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In the present book three main topics are contained:  1) the gen- 
eralized plane stressed state of anisotropic plates; 2) the bending of 
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majority of the solutions set forth in the book (particularly in the 
chapters devoted to the plane problem) is due to the author himself. 
»All problems discussed are only concerned ."with small elastic strains 
of plates.  The problems connected with the plastic plate deforma- 
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lost, with temperature and other stresses in plates, etc., art not 
treated in the book.  These problems are still waiting for their 
investigators.  The material on the problem of transverse vibrations 
of anisotropic plates which is known to the author is collected in 
a special chapter.  In view ol' the rather great material and the small 
volume of the book the author endeavored to set forth things as con- 
cisely as possible.  The main attention was paid to the practical 
side of the solutions presented; formulas and conclusions having 
theoretical interest only were mostly given without derivation^ with 
indication of the literature where interested readers may find 
detailed discussion and proofs.  In those cases where this was possi- 
ble and interesting for the practice the results are brought into the 
form of theoretical formulas, diagrams, and tables. 
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fA  THE PREFACE TO THE FIRST EDITION 
Present-day teehnolop,y makes use of aid sotroplc plates, i.e., 

plates with different resistance to mechanical actions in different di- 

rections, as constructional elements. To such plates belong elates made 

of aviation plywood, delta wood, texolite, and a number of other mater- 

ials. The experimental investigations of such a material as plywood show 

the great difference between the moduli of elasticity and the flexural 

rigidities for the principal directions - along the grains of the cas- 

ings (the external plywood layers) and across the grains. Obviously, it 

is not correct to calculate plywood plates for the sake of simplicity 

with the help of formulas derived for the Isotropie body; it is neces- 

sary to derive special formulas on the basis of the theory of elasticity 

of the anisotropic body for the calculations. Also those plates in which 

the difference between the flexural rigidities for different directions 

has been created artificially may be regarded as anisotropic ones, as 

corrugated plates or plates reinforced by corrugation, plates reinforced 

by tightly located stiffening ribs, etc. Not only the constructor, but 

also the physicist who works with plates cut out of crystals, e.g., 

with quartz plates, must encounter on the calculation of stresses and 

strains In anisotropic plates. 

The author of this work set himself the task of creating such a 

hoc  v'hlch would possibly cover most of the present-day Investigations 

of problems concerning the strain of anisotropic plates and which could 

serve as a means of instruction for engineers, constructors, physicistsj 

and other specialists working with anisotropic plates. 
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gators .    T!r.-'   r.at ■  ■•!.•;   ..;,   ' •;-■   ; r -h !• ;       :J   ' :•,::    ; ■ ■ ; 

tropic   plate:;   v.'t,jc!;    :.■   ,■;.   .■;a   t,     ft,.    ■    ;■■.-•   ;. 

chapter. 

In   V i •'.'■   •■>!'   ' :;■     '■•'1.!,(  :■    ■ .'■  a1       ':' ■• r " a 1    ^ad 

bock   th.ej   authui-   . ad' ;i.\'/'■• 

The   main   ati^at i oa  aa.;   ; ;.: 

f     ■" i a l a : a ■ 

;   1 

a.- 

r  Ml i at • ,■ 

a;    an 

]•■    '   ■■!    • ti 

■J 1   v-! 

I a   tb-     r !"a.:' lea •id.'   .a'   tb-r   L: ; 

sented; formulae ana co.ar] Uo .i orn: b^vJrir' MK-C:-.^t ia-a ] iat'.a'c;- 

mostly given without derm v'',t i on, witdi iniicath^ri of the lit 

where interested reader.; may f'Jnd detailed di,-. etna: i on ami p 

those cases where tlna~ was possible and Intererl in,-, i'or the 

the results are brought into the forir of theoretical formal 

and tables. 

May  19^1 S.G. 
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PREFACE TO THE SECOND EDITION 

'!';;■ tli.Mjry 'A' ::lf'iin:- anci ;:tr-(,■;.::;(•:•. in anlaotropic jjlates has been 

.'Uj pic:'enl ecJ !•;/ nunerou:- new inver. tipationc jurinr the time which has 

■/I cMi.'.w-.i af'ti r th'.' iay when t !,<■• i'ii--,t edition of the monograph "Aniso- 

troplc piat- . " (1 •')'/') camr- r-ut. A r.i'eat part of these investigations 

carried out , above all, in t.iv. USSR and, in particular, by the author 

himself refi !•;•. ro tlu- rilane problem, and a smaller part to the theory 

of bending and stability plates. 

When preparing the second edition the author endeavored to present 

in the hook, if possible, alj new results known to him referring to an- 

ir.otropic n'iites and beinr of practical and theoretical interest. As a 

result the volume of the book has increased compared to the first edi- 

tion. A new chapter' (in the second edition Chapter 8) has been added;, 

it is devoted to an approximate method of studying the stresses in an- 

Lsotropic plates weakened by holes which are nearly round or elliptic. 

In particular, the cases of holes similar to an equilateral triangle 

and to a square with rounded angles, etc., were considered. Approximate 

formulas for the determination of stresses near such holes in plates 

strained by arbitrary forces, and, in particular, by stretching forces 

and bending moments are given; the results of calculating the stresses 

with different degrees of accuracy in plates with given elastic con- 

stants are presented. Nearly all remaining chapters are supplemented 

by sections setting forth the results of the most recent investigations, 

as well as of a number of Investigations of practical Interest which 

had, however, not entered the first edition. In Chapter 3, e.g.j which 
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i .     : ;i  .-. i;!    i is devoted to the bending of bea'-i- and r.-or\   ■'.   '-1 

ing are riven, and, in particular, 'v :"ii'ii.,. r 

In Chapter" Jl , pi-oblen'^ nf the fla.:d,!" ■ ;';'• I ' ■'■ ; u 

p;lon in limited by n parabola or a ' v;- :i'd •, ■■. 

trlbution of r,tr'.-::i;i\     in ;in in.f'inii" •-•■.■■;' 

centrated momenl aro iriv'\'i; th ■ V' In:/-      ;' 

i np; vrith prob 1 en,:; of I;,.' • lai; lio •■T;'
1
'; :■'.'■■ 

another material arc add.'d i:r. • i.,..; ;:;,■.■ •.  . ■ 

of the tn.Mid i nr ;jr an an ! sol. i'c p : r ; I ■' ■  '. ' 

In Chapter ]1, ^to. Tn ac^ordano. wi'd ■• ;. , 

many of which have be^n r'eidü'Vd 'ry ■,■■,-,  •. .■ .•.■. 

The- author' i-ndenvor-'d t', : '.^^:^■".l^    '■.'■■ 

In a form which Ic   HCC'■,• ;■ 1 b 1 e fu;1 .'n,-1 r-.' • ■ i .'   i. 

in-"- them where possible into Id:  ?!.■,:•■  • • ■ 

lustratin;1; then; by calculation:: and :; ■ ■ ■;■ ■ 

constants of three-layr-r blrci, ii;:■>■:::>■ \.      ■.•.. 

tiori were revised: the presentat i oti v. as, '-y :■  ■■: 

viere   corrected, and in a number of C.JSI s 'il 

terial is set forth was changed. Por ill J sp '■■•:1 

vestlgated by the author himself and to n-   aa.i. 

numerous calculations were carried out anew (;il;o for three-layer 1. i ■ s 

plywood). As a result the corresponding diagrams of stress di strlbuti. .. 

and the diagrams of a number of functions were replaced by new ones., 

more Illustrative ones, compared to the diagrams of the first edition. 

The list of literature used was considerably Increased. 

Finally, I want to express my gratitude to T.V. Skvortsovaya who 

has carried all numerical work and helped me in a substantial manner in 

the preparation of the second edition of the monograph. 

December, 1956 S.G. Lekhnifcskiy 
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C h a p t e r   1 

THE BASIC EQUATIONS OF THE THEORY OF ELASTICITY OF AN ANISOTROPIC 
BODY 

;'l. THE STRESSED STATE OF A CONTINUOUS BODY 

When ntudyinr the ::iVi>:yr-,crJ   anJ strain;: ii. elar.tio anioOtropic bod- 

ies, and, in par't i cular, in platen, we .;ha]l conL;idei' the elastic body 

to h'-   a continuous body, a continuous medium, according to the general- 

ly accepted model. 

As is well known, the stressed state at a given point of a contin- 

uous body which is at equilibrium or moves Linder the action of externa' 

forces is entirely determined by the stress components acting on three 

mutually perpendicular Dianes passing through this point. Usually the 

planes are passed perpendicular to the coordinate directions of an or- 

thogonal coordinate system passing through the point in question. In 

this book we shall only use Cartesian and cylindrical coordinates. 

Referring the body to a Cartesian coordinate system Xj   y,   z  we 

shall choose some point, pass three mutually perpendicular planes nor- 

mal to the coordinate axes through it, and consider the stress compon- 
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ents acting on these pj.ane.; (!?ip,. I), it ij generally accepti-'a to desig- 

nate the normal components by the letter o v-ith a subccrlpt indicating, 

the direction of the normal to the plane (and, therefore, also the di- 

rection of the component itself); the tangential components are desig- 

nated by the letter T with two subscripts the first of which indicates 

the direction of the component itself, and the second one the direction 

of the normal to the plane. On the plane normal to the x  axis act the 

components: a , T  , T  ; on the plane normal to the u   axis we have: 
x       yx        zx J 

T  j o . T  , L.nd on the plane normal to the 2 axis: T  , T  , 0 . As 
xy'      ij'      zy' ^ xz'      yz        z 

is well known from the mechanics of continuous media, we have  T zy 

= T  ,,1  = T  . T   = T  and, generally, T.. = x. .. where i  and j 
yz}     xz zx'      yx xy ' & Qi tj 

are mutually perpendicular directions. If we know the stress components 

on planes normal to the coordinate axes we can always determine the 

stress on any oblique plane with a normal n  passing through the same 

point. For this purpose serve the formulas 

'^ ^-0.c cos(". A:) ft^cos^, y) \--xtco%{n, z), ] 

^n1 —.ii/Cosl". ■v)-l-ai/ cos (/1, ^H-vcosCrt, 2), \ 
7'i. :-'.r.-C0S(". ->:) }--^cos (n, >') !-0z i-'os^i, z),  J 

(1.1) 

where X  ,   Y   ,   Z    are the projections on the coordinate axes of the n       n       n r     o 

stress acting on the oblique surface. Having determined X   ,   Y       Z we 

shall easily find  (by projecting) the normal and the tangential compon- 

ents of the stress on the plane with normal n. 

Furthermore, we shall refer the body under consideration to a cy- 

lindrical coordinate system r, 6, s  in which the z  axis coincides with 

the z  axis of a Cartesian system, and the angle 9 is counted from the x 

axis chosen as the polar axis. The stress components on planes perpendi- 

cular to the directions of the r,   B,   z   coordinates of the cylindrical 

system are shown In the same Fig. 1 (at another point); they are desig- 

nated, respectively, by: a^   T0r, T^; trQ3   oQ3   T^; T^   T^, az, where 
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i,    ,    ; '      ,    i .   ':'!:■'   '; ran:; i I Ion   froi;!  Lhe   r^troGS   comi'On- 
;; ■■;: ■■.•; ;: r <■ >■ ,•■') ' 

.■.l.'    :■• ['■■.'T'-ti   1o   ''•: :-1 s   ■ i ail c; '. I'd 1 natcr,   to   oho   comi" orient:;   in   cylindrical 

■•ou'd i nnt' .■   i;:   carrJ-'d   out with   l..ho  hr-lp   of   the   well   known   formulas: 

■■■.■■ ';   :   ...o.-'j       ?:     'inOcosfi, 

(=,. ;.. '■ ,... 'i i .o ; :,(....■ 0 •■i.r'j), 

^ l „•-in'). 
(1.?) 

J 
'i'.;.; cuf:ipoii'j'il.-; in a continuous body which Is at equilibrium 

ü oqul llbt^j urn oquationG which have the following form in the 

arte.; .1 an coord inate c-ystern: 

*'.c 0':., 
Ö.X Oy 

*'-ry ^ 
Ox Oy 

^-. thj. 
Ox Oy 

Ot 

Jt!/x 

Oz 

ä,t 
0: 

X   -0, 

/.    .0. 

(1.3) 

Analogous equations in a cylindrical coordinate system will be 

written in the form: 
dir    t 1 (5i,., . 0\r!   , => -o 

Or'  ^   r    M~  '' 'di'   ' '" r 

Or'   ' V jr '" dz' ''  r 

'- |-/^-0. 

- 1-9---0. 

- \- Z = 0. 
(1.^) 

In Eqs. (1.3) and (1. ^) X, Y, Z and B3 Q, Z denote the projections 

of the volume forces referred to the unit volume, on the x, y) z and r, 

Oj s directions. 

The equations of motion of a continuous medium differ from the 

equilibrium equations only by the inertia terms pw , ow , pwr or pw , pw 

pw which must be substituted on the right-hand sides of (1.3) and (1.^) 

instead of the zeroes (p Is the density of the material and w  with the 

subscripts are the projections of the acceleration on the coordinate 

directions. 

In the theory of elasticity the projections of the acceleration 
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are usually expressed in term;:, of ti ..■ ):■   i, f;.',;-, >■ r i :-. c ^.'. ;.;,■'..■ •..■ 

of the body particles in the coordlnete r:ir-r,  ior.;> {:   .-. , tn^y ..r-^ rM .i-n 

to the second derivatives wltn rospecl: tc . i M(, of [:■■ .1 l;--p luL'e^ent .,<■'-■- 

jections). We shall designate the projections of M..' displac'nieni i' 

the x, t/j 3 and rj 6, z   directions by u,   v.   u   and :. , :/   «_., 

The strained state in the neighborhood of a sr,iV',..'n point of a con- 

tinuous body is characterized by the six strain components: three rola- 

tlve elongations which are designated, by the letter' c with the corres- 

ponding subscript and the three relative shears designated by the let- 

ter Y with two subscripts. In a Cartesian system we have the strain com- 

ponents: e . £ . e  are the relative elongations of infinitely small 

sections, which were parallel to the x}   y,   z  axes In the unstrained body, 

and Y  J Y  J Y  the relative shears, I.e.. the angles variations be- ys 'xzJ    'xy '     ' 

tween the mentioned sections. The strain components for a cylindrical 

coordinate system will be e . e„, e     (the relative elongations for the 

r. 6. a directions) and YQ .» Y  J Y o (the relative shears).. J  > ' 63-' ' rz-9 ' rö 

The strain components are expressed in terms of the displacement 

projections. If there are no restrictions as to the value of the strains 

the connection between the e , c   ,  , Y  and u3   v,   w  are given xJ      y' '    'xy 

by  the   formulas 

(if- 
W- 
m 

dv   .   dw   .   du    du   .   dv    dv      dm    dw 
dz   '   dy   ^  dy ' ~dz       dy    dz   •   dy     dz 

^in   Y     — ■ - -  
Tl' OH-^(It-^)        " 

dw   .   du      du    du   ,   du    dv       dw   dw 
"dT "'" d? ''' dx ' dl "'" dx ' dz'"'' Xf ' 17 

\ (1.5) 

sin T.T 

sin x xy 

(1-1  ^) (II-«.) 
du    du       dv    d\ 
dx    dy   ' dx    d 

du       dv   .   du    du       dv    dv      dw    dw 
dy   ' dx ~^ dx "dy   ' dx "dy   '   dx ' dy 
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'•in.'   snrill  quantltie;.'   compared   Lo  unity   iln:.-'    lorniulao   are   slnif;Ier  and 

a:;,oume   the   for/n; 

-v'  '- rjv •     TJ-.-       dj 

dv    .   i) ;.• 

üw   ,    d dv 
dy 

dw du    ,    dv 
d; '     'lJV        dy    '   tH 

:.} 

In the case of small strains e , eA, . 

of u   ,   u0J u     In the following way: 

Y ,, are ex tire 

(i.e.) 

;ed In terms 

*'       dr • 
dw8  .    1  d//, 

'''" "dz   i   r" do'' 

,   - •  '  d"6  I £'--7 do "' 
"t du,       d;;r 

7r-       dr    '' d/ ' 

*'       d/ ' 
1 d/;r       d,;9 

7re       r  dO"   '    dr 
"i 

r 

(1.7) 

The formulas and equations presented here are correct for any con- 

tinuous body, elastic or not; their derivations may be found in courses 

of the theory of elasticity.* 

§2. GENERALIZED HOOKE'S LAW 

The equations given in §1 are not sufficient to solve problems of 

equilibrium, motion, or stability of an elastic body. It is, in addi- 

tion, necessary to indicate the relationship between the stress compon- 

ents and the strain components, ana for this purpose some model reflect- 

ing the elastic properties of the body must be chosen. If only small 

strains are involved usually a continuous body obeying a generalized 

Hooke's law is chosen to be such a model of an elastic body. In all ca- 

ses considered in this book we shall assume tnat a generalized Hooke's 

law holds for the elastic body, and, in particular, for plates, or, in 

other words, the strain components are linear functions of the stress 

components. 

An elastic body is called isotropic     If its elastic properties are 

identical in all directions, and anisotvopic  if its elastic properties 

_ 9 _ 
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are different for different directions. Homogeneous  we shall call an 

elastic body with which the elastic properties are identical for all 

parallel directions passing through any points, or, in other words, all 

identical elements having the form of rectangular parallelepipeds with 

parallel faces, chosen at different points of the body, have identical 

elastic properties. 

Let us first consider a homogeneous elastic body having an aniso- 

tropy of general form where some elements of elastic symmetry are mis- 

sing. Referring the body to an arbitrarily chosen orthogonal coordinate 

system #_, i/, 3 we may write the equations expressing the generalized 

Hooke's law in the following form: 

(2.1) 
ej,     =fl!20a)+fl220V+ + fl20TaV' 

lxV = alG°x-\-a2Gay-i- -f fleecy 

'11*  "12*   ''■*  aGS are here  the  elastic  constants   (strain coefficients); 

in general,  the number of different  constants  is  equal to 21. 

When strained the body  stores  a reserve  of potential energy.   The 

expression  of the potential  energy  of strain referred to unit volume 

(of elastic potential)  may most  simply be written  in the so-called bi- 

linear form: 

V = -2 (axex-\- OySy-l- "ztz-h '>y:1uz   f" V.-7.r.--f-"xtfTa,/)- (2.2) 

If we pass over to the stress components on the basis of Eqs. (2.1) this 

expression assumes the following form in the general case: 

1 

l'2 Ö6UT^- 

, (2.3) 
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; '/.( :.t,: ;ti   L::f ;■•■";/   '.!'  ..tr'.'i'. t;  of  the  v;hole  body   i:;   found  by   integrat- 

irn"  ovf;T   r'r.e   ontirt.1   volume  of   the   body   GJ : 

i/. JJJK//-. (2 JO 

If the internal structure of the body is symmetric symmetry Is al- 

.;o observed in its elastic properties. This elastic symmetry as it is 

usually called appears in the following way: at each point of the body 

symmetric directions are detected for which the elastic properties are 

identical (equivalent directions). Crystals have an elastic symmetry; 

all naturally occurring crystals are subdivided into nine classes ac- 

cording to the character of the elastic symmetry. Elastic symmetry is 

also observed in samples produced of natural wood, delta-wood, plywood, 

and other anisotroplc materials. If there is elastic symmetry the equa- 

tions of the generalized Hooke's law and the equation for the elastic 

potential simplify; some of the constants a.,  prove to be equal to zero, 

and the rest is connected by relations. 

V/e shall not deal with all possible cases of elastic symmetry, but 

consider only themost important of them.* 

1. The plane of elastic symmetry. Let us assume that through each 

point of the body passes a plane with the property that any two direc- 

tions symmetric with respect to this plane have equivalent elastic pro- 

perties (in a homogeneous body all these planes passing through various 

points are parallel). If the z axis is passed perpendicularly to the 

plane of elastic symmetry the equations of the generalized Hooke's law 

will be written in the following form: 

Ex   --^"nax\-"rfv']-ni.P:\-«X&xr 

ty    ^"n0x-\-"22ay   I" Oa.j'Vf ^cVy 

T.-r.'^oV + ^t,^' (2.5) 
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The number of independent elastic constants Is reduced to 13. 

The properties of the body with a plane of elastic symmetry may 

be illustrated more plausibly with the help of the following example. 

Let us consider an element of the body in the form of a rectangular 

parallelepiped with which two faces are parallel to the plane of symme- 

try, and assume that stretching or compressive normal stresses a    are 

applied to these faces (Pig. 2). The strain of the element will be 

characterized by the relative elongations and shears which we shall 

find from Eqs. (2.5): 

*x — al3at, 7ve = 0.      ) 

ei — aSiOz,    Y    = a.Maz. J 
(2.6) 

Hence it is evident that in the case of simple stretching or compression 

in a direction perpendicular to the plane of elastic symmetry the angles 

between the sections normal to the plane of elastic symmetry and the 

sections lying in it are not distorted, but remain rectangular ones. 

As a result, when strained the chosen element assumes the shape of a 

straight parallelepiped in which four faces are rectangles, and two 

parallelograms. If, however, there are no planes 

of elastic symmetry the rectangular parallelepiped 

which is stretched or compressed in one direction 

goes over into an oblique parallelepiped. The di- 

rections which are normal to the planes of elastic 

symmetry will be called pvinoipal directions  of 

elasticity  or, briefly, principal directions.   For 

the symmetry case under consideration one princi- 

Pig. 2 

pal direction passes through each point. The crystals of monoclinal syn- 
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gony (e.g., feldspar-orthoclase) have this form of elastic symmetry. 

2. Three planes of elastic symmetry. If three mutually perpendicu- 

lar planes of elastic symmetry pass through each point of a homogeneous 

body the equations of the generalized Hooke's law referred to an x, y3 

z  coordinate system with axes normal to these planes assume the form: 

(2.7) 

The number of independent elastic constants is equal to nine. Through 

each point pass three mutually perpendicular principal directions. A 

homogeneous body with three mutually perpendicular planes of elastic 

symmetry at each point is called orthogonally  anisotropia,  or,  briefly, 

orthotropia. 

An element having the shape of a rectangular parallelepiped with 

faces parallel to the planes of elastic symmetry which is chosen from 

an orthotropic body remains a rectangular parallelepiped when it is 

stretched or compressed in one direction (Fig. 2);   under strain the rib 

lengths are varied, but the angles between the faces are not distorted. 

Equations (2.7) acquire a higher plausibility if instead of the 

strain coefficients a.,  the so-called technical constants are introduced: 

the Young's moduli, the Poisson coefficients, and the shear moduli. Let 

us rewrite (2.7) in the form: 
1 

e* = £! ax "''' £2 
ay      E3 ^  "^ " Üi3 ^ (2.8) 

- "til-.     V23 -  I  1 _   1  - 
- ~      Ei   x      E2   v "r £3 *'     ixy ~' Gia w i 

E-y,  ffpj ^o are here Young's moduli for stretching (compression) along 

the principal directions of elasticity x, y,   z;   v,2 is the Poisson coef- 

ficient characterizing the contraction in the y  directjon if stretching 

in the x  direction takes place; vp- is the Poisson coefficient charac- 
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terlzing the contraction the x direction for a stretching In the y  di- 

rection, etc.; G^B' Gl1y  Gi?  are the shear moduli characterizing the 

variations of the angles between the principal directions y  and z, x 

and 2, x  and y .*  The following relationships hold between the Young's 

moduli and the Polsson coefficients owing to the symmetry of Eqs. (2.7) 

/:,v2l r-; £2-,12l    fc'^j = ^ /JJVJJJ,    /Tjv^ — t'^j,. (2.9) 

The elastic constants of an orthotropic body which enter into the 

equations of the generalized Hooke's law (2.7) and (2.8) as written for 

the principal directions of elasticity x3   y,   z  will be called principal 

elastic constants   (in constrast to the constants entering into the equa- 

tions for an arbitrary coordinate system). 

The form of elastic symmetry considered is the most important since 

it occurs most frequently in practice. Such materials as wood with regu- 

lar annual rings, delta wood and plywood may be considered homogeneous 

and orthotropic. The crystals of rhombic syngony (e.g., topaz, baryta) 

are orthotropic. 

3. The Isotropy plane. If a plane in which all directions are 

equivalent with respect to the elastic properties passes through each 

point of a body the equations of the genera]ized Hooke's law for a co- 

ordinate system with a z  axis normal to this plane will be written in 

the following manner: 

ez = ai3(«,a; + <'(/)-f-fl330.-        Tai/^2("n —fl12)xa,V    > 

(2.10) 

The number of different  elastic  constants  reduces  to  five.   According 

to A.   Lyav,   a body with an anisotropy  of this  form is   called  trans- 

versely  isotropia*.* The  direction normal  to the  Isotropy  plane  and all 

directions in this  plane are principal  ones.   Introducing technical con- 

stants we shall rewrite Eqs.   (2.10)   in another form: 
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ey- 
1   ^ ^ 

is az<    T, 
1 

.ri     ' "QI ^X:< (2.11) 

Here E  is Young's modulus for directions in the isotropy plane; £" Is 

Young's modulus for directions perpendicular to this plane; v Is the 

Poisson coefficient characterizing the contraction in the isotropy plane 

for stretching in the same plane; v' is the Poisson coefficient charac- 

terizing the contraction in the isotropy plane for stretching in a di- 

rection perpendicular to It; G = E/2   (1 + v) is the shear modulus for 

the isotropy plane; G'  is the shear modulus characterizing the distor- 

tion of ehe angles between the directions in the isotropy plane and 

the direction perpewlicular to it. 

The crystals of the hexagonal system (e.g., beryl) are transversely 

isotropia. 

4. Full symmetry - Isotropie body. In an Isotropie body any plane 

is a plane of elastic symmetry and any direction a principal one. The 

equations of the generalized Hooke's law for an Isotropie body have the 

form: 

ex=£-K—•'Ovl-o..)]. V- = 

eV^-£ I3!/ —,'(0xl 0.-)l-  Tx.— 

ez =-£(0.- —•'("xf-0!/)!'  I*!/ — 

1      ^ 

1 
G Ta■'■, 

1 
G ^w ) 

(2.12) 

E  is here Young's modulus, v the Poisson coefficient and G =  £72(1 + v) 

the shear modulus. The number of different elastic constants is equal 

to two. 

If in studying the strains of an Isotropie body we pass over from 

the a:, y, z  coordinate system to any other orthogonal coordinate system 

x', y',   z'  the form of Eqs. (2.12) wil] not change and the elastic con- 

stants E  and v will retain their numerical values also in the new system. 
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Conversely, In the case of an anisotroplc body, new elastic constants 

a'.,  which are expressed In terms of the old ones will be obtained on 

passing over from one coordinate system to another. A number of questions 

connected with the conversion of elastic constants of anisotroplc 

plates in the transition to new axes will be illustrated In the follow- 

ing.* 

§3. CURVILINEAR ANISOTROPY 

A homogeneous anisotroplc body is, as was shown above, character- 

ized by the fact that parallel directions passing through different 

points are equivalent in it. Besides this kind of anisotropy which may 

also be called rectilinear there is another form of anisotropy, the 

curvilinear one. The latter is characterized by the fact that directions 

subject to some other regularities rather than parallel ones are equiva- 

lent in a body with such a curvilinear anisotropy. If a curvilinear 

coordinate system is chosen such that at different points of the body 

the coordinate directions coincide with the equivalent directions then 

infinitely small elements of the body which are bounded by three pairs 

of coordinate surfaces will have identical elastic properties. Converse- 

ly, the elastic properties of elements having the form of Identical 

rectangular parallelepipeds with mutually parallel faces will no longer 

be identical. The number of curvilinear anisotropy which in the follow- 

ing will be called cylindriaal  anisotropy*  occurs most frequently and 

is most interesting for practical purposes. 

The cylindrical anisotropy is characterized by the following. The 

straight line g,  the axis of anisotropy (Itmay pass both inside or out- 

side the body), is rigidly connected with the body having cylindrical 

anisotropy. All directions intersecting the axis of anisotropy under a 

right angle are equivalent among each other; all directions parallel 

to the axis of anisotropy and all directions orthogonal to the first 

- 16 - 
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two directions are, respectively, equivalent to each other. All Infin- 

itely small elementfi 4,, A?,   ..., singled out of the body by three 

pairs of surfaces: a) two planes passing through the axis of anisotropy, 

b) two parallel planes normal to g,  and c) two coaxial cylindrical sur- 

faces with an axis coinciding with g   (Fig. 3) have identical elastic 

properties. When studying problems of equilibrium and motion of such 

bodies It is most convenient to use a cylindrical coordinate system r, 

6, 2, passing the z  axis parallel to the axis of anisotropy g,   and the 

polar axis x from which the angles 6 are counted in an arbitrary manner. 

The equations of the generalized Hooke's 

law for a body with a cylindrical anisotropy 

of general form, without any elements of elas- 

tic symmetry, will have the following form in 

the above Indicated cylindrical coordinate sys- 

tem: 

s^----ai2'3r-[nnr>i-\- +«2oV/.  I     (3.1) 

The   coefficients  a.,  are  the  elastic  constants; 
Pig. 3 

the number of different elastic constants is equal to 21 in the general 

case. We note that the equations of the generalized Hooke's law may also 

be written for an arbitrary Cartesian coordinate system; they will have 

the form (2.1), but the coefficients a.,  will no longer be constant, 

but vary when passing from one point of the body to another. If, how- 

ever, for a homogeneous body or, in other words, for a body with rec- 

tilinear anisotropy the equations of the generalized Hooke's lav; are 

written in an arbitrary cylindrical coordinate system r, 6, Sjthey 

will have the form (3.1) in the general case, only the a.,  in them will 

be functions of the angle 9 
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In a body with cylindrical anlsotropy there may also exist differ- 

ent elements of elastic symmetry. If at each point of the body there is 

a plane of elastic symmetry normal to the axis of anlsotropy g  Eqs. 

(3.1) simplify and assume a form analogous to (2.5) since 

aH ~ at6 — Oil ~ «26 = an ^ fl35 "= fl<6 =^ «W ^ 0- (3-2 } 

If at each point there are three planes of elastic symmetry one of 

which is normal to the axis of anlsotropy, the other one passes through 

the axis, and the third one is orthogonal to the first two axes then 

Eqs. (3.1) assume the same form as Eqs. (2.10) because a,/- = a^c  = 

= a^s  =  a^g = 0. In this case the body may be called an orthotropic body 

with cylindrical anlsotropy. As in the case of a homogeneous orthotropic 

body it is also here convenient to introduce "technical constants," and 

then the equations of the generalized Hooke''s law will be written in the 

following form for an orthotropic body with cylindrical anlsotropy: 

e'=  /U-^o-^. t^ E, 
1 

(3.3) 

Here E  .   £"„, E    are Young's moduli for stretching (compression) 

along the r, 9,2 directions, the radial, the tangential and the axial 

directions (which, at the same time, are also the principal directions 

of elasticity); v 6 is the Poisson coefficient characterizing the con- 

traction in the 0 direction when a stretching in the r  direction is ap- 

plied; etc; Ga   ,  G     ,   G  a  are  the shear moduli characterizing the var- 

iations of the angles between the 9 and 2, r., and z  and the r  and 6 

directions. 

As an example of a body with cylindrical anlsotropy we may use a 

wooden block with regular cylindrical annual rings. If the inhomogeneity 

is neglected itmay be considered to be an orthotropic body with cylin- 
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drical anlsotropy.* The pith line plays the role of the axis of aniso- 

tropy g   (Fig. 4). 

Cylindrical anlsotropy may appear in metallic details as a result 

of some technological processes, e.g., in drawing wires, in the produc- 

tion of pipes, etc. 

A body with cylindrical anlsotropy may be formed artificially, by 

constructing it from homogeneous (rectilinear-anisotropic) elements 

with identical elastic properties. Let us, e.g., imagine a great number 

of homogeneous anisotropic elements ("bricks"), homogeneous in their 

elastic properties, in which two opposite faces form a small angle. If 

Pig. I Fig. 5 

a value is constructed from these elements, as shown in Fig. 5, it will, 

as a whole, have the properties of a body with cylindrical anlsotropy. 

The axial directions of the elements in the vault equivalent to each 

other will be the radial directions. 

We shall once again return to this form of anlsotropy in Chapters 

2, 3, 8, and 9. We shall not consider othercases of curvilinear anlso- 

tropy . 

§4. BASIC EQUATIONS AND BASIC PROBLEMS OF THE THEORY OF ELASTICITY 

The stressed state of an elastic body may be considered given if 

the stress components acting on three planes normal to the coordinate 

directions at an arbitrary point of the body (and at an arbitrary in- 
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stant of time If the motion of the body Is  considered  )  are known.  The 

strained state Is  determined by the  components  of strain which depend 

on the three projections  of the displacement  on the coordinate direc- 

tions.  Consequently,  in order to have  full  Information on the  stress- 

strain state of a given elastic body which  is  acted upon by external 

loads nine functions must be determined:   the  six components  of the 

stress  and the three projections of displacement.   If we use a Cartesian 

coordinate system a   .   a  j   a  .   T    .,   T     .   T     .,   W,   V,  W are these unknown X        yJ      zJ      yzJ      xz        xy        J      ' 

functions of the x3   y,   z  coordinates   (and,  in the general  case,   also 

of time t); we must have nine Independent  equations to determine them. 

Let us  concentrate  our attention,  for the  sake of deflnlteness, 

on the  case of the equilibrium of a homogeneous  anisotropic body.   Add- 

ing Eqs.   (2.1)   expressing the generalized Hooke's  law to the  equations 

of equilibrium of a continuous medium (1.3)  we obtain a system of nine 

equations  called the  fundamental one: 

d3* • ^ • d'*'.\.xs, 
dx    *    dy   ~   dz 

«as = ana3> + fl120l/ + fll30=-f- OuV+ ö«ti't^+ OlO^I/' 

ty = anax-\-a220v-\- + ^o^i/- 
(4.1) 

Tx2/ = 0US'V4-<J2C0jH- -\-am^xy 

The connection between the strain components and the displacements of 

projection is given by Formulas (1.6) in the case of small strains. If 

the body has elastic symmetry, then, obviously. Instead of the general 

equations (2.1) those corresponding to the given form of elastic sym- 

metry must be taken [e.g., Eqs. (2.7) or (2.8) for an orthotropic body]. 

The nine unknown functions determining the stress-strain state of the 

body must be found by integrating the fundamental system (4.1) (or a 

system equivalent to the fundamental one), taking account of the sur- 

face conditions (boundary conditions). According to what is given Just 
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on the surface we distinguish between the first fundamental, the second 

fundamental, and the mixed problem [which is sometimes called the third 

fundamental problem of the statics of the elastic body*]. 

The first fundamental problem. External forces are given on the 

surface; also the volume forces are given. Designating by A" , 7 , Z 

the projections of the external forces referred to unit area, and by 

n the direction of the normal to the body surface the conditions on 

the surface may be written in the form 

ox.cos(/i, x)-\--.jL.uco5(n, y)-\-xx::cos{n, z); ^ X», \ 
^ycosin, x)-\-aucos(ii,    y)-\-ty.cosiii, z) r ■-Vu, \ (4.2) 
-v.cos(«, x)\--.u:cos(ii, y)-\-alcos{itl    z)---.Zn.] 

Instead of the projections of the external forces on the coordinate 

axes the projections of the forces on the normal n  and on two directions 

perpendicular to n, or, in other words, the normal and tangential stres- 

ses may be given. 

The second fundamental problem. The displacements are given on the 

surface; besides, the volume forces are given. In this case the boundary 

conditions have the form 

where u*,  v*,  w*  are the given displacement components in the directions 

of the Xj   yj   z  axes. 

The mixed problem. On a part of the surface the external forces 

are given, and on another part the displacements. To the mixed problem, 

however, also pertain, e.g., such problems where the tangential forces 

and displacements along the normal or the normal forces and the dis- 

placements in a tangent plane are given en the surface, etc. 

The uniqueness of the solution of the equilibrium equations of the 

elastic body for small strains (jf the strain components are linear 

functions of the derivatives of the displacements) is established by 
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the Kirchhoff theorem.* 

Somewhat different are the problems of the stability of elastic 

bodies having the shape of rods, plates or shells. The main part of 

the problem bolls down to the determination of the critical loads for 

which the form of equilibrium corresponding to small strains and loads 

(the principal form) stops being the sole and a stable form of equili- 

brium . 

The fundamental system of the equations of motion of the elastic 

body has the same form as System (4.1), but the equations of equilibrium 

of the continuous medium must be replaced by the equations of motion. 

In other words, on the right-hand sides of the first three equations 

there will be found Inertia terms rather than zeroes: 

HI: u 
■j 

!-■ 

dßu d'h) ffiui 

In those cases where It Is not possible to obtain an exact solu- 

tion of the problem of the theory of elasticity (owing to the difficul- 

ties due to the determination of functions satisfying the differential 

equations and the boundary conditions) approximate methods may be used, 

and an approximate solution of the problem may be constructed with their 

help. Among these methods the varlatlonal methods which are set forth 

in detail in the book by L.S. Leybenzon play an important part. In the 

following we shall use a number of approximate methods, among them one 

varlatlonal method whose basis is the. principle of virtual displacements 

and the theorem on the minimum of a certain Integral following from It. 

Those displacements in an elastic body are understood to be virtual 

ones with which it remains continuous, but the boundary conditions are 

satisfied on parts of the surface which are strained in a given way or 

fixed, i.e., on those where the displacements are given. In other words, 

displacements permitted by the geometrical connections superimposed on 
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the  elastic body  are  meant. 

Let  the body be  at  equilibrium under the   action of the  external 

load.   We  shall set  up  the  expression  for  3 equal  to  the potential  energy 

of  strain of the  ehole  body   (expressed  In terms  of  the  displacement) 

minus  the work of  the  external  forces,  surface   and  volume  ones: 

— \ \ \ (Xu-\-Yv-\-Zw) du 

(the triple integrals will be taken over the whole volume of the body, 

and the double one over that part of the surface where the forces are 

given). Let us consider the expression for 3 in which u}   v}   w  are un- 

derstood to be the virtual displacements (among the virtual displace- 

ments, however, there are also real ones which the body experiences 

when it passes over from the initial state into the state of elastl. 

equilibrium under the action of external forces). 

On the basis of the principle of virtual displacements the follow- 

ing theorem may be formulated: veal  displacements  differ from  all  vir- 

tual  ones   by   the   fact   that   they  minimize   the   expression  for   3.* 

The simplest version of an approximate solution based on the use 

of the above-mentioned theorem will be roughly outlined as follows. 

Expressions for the displacements are sought in the form of sums with 

undetermined coefficients by choosing the sum terms such that the dis- 

placements satisfy the continuity conditions (on those parts of the 

surface where they are given). The unknown coefficients are determined 

by requiring that the expression for 3 be a minimum. Ultimately, the 

problem boils down to determining the minimum of an algebraic integral 

function of second degree with respect to the coefficients. In the same 

way, an approximate solution for th^ elastic body (of finite dimensions) 
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carrying out   simple harmonic  vibrations with  a  frequency  p may be  ob- 

tained,  but   3 has  to be  replaced by   the  expression* 

in this   case   (T  is  the kinetic  energy  of the body). 

Manu- 
script 
Page 
No. 

