching forces
and bending moments are pgiven; the results of calculating the stresses
with different degrees of accuracy in plates with given elastlc con-
stants are presented. Nearly all remaining chapters are supplemented
by sections setting forth the results of the most recent investigations,
as well as of a number of investigations of practical interest which
had, however, not entered the first edition. In Chapter 3, e.g., which
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1s devoted to the bendine of bearm: and caprs b de b pooon o oGl
ing are riven, and, in narticular, toe onnti, B o BE°
in Chapter U, problem: of the ¢ Tast e o oon g e @

gion Is limited by o varabola o o Voo o

:
tribution of otircroe, in an intiy e " 83
centrated moment e Teoveny s th e we ” s
ing with problems of v« luctic '
another material ar Pl b o b oo
of Lhe bending of arn niool g ! o
in Chapter 11, ~te, "n aecordoans c
nany of which have beorn vorlaed .
The wuthor endeavoar.d o voron
in a form which ¢ aceonzible o
ing them whore possild i1t e @4,
Tustratineg therm by calontaslon, o
censtants of three-loyver circn ;1w . o k
tion were revised: Lhe presontatioa :
vere corrected, and in a nunboer of ' ! ° o, 200 dBok
terial is set forth was chaneod., For all o b D ool
vestigated Ly the author himself and Lo bt Geao 1t flirsy

numerous calculations werc carried outt ancw (aul:c for threc-=layer |
plywood). As a result the corresponding diac-ram: of stresy distritog!
and the diagrams of a number of functions were repliced by new one:
more 1illustrative ones, compared to the diajyrams of the first cditic:.
The list of literature used was considerably increased.

Finally, I want to express my pratitude to T.V. Skvortsovaya who
has carried all numerical work and helped me in a substantial manner !u
the preparation of the second edition of the monograph.

December, 1956 S.G. Lekhnitskiy
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Chapter 1

THE BASTC EQUATIONS OF THE THEORY OF ELASTICITY OF AN ANISCTROPIC
BODY

‘1. TdE STRESSED STATE OF A CONTINUOUS BODY

When studyinge the stresses and atraing
ics, and, in particular, in plates, we shall concider the elastic body
Lo be a continuous bLody

ly accepted model.

Av in well known, the stressed state at a given point of a contin-

uous body which is at equilibrium or move:r undor the action of external

forces isc entirely devermined by the stress components acting on three
mutually perpendicular nlanes passing throuprh this point. Usually the

planes are passed perpendicular to the coordinate directions of an or-
thogonal coordinate system passing through the point in question. In

this book we shall only use Cartesian and cylindrical coordinates.

0 __-_1;_
\/'4
\
: tx(-——)-é
N 5 /ﬁ
Yz Tre
A
T Tor
Fig. 1

Referring the body to a Cartesian coordinate system x, y, z we
shall choose some point, pass three mutually perpendicular planes nor-

mal to the coordinate axes through it, and consider the stress compon-
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ents acting on these plianes (Mg 1), L 10 encrally aceceptea to desiy-
nate the normal components by the letter o vith a subneript indicating
the direction of the normal to the plane (and, therefore, also the di-
rection of the componcnt itselfl); the tanpential components are desl;-
nated by the letter 1t with two subscripts the first of which indicates
the direction of the component 1tself, and the second one the direction
of the normal to the plane. On the plane normal to the x axis act the

components: O Tyx, T,ps oD the plane normal to the y axis we have:

T., 0, T_ , und cn the plane normal to the 8 axis: 1_. ., T _, 0_. As
Ty Y 2y xz yz 2
is well known from the mechanics of continuous media, we have sz =

. T.., where 7 and g
Jt 1d

Tyz, L L Tyx = Txy and, generally, T =
are mutually perpendicular directions. If we know the stress components
on planes normal to the coordinate axes we can always determine the

stress on any oblique plane with a normal »n passing through the same

point. For this purpose serve the formulas

X,:=0, cos (ﬁ, x) {-z,c0s(n, y) {-7p.cos(n, 2), \
Y,:=5,,c08(n, x)-{-o, cos(n, y)-i-=,cos(n, 2), i (1.1)
Lpi-=%escos(n, x)-}-x,,cos (n, y) {-o, cos(n, 2),

where Xn, Yn’ Zn are the projections on the coordinate axes of the

stress acting on the oblique surface. Having determined Xn’ Yn Zn we
3

shall easily find (by projecting) the normal and the tangential compon-
ents of the stress on the plane with normal n.

Furthermore, we shall refer the body under consideration to a cy-
lindrical coordinate system r, 6, z in which the 2z axis coincides with
the 2z axis of a Cartesian system, and the angle & is counted from the =z
axis chosen as the polar axis. The stress components on planes perpendl-
cular to the directions of the r, 6, 2z coordinates of the cylindrical
system are shown in the same Fig. 1 (at another point); they are desig-

nated, respectively, by: Ops Tgps T T o} T T 0,5 where

zr’ rB6’ "6’ "z2§’ ‘"rz’ 8z
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' treapsition

from the ctress compon-
comy onents in cylindrical

with the help of the well known formulas:

- soeent b B0 2 vinfeosh, |
, Loty L 0 D vinficos B, I
(5, Vit b GosTh st ), (1.2)
y oy - inf, i
b vosh
1., .1‘. f

components oo continuous body which is at equilibrium

cquatlons which have the following form in the

coordinate aystem:

dap du,y Jtry
! ; | “ ’
e U dy ' e f-A -0,
%y, dsy dry, ,
ge Vogy bgp Y10, (1.3)
de ., dty, ds,
dx t dy t- g~ im 2

caquations in a cylindrical coordinate system will be

written in the form:

In Egs.

of the volume forces referred to the unit volume,

3, l () -

B o %0 o U B 2D e

01,5 1 an, 0‘8.- Qtre .

or bom o o b {-9

afrz _* { ()ngz ‘l ()3‘ {- e 7 »—-0 (l-u)
B el

(1.3) and (1.4) X, Y, Z and R, 0, 2 denote the projections

on the z, y, 2 and r,

0, 2 directions.

The equations of motion of a continuous medium differ from the

equilibrium equations only by the inertia terms pw

X owy, pW, O pW ., pW

pw, which must be substituted on the right-hand sides of (1.3) and (1.4)

instead of the zeroes (p is the density of the material and w with the

subscripts are the projections of the acceleration on the coordinate

directions.

In the theory o elasticity the projections of the acceleration

i dant ik a3 oah b ZaaBAL aad 2 L wd £
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are usually expressed in terms o thoe . L 0l 0 Lre opn !

of the body particles in the coordinsts Leoccory doeL . they are oy st
to the second derivatives with respeci o 3 foiie dicplacement r
jections). We shall desipgnate the projcstion: fothe displac-mont
the =, y, 2 and r, 0, = directions by u, v. w and Mo M. M

The strained state in the neighborhocd of a »wiven point of a Facs

tinuous body is characterized by the si:i strain compenentc: three roiu-
tive elongations which are designated by the letter ¢ with the correa: -
ponding subscript and the three relative shears designated by the let-
ter vy with two subscripts. In a Cartesian system we have the strain com-

ponents: € € , €, are the relative elongations of infinitely small

x’ Ty 2

sections, which were parallel to the z, y, z axes in the unstrained bvody,

Y the relative shears, i.e., the angles variations be-

and Yyz2 Yzzs Yoy

tween the mentioned sections. The strain components for a cylindrical

coordinate system will be €, €gs £, (the relative elongations for the

r, 8, z directions) and Yggs Y Y g (the relative shears).

rz’
The strain components are expressed in terms of the displacement
projections. If there are no restrictions as to the value of the strains

the connection between the €ps ey, 50D0GOGC s Y and u, v, w are given

2o

by the formulas
AR
AR
VL L

0:1 du Jdu du dw Jw

3

sin -:;T’_E_.i: dy i oy or T dy 0"___273/—_}2 ? (1.5)

[ (E AP T (M S :

ow du  Ou du , dv Juv , Jw | Ow

sin x tortaxer lax 0;_’_ 9: 0z

= (e (e :

du du dv Jdu ow dw

sin —-W—L‘T;_Fb?“@?_*‘gf'—dy—* ox

Ty = ——

(I Fe) (1 +ey)

- 8 -
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compared Lo

form:

uniity

v, U e dicplacementy

' ormulaus are simp ler and
. du ) du du ”
2 og e el by l
o du dut , du } -
v oy’ T do L oos (1.6)
. Ow di du l
€ * gzt v dy ’_L'.l“
small strains Chs Ego s Vg Ure cxprecsed in terms
in the followling way:
du, durg 1 Ou
b 7 90 Teseg, gy
1 dug | u, du, , du, .
R T T O A Rt (1.7)
__Ou, 10w, | dug  uy
L P T " an 1or T

The formulas and equations presented here are correct for any con-

tinuous body, elastic or not; their derivations may be found in courses

of the theory of elasticity.*¥

§2.

GENERALIZED HOOKE'S LAW

The equations given in §1 are not sufficient to solve problems of

equilibrium, motion, or stability of an elastic body. It is, in addi-

tion, necessary to indicate the relationship between the stress compon-

ents and the strain components, ana for this purpose some model reflect-

ing the elastic properties of the body must be chosen. If only small

strains are involved usually a continuous body obeying a generalized

Hooke's law is chosen to be such a model of an elastic body.

In all ca-

ses considered in this book we shall assume uinat a generalized Hooke's

law holds for the elastic body, and, in particular, for plates, or, in

other words, the strain components are linear functions of the stress

components.

An elastic body is called isotropic

if its elastic properties are

identical in all directions, and anisotropiec if its elastic properties

-9
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are different for different directions. Homogeneous we shall call an
elastic body with which the elastic properties are identical for all
parallel directions passing through any points, or, in other words, all
identical elements having the form of rectangular parallelepipeds with

parallel faces, chosen at different points of the body, have identical

elastic properties.

Let us first consider a homogeneous elastic body having an aniso-
tropy of general form where some elements of elastic symmetry are mis-

sing. Referring the body to an arbitrarily chosen orthogonal coordinate

system xz, y, 2 we may write the equations expressing the generalized

Hooke's law in the following form:
e; =00, a;,9 + ay40. - ATy + a7+ A1g%rye

S e ’ (2.1)
Tay =8zt a0y +- -+« o o + agetay

a1y, @yps --+» Ggg are here the elastlc constants (strain coefficients);

in general, the number of different constants is equal to 21.

When strained the body stores a reserve of potential energy. The
expression of the potential energy of strain referred to unit volume

(of elastic potential) may most simply be written in the so-called bi-

linear form:

o=
V == 7 (0,8, -}- 9%y ~}-o.e, o TyTye - %reTae -t T:rl/T:r]/)' ( 2.2 )

If we pass over to the stress components on the basis of Egs. (2.1) this

expression assumes the following form in the general case:

- 1 2

AT - 5 -} 5 . - -1 -1-

Vo= T | a”cx‘y | a3 0. | 3,5y | 0.5, ] a9 sy ]
1

+ Pl 0223521 -F A43%y°2 -+ iy y: -+ B0yt - 6%y 2y +

-+ %”uu”g LA AR S A

. L (2.3)

+ 7% e Fat, et gty
1

— 2 - :
- 3 a. s l—awta_:txy.-{-

1 2
-|- —2- aw':my .
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the whole body ic found by integrat-

Ineover voe ontire volwre of the body w:
V. ffdem. (2.“)

! 1f the internal structure of the body is symmetric symmetry is al-

o cboerved in its elactic properties. This elastic symmetry as it is

wsually called appears in the following way: at each point of the body

- e s =

svmmetric directions are detected [or which the elastic properties are

identical (equivalent directions). Crystals have an elastic symmetry;

all naturally occurring crystals are subdivided into nine classes ac-
cording to the character of the elastic symmetry. Elastic symmetry is
also observed in samples produced of natural wood, delta-wood, plywood,

and other anisctropic materials. If there is elastic symmetry the equa-

tiors of the generalized Hooke's law and the equation for the elastic

pctential simplify; some of the constants aij prove to be equal to zero,

and the rest is connected by relations.

We shall not deal with all possible cases of elastic symmetry, but

consider only themost important of them.*¥

1. The plane of elastic symmetry. Let us asswie that through each

poeint of the body passes a plane with the property that any two direc-

S e e YA i b e s

tions symmetric with respect to this plane have equivalent elastic pro- 3
perties (in a homogeneous body all these planes passing through various

points are parallel). If the z axis is passed perpendicularly to the

plane of elastic symmetry the equations of the generalized Hooke's law

will be written in the following form:

€r ‘“"“u%'i'”12%']‘”1:»":"'“16*:,/' 1
&y =010, |- Anoy |- ay0; b Ay,
e, ==0,,0; -} ayoy | oago:--ayt,, :
Tyz == Qg Tzt QygTan E
Tx: =:~at’otyz - optaa ( 2.5 ) i
Yoy = Medz - 0agTy |- 04g0: - AggTay '!
- 11 - J
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The number of independent elastic constants is reduced to 13.

The propertles of the body with a plane of elastic symmetry may
be 1llustrated more plausibly with the help of the following example.
Let us consider an element of the body in the form of a rectangular
parallelepiped with which two faces are parallel to the plane of symme-
try, and assume that stretching or compressive normal stresses o, are
applied to these faces (Fig. 2). The strain of the element will be
characterized by the relative elongations and shears which we shall

find from Egs. (2.5):

&, == 0;30;, Ty:=0- ]

&y = 023% g == 0, i ( 2.6 )

&; == 0gy0;, Tay = 036%;-

Hence 1t 1s evident that in the case of simple stretching or compression
in a direction perpendicular to the plane of elastic symmetry the angles
between the sections normal to the plane of elastic symmetry and the
sectlons lying in it are not distorted, but remain rectangular ones.
As a result, when stralned the chosen element assumes the shape of a

straight parallelepiped in which four faces are rectangles, and two

ok . parallelograms. If, however, there are no planes
% ~ of elastic symmetry the rectangular parallelepiped
(] ,?’L-;;- which 1s stretched or compressed in one direction
E/I;B?C-‘_ goes over into an oblique parallelepiped. The di-
6y ' rections which are normal to the planes of elastic
L symmetry will be called prinecipal directions of
Pig. 2

elastiecity or, briefly, principal directions. For
the symmetry case under conslderation one princi-

pal direction passes through each point. The crystals of monoclinal syn-

- 12 -
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gony (e.g., feldspar-orthoclase) have this form of elastic symmetry.