[Footnotes] 

9 See,   e.g.,   1)  Leybenzon,   L.S.,   Kurs  teorii  uprugostl   [Course 
on the  Theory  of Elasticity],  Gostekhlzdat   [State  Publishing 
House  of Theoretical  and Technical Literature],  Moscow-Lenin- 
grad,   Chapters  1 and  2;   2)   Lyav,  A., Matematlcheskaya teoriya 
uprugostl   [Mathematical  Theory of Elasticity],   ONTI  [Unified 
Scientific  and Technical  Publishing House],   Moscow-Leningrad, 
1935,  Chapters  1 and 2. 

11 Various  cases  of elastic  symmetry  for anisotropic bodies  in 
general and for crystals  in particular are  considered in our 
book  "The  Theory  of Elasticity of an Anisotropic  Body,"  Gos- 
tekhlzdat, Moscow-Leningrad,   1950,  Chapter  1.   See  also:   Lyav, 
A.,  Matematlcheskaya teoriya uprugostl,  ONTI,  Moscow-Lenin- 
grad,   1935,  Chapter 6;  Bekhterev,  P.,  Analiticheskoye issle- 
dovanlye obobshchennogo  zakona Hooke'a [Analytic Investiga- 
tion  of the Generalized Hooke's  Law,   Parts   1  and  2,  1)  pub- 
lished by  the  author   (lithographed),  Leningrad,   1925;   2) 
Zhurnal Russkogo fiziko-khimicheskogo obshchestva  [Journal 
of the  Russian Physicochemlcal Society],   57,   No.   3-4,   1926, 
and 58, No.   3,  1926. 

14 Sekerzh-Zen'kovich,  Ya.I.,   K raschetu na ustoychivost'   lista 
fanery kak anisotropnoy plastinki  [On the Calculation of the 
Stability  of a Plywood  Sheet  as  Anisotropic   Plate],  Trudy 
TsAGI   [Transactions  of the   Central Aero'hydrodynamical  Insti- 
tute], No.   76,  1931,  page  8.   A system of "technical constants" 
for the general case  of anisotropy was proposed by A.L.   Rablno- 
vich   (see his  paper  "On the  Elastic  Constants  and the 
Strength of Anisotropic  Materials,"  Trudy TsAGI,   No.   582, 
19^6). 

14 Lyav,  A.,  Matematlcheskaya teoriya uprugostl,  ONTI,  Moscow- 
Leningrad,  1935, page  172. 

16 The  general formulas used to transform the  elastic constants 
in the transition to another coordinate system are given in 
our book  "The Theory of Elasticity of an Anisotropic  Body',' 
Moscow-Leningrad,  1950,  pages  33-45. 
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Already Saint Venant and Voigt have paid attention to this 
form of anisotropy: 1) B. de Saint Venant, Memoire sur les 
divers genres d'homogeneite des corps solides [Treatise on 
the Various Forms of Homogeneity of Solid Bodies], "Journal 
de Math, pures et appl." [Journal of Pure and Applied Mathe- 
matics], (Liouville), Vol. 10, 1865; 2) Voigt. W., Ueber die 
Elastizitaetsverhaeltnisse cylindridrisch aufgebauter Koerper 
[On the Elasticity of Cylindrical Bodies], "Nachrichten v.d. 
Koenigl. Gesellschaft der Wissenschaften und der Georg-Augus- 
tin Universitaet zu Goettingen [Bulletin of the Royal Scien- 
tific Society and the Georg-Augustin University at Goettin- 
gen], 1886, No. 16. 

Uprugiye postoyannyye drvesiny kak ortotrop- 
—  ■ •  -   ■  •   ~ ,.  .      Ortho- 

Mitinskiy, A.N, 
nogo materiala [The Elastic Constants of Wood as an „ 
tropic Material], Trudy Lesotekhnicheskoy akademii im. S.M 
Kirova [Transactions of the S.M. Kirov Lumber Technology 
Academy, No. 63, 19^8. 

See, e.g., the book by N.I. Muskhelishvili, "Nekotoryye osnov- 
nyye zadachi matematicheskoy teorii uprugosti" [Several Basic 
Problems of the Mathematical Theory of Elasticity], Izd. 
AN SSSR [Publishing House of the Academy of Sciences of the 
USSR], Moscow, 195^,  pages 65, 71, 72. 

See, e.g., the above-mentioned course on the theory of elas- 
ticity by L.S. Leybenzon, §118, pages 309-311. 

Leyvebenzon, L.S., Variatsionnyye metody pesheniya zadach 
teorii uprugosti [Varlational Methods of Solving Problems of 
the Theory of Elasticity], Gostekhlzdat, Moscow, 1913. 

See the mentioned book by L.S. Leybenzon, page 11^ and his 
"Course on the Theory of Elasticity," page 317. 
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Chapter 2 

THE PLANE PROBLEM OP THE THEORY 

OF ELASTICITY OF AN ANISOTROPIC BODY 

§5. THE GENERALIZED PLANE STRESSED STATE OF A HOMOGENEOUS PLATE 

Let us consider an elastic homogeneous anlsotropic plane plate of 

constant thickness which Is at equilibrium under the action of forces 

distributed at Its boundary, and of volume forces. We shall assume 

that: 1) at each point of the plate there Is a plane of elastic symme- 

try parallel to the mid plane; 2) the forces applied to the boundary 

and the volume forces act in planes parallel to the mid plane, are dis- 

tributed symmetrically with respect to it and vary to a low extent with 

the thickness; 3) the plate strains are small. The stressed state of 

the plate working under the conditions mentioned is called generalized 

plane  atveseed state.   The mid plane is not distorted under the strains 

and remains plane. 

Let us choose the mid plane to be the xy 

coordinate plane, put the origin at an arbi- 

trary point 0, and place the x  and y  axes ar- 

bitrarily (Fig. 6). We shall introduce the 

Fig. 6 designations: h  is the plate thickness, X   . Y 

are the projections of the forces distributed 

along the boundary, per unit area; XJ   Y  are the projections of the vol- 

ume forces per unit volume (Z = Z = 0 according to the assumption); 

a 11s   a12 , a66  are the elastic constants of the material in the a:. 

j/, 3. coordinate system. 
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In  studying   the  generalized   plane   stressed   state  the  values   of  the 

components  of  stress  and   the  displacement  projections   averaged   over   the 

thickness  are   considered:   ö  .   o"  .   T"    ,   ö  ,   ü,   v,   which  quantities  are 

determined  as   integrals  of  the   corresponding   stresses  and  displacements 

taken  over   the   thickness  and  divided   by   the   thickness: 

h!2 ■     A 2 hn 

a, ■-- J3-^      U-J    ]"'!-        *.:{ vdz. 

(5.1) 

The quantity a  will be neglected compared to ö , ä . and T J      z to y x'     y ' xy 

For  the mean stresses and displacements it is easy to obtain five equa- 

tions according to the number of unknown functions from the fundamental 

system of equations of equilibrium. Multiplying the first and the sec- 

ond equation of the system (^.1) by dz/h  we shall integrate both sides 

of them over z   from -h/2  to h/2;   the same is done with the first, the 

second and the sixth equations, expressing the generalized Hooke's law 

[which in our case must be taken in the form (2.5)]. We shall then ob- 

tain equations which are satisfied by the mean values: 

dx 

ax xy    ,    da,. _ 
dx 

(5.2) 

Here 

_ev = "i2°x~{- a22oy -f- a2pxll, . 
(5.3) 

A/2 

-h/2 

h/2 

I        f 

-h/2 

are the mean (taken over the thickness) values of the volume forces, 

and e . e and Y are the mean (taken over the thickness) values of 

the strain components equal to: 
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ßy *y -' dy 
du    .   dv (5.4) 

If the external forces X ,   Y    are given at the boundary of the 

plate the boundary conditions will be found from the first two condi- 

tions (4.2), by taking the mean of them), i.e., multiplying them by 

dz/h  and integrating over the thickness). Thus we obtain: 

Here 

3xcos{ni x)~\-xJ.ucos{ii. .y) —*„. | 

x^cosC«. x)-|-ö,, cos (/i, }')-■ yn. i 

(5-5) 

ft/2 ft/2 

rf2. 

-ft/2 -Ä/2 

We shall assume that the volume forces have a potential Ufx,   y)   In 

terms of which they are expressed according to the formulas 

do X = dU 
dx ' K = — 

dy  ■ 
(5.6) 

The equilibrium equations will be satisfied by introducing the stress 

function FCxj y)   and putting: 

<J3f     .   — - <52f 

(5-7) 
- &? A Ti       -        <^   i 77 

xy dx dy ' dyi   ' ^•    .-v— dx* 

Eliminating the displacements ü and v  from Eq. (5.4) by differentiation 

we obtain the strain compatibility condition 

Substituting here the expressions for e , e , y  from Eqs. (5.3) x       y       xy 

and expressing the stress components in terms of F, we obtain a differ- 

ential equation which is satisfied by a function of the stresses 

"' d*F      0        dtp    , /0  ,  . dtp n        W    ,   frP _ 

= —(flu4-n22)-^r + («io-ffl28)-^5y—<aii + fli2)-^r. (5.9) 

If there are no volume forces we have instead of (5.9) the homogeneous 

equation 

28 
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fl" ifi - 2^o ra- -1- (2«12 + «6c) ^r ^A^Öy 

-2^ + 'u|^0. 
(5.10) 

In particular, for an orthotropic plate we obtain the following equa- 

tion if we identify the directions of the x  and y   axes with the princi- 

pal directions of elasticity* 

F^ £■„ are here Young's moduli for stretching (compression) along the 

principal directions x  and y;   G  = G^   is the shear modulus characteriz- 

ing the variation of the angles between the principal directions x, y; 

v., = v-, p is the Poisson coefficient characterizing the contraction in 

the y   direction for a stretching in the x  direction [see EQL. (2.8)]. 

In order to study the stresses and strains in an orthotropic plate in 

which a generalized plane stressed state is realized it is sufficient 

to know only four of the nine elastic constants: E^   Ep}   G,   v, . In the 

following the x and y  axes whose directions coincide with the principal 

directions of elasticity of the orthotropic plate will be called prin- 

cipal axes. 

With an Isotropie plate E1  = E2 = E3   G =  £72(1 + v) and Eq. (5-11) 

goes over into a biharmonic one** 

V2^2/7 —0, (5-12) 

where 

V2-4-V-f d* 

(5.13) 

In detail, this equation reads as follows: 

dx^     'dx^dy*   ' dy« 

As far as the boundary conditions are concerned (which go over 

into the conditions along the outline of the plane figure S  lying on 

the xy  plane) they may be reduced, for given external forces, to giving 
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the first derivatives of the functions of the stresses. Let the plate 

region 5 be limited by an outer contour and one or several Inner con- 

tours (for the sake of generality we shall assume that the plate has 

one or several openings, or, In other words, S is a multiply connected 

region). The contour equations may always be given in parametric form 

where the arc length s as counted from an initial point (0'   on the out- 

er contour, 0"  on the inner one) is chosen to be the parameter: 

x^xis),   y^y{s). (5.1^) 

We shall agree to call the counterclockwise direction of passing along 

the curve positive [both for the outer and inner one — see Fig. 7*1• 

Then we obtain: 

cos (n, x)--~-Jz%.   cosin. y) = + ~ ds 

n  Is the direction of the outer normals to the contours, the outer or 

the inner one; for the outer contour the upper, and for the inner one 

the lower signs. Substituting these expressions in the conditions (5-5) 

and integrating over the arc s from the contour point chosen to be the 

Initial one to a variable point we obtain the boundary conditions for 

given external forces X  ,   Y    in the form: 

0 

t 

= j(±*n-£-i)d'+c*- dy 

(5.15) 

o1J a* are here constants which can be fixed arbitrarily on one of the 

contours. After the stresses have been found we can find the displace- 

ments by Integrating Eqs. (5.3). 

If the displacements u*J   v*  are given at the plate boundary we ob- 

tain the boundary conditions from (4.3) by Integrating them: 

ü = ü*, v=^v\   • (5.16) 

In the following, we shall omit the dashes over the symbols for 
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Fig. 7 

stresses and displacements In the consider- 

ation of ^he generalized plane stressed 

state, in order to simplify the denotation, 

and understand o . o . T  . K. y to be the 
x       y       xy 

values of the stresses and displacements 

obtained by taking the mean over the thick- 

ness . 

§6. PLANE DEFORMATION IN A HOMOGENEOUS BODY 

The problem of plane deformation which is also reduced to the 

plane problem (i.e., to a two-dimensional problem) has much in common 

with the problem of the elastic equilibrium of a plate in a generalized 

plane stressed state. Let us consider a homogeneous anisotropic body 

having the shape of a long cylinder of arbitrary cross section which Is 

at equilibrium under the action of forces distributed along the side 

surface, and the volume forces (Fig, 8). We assume that: 1) at each 

point of the body there is a plane of elastic symmetry which Is normal 

to the generatrix; 2) the forces act in planes normal to the genera- 

trix, and do not vary along the generatrix; 3) the strains are small. 

IL is obvious that cross sections far from the ends may be consid- 

ered plane; in this case they are all under the same conditions. 

Putting 

u-u(x,y),    v-v{x,}'),    tc-'O, (6.1) 

we obtain 

du 
e* :"dx'    ev 

du 
'dy''    ^ 

dn    .   du     \ 
dy'i'Tx'   \ (6.2) 

0. 

The fundamental system (^.1) assumes the form: 
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' 

+ ^31J/ 

ay \- A' = 

1 

= 0. 

hxtf + a., 
d'y" 

4- K = -0; 

tu   ^=?l2^x + ?^20|/^~^,^cTJ.I/•   / 

07 = — — (flIUax+n2Joy + fl30'xi/)'   1 

Ty:: ^« = o. 

(6.3) 

(6.^) 

(6.5) 

3.. are here constants which may be called reduced strain coefficients; 

they are connected with a. . by the following formulas: 

hj = Oij 
ana i3aj3 

"33 (6.6) 
(/. y^l. 2. 5). 

Under the assumption that the external forces 

have a potential, i.e., 

(6.7) *=-£. K = dy' 

Pig. 8. we obtain formulas which are completely analo- 

gous to those obtained in the preceding sec- 

tion*: 

W i i, Win. ^ . 

p22g-^-— 2ß2og^s^ + (2?uH-pco)(jA.jdyi-
-2Pio57ä7s + Pn^T = 

= -(?U + PJ2)^ + (?10+P2U)^-(?U + Pl2)-^. 

(6.8) 

(6.9) 

The boundary conditions reduce to the conditions at the counter of 

the cross section and coincide formally with conditions (5-15) or 

(5.16) for a plate in a generalized plane stressed state. 

The formulas and equations e;iven here do not take account of the 

conditions at the ends of the cylinder; strictly speaking, they are on- 

ly correct for an Infinitely long cylinder. In the case of free ends 

their influence on the distribution of the stresses may be taken into 
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account approximately, on the basis of the Salnt-Venant principle ac- 

cording to which statistically equivalent loads applied to the cylinder 

ends give rise to Identical effects In all of Its parts far from the 

ends. Let the cylinder cross section have finite dimensions. We shall 

put the origin of coordinates Into the center of gravity and place the 

x  and y   axes along the principal axes of Inertia of the cross section. 

Determining the stresses a . a . x  without taking account of the con- 
xJ y3     xy a 

ditions at the ends we obtain according to Formula (6.5) the normal 

stress in the cross sections. In special cases it may turn out that it 

is equal to zero and then the conditions at the free ends will be ful- 

filled. In the general case, hovvever, the stresses o  in each cross 

section (and, consequently, also at the ends) are reduced to a force P 

directed along the geometrical axis (2), and to the moment with the 

components M-.   and M~  relative to the x  and y  axes. 

In order to remove the "superfluous" forces and moments at the 

ends we Impose a distribution of stresses from force and moments equal 

to the values of P, W, and A/p, but having opposite directions, on the 

stress distribution for even deformation. In other words, the following 

correction must be added to the stress o as calculated from Formula 
2 

(6.5): 

p     ill v -üi 
./1 ^  /j 

ÄOz==____i.^-..,..., (6.10) 

{S  is the area of the cross section, I, and Ip are the moments of iner- 

tia with respect to the principal axes of inertia x  and y).   If, howev- 

er, the cylinder ends are rigidly fixed it is not necessary to add any 

correction. With the help of the Saint-Venant principle we may verify 

that the stress distribution in all parts of a cylinder of finite 

length, except for the zones in the neighborhood of the ends, will be 

the same as in an infinite cylinder. 
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In view of the nearly full agreement of the fundamental equations 

and boundary conditions for the plane at stressed state and for the 

plane deformation (there is only a difference in the coefficients) both 

problems are solved by the same methods. Having obtained a solution for 

the plane stressed state we obtain in the same way also a solution for 

the corresponding case of plane deformation. 

§7. GENERAL EXPRESSIONS FOR THE STRESS FUNGIION 

As was shown in the preceding sections the plane problem of the 

theory of elasticity boils down to determining a stress function F(xi 

y)   satisfying the differential equation of fourth order (5.9) or (6.9) 

and the boundary conditions on the contours limiting the region, in the 

region S  In the xy  plane. 

For the sake of definiteness, wo shall consider the case of the 

generalized plane stressed state. If there are no volume forces the 

function F  satisfies the equation 

"" K-2o*» OT + (2fl-+floG) a-j^-v, - 2fll0 äf^+*„ ^ 0.   (7.1) 
d*F 

dx* dy 
d*F 

' dx* dy* dx dy1 
d'F 
dy* 

This equation may be interpreted in a general form, by previously re- 

writing It symbolically with the help of four linear differential oper- 

ators of first order in the following manner: 

D^D^F = 0. (7.2) 

The symbol D,    (k =  1, 2, 3> ^) designates the operation 

_.   d    d (7.3) 
dx' 

where  y,   are  the roots  of the  characteristic  equation 

fln|i<~ 2flV -f- (2fl12 -f flj^ -1^ f 0*2 = 0. (7. l|) 

In the  case  of an orthotroplc plate Eq.   (7.^0  referred to the principal 

directions   of elasticity assumes   the  form: 

L'. :.■ 
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?<-\(%-    2v1)^-fA = 0. (7.5) 

The author has proved that for any Ideal elastic body for which 

the constants a-,-,3 2a,2 + a^, Qpp are finite and not equal to zero the 

characteristic equation (7.^) (and the corresponding equation for the 

plane deformation) may have either  aomplex  or purely   imaginary   roots, 

and cannot have real roots.* Only limiting cases lead to an elimina- 

tion : 
1) an~ 

=^a2Gr^0; 2) fl22^fl2Pi^2ß12-f aGC----a16r=.0; 3) ali^--alü^0; 
4) fl11=--=fllö = 2fl12-f flco=^n2(j = 0. 

In the first case two vanishing roots are obtained, in the second case 

all four roots are equal to zero, while in the rest of the cases two 

or all four roots are infinite. In the following, if no special reser- 

vation is made, we shall exclude the limiting cases from consideration 

and always regard the roots y, as either complex or purely Imaginary 

numbers; for these roots we shall use the denotations [i,, ^2, ^ T 

Two principal cases are possible according to the relationship be- 

tween the elastic constants: 

1) the roots of Eq. (7-^) are all different: 

l'i^H-?'. i^-T I"*- iM^a —?'. |i2=-7 —&/    (7.6) 

(a, 3, Y> <S are real numbers, 3 > 0, 6 > 0); 

2) the roots of Eq. (7.^) are equal in pairs: 

(x.-lx^H-?'. h-il^a-ß/ (?>0).      (7.7) 

For an Isotropie plate 

Pi^K^'.    Ih^ i^ :=--/. a-0, ß^l.        (7.8) 

The numbers y, and y2 will be called the aomplex parameters  of the 

first  kind of the  plane   stressed state   (or, correspondingly, of plane 

deformation) or simply the aomplex parameters.   The complex parameters 

may be regarded as numbers which to a certain degree characterize the 

anisotropy in the case of the plane problem; their value can be used to 
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indicate inhowfar the body deviates from an Isotropie one for which al- 

ways ^-^2 = /. I^| = ||i2|=l. 

If the material is orthotropic and the directions of the x  and y 

axes coincide with the principal directions of elasticity then a^ = 
lb 

= apfi = ^ an^ ^^e fc'Howing three cases of complex parameters are pos- 

sible (the limiting cases are excluded). 

Case 1: |i, = ,9/, |ia = B/ (the complex parameters are purely Imaginary 

and unequal). 

Case 2: it.l = ^2 = ^i    (the complex parameters are equal). 

Case 3: p.^a + p/. v.2 = — a-\-^. 

Having rewritten Eq. (7-1) in the form (7-2) we may reduce its in- 

tegration to the integration of four first-order partial differential 

equations. 

In fact, if we put 

£>/■ = &.    D.D.F^g,,   D2D3D4F = gl. (7.9) 

we  obtain the equation 

/^-^-(x.^0. 
dy 

(7.10) 

On integration we find 

£i=/i(* + h.v)' (7.11) 

where /, is an arbitrary function of the variable x +  y-j/. Furthermore, 

from (7.9) obtain the equations: 

(7.12) 

Integrating these  inhomogenious  equations   one  after another we  ob- 

tain the  following  expressions  for  F: 

1)   in the  case  of different  complex  parameters 

F ---■ F.ix + ^y)^- r2{x l-^y)^- r3{x \^y)'\- r^x-i-^yy,     (7.13) 
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(7.1^) 

2) in the case of complex parameters equal In pairs 

I F3{x \ i^y) \ (x  I isv)/7^^-! uj') 

(F., Fpj F»,   F.  are arbitrary functions of the variables x  + \i*y  or 

ä + yfey ) . 

The variables x +  put/ are complex, but not of the usual type x + 

+ iyy   but more complicated or general. Introducing the designations 

■z'l^* f l'i.v. z2-:x-\-y2y,    I,-= .v-f jT,^, 'z2^x{-y2y        (7-15) 

for them and bearing in mind that the stress function must be a real 

function of the variables x  and y  we shall rewrite Eqs. (7.13) and 

(7.1^) in another form: 

1) in the case of different complex parameters 

Fr=2Re\ri{zi)-\-F2iz2)\- (7-16) 

2) in  the  case  of complex  parameters  equal  in pairs 

F^2RclFl(zl)-\-~zlF2{zi)] (7.17) 

(Re  denotes   the real part  of any  complex  expression.) 

In particular,   for an  Isotropie  body  z     = x  +  iy  =  z,   1    = H; 

changing   the  designations  of  the  arbitrary  functions  we  obtain  the 

well-known  expression*: 

'F=~Re&tiz) + vM)l (7.18) 

Sometimes   it  is more  convenient  to  introduce  new variables 

z'^z + irz.   z'2~z + ).2~z. (7.19) 

where 

X       i±''M.   x2     '±^1. (7.20) 

These variables differ from a-, and z~  only by constant factors. 

The numbers X, and Ap which depend only on the elastic constants, all 

things considered, will be called complex parameters   of the  second  kind 

in contrast to y, and yp. For an Isotropie body X, = Ap = 0; for an an- 

isotropic body they are, in general, complex numbers whose absolute "' 
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values do not exceed unity. Designating arbitrary functions of the var- 

iables z' and zl  by 0, and 0- we shall rewrite the general expression 

of the stress function in the case of unequal complex parameters in the 

form 

F. ^Rcfn.M l 0,(4)]. (7.21) 

If volume forces with a potential U  act on the body the stress 

function satisfies, generally speaking, the inhomogeneous equation 

(5.9) or (6.9). The general expression for this function will be writ- 

ten as the sum of expression (7.16) [or, respectively, (7.17), (7.18), 

(7.21)], and a special solution of the inhomogeneous equation; usually. 

It is not very difficult to find this special solution. Also these cas- 

es were in spite of the existence of volume forces the function F  sat- 

isfies the homogeneous equation (7.1) are possible. As an example the 

problem of the distribution of the proper weight stresses in a homoge- 

neous body may be used; in this case the volume forces have a potential 

which depends linearly on the coordinates, hence all its second deriva- 

tives vanish. 

§8. THE CONNECTION OP THE PLANE PROBLEM WITH THE THEORY OF FUNCTIONS 
OP A COMPLEX VARIABLE 

As shown by Formula (7.16) the stress function in the case of un- 

equal complex parameters is expressed in terms of two arbitrary analyt- 

ic functions of complex variables .r, ^ * + «;,;'. ^^x-fivv or 2[ = ,z-f).,z, 4 = 

= z~\-l^z   (complicated or generalized). In the case of equal parameters 

we obtain one complex variable 2, or 2'. 

If we know the expression for the function F it is easy to find 

the expression for the stress components and then to obtain also the 

formulas for the displacements by integrating Eqs. (5.3) or (5.4). 

Let us focus our'attention on tne case where the complex parame- 
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ters are different, but there are no volume forces. Introducing the 

designations 

(iz3 *.(^£r. ^^-S- <^^7' *'M~S.    (8.i) d% d% 

we obtain the following formulas wjth the help of expression (7.16): 

(8.2) 
's  - - 2 Re [i^.p, (z,) 

'y   -■ - 2Rc( '1-;^,) 

V,-- 2 Re lii.'l.; (7.) 

"- ZRcl/.,'!-,^,).. 

V- 2Rc[r/1<I.I(^1). 

S.r.' 
" 1^2(^)1. 

-  1^(^)1. \ 
ivl'^^)!: 
/'2'T'2 (z2)I — (ü_y-f-w01 

Here we have introduced the denotations 

l"o. 1 
-Mo- I (8.3) 

P.^^ii!1? l-ai2—flic!li' /V".,!^! ".r-«, 

9i :=fli2:ii 

a.o!1.' ) 

-".«. 
")1 J (8.4) 

Co, u^j y« are arbitrary constants due to the integration which charac- 

terize the "rigid" displacement of the plate, i.e., the displacement in 

the xy  plane without deformation (w characterizes the revolution, and 

u-, v0  the translatory displacement).* 

The normal and tangential stress components on a plane with arbi- 

trarily directed normal n  will be found from the formulas: 

3n^axcosi!{n1 x)-\'aycos'1(n, y)-\-2xxy cos (n, x)cos{n, y). 
'n^iav—0x)^s{n. x)cos{ii. y)\--a.y[cos2(n. .v)—cos^n, y)]. (8.5) 

Substituting here the expressions for a   ,   o   ,   x       we obtain 

lS ,T.' 

(8.6) 

(:nr-. 2Re {(cos^i, >-) —n.cos^, x)] 'I', (z,)+ 

4-ICOS(/(,   ^)        [AzCOS^I,   Ar))2'I'2 (^2)1. 

-n^=2 Re {[cosC/;, y) - [i, cos(«, x)\ X 

Xlcos (/i. x)] -f- n, cos (n, ;')1 'I'I (^i) -f 
-f Icos(«,',v) — n2 cos(n, .\r)lX 

XIcos(/i,  A:) |  i^cosC/;, ^I'l'U^)). 

For  the  given  external  forces  X  ,   Y    the  boundary  conditions  assume  the n       n 

form   [see  Formulas   (5-15)]: 
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2 Re [ <!>, (z.) 4-    4.2 (z2)j ^ -_- J Yn ds \- c,. 
o 

i 

2 Re lii.l', (ZJH IX2'I>2 (^)| = :t J ^n rfs -j- c2. 

(8.7) 

If, however, the displacements are given we obtain the following bound- 

ary conditions: 

2 Re [;>, «I», (z,) \- p,'I'2(z,)| •--- «* -1 - uy — «0. 

x2^--x-\--\y,   y^^ly, 

2Re 17.'I', C^,) [-qi'h{z.i)\--~-v'~-i*x-~v0.   I (8.8) 

The  equations  given Indicate  the  connection of the  stress  and  dis- 

placement  components with  the   functions  of the  complex  variables.   In- 

troducing the designations 

(8.9a) 

(8.9b) 

then the functions $, and $„ may be considered to be functions of com- 

plex variables of the ordinary type 

zl = xl^-lyv    z2^x2 + lyr 

But if this point of view Is adopted then the functions $, and <I>p must 

not be determined In the same region 5 which Is occupied by the plate 

In reality, but, respectively, In some regions 5-, and 5p obtained from 

5 by affine transformation given by Formulas (8.9a) and (8.9b). Figure 

9 8llustrates how regions 5-, and S?  are obtained from S. 

Fig. 9. 

Thus, the plane problem for an anisotropic body may be regarded as 

the problem of determining the functions ^U-^) and $2(^2) satisfying 
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the boundary conditions (8.7) or (8.8) In the regions 5, and S?   (at 

points of the contours of regions corresponding to one another in an 

affine manner). In the general case this problem Is rather complex, but 

it Is possible to Indicate a number of special cases of regions for 

which an exact solution can easily be obtained. 

An investigation shows that the functions $, and <P?  must satisfy 

the following conditions within their regions*: 

1) if the region of the plate 5 is finite and simply connected 

(the plate has no holes) then the functions $, and $p are holomorphic 

and single-valued in their regions S-.   and S^; 

2) if the region S is  bounded by several contours or is an infi- 

nite plane with a cut (the plate is weakened by holes), but the equiv- 

alent vector (the resultant) of the forces applied to each of the con- 

tours is equal to zero then the functions <J>, and $p are holomorphic and 

single-valued in their regions 5, and S^; 

3) if the region 5 is bounded by several contours or is an infi- 

nite plane with a cut (the plate has holes) and even if the equivalent 

vector (the resultant) on one contour is not equal to zero then the 

functions <I> and <J>p will be multivalued. If, e.g., there is one hole in 

the plate and at its boundary act forces whose resultant has the compo- 

nents P    and P then the functions  $n and $0 will Increase by the in- 

crements A-, and A?  to  be found from the following equations** if we 

pass around along any closed contour entirely lying in the region of 

the plate and encircling this hole: 

A.-f- A2-f vi- A*----/r' 

a,, ' A' 

- ^1 -f- - Aj. 4- "A, -|- r- A2 — -—I - 
ix,    ^j    (i,    fij    o23 h a^      h 

(8.10) 
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If we use the representation of the function F  in terms of func- 

tions of the complex variables z'  and z'   according to Formula (7.21) we 

obtain Instead of (8.2) and (8.3): 

0*= 2Rc[iAj(i i-^)'/,^) 4-^(i+x2)?;(2;)|, i 

o,- 2Rei (i-i-x,)«.;^;)-}- (i+;.2)?;(7;)i i 

^„^ - 2 Re 1^(1+^)?;(<)-! 1^(1-J-^)?;(^)I: J 

a = 2 Re [p^i {z[) f /72?2 C^)] - ^ -f «„, 1 

z; = 2 Re 17l?1 (z;) -f <72?2 (4)1 -f- cux -f- v0. j 

(8.11) 

(8.12) 

We have here introduced the denotations 

?.«) - (I -M.) ^. ?2«) =- = (1 + K) 'jl 
(8.13) 

The coefficients p^^ p«., <77J c72 are determined from the preceding for- 

mulas (8.4). The stresses a and T on an arbitrary plane are found 

from the formulas which will be obtained from (8.6) by replacing $-,(2,) 

and $^(32) by, respectively, the quantities (1 f >.,)?((2^) and (1-f-^tf/^). 

The boundary conditions for the functions 9, (2.!) and ^'(sl) coincide 

exactly with the conditions (8.7) and (8.8) for «t» (2,) and $p(2p). 

For an Isotropie plate the well-known formulas of G.V. Kolosov and 

N.I. Muskhelishvill* are obtained on the basis of the general expres- 

sion (7.18): 

av—o x+2^i/-2lzo"(2)-ff (2)), I 

°x~\-°y     = 4 Rel'f'(*)];_ .  [ 
2a (u -f- lv) = v.o {z) - zo' (2) - ^ (2). 

(8.14) 

(8.15) 

Here ^^ — .^^   ^^   ^  are the functions conjugate to 9' and i^; y = G is 
3 s 

the shear modulus; * —"r+"7'v Is the Poisson coefficient. 

For given external forces X  ,   Y    the boundary conditions for the 

functions 9 and ty  assume the form: 

? W + ^?'W + W?) = :t J (/^ -- Yn)ds -f c (8.16) 
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(the upper sign must be adopted if the outer contour Is considered, the 

lower one If the hole contour is considered; a  is the integration con- 

stant) . 

If the displacements are given on the contour of an Isotropie 

plate then the boundary conditions may be written in the following 

form: 

y.? (z) ~-z~?' (J) - ^ (7) = 2,1 («' + Iv'). (8.17) 

We shall not specially choose the case of complex parameters equal 

in pairs; by replacing the variable and changing the contour of the re- 

gion 5 for which the problem must be solved it boils down to the case 

of an Isotropie body. 

The plane problem of the theory of elasticity of an anlsotropic 

body may be reduced to integral equations of well investigated types, 

in which case various methods can be applied. The reduction of the 

plane problem to integral equations made it possible to study the prob- 

lems of the existence and uniqueness of its solution with exhaustive 

completeness and to work out general methods of obtaining the solution 

in the general case. These problems were treated in a number of papers. 

S.G. Mikhlln considered the plane problem for a finite simply connected 

region for given external forces and reduced it to a system of integral 

equations with two unknown functions.* G.N. Savin investigated the case 

of an infinite region with a cut (a plate with a hole).** D.I. Sherman 

considered the case of a multiply connected region.*** In subsequent 

works D.I. Sherman reduced the plane problem for a multiply connected 

region for given external forces to one Integral equation with one un- 

known function.**** The same problem for the case of given displace- 

ments was investigated considerably later by T.B. Ayzenberg; not only 

did he obtain an integral equation, but he also solved it for the spe- 

cial case of an anisotro, ^  ate having the shape of a round disc.***** 

♦-.I . 
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The integral equation of the plane problem with one unknown function 

was obtained In a somewhat different way also In a work by I. Vekua.* 

We must also mention the work by V.D. Kupradze and M.O. Bashelevshvlll 

I . in which it  is   shown  that  the  plane  problem may be  reduced  to  the de- 
ft'. 

i 
termination of the potentials of a simple or double layer; the densi- 

ties of these potentials satisfy well-known Integral equations.** Those 

solutions for simple regions which we shall present below were obtained 

by comparatively simple methods not connected with Integral equations 

(we know, however, only one work in which the solution of a concrete 

special problem was found with the help of Integral equations - the 

above-mentioned work by T.B. Ayzenberg). 

Finally, we must mention the optical method of investigating the 

stresses in plates which are under the conditions of a generalized 

plane stressed state. The optical method is very efficient If the 

stresses in Isotropie bodies are to be studied (particularly in those 

cases where it is cumbersome to seek the theoretical solution of a 

plane problem); it is set forth in detail, e.g., in the well-known book 

by Coker and Filon.*** The problem of applying the optical method for 

studying the plane stressed state of anisotropic bodies proves to be 

considerably more complex and only a little work has been done in this 

field, as yet. The most Important results in this field, theoretical 

and experimental ones, were obtained by V.M. Krasnovyy and A.V. Step- 

anovyy.**** 

§9. DETERMINATION OF ELASTIC CONSTANTS FOR A NEW COORDINATE SYSTEM 

When studying the plane stressed state of an anisotropic plate one 

may often encounter on the following problem: the elastic constants are 

known for some coordinate system cc, y  and the elastic constants for a 

new system x', y'  must be found where the new system Is rotated with 
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respect to the first one by an angle 9 (Fig. 10). For an orthotropic 

plate usually the principal elastic constants are given; it may, howev- 

er, prove that the use of the principal coordinate system is inconven- 

ient, for some reason, such that the conversion of the elastic con- 

stants and complex parameters is necessary. 

The formulas for the conversion of 

the elastic constants may be obtained in 

the following way.* 

Let us consider the generalized 

plane stressed state of an anisotropic 

plate whose mid plane is chosen to be the 

xy  plane. Let a.. be the elastic con- 

stants for the x,, y   coordinate system, 

and a '. .  the elastic constants for the new 

axes x'j   y'j   rotated by an angle 9 about the origin 0  with respect to 
« 

Xj   y.   Assuming that in the xy  plane there are no principal directions 

of elasticity we have the equations of the generalized Hooke's law (for 

stress and strain components whose mean values have been taken over the 

thickness) and the expression for the elastic potential: 

For the new x'}   y'   system we have: 

(9.1) 

2  11 a;  1^  12 x 1/ I U10 X xy~ 

1  / ,2 
i^t/'xy   l 2     M XV' -}-|«^-f-<°v..-i -«- 

(9.3) 

(9.4) 

We shall express o . a . x  in terms of a'  a'j T'  for which purpose x1     y'      xy x'     y3      xy 
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we make use of the formulas (8.5) which in our case assume the form: 

(9-5) 

ax ~ o'x cos- ? -f c/ sin2 tp — 2x^ sin 9 cos <?, 

Oy = o'x sin* if -}- a' cos2 « -}- 2'' sin o cos 9, 

^1/ = K — 0P sin ? cos ? + ^ (cosi! ? — sin2 ?)• 

Furthermore, we substitute these values into the formula for the elas- 

tic potential (9.2) and compare the expression obtained with (9.^). 

Hence we find the sought formulas of the elastic-constant transforma- 

tion in passing over to new axes: 

"Ii == n,, cos1 <f -\ (2rt12 - \~ fly;) sin2 ocos2 7 -}- o^ sin4 <f -|- 

-\- ("iocos2 ? -I" "w si"3 ?) sil1 2?. 
O:'■ ^ flj, slw* f -\-(2«12-f- «C6) sin2 <p cos2 «p -j- A,,, cos« <p — 

— (fliu sin2 ü I rt:u cos2 o) sin 2'p, 

n'n *--- an-\. («,, -\ a.n— 2n12 — r7C0) sin2'?cos2 <p -|: 

-t--2 (":'0-   ",u)siii2>?cos2?1 

Ofifi^flüo -|-U<'ii + <?:'2- -20,2   -«GO)
5
"'

2
? cos2 o-j- "1 (9-6) 

4-2(n26-n10)sin2?cos2i 

fiU -■- \a2Z sin2 o     an cos2 «■ f- -^ (2o12-frt(.(j)cos2'p sin 2<p-(- 

-f- fl16 cos2 o (cos2 (5 — 3 sir.2 o) --}- fl26 sin2 <p (3 cos2 <? — sin2 tf), 

«20 -- uj22cos2'p-—o,, sii.2 tp    - g- (2^,2 j- fl(;0)cos2'p  sin2(p-}- 

-f- flie sii.2 s (3 cos2 tp — sin2 tp) -j- a20 cos2 tp (cos2 -p — 3 sii.2 tp). 

We notice two  invariants,   i.e.,   two  expressions  which  remain numerical- 

ly equal  on rotation by  an arbitrary  angle 9: 

flll 4" 022 + 2(752 — flu -f fl22 -f 2fli2.| (9.7) 
Oco—4o(2 = fl60—4fl12. J 

If,   in particular,   the plate  is  orthotroplc  and  the directions  of 

the x and y  axes   coincide with  the  principal directions  of elasticity 

the  equations  of  the general Hooke's   law   (9-1)   have  the   form: 

1 

zy    =■ 
fT0- 

£7V 
1 

£7> 

ixy ' a ^w 

(9.8) 

Passing over  to  new axes  a;',   y'  we  obtain the  equations  of the 

generalized-Hooke's   law  (9.3),   and  Introducing  "technical  constants"  we 
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rewrite them In the following way: 

** = 
1 

«(/ 
^x 

(9.9) 

E'}   E'   are Young's moduli; v', v' are the Polsson coefficients; G'   is 

the shear modulus for the new directions; n-I j n- are the secondary co- 

efficients which vanish in the fundamental system.* The moduli and co- 

efficients for the new axes are determined by formulas resulting from 

(9-6): 

1     '  I / ' f ''I ,  I -I- v,    1 \ 

1  'If, 41 1;-+—£a-"~(jj
sin 2? • 

/_.£/rcos2y        si„2?        i  / , 2   > , 

(9.10) 

The expressions 

cl     c2     cl    cl    c2     cl 

G' + < ~ G 'f' £. • 

(9.11) 

will be invariant. 

In practice, also the following problem may arise: in an ortho- 

tropic plate the elastic constants a.,  referred to an arbitrary coordl- 

nate system x,y are known, and the principal elastic constants must 

be determined. 

The problem is solved with the help- of the two last formulas of 
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(9.6). 

Let us designate the principal axes by x',  y'  and principal elas- 

tic constants by a'.,  in the given case. The unknown angle 9 which is 

formed by the a: axis with one of the principal directions is determined 

as the minimum angle satisfying simultaneously the two equations: 

<"0' «w^0- (9.12) 

which will be reduced to the following equations after some simple 

transformations: 

•fa •  an--ari' 

Ig \'? 
'10 — "M 

oa-|-fl-j - 2a,a ■ - «, CO 

(9.13) 

The condition for the existence of identical solutions to these 

two equations has the form: 

(9.1M 
(a,0 — rt,a)(o,, — a22 -f- fl10 ■■{■ r72ö) (n,, — a22 — «10 — a.,ü) ■-- 

= («IG + "w) ("it ~ "22) («11 + «22 — 2''l2 — «Co)' 

If this condition is  not  fulfilled there are no principal  directions  in 

the xy plane,   i.e.,   the plate  is  not  orthotroplc. 

The formulas for the recalculation of the given constants of plane 

deformation ß.. in passing over to new axes are Identical with Formulas 

(9.6). 

Example.   Let  us  assume  that we  know  the  elastic   constants  of an 

anisotropic plate  referred  to  an xy  coordinate  system,   i.e.: 

Oii = aK^0;   an = a22,    all-\-a22 — 2al2 — aC(i>0. 

The condition of the existence of principal directions (9.1^) is, obvi- 

ously, fulfilled. Equations (9.13) assume the form: 

tg2<?---oo> tg4<? = 0. (9.15) 

From the first equation (9-15) '"e find: <? = ■-,  i£, ^-, —,...   , and from 14444 

the second one: « = 0 — — — ; the solutions of the first equation 

are also solutions of the second one. Consequently, we may put:» =4^-. 

There are principal directions of elasticity; they are the directions 
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of the bisectrices of the angles between the x  and y  axes. We shall 

determine the principal elastic constants a'.,  from Formulas (9.6) by 

substituting In them the numerical values of the a. ,  and <? = •?-. 
t,7      '4 

§10. THE CONVERSION OF THE COMPLEX PARAMETERS IN PASSING OVER TO NEW 
AXES 

If the complex parameters of the first kind y, and y« calculated 

for the x and y  axes are given it is not necessary in pabsing over to 

the new axes x'}   y'   to  set up anew and to solve the fourth-degree equa- 

tion (7.4). It is not difficult to derive formulas from which the com- 

plex parameters for any other coordinate system rotated with respect to 

the first one by the angle 9 can be calculated (see Fig. 10) if the pa- 

rameters for the first system are given. 

We shall write the equation for the stress function F in a symbol- 

ic manner. In the old Xj   y   system we have: 

D^D^r^O, (10.1) 

where 

d d        -^        d Dk--- "jy — H -J7 . Dk^-0-y- 
- d (ft-1. 2); (10.2) 

y, j y, are the roots of the equation 

fl,,!^ —Sfl.o^H(2^,2+ «co)ll2"2°2d1 I fl^-O.      (10.3) 

We shall pass over to new axes x'j y '',   the transformation formulas have 

the form (see Fig. 10): 

x' =      xcoso-\-y sin 9, 

y'-----  xsino lycoso. (10.4) 

Expressing the derivatives with respect to x  and y  in terms of the de- 

rivatives with respect to x' and y'  we obtain: 

d d     ,    . d 

dy 
d 

dx 

dy' 

d 
dy' 
d    , d = _sin?^7-fcos?-aF, 

(10.5) 

Reducing by a constant factor we shall rewrite Eq. (10.1) in the 
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form 

where 

DlDiO'^F « 0, (10.6) 

* "    d/       cos -p |- in sin <f "dx'    ~ ~d/      ^k "dx' ' 

D^~- 

Pk cos <p — sin <p     d 
c 

fiJJ cos <f> — sin tp       ^ -/ a (10.7) 
dy'        cos sp -f- M sin «p dx'       dy' dx' 

Hence we also obtain formulas from which the complex parameters 

for the new axes will be determined*: 

-IN       cc 
(ij cos 9 — sin <p 
cos ip -f- [*! sin <p 

(Jta cos ip - - sin y 
cos ? -f pj sin <p (10.8) 

Let us mention some Important properties of the  complex parameters 

which are  found  from an analysis  of formulas  (10.8): 

1) If the parameters y, ,  y«  are complex numbers  for  some coordi- 

nate system x^   y  then also the parameters y-I,  yl  for any  coordinate 

system x'j   y '  rotated with respect  to the  first  one   by  an angle   ? will 

be complex,   or,   in particular,   purely  imaginary  numbers.   Conversely,   if 

for some  coordinate  system the numbers  y,,   yp proved  to  be real then 

also the corresponding numbers  y,' ,   yl in an arbitrary  coordinate system 

would be real numbers   (which case  is,   however,  excluded  for an elastic 

plate if limiting cases are not  taken into account). 

2) If the  parameters  y,   and  y2  for  some  coordinate  system x3   y 

were obtained unequal then also the  corresponding \il   and yl  for any 

system x',   y'  rotated with respect  to  the  first  one  by  an angle 9 will 

be unequal.   Conversely,   if for  some   coordinate  system  it  has   turned out 

that y,   = yp then y^ = yi for any  other system. 

3) If for some coordinate system one of the parameters proved to 

be equal to i =/—T then for an/ other system rotated with respect to 

the first  one the corresponding parameter will be  equal to t,  i.e.,   it 

will not  change in the transition from one coordinate system to anoth- 

er. 
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With an Isotropie plate both parameters are equal to i  for any co- 

ordinate system as was already mentioned. 

It Is not difficult to obtain also formulas for the transformation 

of complex parameters of the second kind In the transition to new axes. 

Let X,, Ap be the complex parameters of the second kind for the a;, y 

coordinate system to be determined from Formulas (7.20), A', A' the 

same quantities for the new system x's   y'  which Is rotated with respect 

to the first one by the angle cp: 

.,  H-^ 
A — K~ 

i + H*.' 

■' -i-///  •2 i-'p', 
(10.9) 

Substituting here the expressions from (10.8) we obtain the very 

simple formulas 

X[==lie-2,it    )/2^x2e-2yi. (10.10) 

Since the absolute value of the complex number e~        Is equal to unity 

It follows that 

KHM. KMM. (io.li) 
or. In other words, the absolute values of the complex parameters of 

the second kind retain constant values In any rotated coordinate sys- 

tem. I.e., are Invariants. 

The formulas (10.10) may be given a simple geometrical Interpreta- 

tion. Let for the coordinate system x, y X, = E,T. + i*]-, and for the sys- 

tem x'3   #' A^ = ^ + in^. Prom (10.10) It follows that 

ty, — $A.cos2o I-TJ^ si!i2'f,       | 

<.-=-  5A sin 2'H-TU. cos 2?   j 

(Ä-1. 2). J 

(10.12) 

If a complex plane Cn Is Introduced the complex numbers A, and Ap 

will be represented on It by vectors with lengths |A,| and JA^I which 

begin at the origin of coordinates and, generally, have arbitrary di- 

rections; the projections of these vectors on the £ and n axes are, re- 

spectively, equal to C-i» n-,, and ^2, rip« The formulas (10.12) show the 

- 51 - 

 ■  *i. ■!■>- 

V   .   .    ....   |f,    ■--(■■- .^--^ i- ■'.•■ —--■--".*«""- 
■■  ' - -^I-    ■■-■■-—-■ --'■■■     ' >.—.■- 

iiiiir'iifKri^-^ 



'■«iv." 

transition to a new .coordinate system a;', y'  rotated with respect to 

a;, y  by an angle <P is equivalent to the transition to a new system £;' , 

n', rotated by an angle 29 (Fig. 11) with respect to £, n- The real and 

imaginary parts of X^ and X^  are determined as the projections of the 

same vectors on the new axes ?', n'. 

To each form of anlsotropy of a body In 

the generalized plane stressed state or show- 

ing plane deformation corresponds a couple of 

completely determined vectors in the fin plane. 

The lengths of these vectors are equal to |X,| 

and |X2|, and the angle between them \\)  has a 

determined value If both moduli are different from zero, and become In- 

determined if one of the moduli |X,| or both are equal to zero. Thus, 

the anlsotropy of a body in the case of a plane problem may entirely be 

characterized by the numerical values of three real quantities Indepen- 

dent of the choice of the coordinate system, |X,|, |Xp| and ty. 

The formulas expressing these quantities in terms of the real and 

imaginary parts of the parameters of the first kind found for an arbi- 

trarily chosen system of coordinates x, y  have the form: 

Pig.   11. 

cos I = 

sin !j( = 

IM-IM-]/ (fqrpqr^- 
n'i_i) i _I/OHSJ!. IV-IM-]/ (T+TT-flJ. 

(I — g3_^)(l_ 73 — 02) -[■ 4aT 

(10.13) 

/ 1(1 H-?)a + »3ri(l -fi)3 + a2J ((1 +5)' + t^J [(1 - Öp-H^J 
2l(l-al-P)l-(\-f-V)a] (10.1k) 

V Ul + W + a*\ 1(1-^) |-a-!J((l + ö)Jl-TS] |(1 -6)-l + /j 

In the case of the Isotropie body lA,] = |X2| =0, and ip has an 

undetermined value. In the limiting case where the anlsotropy is ex- 

pressed in the sharpest manner y1 and vu are equal to zero or Infinity, 

UTI 
= Up I = ■'■, ^ =  0 ^l^fel cannot be greater than one). If for some 

coordinate system it has proved that y1 , v.    a^e purely i^zglnary   nv.^- 
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bers then th" vectors expressing X, and A„ will have the same or oppo- 

site directions, and, therefore, ^ = 0 or ip = IT . 

§11. THE ELASTIC CONSTANTS FOR SOME ANISOTROPIC PLATES 

Many research workers, an.ong whom W. Voigt occupies an outstanding 

position, were concerned with problems of the experimental determina- 

tion of the elastic constants of various crystalline substances (miner- 

als). The numerical values of the elastic constants for many minerals 

are given, e.g., in the course on crystal physics by V. Voigt* and in 

the work by Auerbach,*** references on this problem are also to be found 

in an article bv Geckeler.*** Without presenting here those data which 

refer to crystals we shall give the numerical values of the elastic 

constants for three anisotropic materials (plates) of noncrystalline 

origin: for pine wood, delta wood, and plywood. 

1. Natural wood (pine wood). Let us con- 

sider a rectangular plate cut out of natural 

wood with regular annual layers, as shown in 

Pig. 12. If the inhomogeneity and the curva- 

ture of the layers is neglected three planes 

of structure symmetry can be distinguished in 

Fig. 12. 

it, which, at the same time, are also the planes of elastic symmetry; 

one of them, yz,   is normal to the wood fibers, the second (tangential) 

one, xy3   is parallel to the planes of the annual layers, and the third 

(radial) one, xz,   is orthogonal to the first two planes. All planes 

parallel to those mentioned are also planes of elastic symmetry, and 

the wood may in first approximation be regarded as a homogeneous ortho- 

tropic material. The equations of the generalized Hooke's law will be 

written in the forms (2.7) and (2.8); nine different elastic constants 

enter into them.**** 
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Let a plate whose plane faces are parallel to the annuaJ. lsy=rs 

(the plate Is not necessarily rectangular) be in a generalised plane 

stressed state. The equations of the generalized Hooke's law which con- 

nect the values of the stress and strain components whose mean values 

have been taken over the thickness are then written as follows: 

1 

(11.1) 

The x axis is here directed along the fibers; 2?, is Young's modu- 

lus for the stretching (compression) along the fibers; Ep is Young's 

modulus for the stretching (compression) along the directions lying in 

the plane of the annual layer and normal to the fibers; v-,, Vp are the 

corresponding Poisson coefficients (^Vp = ffpV,); G is the shear modu- 

lus for the planes of the annual layers; the dashes by which the mean 

values were designated are discarded. 

We shall give the numerical values of the elastic constants from 

Eqs. (11.1) for pine wood, taken from a work by A.L. Rablnovich*: 

£,-1 • lO"'kR/cm
2 £2-0.042. i0^a/crr,2l      (11 2) 

Vj^O.01.        0-0.075-105 kg/cm2) 

On the basis of these data we obtain the following values of the 

complex parameters: 

|i1 = 3126/. ii2---1.50/. 1 
X,^ —0.530.    X2r=.-0.198. \ 

IX, | = 0,530.     |X2| = 0,198. ^ = 0. j 
(11.3) 

11, = 0.307/.    ii2---0.G68/. 

X, =0.530.     X2r-0.198. 

If the x  and y  axes change places with one another we shall obtain: 

| (11.4) 

If the elastic constants for the principal directions are known, i.e., 

the longitudinal and the tangential one, we find the constants from 

formula-s'.^?. 10).'ähd -for art arbitrary direction in the xy  plane. Thus, 
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Young's modulus Fy  for an angle ^P with the x  direction will be deter- 

mined from the formula 

P.? 
ros<?| (/-.' - - 2',) sln=?cos5? .|. Aslii«? 

(11.5) 

Figure 13 shows the diagram of the variation of E„ with the vari- 

ation of cp for pine wood taken from the mentioned work by A.L. Rabino- 

vich (page 41). 

2. Delta wood. Slablike delta wood is produced of a number of wood 

layers (plywood) which have been impregnated by pressing in resin; one 

layer whose fibers are perpendicular to those of the rest of the layers 

is placed over ten layers with identical fiber direction. 

In first approximation, a plate of delta wood may be considered to 

be a homogeneous orthotropic plate one plane of elastic symmetry of 

which is normal to the fibers of the predomi ant direction, and the 

second one is parallel to the mid plane. For a plate of delta wood in a 

generalized plane stressed state the equations of the generalized 

Hooke's law hold (11.1) (the mid plane is chosen to be the xy   plane, 

the direction of the predominant fibers is chosen to be the direction 

of the x  axis) . 

0      0,'     0,2     0,3      O/J      0,5     0.6     0,7     0.8     0,9      /,0 

Fig.   13.   A)   Curve 

For  the  mean  elastic  constants  we may  choose: 

.    .£> --'ZW ■ 10r' k-ti/ciD^ /-V '■ 0.4G7 • KHor/o;;,-! 
G---0.22- 10°k^/cm- Vj    r   . 0.02. 

(11.6) 
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The corresponding complex : ^rameterb  are equal to: 

fx, = 3.62/,        |i2 — 0,700/. 
)., = — 0.567,    X2^= 0.172. 

|X,| = 0.567>    |).2|r=0.172.    ty^ri. 
(11.7) 

If the y  axis is directed along the fibers rather th?n the x  axis 

we obtain: 

p., = 0,276/. |i2= 1.416/. 1 
X, =0.56/.  Xj = —0.172. J (11.8) 

Figure 1*1 shows the diagram of the variation of Young's modulus 

Ey  with the variation of the angle 9.* 

3. Plywood. Also plywood may serve as an example of an anisotroplc 

material. For the sake of deflniteness, we shall focus our attention on 

birch plywood which is produced of an odd number of wood layers (ply- 

wood) glued to each other by a bakellte film and distributed symmetri- 

cally to the central layer; in this case the directions of the fibers 

of neighboring layers are mutually perpendicular (Pig. 15). The plywood 

plate is inhomogeneous, but if the plane stressed state is studied it 

may be regarded as homogeneous and, moreover, orthotropic, in the first 

approximation. One of the three planes of elastic symmetry coircides 

with the mid plane, the second one is perpendicular to the fibers of 

the outer layers (or, as they are called, to the casing fibers), and 

the third one is orthogonal to the first two planes. 

■>-x' 

0       £1»      0,2     0,3     0,4     0}     0,6     0,7      0,6     0,9      1,0 

Fig.   14.   A)   Curve. 
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Flg. 15. 

Considering the generalized plane 

stressed state of the above-mentioned plywood 

plate we choose the mid plate to be the xy 

plane, and the x  axis parallel to the casing 

fibers. The equations of the generalized 

Hooke's law for such a plate regarded as an 

entirety will be written In the form (11.1) 

where E-.,  E-,  v, , Vp must be understood to be the mean elastic con- 

stants for the plate as a whole; the latter depend on the elastic con- 

stants of the wood layers, their number and thickness.* We present the 

numerical values (the normalized ones) of the constants £,, ffp, and G 

and Young's modulus £" for a stretching under an angle of ^5° to the 

casing fibers for three-layer plywood with a thickness of 1; 1.5; 2; 

2.5; 3; ^ and 5 taken from the "Handbook of the Airplane Constructor"**: 

£,r= 1.2 • lO:'kg/cra^/:2: O.G • KPkg/cm'^ 

0^0,07- l O'-kg/cm'^/:•'- = 0,21 • I0"jkg/cm^ 
(11.9) 

In the "Handbook" the Polsson coefficients are not given, but they can 

be calculated from the first formula (9.10) by putting <P = 45° In It 

and substituting the well-known values (11.9). Hence we obtain: 

0   0,1  0,2  0,3  0,4  0,5  0,6  0,7  0,8  0,9  1,0 

Fig. 16. A) Curve. 
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v,^ 0,071. ^=-0,030. (11.10) 

The complex parameters have the following values: 

|il=-41ll/1        IA2-.-: 0,343/, 
Xl= —0,609,   ).2^ 0,489, 

p., | = 0,609,    |).2|--.0,489.    ^--. 
(11.11) 

If we direct the a; axis across the casing fibers rather than along them 

we obtain: 

) 

[i, —0,243/, 1A2--2,91/, 

Ai = 0.609.  X2 = - 0,489. (11.12) 

Figure 16 shows a diagram of the variation of Ey  with the varia- 

tion of the direction constructed on the basis of (11.5) and the numer- 

ical values (11.9)-(11.10). 

§12. THE PLANE PROBLEM FOR A BODY WITH CYLINDRICAL ANISOTROPY 

In §§ 5 and 6 the general equations of the plane problem for a ho- 

mogeneous body were derived, in which parallel directions passing 

through different points are equivalent in the sense of the elastic 

properties. In a completely analogous way we may also obtain the gener- 

al equations of the plane problem for a body with cylindrical aniso- 

tropy.* 

Let us consider the elastic equilibrium of a plate of constant 

thickness with cylindrical anisotropy under the action of forces dis- 

tributed along the boundary and of the volume forces. With respect to 

the elastic constants we shall make the following assumptions: 

1) the axis of anisotropy g   is normal to the mid plane of the 

plate (the point of intersection of the axis of anisotropy with the mid 

plane which will be called pole of anisotropy in the following may lie 

either inside the region of the plate or outside or at the boundary); 

2) at each point there is a plane of elastic symmetry normal to 

the axis -of anisotropy (and, consequently; parallel to the mid plane); 
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17) 

The surface and volume forces will be as- 

sumed parallel to the mid surface, distributed 

symmetrically with respect to this plane and 

slightly varying according to the thickness. 

The strains will be regarded as small. 

The axis of anisotropy will be chosen as 

the 3  axis of the cylindrical coordinate system 

I, z,   directing the polar axis x  arbitrarily in the mid plane (Fig. 

Let us designate by h   the thickness of the plate, by Ä, 0 the pro- 

jections of the volume forces (per unit volume) on the coordinate di- 

rections r)Q(Z=  0) and consider the values of the stress components 

and displacement projections averaged over the thickness: 

hn h/2 

-h/2 -h/2 

h/2 

i  r ^ o, -- -, -           0,(1Z, 
>      h     .     ' 

-h/2 

h'2 

I        f          ^ 
'rl'-'f,'           Tr-|"z' 

-h/2 
h:2 h/2 

1        f 

--h/2 -h/2 

(12.1) 

Moreover, we shall introduce the designations: 

R~ 
h/i 

\ AN/-', 
- h,2 

li,2 

-/l/2 

(12.2) 

diir 

dr~ 
- 1    ÖMo     ,     I'r       7. \    dllr     .due "6 MO     T1! 

•  E':'y do' 1 V '   !'•''■■> "dO    ■' dr   '"7"        yi-^-i) 

and  consider  the  case  where   the  volume   forces   have  a  potential  i/fr.,   0), 

i.e.,   are  determined  by   the   formulas 

dU    -,T 1  dU 
R^-Zd7'   *''-       r~W (12.il) 

Carrying out the operations of taking the mean values over the 

equilibrium equations in cylindrical coordinates (1.M and the equa- 
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tions of the generalized Hooke's law corresponding to the given case 

of anlsotropy and neglecting a  we obtain the system 

dr   x   r     00" 
or—06 \-'R---^, 

dr   ^ r     <90   +    r " + "-   "' 
l^üläe     ,     2xr8 

(12.5) 

e1, = o,2ar + fl223-)-f-fl2eTfT 

Trl^^lG^-l   fl2O30-|   0(30^0-   , 

(12.6) 

Eliminating the displacements from the expressions (12.3) we ob- 

tain the compatibility equation 

ST -1- r —,—— s-^ r ■ 0. (12.7) 

We shall satisfy the equilibrium equations (12.5) by introducing 

the stress function Ffr,   0) such that in the case of the Isotropie 

body: 

^^u. (12.8) 

^■'---d?dW(T)- J 

On the basis of the compatibility equation (12.7) and the rela- 

tionships (12.6) and (12.8) we obtain a differential equation which is 

satisfied by the stress function: 

d'F      0       1       OIF     ,   ,„        ,        ,1        d'f 
"22 -JiT - 2"w y • -drl£)o'   I' (2"'="'' "'G' ^' ■ d^idol 

2fl, d'A 1     d'/^ 
ii y,- • ■tfj-i-f'22-r •■dri- — 

1       dtp 
'"•-/•'■■ d/-d'ü;i 

--(2",2 I ".0)73 • 0,^-1-2«ir,Ar-öü,--    "„ >2-•-j;," " 

-^.o-f-^c)^- ^■-|-(2"i1-|-20l2-|-.w)A.. .^--l- 

-r fln 73- • d7 H -2 (" 10 t- «20) jr ■ w'"" 

-•- (",24-022)^0 I-(".''.-I-''2.I)7-ö7öü-(',"+"I2);2-- ^: I- 

(12.9) 

+ (0, 2«, , 1   dy . ,     .     . 1   do 

Thls equation corresponds to Eq. (5-9) for a homogeneous plate. It 

is considerably more complex than Eq. (5-9) and contains arbitrary 
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functions F  of different orders, from the first to the fourth one, and 

not only of the first order as was the case wltn the homogeneous equa- 

tion. In view of the complexity of Eq. (12.9) lb Is not possible In 

this case to find a general expression for F  in terms of arbitrary 

functions analogous to the expressions (7.16), (7.1?) or (7.21). 

If a plate with cylindrical anisotropy is, at the same time, also 

orthotropic, i.e., has three planes of elastic symmetry at every point, 

one of which is parallel to the mid plane, the other one passes through 

the axis of anisotropy, then Eqs. (12.6) will be written in the form: 

F-r    r   Et 

V8 7, 

Trl: 

(12.10) 

) - 
Ö7a ^ 

E . EQ  are here Young's moduli for the stretching (compression) 

along the principal directions r and 6; v ., ve are the Poisson coeffi- 

cients and G  n is the shea^- modulus for the principal directions r, 9. 

For this case Eq. (12.9) simplifies and assumes the following form: 

.'- . rr  |   ( 1 2v£\ I     d'F_  .    1      1     dip ,    2_     I 
d'r* 

\Üri' ' 'lir) r* ' Or W' ' 'i:'r ' r-: ' dr* "'' 
.  /o 1 • - v

r   ,    I \ 1    «'=/■"   i    '      ^    dL (12.11) 

The boundary conditions for the given forces at the plate boundary 

may be reduced to prescribing the first derivatives of the stress func- 

tions 3F/9r and 9F/8e at the contour of the region occupied by the 

plate. 

The problem of plane deformation is completely analogous to the 

problem of the plane stressed state of the plate. If the body shown in 

Fig. 8 (§6) has the property of cylindrical anisotropy with the axis of 

anisotropy s directed parallel to the generatrix then Eqs. (12.5)- 
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(12.9) In which only the a. .  have to be replaced by the reduced strain 

coefficients 

ViJ^Oiy 
a33 

(12.12) 
(/, y=i, 2. 6). 

hold for it 

Besides o . 0fl and T fl also the  stress c  acting in the cross sec- '6 re 
tlons and equal to 

o, =* — — (n 133r -f a23ah -}- fl36-cr.,). (12.13) 

Is obtained in this case. 

P.N. Zhitkov considered the generalized plane stressed state of an 

orthotropic body having cylindrical anisotropy in which the moduli of 

elasticity are functions of the coordinates r  and 9. In this case a 

more complex equation of fourth order with variable coefficients* is 

obtained Instead of Eq. (12.11). 

Manu- 
script 
Page 
No. 

29* 

29** 
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the Problem of the Influence of Concentrated Forces on the 
Distribution of Stresses in an Anisotropie Elastic Medium], 
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Mechanics], Vol. 3» No. 1, 1936; 2) Nekotoryye sluchai plos- 
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Chapter 3 

THE BENDING OF PLANE ANISOTROPIC BEAMS AND CURVED GIRDERS 

§13. SIMPLEST CASES 

In this chapter we consider several cases of stress distribution 

under the action of bending loads in a rectangular plane plate, a 

wedge-shaped console of rectangular cross section, and in a curved gir- 

der having the form of a part of a plane circular ring. In all cases we 

assume that at each point of the body there is a plane of elastic sym- 

metry, parallel to its mid surface (which is taken to be the xy  or rd 

plane). 

Let us start from the simplest cases of the equilibrium of a homo- 

geneous anisotropic rectangular plate of constant thickness h  which is 

in a generalized plane stressed state under the action of forces dis- 

tributed along its boundary. In all cases where a homogeneous beam is 

considered we assume that the equations of the generalized Hooke's law 

connecting the values of the stress and strain components whose mean 

has been taken over the thickness have the form: 

lay = flic0x-f "i^y -1 "cu'.rr 

(13.1) 

If the plate is orthotropic and the principal directions are cho- 

sen to be the directions of the x  and y  axes, then the coefficients 

a-,c,   a-pt  are equal to zero, and the rest is more conveniently expressed 

in terms of /oung moduli, Poisson coefficients, and the shear modulus 

(the principal ones): 
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(13.2) 

The solutions for the simplest cases are elementary and we present 

them without derivation. 

1. Stretching. A rectangular plate Is stretched by normal forces p 

which are uniformly distributed along its two sides (Fig. 18). 

cx~p,    a^^^O; F-^lpy- (13.3) 

(p is the intensity of the forces or the force per unit area). 

Pig. 18 
-TOjU 

Fig. 19 

The  same  stress distribution  is  obtained as  in a  stretched Iso- 

tropie  plane,   and the deformations  are determined  from Eqs.   (13.1): 

ex = flll/'.    £
u^ol2p,    la-y — a^p. (13. ^ 

A nonorthotropic  plate  is  elongated under the  action of stretching 

forces  in the  direction of the  forces,   and is  contracted  in the perpen- 

dicular direction  (if only  a,p  <  0)   and,  besides,   is distorted in the 

xy plane:   the  rectangular plate  becomes  oblique   (see  the  dotted  lines 

in Pig.   18).   The  distortion  is  determined by  the  constant  a-,^;   an or- 

thotropic  plate remains rectangular. 

I< J,'L 

—:H b HC— 

-<— — I ->H 

->lih 

Fig.   20 
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2. Shear. Along the boundaries of a rectangular plate tangential 

forces of an intensity t  are uniformly distributed (Fig. 19). We have; 

(13.5) 

(13.6) 

A nonorthotropic   plate  experiences  elongations  and  lateral  con- 

tractions  according  to  the   signs of a-,/-  and  a^r,  besides  the  shear  in 

the  xy  plane which  is  determined by  the  constant  a^.   An  orthotropic 

plate  experiences  pure   shear without  elongations. 

3. Pure   ..'-'ear.   Forces  giving rise  to moments M  (in kg  x  cm)   are 

distributed along  the   two  sides  of a  beam-plate   (Fig.   20). 

We  have: 
/U 

0; 
(13.7) 

The same stress distribution is obtained as in an Isotropie beam 

(if no account is taken of the local stresses in the neighborhood of 

the ends which, according to the Saint Venant principle, practically 

have no influence on the stresses in zones far from the loaded surfac 

es) . 

The displacements of the beam particles [found by integrating Eqs 

(13.1)] are equal to: 

M / ,i   „\ 

M 
v --"-- ~27 ("12.V3 — "i.-v2) f "X ■ I - t'o- 

(13.8) 

Here  w,   w-,   y.  are  constants  expressing  the   "rigid"  displacement  of  the 

beam  in  its mid-surface,   i.e.,  which  is  not   accompanied  by  deformation. 

The   first  of expressions   (13.8)   shows  that   the  cross  sections  of  a  non- 

orthotropic  beam do  not   remain plane;   the  distortion depends  on  the 

constant a-,^.   The  cross   sections  of an orthotropic  beam are  not  dis- 

torted  in deformation. 
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The equation of the curved beam axis for fixed ends x  =  Q  and x  = 

=  I  has the form: 

^"11 ,/v.    v3^ 
^1= -' '2J   v    ~        '' 

where n is the ordinate of the curved axis. 

The curvature of the curved axis is equal to 

(13-9) 

-V ^["ii 
j 

(13.10) 

The functional relationship between the curvature of the axis and 

the moment of flexure is the same as in the case of an Isotropie beam, 

but Instead of the modulus E   (which is the same for all directions in 

an Isotropie beam) the modulus E'   for stretching (compression) along 

the axis occurs. 

%lk.   BENDING OF A CONSOLE BY A TRANSVERSE FORCE 

A beam with a cross section having the form of a narrow rectangle 

is fixed at one end and is bent by a transverse force P applied to the 

other end (Fig. 21). The solution is obtained with the help of a stress 

function in the form of a polynomial of the fourth degree* 

The stress components are determined by the formulas: 

J x>   ^    J    aH  \12   y J' 

V ^0' 

*ry^ 
P lb" 
27 

(1^.2) 

Thes 

and 

the 

e stresses satisfy exactly the conditions on the long sides y  = ± j 

In the cross sections they reduce to a force and a moment balancing 

external force P. 

In an-prthotropic beam in which the axial direction x  is the prin- 
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Fig. 21 

cipal one a-.^  =  0, and the same stress distribution is obtained as In 

an Isotropie beam*: 

- VV   3-0   'l •2/(4- --Vi (11.3) 

For a beam with which the coefficient a,,- is not equal to zero 

(the case of a nonorthotropic beam or an orthotroplc beam with which 

the axial direction x  is not the principal one) the stress a  is dis- 

tributed according to a parabolic law rather than a linear one, along 

the cross section. The diagram of the distribution of o  over the cross 
x 

section is shown (at an arbitrary scale and for a~.r   >   0) In Fig. 22; 

the dotted line shows the stress distribution in an Isotropie beam. The 

greatest normal stress is obtained at the points y   =  b/2  or y  = - b/2 

of the fixed cross section; for a-,,- > 0 It is equal to 

o ^Jpl.l\A.ai'L..L\ (14.1) 

Fig. 22 

(compresslve stress) and for a-,/- < 0 

flic    b\ (14.5) 
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(stretching stress). 

We note that the formula for the curvature of the curved beam axis 

(both an orthotropic or nonorthotropic one) has the same form as in the 

case of pure bending, i.e., 

1  Afrt,,   M 

p J     ~ F'J ' 
(14.6) 

but in this case the moment of flexure varies along the beam length: 

M^-Px. (1^.7) 

The parabolic distribution law of normal stresses in cross sec- 

tions is not reflected in the equation of the curved axis which has the 

same form as in the case of an Isotropie beam: 

T,-. :-^ - (*■> ■ 3/-\v-l-20. (1^.8) 
0/; jV 

E. Reissner particularly considered the limiting case of an ortho- 

tropic beam where Young's modulus Ep  for the y  direction perpendicular 

to the x  axis is negligibly small compared to the modulus E-   for the 

axial direction. The solutions obtained were used by him to study the 

stresses and strains in a detail having the shape of a case.* 

§15. BEAM BENDING BY A UNIFORMLY DISTRIBUTED LOAD 

The stress distribution in a beam which is uniformly loaded along 

its whole length is obtained with the help of a stress function having 

the form of a fifth degree polynomial. The arbitrary constants entering 

this polynomial may always be chosen such that the stress on the long 

sides exactly satisfy the boundary conditions, and on the short sides 

reduce to forces and moments balancing the external load. We shall pre- 

sent the solutions for two cases if end fixing.** 

1. Console. A beam with a cross section having the form of a nar- 

row rectangle is fixed at one end and bent by a normal load q   (per unit 

length), which is uniformly distributed along one of the long sides 
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(Fig.   23). 

The  following  formulas  are  obtained  for  the  stress  components 

qxiy   .   q 
1J 

|-2 ^,2 I "u        ^üN/V        3^ 
4-7, .ri6 

vU-   '  I3'"   ■,y 
(15.1) 

•XI/ 
17-^  P wA ^      ""•• ^ -_ ^ 
/V  \ I       ^ /       /,     a,, U   •    *3 / 

The moment of flexure M  and the crosscut force A' in an arbitrary cross 

section x  are equal to: 

M- 
q.x- ,  A' (15.2) 

The  first   terms  of the  expressions  a    and  x       are  the  stresses  deter- ^ x xy 

mined by the elementary theory of bending, and the second terms which 

depend on the elastic constants are the additional stresses Aa  and a; 

Ax  which are not taken into account by the elementary theory. The xy 

formulas for the normal and tangential stresses in the cross section 

[the first and the second of (15.1)] may briefly be written in the fol- 

lowing way: 

M 
x ^-j-y \~^X' 

(15.3) 

For an orthotropic beam with which the direction of the x  axis coin- 

cides with one of the principal directions we obtain from (15.1): 

V 
9 

2k (15-4) 

Here 

m Saia-Moo     -1 /^i 
2a,, m-^- (15.5) 
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Hence It is evident that the distribution of the stresses o and T  In 
y xy 

an orthotropic beam does not differ from the distribution in an ortho- 

tropic beam. In the case of an Isotropie material m =  1.* 

Determining the displacements u  and v  by integrating Eqs. (13.1) 

we obtain the equation of the curved axis and the depth of curvature 

(the maximum flexure of the axis): 

^^"■■■■C(3 '-■3-t;)- (15.7) 

The first term in the expression for / is the depth of curvature, 

determined by the elementary theory, and the second one is the correc- 

tion obtained on the basis of a more rigorous theory of the plane 

stressed state. 

The curvature of the curved axis is determined by the formula: 

(15.8) 
P  y ' -loy V l2 ' co 3 , au)- 

In this case the law of proportionality between the curvature of 

the curved axis and the moment of flexure is no longer valid; the ex- 

pression determined by the elementary theory must be supplemented by a 

constant correction term which depends on the elastic constants and the 

dimensions of the cross section. 

9,   LQJD 

i 
i 

z 

imniEDJiriro 
^v 

V<r--   I 
^ 

-M ft M- 
9   ' L 

Pig. 23 Pig. 24 

va v/?. 

'y 

2.   A beam on two supports. For a beam hinged at the ends and bent 

by a uniform load (Pig. 2^) the formulas for o and T  obtained are 
y xy 

.the same as for the console shown in Pig. 23, and the stress a is de- 
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termlned  by  the  formula 

■Lv  -''»••■ I-,! [■-:■:;->-(■ "i) 
i 2{2-a^'aK   fl^^/'■,y,   ^ 

•iflii 6' bb 

(15.9) 

The expressions for a  and x  may be written in a short manner in ^ x xy 

the form (15.3), but in this case 

/«-J(/
2
-A-

2
). N-r.    :qX (15.10) 

and   the  correction  Ao     has  a  somewhat  different  value   (the   constant  a-^c x ] 6 

will enter with a minus sign). 

We give here the equation of the curved axis and the formulas for 

the depth of curvature and the curvature: 

71=^(^-0/^-1-^) + 247 

+ §{^^+'hak)v'-^ 
,_  Stfn,,/*   ,    qb 

J "~    'MJ     '     00/ 

32     ßf 
7-(3«12-l-'lo00+-3--7-j, 

32     <C' Mau    ,   lb* („        .   .        ,   «^     aic\ 

(15.11) 

(15.12) 

(15.13) 

Using the stress function in the form of an integral polynomial 

also the stress distribution in a homogeneous beam under the action of 

the proper weight may be obtained. Having solved this problem we come 

to the following conclusion. The distribution of the stresses a  and 0 x 

T  due to the proper weight obtained in a beam fixed at one end or xy ir     c- u 

supported at the ends is exactly the same as in a beam which is loaded 

by uniformly distributed normal forces with an intensity of 17 = ybh 

(per unit length), where y is the specific weight of the material. As 

to the normal stresses a  in the longitudinal sections expressing the 

action of the longitudinal beam layers one each other they are in both 

cases determined by the law 

WH1  >)' (15.1*0 
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§16. BEAM BENDING UNDER A LOAD WHICH IS DISTRIBUTED ACCORDING TO A 
LINEAR LAW 

With the help of a stress function having the form of a sixth-de- 

gree polynomial It Is easy to obtain the solution for a beam loaded by 

normal forces distributed along the length according to a linear law. 

As In the cases considered earlier the solution will exactly satisfy 

the conditions on the long sides and approximately those at the short 

ones where the stresses, generally speaking, will be reduced to moments 

and forces.* 

1. Console. The beam-piate is fixed at one end and bent by a nor- 

mal load distributed according to a linear law. Placing the coordinate 

axes as In Pig. 25 we give the equation of a load referred to the unit 

length In the form: 

<!^%j (16.1) 

Here q0  Is the maximum value of the load (at the place of fixation) 

The moment of flexure and the crosscut 

force are equal to: 

I 
^rfffWWW ; 
0 u 

V 
M r-. • ^  A/---^.  (16.2) 

If/. 

Pig. 25 

6/ '  "      i?/ " 

The final formulas for the stress compo- 

nents read: 

„ . 7n"' x /9f) y
3  - y \ 

W  i i 3 >'  ,1^ \ 
(16.3) 

In the formulas (16.3) the first terms of the expressions for a x 

and T  are the stresses obtained from the elementary theory, and the xy 

second terms are the corrections Aa and AT  given by the rigorous 
x zy 

theory. 
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The equation of the curved axis Is obtained by determining the 

displacements u  and v;   it has the form 

^ ■\m;ji'{x    blx ' ^ 2iü/:v/ Ä       (16.^) 

The depth of curvature and the curvature are determined from the 

formulas: 

J'    Soiil'j       I2ü/;V\ O' '/' 
i _ M 
p-'E 

(16.5) 

(16.6) 

The correction term in the formula for the curvature is a linear 

function of x. 