2. Three planes of elastic symmetry. If three mutually perpendicu-
lar planes of elastic symmetry pass through each point of a homogeneous
body the equations of the generalized Hooke's law referred to an x, y,
2 coordinate system with axes normal to these planes assume the form:

€ == A% -1 A0, |- Mgt Tyt 0Ty
&y == a3, -+ 1229y -+ @330, Tz = Gogtae f ( - )

e, == 0,30, -} 50, -1 a330: 2y = Geetay
The number of independent elastic constants is equal to nine. Through
each point pass three mutually perpendicular principal directions. A
homogeneous body with three mutually perpendicular planes of elastic
symmetry at each point is called orthogonally anisotropie, or, briefly,
orthotropic.

An element having the shape of a rectangular parallelepiped with
faces parallel to the planes of elastic symmetry which is chosen from
an orthotropic body remains a rectangular parallelepiped when it is
stretched or compressed in one direction (Fig. 2); under stfain the rib
lengths are varied, but the angles between the faces are not distorted.

Equations (2.7) acquire a higher plausibility if instead of the

strain coefficients aij the so-called technical constants are introduced:

the Young's moduli, the Poisson coefficients, and the shear moduli. Let

us rewrite (2.7) in the form:

[ —] .l_. G ~—- _'M ?_tll fe] = _l— <
z E ® Eqg ¥V E ¥ Ty Ugg ¥
—___ Yz . _l.- __Ya2 == _1_
zv = El Oz } ,2 oy Ea I e ,13 Too ( 2 . 8)
—_—m . Ym, 1_ — _1_
&, = E, Oz E, 9y {' Ea 9z T:ry i Gia Tzy

Eys By, E? are here Young's moduli for stretching (compression) along
the principal directions of elasticity =, y, z; Vio is the Poisson coef-
ficlent characterizing the contraction in the y direction if stretching

in the = direction takes place; Voq is the Poisson coefficient charac-

- 13 -
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terizing the contraction the z direction for a stretching in the y di-
rection, etc.; 023, 613, 612 are the shear modulil characterizing the
variations of the angles between the principal directions y and z, x
and z, x and y.* The following relationships hold between the Young's

moduli and the Poilsson coefficients owing to the symmetry of Egs. (2.7)
Epvgy =2 Epigy Epyy == By Epng = By (2.9)

The elastic constants of an orthotropic body which enter into the
equations of the generalized Hooke's law (2.7) and (2.8) as written for
the principal directions of elasticity x, y, 2z will be called principal
elagstic congtants (in constrast to the constants entering into the equa-
tions for an arbitrary coordinate system).

The form of elastic symmetry considered is the most important since
it occurs most frequently in practice. Such materials as wood with regu-
lar annual rings, delta wood and plywood may be considered homogeneous
and orthotropic. The crystals of rhombic syngony (e.g., topaz, baryta)
are orthotropic.

3. The isotropy plane. If a plane in which all directions are
equivalent with respect to the elastic properties passes through each
point of a body the equations of the generalized Hooke's law for a co-
ordinate system with a z axis normal to this plane will be written in

the following manner:

tx = all°m+ a,:9 -+ ago. Tyz = ATy . ] (2.10 )
ey == 305~} 0,0y -F Q% Yz =5 BT i *
e;=day (°:c+°y)'i'a:m°:' Ta’u’:Q(an—‘alz) Tay

The number of different elastic constants reduces to five. According
to A. Lyav, a body with an anisotropy of this form is called trans-

vergely igotropic*X ¥ The direction normal to the isotropy plane and all

~directions in this plane are principal ones. Introduclng technical con-

éfants Qé shall rewrite Egs. (2.10) in another form:

- 14 -
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1
Ty: == VoL

1

v
-3 = g7
4

v
E (OV — ) -~ EF% Ta2™™ G e

(2.11)

-+ T

v 1
"E'/'(Oa:"l cy)"l"E/' %o Ty = G

Fa's

Here E 1s Young's modulus for directions in the 1isotropy plane; E' 1is

Young's modulus for directions perpendicular to this plane; v 1s the
Poisson coefficient characterizing the contraction in the isotropy plane

for stretching in the same plane; v' is the Poisson coefficlent charac-

terizing the contraction in the isotropy plane for stretching in a di-

rection perpendicular to _t; G E/2 (1 + v) 1s the shear modulus for

the isotropy plane; G' i1s the shear modulus characterizing the distor-
tion of rhe angles between the directions in the isotropy plane and

the directilon perpe..iicular to 1it.

The crystals of the hexagonal system (e.g., beryl) are transversely
isotropic.

4. Full symmetry - isotropic body. In an isotroplc body any plane

is a plane of elastic symmetry and any direction a principal one. The

equaticns of the generalized Hooke's law for an isotropic body have the
form:

S N LR R I S

ey =10y — (s L e oo = s R

S N AR I A
E 1is here Young's modulus, v the Polsson coefficient and ¢ = E/2(1 + v)

the shear modulus. The number of different elastic constants is equal

to two.

If in studying the strains of an isotropic body we pass over from

the x, y, 2z coordinate system to any other orthogonal coordinate system

x!, 'y ' the form of Egs.

y (2.12) will rot change and the elastic con-

stants E and v will retain their numerical values also in the new system.
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Conversely, in the case of an anisotropic body, new elastic constants
aéj which are expressed in terms of the old ones will be obtained on

passing over from one coordinate system to another. A number of questions
connected with the conversion of elastic constants of anisotropic

plates in the transition to new axes will be illustrated in the follow-

ing.*

§3. CURVILINEAR ANISOTROPY

A homogeneous anisotropic body is, as was shown above, character-
ized by the fact that parallel directions passing through different
points are equivalent in it. Besides this kind of anisotropy which may
also be called rectilinear there 1s another form of anisotropy, the
curvilinear one. The latter 1s characterized by the fact that directions
subject to some other regularities rather than parallel ones are equiva-
lent in a body with such a curvilinear anisotropy. If a curvilinear
coordinate system is chosen such that at different points of the body
the coordinate directions coincide with the equivalent directions then
infinitely small elements of the body which are bounded by three pairs
of coordinate surfaces will have identical elastic properties. Converse-
ly, the elastic properties of elements having the form of identical
rectangular parallelepipeds with mutually parallel faces will no longer
be identical. The number of curvilinear anisotropy which in the follow-
ing will be called eylindrical anisotropy* occurs most frequently and
is most interesting for practical purposes.

The cylindrical anisotropy 1s characterized by the following. The
straight line g, the axis of anisotropy (itmay pass both inside or out-
side the body), is rigidly connectad with the body having cylindrical
anisotropy. All directions intersecting the axis of anisotropy under a
right angle are equivalent among each other; all directions parallel

to the axis of anisotropy and all directions orthogonal to the first

- 16 -




two directions are, respectively, equivalent to each other. All infin-

itely small elements A4 A ., Singled out of the body by three

1° 722
pairs of surfaces: a) two planes passing through the axis of anisotropy,
b) two parallel planes normal to g, and c¢) two coaxial cylindrical sur-
faces with an axis coinciding with g (Fig. 3) have identical elastic
properties. When studying problems of equilibrium and motion of such
bodies 1t is most convenient to use a cylindrical coordinate system r,
8, 2, passing the z axis parallel to the axis of anisotropy g, and the
polar axls z from which the angles 6 are counted in an arbitrary manner.

The equations of the generalized Hooke's
law for a body with a cylindrical anisotropy
of general form, without any elements of elas-
tic symmetry, will have the following form in
the above indicated cylindrical coordinate sys-
tem:

e, = 0y,0, - % |- 030 -1 @y T - 04T - gt

R R B T eI 4 aa7 i (3.1)

......................

Fig. 3

The coefficients aij are the elastic constants;
the number of different elastic constants is equal to 21 in the general
case. We note that the equations of the generalized Hooke's law may also
be written for an arbitrary Cartesian coordinate system; they will have
the form (2.1), but the coefficients a; will no longer be constant,
but vary when passing from one point of the body to another. If, how-
ever, for a homogeneous body or, in other words, for a body with rec-
tilinear anisotropy the equations of the generalized Hooke's law Aare
written in an arbitrary cylindrical coordinate system r, 0, z,they
will have the form (3.1) in the general case, only the a; in them will
e functions of the angle 6.
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‘E In a body with cylindrical anisotropy there may also exist differ- f
'f ent elements of elastic symmetry. If at each point of the body there is ‘
E a plane of elastic symmetry normal to the axils of anisotropy g Egs.
5 (3.1) simplify and assume a form analogous to (2.5) since
; 8y == 0,5 == Gy, == 1y == gy == Qg == Qg == g == 0. (3.2}
If at each point there are three planes of elastic symmetry one of
which 1s normal to the axis of anisotropy, the other one passes through

the axis, and the third one 1s orthogonal to the first two axes then

Egs. (3.1) assume the same form as Eqs. (2.10) because a1 = Ayg =

; = a36 = ayg = 0. In this case the body may be called an orthotropic body
' with cylindrical anisotropy. As in the case of a homogeneous orthotropic
body it is also here convenient to introduce "technical constants," and
then the equations of the generalized Hooke's law will be written in the

} following form for an orthotropic body with cylindrical anisotropy:

i —_— __1_ Yor Ver 1

if YT ORSTROTES =gy |

4 . Yy 1 Vel 1

3 By == Eor’*"E'—e 09—-—-[-:.‘-.- 30 1= Grs Tra (3' 3)
- ?I_ Yo 1 1

4 8= E: °r'—E; °0+E~: S o= _G;J.tn-

Here Er, Ee, E'z are Young's moduli for stretching (compression)
along the r, 6, 2 directions, the radial, the tangential and the axial
directions (which, at the same time, are also the principal directions
g of elasticity); V.o is the Poisson coefficient characterizing the con-
E traction in the 6 direction when a stretching in the r direction is ap-
3 plied; etc; G G

02° Gre are the shear moduli characterizing the var-

iations of the angles between the 6 and z, r, and 2z and the r and 6

rz?

3
4 directions.

As an example of a body with cylindrical anisotropy we may use a
wooden block with regular cylindrical annual rings. If the inhomogeneity

is neglected itmay be considered to be an orthotropic body with cylin-

- 18 -
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drical anisotropy.¥* The pith line plays the role of the axis of aniso-

tropy g (Fig. U).

Cylindrical anisotropy may appear in metallic details as a result
of some technological processes, e.g., in drawing wires, in the produc-
tion of pipes, etc.

A body with cylindrical anisotropy may be formed artificially, by
constructing it from homogeneous (rectilinear-anisotropic) elements
with identical elastic properties. Let us, e.g., imagine a great number
of homogeneous anisotropic elements ("bricks"), homogeneous in their

elastic properties, in which two opposite faces form a small angle. If

Yomm-p==

a value 1is constructed from these elements, as shown in Fig. 5, it wilil,
as a whole, have the properties of a body with cylindrical anisotropy.
The axial directions of the elements in the vault equivalent to each
other will be the radial directions.

We shall once again return to this form of anisotropy in Chapters
2, 3, 8, and 9. We shall not consider othercases of curvilinear aniso-
tropy.
§4. BASIC EQUATIONS AND BASIC PROBLEMS OF THE THEORY OF ELASTICITY

The stressed state of an elastic body may be considered given if
the stress components acting on three planes normal to the coordinate

directions at an arbitrary point of the body (and at an arbitrary in-
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: stant of time 1f the motlon of the body is considered ) are known. The
, strained state is determined by the components of strain which depend
on the three projections of the displacement on the coordinate direc-
tions. Consequently, in order to have full information on the stress-

g strain state of a given elastic body which is acted upon by external

| loads nine functions must be determined: the six components of the
stress and the three projections of displacement. If we use a Cartesian
coordinate system Ops O T

T.., U, V, w are these unknown
xz2’ xy 279

functions of the z, y, 2 coordinates (and, in the general case, also

y.’ OZJ Tyz.’

of time t); we must have nine independent equations to determine thenm.

Let us concentrate our attention, for the sake of definiteness,
on the case of the equilibrium of a homogeneous anisotropic body. Add-
ing Eqs. (2.1) expressing the generalized Hooke's law to the equations
of equilibrium of a continuous medium (1l.3) we obtain a system of nine
equations called the fundamental one:

O3, Jtzy’
ox + dy

Otz
+ +X=0 ]

; e, = 0,0, 01,0, + 0,50, -+ a7y 0y Ta - Oyt (4.1)
% gy =0ty - o . oo + dutay,

4 Toy =010+ oy 4 - o o . o + g5ty

1 The connection between the strain components and the displacements of
projection is given by Formulas (1.6) in the case of small strains. If

% the body has elastic symmetry, then, obviously, instead of the general
equations (2.1) those corresponding to the given form of elastic sym-
metry must be taken [e.g., Egqs. (2.7) or (2.8) for an orthotropic body].

The nine unknown functions determining the stress-strain state of the

a2 o o P ol oo I £l i AT
A % .

body must be found by integrating the fundamental system (4.1) (or a
system equivalent to the fundamental one), taking account of the sur-

face conditions (boundary conditions). According to what is given just

- 20 -

we !




it s be M et oo dbe s R

- Rl o L b b i bt b e e s kb o e s et S
3

on the surface we distinguish between the first fundamental, the second
fundamental, and the mixed problem [which is sometimes called the third
fundamental problem of the statics of the elastic body*].

The first fundamental probilem. External forces are given on the

Z

surface; also the volume forces are given. Designating by Xn, Yn, "

the projections of the external forces referred to unit area, and by
n the direction of the normal to the body surface the conditions on

the surface may be written in thé form

cecos(n, x) |-z, cos(n, ¥)-|-tgcos(n, 2) == X, |
Ty Cos(n, x)-f-o,cos(n, y) -5y cos(n, 2)=: Yy, i (L4.2)
2p2C0s(n, x)-|-5 . cos(n, y)-f-o,cos(n, 2):=:Z,

Instead of the projections of the external forces on the coordinate
axes the projections of the forces on the normal n and on two directions
perpendicular to n, or, in other words, the normal and tangential stres-

ses may be given.

The second fundamental problem. The displacements are given on the

surface; besides, the volume forces are given. In thls case the boundary
conditions have the form
=4 wv=:vt, wesw', (4.3)
where u¥*, v¥*, w¥* are the given displacement components in the directions
of the x, y, 2z axes.
The mixed problem. On a part of the surface the external iorces

are given, and on another part the displacements. To the mixed problem,

tl however, also pertain, e.g., suvch problems where the tangential forces
| and displacements along the normal or the normal forces and the dis- %
placements in a tangent plane are ziven cn the surface, etc. H

The uniqueness of the solution of the equilibrium equations of the

elastic body for small strains (:f the straln components are linear

functions of the derivatives of the displacements) is established by ; g
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the Kirchhoff theorem.#

Somewhat different are the problems of the stability of elastic
bodies having the shape of rods, plates or shells. The main part of
the problem boils down to the determination of the critical loads for
which the form of equilibrium corresponding to small strains and loads
(the principal form) stops being the sole and a stable form of equili-
brium.

The fundamental system of the equations of motion of the elastic
body has the same form as System (4.1), but the equations of equilibrium
of the continuous medium must be replaced by the equations of motion.
In other words, on the right-hand sides of the first three equations

there will be found inertia terms rather than zeroes:
pWy == p W@=P%%. mmngﬁ.

In those cases where it is not possible toc obtain an exact solu-
tion of the problem of the theory of elasticity (owing to the difficul-
ties due to the determination of functions satisfying the differential
equations and the boundary conditions) approximate methods may be used,
and an approximate solution of the problem may be constructed with their
help. Among these methods the variational methods which are set forth
in detail in the book by L.S. Leybenzon play an important part. In the
following we shall use a number of approximate methods, among them one
variational method whose basis 1is the. principle of virtual displacements
and the theorem on the minimum of a certain integral following from it.

Those displacements in an elastic body are understood to be virtual
ones with which it remains continuous, but the boundary conditions are
satisfied on parts of the surface which are strained in a given way or
fixed, i.e., on those where the displacements are given. In other words,

displacements permitted by the geometrical connections superimposed on
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the elastic body are meant.

Let the body be at equilibrium under the action of the external
load. We shall set up the expression for 3 equal to the potential energy
of strain of the ehole body (expressed in terms of the displacement)
minus the work of the external forces, surface and volume ones:

d= J- J‘ Vdw-— J‘ J(X“" Y+t Z“w)ds.—- (b.b)

— j j. J(Xu -} Yv - Z'w) dw.

(the triple integrals will be taken over the whole volume of the body,
and the double one over that part of the surface where the forces are
given). Let us consider the expression for 3 in which u, v, w are un-
derstood to be the virtual displacements (among the virtual displace-
ments, however, there are also real ones which the body experiences
when it passes over from the initial state into the state of elasti.
equilibrium under the action of external forces).

On the basis of the principle of virtual displacements the follow-
ing theorem may be formulated: real displacements differ from all vir-
tual ones by the faet that they minimize the expresston for J.%

The simplest version of an approximate solution based on the use
of the above-mentioned theorem will be roughly outlined as follows.
Expressions for the displacements are sought in the form of sums with
undetermined coefficients by choosing the sum terms such that the dis-
placements satisfy the continulty conditions (on those parts of the
surface where they are given). The unknown coefficients are determined
by requiring that the expression for 3 be a minimum. Ultimately, the
problem boils down to determining the minimum of an algebraic integral
function of second degree with respect to the coefficients. In the same

way, an approximate solution for the elastic bocdy (of finite dimensions)
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carrying out simple harmonic vibrations with a frequency p may be ob-

talned, but 3 has to be replaced by the expression¥
=:J-T2 3. "2‘-‘[ j‘ J‘p(u?'l‘v’ - w?) dw (4.5)

in this case (T is the kinetic energy of the body).

Manu-
script
Page [(Footnotes])

No.

9 See, e.g., 1) Leybenzon, L.S., Kurs teorii uprugosti [Course
on the Theory of Elasticity], Gostekhizdat [State Publishing
House of Theoretical and Technical Literature], Moscow-Lenin-
grad, Chapters 1 and 2; 2) Lyav, A., Matematicheskaya teoriya
uprugosti [Mathematical Theory of Elasticity], ONTI [Unified
Scilentific and Technical Publishing House], Moscow-Leningrad,
1935, Chapters 1 and 2.

11 Various cases of elastic symmetry for anisotropic bodies in
general and for crystals 1in particular are considered in our
book "The Theory of Elasticity of an Anisotropic Body," Gos-
tekhlzdat, Moscow-Leningrad, 1950, Chapter 1. See also: Lyav,
A., Matematicheskaya teoriya uprugosti, ONTI, Moscow-Lenin-
grad, 1935, Chapter 6; Bekhterev, P., Analiticheskoye issle-
dovaniye obobshchennogo zakona Hooke'a [Analytic Investiga-
tion of the Generalized Hooke's Law, Parts 1 and 2, 1) pub-
lished by the author (lithographed), Leningrad, 1925; 2)
Zhurnal Russkogo fiziko-khimicheskogo obshchestva [Journal
of the Russian Physicochemical Society], 57, No. 3-4, 1926,
and 58, No. 3, 1926.

14 Sekerzh-Zen'kovich, Ya.I., K raschetu na ustoychivost' lista
fanery kak anisotropnoy plastinki [On the Calculation of the
Stability of a Plywood Sheet as Anisotropic Plate], Trudy
TsAGI [Transactions of the Central Aero'hydrodynamical Insti-
tute], No. 76, 1931, page 8. A system of "technical constants"
for the general case of anisotropy was proposed by A.L. Rabilno-
vich (see his paper "On the Elastic Constants and the

Stﬁength of Anisotropic Materials," Trudy TsAGI, No. 582,
1946) .

14 Lyav, A., Matematicheskaya teoriya uprugosti, ONTI, Moscow-
Leningrad, 1935, page 172.

16 The general formulas i.sed to transform the elastic constants
in the transition to another coordinate system are givan in
our book "The Theory of Elasticity of an Anisotropic Body}
Moscow-Leningrad, 1950, pages 33-45.
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Already Saint Venant and Volgt have paid attention to this
form of anisotropy: 1) B. de Saint Venant, Memoire sur les
divers genres d'homogeneite des corps solides [Treatise on
the Various Forms of Homogeneity of Solid Bodies], "Journal
de Math. pures et appl." [Journal of Pure and Applied Mathe-
matics], (Liouville), Vol. 10, 1865; 2) Voigt. W., Ueber die
Elastizitaetsverhaeltnisse cylindridrisch aufgebauter Koerper
[On the Elasticity of Cylindrical Bodies], "Nachrichten v.d.
Koenigl. Gesellschaft der Wissenschaften und der Georg-Augus-
tin Universitaet zu Goettingen [Bulletin of the Royal Scien-
tific Society and the Georg-Augustin University at Goettin-
gen], 1886, No. 16.

Mitinskiy, A.N., Uprugiye postoyannyye drvesiny kak ortotrop-
nogo materiala [The Elastic Constants of Wood as an Ortho-
tropic Material], Trudy Lesotekhnicheskoy akademii im. S.M.
Kirova [Transactions of the S.M. Kirov Lumber Technology
Academy, No. 63, 1948.

See, e.g., the book by N.I. Muskhelishvili, "Nekotoryye osnov-
nyye zadachi matematicheskoy teorii uprugosti' [Several Basic
Problems of the Mathematical Theory of Elasticity], Izd.

AN SSSR [Publishing House of the Academy of Sciences of the
USSR], Moscow, 1954, pages 65, 71, 72.

See, e.g., the above-mentioned course on the theory of elas-
ticity by L.S. Leybenzon, §118, pages 309-311.

Leyvebenzon, L.S., Variatsionnyye metody pesheniya zadach
teorii uprugosti [Variational Methods of Solving Problems of
the Theory of Elasticity], Gostekhizdat, Moscow, 1913.

See the mentioned book by L.S. Leybenzon, page 114 and his
"Course on the Theory of Elasticity," page 317.
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Chapter 2

THE PLANE PROBLEM OF THE THEORY
OF ELASTICITY OF AN ANISOTROPIC BODY

§5. THE GENERALIZED PLANE STRESSED STATE OF A HOMOGENEOUS PLATE

Let us consider an elastic homogeneous anisotropic plane plate of
constant thickness which is at equilibrium under the action of forces
distributed at its boundary, and of volume forces. We shall assume
that: 1) at each point of the plate there is a plane of elastic symme-
try parallel to the mid plane; 2) the forces applied to the boundary
and the volume forces act in planes parallel to the mid plane, are dis-
tributed symmetrically with respect to it and vary to a low extent with
the thickness; 3) the plate strains are small. The stressed state of
the plate working under the conditions mentioned 1s called generalized

plarne stressed state. The mid plane 1s not distorted under the strains

and remains plane.

Let us choose the mid plane to be the zy
coordinate plane, put the origin at an arbi-

trary point 0, and place the x and y axes ar-

bitrarily (Fig. 6). We shall introduce the
Fig. 6. designations: h is the plate thickness, Xs ¥
are the projections of the forces distributed
along the boundary, per unit area; X, Y are the projections of the vol-
ume forces per unit volume (Zn = 2 = 0 according to the assumption);

Ay75 Gggs +++s Age are the elastic constants of the material in the «,

Y, 3. coordinate system.
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In studying the generalized plane stressed state the values of the

components of stress and the displacement projections averaged over the

thickness are considereq: Ex, Ey, ?xy, 52, u, v, which quantities are

determined as integrals of the corresponding stresses and displacements

taken over the thickness and divid.d by the thickness:

h/2 ' h2 hrR 3
- 1 1 - ] :
Sy =g o, dz, o, Ty eyda <, g e da p
~h2 g —ha (5 1) ]
h/2 h/2 h'2
- 1 - - |
G, = - a.dz, — IR E vdz.
PR d u Jou vy J.
~h/2 —hr2 —hr2

The quantity Ez will be neglected compared to Ex, o, and T

For th

€ mean stresses and displacements it is easy to obtain five equa-

tions according to the number or unknown functions from the fundamentn1l

System of equations of equilibrium. Multiplying the first and the sec-

ond equation of the system (4.1) by dz/h we shall integrate both sides

of them over z from —h/2 to h/2; the same is done with the first, the

second and the sixth equations, éxpressing the generalized Hooke's law

(which in our case must be taken in the form (2.5)]. We shall then ob-

tain equations which are satisfied by the mean values:

R
o b+ X =0,

(5.2)
B ds, —
Tty H V=0

z == ay,0,~|- a0, —{—a,erw, l
y = 10, @550, ~}- QagToy

T:r[/ =049, '*" (12001/ —{' acora-y' J

@t ™

(5.3)

Here

M2 h/2
- 1 S 1
X———’TfXdZ, Y-Ff}’dz
-h2 .

are the mean (taken over the thickness) values of the volume forces,
and E;, E? and ?xy are the mean (taken over the thickness) values or
the strain components e@ual to: '
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If the external forces Xn’ Yn are given at the boundary of the
plate the boundary conditions will be found from the first two condi-
tions (4.2), by taking the mean of them), i.e., multiplying them by

dz/h and integrating over the thickness). Thus we obtain:

o, €08 (1; x)—}-;wcos(u, W= X, } (5.5)
;” cos(n, x)-|- Sy cos(it, y):: Y,
Here
hp2 hi2
o=t [ xds, 7,1 [y
nE »az, n= ) n dz.
-hr2 . —h/2

We shall assume that the volume forces have a potential U(x, y) in

terms of which they are expressed according to the formulas

Ql

g (5.6)

» -}_;="—

|

ola
o&

X=—

Q
<

The equilibrium equations will be satisfied by introducing the stress

function F(z, y) and putting:

L . &F
x=§;§‘+uy ,°y=a—a'+u' T.Ill:—dx'dy' (5.7)

al

Eliminating the displacements u and » from Eq. (5.4) by differentiation

we obtain the strain compatibllity condition

Feg | Oy  O%ay -
dy? + 0x1  0x0y —0 (5.8)

Substituting here the expressions for Ex, Ey’
and expressing the stress components in terms of F, we obtaln a differ-

ny from Egs. (5.3)

entlal equation which is satisfied by a function of the stresses

s i - IF A OF
%22 gt — 2020 gragy T+ (00 060) Gagm — 2816 grgy T G T = (5.9)

aU U o
=— (312 030) Gz + (10 -+ 020) 5355 —(@n +a) 5o (5.9)
If there are no volume forces we have instead of (5.9) the homogeneous

equation
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(5.10)

=

oHF
'*“an'Tyr:O-

In particular, for an orthotropic plate we obtain the following equa-

tion if we identify the directions of the x and y axes with the princi- i E

pal directions of elasticity* : 3
I 0F (1 24\ OF 1 0F :
5 ow G —E) wear e (5.11)

;2 E, are here Young's moduli for stretching (compression) along the

principal directions » and y; G = 612 is the shear modulus characteriz-

E

ing the variation of the angles between the principal directions z, y; ¥

v is the Poisson coefficient characterizing the contraction in

1~ V12
the y direction for a stretching in the x direction [see Egqc. (2.8)].

e

In order to study the stresses and strains in an orthotropic plate in §
which a generalized plane stressed state 1s realized it 1is sufficient , ;

to know only four of the nine elastic constants: El’ E2, G, vy In the

PO

following the x and y axes whose directions coincide with the principal !
directions of elasticity of the orthotropic plate will be called prin-

cipal axes.

With an isotropic plate E, = E, = E, G E/2(1 + v) and Eg. (5.11)

1 2

goes cver into a blharmonic one**

SETCS R X RO SO

V2y2F == 0, (5.12)
where
: 93 02
v2=-a-;n—+"o—y3'.
In detall, this equation reads as follows:

MF O4F NF
W—*‘Q.&W-{-W:O. (5013)

As far as the boundary conditions are concerned (which go over

into the conditions along the outline of the plane figure S lying on

the zy plane) they may be reduced, for given external forces, to giving
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the first derivatives of the functions of the stresses. Let the plate
region S be limited by an ocuter contour and one or several inner con-
tours (for the sake of generality we shall assume that the plate has
one or several openings, or, in other words, S is a multiply connected
region). The contour equations may always be given in parametric form
where the arc length s as counted from an initial point (0' on the out-
er contour, 0" on the inner one) 1is chosen to be the parameter:

x=x(s) y=y() (5.14)
We shall agree to call the counterclockwlse direction of passing along

the curve positive [both for the outer and inner one — see Fig. T¥*].

Then we obtain:

cos (n, x)-—=:'_:%§-, cos (n, y)—:-:;%.
n 1s the direction of the ocuter normals to the contours, the outer or
the inner one; for the outer contour the upper, and for the 1nner one
the lower signs. Substituting these expressions in the conditions (5.5)
and integrating over the arc s from the contoﬁr point chosen to be the

initial one to a variable polint we obtain the boundary conditions for

given external forces Xn, Yn in the form:

9 .—_Vn—uii ds -+ ,‘
dx J;(" . ds) Sa | (5.15)
g—f= (_-X,,—U—‘%)ds—{—cz

o] e, are here constants which can be fixed arbitrarily on one of the

1 °2
contours. After the stresses have been found we can find the displace-
ments by integrating Eqs. (5.3).
If the displacements u*, v* are given at the plate boundary we ob-
tain the boundary conditions from (4.3) by integrating them:
U=u', v=0". - (5.16)

'Iﬁ the following, we shall omit the dashes over the symbols for
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stresses and displacements in the consider-
ation of the generalized plane stressed

state, in order to simplify the denotation,

and understand 0. O , U, v to be the

s T
Y Ty
values of the stresses and displacements

obtained by taking the mean over the thick-

ness.