2. A beam on two supports. A beam-plate supported at the ends is 

bent by a load whose equation has the form 

l-\-x 
(J: I0-2J-. (16.7) 

where q0  is the maximum value of the load (Pig. 26). 

We present the formulas for the moment of 

flexurej the crosscut force, and the stresses: 

I 
^a "'. ■■" ■• 

4* 
l —>- 

r/X 
i  1 —> 

N-.-.^il-      G/.v- 3A
J
); 

(16.8) 

Pig. 26 

4^1 .L'-c i-)K-3f). 
CI ^(-M-3f-^;).      [(l6>8) 

The equation of the curved axis and the expression for its curva- 

ture will be in this case: 

Tl---=f20FJiVxr' !  15/A■,     'O'^     9ü/,A' \7l[x\-7rol:')- (16.10) 

-.i^Co'---3-'')^ ! ^    ^   ■3/;,); 

1        Af    ,    qn^   (Mi,      „\n   ,   ,, (16.11) 
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The determination  of  the  solution   for  a   nonorthotropic   beam  does 

not,   in principle,   present  any difficulties,   but   all  calculations  and 

final   formulas and  equations  will be more  cumbersome   (owing  to  the   fact 

that   the  constants  a.r  and  a?s  are different   from  zero). 

§17.   BEAM  BENDING   BY   AN  ARBITRARY  LOAD 

Using a  stress   function  in  the   form  of  an  integral polynomial   the 

stresses  in a  homogeneous   beam  acted  upon  by  a  normal   load  which   is 

distributed along the  whole   length according  to  the  law 

^^„ i ■>>.(;-)'. (17.1) 
*-l 

may be found. If the load, as a function of x,   is given in the form of 

a polynomial of degree n then the corresponding stress function must be 

taken in the form of an integral polynomial of degree n + 5 with re- 

spect to x and y.   It may be represented in the form of a sum of homoge- 

neous polynomials 

r'~-VlPki*. y). (17.2) 
ft-: 

where 

/>*(*. y) ■- -■ /W* t- ^fti^'-'-v t■ Ak2*k-2y2 -1- • • • + 'W. (17.3) 

and the A*,  are constant coefficients. To the polynomials of zeroth and 

first degree, obviously, correspond stresses equal to zero, and they 

may be discarded. The polynomials of second and third degree satisfy 

the equation for the stress function (7.1) for arbitrary values of the 

coefficients. Each of the polynomials of higher degrees - fourth, 

fifth, etc. - contains four arbitrary coefficients, and the rest of the 

coefficients are expressed in terms of these four coefficients. This 

fact may easily be verified by requiring that the function P, be a so- 

lution to Eq. (7-1) (i.e.. substituting ?fe into the left-hand side of 
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this equation and putting the result of the substitution equal to ze 

ro). 

It is alv.'iys possible to dispose of the arbitrary constants enter- 

ing the expression (17.2) such that the stresses exactly satisfy the 

conditions on the long sides of the beam. On the short sides (i.e., at 

the ends) it is, in general, not possible to satisfy the conditions ex- 

actly by the function (17.2); it is only possible to require that the 

stresses at the ends, depending on the method of their fixation, be re- 

duced to forces and moments balancing the external load. 

If, e.g., we want to obtain the stress distribution in a beam- 

plate due to a load given in the form of a quadratic function of x (ac- 

cording to a parabolic law) the stress function must be chosen in the 

form of a seventh-degree polynomial, or, which is the same, in the form 

of a sum of homogeneous polynomials from the second to the seventh de- 

gree, inclusively. The solution is obtained in a rather cumbersome form 

which cannot be reduced. We only note that in all cases where the load 

is given by Eq, (],7.1) the final formulas for the normal and tangential 

stresses in the cross section have the form: 

M 
°x-- - -j-y-\ Ä3x. 

^m-^-^r i 
(17.4) 

where M and N are the moment of flexure and the crosscut force in the 

given section. The first terms are the stresses obtained according to 

the elementary theory of bending, and the second ones are the correc- 

tion terms not taken into account by the elementary theory. An analo- 

gous form has also the expression for the curvature of the curved axis 

(17.5) 

the second term is not taken into account by the elementary theory. 

The more general case of the elastic equilibrium of an anisotropic 
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rectangular plate (band) acted upon by normal and tangential forces on 

both long sides was studied by A.A. Kurdyumov.* This author seeks the 

stress function In the form of a sum 

/^SAOO-v* (17.6) 

and gives a method of determining the coefficients f, (which are poly- 

nomials with respect to powers of y)   by taking account of the boundary 

conditions and the equilibrium conditions. A somewhat different method 

of solving the same problem for an orthotropic band ("method of succes- 

sive approximations") was proposed later on by L.N. Vorob'yev.** 

If a load is distributed along a beam according to a more complex 

law particularly in those cases where only a part of the beam length is 

loaded the stress distribution may be obtained with the help of Fourier 

series. We shall consider the way in which this method is applied with 

the help of the example of an orthotropic beam supported at the ends 

and bent by a normal load distributed symmetrically with respect to the 

middle according to an arbitrary law. The other cases of a single-bay 

beam — a console and a beam on two supports loaded by an asymmetric 

load may be studied by the same method with unimportant modifications 

in the details.*** 

Let the planes of elastic symmetry be parallel to the beam faces, 

andj consequently, the axial direction be the principal one. 

With the coordinate axes placed as shown in Pig. 27, we shall ex- 

pand the load q, as a function of x, in a Fourier series in the inter- 

val (-Z, I) where this load is given. The series will contain only co- 

sines and a constant term 

Uta 1 
X^ m-x cos ~/-, (17-7) 

where 
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Fig. 27 

7o 
If, 2  f mrr   . 

The  boundary   conditions   on   the   long  sides  jy   =  +   25/2   have  the   form; 

v 
ior y-'-^ v :Ta^ :0; 

10! 
6- V "'rr n 

in   I 

The equation for the stress function has the form: 

(17.8) 

(17.9) 1 d'f     /l  2vA JT  , i o>f     0 

The stress distribution due to the constant load q     is known to us 

[see Formula (15.9) and the second and third formulas (15.1)]. The 

function giving the stress distribution due to the load 

mr.x 

T 

will be sought in the form 

(17.10) 

Substituting the function F    into Eq. (17.9) we obtain the ordinary 

differential equation for the function f : J m 

1 'IV   /l   2/A (in-y .„    .    1 Im-y ■/■■:~{a--m?l'-+im'''-0-      (17-n> 

The form of the function f depends on the roots of the characteristic J m 

equation 

(&--2^M-|-0- (17.12) 
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If all moduli £ ,, A'^j G are finite and not oqual to zoro thr-ee 

cases are possible. 

Case 1. The roots are real, unequal; wo shall designate them by: 

■^ 1 i ■s2    (*,>(), .^>0). 

Case 2. The roots are real, equal; wo shall -ie^ Innate them by: 

':* (.s>0). 

Case 3. The roots are complex; we shall designate them by: 

s :•://.   s-*ll    (.v>0, />Ü). 

Purely imaginary roots cannot be obtained since the numbers a-, and a, 

are connected with the complex parameters of the plane stressed state 

by simple relations s1  =  —ty^ s2  = -iv2  [see Eq. (7.5)1. 

In case 1 the stress function F    has the form: 
m 

, „  . S:mr.y\        m-.x -|-Dmsh -^ '-jcus t 

(A.   B,   C,   Dm  are arbitrary constants, ch and sh are the hyperbolic 

functions). 

In case 2 

r,n~\v..r\ i\„y)^"'^ \ (C,,. i n,,,)')^s";> ■^"'r-   (17.1^) 

In case 3 F    can be represented as follows 
m 

c \l A    -I, s"'r>'   i    n      ,  Sinr.yX        lur.-.y Fm ^ [^'m Ch     y -   \-ßm Sll       / •'-j COS      I
y- 

(17.15) 
+ ^m Cll - / ■•'--1- /),„ Sll    -/--JMM      /-JOS      /-. 

In order to construct a solution for the beam shown in Fig. 27 we 

assume a stress function in the form of a sum of expressions (17.13) 

[or, respectively, (17.l^) and (17.15)]. Moreover, from formulas (5.7) 

(for J/ = 0) we determine the corresponding stresses, add to therr. the 

stresses due to the constant load q0,  and require tnat the conditions 

(17.8) be satisfied. From the boundary conditions we obtain a system of 
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equations for the determination of the con:;tarit:; A   ,   U   .   C   .   U     (for M m       in       m       m 

each m  a separate system Is obtained); we find all constants by solving 

these equations. As a result, we obtain formulas for the stresses In 

the form of series of rather complex structure. The stresses a  at the 

beam ends may be reduced to moments with the help of which we shall get 

rid of the superposition of the solution for the case of pure bending. 

Problems of this kind for an anisotroplc beam, apparently, have 

not yet led to numerical results. 

P.P. Kufarev and V.A. Sveklo have given the general solution of 

the problem of the elastic equilibrium of an infinitely long anisotrop- 

lc band loaded along the boundaries by normal and tangential forces.* 

Directing the x axis parallel to the boundaries the authors assume that 

the external forces, as functions of x, are absolutely integrable in 

the interval (-00, +«>) and may be represented in the form of Fourier in- 

tegrals. The functions ^'U-,^ and $'(3p) in terms of which the stresses 

are expressed are determined in the form of double integrals with infi- 

nite limits. 

§18. THE BENDING OF A COMPOSITE (MULTILAYER) BEAM 

With the help of stress functions in the form of integral polyno- 

mials the stress distribution for several cases of beam bending may be 

obtained where the beam consists of an arbitrary number of anisotroplc 

bands of identical thickness. We shall here consider only the case of 

an orthotropic console bent by a force and a moment.** 

Let be given a beam soldered or glued together of an arbitrary 

number of orthotropic bands of identical thickness, but with different 

elastic properties; one of its ends is rlgidiy fixed, and the other one 

is acted upon by a load resulting in a moment M  and a transverse force 

P. The stresses in each layer as well 'as the equation of the bent axis 
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and the bending strength must be determined. 

Identifying the origin of coordinates with the topmost point of 

the free end we place the x  axis along the upper edge, as shown in Fig. 

28. We shall number the layers consecutively, starting from the topmost 

p 

/ — ( 
2 

K-l I 
K ~ ~ w K*( 

" ^     ) 

-< — I -^ 

"a 
- 1 

:__t 

 >H 

Pig. 28 

layer, and introduce the following designations: n  is the number of 

layers; I  is the beam length; b  is the height; h   is the thickness 

(identical for all bands); a   , a   , x   , utJ   v-,   are the stress com- 
x     y xy K        K 

ponents and displacements in the kth  layer; E(1
k),   E(g

k),   v^'^ v^^, 
(k) G      are the elastic constants (the principal ones) for this layer; 

b.j  and b,   are the distances from the upper edge to the upper and low- 

er boundaries of the kth  layer (fe = 1, 2, ...,   n;   bQ  =  0,   b    = b). 

The stress components (the mean values taken over the thickness 

will be expressed In terms of the stress function F-,   (for each band 

separately) 

<m &Fk 0(k) _. ^'.*   3(fc) ^ flM ,  -(A) ; ^1 (18.1) 

The function F^ satisfies the equation 

1 m  / 1   2-.'l'-'\ di/\ f 1 m 
0, (18.2) 

The displacements projections (also mean values over the thick- 

ness) will be determined from the equations 
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OH      1 >!*) 

dx /:l1'■,   ■r 

1   :0(M 
1 

i.(Aj  <■   '  i.e.» y 
'l '"2 

-(A)      ' (18.3) 

dy      (J.v       G(A'  J!/- 

The  boundary   conditions  on  the  upper  and   lower  edges  have  the 

form: 

ior,-.0       o0._o>;;0;l (i8tij) 

Since slipping of the bands is excluded we have the following con- 

ditions on the contact surface^. 

for y---bL   ,    <:"•■ D^oW ~(k-V^x(k) 
V 

I'k I --- 

V '   ay     xy'   \ [I 8.5) 

The stresses ^n each cross section must balance the external force 

and moment (this is also valid for the end sections x = 0, x = Z); 

hence follow, in addition, the conditions 

*-l 6 

*-l b 

p 

k-l 

(18.6) 

The solution is obtained with the help of stress functions of the 

form 

rk - Akxy I ■ W I Q*v2 • H ^A^11
 1 ^-^f.    (18.7) 

which satisfy Eq. (18.2) for arbitrary values of the coefficients. 

The final results boil down to the following. The stress compo- 

nents are determined by the formulas: 

G/: .(*) 

(fe---1, 2. .... «): 

(18.8) 
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(/.^ =2, 3 n   - 1); 

.i"i. 

6P/;',1 

^^"'{s-iSty-SJy. 
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Here we have introduced the designations: 

5r=45,5a-3S2. 

The neutral axis is at a distance of 

•S2 
-vo-2Si; 

(18.9) 

(18.10) 

(18.11) 

from the upper edge, it is impossible to predict which layer will con- 

tain this axis. 

The equation of the bent axis (i.e., the line into which the neu- 

tral axis goes over in bending) has the same form as for a homogeneous 

console with some digidity D: 

(18.12) ^1 = Kn (^ - 3/^ + 2/3) - 9A7) (* - 02- 

125! 

6D vv        7 "   '   - ^      2D' 

This  rigidity  is  determined  by  the  formula: 

(18.13) 

For the curvature of the bent axis an expression coinciding with 

that given by the elementary theory of bending is obtained: 

(18.IM 

We note that among-all■elastic constants only Young's moduli for 

1 _ d! ~i£5 
p ' o   • 
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(k) 
the axial directions, E'   , enter all above-mentioned formulas. All 

formulas simplify to a certain extent If the layers have the same 

height equal to b/n.   In particular, the rigidity formula (18.13) as- 

sumes the form 

n.}':^ (18.15) 

where J  =  hb  /12 Is the moment of Inertia 

of the section of the whole beam, and E1 

Is a constant connected with Young's modu- 

li in the following way: 
Fig. 29 

/ 

E, 
4 Yi1^-  ^^'"'(S^ -3A: |1) -3 
*-1    k^\ 

^/:'1
t'(2A'-l) 

A- 1 I' 
(18.16) 

The distance of the neutral axis from the upper edge is in this 

case equal to 

b     fc..i (18.17) 

For a beam soldered or glued together of two bands with heights 

b1   and b - b     (Fig. 29) we obtain: 

6C'" 
:'-(^ -.PA-)(25,3- ' S; hS 

/r(2) cl  (l 

,„ i 
_(2)   "I  (1). 

(18.18) 

^.= ^.(5,/- 5^). 

GPC',2' 
(2) .'-(^  5. A  .Sv)(/' ->')• 

(18.19) 

Here 

,.■(=) 
k'v J.-W 

,(.'l,.(n , ,,.  ;. \'/I.-(-')N- 

5.: =VAW I (/'  M'T.   -2  ■ v   ■' • •      [ (18 20) 

S-AUM")2-! 2/^/. -/'1)(2/'
2 /'/'. I ^/••i',/:r I ('■ •''.)'(/-'"',)? 

Ex-ample. A' beam is composed of two bands with a height ratio of 
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1:3, and a ratio of the moduli for the longitudinal directions of 1:9. 

Ws must distinguish two cases. 

Case 1.   E1       = Ej,   E^       = 9E13   I.e., the upper, narrower band has 

a lower Young's modulus. 

Using formulas (18.Il)-(l8.20) we obtain the following results. 

The neutral axis lies In the zone of the second band and its dis- 

tance from the upper edge of the beam Is y0  = 0.6lt. Introducing the 

abbreviations 

n, M -Px P 

we obtain the following values of the stresses a and T  at the upper x xy 
face, on the contact surface of the bands, on the neutral line, and 

near the lower face: 

(oÜVo^-LClw.  (O^o---0; 
(oü'Wi--- —0,95/;;, (oL'V-t;, =— 8,51//;; 

C1*!/);/-«!;» — {r'l,j)u = bn — — 0,32/i; 

(°x')^^-0. -(2) (Ä^u = -1.84/;; 
(18.21) 

(0^)^6-9,35//».    (T^^-O. 

In a homogeneous console the maximum normal stress is equal to 6m 

and the maximum tangential stress is equal to 1.5p. 

Fig. 30 
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The distribution of the stresses a and T   in the cross section x     xy 

is shown in Fig. 30. The dotted lines are the curves showing the 

stresses in a homogeneous console. 

Case 2. E^ = 9E13 E^ = E^ I.e., the upper band has a higher 

Young's modulus. 

The neutral axis coincides with the contact line of the bands yn 

= 0.25fc. The stresses at the characteristic points have the following 

values: 

l.'V'i  (18.22) 

The diagrams showing the distribution of the stresses a and T D x xy 

{Cx ),J   o ■ -    12///. 
K'HJJII  o 0; 

fn,21\ ■0. 
IJ 

{'%::b~ = '1//;, K^xi/Ji/b ' -o- 

in the cross section are shown in Fig. 31 

Fig. 31 

Comparing the diagrams of Fig. 30 and 31 we may notice that the 

maximum stresses are obtained in a band with great Young's modulus. In 

both cases the maximum normal stress in a composite console exceeds 

(considerably enough) the maximuir stress in the same homogeneous con- 

sole. 
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§19. BENDING OF A BEAM WITH VARIABLE MODULI OP ELASTICITY 

In the preceding section we considered a beam in which the modu 

of elasticity vary dlscontlnuously along the height, i.e., when we p 

from one layer to the neighboring one. It is not difficult to obtain 

solution also for a beam with moduli of elasticity varying continuou 

along the height. We restrict ourselves to the case of an orthotropL 

console with which the principal directions are parallel to the sides, 

and which Is bent by a force P and a moment M  (Fig. 32). 

We shall assume that the beam experiences small strains and is 

governed by the equations of the generalized Hooke's law: 

On        \ v, 
ox'  "/;•, ^ ""/-a V 
dv 
h" -^1. 
du 
dy 

du        1 
' Ox '' ' "(/ W 

(19.1) 

where E-,   EpJ   v7J v„ and G  are arbitrary continuous functions of y. 

The stress components (the mean values over the thickness) satisfy 

the equilibrium conditions 

dx   '    dy dx    '   dy 
(19.2) 

air"xxv="=0- (19.3) 

and  the boundary  conditions 

iipn y L-. o, y = - b 

Besides, In each cross section the stresses must balance the external 

load; hence follow other three conditions: 

.1 x I -.->- 

■y \x 

u 

]**<iy 

°x y <iy 

o. 

M • • Px 

| *.,ydy ■■ - 

(19.^) 

Pig.   32 
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tion  in  the  Riven  beam   U;   the   :;ame  ai;   In  a  hornoKf.'neour:  connole,   I.e., 

(19.5) 

These expressions satisfy the equations of equilibrium {\().?);   the 

unknown function f(y)   will be determined from I'^js.. (1'J.l) and the con- 

ditions (19.3) and (19.'I). From the first two equations (19.1) we find 

the displacements; they will be expressed In terms of f(y).   Requiring 

that u  and y satisfy also the third equation (19-1) we obtain the equa- 

tion 

Hence we find the expression for the function f(y) : 

f(y)      rj/:>./.)' [ '/J/','/.v | r, (19.7) 

where c, d,   e  are arbitrary constants. All arbitrary constants will be 

determined from the conditions (19.3) and (18.^0 . As a result we obtain 

the following final expressions for the stress components: 

G(/U P.\) 
hS /-".(yU'.'.Vv s.). 

0,. :0. 

'»'"''hi s  J/MOOC^V ^)'/.v- 

(19.8) 

lere 

.S \?. 

0 0 

ji\<iy j ry-.iy    [jr.iy,iy 
) (19.9) 

The neutral axis where a  = 0 is at a distance of 

3',. ■■ 
S-, 

•2S, (19.10) 

from  the upper  face 
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The expressions for the displacements which we shall not present 

here show that a console with variable moduli is bent, as a homogeneous 

console with a rigidity D  equal to 

D hS 
12 V 

(19.11) 

and Eq. (18.12) and formula (18.1^1) prove to hold for it 

Only Young's modulus Ej   for the axial direction x  enters the for- 

mulas for the stresses and the rigidity; the rest of the moduli of 

elasticity are not selected in the values of the stresses and the ri- 

gidity. The displacements u  and v  of any point off from the neutral ax- 

is will depend on G  and v,, the modulus £"„, however, will not enter any 

formulas. * 

Let, e.g., the modulus £"- vary along the height symmetrically with 

respect to the geometrical axis of the beam and be expressed by a quad- 

ratic function of ;y: 

e^tf-lyltVy-b) 4b* (19-12) 

For such a  beam  the  neutral  line  coincides with  the   geometrical axis 

y = b/2.   The  stress  components  will  be determined  by  the   formulas: 

(1     tr~- 
//63(/:°-|-O.I5;;;,)l 

Oy =-' 0. 

-jcy 

E ■A\-m^'-ny\-2f-) Ab* -     /^(/•:M■0116/:•;')[-, 

For  the  rigidity v.e obtain  the  formula 

(by  -y). 

(19.13) 

D ■.-. n,j, 

where J  is the moment of inertia of the cross section and 

(19.IM 

^^Z;?-1-0.15/::. ' (19.15) 

Example. The Young's modulus of a beam for the axial direction is 

given by formula (19-12) where the ratio of its maximum value to its 
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minimum value is equal to 5. Two cases are here possible. 

1) The maximum value E-   is at the outer edges; 

The normal stress in each section achieves the maximum values at 

the beam edges, and the tangential stress on the neutral axis. Putting 

M-Px P   . 

we obtain on the basis of formulas (19.13) 

0mnIr.-. 8.82 m,   Tmai---1,32p. (19-16) 

The diagram of the distribution of the stresses a and T  in the x xy 

cross sections is shown in Pig. 33 (the dotted lines show the variation 

of the stresses in a homogeneous beam, for which a   -•  6m,   T = & ' max    '     max 

= 1.5p). 

2) The maximum value of E    is on the natural axis; 

(^-o ■- 0,2 {l-J^uz,       F'[ ^ — 3.2/iJ. 

The maximum value of the tangential stress is obtained on the neu- 

tral axis, and the normal stress attains the maximum values at the 

points of the section which are at a distance of 0.182? from the outer 

edges: 

Pig. 3^ 
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0„,..; ^-90///.    x,.,,,  1.73;;. (19.17) 

At the points y  =  0  and y   -  b 

ox::i:2,'i\ml        ^ - 0. (19.18) 

The distribution of the stresses, in particular the normal ones, dif- 

fers remarkably from the distribution in the preceding case; it Is gi 

en in Pig. 3^1. 

§20. THE DEFORMATION OF A WEDGE-SHAPED CONSOLE BY A FORCE APPLIED TO 
ITS TOP 

Let us consider the elastic equilibrium of a wedge-shaped console 

of rectangular cross section in which the broad end is rigidly fixed, 

under the action of a force P applied to its top. It is assumed that 

the console material is homogeneous and anisotropic, but generally not 

orthotropic (the existence of planes of elastic symmetry parallel to 

the mid surface is always assumed). 

We shall regard the console as an infinite wedge, i.e., as a body 

whose region is limited by two infinite straight lines starting from 

the top 0.   We shall choose the wedge top to be the origin of coordi- 

nates and place the x  axis arbitrarily in the mid plane; we shall also 

use polar coordinates, counting the polar angles 6 from the x axis. We 

shall designate the angles of inclination of the faces to the x  axis 

by ty.   and iK (obviously, the angle at the top is equal to tK + iK) and 

the angle of inclination of the force tu the x  axis by w (Fig. 35). 

The problem consists in choosing such a solution of Eq. (5.10) 

which permits the equilibrium conditions and the conditions on the fac- 

es to be satisfied: 
for 'J ^- -- -jj, „nd 0 = - ^2 

ce ^ = 0. (20.1) 

and will determine the stress components tending to zero with increas- 

ing distance from the top. 
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As is shown by an investigation* the stress function giving the 

solution of the problem has the form 

i'.-r'lW), (20.2) 

where <!>, is a function of the polar angle only, which will be found 

from Eq. (5-10). To determine this function Eq. (5.10) should be writ- 

ten in the symbolic form (7.2): 

o./VW^ =0- (20.3) 

The operators D,   in polar coordinates assume the form 

Dk r - (sin i,      nk cos 0) ^   1 (cos 0  |  ;H. sin 0) y-jL {20. H) 

(/e    - 1, 2. 3, 4). 

The   function  $,   will  be  determined   in  four  stages,   by  successive 

integration  of  four  first-order  equations  after  which  the   stress  compo- 

nents  in  polar  coordinates  will  be  found   from the   formulas: 

c ,    !-..••-...-.       0.1--VT.-.       -,0---—üv^-K-j-     (20.5) 

Omitting  all   intermediate   calculations  we   shall  present  the  final 

formulas   for   these  stresses: 

1     A cos 0  |  li sinO 
r "        I. (Ü) 

3'i     ■ Vi 0. (20.6) 

where 

/.('))      rinCus«'J       2r(lö:.iii'Jcos1'J   |  ('-'<;,,   |- 

I  f7(j(j)siir'0cc)s?'j      •'i;.,,, sin''KOS'J   |   n^slii'O. (20.7) 

Obviously, the boundary conditions (20.1) are fulfilled, and the 

stress tends to zero with increasing distance from the point where the 

force is applied. 

The arbitrary constants A   and B  are determined from the equilibri- 

um conditions of the wedge part cut out by a circular section of arbi- 

trary radius r described from the top as the center (the dotted line In 

Fig. 35)- We obtain the following equations for these constants: 
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COS (ii, 

SIII .',11 

(20.8) 

{h   is  the wedge  thickness). 

The  calculations   simplify   If  the   console   is  orthotroplc   and   the 

direction of  its  axis   coincides  with  the  principal  one.   Then 

In  the  given  case   the   function  L(0)   is   the  reciprocal   value  of 

Young's  modulus  E     for  the  radial  direction L  =  1/E    [see  the   first r r 

formula (9.10) where we must put <P = 6]. 

The calculation of the integrals entering Eqs. (20,8) for an or- 

thotroplc wedge is not very laborious. We present here the expressions 

of the corresponding indefinite integrals for the case where the com- 

plex parameters are purely Imaginary and unequal: 

H,- =ß/. iv   5/. 

-  I f:, cos* (i ,1'),- = - - - ,,,1    -- - |3 nrcl- Q 1.^ 0)      o nrcl- (3 lg 0)|. 
J «u (,''   -'') 

;'. jii' 'J cos 'iil'i ;- 
co-.- o i ;-,■-' sin- o 

(;;-•      o )       KM'')   I  ö'MiiiO' 

| l-'r ^'2 'J '/0 - ^ „■  .J    . .;• f     ! nrcl- Q \-A 0) |   '• .ircl- (S I- 0)1. 

•(20.10) 

The formulas for the stresses in the case of equal complex param- 

eters (p,-MV-:?') anci in case 3 (jy-=a 1 pc [i^-- a|-p') may always be ob- 

tained from the formulas for the case of purely imaginary unequal pa- 

rameters by passing to the limit, 6 tending to B, or, respectively, by 

replacing 3 and 6 by the quantities 3 + at and  3 - at. 

We must make the following remarks with respect to the general 

character of the stress distribution. The stress distribution in a 

wedge which is deformed by a force is "radial" or "ray-like"; the radi- 

al stress a at an arbitrary point is, at the same time, the principal 

q6 - 
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stress, whereas the other principal stress o^ acting on the radial sur- 

face is equal to zero. According to the relationship between the elas- 

tic constants and the angle of Inclination w three cases are possible: 

/P 

Pi^. y) Fifj;. jo. A) Compression; B) stretching- 

1) all parts of the wedge are compressed, 2) all parts of the wedge are 

stretched, and 3) there is a neutral line on which all stresses vanish 

in the region of the wedge; on one side of the neutral line the materi- 

al is compressed and on the other one it is stretched (Fig. 36abc). 

The position of the neutral line with respect to the x  axis is de- 

termined by the angle 6 for which 

tgOo —£ (20.11) 

The points where the principal stress a  has the same value an, 

positive or negative, lie on a fourth-order curve; on one side of the 

neutral line there are the curves corresponding to the compresslve 

stresses (negative cO , and on the other side the curves corresponding 

to the stretching stresses (positive cO. The equation of the family of 

curves of equal stresses in Cartesian coordinates have the form 

_l(.v2-l../)(/U--l-ßy)---=(). 
(20.12) 

These curves are always closed although only some arcs lie in the 

region of the wedge; they all pass through the top and touch the neu- 

tral line at this point. We shall encounter on other curves of this 

type in the following chapter. 
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For a console of an Isotropie material the stress components wl 

be found from the formulas (the x  axis is placed along the axis of sj 

metry, the angle at the top is equal to 2i|0 : 

„  -_       2P/cos-. cos 0    .     sin <■> >lii 0 \ n fnn    i->\ 
"'■■■   hiW-i si,,^'1 ^f'-sin^j- ^--'ry   o.  (20.13) 

The curves of equal stresses become circles passing through the 

top and touching the neutral axis. 

We note that in a wedge with cylindrical anisotropy (with a pole 

of anisotropy at the top) the stress distribution due to a force does 

not depend on the elastic constants and exactly coincides with the dl 

tribution in an Isotropie wedge of the same form [formulas (20.13)]. 

§21. THE BENDING OF A WEDGE-SHAPED CONSOLE BY A MOMENT 

Let a wedge-shaped console as considered in §20 be bent by a mo- 

ment M  applied to the top. 

We shall place the polar axis x  along the symmetry axis of the 

wedge. The angle at the top will be designated by 2^ (Fig. 37). As be- 

fore, we consider the console as an infinite wedge. On the faces the 

following conditions must be fulfilled: for 9 = +1^ 

o8-=0(xr,=_0; (21.1) 

besides, the stress components must tend to zero with increasing dis- 

tance from the top. The stress function which makes it possible to sat- 

isfy these conditions and the equilibrium conditions has the form* 

f-T'oW       (21.2) 

(it does not depend on r).   With the help 

of the symbolic representation (20.3) of 

the equation for the stress function the 

Fig. 37 

function $0 will be determined in four 

stages by integrating four first-order 
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equations. 

As a result we obtain the following formulas for the stress compo- 

nents satisfying the conditions (21.1): 

Ar.?sllli"-.|.(cos'20 A r 2.sin 20 
(0) 

o6 • -- 0. 

A     cos 'JO ■    roi ty 

^:^' 

vo A(ü) 

(21.3) 

Here 

/.<0)    : «nCos'fJ -    2r/lüsin'Jcos,"j   (■• 

I  (-"u  i  «,,(;) sii.-'Jins-fJ      ^^^sir.:'ÜcüsO  (o^sii^O, 

// (0) 
r/0 

(21.Ü) 

The constant A  will be determined from the equilibrium conditions 

of the wedge part cut out by a circular section (the dotted line in 

Fig. 37) and proves to be equal to 

M 
•V 

J 
-+ 

cos 20 - - cos 2'J rfO (21.5) 

In the case of an orthotropic console, in which the principal di- 

rection coincides with the direction of the geometrical axis a; and the 

complex parameters are purely imaginary and unequal we have: 

J -S-Z^
O-S-^0^2(/1sin^|.--/3cos^)>       (21.6) 

where I, and I- are Integrals to be calculated from the formulas 

(20.10). 

If the principal direction In an orthotropic console does not co- 

incide with the direction of the geometrical axis it is more convenient 

to choose it as the direction of the x  axis; Instead of (21.3) we ob- 

tain somewhat more complex formulas. 

With respect to the general character of the stress distribution 

we must note that when the bending is carried out by a moment this dis- 

tribution, is no longer "radial" (the tangential stress T 0 is not equal 
'      ' r b 
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to zero, and, therefore, a^ is not a principal stress). If in the case 

of console deformation by a force the stresses varied inversely propor- 

tionally to the distance from the point where the force is applied then 

the decrease of the stresses in the case of deformation under the ac- 

tion of a moment of flexure will be more rapid: they vary inversely 

proportionally to the square of the distance from the point where the 

moment is applied. 

In an Isotropie console the stress distribution is determined by 

the formulas: 

2Af sin 20 
Ör //(sin 2^ — 21 cos 2 V)'    r*   ' 

<Jo --- 0, 

M cos-20 - - cos 2^ 
(21.7) 

/»(sin •_>.:, - - 2^ cos 2^) /-a 

If the wedge has cylindrical anisotropy and the pole of anisotropy 

coincides with the top the equations of the generalized Hooke's law 

will be written for it in the form (12.6). The stress function for such 

a wedge satisfies Eq. (12.9) where £7=0, and in the case of bending by 

a moment (Pig. 37) has the form 

r*-.<]>0{t>);^{Acosn<> \  /Jsiii/;'))."'- ] OH /).    (21.8) 

where s and m + ni  are the roots of the equation 

n,^3-|-2n10.^-| (2«,,-! 2,,,, 1 nco).< | 2((,lü ! «:,e): -0. (21.9) 

In particular, for an orthotropic wedge with cylindrical anisotropy 

./^/Uos/i'H ßsiiui'J 1 Öl \r). (21.10) 

where 

(21.11) 

The constants 4, B3   C  are determined as in the case of a homogene- 

ous wedge, from the conditions on the faces and the equilibrium condi- 

tions. 

- 100 - 

■ 

~-~- -- • ■ - ■ -—> 
 "a^- ' -     ' ■■  '-■'■■■■■ ■■• '■■ 

-—-^ ■-... .^.-. „,■■. ...w.-. ,V»n   -imi  i.-iLurlrlUfinrirhiin. - ' I —''' 



wmmtm*mmK*mmm^mmm 1 m HH   i       .. unni        i   iiiiiiii. iwi' "," ' 

§22. THE BENDING OF A WEDGE-SHAPED CONSOLE BY A DISTRIBUTED LOAD 

Combining stress functions of the form 

/■" r*'\\{i>), (22.1) 

where k = 2, 3, ■•■, the stresses In a wedre-shaped console along whose 

faces a load given in the form of an algebraic function of the distance 

>■ is distributed may be obtained. If, e.g., a load given by the formula 

toijijijiiiiiim 

Fig. 38 

'/  'A, i >J '///'••        (22.2) 

is distr-ibuted along the whole length of the 

face the corresponding stress function must be 

assumed in the form of the sum 

/••- ^/'•'l'/i('0.      (22.3) 
k    2 

In particular, for a console bent by a uniformly distributed load 

a   (per unit length) the solution is found with the help of a stress 

function of the form* 

f-    r-'K(O). (22.^) 

If the x  axis is placed arbitrarily (Fig. 38) the conditions on 

the faces will be written in the following way: 

for   fJ   T     V'      3»     ''•'■   n; 

for   0 
q    -     n 

(22.5) 
2 ^ /, 

For'  the  function  ^^  we  obtain  the  expression 
c 

<1'2('J)  /Icos^O \n<\\\V)  | €.■■.[}))  ) /;.       (22.6) 

.■!, 5, C, d  are here arbitrary constants, and 9(0) is a function of the 

angle 6 of rather complex structure. In the general case, if the com- 

plex parameters have the form: 

,•'. Vi     ■\  \ ''i. 

and we introduce the designations 

r^-i y • (22.7) 
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we  obtain  the   following  expression   for ?: 

XI" 

'f(O)      I«! [(a      c)sin?0  1 (rt2      c3  |  b2      <r) sin 0 cos 0-|- 

-|  [C(^  |  ^)     r/(c=-|  ^)lco.s=0)X 

shPO  | 2(7 sin 0 cos 0  |  (^  |  b") co^ 6 
sin- ü | 'A MM 0 aii 0 | '((■- |   </•'; cos-1 0 ' 

rf(4(n      f)/r (sin'J   |  rt cos 0)003 0   1- 

-j[(r;       c)2   1   f/3"   ^Msii.'O-l   2(;siii0cos0 | (w2    ^)cos50))X 

Xarclg    ,  n^
Os0-   (1|  /-MC«      c)rf2(sinO|  ccos0)cos0   - "   sin 0  I  rt cos Ü     '       '    v '   .  v ' • ' 

(22.8) 

~-[{n      cY  \  f    ^-).[sin-0   1   2c sin 0 cos 0 | (r2    ^cos'OjjX 

.,       , rfcosO 
X arc!''- .-„-,-•    - ri-- 

The general formulas for the stress components have the form: 

or r . - . 2 A cos 20 - 2/3 sin 20  |  C (2-2 |  ?") |  D, 

o,--. 2(/Icos 20-1-/?sin 20-I  C?-|-D). 

vi-: 2/1 sin 20  -2Z?cos20   -Co'. 

(22.9) 

The  constants  A3   B,   C3   D will  be determined  from the  boundary  cc   • 

ditions   (22.5);   the  final  expressions  are  complex,  and we  cannot  give 

them here.   The  stresses  in a console  bent  by a  uniformly  distributed 

load do not depend  on  the distance  r. 

For a console  of an orthotropic  material  the  expression  for the 

function   9 is   simpler,   but  in  the  case  of an  Isotropie  material  a = c = 

= 0,   b = d = 1,   and we  obtain  the  quite  simple  function       =  9. 

The  stress   function for an  Isotropie  console has  the  form: 

F r--^'(/I cos 20-1-ß sin 20-1 CO-f-D). (22.10) 

Among other cases of bending of a console by a continuously dis- 

tributed load we mention the bending by normal forces varying according 

to a linear law q  = q-x  (Pig. 39)j taking account of the proper weight. 

In this case the stress distribution in an anlsotropic console exactly 

coincides with the distribution of the same Isotropie console. This lb 

the case because 

r~--rH\iV)-.Ax*\nx:iy  |- 
-f-Cxy-f-Dv' (22.11) 

for arbitrary values of the constants is a solution both of Eq. (5.10'' 
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and   the   biharmonic   equation.   Tf   the   loaded   side   is   horizontal   then   i 

any   homogeneous  concoie,   both   anisotropic   and   isotropic,   shown  in  Pi 

39j   the   stresses  due   to   the   external   load   with   account   taken  of   the 

proper  weight   will   be  determined   from   the   formulas: 

^,11 if! 
i  f  j  I  1  t  I   M 1  M  t  (  •  1 

^J 

0s      ftdi;''v  i   vj^yCv      ^rl;:^),   ] 

9;*      I. 

jy 

(22.12) 

ft'^^v I •fjci^'y y 

[h \ i: the "n.;: ^z \v ir.t.t, y '- 1^1(-' ;"Pe(;inc; weight of the material). 

The anisotropy of the mater'ial will only influence the strains and d 

placements   whose  expressions   will   depend   on   the   elastic   constants. 

The   solution   for  the  general  case  of bending  of  an anisotropic 

console   undo!'   the  action  of  a   load  distributed   along  the   faces  accord 

ing  to  an  arbitrary   law  or  riven   in  the   form  of  concentrated   forces   vs 

ohtained   by  V.K.   Abramov.*  The   console  was   regarded  as  an   infinite 

wedge;   the   solution  was   found   with  the  halp  of  a  Me Hin   integral  and 

the   stress   componentj   are   represented   in   the   form  of   integrals. 

Another  method  of  solving  this   problem  was   proposed  by  P.P.   Kufa- 

I'uv**;   the   expressions   for  the   stresses  are  also   represented   in  the 

form  of   Integrals   with   infinite   limits.   The  general   solutions  mentioned 

were  not   led   to  numerical   results,   as  yet. 