§6. PLANE DEFORMATION IN A HOMOGENEOUS BODY

The problem of plane deformation which is also reduced to the
plane problem (i.e., to a two-dimensional problem) has much in common
with the problem of the elastic equilibrium of a plate in a generalized
plane stressed state. Let us consider a homogeneous anisotropic body
having the shape of a long cylinder of arbitrary cross section which is
at equilibrium under the action of forces distributed along the side
surface, and the volume forces (Fig. 8). We assume that: 1) at each
point of the body there 1s a plane of elastic symmetry which is normal
to the generatrix; 2) the forces act in planes normal to the genera-
trix, and do not vary along the generatrix; 3) the strains are small.

I. is obvious that cross sections far from the ends may be consid-

ered plane; in this case they are all under the same conditions.

Putting
w:cu(n, ). vi-u(e, y), w:=0, (€.1)
we obtain
_Ou . du . Ou dv
fot oyt fvTioy Te gyl (6.2)

€ == Ty: == oz = 0.

The fundamental system (4.1) assumes the form:




e R e s e R e g i i

05, O3y

Otzy - O3y )
ox Hgy Y =0

€ == 31095+ Biooy -1 Bigtzy ]

!]/ = lqlzgz'*_ aggay—*— :jZGTl'V' i ( 6 . u )
Tay = P16%2 ~+ Bag9y - BosTays

9 = — a_l; (alﬁow+ Q20, -+ am-.zv), ]
Tv.._::'t:z:.o_ . (6.5)

Bij are here constants which may be called reduced strain coefficients;

they are connected with aij by the following formulas:

’ ai3a3
p(j—_-'-aij— aa: (6.6)
(. j=1, 2, 6).

Under the assumption that the external forces

have a potential, i.e.,

W U
X=_Hu Y=—o_yo (6'7)
Fig. 8 we obtain formulas which are completely analo-

gous to those obtained in the preceding sec-

tion¥*:
Apr aF ' Nne |
°a=ayi'+Uv °v=5;i'+up 1a:y=—m;) (6'8)

OtF F ' HF P HF
Bar gr — 2P gzgy 1 e+ P gzigys — Pz ap HPu g =

=—-(-.9u+ﬂ-.»=)g—"f—,]+(3m+f’:u)(%——'({!..+p.z):;y‘f. (6.9)

The boundary conditions reduce to the conditions at the counter of
the cross section and coincide formally with conditions (5.15) or
(5.16) for a plate in a generalized plane stressed state.

The formulas and equations given here do not take account of the
conditions at the ends of the cylinder; strictly speaking, they are on-
ly correct for an infinitely long cylinder. In the case of free ends

their influence on the distribution of the stresses may be taken into
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(S is the area of the cross section, I

account approximately, on the basis of the Saint-Venant principle ac-

cording to which statistically equivalent lcads applied to the cylinder ’
ends give rise to identical effects in all of its parts far from the
ends. Let the cylinder cross section have finite dimensions. We shall
put the origin of coordinates into the center of gravity and place the
x and y axes along the principal axes of inertia of the cross section.

Determining the stresses 0.5 O Txy without taking account of the con-

Yy
ditions at the ends we obtain according to Formula (6.5) the normal
stress in the cross sections. In speclal cases 1t may turn out that it
is equal to zero and then the conditions at the free ends will be ful-
filled. In the general case, however, the stresses o, in each cross
section (and, consequently, also at the ends) are reduced to a force P
directed along the geometrical axis (z), and to the moment with the
components M1 and Mo relative to the x and y axes.

In order to remove the "superfluous" forces and moments at the

ends we 1impose a distribution of stresses from force and moments equal

to the values of P, M1 and M2, but having opposite directions, on the

stress distribution for even deformation. In other words, the following
correction must be added to the stress o, as calculated from Formula
(6.5):

P M M

and I2 are the mcments of iner-

1
tia with respect to the principal axes of inertia z and y). If, howev-

er, the cylinder ends are rigidly fixed it 1s not necessary to add any
correction. With the help of the Saint-Venant principle we may verify

that the stress distribution in all parts of a cylinder of finite i
length, except for the zones in the neighborhood of the ends, will be

the same as in an infinite cylinder.

- 33 -

i i

‘5

e g e R




v dnd

¢ In view of the nearly full agreement of the fundamental equations

- and boundary conditions for the plane at stressed state and for the

. plane deformation (there is only a difference in the coefficients) both
problems are solved by the same methods. Having obtained a solution for
the plane stressed state we obtain in the same way also a solution for

the corresponding case of plane deformation.

§7. GENERAL EXPRESSIONS FOR THE STRESS FUNCTION
i: As was shown in the preceding sections the plane problem of the
| theory of elasticity boils down to determining a stress function F(z,

y) satisfying the differential equation of fourth order (5.9) or (6.9)
and the boundary conditions on the contours limiting the region, in the

} region S in the xy plane.

| For the sake of definiteness, wr shall consider the case of the

generallzed plane stressed state. If there are no volume forces the

function F satisfies the equation

OF OF OF oF 9'F
02 g~ 202 33 dy (28,24 ay) dxtoy: 2a, bx_d}'ﬂ'*" 4 gy7 == 0. (7.1)

This equation may be interpreted in a general form, by previously re-
writing it symbolically with the help of four linear differential oper-
ators of first order in the following manner:

D,D,D,D,F = 0. (7.2)

The symbol Dy (k = 1, 2, 3, 4) designates the operation

Bm . (7.3)

where W, are the roots of the characteristic equation

a4y p¢— 2a,0% -} (20,5 + ag) p? — 2ayep - 85 = 0. (7.4)

In the case of an orthotropic plate Eq. (7.4) referred to the principal

1 directions of elasticity assumes the form:
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pc,.*(%_. 2-,1)92.4}- -g;- = 0, (7.5)

The author has proved that for any ideal elastic body for which
the constants ajqs 2a12 + Agps ap, are finite and not equal to zero the
characteristic equation (7.4) (and the corresponding equation for the
plane deformation) may have either complex or purely imaginary roots,

and cannot have real roots.* Only limiting cases lead to an elimina-

tion:

1) ag, ==
=ay==0; 2) aps=ay==2a,-{-85==0a,=0, 3) a,=:0,==0;
4) a,, == Q,5== 2(112—*< Qgg = 020:0-

In the first case two vanishing roots are obtained, in the second case
all four roots are equal to zero, while in the rest of the cases two
or all four roots are infinite. In the following, if no special reser-
vation is made, we shall exclude the limiting cases from consideration
and always regard the roots M, as either complex or purely imaginary
numbers; for these roots we shall use the denotations Bo Bo e o

Two principal cases are possible according to the relationship be-
tween the elastic constants:

1) the roots of Eq. (7.4) are all different:

s ac 8, ppmey |, gy esa— Bl ey - o (7.6)

(e, B, Y, 6§ are real numbers, B > 0, § > 0);

2) the roots of Egq. (7.4) are equal in pairs:

p.l—-;"pzma—l-ﬁf, l:"—l =‘-=|I'2-"—=a‘—"i31 (3>0) (7-7)

For an isotropic plate

Bi==po=:l, p=sp=-——1, a:20, =1, (7.8)

The numbers My and Mo will be called the complex parameters of the
first kind of the plane stressed state (or, correspondingly, of plane
deformation) or simply the complex parameters. The complex parameters
may be regarded as numbers which to a certain degree characterize the
anisotrépy in-the case of the plane problem; their value can be used to

- 35 -

Al s

R e i ri

st Lo e A

i taia e

B T AR T A R A e S i A N S 2P F T 75

b g




By SR ML e s At

indicate inhowfar the body deviates from an isotropic one for which al-
i ways p=p=1 |p|=|p|=1.

' If the material is orthotropic and the directions of the x and y
axes colncide with the principal directions of elasticity then a

16 -
= ay = 0 and the following three cases of complex parameters are pos-

sible (the 1limiting cases are excluded).
: Case 1: p, =8, p,=10l (the complex parameters are purely imaginary
and unequal).
Case 2: p,=p,=8 (the complex parameters are equal).
Case 3: p,=a+-Bl py=—a-}3u
Having rewritten Eq. (7.1) in the form (7.2) we may reduce its in-

i tegration to the integration of four first-order partial differential

equations.
In fact, if we put
DF =g;, D,DF =g, DQD;&DcF =8 (7.9)

we obtain the equation

J é '
] Dlg,E??_p,Ff%: : (7.10)

On integration we find
g =/i(x+p) (7.11)
where fl 1s an arbiltrary function of the variable z + Moy Furthermore,

from (7.9) obtain the equations:

7 ()
it
0 -0

OF -- OF

Ty T Regx 8

Integrating these inhomogen:ous equations one after another we ob-

tain the following expressions for F:

1) in the case of different complex parameters
Fe= Fy(x 4 v,9)-1- Fo (el m) -1- Fy(e - -1 Fole -l (7.13)
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2) in the case of complex parameters equal in pairs
Fe Pyl o) 1 d mn Fale fu) b - (7.14)
P FaGd g (e b ) Fo(x - w) "

(FJ, F2, F3, F4 are arbitrary functions of the variables xz + Hpy or
z gy,
The variables x + uky are complex, but not of the usual type x +
+ 1y, but more complicated or general. Introducing the designations
Zy=xobmW 2z Xobyay Zir=x-byy Ze==xodewy (7.15)
for them and bearing in mind that the stress function must be a real
function of the variables x and y we shall rewrite Eqs. (7.13) and

(7.14) in another form:
1) in the case of different complex parameters

F=2Re[F (z,) |- F,(2) (7.16)
2) in the case of complex parameters equal in pairs
F = 2Re [F,(2)-}- z,F, (2)) (7.17)

(Re denotes the real part of any complex expression.)

In particular, for an isotropic body 2z, = z + iy = z, 51 = z;

changing the designations of the arbitrary functions we obtain the

well-known expression¥:

F =Re[22(2)+7(2)). (7.18)

Sometimes it 1s more convenient to introduce new variables

zf::z-{-).,;. zé:_—-z—{—).z—é, (7.19)
where

o140y o
)‘l"' l——'lp;' )‘2“-—1.:1‘[&' (7'20)

These variables differ from 2 and 25 only by constant factors.
The numbers Al and A2 which depend only on the elastic constants, all
things considered, will be called complex parameters of the second kind
in contrast to My and PE For an isotropic body Al = Ag = 0; for an an-

isotropic body they are, in general, complex numbers whose absolute -
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values do not exceed unity. Designating arbitrary functions of the var-

iables zi and zé by Ol and 62 we shall rewrite the general expression

of the stress function in the case of unequal complex parameters in the
form

Foo2Re [0,(2) | 0,(23). (7.21)

If volume forces with a potential U act on the body the stress
function satisfiles, generally speaking, the inhomogeneous equaticn
(5.9) or (6.9). The general expression for this function will be writ-
ten as the sum of expression (7.16) [or, respectively, (7.17), (7.18),
(7.21)], and a speclal solution of the inhomogeneous equation; usually,
it is not very difficult to find this special solution. Also these cas-
es were in spite of the existence of volume forces the function F sat-
isfies the homogeneous equation (7.1) are possible. As an example the
problem of the distribution of the proper weight stresses in a homoge-
neous body may be used; in this case the volume forces have a potential

which depends linearly on the coordinates, hence all 1ts second deriva-

tives vanish.

§8. THE CONNECTION OF THE PLANE PROBLEM WITH THE THEORY OF FUNCTIONS
OF A COMPLEX VARIABLE

As shown by Formula (7.16) the stress function in the case of un-
equal complex parameters 1s expressed 1n terms of two arbiltrary analyt-
lc functions of complex variables z,==x-yy. z,=2x--p,y oOP z{::z%-h?,;}:
= z4—h§l(complicated or generalized). In the case of equal parameters
we obtain one complex variable a3, or zi.

If we know the expression for the functlion F 1t 1s easy to find
the expression for the stress components and then to obtaln also the

formulas for the displacements by integrating Eqs. (5.3) or (5.4).

Let us focus our attention on the case where the complex parame-
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1 ters are different, but there are no volume forces. Introducing the
r. designations
_dF d dby s d®
‘bl(zl):—.-l?z—:, 4)2(22)-.-—.?%, d):(z,);;l};—l‘-, (I)Z(Zz)*_“fj?f'- (8.1)

we obtain the following formulas with the help of expression (7.16):

o Tt 2Refuil(2) |- piba )l
o+ 2Re| M(2) |- ¥z, {-2) ';
oy 2ReDndl (1) | i (22)); P
. wiz 2Repy Dy (2,) - ply (2)]— wy - g, } d
F’ v:: 2Re|qD, (Z;)‘I'qZ'I'g(zg)l'f""x‘*‘v()' (8.3)
é Here we have introduced the denotations
py == a,pd -a,- Aty Pymra i g, --an, l
" (8.4)
qy == Ay, - %f;: S g gr= gy -t %,2 —= Oyt J
wy, Uy, v, are arbitrary constants due to the integration which charac- P
terize the "rigid" displacement of the plate, i.e., the displacement in
the zy plane without deformation (w characterizes the revolution, and ) ]
u,, v, the translatory displacement).*
The normal and tangential stress components on a plane with arbi-
trarily directed norral n will be found from the formulas:
3, = 05c0s?(n, x)~-a,cos?(n, y)-}23,,cos(n, x)cos(n, y). 8 . %
2y == (oy—0z) cos (n, x)cos(n, y)-{-7,,lcos? (n, x)—cos?(n, y)]. } (8.5) . 3
Substituting here the expressions for Ox’ g, T we obtain:
on == ZRe ([c0s (1, y)—-pycos(n, X)° Iy (2,) + - 3
~ Aleos(n, y) -pecos(n, X)) D2 (22)), . R
Sp == 2Re ([c05 (1, y) — by cos (. x)} X ; (8.6) o ‘
, .
Xleos (n, x)} 4y, cos(n, )] Ty (2y)
-+ [cos (1, ) —- pycos (n, )] X i
X lcos (n, x) { pycos (1, y)] 2 (22)). i
For the given external forces Xn’ Yn the boundary conditions assume the ;
form [see Formulas (5.15)]: . i
: i
3
¥
4
o
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2Rel Py (2)+ V() =5 [ Vydste,
- ° (8.7)

2Re [Py (2)4 w1y () = = [ X, ds ey

: . 0

If, however, the displacements are given we obtain the following bound-

ary condltions:

2Re [p, Py (2)) |- PPy (2)] =2 4 -} oy — g, }
2Re (g, P, (2;) b q,Py(2)] =2 0" —- 0x -, (8.8)

The equations given indicate the connection of the stress and dis-
placement components with the functions of the complex variables. In-

troducing the designations

xp==x--ay s By (8.9a)
yp==x-byy y by, (8.95)
then the functions ¢l and ¢2 may be considered to be functions of com-
plex variables of the ordinary type
Zy==x -1y, 2, == x,--1y,.
But if this point of view is adopted then the functions ¢1 and ¢2 must

not be determined in the same region S which 1s occupied by the plate
in reality, but, respectively, in some regions Sl and S2 obtalined from
S by affine transformation given by Formulas (8.9a) and (8.3b). Figure

9 8llustrates how regions §, and S, are obtained from S.

Ay

HH-t+ ==t -

Thus, the plane problem for an anisotropic body may be regarded as
the problem of determining the functions ¢l(zl) and ¢2(22) satisfying

- 4o -




the boundary conditions (8.7) or (8.8) in the regions §, and 5, (at
polnts of the contours of regions corresponding to one another in an

affine manner). In the general case this problem is rather complex, but

it 1s possible to indicate a number of special cases of regions for

AT IR o e o

which an exact solution can easily be obtained.

An investigation shows that the functions @1 and @2 must satisfy g

the following conditions within their regions¥:

1) if the region of the plate S is finite and simply connected

(the plate has no holes) then the functions @1 and @2 are holomorphic

and single-valued in their regions S, and S

1 25

2) if the region S is bounded by several contours or is an infi-
nite plane with a cut (the plate 1s weakened by holes), but the equiv-
alent vector (the resultant) of the forces applied to each of the con-

tours is equal to zero then the functions @1 and @2 are holomorphic and

single-valued in their regions S, and S

1 23

3) if the region S 1s bounded by several contours or is an infi-
nite plane with a cut (the plate has holes) and even if the equivalent
vector (the resultant) on one contour is not equal to zero then the

functions @1 and @2 will be multivalued. If, e.g., there 1s one hole in

the plate and at its boundary act forces whose resultant has the compo-
nents Px and Py then the functions @1 and @2 will increase by the in-

crements Al and A2 to be found from the following equations*¥* if we
pass around along any closed contour entirely lying in the region of

the plate and encircling this hole:

. ~ o, 1 :
B+ 8 Bl By, ’
. 4
- - p ?
Pod e Bp-t-py By By = -—._,;11, E
— — [4T)) P:u ayq Pl/ (8,10) :‘
e T N L T Ty o
l l l - l am P.‘Zt am Py ‘.’
~Al'*"—A2'*“—“A|"{';—A2- —_— 2, :1
By He Ky Ba ax h axy h |
- b1 - E
§
- J
5
!
i" e 1) e kit gt i, Al
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If we use the representation of the function F in terms of func-

tions of the complex variables zi and zé according to Formula (7.21) we
obtain instead of (8.2) and (8.3):
o= 2Re[pZ(1-}-2) o (z))4-p2 (1 42,) 2, (2

o,= 2Rel (1--1)¢l()- (1 -+2)25(zp) } (8.11)
":ry= - 2 Re h‘"l (1 + )‘1) ,‘?: (Z:) _‘ p'z (l -}— )\2) (?; (Z;)lf ]

u=2Re[p,9,(2]) 1 P2, (z)) —wy+-u,
v=2Re[q2,(2])-t 4,2, ()] -} 0x -} v, } {&.12)
We have here introduced the denotations
s»,(zp———(l'-w-.)—jf—;'. 9y ()= (1 A,)-“j—f;’-
9! (20) == Z.:_i. . B (2l e ;i:;z_ (8.13)

The coefficients Pys Pgs 97, 9, are determined from the preceding for-
mulas (8.4). The stresses o, and T on an arbitrary plane are found
from the formulas which will be obtained from (8.6) by replacing ¢1(zl)
and ¢é(z2) by, respectively, the quantities (1--))¢/(sy) and (V4 2) 95(2).
The boundary conditions for the functions @l(zi) and @é(zé) coincide
exactly with the conditions (8.7) and (8.8) for ¢1(z1) and ¢2(z2).
For an isotropic plate the well-known formulas of G.V. Kolosov and
N.I. Muskhelishvili¥* are obtained on the basis of the general expres-
sion (7.18):
0, — 05—+ 20ty == 220" (2)- - (2)). ] (8.14)
ozto, ==4Rel?'(2)];
2 (-t 1v) = 79 (2) — 29" (2) — § (2). (8.15)

Here ¢¢)=={(@; ¢, § are the functions conjugate to @' and y; u = G is

p— .

3
the shear modulus; A= §

<

is the Poisson coefficient.
For given external forces Xn, Yn the boundary conditions for the

functions 9 and ¥ assume the form:

o(2)4 23’ (7) + H(Z) = :tf(zx,,--- Y,)ds ¢ (8.16)
o 0

- U2 _
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(the upper sign must be adopted if the outer contour is considered, the
lower one 1if the hole contour 1s consldered; ¢ is the integration con-
stant).

If the displacements are given on the contour of an 1sotropic

plate then the boundary conditions may be written in the following

form:

¥ (2)-- 29" (2) — §(2) = 2 (u* + ). (8.17)

We shall not specially choose the case of complex parameters equal
in pairs; by replacing the variable and changing the contour of the re-
gion S for which the problem must be solved it boils down to the case
of an isotropic body.

The plane problem of the theory of elasticity of an anisotropic
body may be reduced to integral equations of well investigated types,
in which case various methods can be applied. The reduction of the
plane problem to integral equations made 1t possible to study the prob-
lems of the existence and uniqueness of 1ts solution with exhaustlve
completeness and to work out general methods of obtaining the solution
in the general case. These problems were treated in a number of papers.
S.G. Mikhlin considered the plane problem for a finite simply connected
region for given external forces and reduced it to a system of integral
equations with two unknown functions.* G.N. Savin investigated the case
of an infinite region with a cut (a plate with a hole).** D.I. Sherman
considered the case of a multiply connected region.**#* In subsequent
works D.I. Sherman reduced the plane problem for a multiply connected
region for given external forces to one integral equation with one un-
known function.**** The same problem for the case of given displace-
ments was investigated considerably later by T.B. Ayzenberg; not only

did he obtain an integral equation, hut he also solved it for the spe-

cial case of an anisotro. ate having the shape of a round disc. ¥
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The integral equation of the plane problem with one unknown function

was obtalned in a somewhat different way also in a work by I. Vekua.*
We must also mention the work by V.D. Kupradze and M.0. Basheleyshvili i
in which it is shown that the plane problem may be reduced to the de-
termination of the potentials of a simple or double layer; the densi-
tles of these potentials satisfy well-known integral equations.*¥* Those
solutions for simple regions which we shall present below were obtained

by comparatively simple methods not connected with integral equations

(we know, however, only one work in which the solution of a concrete

special problem was found with the help of integral equations — the

above-mentioned work by T.B. Ayzenberg). j
Finally, we must mention the optical method of investigating the

stresses in plates which are under the conditions of a generalized

plane stressed state. The optical method is very efficient if the i

stresses in isotropic bodies are to be studied (particularly in those

cases where it 1s cumbersome to seek the theoretical solution of a

s

plane problem); it is set forth in detail, e.g., in the well-known book
by Coker and Filon.*#*¥#¥* The problem of applying the optical method for
studying the plane stressed state of anisotropic bodies proves to be
considerably more complex and only a little work has been done in this
field, as yet. The most important i1'esults in this field, theoretical

and experimental ones, were obtained by V.M. Krasnovyy and A.V. Step-

anovyy. ####

§9. DETERMINATION OF ELASTIC CONSTANTS FOR A NEW COORDINATE SYSTEM
When studying the plane strussed state of an anisotropic plate one
may often encounter on the following problem: the elastlc constants are
known for some coordinate system x, y and the elastic constants for a
new system x', y' must be found where the new system 1s rotated with
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respect to the first one by an angle 9 (Fig.

10). For an orthotropic
plate usually the principal elastic constants are given; it may, howev-
er, prove that the use of the principal coordinate system is inconven-
ient, for some reason, such that the conversion of the elastic con-

stants and complex parameters is necessary.

The formulas for the conversion of

Ay
y' - the elastic constants may be obtained in
7 /e 77577 ;
S T’ the following way.¥#
s "\,l/'
; s ' Let us conslider the generalized
s 1Y b
) it z! > plane stressed state oi an anisotropic
; ' plate whose mid plane 1s chosen to be the
z
Fig. 10. xy plane. Let a; s be the elastic con-

stants for the x, y coordinate system,

and aéj the elastic constants for the new
axes x', y', rotated by an angle ® about the origin 0 with respect to
z, y. Assuming that in the zy plane there are no principal directions

of elasticity we have the equations of the generalized Hooke's law (for
stress and strain components whose mean values have been taken over the

thickness) and the expression for the elastic potential:

€p =7 @10, -k 2%, -+ Qg ]
€y == 19, - An3y -1~ gty i (9.1)
Toy == O1% -+ “20’;1 + gty

= 1

2 2
Vs 7{’11":'1‘ a,53,3, -+ axo°.n1ay+ '2° }-aag9y .ry'*‘"g‘aoﬁa./ (9.2)
For the new x', y' system we have:
’ —— AN -
e —-H”OI { 12 v '| alc :ty
, ,
Ey = alz x } 022 y-l azu .ry l (9 0 3)
4 l .
. Toy = xu x 11' 26y + 66" 'ry
V—*—l—a'o'z-{—a oo—}-a'o"t' + .
9 Yuzx 1272y 16 & xy
y ' v 12 / 12 .u
) azzoy + azu v ay -t 2 Qg oy (9 )
11 expres in terms of o', o', t! for which purpose
We shall press o_, oy, T 2 %y Try | purp
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we make use of the formulas (8.5) which in our case assume the form:

or -_-_-o;cos’q—{—o; sinz(?—Qt;ysin 9cos ¢,
SN TRy ’ 2 S
oy ==o sin?¢-}-o cos? v 427 singcos g, (9.5)

’

Tay = (o, — o;')'sin ©Cos ¢ -} ‘t;y (cos?o —-sin? o).

Furthermore, we substitute these values into the formula for the elas-
tic potential (9.2) and compare the expression obtained with (9.4).

Hence we find the sought formulas of the elastic-constant transforma-

tion in passing over to new axes:

aly == a,,c0st @ -} (20, - |- agg) sin? © cos? ¢ -}- ay, sint ¢ -}-
, -}- (a0 @ -} a,q sin® @) sin 24,

aiy =z ay, sint @} (2a,,-1- agg) sin? ¢ cos? @ -} ay, cost o —
— (@, Sin® ¢ -} a,cos®¢)sin2y,

M2 == ayg-t- (a1 0y — 20,15 = agy) Sin®  cos o -f:

-}- ; (aa5- (ryg)sin 2y cos 24,
4
g == Agg |- 4 (@, - g - 201, - agy) si? o cos?o - | (9.6)
. -2 (a5 — a,5)sin 29 cos 2
2 1 '
alg== [n22 sin?o - ay 08?9ty (20,51~ agg) cos 2’?] sin 29 +
+a,gcostp(cost g~ 3sin? o) |- aygsin? ¢ (3 cos? ¢ —-sin? ¢,
%6 == |UypcO8? % -~ ay, siL2 @ — i (2a,5-1- ag)cos2o]sin20 -1~
22 : 5 1 66 G ?

—+a;gsit2 ¢ (3cos? g sin? ¢) - ay5c0s? ¢ (cos? 5 - 3 sin? @).

We notice two invariants, i.e., two expressions which remain numerical-

ly equal on rotation by an arbltrary angle 9:

afi+ ak 4- 20l == ay; - a5 - 2”1?‘ (9.7)

‘ ale— 4ajs == agg— 4ay,.
If, in particular, the plate 1s orthotropic and the directions of
the z and y axes coincide with the principal directions of elasticity

the equations of the general Hooke's law (9.1) have the form:

(3 —_— _]_.o .._'_Vlo
z E, x E, Y’
R 1
g (9.8)
v E, °= l £y
1
Tay = 5 “av

Passing over to new axes z', y' we obtain the equations of the

generalized. Hooke's law (9.3), and introducing "technical constants'" we

T
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rewrite them in the following way:

1 v m 1
E; = EO;—'E,;‘a;/ }—?;T;y,
AP VR B (9.9)
E" —-—'—"ETOI'—{—E‘;O!/TT.;‘Txyn
- , . | |
1 2
T;y:—"b:r =t 3 y e J %
Eé, Eé are Young's moduli; vi, vé are the Poisson coefficients; G' is g
|
the shear modulus for the new directions; ni, né are the secondary co-
efficients which vanish in the fundamental system.* The moduli and co- ,
efficients for the new axes are determined by formulas resulting from
(9.6):
: __ll_ o C0s - (-l_ __2."‘.) sin? o cos? L‘a-|-fﬂ?—.
E| E, G E E,
1 sint ¢ 1 2\ . ., coste
— = ——=} (--- - --) sin?ycos? g |- 2221
E, E, G E E,
L Y L RN S 1 U :
=T 1 ( E| } B U)sm 20, |
o T T T R L 2], -;
v £ 4( E, £, )sm 29 . (9.10) ‘}
g v E{' . . '
2 1 E; :
feopr| S costy 11 2y 2] sin 9
’h"kx[ 5 E; { 2(0 ET)&OSzf].Slll 2¢,
__prfcosty sin? 9 1 /1 24 e
T] = EZ[TB—"‘— *-E'I—""- 2—(0-'—[‘:1‘)COS QT‘JSIH 2(‘9. J
i
The expressions
A 2, :
| ETE TR e (9.11) ‘é
l + VI ___ 1 4vl. . i
A A L
will be invariant. ¥
In practice, alsc the following problem may arise: in an ortho-
tropic plate the elastic constants aij referred to an arbltrary coordi- 2
nate system x,y are kKnown, and the principal elastic constants must ' i
i be determined. i
: The problem is sleed_with the help of the two last formulas of ;
. ! i
: o 3
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(9.6).

Let us designate the principal axes by x', y' and principal elas-
tlic constants by aéj in the given case. The unknown angle @ which is
formed by the x axls with one of the principal directions 1s determined
as the minlmum angle satisfying simultaneously the two equations:

aj,==0, aj; =0, (9.12)
which will be reduced to the following eguations after some simple

transformations:

g 20 = a-lay

ay--agy' .
tgdp=:2 — Q0" (9.13)
ay, -} Ty = 204y agg

The condition for the existence of identical solutions to these

two equations has the form:

(a,6— asg) (@), -— aza a5+ azg) (ayy —;022— Ay — Q) == (9.14)
= (a;5-} a25) (@} — az0) (@} 4 ap — 20y, — agg)-

If this condition 1s not fulfilled there are no principal directions in
the zy plane, i.e., the plate is not ortnotropic.