All things set forth, with appropriate variations in details, may 

be referred also to a wedge with cylindrical anisotropy with which the 

fule of anisotropy coincides with the top. In the case of bending by a 

uniform   load,   e.g.,   (Fig.   3^)   the   stress   function  has   the   form: 

/■    '•■•ip('.)     r\( u,.-..,ri I /IMH/.'J).' ■■1 I Cc ■' l /)],    (22.13) 

where   r,,   m   and   n   have   the   same   values  as   for   the   wedge   bent   by  a  moment 

i re^   F,n.    (.'l.'i)].    !-.  particular,   for  an  orthotropic   wedge  with  cylin- 

ir 1 ca 1   asymmct ry   wi    • ibl a i n : 

/'       n  \." ■■:'}   :   /.'MI;;/')   I   C'l   i   /)). ( JJ ^ i Ij ) 
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§23. PURE BENDING OF A CURVED GIRDER WITH CYLINDRICAL ANISOTROPY 

Let us consider the elastic equilibrium of a curved girder in the 

form of a part of a plane circular ring under the action of forces ap- 

plied to the ends and reduced to moments. We assume that the girder has 

the property of cylindrical anisotropy in which case the pole of aniso- 

tropy is at the common center of the circles whose arcs form the outer 

and the inner edges of the girder. Besides the planes of elastic symme- 

try parallel to the mid surface we do not assume any elements of elas- 

tic symmetry. Fig. ^0 shows a section of the girder through the mid 

plane. The pole of anisotropy is assumed to be the origin of coordi- 

nates, the polar axis x is directed along the axis of symmetry. We 

shall designate by a  and b   the inside and 

the outside radii, by a  the ratio a/b,  by h 

the thickness of the girder, and by M  the 

/ N. j^C \ r\    /X value of the moments. We shall assume the 

angle between the end radii to have an arbi- 

trary value smaller than 2ir. 

The equations of the generalized 

Hooke's law will be written in the form: 

Pig.   40 

« 
(23.1) 

The  stress  components   (mean values  over  the  thickness)  are ex- 

pressed  in  terms   of the  stress   function F(vi   Q)   according  to the  formu- 

las   (12.8)   where 11=0,  and  the   function F satisfies  Eq.   (12.9)   (where 

we also must  put  17 =  0).   The  conditions  on line  constituting the girder 

outline  are  obvious:   on the  curves  r = a and  r = b  the   stresses  are 

equal  to  zero,   and  at  the  ends  the  stresses  are reduced  to the moments 

w. 

-   10l\   - 

- ■       • - 
 — ifn       ■    ■'■  ÜiütM 



i iitujwjwpiiiiiwwpiwiiwiipwwiwpwwjui.uiij m.-immm^msmmm^mm'^^^mmit^mmm M. i J.u|i.i.i,iJHmiiiiili|i..li|iv.WH,WJi..iii|.i. m^"""."".- Ja,jK 

The solution is obtained with the help of the function F  which 

does not depend on the polar angle 6.* The function looks as follows 

r    Uir)    A | nr- \ er*"-  i /;;'-A.      (23.2) 

where 

(23.3) 

and E  j   E„   are Young's moduli for the stretching (compression) in the 

radial and tangential directions r  and 6 which are, in general, no 

principal directions of elasticity. 

Having determined the constants from the boundary conditions we 

obtain the following final expressions for the stress components: 

/U    f,  ■     1 -   ckH /r\k   '       If'-'     .,.,, /6\l + 1l    ] 

b-ltg [ I-   c-,A-   \b) I-   c-'; U/      J' 

(23.^ 

Here 

1-C2 * (1     -ffclip *f"-       (I --fft-l)'-    " ,„ (-v 

The  stress distribution  obtained  is  the   same  for all cross   (radi- 

al)   sections  and depends   only  on the ratio  of  the  constants  a1:./app. 

The  normal  stress  afl   in  the  cross  section  is  neither  governed  by  a  lin- 

ear,   nor a  hyperbolic   law. 

The  normal  stresses   on the  outer and  inner  contours are  equal  to: 

M      1-   AJ-2/^"- -(I   l^f^; 
6" "      6-/1^ ' 1 -:c:-k 

Af      (1      AOc^l ^"   '      (I   I*) 
b'l'g 1    - c^k 

(23.6) 

(23.7) 

One of these values will be the maximum for the whole girder, but 

which cannot be indicated beforehand if the numerical value of k  is un- 

known. The displacements u , Kfl in the radial and tangential directions 

may easily bo determined from Eqs. (23.1)- 
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We note that in the case where a,, = a««, i.e., E    = Eat   k =  1 
11 Z c V b 

formulas for the stresses coincide exactly with the formulas for the 

Isotropie girder*: 

where 

C'- b-: 

v,- =o, 

■I—[•   (1)1  ('  ^rl 

g^^'^-J-   cH\ncy. 

(23.8) 

(23.9) 

§2^. THE BENDING OF A CURVED CURVILINEAR-ANISOTROPIC GIRDER BY A F0R( .• 
APPLIED TO ITS END 

Let a curved girder having the shape of a part of a plane circu.ar 

ring be fixed at one end and be deformed by forces distributed at th' 

other end and resulting in a force P applied to the center of the se - 

tion. It is assumed that the girder has the property of cylindrical 

anisotropy with the pole in the center of the circles whose arcs form 

the girder outline. We shall choose the pole to be the origin of coor- 

dinates, place the polar axis x  along the radius corresponding to the 

loaded end, and designate by tu the angle of Inclination of the force to 

the x axis (Pig. ^1). The value of the angle between the end sections 

will be assumed arbitrary, but not more than 2TT. 

To start with, we shall concentrate our attention on the case of 

an orthotropic girder with cylindrical anisotropy which, besides the 

plane of elastic symmetry parallel to the mid plane has two other ones 

at each point: the radial and the tangential one. In this case a~0 = 
1 0 

= Cp,, = 0  and the equations of the generalized Hooke's law may be wr t- 

ten in the form (12.10): 

- 106 - 



*P*MBni^^HH^m mmmmm wmmmm wmm ■limy . -!I"I,.--J-JII> i 

Trl 

/.•■C'r        -.r-Oij, 
'■r t.u 

/V   '   '   /: :.■ '   ^O. 

'',o''5 

(24.1) 

(the dashes over the denotations for the stresses and strains are omll 

ted) . 

To determine the stress function F we use Eq. (12.11) In which 17 

= 0 must be put. The solution is obtained with the help of a stress 

function of the form* 

/'     /1('>"S'J  I /'(0-i"''     (•l'nP I   /'V1  ? I  Cr |-/VIII/-)C')SO-|- 

■\-{A'r^'   \   li'r1   ?|  CV   |   DV In/) sin 0. 

A}   B,   ...j D'   are here arbitrary constants and 

(24.2) 

3  .A 1/ II 
«n I 2«,. I rt,,„ }/l-|.g(l -2.r)|-A.  (24.3) 

Having determined all constants from the conditions at the bound- 

aries v  = a  and r =  b,   where a = T D = 0, and requiring that the 

stresses at the free end result in a force P we obtain: 

„. .4_..;.[(^.,.J(i)'_.1._c)]MS(H_„, 
(24.4) 

We have used here the denotations: 

Sx-  -pC- c?) I (1 i-c?)lnc. (24.5) 

The normal stresses obtained 
are maximum In the girder section 
perpendicular to the line of action 
of the force; in these sections the 
tangential stresses vanish.** 

The tangential stresses attain 
maximum absolute values in the sec- 
tions on the line of action of the 
force; the normal stresses are there 
equal to zero. In any given section 
6 = 60 the normal stress afi will be 

obtained maximum near the inner 
boundary r = a; it Is eonpi • 
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(«0)u 
r.-.ln(0o.| .,) Ji(l  (*) 

bhgx c (24.6) 

If the elastic constants of an orthotroplc girder satisfy the con- 

dition 

|l(l_.2vr)-f|i = 3. (24.7) 

then ß = 2 and the stress distribution will be exactly the same as is 

obtained In an Isotropie girder*: 

'r« = 

(24.8) 

«i=l-c» + (l + c2)lnc. (24.9) 

A.S. Kosmodamlanskly studied the more general case where the gir- 

26 der shown In Fig. 4l Is not orthotroplc [the coefficients  ,,- and 

of Eqs. (23.1) are not equal to zero, and the stress function  satis- 

fies Eq. (12.9) where £/ = 0]. The solution for this case is found with 

the help of the stress function** 

p _ (i4rl+P+«i -}- ßr1-P+«' -\-Cr-\-Dr In r) eM -|- 

-|-(^r1+'-ai + Brl '?"'* + Cr + Dr In r)«-". 

A,   B,   Cs   D  are here arbitrary constants, generally complex, to be de- 

termined from the boundary conditions and the conditions at the free 

end; A3   B3   C3   D  are the conjugate quantities; 

(24.11) 

(24.10) 

=S' ^/^ «n-f 2fln + a M 
<*n -fe)' 

A.S. Kosmodamlanskly considered also numerical examples and constructed 

diagrams of the stress distribution in the sections of a nonorthotroplc 

girder with given elastic constants for several values of the ratio c. 

The analysis of the results obtained enabled him to make a number of 

conclusions the most Important of which boil down to the following: 

1) the maximum value of the stress ae by far exceeds the maximum 
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values of a  and T e and is obtained, as in the case of the orthotropic 

girder, at the inner boundary of the section (for r = a); 

2) the constant a,,- does not affect the value of the stresses; 

3) with decreasing ratio b/a  the distribution law of the normal 

stresses across the section ipproaches a linear one, and the distribu- 

tion law of the tangential stresses tends to a parabolic one. 

§25. THE BENDING OP A CURVED CURVILINEAR-ANISOTROPIC GIRDER UNDER A 
DISTRIBUTED LOAD 

The solution of the problem of the bending of a curved girder un- 

der a load uniformly distributed along the curvilinear edge may be ob- 

tained with the help of a stress function in the form of a sum 

/? = /o(0+/i(OcosO + /:(r)sinÖ. (25.1) 

The first term has the form (23-2), and the second and the third 

ones are determined by Formula (2^.2) for an orthotropic girder, and for 

a nonorthotropic one by Formula (2^.10). All constants will be found 

from the boundary conditions which can always be satisfied exactly at 

the curvilinear boundaries, while at the ends the filfillment is ap- 

proximate. 

Let us consider as an example an orthotropic girder with cyllndri- 
■ 

cal anisotropy, supported at the ends and bent by a normal load which 

is uniformly distributed along the outer boundary (Fig. k2) .   The common 

center of the circles bounding the girder which is at the same time al- 

so the pole of anisotropy will be chosen to be the origin of coordi- 

nates, and the axis of symmetry will be identified with the polar axis 

x.   We shall assume that both supports are hinged and designed such that 

the support reactions form the same angles ^ with the axis of symmetry. 

We shall designate by q  the load per unit length and by 2 cp the angle 

between the end sections of the girder which is, in general, not equal 
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to 2^(?<|). 

The boundary conditions on the curvilinear sides have the form; 

or r = a  0^=0,    ^,.,^0; \ 

or r-^b    ar^ — %,   ^,^0. | 
(25.2) 

At the ends the stresses will result in a radial force (reactioi 

R  and in a tangential force i?Q; the following conditions must be ful- 

filled there: 

for   0 = ±-9 

f „ ,/, ^t _      ?*   sin y sin (y — »}<) 
}a*dr =-T--T•—E5I*  
a 

» 

|o,rrfr = 0f [(25.3) 
«• 

ft 
fT   (fr_-<-/?r_1^.gft   sln<|>cos(?-^ 

J   '■, A A cos <|» 
a 

Putting /* = 0 we determine the con- 

stants entering expression (25.1) from the 

conditions (25.2) and (25-3) and obtain the 

following final formulas for the stresses: 

'^['+«(Tr+«(r,]+!fe4[(T)'+ i 
+ 0'-0+<')]2Mcos., 

•M> 
^-5fe4[(y)+^(^)-o+^]£2!^1)s^- 

(25.M 

Here we have used the designations: 
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+ 2Ä(/t-|- l)c*+'(l —c*-«) —(A«— 1)(1 +c)(l — c2*)/«), 

Q = 2(A-1)(
1
1-c:.fc)^[-(^-')(l-C--)-2^(l-Cfc-') + 

+ (Ä-l)(l+c)(J-c'- + ,)'«l. 

— (Ä-f l)(14-c)c2"*(l—c1-*)«»). 
sin tp sin (<? — ^ . c = T.     /« 

COS i}» 

(25.5) 

fej ^j ß and g     are, respectively, determined from the formulas (23.3), 

(23.5), (24.3), and (24.5). 

The normal stresses ae In an arbitrary section 0 = 8n attain the 

maximum values either at the Inner boundary r = a or at the outer one 

r = Z? according to relationships between the parameters Tc, ß and other 

param3ters entering formulas (25.4)-(25.5). At these points we have: 

(..)a=|(P+Q^-.-^c^-0~^(l-cß)
c-2!i^i)cos0o: (25-6) 

(c.,)^|(P+Qft-^)+^(i-c?)-ä^cose,    (25i7) 

For an Isotropie girder we obtain the following formulas Instead 

of the formulas (25.4) and (25-5): 

P= — i-(2(l—c2)—4c2lnc —4c^(lnc)l + 

-f-2c^(i + c)mlnc —(I—c2)(l + c)/nl, 

Q--^(-(l—c2)-|-2c'lnc + (l-c2)(l4-0«l. 

/?-_-=_ Ji (_(1 _c2)-j_2Inc —2(1-f-c)/« In c] 

(25.8) 

(25.9) 

[the expressions for g  and g     have the forms (23.9) and (24.9)]. 

At the end points of the section 9 = 0O of an Isotropie girder the 
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normal stresses are equal to: 

(aOa = ^-(2(l-cl)lnc —(1 + 0(1-c2 + 2,n ^"'1 — 

■  SL n —c2) —       r-cosQ0 

(25.10) 

(^«-i-Kl—c^-j-^Onc)1 —2(l+0(l-^ + 2c2Inc)ml + 
4A^ 

+ 2? (1_cJ) 
rnc IU U ' 

If the device of the supports is such that the react-ions to them 

have parallel directions we obtain 9 = 0, m^l; the formulas for the 

stresses simplify a little. 

For a semicircle arc supported at the ends as shown in Pig. ^3 and 

loaded by a uniform normal pressure we have: 

9 = ^>    ^O« "»=1. 

cos(«p —1})) = 0." 

The stress components will not de- 

pend on the angle 6 and will be found from 

the formulas: 

Pig. ^3 

t- = 0. 

''25.12) 

The coefficients P,   Q,  F  are determined from the formulas (25.5) 

in which we must put m = 1. 

It is relatively easy to obtain a solution also for the general 

case where the curved girder having the form of a part of a plane ring 

is deformed by normal and tangential forces distributed along the cur- 

vilinear sides in an arbitrary manner. Each of the given forces must be 

espanded in a Pourier series, i.e., represented in the form 

^o+2 («7,.cos«O + 7; sin «Ü). (25.13) 
n-l 

The  stress   function must  be  sought   in  the  form 
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p _ ^o(r) _j.. CO + /IrO sin 0 + ß rO cos 0 -f 

+ S |/;I (0 cos «0+/:.(/■) sin «01.        (25.1^) 
n-l 

Each of the functions / (v)   and f*(r)  will be determined from ordinary 

differential equations which are obtained on the basis of Eq. (12.9) 

[or (12.11) in the case of an orthotropic girder]. All constants enter- 

ing expression (25.1^) will be found from the conditions on the curvi- 

linear sides and at the ends; the first conditions can always be exact- 

ly satisfied, the second one only in an approximate manner. 

§26. THE STRESS DISTRIBUTION IN A RING-SHAPED PLATE WITH CYLINDRICAL 
ANISOTROPY 

Let us consider the elastic equilibrium of a plate having the 

shape of a whole circular concentric ring with cylindrical anisotrop ' 

and compressed along the outside and inside outlines by uniformly dis- 

tributed normal forces. We shall assume that the pole of anisotropy co- 

incides with the ring center and that there are no elements of elastic 

symmetry except for the planes parallel to the mid plane. Having solved 

this problem we shall in the same way obtain the solution of an analo- 

gous problem concerning the stress dis- 

tribution in a tube of a material with 

cylindrical anisotropy, under the action 

of internal and external pressures. The 

latter problem for a tube with cylindri- 

cal anisotropy of a special form was 

solved by Saint Venant and Voigt,* 

As was already indicated we consider 

the more general case of a nonorthotropic 

ring to which corresponds a nonorthotrop- 

ic tube. 

Fig. M 
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Choosing the pole of anlsotropy (the ring center) to be the orig 

of coordinates we shall place the polar axis x arbitrarily (Fig. ^4). 

V/e shall designate by p and q the values of the internal and external 

pressure per unit of surface and by a and b the inside and outside rz 

dll of the ring. 

The stresses will be found with the help of the stress function 

(23.2) independent of 6 and represented by the formulas* 

trt = 0. 

(26.1) 

Here 

•.' *-/% = /%■ 
(26.2) * '     r   an 

The distribution of the stresses is the same for all radial sec- 

tions and depends only on the ratio of the Young's moduli for stretch- 

ing (compression) in the tangential and radial directions. The stress 

distribution obtained is the same both in an orthotropic and a nonor- 

thotroplc ring for which a,g and a2g are not equal to zero. The influ- 

ence of the radial planes of elastic symmetry will show up only after 

deformation: if there are such planes the radial sections remain plane; 

If there are no such planes the radial sections are distorted. 

The displacements of the plate points in radial and tangential di- 

rections u and ufl will be found from Eqs. (23.1) expressing the gener- 

alized Hooke's law. We present the formulas for the displacements in an 

orthotropic plate ("rigid" displacements not accompanied by deformation 

are eliminated): 

b 

+ (P-?<:*-«) C»+1(Ä-He) (7)*]. 
0| = 0. 

(26.3) 
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Eny   vfl are here elastic constants for the directions r,   6 (the prlnc 

pal directions) from the equations of the generalized Hooke's law 

(2^1.1). 

If the anisotroplc material has Young's moduli equal for the ra 

al and tangential directions the stress distribution obtained Is the 

same as In an isotroplc ring. Putting ^ = 1 we obtain the well-known 

Lame solution from formulas (26.1)*: 

5   1-cJ ^I_ca c \r) ' 
(26.4) 

-0. 

One special case Is worth mentioning. If we put c = 0 and p = 0 

in formulas (26.1) we obtain the stress distribution In a solid disk 

with cylindrical anisotropy compressed on the edge by normal forces q: 

(26.5) 
v*-i ik-i 

^■^—i[j)     ,   <>,= -?&(jj  • tr,=.0. 

In an Isotropie disk the material will be compressed uniformly, 

but in a curvilinear-anlsotropic disk the stresses will vary along the 

diameter. For disks of materials for which ^>£,
rl *>1 and the stresses 

decrease the nearer we get to the center, and in the center become zt.- 

ro. If, however, E^   <  E    then k  <  1  and, as is seen from formulas 

(26.5), the stresses will tend to infinity with decreasing distance 

from the center, and, close to the center, I.e., the center of aniso- 

tropy, a stress concentration takes place. The curves giving the stres 

distribution of a  and OQ along the disk diameter are shown In Flg. h 

for k  =  1,   k  >  1  and k  <   1. 

The formulas for the stresses in a tube with cylindrical aniso- 

tropy under the action of internal and external pressures p  and q  have 

the form (26.1), hut for a tube 

k 
K Pa   r   ^33-* 

(26.6) 
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Besides, in the cross sections of a tube with fixed ends acts a 

normal pressure 

«, = — ^- («I30r -j- <12ä08)- (26.7) 

A^' 
Pig. 45. 

With the help of a stress function 

of the form (25.14) the solution for the 

general case of elastic equilibrium of a 

ring may be obtained when arbitrary nor- 

mal and tangential forces (fulfi: .ing the 

equilibrium conditions) are distributed 

along its inside and outside boundaries 

r = a  and r = b.   To start with, it is 

necessary to represent the functions ex- 

pressing the distribution of the normal 

and tangential forces along the boundaries in terms of Fourier series 

(25.13). We shall restrict ourselves to these general remarks, all the 

more since apparently none of the problems of this kind for a curvilin- 

ear-anisotropic ring, except for the above-mentioned one, has been fin- 

ished. 

§27. THE STRESS DISTRIBUTION IN A COMPOSITE CURVILINEAR-ANISOTROPIC 
RING 

Let us consider the following problem. Let be given a round plate 

with a round opening at the center, composed of an arbitrary number of 

layers having the shape of concentric rings of the same thickness h, 

and the property of cylindrical anisotropy. We assume that each layer 

is orthotropic where the poles of anisotropy of all layers are at the 

center, and the layers are connected with each other in a rigid manner, 

i.e., they are soldered or glued together at the contact surfaces. 

Along the boundary of the opening and the outside boundary the normal 
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forces are uniformly distributed. The stresses In each layer must be 

determine 1. 

An analog of this problem Is the problem of the stress distribu- 

tion in a multilayer curvlllnear-anlsotropic tube which is acted upon 

by internal and external pressure. 

Pig. ^6 

We shall choose the plate center (the pole of anisotropy) to be 

the origin of coordinates and place the polar axis x  along an arbi- 

trary radius (Pig. ^6). We introduce the designations: n  is the number 

of layers; a,   b  are the inside and outside radii of the whole composite 

ring; ps  q  are the Internal and external pressures on the unit area; 

a  -j a are the inside and outside radii of the layer No. m; 

0(m)( 0o»)i .{».), „(m), ub»)     are the stress components and displacement projec- 

tions and /T'"'), :;'"•), 4'»)—-are the elastic constants (for the principal di- 

rections r,   9) from the equations of the generalized Hooke's law of the 

type (2^.1): 

c   = ""'-t b lAlT (27.1) 
y   £';■" 

(the   subscript  m  indicates  the  number'  of  the  layer;   m  =   1,   2,   ...,   n. 
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OLQ = a,   an = b). 

The stress  components satisfy the boundary conditions 

for r = o    o(I> = i-/>,   x^O; 1 
for r = *    0«.") = — ^.   T|5> = 0, j 

(27.2) 

On the contact surfaces of adjacent layers we have the conditions 

for /' = am_l o^'-» = o|."')> x<r»
,-l)=x'i5'>, 

(27.3) 

It is obvious that the stresses and displacements in each layer 

will only depend on the distance r where wfi  =0. Designating by q _. 

and q    the normal forces acting on the inside and outside surfaces of 

the rnth  layer we obtain with the help of formulas (26. l)-(26.3) of the 

preceding section: 

r^^Qi(ei'-'+^r']- i 

l_C^m[\am/ *     \r} j 

t««) = 0; 

(27.4) 

<?l"a"' TfA     — v'1"') / r \*,"   1-f A     4-v'1"')/-"m   /"»'\*"> 1 
(27.5) 

(OT=1. 2 «;   qa^p, qn = q)- 

These expressions  satisfy  the boundary  conditions   (27.2)   and the 

first, the second, and the fourth condition of (27.3). Requiring that 

the radial displacements of adjoining points of neighboring 1 'ers be 

equal we obtain  the  equations  for  the determination of the unknown 

forces q   : 

7«i+iflHi I iamf i + (ZnAiiPm 4" 7m-lflm-lam — 0 

(/«=-!,  2 K— 1). 
(27.6) 

Hero we have  used the  designations: 
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«« = 
es1  i- - in 

»   +*m+,l_c
^*mM)• 1  cm+l / 

(27.7) 

Eq. (27-6) Is in its idea analogous to the three-moment equation 

in the theory of solid beams, and it may be called "three-force equa- 

tion." 

Assigning to m  successively the values of the integers from 1 to 

n - 1  and paying attention to the fact that q~  and q    are given and 

equal to the given pressures p and q,  we shall gradually determine al 

forces q   ,  and, at the same time, also the stresses in each layer. 

The normal stresses in the radial sections near the inside and 

outside surfaces of the layer No. m  will be found from the formulas 

(o^O)    = 
m-l 

1>n-i{H-C^m)-2qmc 

1-c2*"» 

»m-I 

k   ' 

2q       c*i»+l — o (l+e^m) 
fa(m\\         m-l "» TmV'^Sn / 

(27.8) 

(27.9) 

We shall mention the main results for a ring glued together frei 

two curvilinear-anisotropic rings and loaded by an external pressure 

only (Fig. ^7). 

In this case n = 2, q    = pi   q = 0 and we obtain from Eq. (27.6) 

only 

9l = 2pcJ.+'fe1X. (27.10) 

where 

I 
X = H-cf- Etl)l     1 + ,2*. 0-<i')[',-,--k->'." + ^,^r:^+>f'/ 

C, == — ,   (* 'I  A- — 4° 
y *? 

■ (27.11) 
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Prom formulas (27.8) and (27.9) we obtain the following values of 

the normal pressure aQ near the Inside surface x> = a,  the contact sur- 

face r = or- and the outside surface r = b 

(27.12) 

(.^7.13) 

(27-1^) 

(27.15) 

The maximum stress for the whole composite (double) ring will be 

found from one of formulas (27.12)-(27.15), but from which cannot be 

said beforehand. Finally, the problem of the maximum stress can be 

solved only by giving the numerical values of the ratios of the moduli 

of elasticity and the radii. 

If the layers from which the ring is com- 

posed are not orthotropic the stresses will be 

determined by the same formulas (27.^)5 (27.8), 

(27.9) or (27.12)-(27.15), but in this case 

the quantities _!. JL —3. must be replaced 

by the constants a^^,   a223   and a12,   resPec" 

tively, from the equations of the generalized 

Hooke's law (23.1). In a nonorthotropic ring 

the displacements «„ are not equal to zero, 

and the radial sections will be distorted for this reason. 

The formulas for the stresses in a composite multilayer tube (case 

of plane deformation) are obtained from the formulas for the stresses 

in a ring by replacing the constants a. . in the latter, respectively, 
1 Q 

Pig. n 

by the quantities 
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§28. THE STRESS DISTRIBUTION IN A RING WITH VARIABLE MODULI OP ELAS- 
TICITY 

Let us assume that with the  curvilinear-anlsotropic ring shewn in 

Fig. H which is deformed by uniformly distributed pressures p and q 

the moduli of elasticity are not constant, but arbitrary functions of 

the distance r. We consider the behavior of the solution of the problem 

if an orthotropic ring experiencing small deformations. 

If the radial planes are planes of elastic symmetry it is obvious 

that the stress distribution will only depend on r in which case all 

points will be displaced along the radii in the deformation. Conse- 

quently, «, = 0, ur = ur(r),   7^ = 0, and from the third equation of the gener- 

alized Hooke's law T Q = 0. For the three unknown functions a . aQ and r9 rJ  6 

u    we obtain three equations (in which the primes denote the deriva- 

tives with respect to the sole variable r) : 

<+^ «i 0; 

tt, "V    r  1 

(28.1) 

(28.2) 

E,., £0, V v,-are, respectively, Young's moduli and the Poisson coeffi- 

cients for the principal directions of elasticity (of radial r and tan- 

gential 9) of the function of the variable r.   Eliminating the displace- 

ment u    from Eqs. (28.2) we obtain: 

*-l+(f»')'-(Ä4=0- (28•3, 

The  stress  function does  not  depend  on  0;   F = f0(r);   consequently, 

cr=4       ..=/„'. (28./I) 

Substituting  these  expressions  into   (28.3)   we  obtain the  equation  for 
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the function f 0 

c+(7-|K+(- 0. (28.5) 

The general Integral of this equation with variable coefficients has 

the form 

j'^AvM + BKir), (28.6) 

where fp <?j are linearly independent special solutions to Eq. (28.5), 

and A  and B  are arbitrary constants; hence 

o^A^ + B'-l. 
,        , (28.7) 

The  constants A  and B will  be  determined  from  the  boundary  conditions: 

for r = ß 
for 

(28.8) 

To determine the special solutions cp, and cp we must know how E ,   E* 

and v0 depend on r. Particularly simple will the determination of these 

special solutions be in the case where the Poisson coefficients are 

constant, and Young's moduli vary along the radius according to a power 

law: 

F =z F    r'"      F. -=z F.  r'" 

. , Erm 
'rm' 

N| = const, (28.9) 

where m is an arbitrary real number, positive or negative, integer or 

fraction. In this case, Eq. (2^.5) is integrated with elementary func- 

tions, and we obtain: 

9i = r"'.  ?i = /-",., (28.10) 

where 

^ ^ "5" IV a2 "t- 4 (ft2 " mN«) + m] • 
««=4 [}A'«2 + 4 (k* - ,«•;,) - ml. (28.11) 

Designating by c  the ratio of the radii: c  =  a/b  we obtain the 
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fOJ wing  stress distribution: 

•A\".+> 

pcn'+l-g _  /r\"--' , p-qc"--1    „..  /»V 
3. 

•4\»i+> (28.12) 

For constant moduli (m = 0) we have n-, = «p = /c, and we obtain t 

formulas (26.1) derived above from (28.12). 

With somewhat different denotations Eq. (28.5) was obtained in a 

work by P.N. Zhltkov.* This author considered also the special cases 

where Young's moduli and the Poisson coefficients are linear function 

of the distance r and thoy are represented by exponential functions 

(in both cases the ratio E'n/E    is assumed constant). P.N. Zhltkov shows 

that the moduli of elasticity depend on the distance r in this way for 

pressed wood (page 2(. of  his work). In both cases Eq. (28.5) assumes 

a rather complex form and its solutions are expressed in terms of hy- 

pergeometrical series or degenerate hypergeometrical functions. 

Manu- 
script 
Page 
No. 

TO 

71 
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See the work 
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11 uprugosti anizotropnogo tela [Several Cases o 
oblem of the Theory of Elasticity of an Aniso- 
, Sbornik "Eksperlmental'nyye metody opredelenly. 
1 deformatsly v uprugoy 1 plastlcheskoy zonakh" 
"Experimental Methods of Determining the Stresse 
In the Elastic and Plastic Zones"], ONTI [United 
nd Technical Publishing Houses], 1935, pages 158 
work a coordinate system with different dlrec- 
axes is used in studying the bending of a con- 

See, e.g., Timoshenko, S.P., Teorlya uprugosti [Theory of 
Elasticity], ONTI, 1937, page 45. 

E. Relssner, A contribution to the theory of elasticity of 
nonlsotrnpic material (with application to problems of bend- 
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No. 202, 1940. 

See our work mentioned in the preceding section (psgSE lol- 
164). 

See, e.g., Timoshenko, S.P., Teoriya uprugcsti, ONTI, 1937, 
page 50. 

The solutions set 
Orlova in the dip 
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Bending of Anisot 
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Load Distributed 
(Saratovskly gos. 

forth in this section we obtained by Ye.V. 
loma work "Izgib anizotropnykh balok s sech- 
kogo nryamoygol'nika popoechnoy nagruzkoy, 
lineynomu 1 parabollcheskomu zakonu" [The 

ropic Beams with a Cross Section Having the 
Rectangle Under the Action of a Transverse 
According to Linear and Parabolic Laws], 
un-t) [Saratov State University] 1948. 

Kurdyumov, A.A., 0 reshenii v pollnomakh ploskoy zadachi te- 
orii uprugosti dlya pryamougol'noy anlzotropnoy polosy [On 
the Solution of the Plane Problem of the Theory of Elasticity 
in Polynomials for a Rectangular Anisotropie Band], Prlklad- 
naya matematika 1 mekhanlka [Applied Mathematics and Mechan- 
ics], Vol. 9, No. 4, 1945. 

Vorob'yev, L.N., 0b odnom reshenl:'. ploskoy zadachi v pollno- 
makh dlya pryamougol'noy plastinki [On One Solution to the 
Plane Problem in Polynomials for a Rectangular Orthotropic 
Plate DAN USSR [Proceedings of the Academy of Sciences of 
the Ukrainian Socialist Soviet Republic], 1954, No. 5- 

Problems on the bending of an Isotropie beam with the help of 
Fourier series were solved by Riblere, Fllon, Bleich, etc. 
(Literature on this problem is given in the textbook by S.P. 
Timoshenko, Teoriya urpugostl, ONTI, 1937) pages 56-63. 

Kufarev, P.P. and Sveklo, V.A., Opredelenlye napryazhenly v 
anlzotropnoy polose [The Determination of Stresses in an Ani- 
sotropie Band], DAN SSSR [Proceedings of the Academy of Sci- 
ences of the USSR], Vol. 32, No. 9, 194l. 

See our work "On the Calculation of the Strength of Composite 
Beams," Vestnik inzhenerov 1 tekhnikov [Herald for Engineers 
and Technicians], 1935, No. 9. 

We note that all formulas for a beam with moduli of elastic- 
ity continuously varying with the height may also be obtained 
in another way: by passing to the limit of the formulas for a 
beam composed of bands with the same height, making the num- 
ber of bands infinitely great. 

See the work: Lekhnitskiy, S.G., Nekotoryye sluchal ploskoy 
zadachi teorii uprugosti anizotropnogo tela [Several Cases of 
the Plane Problem of the Theory of Elasticity of an Aniso- 
tropie Body], Sbornik "Eksperlmental'nyye metody opredelenlya 
napryazhenly 1 deformatsly v uprugoy 1 plasticheskoy zonakh" 
[Collection "Experimental Methods of Determining the Stresses 
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and Strains In the Elastic and Plastic Zones"], ONTI [United 
Scientific and Technical Publishing Houses], 1935, pages 17^- 
179' In this work the solution of the problem Is carried out 
with all details, but with somewhat different denotations. 

See our work mentioned in the preceding section where this 
problem Is worked out In a detailed manner. 

101 

103* 

See our work mentioned In §20 

103** 

105 

106 

107* 

107** 

108* 

Abramov, V.M., Rasprede 
Ichnom kllne prl prolzv 
tlon In a Plane Infinit 
Load], Trudy konferents 
napryazhenly NIIMM LGU 
Conference on the Optic 
Scientific Research Ins 
of the Leningrad State 
Institute for Mechanics 
ONTI, 1937. 

lenlye napryazhenly 
ol'noy nagruzke [Th 
e Wedge In the Case 
11 po optlcheskomu 
1 NIIMekh MGU [Tran 
al Method of Studyl 
tltute for Mathemat 
University and the 
of the Moscow Stat 

v ploskom bezgran- 
e Stress Dlstrlbu- 
of an Arbitrary 

metodu Izuchenlya 
sactlons of the 
ng Stresses of the 
les and Mechanics 
Scientific Research 
e University], 

Kufarev, P.P., Opredelenlye napryazhenly v anizotropnom 
kllne [The Determination of Stresses in an Anisotropie 
Wedge], DAN SSSR, Vol. 32, No. 8, 19^1. 

The solution of this problem is carried out in the work: 
Lekhnltskly, S.G., Ploskaya zadacha teorll uprugosti dlya te 
tela s tsillndrlcheskoy anizotroplye [The Plane Problem of 
the Theory of Elasticity for a Body with Cylindrical Aniso- 
tropoy], Uch. zap. Saratovskogo un-ta [Scientific Reports of 
the Saratov University], vol. 1 (1*0, Series for Physics and 
Mathematics, No. 2, 1938. 

S. P. Timoshenko, Teoriya uprugosti, ONTI, 1937, page 72. 

See our work mentioned in §23 [in the formulas (7.8) of this 
work on page 151 there is a misprint]. 

If the section perpendicular to the line of action of the 
force leaves the limits of the girder (for small angles be- 
tween the end sections) the maximum normal stresses will be 
obtained at the point of fixation. 

In the textbook on the theory of elasticity by S,P. Timoshen- 
ko which we have mentioned several times the solution for the 
case of a radial force directed Inward is given (w = IT, pages 
84-86). 

108»* 

113 

Kosmodamianskly, A.S., Izglb ploskogo krivolineynogo anlzo- 
tropnego brusa siloy prilozhennoy na kontse [The Bending of a 
Plane Curvilinear Anisotropie Girder by a Force Applied to 
the End], Prikladnaya matematika 1 mekhanlka. Vol. 16, No. 2, 
1952. 

See the works: 1) de Salnt-Venant, B., Memoire sur les divers 
genres d'homogeneite des corps solides [Report on the Various 
Kinds of Homogeneity of Solid Bodies], Journal de Math, pures 
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115 

123 

et appl.   (Liouville)   [Journal   of  Pure and  Applied  Mathemat 
ics   (Liouville)],  Vol.   10,   1865;   2)  Voigt,  W. ,   Ueber die 
Elastlzltaetsverhaeltnisse cyllndrisch aufgebauter  Koerper 
[On the  Elastic  Properties  of  Cylindrical Bodies],   Nachricl 
ten v.d.   Koenigl.  Gesellschaft der Wissenschaften und d. 
Georg-Augustin   [Bulletin of  the  Royal Scientific  Society ai 
the  Georg-Augustin University  at  Goettingen],   1886,   No.   16 

A.N.   Mitinskiy determined  the   stresses  in a wooden  tube by 
regarding  it  as a body with cylindrical anisotropy   (Mitin- 
skiy,   A.N.,   Raschet napryazheniy v derevyannoy  sverlenoy 
trube   [The  Calculation of Stresses   in a Bored  Wooden Tube], 
Vestnik  inzhenerov i  tekhnikov,   1936,  No.   5. 

See  our work mentioned  in   §23. 

Timoshenko,   S.P.,  Teoriya  uprugosti,  ONTI,   1937,   page  69. 

Zhitkov,   P.N.,   Ploskaya zadacha  teorii uprugosti  neodnorodno- 
go ortotropnogo tela v polyarnykh  koordinatakh   [The  Plane 
Problem  of  the  Theory  of Elasticity  of an  Inhomogeneous Or- 
thotropic  Body  in Polar Coordinates],  Trudy Voronezhskogo 
gos.   un-ta   [Transactions  of the  Voronezh State  University], 
Vol.   27,   Physical-Mathematical  Collection,   1954. 
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Chapter 4 

THE STRESS DISTRIBUTION IN AN INFINITE ELASTIC MEDIUM 
§29. ELASTIC SEMIPLANE LOADED ALONG THE BOUNDARY 

In this 
a plane elas 
boundary ("e 
whose sectio 
we shall con 
limited plan 
moment. For 
allzed plane 
ferred to th 

chapter we shal 
tic medium with 
lastic semiplane 
n is limited by 
sider the proble 
e medium under t 
the sake of defi 
stressed state; 

e case of plane 

1 consider the 
straight bound 
") as well as 
a parabola and 
m of the elast 
he action of c 
niteness, we s 
all results o 

deformation. 

stress distribution i 
ary loaded along the 
in an infinite medium 
a hyperbola. Besides, 

ic equilibrium of an un- 
oncentrated force and 
hall deal with a genar- 
btained are also trans- 

Let us consider an clastic homogeneous anlsotroplc plate 
with a straight edge along which forces acting in the mid plane 
are distributed. If the dimensions of the plate in the direction 
of the straight edge and in other directions are great compared 
to the length of the loaded part of the edge then it is possible 
to get an idea of the stress distribution by simplifying the prob- 
lem, i.e., considering the plate to be an Infinite plane elastic 
medium with a straight boundary, in other words, an elastic semi- 
plane . 