The formulas for the recalculation of the given constants of plane
deformation Bij in passing over to new axes are identical with Formulas
(9.6).

Example. Let us assume that we know the elastic constants of an
anlsotropic plate referred to an zy coordinate system, i1.e.:

Qg =ax,+0, a, ='a._,2. a,y -+ a0 —2a,,—agg > 0.
The condition of the existence of principal directions (9.14) is, obvi-

ously, fulfilled. Equations (9.13) assume the form:

tg2¢ =00, tgdo=0. (9.15)
From the first equation (9.15) we find: ?=b;,%?,gﬁ,%;,”, , and from
the second one:<?==m.;,%,%gln,; the solutions of the first equation

are also solutions of the second one. Consequently, we may put:92é§u

There are principal directions of elastici.y; they are the directions
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of the bisectrices of the angles between the z and y axes. We shall
determine the principal elastic constants aéj from Formulas (9.6) by

substituting in them the numerical values of the a; and ¢=7.

§10. THE CONVERSION OF THE COMPLEX PARAMETERS IN PASSING OVER TO NEW
AXES

If the complex parameters of the first kind My and Mo calculated

for the x and y axes are given it 1s not necessary in passing over to

the new axes z', y' to set up anew and to solve the fourth-degree equa- '
tion (7.4). It is not difficult to derive formulas from which the com-
plex parameters for any other coordinate system rotated with respect to
the first one by the angle ® can be calculated (see Fig. 10) if the pa-
rameters for the first system are given.

We shall write the equation for the stress function F in a symbol-

lc manner. In the o0ld z, y system we have:

D,D,D,D,F == 0, (10.1)
where
2 2 = /] - 0
Dk._-:_a?—.‘.llkﬁo}—' Dk'——-;—o—y""" p'k—ﬂ' (k == l, 2); (10.2)

s ﬁk are the roots of the equation

aput--- 20,03 -+ (2a,, - F age) p? - 20, If a,,:=0. (10.3)

We shall pass over to new axes x', y'; the transformation formulas have

the form (see Fig. 10):

xcoso-}-ysin g,
} (10.4)

x' ==
Y=o xsing |- ycoso.

Expressing the derivatives with respect to x and y in terms of the de-

rivatives with respect to z' and y' we obtain:

2 F) .
——=  COSQ 35— -|-sil ¢, |
ay gy’ ox7 190,58 | I;
2 ] %
o = sine 5y heos e G ;

Reducing by a constant factor wWe shall rewrite Eq. (10.1) in the

- 4g - !
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D,DyD,D3F == 0, (10.6)
where
Dp—=-0 _pacosg—sg 0 0, 0
dy’ cosg-|-prsing  ox’ ay’ Tk
b-r_f__d__;kco_s_if-—slntg._g_____g_ =1 0 (10.7)
Koy T cosg-Fprsime o dy’ i

Hence we also obtain formulas from which the complex parameters

for the new axes will be determined#:

o Prcos @ —sing r__ Pacosg--sing
..*."l—cosqa-}-p,sln?' b == cos p-fpysing * (10.8)

Let us mention some important properties of the complex parameters
which are found from an analysis of formulas (10.8):

1) If the parameters Hys M, are complex numbers for some coordi-
nate system xz, y then also the parameters ui, ué for any coordinate
system z', y' rotated with respect to the first one by an angle ¢ will
be complex, or, in particular, purely imaginary numbers. Conversely, if
for some coordinate system the numbers Hys By proved to be real then
also the corresponding numbers ui, ué in an arbitrecy coordinate system
would be real numbers (which case 1s, however, excluded for an elastic
plate if limiting cases are not taken into account). ;v

2) If the parameters My and Mo for some coordinate system x, y
were obtained unequal then also the corresponding ui and ué for any
system z', y' rotated with respect to the first one by an angle ® will
be unequal. Conversely, if for some coordinate system 1t has turned out
that My = My then ui = ué for any other system.

3) If for some coordinate system one of the parameters proved to

be equal to © =v-=1 then for any other system rotated with respect to

the first one the corresponding parameter will be equal to 7, i.e., it

will not change in the transition from one coordinate system to anoth-

er.
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With an 1sotropic plate both parameters are equal to 7 for any co-
ordinate system as was already mentioned.

It 1s not difficult to obtain also formulas for the transformation
of complex parameters of the second kind in the transition to rew axes.
Let Al, A2 be the complex parameters of the second kind for the xz, y

coordinate system to be determined from Formulas (7.20), A!, AL the

1° 72
same quantities for the new system x', y' which is rotated with respect

to the first one by the angle 9:

_ 1} lp: \ — 1 +lp.;
= 7! A
U 1 —ip,

-I_—Tp’;. (10.9)
Substituting here the expressions from (10.8) we obtain the vervy
simple formulas
M = hye-%i, by == hpe—21, (10.10)

Since the absolute value of the complex number e 2%

is equal to unity
it follows that
il=Dul Dal=]xl, (10.11)

or, in other words, the absolute values of the complex parameters of
the second kind retain constant values in any rotated coordinate sys-
tem, i.e., are invariants.

The formulas (10.10) may be given a simple geometrical interpreta-
tion. Let for the coordinate system z, y Ak = Ek + ink and for the sys-

tem =', y' Ay = & + ing. From (10.10) it follows that

7 .
B == %, c0s 20 -|- 7, sin 2o,

7]2 ='=-'Ek5i“2'?"1'7lk€05 2,? (10.12)
(k==1, 2). )
If a complex plane &n 1is introduced the complex numbers Al and A2
will be represented on it by vectors with lengths ]All and |A2| which

begin at the origin of coordinates and, generally, have arbitrary di-

rections; the projections of these vectors on the £ and n axes are, re-

spedtiveiy, equal to El, nys and 52, UPY The formulas (10.12) show the
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transition to a new coordinate system z', y' rotated with respect to
x, y by an angle ® 1s equivalent to the transition to a new system &',
n', rotated by an angle 29 (Fig. 11) with respect to &, n. The real and
imaginary parts of Ai and Aé are determined as the projections of the
same vectors on the new axes &', n'.

To each form of anisotropy of a body in
the generalized plane stressed state or show-

ing plane deformation corresponds a couple of

completely determined vectors in the &n plane.

The lengths of these vectors are equal to IAll

and |A2|, and the angle between them ¥ has a
determined value 1f both moduli are different from zero, and become in-
determined 1f one of the moduli IAkI or both are equal to zero. Thus,
the anlsotropy of a body in the case of a plane problem may entirely be
characterized by the numerical values of three real quantities indepen-

dent of the choilce of the coordinate system, |A |A,] ana v.

11
The formulas expressing these quantities in terms of the real and

imaginary parts of the parameters of the first kind found for an arbi-

trarily chosen system of coordinates x, y have the form:
Ml o=/ B e
I)l""'l)l"""/- ;)3 l“’"l (10.13) ;1;
— U—8)3-fv2, ;
st =al =/ G
cos =~ (1 —a?—f2) (1 —2—22) |- day \
VT30 +a3) (- pp+ 2] (1400 + 1 [(1 - )2+ 3]
Sing = 2[(l—a?— ) y— (1 — 2 =) ] (10.1H)
AT s Fal] (L 3)* + T T(T=3)7 4 77)
In the case of the isotropic body |A;| = |A,] = 0, and ¥ has an
ﬁ undetermined value. In the limiting case where the anisotropy 1s ex-

pressed in the sharpest manner My and M, are equal to zero or infinity,

|X1| = |A2| =1, =0 (IAkl cannot be greater than one). If for some

coordinate system it has proved that yu., n, ave pure~ly imaglnary nvom-
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bers then the vectors expressing Al and A2 will have the same or oppo- {

site directions, and, therefore, ¢ = 0 or ¢ = ™.

§11. THE ELASTIC CONSTANTS FOR SOME ANISOTROPIC PLATES

Many research workers, among whom W. Voigt occuples an outstanding
position, were concerned with problems of the experimental determina-
tion of the elastic constants of various crystalline substances (miner-
als). The numerical values of the elastic constants for many minerals
are given, e.g., in the course on crystal physics by V. Voigt¥* and in
the work by Auerbach,¥** references on this problem are also to be found
in an article by Geckeler.*** l/ithout presenting here those data which
refer to crystals we shall give the numerical values of the elastic
constants for three anisotropic materials (plates) of noncrystalline

origin: for pine wood, delta wood, and plywood.

1. Natural wood (pine wood). Let us con-

0 @
i /i * sider & rectangular plate cut out of natural
L e /J"f;'
2 A
t 77 wood with regular annual layers, as shown in
[ ks
y S
N Iz Fig. 12. If the inhomogeneity and the curva-
Fig. 12. ture of the layers is neglected three planes

of structure symmetry can be distinguished in

it, which, at the same time, are also the planes of elastic symmetry;
one of them, yz, 1s normal to the wood fibers, the second (tangential) f

one, xy, 1s parallel to the planes of the annual layers, and the third

S b ar e

(radial) one, zz, is orthogonal to the first two planes. All planes
parallel to those mentioned are also planes of elastic symmetry, and

the wood may in first approximation be regarded as a homogeneous ortho-

PR Y T

tropic material. The equations of the generalized Hooke's law will be 3
written in the forms (2.7) and (2.8); nine different elastic constants

enter into them.***#%

B o o




Let a plate whose plane faces are parallel to the annual I=y=rs
(the plate is not necessarily rectangular) be in a generalized rlane
stressed state. The equations of the generalized Hooke's law which con-
nect the values of the stress and strain components whose mean values

have been taken over the thickness are then written as follows:

1 v
€ =0 ———-’-O,

—__M 1 .
&y __'i-:f":n'*“ﬁ_,"v' (11.1)
1

Tzy == -G Sap’

The x axls 1s here directed along the fibers; El is Young's modu- 1

lus for the stretching (compression) along the fibers; E, is Young's k
modulus for the stretching (compression) along the directions lying in
the plane of the annual layer and normal to the filbers; Vys V, are the
corresponding Polsson coefficients (El\)2 = E2v1); G 1s the shear modu-
i lus for the planes of the annual layers; the dashes by which the mean
3 values were designated are discarded. !
E We shall give the numerical values of the elastic constants from

Eqs. (11.1) for pine wood, taken from a work by A.L. Rabinovich¥*:

— R b3 2 = « . 5 2
E, =1-10%kg/cm@ E, = 0,042. 10 ka/cm} (11.2)

v, = 0,01, G=-0,075- 105kg /cnf

On the basis of these data we obtain the following values of the

complex parameters: :
B, = 3,261, gy == 1,501,
}.l=——-0,530, A, =-—0,198, } (11.3)
[\]=0,530, [),]==0,198, 4=0. ]

e T i S

If the x and y axes change places with one another we shall obtain:

Pl=0'307[' lJ-z ke O,GGS[| } (ll u) :
A, =0,530, 2,-20,198. ) !
If the elastlc constants for the principal directions are known, i.e., %

the longitudinal and the tangential one, we find the constants from

. formulas. (9.10)-and for an arbitrary direction in the zy plane. Thus,
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Young's modulus E@ for an angle @ with the x direction will be deter-

mined from the formula

| R RS B __ e, (11.5)
costp -] (~h.' .- 2':,) sin?p cos?y |- !f‘--sln‘; +5
U E’

Figure 13 shows the dlagram of the variation of E, with the vari-

q,.
ation of @ for pine wood taken from the mentioned work by A.L. Rabino-

vich (page 41).

2. Delta wood. Slablike delta wood is produced of a number of wood

layers (plywood) which have been impregnated by pressing in resin; one
layer whose fibers are perpendicular to those of the rest of the layers

is placed over ten layers with identical fiber direction.

In first approximation, a plate of delta wood may be considered to

be a homogeneous orthotroplic plate one plane of elastic symmetry of

which 1s normal to the fibers of the predomi ant direction, and the

second one is parallel to the mid plane. For a plate of delta wood in a

generalized plane stressed state the equations of the generalized
Hooke's law hold (11.1) (the mid plane is chosen to be the xy plane,
the direction of the predominant fibers 1s chosen to be the direction

of the x axis).

A

‘T
—— KUeas o -l
Kpueas r [,

AbidA

Fig. 13. A) Curve.

For the mean elastic constants we may choose:

JE,+ 3,05 10° Ky /eme - - 0,467 - 163Kk /ol
v 20,02, G — 0,22 100 g7, /ome
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The corresponding complex parameters are equal to:

)y =—0,567, %\, =0,172,

#y == 3,621, p, == 0,7001,
|%]=0,567, |%,1=0,172, q,=1.;.}

(11.7)

If the y axls 1s directed along the fibers rather th>n the x axis

we obtaln:
ll.l=0,2761. e == 1,416¢, ]
), == 0,567, Ay =—0,172.

Figure 14 shows the diagram of the variation of Young'

EQ with the variation of the angle @ .%

(11.8)

s modulus

3. Plywood. Also plywood may serve as an example of an anisotropic |

material. For the sake of definiteness, we shall focus our

birch plywood which 1s produced of an odd number of wood layers (ply- %

wood) glued to each other by a bakelite film and distributed symmetri-

cally to the central layer; in this case the directions of

of neighboring layers are mutually perpendicular (Fig. 15).

plate 1s inhomogeneous, but if the plane stressed state is
may be regarded as homogeneous and, moreover, orthotropic,
approximation. One c¢f the three planes of elastic symmetry

with the mid plane, the second one 1is perpendicular to the

the outer layers (or, as they are called, to the casing fibers), and

the third one 1s orthogonal to the first two planes.

: Ay
A NN
. e KpUBOA ""F,! 5&1&\}: :'1"
96' 75° \)< NE
s \
30( - .
15 ‘
0° ]

0 g 02 03 048 05 06 07 O0F 09 I0
Fig. 14. A) Curve.