There are several methods of solving the problem of stress 
distribution in an elastic semiplane. The first method which Is 
based on the use of Fourier integrals is particularly convenient 
in the case of an orthotropic semiplane. We shall set forth brief- 
ly its principle and the way of its application.* 

We shall choose the following restrictions: 1) the medium is 
orthotropic, in which case the directions parallel and perpendic- 
ular to the straight boundary are the principal directions; 2) 
the load is applied to the end part of the boundary, distributed 
symmetrically with respect to the center of the loaded part and 
results in a finite resultant.** 

We shall choose the center of the loaded part of the bound- 
ary to be the origin of coordinates, place the y  axis along the 
boundary and the x  axis into the semiplane (Fig. 48). We shall 
designate the normal and tangential components of the load re- 
ferred to unit length by N(y)  and T(y);  N  will be an even func- 
tion of y,  and T  an odd function. The stress function satisfies 
the equation 
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Pig.   48 

(volume forces are not considered) 

(29.1) 

We  shall represent  the  functions  N and T In terms   of  Fourier 
Integrals;  we  obtain:* 

ao öD 

N (y) =■-£ J t (a)cos a-vrfa'    7*Cv) = 7 J x (a)sin «y rfa' (29.2) 
where 

1'(») = /^(Tl)cosay)(/7i>      Z(a) = /7'(7i)sina7id1j. (29-3) 

With increasing distance from the boundary the stresses must 
tend to zero, and at the boundary itself the following conditions 
must be satisfied: 

for a; =  0 «««-r^OO.     >*,, = -1 TOO (29.4) 

(as always,  h  is the plate thickness) 

The  solution will be  obtained with the help of a  stress   func- 
tion of the  form 

Z7—  Ml» (a, x) cos ay da. 
(29.5) 

The form of the function ^(a, x)  depends on the roots of the equa- 
tion 

u*      I  1   2^, (i-f)«H-i-o. (29.6) 

Denoting these  roots  by   —"P ±"2   and  comparing   (29.6)   with  Eq. 
(7.5)  which is   satisfied by  the  complex parametexo  yi   and  U2  we 
note that 
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'Oi== «» = • (29.7) 

and, therefore, m   and ua cannot be purely imaginary numbei's. 

The following three cases are possible: 

Case I. The roots of Eq. (29-6) are real and unequal: 

^ru,, zt«,  (",>(). öa>0). 

,J 2. The roots are real and in pairs equal to one another: 

±u  (B>0). 

Case 3, The roots are complex 

u±vh—u±vl     (a>b, T;>0). 

In Case 1 

* (a, x) = Ae-;*'*' + B«-«^» (29.8) 

(/Ij B  are arbitrary constants; terms becoming infinitely large 
with increasing x  are discarded in this expression and in the two 
following ones). 

In Case 2 

In Case 3 

*(op x) = (A-\-Bx)e-u*s. 

♦ (a, x) = {Acosvixx-^-Bs\nvau()e-i' 

(29.9) 

(29.10) 

The coefficients A  and B  depend on the parameter a. Fulfil- 
ling the boundary conditions (29.^) we obtain for Case 1: 

, ■  ao . ■  ' ' . 

00 • 

'xy 

(29.11) 

—:X(a)(u1<!-
uaJ— «je-"!")] sina^y do. 

In order to be able to calculate stresses for a given load dis- 
tribution with the help of these formulas we nust calculate the 
integrals ^(a) and x(o') and, on substitution of the values found 
into (29.11), carry out the integration. If the distribution law 
of the load is simple the calculation of the integrals does not 
encounter on particular difficulties. 
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The formulas for the two other cases of roots may be obtained 
from (29.11) by passing over to the limit, putting «1-+«, B,-*H 
or (in Case 3) replacing ui  and u2  by the quantities u + vi  and 
u — vi. 

The solution for the case of an antisymmetric load where 
N(y)   is an odd and T(y)  an even function of y  is found in a com- 
pletely analogous manner with the help of the stress function 

/^JVto, je)sln(y;rf(t. (29.12) 

The function f has exactly the same structure as the function 
*; according to which case of roots is under consideration it will 
be determined by Formula (29-8), (29.9) or (29.10). 

Another method of solving the problem for the semiplane is 
based on the use of several properties of Cauchy integrals and is 
a generalization of the well-known method of Academician N.I. 
Muskhellshvili to the case of an anisotropic body. By this method 
we were the first to obtain the solution of the problem of stress 
distribution in an elastic anisotropic sernispace in which the 
state of the so-called generalized plane deformation is realized 
(where the planes of elastic symmetry parallel to xy  are absent). 
The solution of the plane problem is obtained automatically from 
the solution for the generalized plane deformation if the strain 
coefficients a\ k , ait> a2v azv au< a36'aw aw   are Put equal to zero in the 
latter. This solution will be presented without derivation.* 

-^ 

V . 

->-Tfcf 

Fig. il9 

Assuming that the elastic semlplane is not orthotropic in 
the general case we will refer it to a coordinate system in which 
the x  axis is directed along the boundary, and the y  axis outward, 
as shown in Fig. ^9. We shall designate by N(x)  and Tix)  the nor- 
mal and tangential components of the load (per unit length). We 
shall assume that the resulting vector of the forces distributed 
along an arbitrary section of the boundary is finite and tends to 
a certain limit if the ends of the section move to infinity; as 
to the rest, the force distribution may be completely arbitrary. 

The 
stresses 
formulas 

functions $i(si) and $\{zz)  in 
are expressed [see (8.2)] will 
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^(5) + r(5) 
E-z, d5. 

oo 

_oo 

v    »h —fti 2«/A J    i —7, 

(29.13) 

G.N. Savin proposed another method of solving the problem 
considered based on the Schwartz formula which is known from the 
theory of functions of a complex variable; It expressed an anal- 
ytic function in terms of Its real part given on the contour.* 

All methods indicated may be used to determine the stresses 
in a semiplane and in those cases where the displacements (second 
fundamental problem) are given at the boundary rather than the 
forces; in the general case, the procedure of solution remains the 
same as in the case of given forces. 

Somewhat more complex Is the situation in those cases where 
partly forces and partly displacements are given at the boundary 
(problems of mixed type). The problems of the action of one or 
several rigid stamps on an elastic semiplane, e.g., belong to 
them. 

The solutions of a number of problems of this type were ob- 
tained by G.N. Savin** and L.A. Galin.*** 

Th 
elastic 
of two 
of the 
Grlllts 
of the 
anisotr 
by a no 
forces 
from th 
Fourier 

e problem o 
cylinder ( 

elastic ani 
frictlonal 
kiy.**** M. 
contact of 
opic semipl 
rmal force) 
on the cont 
e semiplane 
integrals. 

f the contact of an elastic semiplane and an 
as a special case of the problem of the contact 
sotroplc bodies) without and with account taken 
forces was considered by G.N. Savin and D.V. 
Sokolovskly gave the solution of the problem 

an infinitely long elastic band and an elastic 
ane (an infinite beam on an elastic base, bent 
. It is assumed that there are no frictlonal 
act surface and the band cannot be detached 
. The solution is obtained with the help of 

§30. THE ACTION OF A CONCENTRATED FORCE AND MOMENT APPLIED TO THE 
BOUNDARY 

If we want to obtain the stress distribution due to a normal 
concentrated force P  applied to the point 0 on a straight bound- 
ary of an infinite elastic medium (Pig. !50) we shall first con- 
sider a normal load distributed uniformly along a small section 
of the boundary having the length 2 e around the point 0  with a 
resultant equal to P. 

We shall restrict ourselves to the case of an orthotropic 
serniplane in which the principal directions of elasticity are 
parallel and perpendicular to the boundary. Using the first meth- 
od set forth in §29 we substitute the following values of the 
load components into Formulas (29.11): 

, 
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7=0. 

2« for 

for 

All Integrals entering (29.11) are easily computed; the results 
will depend on e. Letting then e pass to zero we obtain the fol- 
lowing formulas for the stresses due to a concentrated force:* 

_    P(Ui + U%) 
%hk 

^ = - 

«hk 

t jt» 

(yz+ «Jx1) 

(y' + u*x*)(yi + 
*y 

«Jx2) 

KA*    (yI-^^fJ:^)(/ + U»Jr,) 

(»=■/!)• 

(30.1) 

This solution is derived for Case 1 where the roots of Eq. 
(29.6) are real and unequal. The solution for Case 2 is obtained 
from (30.1) by putting ul = u2 = ut   and the solution for Case 3 by 
putting u1==a-j-T,/. tf2==«—.,/. 

Passing over to polar coordinates we obtain: 

P (ut -f ut)     cos 6 

= 0.. 

Here 

//«i\       cos^fl   .   /I       2v1\  . ,„      ,„  .   sln'fl 
L(H) ir-f-^__ljSIn:9cos^ + -I-. 

(30.2) 

(30.3) 

As we have already remarked the function L(e) has a certain 
physical meaning - it is a quantity which is the reciprocal value 
of Young's modulus for stretching (compression) in radial direc- 
tion: L  = 1/E  . r 

Formulas (30.2) show that the stress distribution is "radial" 
or "ray-like"; this was, of course, to be expected since the semi- 
plane may be regarded as a wedge with a top angle of IT. The stress 
a which is the principal one, decreases inversely proportionally 

to the distance r and for given r =  const varies with varying an- 
gle 9 according to a rather complex law. 

The points at which the stress a has the same value oQi  po- 

sitive and negative, lie on fourth-order curves; the equation of 
the family of these curves has the form: 

X* Hi-^ ^"'t^^-fj^O. 
«Asj Y£iE2 

(30.4) 

These curves are all closed, symmetric with respect to the 
line of action of the force (the x axis) and touch the boundary 
of the semiplane x = 0 at the point 0  where the force is applied 

- 132 

.--'  - - — - --■ 



pyjinwnyiumiiinu in JI,i.i i.i    twmmmi^mji i  n u 11 LIHIIUI im   IIIIIL-miüip^wffimiit^^^^^W^—IGMi ppppqp M11 .n-i mi-iiiii i.i.u..iiT'«  

P 

.P 
"ie N- 

t-tH 
Ue*- 

w/;////////. * 

\ 
' 

'  X 

\ 
% 

Fig. 50 

The investigation of Eq. (30.2) and Eq. (30.^) leads to the 
following results: 

The stress a  attains its maximum absolute value oi: the line r 
of action of the force 6 = 0 if 

or if at the same time 

and 

G      E^ 2    Ei 

0   fi ~ 2 " £i 

i-i>*- 

(a) 

(b) 

(b') 

If, besides Conditions (a) or (b) and (b1) the medium con- 
stants satisfy the two other conditions: 

±_^i>±, (c) 

(C) 

then, besides the direction of the force action, there are two 
other directions for which |o | attains maximum values; the an- 

gles determining these "dangerous" directions in the medium will 
be found from the equation 

tg9=± /f A-^+Zfe-^r-r^-^)- (30.5) 
If both Conditions (c) and (c1), or even one of them is not 
.lied the maxlmur 

will be the only one 

fulfilled the maximum of la I on the line of action of the force 
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The two angles 6 for which |a | attains its maximum value 

will be found from the equation 

*. - * /i A-H?- v (i-^r-m--^)- (30.6) 
If the elastic constants of the medium fulfill the condition 

1  21« ^1 JL 
U      Ex^ 2' Ei 

or simultaneously fulfill the two conditions: 

(d) 

0 Ei' 
i ± 
2' Ei' 

^-ir<0' 

(e) 

(e') 

then the stress a  on the line of action of the force attains a r 
minimum rather than a maximum. In this case there are two angles 
corresponding to the maximum of |o |; they are found from Eq. 
(30.5). r 

In accordance with these results three types of lines of 
equal stresses may be noted for different elastic orthotropic 
media. The curves of the first are obtained in a medium in which 
the elastic constants satisfy Conditions (a) or (b) and (b'), but 
do not satisfy Conditions (c) and (c'); they are shown in Fig. 
51. The curves of the second type occur if Conditions (a) [or (b) 
and (b')], (c) and (c') are simultaneously satis led (Pig. 52). 
The side branches correspond to the dangerous directions for 
which la I attains additional maxima. The curves of the third 

i r i 

type shown in Pig. 53 are obtained in a medium with elastic con- 
stants satisfying Condition (d) or Conditions (e) and (e1). 

Fig. 51 Pig. 52 

The lines of equal stresses make it possible to get a rather 
clear notion on the way in which the stresses in a semiolane due 
to a concentrated force are distributed. In special cases of ani- 
sotropy the curves may degenerate to ellipses and even circles. 
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Fig. 53 

In the case of an orthotropic medium El~El = E, L—l/E, ul = al = l 
and we obtain the well-known solution of Plaman:* 

2P    cos a 
0> = T, 0; (30.7) 

the lines of equal stresses a become circles (Pig. 5^). 

If the force acting on an orthotropic semiplane is directed 
arbitrarily in the xy  plane then the general character of the 
stressed state will remain as before, but the stress o will be 
determined from the formula r 

cos » cos 8 -|-1/ ^- sin o sin 8 
(30.8) 

rl (8) . 

(w is the angle formed by the line of action of the force with a 
normal toward the boundary, Fig. 55). In this case a neutral line 
(straight line) appears inside the semlplane, all stress compo- 
nents vanish on it; the angle of inclination it makes with the x 
axis will be determined from the equation 

tgo = gctg.0. 30.9) 

In an anisotroplc semiplane the neutrnl line is, in general, not 
perpendicular to the line of action Oi the force and forms an 
acute angle with it if £"1 > Ez   and an oi ' use one of Ei   <  E^.   On 
one side of the neutral line the medium is compressed, and on the 
other one it is stretched. The line of equal stresses are repre- 
sented in the form of fourth-order curves similar to the curves 
(30.iO. 

It is easy to obtain the solution also for th case of a non- 
orthotropic semlplane deformed by a force applied to the boundary. 
For this purpose the second method mentioned in §29 may be used, 
or we can make use of the solution for a nonorthotroplc wedge (see 
§20), putting the vertex angle equal to IT. We shall not present 
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this method. We only note that the general character of the stress 
distribution will be the same as in the case of an orthotroplc 
semiplane, merely the formulas for a^ and the equations of the 

curves of equal stresses are somewhat more complex. 

A concentrated moment M  applied to the point 0  at the bound- 
ary of the semiplane (Pig. 56) will be considered to be the lim- 
iting case of two equal forces of opposite directions where the 
distance between the points of their application tends to zero 
but the moment of the couple remains constant and equal to that 
given. 

■   f    v\ 
Pig. 55 Pig. 56 

Using the solution for the force we obtain the following 
final formulas for the stresses in an orthotroplc semiplane: 

AfCnt + a,)     sln28   f" 1    .  fl 

oj — O, 

T* _ Af(ai + tta) . l + cos2fl 

1+N, 1+V, 
r)C0S4 

(30.10) 

The same solution is obtained from the solution for a wedge 
set forth in §21, for ^ = TT/2. In the case of an orthotroplc semi, 
plane 

2Af sin 26 

M    I + cos 26 
(30.11) 

Among the other cases of loads only the simplest have been 
studied, as yet, where the load is applied to a finite section of 
the border and uniformly distributed along it, according to trap- 
ezoid and triangle laws.* 

§31. THE ACTION OF A FORCE AND MOMENT APPLIED AT A POINT OF AN 
ELASTIC PLANE 

The approach to the problem of stress distribution in an ani- 
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sotroplc plane due to a concentrated force applied to an Inside 
point which is far enough from the edge may bo performed in the 
following manner. We shall regard the plate as an infinite plane 
medium — an elastic plane to one of whose points a concentrated 
force P is applied. This concentrated force may, in its turn, be 
regarded as the limiting case of a load distributed along the 
edge of an infinitely small opening and resulting in a resultant 
equal to P.* 

Pig. 57 

We shall choose the point where the force is applied to be 
origin of coordinates, place the x  and y  axes arbitrarily (Fig. 
57) and assume the elastic constants referring to these axes to 
be given; generally, we shall assume the plate to be nonortho- 
tropic. 

We sha 
and displac 
§8). Since 
small dimen 
tlple-value 
closed cont 
where we mu 
from the po 
components 

11 make us 
ements in 
around the 
sions, is 
d and thei 
our Y enci 
st put Pa 
int where 
must tend 

e of the complex repre 
terms of two functions 
point 0 an opening, e 
assumed the functions 
r increments if we pas 
rcling the opening mus 
= Pcosa), Pv — Psinui (Pig. 
the force is applied 1 
to zero. The functions 

sentation of stresses 
$1(21) and «ta (22 ) (see 

ven one with infinitely 
*i and $2 must be mul- 
s along an arbitrary 
t satisfy Eqs. (8.10) 
57). If the distance 
s increased the stress 
of the form 

*i(2i) = /"nzp *2(z2) = ßln5rj. (31.1) 

allow all these conditions to be fulfilled, where A,   B  are con- 
stant, generally complex numbers which are determined from Eqs. 
(8.10). Designating by A  and B  we obtain the following equations 
on the basis of (8.10): 
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A+B-Ä-B=Pfln', 

Pi* -\-HB~ ^A — p2fl = — 

2RA/   ' 

Pcos i 
2«/i/ 

2«A/ a.,      VitA/ 'U 

»H l*i H »*a aa      2't/''        ön     2JtÄ7   J 

'SI.2) 

(the  complex  parameters  yi   and  ya   are the roots  of Eq.   (7.M  and 
supposed to  be  unequal). 

The  stress  components  are  determined by  the  formulas: 

(31.3) 

In the case of a nonorthotroplc medium these expressions 
will be very cumbersome, after splitting of the real parts. We 
shall present here only the formulas for the stress components in 
polar coordinates in which these quantities are calculated in the 
case of an orthotropic plate when the x  and y  directions coincide 
with the principal ones, and the force acts in the direction of 
the x axis (a) = 0) : 

'-**{»*-$'   r   l/M   V^ cos»a-^«ln88 

W        W  co,1 a-K»sin16 J* 

(31.^) 

[*=-hlh=}/'^. n=-/(h+h)]- 

In the given case the complex parameters \ii  and y2 are roots of 
the equation 

M-tV'+i-»- (31.5) 

Although the imaginary unit l = y—\ ,  enters Expression (31.^) 
all three expressions are real: for an orthotropic plate k  and n 
are always real numbers (in all three possible cases 1, 2, 3, 
mentioned in §7). 

Attention must be paid to the very simple law of distribution 
of the stresses afl and T fl and the very complex kind of dependence 

of the stress a on the angle 9. As in the case of a semiplane 
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loaded by a force the stresses vary Inversely proportionally to 
the distance r, but in our case the stress distribution will not 
be "radial" or "ray-like." 

Putting MI = uz = ^ we obtain the stress distribution In an 
Isotropie medium (with a Poisson coefficient v):* 

P ,» i * cos 8 

„ _   P  /I « cos •• 

(31.6) 

Pig. 58 

If we know the stress distribution due to a single force 
(31.3) we may also obtain the stress distribution due to a moment 

M  applied at the point 0  of an unlimited medium, but superposition 
and subsequently passing to the limit (Fig. 58). In this case, as 
in the case of the semiplane, the moment is regarded as the lim- 
iting case of two forces of opposite directions. In the case of an 
orthotropic medium the final formulas for the stresses have the 
form: 

0r     ^AOxj-iij)'    r»    L (cos* 8 — ji* sin2 e)' 
fl)' 

_ Ml+^)(-l-(V2-t'(i.+ V,) 

^ = 0. 
(cos? 8 - (i* sin2 e)2 

8^k-^V)I(1-Ä)2+n(1+*)+ 
+ (I —A)(lrfÄ+'n)cos2öJ. 

(31.7) 

L  is here a quantity reciprocal to E     [see Formula (30.3)]; 
the direction of the x  axis from which the angles 0 are counted 
coincides with the principal one. 

A very simple stress distribution is obtained in 
medium: 

ar = ai = 6,    Trt==. 
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On the basis of the formulas given in this and the preceding 
sections it is easy to obtain by superposition the stress distrib- 
ution in a semiplane under the action of force and moment whose 
points of application are inside the semlplane rather than on the 
boundary. 

The solution of the problem for an orthotropic semlplane de- 
formed by a force which is applied at some distance from the bound- 
ary is given in the works by Conway and M. Sokolowskly. * 

S.G. Mlkhlin found the general solution of the problem of 
stress distribution in an elastic anlsotropic plane with slits 
lying on one straight line, where the external forces are given 
at the boundaries of the slits.** Another method of solving this 
problem was proposed later on In a work by P.A. Zagublzhenko*** 
who also studied a special case: the compression of an anlsotropic 
plane with one straight slit (thin slot). 

§32. THE STRESS DISTRIBUTION IN A PLANE MEDIUM WITH PARABOLIC AND 
HYPERBOLIC BOUNDARIES 

Let us 
plate with 
the action 
the loaded 
latter may 
hyperbolic 
way to use 
problem of 
§29. 

consider the elastic equilibrium of an anlsotropic 
a concave boundary having the form of a parabola, under 
of a load applied to this boundary. If the length of 
section is small compared to the plate dimensions the 
be regarded as an infinite plane elastic medium with 
boundary. To determine the stresses it is the simplest 
a method analogous to the second method of solving the 
an elastic semlplane, about which was discussed In 

Let us Identify the origin of coordinates with the point of 
the concave boundary where the curvature is maximum, and place 
the x  axis along the tangent, and the y  axis outward (Fig. 59)- 
In this system of coordinates the equation of the boundary line 
has the form: 

>y = ax* (a>0). (32.1) 

Let X  .   Y    —  the projections of the forces per unit length - 

be given functions of a;; with respect to these forces we shall 
assume that their resultant for any finite or infinite section of 
the boundary is finite or zero. Generally we shall assume the ma- 
terial to be nonorthotropic. 

We present here the final expression^ for the functions 
*J(^I). ^(^i) determining the stresses [according to Formulas 
(8.2)]:»*«» 

*;(^)= 
2ii/C|ii —Pa)A    V I + 401V, 

1-f 4an2^. 

*i(^) = ifc'Oh-^A   /l+^j   J  E-Cjto) 
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Here 

(32.3) 

are functions of the complex variables si and Z2   which assume the 
same value x at the medium boundary y  =  ax2 . 

For a = 0 we obtain from it the already known solution for 
the semiplane [Formulas (29.13)]. 

Formulas (32.2) make it possible to find the functions of 
ehe complex variables (and from them also the stresses) for any 
force distribution at the boundary if only these forces satisfy 
the above-mentioned conditions. No special cases of the elastic 
equilibrium of a plate with parabolic edge have been studied, as 
yet. Conversely, for an anisotropic plate whose edges are hyper- 
bolic only the solution for one special case which we shall dis- 
cuss in conclusion is known. 

yl0*» 

ijf 

y/v/' 

V 

tm* 

Pig. 59 

Let be given an anisotropic plate whose region is bounded by 
two branches of a hyperbola and two equal straight segments (Pig. 
60). Normal forces resulting in stretching axial forces P  are dis- 
tributed along the straight boundaries. The stresses are to be 
determined, and, in particular, the stresses in the narrowest 
section a; = 0. 

An approximate solution of this problem for an Isotropie 
plate was obtained by Neyber,* and for an orthotropic one by 
Smith and Okubo.** 

The results of Smith and Okubo are easy to generalize to the 
case where the plate Is not orthotropic which we shall also sup- 
pose, at the beginning. 

We shall consider the plate to be infinite and the region to 
be limited by two hyperbola branches. Placing the axes as is 
shown In Pig. 60 we may write the equation of the edge in the 
form 

a»  6» — ,' 
(32.4) 
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or in parametric  representation 

x = bsht. y = zizacht (32.5) 

(the plus sign refers to the upper hyperbola branch, the minus 
sign to the lower one). Since the edge is not loaded the follow- 
ing conditions will be fulfilled on it: 

omdy — -:xvdx=0,  1 
r^dy-a^dx^O. ] (32.6) 

The stresses in an arbitrary cross section x  = xo  must re- 
sult in an axial force P from which three further conditions are 
obtained: 

jamdy = f-,       jaxydy = 0.       j^dy = Q, 
-»• -v. • -ir, (32.7) 

where 

y0 -T^'+xl 

All conditions can be satisfied by choosing the functions «ti 
and $2 in the form: 

*i CO = »In (zl + Vzl + Ö2 - (ija2). 

*2 (O = ß In {22 + Vzl+b'-vW). 
(32.8) 

Prom (32.6) and (32.7) we obtain the following equations for 
ehe constants A,   B  and the conjugate quantities: 

A + B-^Ä+B^Q, 

i-w i-tv^ 

+ii:linj±M.+5irli„l±^a=5z 

(-T)- 

(32.9) 

Equations (32.9) simplify for an orthotropic plate with pure- 
ly imaginary parameters ^ = ß'. H2 =8/- Solving them we find: 

where 
ihg 4hg' 

Ä;=ßarctg(pc) —8arctg(8c); 

(32.10) 

(32.11) 

-  1^2 
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a'=£-g
Rt 

p/ 
:l + b* + h*a*J 

(32.12) 

In  the  narrowest   Gection x  =  0  the  tangential  stress  vanishes, 
and  the  normal   stress   Is   determined  by   the   formula: 

(Oo 
p» 

2hg L /*3 + l=a (a3 - y2)   Z*3 + 
J 1. (32.13) 

The maximum value of the stress is obtained at the ends of 
the narrow section, i.e., at the points x~0, y=^±:a, it is equal 
to: 

where 

amu ^ah *' 

K_{p~li)c 
g 

(32.1^0 

(32.15) 

In Formula (32.14) the factor F/2ah is the stress due to the 
stretching force in a prismatic rod in which the cross section is 
the same as the cross section of our plate in its narrowest part; 
according to G. Neuber, this stress may be called "nominal"; the 
factor K is the concentration factor; it indicates how many times 
the maximum stress in the plate with the hyperbolic edge is great- 
er than the nominal one. We note that at the points x = 0, y = +a 
the radius of curvature is p = b/a. 

In the case of a.n Isotropie plate 

K = 2e(l+e*) 
c + (1 + c>) arctg c •• (32.16) 

The factor A' grows with increasing curvature at the end points of 
the narrow section (or, which is the same, when the radius of 
curvature decreases). The stress obtained at the center of the 
section x = 0 is lower than the nominal one. 

Fig.   60 
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In Table 1 the values of the concentration factor for dif- 
ferent a  for an Isotropie plate and a plate of plywood whose 
elastic constants were given in §11 are presented. Two main cases 
must here be distinguished. 

1) The plate is cut out such that the casing fibers are par- 
llel to the axial direction (the plate is stretched in a direc 
ion for whlr.h Ymmn-to ™^,,-i..- ..     - ). In this 

al 
t 
case for which Young's «duius'ls maxl^ f^T*  '"  a dlreC- 

max 

Hi ■ Uli.    ^ = 0.343/. ß = 4>llI 5 = 0.343. 

2) The directions of the casing fibers are perpendicular t( 
the axial direction (the plate is stretched in a direction for 
which Young's modulus is minimum: Ei W- For  this   case 

{x2 = 2.9I/1    ß = 0,243>    8 = 2,91. Hi« 0.243/. 

TABLE 1 

The Values of the Concentration 
Coefficient K  for Different Val- 
ues of the Ratio o  = a/b 

a 
b 

1        ^IBCpi 

El = Emla 

I 

10 
5 
2 
1 
0.5 
0.1 

HsorponH«! 
njicTHUKi 

2 

28.36 
M^2 
5.83 
3.13 
1.85 
1.03 

20.00 
10,07 
4.22 
2,36 
1,50 
1.02 

12,74 
6,39 
2,65 
1,56 
1,16 
1.01 

1) Plywood; 2) Isotropie plate 

This table shows that the maximum stress in a plywood plate 
obtained is higher than the maximum stress in the same Isotropie 
plate. If, however, the two cases of the plywood plate are com- 
pared, then, as Is shown by Table 1, the concentration coeffici- 
ent obtained is higher In the case where the plate is stretched 
in a direction for which Young's modulus is maximum. 

The formulas and tables shown may be used to calculate ap- 
proximately the stresses in stretched rectangular plates weakened 
by two Identical side grooves. 

!'.•■ 
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130 

131* 

131** 

[Footnotes] 

This method is set forth in greater detail in our above- 
mentioned work "Nekotoryye sluchal ploskoy zadachl teo- 
rii uprugosti anizotropnogo tola" [Several Cases of the 
Plane Theory of the Theory of Elasticity of an Aniso- 
tropie Body], sbornik "Eksperimental'nyye rnetody opre- 
delenlya napryazheniy i deformatsiy v uprugoy 1 plastl- 
cheskoy zonakh" [Collection "Experimental Methods of 
Determining Stresses and Strains in the Elastic and 
Plastic Zones"], ONTI, 1935, pages 16^-173- 

The problem may also be solved without these restric- 
tions, but the solution obtained will be considerably 
more complex. 
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er Mathematics], vol. Gostekhlzdat [State Publishing 
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Leningrad, 1951, pages ^6^-^68. 
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S.G., Nekotoryye sluchal uprugogo ravnove- 
dnogo tsillndra s proizvol'noy anizotroplyey 
of Elastic Equilibrium of a Homogeneous Cyl- 

Arbltrary Anisotropy], Prikladnaya matematika 
[Applied Mathematics and Mechanics], Vol. 3, 

, pages 359-361. See also the book: Lekhnlts- 
Teoriya uprugosti anizotropnogo tela [Theory 
ty of an Anisotropie Body], Gostekhlzdat, 
ngrad, 1950, pages 115-117. 
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Chapter 5 

STRESS DISTRIBUTION IN ELLIPTIC PLATE AND CIRCULAR DISK 
§33. DISTRIBUTION OF STRESSES IN AN ELLIPTIC PLATE LOADED ALONG 

THE EDGE 

In the present chapter we consider the problem of the stress 
distribution in a uniform elliptic plate loaded by forces applied 
to the edge, and that of such a plate which rotates at a constant 
angular velocity about an axis passing through its center. But 
here we consider the problem of a rotating round disk possessing 
cylindrical anisotropy, in both the case of a massive disk and 
that of a composite one. 

Fig. 61 

Let us consider an elliptic plate of uniform anisotropic ma- 
terial, which is in equilibrium under the forces applied, when 
these forces are distributed along the edge according to an arbi- 
trary law. In the general case we shall consider the plate to be 
nonorthotropic. We direct the axes a; and y  along the main axes of 
the ellipse (Fig. 6l) so that the equations of the generalized 
Hooke's law, which link the mean values, with respect to the 
thickness, of the stress and strain components, can be written in 
the following form: 

«» = ßU0a> + ailay + 02<pxy' I 
^„ =a a.„o- -f- a2Rau A- ooot-y. i Txy 

(33.1) 

The  constants  flip  ai2- 3G0 are assumed to be given. Let us denote 
the external forces 

area, and by a  and b  the semiaxes of the ellipse. 
by ^r , Yn  the projections of the external forces referred to unit 
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We assume absence of volume forces and the forces X   .   Y    to 
nJ n 

be in equilibrium so that the principal and their principal mo- 
ment are equal to zero. 

For the ease of an Isotropie plate this piob]em was solved 
by N.I. Muskhelishvili.* A general solution for the anisotropic 
plate by the method developed here was derived by the author,** 
and by means of another method, by P.P. Kufarev.*** 

form 
The  equation  of  the  plate's  contour  is  given   in parametric 

jr = acosD,    _y = isinD. (33.2) 

The given forces are assumed to be functions of the variable 
■0 (which varies from zero to 2TT). 

We express the stress components and the projections of the 
displacement in terms of functions of the variables "^(^i) and ^(^z)- 
such that the boundary conditions for these functions can be writ- 
ten in the form of (8.7): 

2 Re (*, ('i) H-<M^)I = - J n. <** +'.. 
'■■ ■>' ; -.    . . ; . 0 

.2 Re I^*, (z.) + ^ (z2)] = J ^n ds -f- cr 

33.3) 

We expand the given forces X   .   Y     in Fourier series and sub- 

stitute them in the integral expressions of the right-hand sides 
of the conditions. In the general case of forces (being in equi- 
librium along the contour) we obtain: 

— f ^n ^ 4" q = «o + 2 (am^ + Wm)' 

I 

' XndS + -C, = P0 + 2 (Pm^ + Pm"-"1). / m-1 

(33.^) 

where = «IM; «m. P« are given coefficients, which depend on the law 
of load distribution, - ö are conjugate quantities, c^, p0 are ar- 

bitrary constants. The coefficients «i- Pi> aj and Si must satisfy 
the equilibrium condition (principal moment vanishing): 

ai — «i _ ßi + PI 
*/     a 

(33.5) 

The solution of the problem in the most general case of 
load distribution is obtained by means of the functions $1 and <I>2 
in the form of the following series 
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V 

m-2 j 

(33.6) 

Plm and P2m  are here Integral polynomials of power m  with 

respect to the variables zi   and Z2:* 

^w=-(-d^r^ + ^-fl2-^)w + 
-f^-^f-^-^rj. 

/>2m (r2) = ~ ("^r[(Z2+^-fl-^T + 
(33.7) 

4.(Za_^_^_^)"]. 

On the plate's contour (33.^) the functions ^. -^j. Am and P 
take the following forms: 2m 

^1 = 2~0 + 2 7« 
_ a —/ix^   '      fl + ^t^     1 , 

z2-       2       0~i",     2 Tl 

W jfll    "^ffl 

where 
^» = -0"-^       .      />2n. = -0m-^ 

(33-8) 

(33.9) 

(33.10) 

Substituting the boundary values of the functions «t»! and $2 
in the Conditions (33-3) we obtain equations for the determination 
of the coefficients A     and B    and the conjugate quantities A     and 
— 177 777 v       i_) -a M 

B m m m 
m 

AmV-i + BmH -f AmV.~tT ~f 5m^?2
m = - ßm> 

AjT + Bmt? + Äm+jBm=-am, 
^m^r4-ßm!v2

m+^1+ßmir2=-pn ) 

(m = 2, 3, 4, ..;; 7,, F2 are constants adjoined to ti  and tz): 

(33.11) 

A + ßi + A + ß^ 
gi + ai 

^it1! + ^l^  f ^ll^l + 01^2 Ä.a. = -gL=LgL^ P» + Pl 
6/ , 

A^ + ß.^+Ä^ + ßj^^11^ 

(33.12) 

In the case of unequal complex parameters the system (33.11) 
always has a solution as its determinant Is nonzero. For the four 
coefficients   A , B ."A ,B    we have  only  three  equations,   but   certain 
definite  constant   stresses  correspond  to  the   functions Aizi   and 
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a» bl 
aj + a, 

T0   _ "t Pr+il 
bl (33.13) 

Fig.   62 

The  constants  AQ  and  BQ   remain  arbitrary. 

In  this  way  we   can  obtain  formulas   for  the   stresses  in  a 
case   of arbitrary   distribution  of  the  external   forces.   The   series 
(33.6),   after which  both  A     and  B     can  bo   obtained   from Eqs. mm 

(33.11), prove to converge absolutely and 
steadily in both the case of distributed loads 
and the case of loads in the form of concen- 
trated forces. A calculation of the stresses 
according to the functions 4> i and ^ is gener- 
ally connected with certain difficulties which 
cannot be avoided as yet. 

It is interesting to note that in the 
case of an anlsotropic round disk where b   =  a 
and the parameter -d  is equal to the polar angle 
we do not obtain any essential simplifications. 
The problems on the equilibrium of the elliptic 
plate and the round disk prove to be problems 
of almost the same difficulty. This does not 
hold true, however, for the case of the Iso- 
tropie plate; the problem of the stress dis- 
tribution in a round plate is much simpler than 

the same problem for an elliptic plate. 

Of the particular cases of load (disregarding the trivial 
case of omnilateral compression or extension) only a single prob- 
lem has so far been reduced to numerical results: the case of the 
compression of a round orthotropic disk by two equal forces P ap- 
plied at the ends of the diameter (Fig. 62). 

The solution to this particular case was obtained by Okubo 
(by a method which differs a little from that discussed in the 
given section, but which is also based on a complex representation 
of the stresses in terms of two functions of complex variables). 

Okubo constructed a stress distribution diagram for a certain 
disk diameter at which the ratio of Young's moduli for the princi- 
pal stresses is equal to 5.9 and the complex parameters are yi = 
= 2.307t and 1J2 = 1.053^, for compressions in the principal direc- 
tion of elasticity and at an angle of 45° to the principal direc- 
tion. * 

The graphs of distribution of normal str sses a with respect 

this disk, which is perpendicular to the line 
orce, are shown in Fig. 63. One of the graphs 
the case of compression in the direction of the 

ch Young's modulus is highest (£"2 > £1), the 
ression along a diameter which corresponds to 
2 < ^i). In the same figure the dashed line 

to the diameter of 
of action of the f 
has been drawn for 
diameter along whi 
other for the comp 
minimum modulis (£ 
sl'ows the distribu tion curve of a    in an Isotropie disk. In all 

y 
three cases the stress of maximum absolute magnitude acts at the 
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Fig. 63 

point of Intersection with the line of actic 
determined by the formula 

'-^iÄJ^' 

of the force. It is 

(33.14) 

where a  and h.  denote radius and thickness of the disk. Approximate 
values of the coefficient K  are equal: for £z>Ex K = 5.    for 
£a<E,/r = 2,2,  and in the case of Isotropie material (£! = £2) *"= 3. 
As regards the stress a at points of the same diameter it Is 

found to be much smaller than the stress a . 
y 

§34. DISTRIBUTION OF STRESSES IN A ROTATING HOMOGENEOUS ELLIPTIC 
PLATE 

Let us assume an elliptic homogeneous (rectllinear-anisotrop- 
ic) plate rotating with constant angular velocity w around an axis 
passing through its center, perpendicularly to the plane of the 
plate. The axis of rotation is considered to be a perfect mathe- 
matical straight line. The solution of this case has a very simple 
form and can be obtained by elementary means.* 
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We choose the directions of the axes x  and y  as shown in 
Pig. 6^. For deflnlteness we shall assume that no external forces 
are applied to the edge of the plate and that displacements of 
the edge points are quite unrestricted. The plate Is not supposed 
to be orthotroplc and Eq. (33.1) applies to It. 

The stress components, averaged with respect to the thick- 
ness, are determined according to the formulas 

=S[ä(^+£-')+"(•-5-9].. 
V — — 2*  oW 

(34.1) 

Y Is here the specific weight of the material and g  the accelera- 
tion of gravity 

A = b'c* 

a 
e=3T- 

3auc« + (2an + a«) c> + 3aa ' 
(3^.2) 

This stress distribution satisfies all equations of the plane prob- 
lem where the volume forces and their potentials are equal: 

x^x.   r-ifj. V—lgixt+y) (34.3) 

and the boundary conditions on = 0, T„ = 0. 

The maximum stress a. (tensile stress) In areas normal to 

the edge is obtained at the ends of the minor axis of the ellipse: 

a  ^t—n* flllc< + 2a„c» + aa ,-u    MX 
»       g a  3fluc< + (2fll3 + au)c' + San: \3    -^J 

The stress at the center is equal to 

g      3anc< + (2aia + 0^0 + 3aM " (34.5) 

When the elastic constants of the material satisfy the condi- 
tion Ow>^all,   the highest stress of the whole plate is reached at 
the center and it is determined by Eq. (34.5). 

The stress distribution in a round disk of radius a rotating 
about an ideal axis passing through the center (Pig. 65) is ob- 
tained when we put b  = a  and ö = 1. In polar coordinates the 
stress components depend only on the distance r  from the center 
of rotation: 
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(3^.6) 

(3^.7) 

In the case of an Isotropie disk with the Poisson coefficient v 
we obtain the well-known stress distribution:* 

"-gPf'--^). 
Vi = 0. 