3
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attention on | ?

the ribers
The plywood !
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in the first
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fibers of
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Considering the generalized plane

stressed state of the above-mentioned plywood

plate we choose the mid plate to be the xy

plane, and the x axis parallel to the casing

I
fibers. The equations of the generalized ‘

o 145 Hooke's law for such a plate regarded as an S
entirety will be written in the form (11.1) g'

where El’ E2, vl, v2 must be understood to be the mean elastic con-
stants for the plate as a whole; the latter depend on the elastic con-
stants of the wood layers, their number and thickness.* We present the
numerical values (the normalized ones) of the constants Ey, Ey, and G
and Young's modulus E' for a stretching under an angle of U45° to the
casing fibers for three-layer plywood with a thickness of 1; 1.5; 2;
2.5; 3; 4 and 5 taken from the "Handbook of the Airplane Constructor'"#:

E,==1,2 .10°kg/cm2E,: 0,6 -lmkg/cm%

, , 11.
G 0,07 - 10°%kg/cme [ == 0,24 - 10°kg/cm< (11.9)

] In the "Handbook" the Poilsson coefficients are not given, but they can
: be calculated from the first formula (9.10) by putting @ = U5° in it

and substituting the well-known values (11.9). Hence we obtain:

E
———— Kpuoas - —Ef
]

4-\ N\
90° —-{ )
75° - N T
S . < \ Q\\ >
60 ~ ¥
- 45° z

| ¢ o 02 03 04 05 05 07 08 03 L0

I Fig. 16. A) Curve.
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v == 0,071, == 0,036. (11.10)

The complex parameters have the following values:

l.l-l'—_~‘=4,lll.. l»’-2=-'—'-0|343t»
\, =—-0,609, ),:-=0,489,
I).II:T—-.O.GOQ, I)-zl:'__'0|489| \.{“_‘: w.

(11.11)

If we direct the x axis across the casing fibers rather than along them

we obtain:
== 0,2430,  p, == 2,914, }

A == 0,600, A, ==--0,489. (11.12)

Figure 16 shows a diagram of the variation of E’cp with the varia-
tion of the direction constructed on the basis of (11.5) and the numer-

ical values (11.9)-(11.10).

§12. THE PLANE PROBLEM FOR A BODY WITH CYLINDRICAL ANISOTROPY

In §§ 5 and 6 the general equations of the plane problem for a ho-
mogeneous body were derived, in which parallel directions passing
through different points are equivalent in the sense of the elastic
properties. In a completely analogous way we may also obtain the gener-
al equations of the plane problem for a body with cylindrical aniso-
tropy.*

Let us consider the elastic equilibrium of a plate of constant
thickness with cylindrical anisotropy under the action of forces dis-
tributed along the boundary and of the volume forces. With respect to
the elastic constants we shall make the following assumptions:

1) the axis of anisotropy g is normal to the mid plane of the
plate (the point of intersection of the axis of anisotropy with the mid
plane which will be called pole of anisotropy in the following may lie
either inside the region of the plate or outside or at the boundary);

2) at each point there is a plane of elastic symmetry normal to

the'axiS~of anisctropy (and, conseguently; parallel to the mid plane);
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The surface and volume forces will be as-
sumed parallel to the mid surface, distributed
symmetrically with respect to this plane and

slightly varying according to the thickness.

The strains will be regarded as small.
Fig. 17. The axis of anisotropy will be chosen as
the z axis of the cylindrical coordinate system
r, 6, 2z, directing the polar axis z arbitrarily in the mid plane (Fig.
17).

Let us designate by h the thickness of the plate, by R, 0 the pro-
jections of the volume forces (per unit volume) on the coordinate di-
rections r, 6 (Z = 0) and consider the values of the stress components
and displacement projections averaged over the thickness:

hp2 Y
- 1 = .1 1

Op == - o, dz, TE oy dz,
Y o -hp
h2 hi2 (12.1)
- 1 * = 1 .
9y 7= 5 ' o dz, 0T | T, dz,
-k ~hp
hi2 hr
u.——-l_ r s _ - .
F h J {I,(~. Ilb---’l' J ”y‘ 2.
—hj2 —-h2
Moreover, we shall introduce the designations:
hf2 Iy 2
5 1 P | ) (12.2)
R. -‘/l J< R ll-, ). .V/l. 1 ﬂ(/l,
—h2 ) —hs2
o gm, -V dw o, w oo 0w | dwy W
g S gy T g b (12.3)

and consider the case where the volume forces have a potential U(r, 0),

i.e., are determined by the formulas

(]

= o 5.
R::-—.--d;—. H---'

¢

90 (12.15)

Ny -
<

Carrying out the operations of taking the mean values over the

equilibrium equations in cylindrical cocrdinates (1.4) and the equa-
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tions of the generalized Hooke's law corresponding to the given case

of anisotropy and neglecting Ez we obtaln the system

0::,. G ——_Be —
J- . __._-’ —2.J-R==0,
0 8 1 039 ,4;
e R AR AR
E;:=a,l5,+alza,,+alﬁt-,q.
5" = alZ;r.—I_ 0225-',-}' 020;,1, ( 12 . 6 )

—Tﬂ = nlﬁgr."l" 026;6.'} aGGTtIU' ,
Eliminating the displacements from the expressions (12.3) we ob-
tain the compatibility equation

0%, O (rig)  Bri) Oy )
IR = ey o A s (12.7)

We shall satisfy the equilibrium equations (12.5) by introducing

the stress function F(r, 6) such that in the case of the isotropic
body:

a;,:z—()—r—,‘—-{—-lj, . i (12.8)

On the basis of the compatibility equation (12.7) and the rela-
tionships (12.6) and (12.8) we obtain a differential equation which is

satisfied by the stress function:

a2 o1 - 2z L a1 20y * ”'0) L oo
— 2007 o‘ﬁ'ém RPN Fpimd 2
TP S RO/ ATV .. S IO
= 2(a,5-1- ay) ”,3" : 0(2050 4- (204, - 20,5 -} agg) ',“.‘ . 3:,'? + (12.9)
'F“n L ?)f +2(ag t-ax) ,la (Z){):“
(a.z+an)‘2,,‘1 ORRII LS AP i

10U 10U
-+ (a,,— 205, - “12)‘,‘ “or 4 (a1 “20)',;;‘ * o0

This equation corresponds to Eq. (5.9) for a homogeneous plate. It

1s considerably more complex than Eq. (5.9) and contains arbitrary

i s
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functions F of different orders, from the first to the fourth one, and

not only of the first order as was the case with the homogeneous equa-

tion. In view of the complexity of Eq. (12.9) it is not possible in

this case to find a general expresslon fcr F in terms of arbitrary
functions analogous to the expressions (7.16), (7.17) or (7.21).

If a plate with cylindrical anisotropy is, at the same time, also
orthotropic, i.e., has three planes of elastic symmetry at every point,
one of which is parallel to the mid plane, the other one passes through

the axis of anisotropy, then Egs. (12.6) will be written in the form:

Ey
- v, - 1 - (12.10)
&y = F‘r‘°r+",7 O3
— ] =
Tr'l=(_]'—etr1‘

Er’ Ee are here Young's moduli for the stretching (compression)

along the principal directins r and 6; vp, Vg are the Poisson coeffi-

cilents and Gpe is the sheai modulus for the principal directions r, 6.

For this case Eq. (12.9) simplifies and assumes the following form:

.'-.E"f;_|_ 129\ 1 0F 4 '_...'-.f".f.'4_-?_._'..‘?.‘.,”.~-
);fo;fam L T I TR A B

Ey ot UGy T E,
Lo 2\ er 1 e
_‘(U]"”£;)}i'o;o¢f"k;'?f'lﬁi"
_*_(o .'.'_'_‘.'_’._}.V-.'.),!..‘.’?’: .|_-!_ L oF (12.11)
, “E, U r¢ o D, ey e T
- ..[l:f‘g.t}iU RO N (2 |,|.v,)| oz’j]
E¢ "0t VR A g VNE T R, T or )

The boundary conditions for the given forces at the plate boundary
may be reduced to prescribing the first derivatives of the stress func-
tions 3F/3r and 39F/36 at the contour of the region occupied by the
plate.

The problem of plane deformation is completely analogous to the
problem of the plane stressed state of the plate. If the body shown in
Fig. 8 (§6) has the property of cylindrical anisotropy with the axis of

anisotropy z directed parallel to the generatrix then Egs. (12.5)-
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(12.9) in which only the aij have to be replaced by the reduced strain

coefficients
) ap3ajs
Big=ay— —— (12.12)
(lr j=lo 21 6).
- § hold for it.
i Besides O, Og and T,o also the stress a, acting in the cross sec-

; tions and equal to
O ==~ [1—:;(01:;%’*‘ @339, - Q567 1)- (12.13)

is obtained in this case.
P.N. Zhitkov considered the generalized plane stressed state of an

orthotropic body having cylindrical anisotropy in which the moduli of

elasticity are functions of the coordinates r and 6. In this case a
more complex equation of fourth order with variable coefficients* is

obtained instead of Eq. (12.11).

Manu-
script
Page
No.

[Footnotes]

u 29#% See our works: 1) K voprosu o vlyanii sosredotochnykh sil na
paspredeleniye napryazhenly v anizotropnoy urpugoy srede [On
the Problem of the Influence of Concentrated Forces on the
Distribution of Stresses in an Anisotropic Elastic Medium],
Prikladnaya matematika 1 mekhanika [Applied Mathematics and
Mechanics], Vol. 3, No. 1, 1936; 2) Nekotoryye sluchai plos-
koy zadachi teorii uprugosti anisotropnogo tela [Several Cas-
es of the Plane Problem of the Theory of Elasticity of an
Anisotropic Body], Sb. Eksperimental'nyye metody opredeleniya
napryzheniy 1 deformatsiy v uprugoy i plasticheskoy zonakh
[(Experimental Methods of Determining the Stresses and Strains
in the Elastic and Plastic Zones], ONTI [United Scientific
and Technical Publishing Houses], 1935.

20%% Muskhelishvili, N.I., Nekotoryye osnovnyye zadachl matemat-
icheskoy teorii uprugosti [Several Basic Problems of the
Mathematical Theory of Elasticity, Izd. AN SSSR [Publishing
House of the Academy of Sciences of the USSR], Moscow, 1954,
page 107.
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30

32
35

37

39

b1+

L #%

42

3%

§3*%

3% %%
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"aprugosti dlya anizotropnoy sredy [A New Solution of the

N.I. Muskhelishvilil chooses that direction to be the positive
direction of passing along the contour for which the region
remains on the left side, i.e., counterclockwise for the out-
er contour and clockwise for the contours of the openings
(see his book mentioned, pages 113, 143).

See our works mentioned in §5.

See our work: "Ploskaya statisticheskaya zadacha teorii upru-
gosti anisotropnogo tela" [The Plane Statistical Problem of
the Theory of Elasticity of an Anisotropic Body], Prikladnaya
matematika i mekhanika [Applied Mathematics and Mechaniecs],
Vol. 1, Edition 1, 1937.

See N.I. Muskhelishvili, '"Nekotoryye osnovnyye zadachi mate-
maticheskoy teorii uprugosti" [Some Basic Problems of the
Mathematical Theory of Elasticity], Izd. AN SSSR [Publishing
House of the Academy of Sciences of the USSR], Moscow, 195U,
page 111.

See our work: "Ploskaya statisticheskaya zadacha teorii up-
rugosti anisotropnogo tela" [The Plane Statistical Problem of
the Theory of Elasticity of an Anisotropic Body], Prikladnaya
matematika i1 mekhanika [Applied Mathematics and Mechaniecs],
Vol. 1, Edition 1, 1937, page 81.

See our mentioned work, pages 83-87.

The determinant of this system is equal to
453 .
de= - ¥ (2. -)2 A I (C ) L A I A
TETH G (G- G- {1 B 8)2).
In the case of unequal complex parameters, obviously, always
d > 0.

See the book by N.I. Muskhelishvili mertioned several times,
pages 113, 114, 143,

Mikhlin, S.G., Ploskaya deformatsiya v anizotropnoy srede
[The Plane Deformation in an Anisotropic Medium], Trudy Seys-
mologicheskogo instituta AN SSSR [Transactions of the Seismo-
logical Institute of the Academy of Sciences of the USSR],
No. 76, 1936.

Savin, G.N., Osnovnaya ploskaya staticheskaya zadacha teorii
urpugostil dlya anizotropnoy sredy [The Basic Plane Static

Problem of the Theory of Elasticity for an Anisotropic Medi-
um], Trudy instituta stroitel'noy mekhaniki Ukrainskoy Akad-
emiil nauk [Transactions of the Institute of Construction Me-
chanics of the Ukrainian Academy of Sciences], No. 32, 1938.

Sherman, D.I., Ploskaya zadacha terrii uprugosti dlya anizo-~
tropy sredy [The Plane Problem of the Theory of Elas“icity
of an Anisotropic Medium], Trudy Seysmologicheskogo institu-
ta AN SSSR, No. 86, 1938.

Sherman, D.I.: 1) Novoye resheniye ploskoy zadachi teorii F
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Plane Problem of the Theory of Elasticity for an Anisotropic
Medium], Doklady AN SSSR [Proceedings of the Academy of Sci-
ences of the USSR], Vol. 32, No. 5, 1941; 2) K resheniyu

ploskoy zadachl teoril uprugosti dlya anizotropnoy sredy [On
the Solution of the Plane Problem of the Theory of Elasticity

of" an Anisotropic Medium], Prikladnaya matematika 1 mekhani-
ka, Vol. 5, Edition 6, 1942,

Ayzenberg, T.B., Ploskaya zadacha teorli uprugosti dlya ani-
zotropnoy sredy pril zadannykh granichnykh smeshcheniyakh [The
Plane Problem of the Theory of Elasticity for an Anisotropic
Medium for Given Boundary Displacements] Sbornik statey Vses-
oyuznogo zaochnogo Politekhnicheskogo instituta [Collection
of Articles of the All-Union Correspondence-Course Polytech-
nical Institute], Edition 6, Moscow, 1954,

Il1'ya Vekua, Prilozhenlye metoda akademika N.I. Muskhelish-

vili k resheniyu granichnykh zadach ploskoy teoril uprugosti
anizotropnoy sredy [Application of the Method of Academician
N.I. Muskhelishvilil to the Solution of the Boundary Problems
of the Plane Theory of Elasticity of an Anisotropic Medium],
Soobshcheniya Gruzinskogo filiala AN SSSR [Communications of
the Georgian Branch of the Academy of Sciences of the USSR],
Vol. 1, No. 10, 19%40.

Kupradze, V.D. and Basheleyshvili, M.O., Novyye integral'nyye
uravneniya anizotropnoy teoriil uprugosti i 1kh primeneniye
dlya resheniya granichnykh zadach [New Integral Equations of
the Anlisotropic Theory of Elasticity and Their Application to
the Solution of Boundary Problems], Soobshchenliya AN Gruzin-
skoy SSSR [Communication of the Academy of Scilences of the
GeoEgian Socialist Soviet Republic], Vol. 15, No. 6 and 7,
1954,

Coker, E. and Filon, L., Opticheskly metod isslecdovanlya nap-
ryazhenily [Optical Method of Investigating Stresses], ONTI
[United Scientific and Technical Publishing House], 1936.

Krasnov, V.M., Ob opredelenii napryazheniy v kubicheskikh
kristallakh opticheskim metodom [On the Determination of
Stresses in Cubic Crystals by the Optical Method], Uch. =zap.
Leningradskogo gos. universiteta, seriya matem. nauk [Scien-
tific Reports of the Leningrad State University, Series of
Mathematical Sciences], No. 13, 1944, No. 87; 2) Krasnov,
V.M. and Stepanov, A.V., Issledovaniye zarodyhsey razrush-
enlya opticheskim metodom [The Investigation of Nuclel of
Destruction by the Optical Method], Zhurnal experimental'noy
1 teoreticheskoy fiziki [Journal of Experimental and Theoret-
ical Physiecs], Vol. 23, No. 2 (8), 1952; 3) Krasnov, V.M. and
Stepanov, A.V., Izuchenlya opticheskim metodom napryazhennogo
sostoyaniya anizotropnoy plastinki, nakhodyashcheysya pod
deystviyem sosredotochnoy sily [The Investigation of the
Stressed State of an Anisotroplic Plate under the Action of a
Concentrated Force by an Optical Method], loc. cit., Vol. 25,
No. 1 (7), 1953.

This problem was worked out in the textbook by A. Lyav
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(Lyav, A., Matematicheskaya teoriya uprugosti [Mathematical
Theory of Elasticity], ONTI, Moscow-Leningrad, 1935, pages
163, 164), and in a particularly detailed manner in the works
by P. Bekhterev (see the remark in §2); see also our book
"Teoriya uprugosti anizotropnogo tela" [Theory of Elasticity
of an Anisotropic Body], Gostekhizdat {[State Publishing House
of Theoretical and Technical Literature], Moscow-Leningrad,
pages 33-U45,

The constants ni and né are called "coefficients of mutual

influerice of the first kind" by A.L. Rabinovich; they charac-
terize the elongations due to the tangential stresses (see
Rabinovich, A.L., Ob uprugikh postoyannykh i prochnosti ani-
zotropnykh materialov [On the Elastic Constants and the
Strength of Anisotropic Materials], Trudy TsaGI [Transac-
tiﬁg§ of the Central Aero-Hydrodynamical Institute], No. 582,
19 .

These formulas were derived in our work "O kompleksnykh para-
metrakh vkhodyashchikh b obshchiye formuly nekotorykh zadach
teorii uprugosti anizotropnogo tela [On the Complex Parame-
ters Entering the General Formulas of Several Problems of the
Theory of Elasticity of an Anisotropic Body], Uch. zap.
Leningr. gos. un-ta, seriya fiz.-matem. nauk [Series of Phys-
ical and Mathematical Sciences], No. 13, 194l

Voigt, W., Lehrbuch der Kristallphysik [Textbook of Crystal
Physics], Leipzig-Berlin (Teubner), 1928.

Auerbach, F., Elastizitaet der Kristalle [Crystal Elasticity],
Handbuch der Physikalischen und technischen Mechanik [Hand-
book and Physical and Technical Mechanics], Vol. 3, Leipzig,
1927.

Geckeler, J.W., Elastizitactstheorlie anlisotroper Koerper
[Theory of Elasticity of Anisotropic Bodies], (Kristallelas-
tizitaet) [Crystal Elasticicty], Vol. 6, Berlin, 1928.

Mitinskiy, A.N., Uprugiye postoyannyye drvesiny kak ortotrop-
nogo materiala [Elastic Constants of Woods as an Orthotropic
Material], Trudy Lesotekhnicheskoy akademii im. S.M. Kirova
[Transactions of the S.M. Kirov Wood Engineering Academy],
No. 63, 1948. In this work the literature on the problem of
the mechanical properties of wood is cited.

Rabinovich, A.L., Ob uprugikh postoyannykh i prochnosti ani-
zotropnykh materialov {On the Elastic Constants and the
Strength of Anisotropic Materials], Trudy TsAGI, No. 582,
page U40.

The numerical values ot the moduli of delta wood and the dia-
gram of Fig. 14 are taken from the above-mentioned work by
A.L. Rabinovich (page 48).

See the work of A.L. Rabinovich, "O raschete orto.ropnykh
sloistykh paneley na rastyazheniye, sdvig i 1zgib" [On the
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Calculation of Orthotropic Slab Panels With Respect to
Stretching, Shear, and Bending], Ministerstvo aviatsionnoy
promyshlennosti SSSR [Ministry of the Aviation Industry of
the USSR], Trudy [Transactions], No. 675, 1948.

"Spravochnik aviakonstruktora" [Handbook of the Airplane
Constructor"], Vol. 3, Prochnost' samoleta [Airplane
Strength], Izd. TsAGI, 1939 (Table 63 on page 325).

The equations cited in this section were for the first time
obtained in our work "Ploskaya zadacha teorii uprugosti dlya
tela 1 tsilindricheskoy anizotropiyey" [The Piane Problem of
the Theory of Elasticity for a Body with Cylindrical Aniso-
tropyl, Uch. zap. Saratovskogo gos. un-ta [Scientific Reports
of the Sratov State University], Vol. 1 (14), No. 2, 1938.

Zhitkov, P.N., Ploskaya zadacha teoril uprugosti heodnorodno-
go ortotropnogo tela v polyarnykh koordinatakh [The Plane
Problem of the Theory of Elasticity of an Inhomogeneous Or-
thotropic Body 1n Polar Coordinates], Trdy Voronezhskogo
gos. un-ta [Transactions of the Voronesh State University],

Vol. 27, fiz.-matem. sbornik [Physical and Mathematical Col-
lection], 1954,
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Chapter 3

THE BENDING OF PLANE ANISOTROPIC BEAMS AND CURVED GIRDERS
| §13. SIMPLEST CASES

In thils chapter we consider several cases cf stress distribution
under the action of bending loads in a rectangular plane plate, a
wedge-shaped console of rectangular cross section, and in a curved gir-
der having the form of a part of a plane circular ring. In all cases we
assume that at each point of the body there is a plane of elastic sym-
metry, parallel to its mid surface (which 1s taken to be the zy or ré6

plane).

Let us start from the simplest cases of the equilibrium of a homo-

geneous anisotropic rectangular plate of constant thickness h which is
in a generalized plane stressed state under the action of forces dis-

tributed along its boundary. In all cases where a homogeneous beam 1is

considered we assume that the equations of the generalized Hooke's law
connecting the values of the stress and strain components whose mean

has been taken over the thickness have the form:

e, ==0,,0,1 0199, AT, ]
ey == 101wy} Gutay i (13.1)
Tay == 016%2 1 A%y} Aoy

If the plate is orthotropic and the principal directions are cho-
sen to be the directions of the x and y axes, then the coefficients ;
aAygs Gog areE equal to zero, and the rest 1is more conveniently expressed

in terms of Young moduli, Poisson coefficients, and the shear modulus

(the principal ones):
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The solutions for the simplest cases are elementary and we present

them without derivation.

1. Stretching. A rectangular plate is stretched by normal fcrces p

which are unlformly distributed along its two sides (Fig. 18).

9z == P Jy“'_'—‘f_ry’—"O; F:‘:-;-pyg (13.3)
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Fig. 18 Fig. 19

The same stress distribution 1s obtained as in a stretched iso-

tropic plane, and the deformations are determined from Eqs. (13.1):
E2==app, By E=APy gy == 0P (13.4)

A nonorthotropic plate 1is elongated under the action of stretching
forces in the direction of the forces, and is contracted in the perpen-
dicular direction (if only ag, < 0) and, besides, is distorted in the
zy nlane: the rectangular plate becomes oblique (see the dotted lines
in Fig. 18). The distortion is determined by the constant a;g; an or-

thotroplc plate remains rectangular.

M-—Hht-(—
o Lo 1 N
= —1 i~
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2. Shear. Along the boundaries of a rectangular plate tangential

forces of an intensity ¢t are uniformly distributed (Fig. 19). We have:

v:

=0, tyu=b F = — txy, (13.5)
16['

'.'_:(7..1, == Qgul.
2y 20 Ty 66 (13.6)

A nonorthotropic plate experiences elongations and lateral con-

G =20
[
e, ==0

tractions according to the signs of aig and ases besides the shear in
the xy plane which 1is determined by the constant g An orthotropic
plate experiences pure shear without elongations.

3. Pure .hear. Forces giving rise to moments M (in kg x cm) are

distributed along the two sides of a beam-plate (Fig. 20).

We have:
M
o-l 5= -7‘)" c1U = :-L'y; ov
| o (13.7)
6J 7 ( 12

The same stress distribution is obtalned as in an isotroplic beam
(1f no account is taken of the local stresses in the neighborhood of
the ends which, according to the Saint Venant principle, practically
have no Influence on the stresses in zones far from the loaded surfac
es).

The displacements of the beam particles [found by integrating Egs.

(13.1)] are equal to:

M
== (a“.\'y-{-- -;-omy?)-— wy - u,,
(13.8)

M 2 2
V== gy (@) = x?) - ox - v,

Here w, Uy, v, are constants expressing the "rigid" displacement of the
beam in its mid-surface, 1.e., which is not accompanied by deformation.

The first of expressions (13.8) shows that the cross sections of a non-

orthotropic beam do not remain plane; the distortion depends on the

constant a6 The cross sections of an orthotropic beam are not dis-
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The equation of the curved beam axis for fixed ends = = 0 and =z

= 1l has the form:

1 ;4'12“}‘- (Ix--- x2), (13.9)

where n 1s the ordinate of the curved axis.

The curvature of the curved axis is equal to

— " {‘!Iln_ . <_A!-

SR e (13.10)

~ |-

The functional relationship between the curvature of the axis and
the moment of flexure is the same as in the case of an isotropic beam,
but instead of the modulus EF (which is the same for all directions 1in

an isotropic beam) the modulus Ei for stretching (compression) along

the axis occurs.

§14. BENDING OF A CONSOLE BY A TRANSVERSE FORCE

A beam with a cross section having the form of a narrow rectangle
is fixed at one end and 1s bent by a transverse force P applied to the
other end (Fig. 21). The solution is obtained with the help of a stress

function in the form of a polynomial of the fourth degree#*

= P X 3 ll!.‘ L]
Fo:ty [ ol S o Do P 2y')]- (14.1)

lﬂ‘

The stress components are determined by the formulas:

Oy =: - ~?~xy i 5’.2:‘; (g .-_y'z).
v P f (14.2)
%v‘=—“§7(q-—-y) :

(J - "l”;) .

These stresses satisfy exactly the conditions on the long sides y = + %

and in the cross sections they reduce to a force and a moment balancing

the external force P.

., - _In an.orthotropic beam in which the axial direction x 1s the prin-
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cipal one ag = 0, and the same stress distribution is obtained as in

an isotropic beam¥:

P P (b a
oL XY 3y 0, - -2-1-(-4---—_))-). (14.3)

For a beam with which the coefficient aig is not equal to zero
(the case of a nonorthotropic beam or an orthotropic beam with which
the axial direction x is not the principal one) the stress 0, is dis-
tributed according to a parabolic law rather than a linear one, along

the cross section. The diagram of the distribution of o, over the cross

section 1s shown (at an arbitrary scale and for ag > 0) in Fig. 22;

the dotted 1line shows the stress distribution in an isctropic beam. The
greatest normal stress is obtained at the points y = /2 or y = — b/2

of the fixed cross section; for aig > 0 it 1s equal to

cmurzagf(yluﬂﬁhﬁ) (14.4)

TN RN NN
qY

Fig. 22

(compressive stress) and for ayg < 0

. 6pP! / o _a!‘_ ’_é_
Cmax. =T o \l I“l(l; 3! ) ( 1u ' 5)
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We note that the formula for the curvature of the curved beam axis
(both an orthotropic or nonorthotropic one) has the same form as in the

case of pure bending, 1.e.,

_L:_:’Afnu:_:_/”‘ (1’4 6)
p J E:J' '
but in this case the moment of flexure varies along the beam length:
M=:—Px. (14.7) 5

The parabolic distribution law of normal stresses in cross sec-

tions 1is not reflected in the equation of the curved axis which has the

e

same form as in the case of an isotropic beam:
ST NS T (14.8)
(O .
E. Reissner particularly considered the limiting case of an ortho-

tropic beam where Young's modulus E, for the y direction perpendicular

2

to the x axis 1is negligibly small compared to the modulus El for the

axial direction. The solutions obtalned were used by him to study the 1

stresses and strains in a detall having the shape of a case.¥

§15. BEAM BENDING BY A UNIFORMLY DISTRIBUTED LOAD

X i

The stress distribution in a beam which is uniformly loaded along

T A At TR T A S s e e st

b e

its whole length is obtained with the help of a stress function having

L5k cocni e DA
sy o S I

the form of a fifth degree polynomial. The arbitrary constants entering ]

this polynomial may always be chosen such that the stress on the long

sides exactly satisfy the boundary conditions, and on the short sides 1

reduce to forces and moments balancing the external load. We shall pre-

sent the solutions for two cases »>r end fixing.¥*#¥ 3
1. Console. A beam with a cross section having the form of a nar-

row rectangle is fixed at one end and bent by a normal load g (per unit

length), which 1s uniformly distributed along one of the long sides
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(Fig. 23).

The following formulas are obtained for the stress components:

. 9x%y g fag x (v 5 ¥\
oo D[S (12 )
l 9 ?a‘n'l a. a?h‘ l)"‘ 3)’
< 41113 afl <b" 53)]'
c.a R A
v i) (15.1)
e A (e a(y Ay
Ty T 21(4 y) n a“(b. b3)
hb?
(v -i):

The moment of flexure M and the crosscut force N in an arbitrary cross

section x are equel to:

M. - 5]39.' N .- . (15-2)

The first terms of the expressions 0, and T, aT€ the stresses deter-

mined by the elementary theory of bending, and the second terms which

depend on the elastic constants are the additional stresses on and

ATxy which are not taken into account by the elementary theory. The

formulas for the normal and tangential stresses in the cross section
[the first and the second of (15.1)] may briefly be written in the fol-
lowing way:

M
z = 7‘)"*“ AJ.L"

[}

(15.3)
N (B
() s

For an orthotropic beam with which the direction of the x axis coin-

cides with one of the principal directions we obtain from (15.1):

. q_[?)r q 4)73 3)«

0w == G (30 g):

(o g3) g2 .
°V"‘2n( B3 4b’)' j (15.4)

x (b2 Q
‘:J'll ITT e e —4 ——y')
Here
. ?ﬂlz'l'aw L (E
”lv-.-- *'2""1-"*------'-(-—0—-‘—2"“). (15'5)- .
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Hence 1t 1s evident that the distribution of the stresses o and Txy in
an orthotropic beam does not differ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>