(3^.8) 

All the above formulas only permit the calculation of stresses 
averaged with respect to the thickness. In fact the stresses vary 
with the thickness, i.e., they also depend on the coordinate z  di- 
rected perpendicularly to the plate with the origin in the mld- 
pJane. 

When we denote by "^ "»'  ^ the true stresses in the plane 
and by äx, ä. xx      their mean values with respect to the thickness, 

the formulas which take the stress variation with respect to 
thickness h  into account can be rewritten as follows: 

0, = T« = V = 0. 
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The constants B,   C}   D  for the elliptic nonorthotroplc plate 
are determined from the following equations: 

ßöl6 + Cfl20+^a66 = 
2y4 

(3^.10) 

[a., are the elastic constants from the equations of Hooke's gen- 

eralized law (2.5)]. 

In particular, for an elliptic Isotropie plate we obtain 

i 
a,, = a,, =2?-,    012 = 0 

■•ee — 

*21 

2(1+v) 
21 

£ 
2v 

«11 = — £. 

= 3M == 0; 0,6 = a2i 

(<:<4-c» + 2)(l+2v) + c»(3c'+l)x   ^ 
3(1—v») 3c< + 2c»-f-3 

2v (2c< + ci+l)(I4-2v) + (^ + 3)v 
3(l-v») 

D = 0. 
3c' + 2c»4-3 

(3^.11) 

§35. STRESS DISTRIBUTION IN ROTATING CURVILINEAR-ANISOTROPIC DISK 

It is not difficult also to obtain the stress distribution 
in a rotating round disk whose anisotropy is not linear but cyl- 
indrical. 

Let us assume that the disk represented in Fig. 65 possesses 
a cylindrical anisotropy with a pole of anisotropy located at the 
center and, moreover, that it is orthotropic so that every radial 
plane is a plane of elastic symmetry. The stress distribution in 
such a disk, for both the case of a massive disk and that of a 
disk possessing a round hole in the center, is obtained with the 
help of a stress function only depending on the distance r. This 
function is the solution of the nonhomogeneous equation (12.11) 
where 

U (35.1) 

It reads 

Here 

F=/0(r) = /l + fl^+Cr'^ + Dr'-* + g(3-^-2v,)r».   (35.2) 

*=/f. (35.3) 

Jßr' E*   are Young's moduli for the principal directions, the radial 
direction r  and the tangential one 8- vr, •;, are Polsson's coeffici- 
ents; y is the specific gravity of the material and w the angular 
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velocity. For the stress components and the projections of the 
displacements the following general formulas are obtained: 

or-.C(H-*)r»-« + D(l-ft)r-»-»-^.35±^r«. 

•M-O: 

E(flr = C(l+ft)(ft-vdr»-D(l-*)(H^-*-^-^'8. 

«,«=»0. . 

(35.M 

(35.5) 

We have here omitted the constant B  as it corresponds to a 
many-valued displacement u$  proportional to the angle 6; rigid 
displacements have also been neglected. The constants C  and D  are 
chosen such that at the rim and also at the edge of the opening 
the necessary conditions are satisfied. 

A solution of the problem of the rotating disk, massive or 
weakened by a central opening, with free peripheral edge, has 
been found by G.S. Glushkov. Let us give the formulas for the 
stress in a massive disk:* 

<J,= 

TAa*    3 + 
'-r-9=: 

^ = 0. 

(35.6) 

With A= 1, v, = >ir = v We obtain the stress distribution in an 
Isotropie disk [see (3^.8)]. With materials for which k >  1,  i.e., 
£|>^r»  the stress components in the center of the disk are van- 
ishing and the stress becomes highest at the edge of the ring: 

(«•)o 
T>i*flg    it —V| 

1  £ "a+jr (35.7) 

With such materials for which k  <  1,   i.e., ^i«^,- the stress 
must increase with decreasing distance to the center as this re- 
sults from Eq. (35.6). In such cases the stresses must be concen- 
trated around the pole of anisotropy, similarly as the concentra- 
tion in a disk which is uniformly loaded at the rim (see §26 and 
Pig. ^5). 

When the peripheral edge of the disk is fixed to a perfectly 
rigid ring which cannot be deformed, the conditionar = u9 = 0. must 
be satisfied on it. On the basis of the general formulas (35.4) 
and (35.5) we obtain the following stress distribution for a mas- 
sive disk: 

•'=Ä[<*+<r-'3+<)T 
'.=Ä[*<*+^r-(*'+3.1)(^]. 
^ = 0. 

(35.8) 
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On the surface of the contact between disk and stiff ring we 
obtain the following stresses (compressive): 

(«'r)a = -!^-3^T. (oOa^Oa- (35.9) 

Also in this case with ft<l (E0<£r) the stresses will be con- 
centrated at the center. 

§36. ROTATING NONHOMOGENEOUS CURVILINEAR-ANISOTROPIC DISK 

Using the results of the preceding section and the method de- 
scribed in §27, we can obtain the stress distribution in a rotat- 
ing disk consisting of a series of annular layers soldered or 
glued together, which possess cylindrical anisotropy and different 
elastic constants. 

Let the disk shown in Pig. 46 (§27) rotate with constant an- 
gular velocity w about an axis passing through the center. The 
center is assumed to have a round opening. We consider the case 
where the peripheral edge and the edge of the opening are free 
from external loads and their displacements are not subject to 
any limitations, i.e., p = q =  0. We again use the denotations of 
§27 and introduce additionally  im(m== I, 2, .... n) , the specific 
weight of the material constituting layer number m.   In the case 
given the volume forces must be taken into account whose poten- 
tial is for each layer equal to 

Um = ~-^fr*. (36.1) 

Denoting as before by q     -.   and q    normal forces acting on 

the inner and the peripheral surfaces of layer number m i.1o'=1nz=^)> 
we obtain the following formulas for the stresses and the radial 
displacements in this layer: 
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i i 
ijsai'i 3+>im,ri- 

+iTz¥1[(:-),""'r(^"<,J+ 
+n^rf-fc),":,+^(^n.. 

\ ml 

— Cm 

+1TS^[fcr+(^rj- 

ly'-o: 

z^ftr^^^rj. 

^ (ftw+r) L^l c*ini+s (fa)*-' _ 

-l^-(r))8l(f-)9l4-y"-'fl"'c*w+I  x 

x [(*-;-r)(^)*"+(*H.+vo.o)(£!i)*".- _ 

('»■—1. 2 n,      ^ = ^„ = 0). 

(36.2) 

(36.3) 

The unknown forces q     are determined from the conditions of 

equality of the radial displacements of the points on the contact surfaces: 

(36.^) 

r™. E
H^2r6r^iy

n L^^T^^---/—•• —h dlffers 
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(« = !. 2 n—1). 

•X. (36.5) 

The   coefficients  a    and 3     are  determined by  Eqs.   (27.7),  6     by 
the   formula mm m 

5 Tn.      /j+jjg       3 + v^       l-2c>+3
+c: 

"      9-^1     4m' £i""      m m ' 
1-C»r 

Ttn-f 
/IJ-3V("»+I) a + v'-n+D   i — oc^+i'-' + c""«*^ (36-6) 

+ 1,  Äm+i " 
9-^1 4m+,, fi' m + l) 

1   ci»» + l 

Attributing the values 1, 2, ... up to n — 1 to m, we can 
determine from Eq. (36.5) successively all unknown forces on the 
contact surfaces entering the stress formula (36.2). In particular, 
when the disk consists of two rings (see Pig. ^7 where p = 0) we 
have 

n = 2. 9, 
Ja\     \ 

h  • (36.7) 

The stresses in a rotating disk or ring, displaying cylin- 
drical anisotropy and being orthotroplc but having variable moduli 
and Poisson coefficients and constant density y, are determined by 
means of the functions fair)   according to the formulas 

Air) 
2g 2* 

(36.8) 

The   function jv   satisfies  the  inhomogeneous  equation with 
variable  coefficients 

/-+(l-Ü-K+( 
vece 

(36.9) 

A general expression for /o can be written in the form 

/o = ?oM + ^Ti(0 + 5?2(0. (36.10) 

where fpi and cpz are linear-independent particular solutions of 
the homogeneous equation corresponding to (36.9) while cp0 is an 
arbitrary particular solution of the inhomogeneous equation. The 
constants A   and B  are determined from the boundary conditions on 
the peripheral contour and the contour of the opening (if it ex- 
ists ), 

In the simplest case Young's moduli are power functions of 
the distance and the Poisson coefficients are constants: 

^r = En*'*.     £9 = £,6m'"m.  ^ = Const,   vr == v, ip. ^""     (36.11) 

(m 1s an arbitrary real number). In this case the particular solu- 
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tions ?o> TP 92 are also power functions of the distance r.   Without 
discussing all possible cases In detail, we only give the solution 
for the massive disk with free peripheral edge: 

7o»a» Ait       3 + »t-m   r//-\
w--1  /r\2l 

X / 9 —A»—(3 —v^m 

x[(3 + >,-m)«1(f)"
,",-(^ + 3 

^«0 

(36.12) 

(36.13) 

With m = 0 we hence obtain the well-known solution for a 
curvlllnear-anlsotroplc disk with constant Young's moduli [Eq, 
(35.6)]. 
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Chapter 6 

DISTRIBUTION OF STRESSES IN A PU\TE WITH ELLIPTIC 
OR ROUND APERTURES 

§37. DETERMINATION OF STRESSES IN A PLATE WITH ELLIPTIC APERTURE 

In the present chapter we shall consider the problems con- 
nected with the determination of stresses in a plate weakened by 
an opening and deformed by forces acting on its midplane. It is 
well known that in an Isotropie plate with an opening, which is 
not filled and not reinforced, the influence of the opening, com- 
pared with a massive, nonweakened plate, results in an Increase 
of the stresses at certain points around the opening. This effect 
has been called the stress concentration. The problem of stress 
concentration In an Isotropie plate has been developed rather 
completely, for various cases of apertures and loads.* In the 
case of an anisotropic material it is only the problem of the 
stress distribution in a plate with elliptic or round aperture 
which has been studied in sufficient detail; for a series of 
other cases of apertures we only have approximate solutions at 
our disposal. In the following we give the solutions for a series 
of problems of stress distributions In an anisotropic uniform 
plate with elliptic or circular aperture, not filled or filled 
with a rigid core or a core of elastic material with different 
elastic properties. 

Let us consider an anisotropic plate which is homogeneous 
but generally nonorthotropic, of arbitrary form, weakened by an 
elliptic aperture and deformed by forces which are distributed 
along the edge of the aperture and act on the midplane. If the 
aperture dimensions are small compared with the plate's dimen- 
sions and If it is not near the edge of the plate, the problem 
can be simplified by assuming it infinitely large, thus neglec- 
ting the influence of the peripheral edge. With this statement we 
shall consider the problem. 

To begin with, we consider the first fundamental problem 
with given external forces. 

The directions of the axes x, y   coincide with the principal 
axes of the ellipse (Pig. 66) and we use the denotations: a., are 

tj 
the elastic constants of the equations of the generalized Hooke's 
law (2.5) or (33.1) written for the given system of coordinates 
x,   y   (they are assumed known); a, b  are the semiaxes of the el- 
lipse; h  is the thickness of the plate, X  , Y    are the projec- 

tions of the forces acting on the edge of the aperture (per unit 
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Pig. 66 

area); P^ P^  are the projections of the principal vector (re- 

sultant) of these forces. The contour equation of the openlne 
reads in parametric form: upening 

x = acosO, 
(37.1) 

and the given forces are taken to be functions of the parameter 
■0 which varies from 0 to 2-n  with a full circumvention of the con- 
tour. 

We use a complex representation of the stresses, by means of 
the functions ^(z.)  and *2(z2) [see §8, Eqs. (8.2)-(8.6) ]. The 
functions $i and $2 must satisfy the boundary conditions (8.7). 
We expand the given forces X 3   Y    in Fourier series. The bound- 

ary conditions (8.7) In the general case will then read 

2Re{*l(zl)-|-*8C?a)l = 

P, 

2RCI(V*1('i) + lVM*J)] = 
m-l 

:-^-0 + ßo+2(ßn.o'"+Fmo-). 

(37.2) 

»-1 ) 
Here a::==«'<; «m- Pm  are given coefficients, complex in general, and 
depending on the law of force distribution along the Jet of the 
aperture; äm, $m   are quantities which are adjoined to the former; 
aoj ßo are arbitrary constants. The stresses must tend to zero as 
the distance to the aperture increases. 

The solution is obtained w3th the help of the function* 

00 _ 
^'l (*l) = VM •" :, 4-   V  Pm-^m   r-m 

*2(^) = flo + flInC2—   V  Pm-^mr-m 
^    Pi-Ha      a    " 
m-1 

(37.3) 
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Here 

a —^ft a — /(XjA 
(37.4) 

are functions which assume one and the same value at the edge of 
the aperture, namely o=-cB<; ^o. So are arbitrary constants and A 
and B  are constants determined from the equations 

A+    B—     A—    B= P* 
2*hl' 

ji, A + yfr ß —ji, -4 —[i2 B = 

"u     P* 
ßn    2-nhl 2*hl 

Pi H H Pa aB    2r.hi   '   ajj    2nA/ 

(37.5) 

As the explicit expressions for A  and B  are too complicate 
we do not give them here. 

The derivatives of the functions ^i and $2 read 

(37.6) 

On the contour of the aperture they take the form 

*»  /(asm« —^6cos») I ^  Z^ ^ H-H )' 

(00 

m-l 
Hi —ft»     , 

(37.7) 

The stress components are determined from Eqs. (8.2) and 
the projections of the displacement from Eqs. (8.3). 

Let us give yet another formula which will often be used in 
what follows. The stress o^ in areas normal to the edge of the 
aperture, at the edge of the aperture itself, is equal to* 

0,= 
a» sin» Ö-f 6» cos» ö ^ 

X Rel^i osln »-f ft cos 8)» I j    1     V  m P'" — W< 
I    a sin »— H,* cos 8    \     ,n~r XJ        Hi —ft» 

/(^sln» + 6cos8)i/ y „J.,.-^^ 
a sin 8 — pj cos 8     \a~rZjm    ^-^ 

H. n-m 

(37.8) 

w-i 

If at the edge of the opening the given displacements u*, v*  are 
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«* = «0 + 2 («.nO"1 4- ämo-"). 
(37.9) 

rs-l 

and  the   projections  of the   resultant   forces   (whose  distribution 
along  the   contour  is  unknown),   the   functions   «t t ,   $2   determined 
from  the   boundary   conditions   (8.8)   have  the   form 

*i (',) = /*(, + ^ I" C. + [a^-Pi^ +1 "> ('^2+^2)] ^ +' 

"+■2) 2i (am92"■~^m/'2),•l_t", 

*s (^2) - 50 + fl In C - p^.-PiPj +1 u) (%i+flA)] ^ - 
a» 

m-I 

(37.10) 

Here /!&., So are arbitrary constants; A,   B  are constants ob- 
tained from the same equations (37.5); Pi< Pz.  ft. ft  ar'e constants 
determined by Eqs. (8.^); 

D = ^ift — P2?i; (37.11) 

co is a constant expressing the rotation of the plate In the xy- 
plane, for the determination of which we must formulate addition- 
al conditions of reinforcement (In all cases considered below w = 
= 0). 

The functions of the complex variables ^i(zi) and ^J^)- which 
represent the solutions to the problem considered, are determined 
in the form of series. This method of solution is not the only 
one. G.N. Savin suggested another method of solving the problem 
of stress determination in an anisotropic plate with elliptic ap- 
erture, based on the application of Schwartz's formula, which is 
well known in the theory of functions of complex variables; the 
expressions for the  functions $1   and $2  are obtained In the form 
of Integrals taken along the contour of the unit circle.* 

When the resultant vector of the forces given on the contour 
of the aperture is equal to zero, Eqs. (37.3) for the functions 
of complex variables may be given a new but also integral form: 

Here 

j., (z,) = —!— .^-\h -Kf* da + A 11   »h — Pa  2JI/ J 0 — q (?i)     0 

T 

T 

1 t    ' 

f^fXnds.        f2~-JYndS. 
.0 0 
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(37.14) 

de is the arc element of the apertural contour, 0=«" is a point 
on the contour y  of the unit circle K|= •. C,. C,  determined by Eqs. 
(37.4), Ad   Bo   are arbitrary constants. These expressions for the 
functions 4>i and $2 may be more convenient than the series expres- 
sions (37.3) (e.g., in the case where concentrated forces are ap- 
plied to the contour or where part of the contour is free from 
loads while on the other part a uniformly distributed force is act- 
ing, etc. ). 

It is sometimes more convenient to use representations of 
stresses and displacements in terms of the functions f^2'^  and 
Vt^z)    of the variables ,'_, ■ w ,'_, i iT  [see Eqs. (8.11) and (8.12)]. ,-zi-v. z2_2-t-V 

We give the form of the functions <I>i and ^ determining the 
stresses and displacements in an anisotropic plate with elliptic 
aperture, at the edge of which the forces or displacements are 
given: 

?l('l') = .4o-M1"'i-i-f;An'rm 
Nl-l 

'• .' ,n"1 

Here 

_ ^ + K? - 2 (a* + *') X, - (q» - 6*) (1 + X') 
* a + b + ia — byki (37.15) 

(A=l. 2).  . 

On the contour of the aperture ti = £2 = a. The constants AQ,   BQ 
are arbitrary; A,   B  depend on the vector sum of the external 
forces and A  ,   B    are determined from the boundary conditions (ac- 

cording to what is given at the boundary). 

§38. PARTICULAR CASES OF LOAD 

Let us give solutions for some particular cases of stress 
distribution in a plate with elliptic aperture.* We r_estrict our- 
selves to the functions «ti and $2, the coefficients am, pm and 
the stress a^ on the whole contour of the aperture and in individ- 
ual points of it; the formula for o^ is left in its complex form 
as the separation of the real part (i.e., the actual execution of 
operations represented by the symbol Re) results in very cumber- 
some expressions which take much place without being of particular 
interest. In all cases considered, each of the functions *! and «I^ 
is not represented by the series but only by its first or second 
term. The expressions for the complex parameters are generally 
different: 

l*i = « + P'. h = 7 + 8'  (p>0. 8>0). 

In the  formulas  we  use  the abbreviated  denotations 

c= y.   r = i2sin20-f-^coss0. (38.1) 
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Fig.   67 

I. Equilibrium pressure on the contour of the aperture. Nor- 
mal forces q are assumed to act on the whole edge of the aperture 
In uniform distribution (per unit area, Fig. 67). 

*I(2I)==IL=^£L   i     *l(Z2)«_lLr*L. i ; (38.2) 
11 K — H      ^ lwy H — H      C« 

7 —      I"     ST _     ^ . ai—      -^"i    Pi •; 2~i (38.3) 

3» ~ /a Ke ( (a sin Ö — (i,* cos 0) 
&-M 

X i (a sin Ö — ji^ cos 6) 

X I(Hil*2fl — 'Hi* — M as sin8 I) + / ([A,!!, — 2) aW sin» 0 cos 0 + 

+ (2(1,^ — 1) a26z sin 0 cos2 0 + {^a -|- ii2a — lb) b9 cos91)]|. (38.4) 

At the points A  and A\   at the ends of the major axis (Fig. 
67) where -O = 0 and -tf = IT. 

at = g[wTkür+W + c{'*TW+T^)]' (38.5) 

In an Isotropie plate at the same points 

cl = 9(-l + 24 (38.6) 

At the points B  and Bi,   at the ends of the minor axis (Fig. 67), 

where 0= * n _ ^L 
2 •    2 ' 

,t=q{ai-v+ttiy 
(38.7) 

In an isotropic plate at the same points 

O-^-l+Z). (38.8) 

In a nonorthotropic plate the distribution of the stresses 
o^ along the edge of the aperture are found to be symmetric only 
with respect to its center 0.   In the case of an orthotropic plate 
in which the directions of the principal axes of the ellipse co- 
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inclde with the principal directions of elasticity the o^ distrib- 
ution also beccmes symmetric with respect to these axes. 

2. Tangential forces uniformly distributed along the edge of 
the aperture (Pig. 68). The functions $i and ^ have the form 
(38.2), but in the given case 

-  Ibl      -g            ta 
«j — -5-. Pi = 2". 

where t  is the intensity of the forces and 

(38.9) 

^"-/rM^sma-, X • Pib cos 8) (a sin 8 — jij* cos 8) 

X [OV* + W + ^iM) a9 sin» ft + (2 — [i^,) a*b sin2 0 cos 0 -f     (38.10) 

-\-&VLtto—l)''l>ii sin ft cos2 0 -f- (a+l^b+lpj) ft'cos' 0) j. 

3. Tension. A plate is extended by the forces p  applied at 
a sufficiently large distance from the aperture (theoretically at 
infinity) and attack at an angle of 9 relative to the major axis 
a  (Fig. 69); the edge of the aperture is free from external 
forces. 

Pig. 69 
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The stress components are obtained by means of summation over 
the stresses in a massive and uniformly extended plate 

a°> = pcosi<f,    a0=ps\nl<f.    T°   = psin cpcos cp (38.11) 

and  the  stresses   obtained  by means   of  the   functions   ^i   and  $2   of 
the   form  (38.2),   where 

P. 

•r     (a sm ? — w cos T)' 

P cos <f ,     . ' ,. . 
—,,—^ (0 Slli o -    /o cos 'f). 

(38.12) 

Let us give the expression for the stress o^ in the case 
where cp = 0, i.e., the plate is extended in the direction of the 
x-axis (Fig. 70): 

o8 ■-= p -^ sinJ ö -f — Re {-r^^Y—^-^s'ü) {a .in 0 - ^b cos 8) A 

X l(l*i+^)«s sin3 O+CQ-ii,^) «^ sin= 0 cos fl-f-ö3 cos3 nij. 

At  the  points  A  and Ai   (Pig.   70) 

«T-jft 

In an Isotropie plate at the same points at = —p. 

(38.14) 

Fig.   70 

At  the points   B  and Bi   (at  the  ends   of the  diameter  perpen- 
dicular to  the  tensile  forces,  Fig.   70) 

'.=f(.+
i±i)- 

At the same points in an Isotropie plate 

Oj=p O+l)-. 

(38.15) 

(38.16) 

4. Shear. A rectangular plate with an elliptic aperture in 
its center is deformed by tangential forces of the intensity t, 
which are uniformly distributed with respect to the sides; the 
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When   the   d linens loni;   of   the   apcrlur'r   an-   :;i(ia I I   compared   to 
the   side   dlmen;.; 1 ons,   the   plalr   may   bu  (;orKi I df.-r'f.'d   Infinitely   iar^e 
and  the  tensile   forces   L   ;irr  applied  at   Infinity   (Fl^.   7i).   The 
stress   distribution   lu   obtained   by   adding:   the   ;;tre:;:;(.-:;   In   the 
massive   plate 

ou —- /sin 2 '?• • xu > ■ty crt.i'n 
and  the   stresses   obtained   by   mean:;   of   functions   of  thie   for-m   ('jb.2) 
where 

ai= = "2 (    a si,l 2'f -\- ibcosl'f). 

ß", =-{-(     acos2?  | //;sin2'p). (38.18) 

In particular, with cp = 0 (Pip. 72) we obtain the following 
law of stress distribution on the edge of the aperture: 

ol = _^sin2ö-{-iRej 
Af-M 

X (a sin 0 - - i^ft cos 0) (a sin 0 — pjb cos 8) 

Xl(lAla4 IV1 —'^M)035!"0^.^ —h|ij)a^sin»()cosO-f-   (38. 19) 

+ /(l-21i,n2)fl^sin0cos50 4-(a-/|Al6-/ii2A)ö9cos9D)]. 

5. Bending of plate by moments. A rectangular beam-plate with 
an elliptic aperture in its center is bent by the moments M.   The 
major axis of the aperture makes an angle of (p with the axis of 
the plate (Fig. 73). 

Fig. 71 
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Fir,. 72 Fig. 73 

In the case of small dimensions of the aperture the plate Is 
assumed infinitely large. The stresses in it are obtained by ad- 
ding the stresses in a massive plate-beam corresponding to pure 
bending* 

M 
"l^-j-iycosf—x sin <p) cos* ?, 

0J = -y- CV cos <p — JC sin tp) sin1 <p. 

M (38.20) 
*ly = —(.Vcosf — xsiny)sin9cos<p, | 

and the stresses obtained by means of functions of the form 

where 

Af 
"2 = — &/ sin ? (*2 cos;! ? — aJ sin2 <? 4- /aft sin 2(p), 

M 
Pi -=     -gj cos <p {b* cos2 tp — QJ sin2 ? -f /aft sin 2(p). 

(33.21) 

(38.22) 

^K  ^ particular, if the axis of the aperture Is parallel to 
the sides of the plate, i.e., cp = 0 (Pig. 7^, we obtain 

»        J      P Sln   " + 27^^     (flsln8-^cos0j 
It-m 

(a sin 9 — nj* COS 0) A» X 

X (Ovl-^) as sin» 0-f (2-1x^2) aJft sin21) cos 0-f ft'cos5 0] . (38.23) 

^ the points A  and ^,, at the ends of the diameter directed 
along the axis of the plate-beam (Fig. 711), aireccea 

0. = 
Mb ßT + ai 

0»  — 27 ' (a3^-^)(ta-|-4a)
, 

so that in an Isotropie plate, at the same points, o, = 0. 
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At the points S and Bi at the ends of a 
ular to the axis of the plate-beam (Pig. 74) 

and at the same points of an isotropic plate 

diameter perpe idic- 

(38.25) 

(38.26) 

G.N. Savin considered the case of bending of a plate with an el- 
liptic aperture, with constant intersecting force and some other 
cases.* 

In all the cases discussed the distribution of the stresses 
o^ along the edge of the aperture in an anisotropic and, moreover, 
nonorthotropic plate is governed by much more complicate laws 
than the distribution in an Isotropic plate. 

The stress distribution is symmetric with respect to the cen- 
ter of the aperture but in general nonsymmetric relative to its 
axes. The formulas for the stresses at the points 4, 4i, B  and Si 
at the ends of the axes of the ellipse give an idea on the concen- 
tration of stresses (at least for the orthotropic plate in which 
the principal directions of elasticity are parallel to the direc- 
tions of the aperture's axes and cp = 0). All formulas remain val- 
id in the case of a round aperture where b   -  a  and 0 is the polar 
angle 6 reckoned from the x-axis. 

§39. STRESS DISTRIBUTION IN AN ORTHOTROPIC PLATE WITH A CIRCULAR 
APERTURE 

In this and the following sections we shall consider some of 
the most interesting cases of stress distribution in an orthotrop- 
ic plate which is weakened by a round aperture of radius a.** 

In all cases the origin of coordinates is placed at the cen- 
ter of the aperture and the principal directions of elasticity are 
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taken according to the directions of the axes x  and y.   We use the 
denotations which were partly encountered previously, namely: ffij 
Ez  are Young's moduli, Vi, V2 are the Polsson coefficients and G 
Is the modulus of shear (all for the principal directions), yi, 
\i-i   are complex parameters, solutions of the equation 

^+(i-tW;H- (39.1) 

Moreover, we Introduce the notations 

6 Is the polar angle reckoned from the x-axis, E~   Is Young's mod- 

ulus for extension (compression) in the direction of the tangent 
to the aperture's contour, connected with the elastic constants 
for the principal directions by the formula 

1   sln<e . / 1   2V, \ . . .  ,. , cos« ( 
(39.3) 

Let us give by the way the formula for an orthotropic body which 
will be used in the following 

£. ^4-^ = 2^—^ (39.4) 

In all cases we point out the expressions for the stresses 
ofl acting on surfaces normal to the edge of the aperture, i.e., 

on the radial planes arranged at the edge of the aperture itself, 
and also formulas for afl at individual points of the contour. 

In order to Illustrate this we give the results of calcula- 
tions and stress distribution diagrams of a plate having the same 
elastic constants as a three-layer birch veneer (see §11). 

Let us repeat the numerical values of the complex parameters 

111 = 4,11/, ii2 = 0,343/, ft= 1,414. n = 4,453. 

when  the  x-axis  is  directed  along the   fibers   of  the  sheet,   and 

>, = 0.243/, |x2 = 2.91/. A = 0,707. n=--3,153. 

when the x-axis is perpendicular to the fibers of the sheet. 

When we consider such a plate we shall call it simply "ve- 
neer,"* for the sake of brevity. 

In the graphs the sections representing the magnitudes of 
the stresses afl are plotted from the circles on the continuations 

of the radii; positive quantities are represented by arrows di- 
rected from the center outwardly, the negative ones by arrows 
pointing to the center. In each diagram we show in the upper 
right-hand corner a schematic diagram of the load; the dashed 
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lines represent the distribution of the stresses o. in the iso- 
9 

tropic plate,  which  is  loaded by  the  same   forces. 

I.   Normal   pressure   distribuied   uniformly   on   the   edge   of   the 
aperture   (Fig.   75). 

q  is  the  pressure  per  unit  area. 

(39.5) 

For an Isotropie plate aQ  =  q.   In an orthotropic plate the 

stress Og is not distributed uniformly along the contour but ac- 

cording to a rather complex law, where the difference between the 
highest and lowest values of it may be very great. 

At the points A  and Ai  on the principal axis x   (Fig. 75) 
where 6 = 0 and 9 = TT, 

o^-nF". (39<6) 

and at the points B  and ß, (o = zi:|-) on the other principal axis 

0| = 9(n —A). (39.7) 

A circular aperture, when deformed, becomes elliptic, with 
the semiaxes a'  and b'  = 2 

"'^['-'(w-^r)]' 
»—['■-'(w.-i)]- 

(39.8) 

In Fig. 75 we show the distribution of the stress aQ on the ö 
edge of the aperture of a veneer plate; the x-axis is parallel to 
the fibers of the sheet. The maximum value of the stress is equal 
to 3.0^1 q  and is obtained at the points B  and Bi.   The minimum 
stress Is small: it amounts to about 0.1 q. 

2. Tangential forces distributed uniformly along the edge of 
the aperture (Fig. 76). 

«l = ^sin2f)I(l-ft)(rt-ft-l)4-(i+|iJ)(I+^)cos2ei    (39.9) 

(t is the force per unit area). 

In an Isotropie plate o8 = 0: 

Figure 76 gives the o0 distribution on the edge of an aper- 

ture in a veneer plate. The stress distribution along the contour 
is very irregular and changes of sign occur eight times. The max- 
imum value exceeds t  and is approximately equal to 1.5 t. 
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Fig. 75 Flg. 76 

3. Extension under an angle to the principal direction. For 
a plate extended by the forces p applied at a great distance from 
the aperture, which act under an angle of cp relative to the prin- 
cipal direction (Fig. 77), we obtain: 

". = pf {(- - cos5 9 -f (A -f- n) sin* cp) k cos2 Ö -f 

-f-1( I -|- n) cos' <f — A sin2 <?) sin2 0 — 
— n(l -f-A-f/i)smtpcos<f sinOcosÖJ. 

In an Isotropie  plate 

(39.10) 

o, = ;>|1 — 2 cos 2(0 —(p)). (39.11) 

The stress distribution in an orthotropic plate will not be 
symmetric with respect to the lines of action of the forces and 
the lines perpendicular to them; it is only symmetric relative to 
the center of the aperture. The maximum stress Is not obtained at 
the ends of a diameter which is normal to the lines of action of 
the forces but at other points. 

£ 
^\*. 

"*■   X' 

^ 
7 

I —>- 

Pip:, 7 
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Figure 78 shows the stress variation along the edge of the 
aperture of a veneer plate, extended at an angle of ^5° with re- 
spect to the principal axes (the x-axls lies in the direction of 
the sheet fibers). The maximum stress was equal to 3.3 p whereas 
in the Isotropie plate a   = 3 p. In this case the coefficient 

of stress concentration for an orthotropic plate (K = 3.3) differs 
but slightly from the coefficient for the Isotropie plate {K = 3). 
The stress vanishes at four points: 6 = 13°, 82°, 193° and 262°. 

4. Extension in the principal 
(39.10) with cp = 0 we obtain 

direction (Fig. 79). FromEq, 

1 — p-rr |—ftcos2Ü4-0 -j-n)siir Ü). (39.12) 

The stress distribution will be symmetric relative to both 
principal axes x and y . At the points A and A\ at the ends of a 
diameter parallel to the forces 

0, = — ■%- *' (39.13) 

and at points B  and 5i at the ends of a diameter perpendicular to 
the forces. 

0»=::/'(l+«)- (39.1^) 

One of these values will be highest in its absolute magnitude 
for the whole plate, but, without knowing the elastic constants, 
we cannot say which. It can be shown that not the stresses at the 
points B  and B\  will be highest in absolute value but the compres- 
sive stresses at points A  and A^, 

Fig. 79 

A circular aperture is deformed to an elliptic one with the 
semlaxes a' and h1  given by 

ß' = ö[l+-|-(l-frt)]. 
(39.15) 

Figure 80 shows the variation of afi along the contour of an 
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aperture in a venner plate extended In the direction of x  for 
which Young's modulus is highest (i.e., along the fibers of the 
sheet). 

At the points A   and Ai 

and at the points B  and Bi 

o, = —0.71/>; 

0! = 5,45^. 

(39.16) 

(39.17) 

The points where ofl = 0 are determined by the angles 0 = + 
+ 27° , +153°. 

The graph in Pig. 8l shows the distribution of afl in a veneer 
plate extended in the direction of x  for which Young's modulus is 
smallest (i.e., across the fibers of the sheet). 

At the points A  and Ai 

at the points B  and Bi 

ay- Mlp; (39.18) 

o, = 4,15p. (39.19) 

The stress vanishes at the points o = ±22o30'I dilST^O', 

In this case the concentration coefficient (K =  4.15) is 
smaller than in the case of a tension acting along the fibers of 

Pig. 81 
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the sheet (K  = 5.^5). In the case of an extension transverse to 
the fibers of the sheet the difference between the highest ten- 
sile stress and the highest compressive stress is not so consid- 
erable as in the former case. The ratio of the highest tensile 
stress to the highest compressive stress is 7-7 in the first case 
and only 2.95 in the second, i.e., it is here almost the same as 
in the case of the Isotropie plate. 

For a plate extended in the direction of the axis y (f^w), 
we obtain from (39.10): \  2/ 

Et 0» —P-^r-AKft-f /i) cos2 0 —sin2 ü|. (39.20) 

5. Omni lateral extension of a plate. When a plate is extended 
in the two principal directions by equal forces p (this is equiva- 
lent to an omnllateral extension in the xy-plane)  we have 

0» = P ^ [—A-f ft (A-f-«)cos2 Ö + (1 +/j) sin2 Ö). 

In the case of an Isotropie plate ai — 2p. 

(39.21) 

* ®—zr 
•^TTTTTT 

Pig. 82 

In Fig. 82 we show the distribution of the stresses afl along 

the edge of the aperture in a veneer plate; the x-axis is directed 
parallel to the fibers of the sheet. The maximum stress (at points 
B  and Si) Is equal to 

o, = 4l04^, (39.22) 

the minimum (at points C, Ci, Cz, C3) is 

0,= 1.09/7. (39.23) 

6. Impeded compression of a plate. When a rectangular ortho- 
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tropic plate with a round aperture In the center is compressed In 
the principal direction but cannot expand in the transverse di- 
rection (owing to rigid walls, between which it is arranged, Fig. 
83), this corresponds to a compression in the two principal di- 
rections of forces p  and V2p.* We obtain 

p-. 

-nf« o» = p / {A 11 — -'2 (M- ")1 cos2'}   - (I -- v2ft -I n) sin* OJ." (39.24) 

$mm!z?z?z&(. "z&gMzmmsr 

Fig.   83 Fig.   84 

In an  Isotropie  plate 

o, ^-.p[i-|. v -2(1 —v)cos20], 

where  v  is   Polsson's   coefficient. 

(39.25) 

A  graph  of  the  distribution  of  the  stress  afl  along  the  edge 

of an aperture   in a   veneer plate  compressed along  the   fibers  of 
the  sheet  is   shown  in  Fig.   84. 

At   the  points   A   and  Ai 

At   the  points  B  and  B i. 

o, = 0,56/7. (39.26) 
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o» = — 5,40p. (39.27) 

The dashed lines In Pig. 8^ show the variation of oQ In an 

Isotropie plate with Polsson's coefficient v = 0.25; for such a 
plate at the points A  and Ai 

and at the points B  and Bi 

0, = 0,25p; 

o, = —2,75;?. 

(39.28) 

(39.29) 

§40. DISTRIBUTION OF STRESSES IN AN ORTHOTROPIC PLATE WITH CIRCU^ 
LAR APERTURE (CONTINUED) 

7. Shear. A rectangular orthotroplc plate with an aperture 
In Its center Is deformed by tangential forces t  which are dis- 
tributed uniformly along the sides, the principal axes x}   y  gen- 
erally do not agree with the axes of symmetry of the plate (Fig. 
85). 

Considering the plate to be Infinitely large we obtain a 
formula for the stress ae near the aperture 

0» — '-jijir (> + * 4- n) (— n cos 2(p sin 28 -f- 

+ l(l+ft)cos28-|-A—Ilsin2<p). (40.1) 

In particular, for a plate on which forces parallel to the 
principal axes of elasticity (cp = o) are acting, we have 

'0» = — / 2?'-('+ * + ") " sin 29- 
In an Isotropie plate with cp = 0 

o, = —4/sin 20. 

(40.2) 

(40.3) 

-*~ 4-' [lis 

< 

^ i 1 7 ^K 
V-r ■*- •*- 

Pig. 85 
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The stress aQ on the contour of the aperture in an orthotrop- 

ic plate vanishes at four points which, with cp = 0, coincide with 
the points of intersection of the contour and the principal di- 
rections . 

Figure 86 shows the stress distribution in a veneer plate 
for the case where the forces t  are parallel to the principal di- 
rections of elasticity. The direction of the x-axis corresponds 
to the direction for which Young's modulus is highest. The high- 
est value of the stress aQ  is obtained at four syrmnetrical points 
and is equal to 

"n.« = 3.95/. (40.4) 

Fig. 86 

In an Isotropie plate we obtain o   =4 
same value. max t,   I.e. almost the 

Figure 8? shows a graph of the distribution of the stresses 
a. along the contour of the aperture in a veneer plate for the 

case where the tangential forces act at an angle of 45° with re- 

spect to the principal directions (?—£)• The values of the 

stress are highest at the points B  and Si where 

o, = —6.9/. (40,5) 

At the points A  and A\ 

0! = 4.9/1. (40.6) 

A comparison of the values of the stresses obtained in the 
case of deformation by tangential forces attacking at various an- 
gles with respect to the principal directions, shows that the 
case where the forces have an angle of attack of 45° relative to 
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Fig. 87 

Fig. 88 

the principal directions Is least favorable since the coefficient 
of stress concentration Is found to be the highest of all possible 
values (K =  6.9). On the other hand, the most favorable case Is 
the case of deformation by forces parallel to the principal direc- 
tions for which the coefficient of concentration is 3.95.* 

8. Bending of a plate by moments. A rectangular orthotropic 
plate-beam with a round aperture in its center is bent by the mo- 
ments M  applied to two of its sides; the principal directions of 
elasticity are in general not coincident with the directions of 
the sides and their orientation is characterized by the angle cp 
(Fig. 88). 

tain 
When the plate is considered to be infinitely large we ob- 
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o, =— §-{k\\ -A- (I   fft-f ")<-•os20lsi.,;^?cos0-f 

-|-{^4-*(*-f 2n-l) | KM-«) M(i-4-M-2n)lcos20)x 
Xsin!ocos?sinO   -[(I _|-,02--ft — (Ä + n-|- I)(l-f n)cos2fJ) X    (1,0-7) 

X sin o cos' 9 cos 0 -f 11 --k — (1 --)- A 4- /i) cos 2'J] cos3 tp sin O). 

When the direction of the axis of the plate-beam coincides 
with the principal axis (cp = 0, Fig. 89) we have 

Ma     Et a> =='2T ' £  [I —* —('-!-* +i)cos 20] Sin 6. (40.8) 

For an Isotropie plate with cp = 0 

Wa 
sin 0 cos 28. (40.9) 

beam 

"i T 

At   the  points  B and  Si   (Fig.   89)   of  an  orthotroplc plate- 

_.   Ma f.   .   n\ 
"•^--rO + TJ- (40.10) 

In the case of an Isotropie material for these polnc.^ 

2Ma 
3| =^ -L. (40.11) 

the maximum value of the stress 0, in the lateral sections i 

equal to 0,54^?. 
0 

lA 

A,f0 
8 

Fig. 89 

u 

+ v 

^ig. 90 
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When a veneer plate-beam is bent such that the direction of 
the x-axis agrees with the direction of the fibers In the sheet, 
the a0 stress distribution graph for the aperture's contour has 

the form shown in Pig. 90. 

At the points B  and B\ 

?i = 3.23 Ma 

/ ! 

and the stress reaches a maximum value of about 0.3 — 

eral sections. The stress vanishes at six points: 0=0 
+133°. 

(40.12) 

In the lat- 

180°, ±47°. 

With the bending of a plate-beam, which has been cut out of 
a sheet of the same veneer such that the direction of the fibers 
in the sheet are perpendicular to the x-axis, we obtain the afl 
distribution on the contour shown in Fig. 91. 

At the points B  and Si 

o, = rt2.58^-. (40.13) 

Affl In the lateral parts the stress does not exceed 0,6-7 

In the case where the beam is cut out of a veneer sheet such 
that the direction of fibers in the sheet makes an angle of 45° 

with the axes of symmetry (9 = ^, we obtain a ae distribution on 

the edge of the aperture as shown in Fig. 92. The stress reaches 
maximum values at the points 6 = 110° and 290°; they are 

= 1.64 Ma (40.14) 

Fig. 91 
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Pig. 92 

Considering the bending of a veneer plate with various an- 
gles cp we can draw the following conclusions. The least favorable 
Is the case where the fibers of the sheet are parallel to the 
free ends of the plate; in this case the coefficient of concen- 
tration obtained is highest: K =  3.23. The coefficient of concen- 
tration has its smallest value in the case where the fibers of 
the sheet make an angle of 45° with the axes of symmetry of the 
plate: 

K  = 1.6^* 

Let us also consider two cases where not the forces but the 
displacements are given for the contour of the aperture. 

Fig. 93 

9. Action of a rigid rod forced in the aperture with tension. 
In a circular aperture of the diameter 2a a rigid rod Is forced in 
whose diameter 2 (a + e) is a little longer than that of the aper- 
ture. The rod's surface is rough so that the material of the  plate 
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cannot slip on the material of the rod. In this case the edge of 
the aperture Is displaced In a radial direction by an amount 
equal to e (Fig. 93). 

The solution Is obtained by means of the functions $1   and $2 
of the form* 

*i Kzi) — 2D   Ci  ' *2 ^ *' 2D        Ci 
(40.15) 

The normal pressure a and the tangential stresses -ri   at the 

surface of the aperture's edge are distributed according to the 
law 

where 

or = — — [A — v, -f n (sin2 0 -f- k cos2 0)], 

Tr1 = /j(l —A!)sinÖcosf), 

__ 1 —v^a 1 j^ 
g~     Et     "r"ü- 

(40.16) 

(40.17) 

These formulas show that the rod transmits a compresslve 
stress to the plate, which is distributed nonunlformly over the 
contact surface, but which is symmetric relative to the principal 
directions of elasticity. Moreover, frlctlonal forces are gener- 
ated in the contact surface, which reach their maximum values at 
the bisectrix of the angles between the principal directions. The 
maximum values of the normal pressure are obtained for either the 
points A  and A1  or B  and Bi   (Pig. 93). 

At the points A  and Ai 

<v = --^Ift(i4-'0-M. ^ = 0. 

At  the  points  B and Bi 

The  maximum tangential  strain  Is  equal to 

x-" = 25J11 — As I n. 

(40.1b) 

(40.19) 

(40.20; 

For the stress afl in radial surfaces near the aperture the 

formula obtained is much more complex and we shall not give It 
here; we only give the values of afl at the points A, Ai, B and 
Si. 

At the points A  and A\ 

(40,21) 
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at the points B  and Sj 

-^[' + ^-.('+T)] (40.22) 

In an Isotropie plate with Young's modulus E  and Polsson's 
coefficient v we obtain for the edge of the aperture 

£• £t 
«(! + >) a(l+v) . tr. = 0. 

(40.23) 

For a veneer plate where the x-axls is parallel to the fi- 
bers of the sheet we obtain the following numerical values (In 
kg/cm2): 

at the points A  and Ax 

or= —-^ .0,349'- 105, 

at the points B  and Si 

or = —-^.0,265. 105; 

!„„ = -• 0.042- 105. 

(40.24) 

(40.25) 

(40.26) 

The mean pressure at the edge of the aperture is equal to —. 0,307110B, 

In the plate considered the maximum deviation of the pres- 
sure from the mean value amounts to 13.62». 

10. The torsion of a plate in its plane. The edge of the ap- 
erture is assumed to be rotated through a small angle a (or, what 
is the same, it undergoes a tangential displacement aa); on its 
outer contour which, theoretically, is at infinity, the plate is 
assumed fixed so that it cannot be moved (Fig. 94). This case can 
be encountered when the edge of the aperture is held between two 
rigid round disks which are rotated through an angle of a or, 
when a rod is screwed in the aperture, which is then rotated so 
that it takes along the edge of the aperture. 

The functions giving the stress distribution have the form 

(40.27) 

 f^ Pt + ift *iUi) = —20 

Both tangential x „ and normal forces (stresses) a are as- 

sumed to act on the edge of the aperture; they are distributed 
nonuniformly: 
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a, «= — — /»(1 — A) sin 9 cos Q, 

,Crt = —j(* —\ + «(cos20 + Äsin2Ü)l. 
(40.28) 

The maximum values of the tangential  strains are  reached at 
the points  of Intersection of the  contour with the principal  di- 
rections,  and the maximum normal  stresses  are  obtained  at  the  bi- 
sectrices of the  angles between the principal directions.   Com- 
paring this  case  with the previous  we   see  that the normal  and 
tangential forces  seem to have exchanged their positions. 

In an Isotropie  plate at  the  edge  of the aperture 

Or==(,| = 0,     trl = —-j-j- 
Ea 

l+V (40.29) 

Some other cases of deformations of orthotroplc plates with 
round holes were considered by I.I. Payerberg.* 

§41. DETERMINATION OF THE STRESSES IN A PLATE WITH ELLIPTIC CORE 

With the help of the results obtained for the anlsotroplc el- 
liptic plate and the plate with the elliptic aperture we can de- 
rive a solution of the more general problem of the stress distrib- 
ution in an anlsotroplc plate with a sealed-ln or glued-ln core 
of an elastic or absolutely rigid material. 

Let us consider an anlsotroplc pla 
an elliptic aperture, in which, without 
tension, a core of the same thickness 1 
which consists of a different elastic m 
sions are assumed to be small compared 
plate and far away from the edge. Arbit 
uted on the edge of the plate, which at 
ume forces do not exist. We have to det 
plate and core which are caused by the 

te of arbitrary shape with 
having applied a previous 

s soldered or glued in 
aterlal. The core dlmen- 
to the dimensions of the 
rary forces are distrib- 
tack at the midplane; vol- 
ermine the stresses In 
external forces.** 

The axes of coordinates are oriented according to the prln- 
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cipal axes of the ellipse (Fig. 95). All quantities which refer 
to the core, such as the stress components, the projections of 
the displacement, the elastic constants, etc. will be primed to 
distinguish them from the analogous quantities referring to the 
plate. The equation of the contour of the core Is given In the 
form 

JC^OCOSO, j/ = ftsinO 

{a3   b  are the lengths of the semiaxes, fl>A). 

(41.1) 

In the general case the equations of the generalized Hooke's 
law linking the stress and strain components in the plate aver- 
aged with respect to the thickness can be written in the form 

ax   r '1i2au-\- aiül:xy •llvx 

«„ =• aizax -f- a22au -f fl20Txy. 

Txy — al60a: + a20°v + fl«6T.r|/- 

(41.2) 

which also hold true for the core when the a . . in them are re- 

placed by the constants a'.,  of the core material. 
t-J 

When, as in the previous cases, the strains are assumed 
small we can solve the problem approximately, by superposing the 
stresses in a plate without core and the stresses in an infinite- 
ly large plate with an elliptic aperture; the latter will be cho- 
sen such that at the contact surface between core and plate the 
necessary conditions are satisfied. 

Denoting by F0, o», an,  x° , u0    and v0   the functions of stresses, 

stress components and displacement projection in a plate without 
core which is exposed to the action of given external forces; all 
these quantities are assumed given. The formulas for stresses and 
displacements in a plate with core can then be written in the fol- 
lowing form: 

0^ = 0°-f2Re [ixI'I'^J-f |4<K(^)]. 

c', = Vf2Re[ ^(2,)+ 1>;(z2)l. 

*** = *% - 2Re frM Ui) + ?& (^)I: 
« = üO + 2Re Ips^ {Zl) -f- p.^ (z2)] -uy + u. 

t; = t/5 + 2Re [q^, (2,^-f- q2^ (z2)] + cox -f- v0.j 

(41.3) 

(41.4) 

Here $i, $2  are functions for an infinite plate with aperture; 
u, u0, v0      are constants characterizing "rigid" displacements; 

«7* = fl.aH*-f~ — <i26 

(4=1. 2); 

(41.5) 

Uij Pa are complex parameters of the plate, solutions of the equa- 
tion 
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flnji* — 2ö,6II9 + (2a i2 -f fl60) |il — 2aM|i + fl22 = 0, 

which are supposed to be nonequal. 

m.6) 

The stresses in an elastic core  are determined by means of 
the stress function F'  which can also be written In terms of two 
functions of the complex variables 2'i = x-\-\x'ly   and z, = x-\-\i'2y  where 

yi and yl are complex parameters of the core. 

>;Sv /^ 

Fig.   96 

The  conditions  at  the points  of the  contact  surface  read as 
fellows   (Pig.   96): 

u — u', V — v'. I (^1.7) 

After some transformations these conditions take the form 

2Re( «I'.^-f <I'2(.'2)l-^(F'-n + ^. 

2Re Iix,*, (z.) + \^\ ('2)1 ^T,^'- F0) + Cl' 

2Re Ip.-I'i (z,) -f- /Vh (-2)1 ~ «' — u0 "I" ^ — "0. 
2Re I?,*, (z,) + 92<I'2 (z3)l = t»' — t^   - mj: —1;0. 

(^1.8) 

The constants ^j- ^J- 
U)> "0 and vo   contained in them are deter- 

mined from some simple additional conditions depending on the form 
of \:ne plate and the distribution of the forces. 

Conditions (41.8) written in this form are valid not only 
for a plate with an elliptic core but also for a plate with a 
core of any other form. 

In the case of an elliptic core the form of the functions $1 
and $2 is known to us (see §37): 

*i(^)-A)+>»inc1-h2>y:r
,'V 

tn-l 

*2 ('*) = ßo -H «In ^ 4- S B^r'. 
m-l 

(41.9) 
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where 

ik + Vzl-a'-üb* 

(*«=1. 2). 
(41.10) 

§42. PARTICULAR CASES OF PLATES WITH ELLIPTIC CORE 

The simplest particular case is that where the stresses in a 
plate without core are constant 

(42.1) 

(42.2) 

Such stresses are obtained, for example, in a rectangular 
plate on the sides of which normal and tangential forces of the 
intensities p}   qy   t   (see §13) are distributed uniformly. 

Investigations showed that the stresses in the core will 
also be constant: 

(42.3) 

(42.4) 

and the additional stresses in the plate, which represent the in- 
fluence of the core, are determined by means of the functions *i 
and <I>2 in the form* 

*i (^) = 2 ((li'_ ^ KA ~p) bl - (B - g) tiaa + 

+ (C-0(/M-fl)l^ 

*» W = - öTu-^rr UA -P)bl-{B- g) ii.a + 2(H-J*a) 

+(C-0(/M-fl)l^. 

(42.5) 

From the  boundary  conditions   (41.8)  we  obtain a system of 
four equations   from which we determine  the  unknown stresses  in 
the  core A,   B}   C and  the  turn of the   core,   cu1   — w, relative  to 
the plate.   We  give  here  the   first  two  equations  of this  system: 
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?^'fc J»« ■tfr f • n «■«• txt «• 

I      »H —»*a      ^ >? J^ v    / 

•- -/[(Pi—/>!i)fl4-<(l^iPa-KiiPi)* ■ a J 
L       R-rt       ^ 16 J' 

(42.6) 

The other two equations differ from (42.6) by the only fact 

that / = y~i is replaced by -t. 

Solving these equations, we obtain Ay  B^   C  and from them the 
functions *i and <I>Z and their derivatives entering the stress for- 
mulas . 

The next case, if we order them according to difficulty, is 
the case of a plate without core loaded by given external forces 
where we obtain the stresses as linear functions of the coordi- 
nates : 

oS,=/nMf-f-SmjJ/,    ] 

txy == — WljX - 

f^—j («0*' + m^y + iitixy* -f- m^). 

(42.7) 

(42.8) 

A stress distribution of this type will be encountered, for 
example, in a rectangular plate (Isotropie or anisotropic) with 
two or all four sides loaded by forces which are due to bending 
moments. 

In this case we obtain the following results. 

The stresses in the cortj will also be linear functions of the 
coordinates: 

oa, = Cjc+3Dy, 

.     0, = 3/1*+fly, 

x'xy = — Bx — Cy: 

F' = -g- (Ax* -f fljc2j; -f Cxy* + Dy*). 

(42.9) 

(42.10) 

The additional stresses in a plate with core are determined 
by means of the functions $i and $2:* 
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h 

*iOi) = >l 

*»(^ = 5o- 

'0"r8(iII-l^l-3<>l-,"o)Ml + 
+ (5 —m,) (0 — 2/^)0 ^- 

(^2.11) 

-Hß—mJCa-2/^)0+ 

+ (C-/n2)(2/fl4-^*)*-3(0-^)^]-|-. 
-      • ^1 

For the constants A, B, C3 D from Conditions (41.8) at the 
contact surface we obtain a system of rather complex equations. 
The  first   two  read as   follows: 

— 2/fl   ab -f a'bA + B failÄ a2 1 2/ t^LZl^Pi ^ 

X a* + o>2- - 2/o;2aft -f- 20^2] -^chlP-1^B X 

- K + fl«) *21 = 3m0 p'^iy 0» - 

V- . —^»^ — M'l + ^sf — ^E^*2 —2/0^00 +- 

. — 2/a12a* + 2o26^]-|-m3r2/^^a* — 
J L    J*i     Pi 

- ^E^r *2 ~ a"a2+2/a'6aö - (fl^+a66) *2] • 

X^+a;^ + a;/]+ß[?^a=4-2/X     . 
X ^S^ 0* + «2 + ^) ^ + 2<aA + fl;2^] + 

- 2la'aab - a^] = 3m0 [^^f a»-^«- 
- 2/aMflft] 4- 3m, [- ?!£i3 ^ + flnfl2 .j. fla2Ö2] + 

+ ^fS^fl2 + 2'4^^ + ^ + flee)^ + 
-f 2/fl26afr + fl22ö2l 4-m^2/?i^i? aft _ 

(42.12) 

The other two equations are obtained when i  is everywhere 
placed by -i. 

From the solution for the plate with elastic core we 
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by means of a simple substitutions or a limiting transition so- 
lutions for the limiting (extreme) cases where the core Is per- 
fectly stiff and cannot be deformed and where the core is lacking 
and no external forces act on the contour of the aperture. In the 
first case we must everywhere put fly — O, and in the second, per- 

forming the limiting transition, all constants a[. A  are assumed in- 
finitely large. ^J 

§43. EXTENSION OF 
RECTION 

AN ORTHOTROPIC PLATE WITH ROUND CORE IN ONE DI- 

Let us analyze In gre 
strains in a rectangular o 
is also orthotroplc and, 1 
considered In this section 
we assume the principal di 
of plate and core parallel 
taken as the axes x and y. 
mulas we maintained the de 

ones, and only some of the 
al" constants. We also int 

ater ietall the fundamental c?.3es of 
rthotroplc plate with round core which 
n particular, inflexible. In all cases 
and in the following three sections, 

rectlons of elasticity of the materials 
to the axes of symmetry, which are 
For the elastic constants In most for- 

notatlons a.. and a I . as the simpler 

m are written in terms of the "technic- 
roduce the abbreviated denotations 

fi-= sin* 6 4-?^±^ sin'6 cos2 Ö-}-^cos« Ö. 
(43.1) 

where Z?. is Young's modulus for tension (compression) in a direc- 

tion tangential to the contour of the aperture; £i, Ez  are Young's 
moduli of the plate in the directions of x  and y; 

P1 = flnlvi + fli2"   Pi= inti-Va\v 
«n ^ = 0,^-1--5,    92 = a,2li2 + — 

(43.2) 
V-i to 

The formulas for the case of equal complex parameters 
l1i=:l1a = P'  are obtained from the formulas for unequal yi, yz by 
means of a limiting transition. 

We only give the final formulas for stresses in a plate near 
the core.* By way of illustration we consider a plate with given 
elastic constants, which are the same as in the case of the veneer 
sheet (see §39) with a core whose elastic constants are twice 
those of the plate (a'; = 2öu), and we also consider the case where 
the core is perfectly Inflexible i^ — O)  and the case of no core 
(0^ = 00). For a complete representation of the Influence of a core 
on the stress distribution in a plate we also give tables of the 
numerical values of the stresses or, Tr,, o9 in a veneer plate near 
an elastic core and near a rigid core and the stress a0 near the 

edge of an aperture which is empty, and we also give graphs show- 
ing the stress distribution along the contour of the core (aper- 
ture ). 

Consider a plate with round core 
principal direction x  by the forces 

which Is extended in the 
p which are uniformly distrib- 
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p^_ 

A 

In 

0 
t 

Pig.  97 

In this we we obtain:* 

where 
<~*'    °'y=B'    *'*y- 0. 

5 •= X Ifl22 (a»i — an)+ c1,(fl12 — flIj)Ä (l-j-rt)!, 

A=(a1,<Jy4-a'ia22)A!-f-fl22(c66-j-2ou) + 

+ (.a^a'nk -f- azjoj,) n — (a,j — a'2)2 AJ; 

^U2) T-        ^.^ -5- 

(^3.3) 

(^3.4) 

(^3.5) 

(43.6) 

The   stresses "r- Tr9     at   the  edge  of the  aperture   (and core) 
and aQ   on  the  contour of the  aperture   (more  exactly,   in Immediate 
proximity  of  the  edge)   are  equal  to 

"r =2JIId+fl3+fl2 + (A + fl3-fl2)cOS2Ö]> 

^==~2ä'(A + ß»~fl2)sln29: 
(43.7) 

^p ^ ^ i" ir{(A""fli) sin0 0+IA ^ _ 2A)+(A+rt) fli+ 
-{-(I -f 2Ä)fl2 — (2 -f- A:)(1 -f n)a3] sin* 0 cos2Ü -f- Ift2A — 
-(I-j-2Ä)(ft + n)fl2 + ft(2 + Ä)aa + A(l 4-/1)0,1 X 

XsIn'Ocos'O —Ä^cossej. (43.8) 

Here  fli' a2- 03. «4   are  coefficients depending on  the  elastic  con- 
stants  of plate  and  core: 

Oj = ("il — All) ^22 (/I2 — Ä) 4- [(flu — flf,) fljj 4- 

4" (fll2 — O^)3! Ä/I — fljj (0,2 — o[2), 

02 = ("1I  flll)fl22--|-flu(Ol2— 012) Ä(l -f-n). 

03 —(«11—Ou)(a22«4-«22Ä)4-022(fl,2— al2)4-(0,2 —O^)2*.   I (43.9) 

fl< = — (fln — ßu) ?22 4 («12 — a'2) 12012 4- "u + 

4-au (Ä 4-1)] — (a,2 — o«)2. 

In  oarticular,   for an  isotroplc  plate  with  core  of Isotropie 
material  we  obtain: 
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P f(3-v)N   .   3-3^ + 2^    ,   l-V»   , 
,",:=AI--F- + BE' +-^-+      , 

+ 2 fili^ -1±^±^ -1^1 cos 28l; 
3-).2N_^ 

£« 
f2 

££' £/2 

2-v'-f VN'        1 

(43.10) 

££' £'2 (43.11) 

(E,   v denote Young's modulus and Polsson's coefficient for the 
plate, ff'j v' those of the core). 

The stress distribution in a plate with inflexible core is 
obtained on the assumption that ö'—o in Eqs. (43.3)-(43.9) and 
E' = oo  In Eqs. (43.10)-(43.11). 

At the points A  and 4i of an orthotropic plate (Pig. 97) 

0r=7vfe(* + n_V, + ^), 0, = Vr, tr' = 0,      (43.12) 
where 

g 
1 — v^a 

£,  r O " 

At the points B  and Si (Fig. 97) 

(43.13) 

(43.14) 

The stresses in an Isotropie plate with a rigid core are de- 
termined according to the formulas: 

'r = p(TTT+3^VCOs28)' 

0% = ^r'     'tr1 = —PY- ■sin 26. 
(43.15) 

Assuming all  coefficients a'.,  infinitely  large,  we  obtain by 
means of a limiting transition from   (43.8)  Eq.   (39.12)  which we 
know already for the  extended plate with empty aperture,  and  from 
(43.7) we obtain   or = ":r, = 0,   which is  evident. 

In Table  2 we have  compiled the  numerical values   (in  frac- 
tions  of p)  of the   stresses  in the   first  quadrant  of the  aperture's 
contour,  taken at  every 1^°,  for a veneer plate with stiff core  and 
with elastic  core,  where 0^ = 20.^,    and for a plate with an aperture 
without  core.   The  tensile  forces  attack  in  the direction  of x  in 
which Young's modulus   is  highest,   or,, briefly,  in the  direction of 
the  sheet's  fibers. 

Comparing the values given in this table we note  first  of all 
that In the  case v/here the aperture  contains a core,  elastic  or 
rigid,  not  only  the  value  of the maximum stress  is  considerably 
lower,  but  also  the  general pattern  of  stress  distribution  Is 
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TABLE 2 

Stress Components at the Points of the Aper- 
ture's Contour 

«8 
!     XCfCTKoe i«po 2    Vnpyroe lapo (fly-2ay) 

3    ■ 
BtS Upt 

»r Vl »1 «r •tfT o» 0I 

0 
15 
30 
45 
60 
75 
90 

1,24 
1.16 
0,94 
O.R 
0,34 
0,20 
0,04 

0 
-0,30 
-0,52 
-0,60 
-0,52 
-0,30 

0 

0,04 
0,09 
0,27 
0,52 
0.70 
0.56 
0 

0,84 
0,78 
0,63 
0,41 
0,20 
0,04 

-0,02 
• 

0 
—0,21 
-0,37 
-0.43 
—0.37 
—0,21 

0 

—0,06 
0,03 
0,23 
0,49 
0,78 
1.19 
1.68 

-0,71 
-0.34 

0,07 
0.40 
0,96 
2,57 
5,45 

1) Inflexible core; 2) elastic core; 3) with- 
out core. 

changed qualitatively. This also becomes obvious from the graphs 
attached. 

In Pig. 98 we show the distribution of the stresses a on r 
the contour of the aperture (core) with the veneer plate extended 
along the fibers of the sheet. The solid line represents the graph 
of the stresses In the case of a core where fl^ = 2a0. and the dashed 
line the same for the case of a rigid core. In Pig. 99 we show the 
graphs of the distributions of stresses afl along the contour of 
the aperture In the cases of an elastic core (solid line), a rig- 
Id core and no core in the aperture (dashed lines). 

 ynpi'zoe Kdpo j 
 iHccmKoe nöpa z   ly      "' 

Pig. 98. 1) Elastic core; 2) 
rigid core. 

When the core is rigid, the stress o  at the ends of the di- 

ameter parallel to the forces (at points A  and Ai  in Pig. 97) is 
the highest in the entire plate; it is equal to 1.24 p. In a 
plate without core the stress afl is highest at the ends of the 
diameter perpendicular to the forces (at points B  and Si); it 
amounts to 5.^5 p. 
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ynpyeoe ndpo 
 MecmKoe adpo 2 
— ndpo omcymcweyem 3 

Pig. 99. 1) Elastic core; 2) 
rigid core; 3) no core. 

The case of the elastic core Is an Intermediate case between 
these two; the maximum stress (ofi) Is equal to 1.68 p. If we con- 6 
slder cores of various materials for which aii = maii'   the stress 
pattern approaches the pattern of a plate with empty aperture as 
m  Increases and to the graph for a plate with rigid core as m  de- 
creases . 

When th 
Young's moc^u 
sheet), the 
on the conto 
the stresses 
which the st 
points where 
changed. The 
Id core 1.3^ 
and 3) In a 

e plate Is ex 
lus Is smalle 
general chara 
ur of the ape 
at the corre 

resses vanish 
the stresses 
maximum stre 
p, 2) in the 

plate without 

tended In the direction of x, for which 
st (transverse to the fibers of the 
cter of the graphs of stress variation 
rture Is maintained; the magnitudes of 
spending points vary, the points at 
ar' shifted but the position of the 
re   their highest values remain un- 

ss is equal to: 1) in the case of a rig- 
case of an elastic core (a'.= 2a..)'—1,60/7 
core 4.15 p. 

Hence we can draw the simple conclusion that a plate with an 
elastic core in which ajj = 2<V just as a plate without core, is 
favorable to extend such that the strains act in a direction for 
which Young's modi'lus has the lowest value. Vice versa, in the 
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case of a rigid core the maximum stress is found to be smaller In 
the case of a tension in the direction of maximum Young's modulus, 

§44. EXTENSION OF A PLATE WITH ROUND CORE IN TWO DIRECTIONS 

For an orthotropic plate extended in two directions by equal 
forces p (Pig. 100) we obtain the following results:* 

H- ol2a22{\ +-k-{-n)-]-a22a'12{\ —ft —n)-f 

-f fl22(fl22-}-fl6Q —022)1. 

Br= T (flu0^ (• -I- ") l- a22aU (ft + n) -f 

-f fl12flnft(l   f k-t n)-\ ana[2k(k — n -1) + 

-f fl22(all + fl66 —fln)l. 

(44.1) 

(44.2) 

where  A  is  the  expression  of   (43-5); 

q2^)_ 2 _—- _ 
(44.3) 

The stress components 0r'  ':'-5, ae  on the contour of the aper- 
ture in the plate are determined by means of the formulas 

or =---£-12A-I-ft,-f-&2-f- 

+ (*»—^cosQO], 
Trt = --^-(*3—*2)sin26; 

oJ = |--|j-{(A-ft1)sin66-flÄ(l-2ft+rt»)+ 

+ (ft + n)*, + (l+2ft)&2 —(2 + ft)X 
X(l + «) *3lsin* 0 cos2 0+1Ä (Ä2 — Sft+n2)— 

— (ft^-^)(l+2ft)62 + ft(2 + ft)^^- 
-|-ft(14-n)^lsin^8cos*e^- 

■4-&2(A—ft^cosOB) 

(44.4) 

(44.5) 

(the  expression of  A  has  the  form   (43.5)   as   in the  case  of the 
unilateral  extension). 

-y 
ft ft 

p^. 
f Mt 

B 
^P 

TTTTTTTT 
i       p 

Fig.   100 
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The  coefficients bv ^ l>3   and hlt  are  glven  ln terms  of the 
elastic  constants as  follows: 

?. = (fln - au) IflM (** - *) + ^n] - (flM - ^) fl^' +       | 

+ (fl1J-<2)ß22(i-l)(l+A + n)+        ; 

+ (a12-<2)
2*(n —A). 

*2 = (fln - <.) fl22 + («22 - ««) («„« + O * + 

+ (fl,2 - fli2) Ia22 + fl
u

Ä (>'+ n)l + (a12 - «u)2 *• 
^ = (an - fln) (fl?2« + <2*) + (a22 - <2) «„ + 

+ (atl - <2) fl2? (I + * + «) + («12 - <2)
2 A. 

*4 = -(^-0^ +(ö22-««)(2ai2 + ^'I-«,,* + «»+ 
+(ß

12 - fl:2) i2fl
I2+^ - fl

22+
fl

tl (*+«)]+ 

In an Isotropie plate with an Isotropie core the stresses are 
independent of the polar angle 9 and on the contour of the aper- 
ture they are equal to 

(^.6) 

where 

V^l+T-).   '^(1-£-).   Vr^O. 

___ 3 — 4v + ^3       0 1 — 2v/ + v^      1 — v/a 

»"^ £» ££' F/2    ' 

(^.7) 

(^.8) 

and A is Expression (43.11) 

If in an Isotropie plate a rigid core has been soldered in, 
for it 

or = ._£--, oe = vaf.1 trt = 0. 
(^.9) 

With al . = <» Eq. (^.5) goes over to Eq. (39-21) given pre- 

viously for a plate with an aperture without core. 

Calculations for a veneer plate with rigid core show that 
the stress a distributed along its contour is almost uniform, as 
it varies only between 1.32 p and 1.37 p,  and the tangential 
stress Is small, it does not exceed 0.03 p; the maximum o , which 

is equal to 1.37 p, is at the same time the maximum stress for the 
whole plate. In the ease of an elastic core where a^^20^ the dis- 
tribution of the stress a on the contour Is also almost uniform: r ' 
the value of (ar)m„ is equal to 0.81 p and T^ does not exceed 0.01 
p. .     " • rQ 

The a0 stress distribution pattern along the edge of the ap- 

erture is a veneer plate with rigid and elastic core and without 
core is shown in Fig. 101; the x-axis is directed along the fibers 
of the sheet. 
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Flg. 101. 1) Elastic core; 2) 
rigid core; 3) no core. 

The numerical values of afi (In fractions of p)  are compiled 
In Table 3. 

'e 

TABLE 3 

Stresses o e at the Points of 
the Contour of the Aperture 

8° 
«8 (o *0.1«X p] 

XCCTKOC 
2       Mpo ynpyroc «Apo 

3 
fit] tip» 

0 
15 
30 
45 
60 
75 
90 

0.05 
0,46 
0,84 
0.96 
0,93 
0,65 
0,10 

1.54 
1.31 
1,09 
1,02 
1,04 
1,22 
1,56 

3,44 
2,38 
1,41 
1.09 
1,23 
2.18 
4.04 

1) (In fractions of p); 2) rig- 
id core; 3) elastic core; 4) no 
core. 

The maximum stress in a plate with elastic core is equal to 
1.56 p and in a plate with an aperture and no core in it, it is 
equal to 4.04 p. 

A more complex stress distribution pattern is obtained when 
the plate is extended or compressed in two directions by forces 
of different intensities. 
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Let us give formulas for the stresses a and x e on the con- 

tour of a rigid core In a plate which Is compressed In the princi- 
pal direction of x  by the forces p,  but when It cannot expand in 
the transverse direction (Fig. 102): 

0-==--f (I+-'2 + 7(A«-f-Ä-vI).f- 

+ [1 —vJ-}--^(Ä«-Ä + v1)]cos20 . 

*r* ~ y f1 - '2 + J (kn - k -I- v,)] sin 20. 

Here  ^   Is  a quantity  determined  according to  Eq 

(^.10) 

(^3.13) and 

(^.11) 

^gpgg^^^^^-^w^ 
^.P 

«*roTOW^?j?S55W^ 

Pig. 102 

§45. PLATE WITH ROUND CORE UNDER THE ACTION OF TANGENTIAL FORCES 

An orthotroplc rectangular plate with a round core Is de- 
formed by tangential forces t, which are distributed uniformly 
over all four sides (Fig. 103). 

In this case* 

where 
4v = -£■ [ankn + (2flI2 + fl«,) * -H fl22 (2 -f /»)), 

Ai = CUä/I +(20,2 + ^6) ft+ 022 (2+ «): 

*.W = -^a6--^)2-^^-^. 

(^5.1) 

(^5.2) 

(15.3) 

apertur^ we^obta^^th^Tor^ClL1"  ^ ^  0n  the   COnto- ^  the 
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0r =-^Iau*n + (2fl.2 + a68)*+ 022(2 + «)) sin 29, 1 

trf = orc(g29: | 

0| = _/jl+f^Zf5i.|i((l+Ä)n + („2_2)sin*9 + 

+ 2Asin2 0 cos2 8 -f («2 — 2ä
:!
)COS

<
 9]]. 

(45.4) 

(45.5) 

For an Isotropie plate with Isotropie eore these formulas 
take the form 

Or==_sin20. V6 
8/ 

cos 29, 

(45.6) 

(45.7) 

As previously the letters E  and v denote Young's modulus and 
Poisson's coeffieient of the plate material and £" and v' these 
quantities for the eore. 

In order to obtain expressions for the stresses in a plate 
with rigid eore we must everywhere put aJcr^o orO

/ = cxD.  In partic- 
ular, in an Isotropie plate with rigid eore 

"'- 3-v 
Af 

a, = *V 

sin 29, 

cos 29, (45.8) 

/,y 

It 

f1 

I 

Pig.   103 

V/hen ale   is allowed to tend to infinity in Eq. (45.5) we ob- 
tain Eq. (40.2) for the stress o„ in the orthotropic plate with 
the empty aperture. 

Table 4 (page 206) contains the results of ealeulations for 
a veneer plate, i.e., the numerical values of the stresses (in 
fractions of t)   at points in the first quadrant of the aperture's 
contour. The x-axis is supposed to be directed along the fibers 
of the sheet. 

In Fig. 10!( we siiuw the graphs of the distribution of o 
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Pig. 104. 1) Elastic core; 
2) rigid core. 

along the contour of an elastic core for which 0^=20^   (solid 
line) and a rigid core (dashed line). The maximum value of a    In 

the case of a rigid core Is equal to 2.28 t  and In the case of an 
elastic core It Is about one fourth as high. 

In Flg. 10t we show graphs of the distribution of the stress 
CQ on the contour of an aperture for four cases. The Innermost 

dashed line is the a0 distribution for a veneer plate with a rig- 

Id core. The stresses are positive In the first and third quad- 
rants and negative In the second and fourth; Its maximum value 
amounts to about 3.9 t.  The outer dashed line represents the dis- 
tribution of the stress ae In the plate with the empty aperture. 

In this case the highest value of a« differs but slightly from 

3.9 * but here the stress will be positive not In the first and 
third quadrants but In the second and fourth. The solid line with 
the four zeros shows the distribution of the stress afl in a veneer 

plate with elastic core for which o'ü=--2ßy- Just as in the case of 
the empty aperture, this stress is positive in the second and 
fourth quadrants and negative in the first and third ones; jts 
maximum value amounts to I.65 t. 

When we consider a veneer plate with cores of various elas- 
tic materials for which a\j = ma{i,     m  being a positive number, inte- 
gral fractional, we may note the following. With high values of m 
the a0 graph will resemble the graphs for plates without core (out- 

er dashed line). As m  decreases from two downwardly, the stress afi 
on the contour will first decrease in magnitude, remaining positive 
in the second and fourth quadrants and negative in the first and 
third quadrants, the graph representing its variation will gener- 
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Pig. 105. 1) Elastic core; 
2) rigid core; 3) no core. 

ally resemble the graph for m = 2. 

When the coefficient m  decreases further, besides the points 
9 = 0°, 90°, 180° and 270° new points will appear on the contour 
of the aperture where the stress is vanishing; in tl    first and 
third quadrants we have marked the sections with tensile stresses, 

Thus, for example, for the case where m = 0.5 the distribu- 
tion of the stresses a« on the contour is represented by the in- 

nermost solid line in Pig. 105. On the contour there are altogeth- 
er 12 points at which a« = 0. The maximum stress values ars-not 

high, namely equal to O.85 t. 

With low values of m  the number of points at which the 
stress is vanishing again drops to four and the curve of varia- 
tion of ae approaches the inner dashed curve with which it coin- 

cides with m = 0., 

0 

■ 

« 

r   '     ... 
;\ 

I   < 
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TABLE   k ,   ;■;. 
Comparison,of,-the ;Stresses 
Contour of ther. Aperture 

at Points on the 

. ■■.-■. 

'-■■■'&-■ 

t. 

■«■ '.5. .' 

- 
■■>;■.•■ 

■ 

■ '.'■ ? '■;<'■■ 

■ ■■ 

.^o 

e0 l •'• l&cTKOt tapo- c .2  Vnpyroe txfo (fly"'"^) 3 Eel tapa 

• -r ■ v*. ■ «I "r Vl «1 •• 

0 0 2,28 0 ; ••■':0' Ö.W    1       0 0 
15 1.14  ■ 1.97 2.34 0i27 0.4/    i   —I.I8 -2,74 
30 1,97 1.14 1,89 0.47 0.27 -1,53 -3,03 
45 2,28 \b .   1.63 0.54 0 -1,63 —3,06 
60 1,97 -1,14 -, "   2.39 OW? -0.27 -1.64 -3,42 
.75 1,14 -llg? ,3.88 0,2-,' -0,47. -1.55 -3.94 
90 0 -2.28 0 0 -0.54 0 0 

.' ( 
1) Rigid core| ?) elastic core; 3) no core 

'''\,i 

§46. BENDING OF A PLATE WITH ROUND CORE BY MOMENTS 

-C  .' On two sides of a rectangular orthotroplc plate with a rounn 
core forces are distributed such that,they generate bending mo- 
ments M  (Pig. 106)0, ' 

,■■'■- 

■-■.■. 

.ij,, 133/ y i,  , .  ■„' 1 7i 1 .      ,    ,'1 ,   . . _; 

■- ■ , ,. ■.■■,■■■     , • i 

• •■■•;■ -x^ii^ ■: it,,. ; 0   ■ -^ :',■)■■••, . .,,-:. 

,■• ''''■'■.■•' 

* ~i\j^..- 'i -0x\ the.h&sls.of  the general formulas and the equations of 
§Ü.2:'we obtain:«       y.      -   . lr 

Fig. 106 

oi = 3Dy,   0; = ^.   ^„«--flx; 

+(«,.-0n)(2öaa + 0«*ß)l' 

+ 2a|l(fltt-f2flu + öJ,H-flJc>ft + 4a11aM(l+n) + 

+ 2««(«« + fl.. + fl^ r '■    t- "•.. 

-     rf = 2fltt(aa + 2<l + 2fl;a) + 2lßlIaM+<l(2aia-fflJt+Ol* + 
H->nö;ln+4flIlKl4-«;^4-2«:r+o*«-2(fl»--fl«),* 

.%'>■■■■  . •  ■ -.    -  ■    - '■  .< 

(J Is the moment of inertia of the cross section); 

(.46.1) 

(46.2) 

(46.3) 
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" 

Here 

On the contour of the aperture (core) 

o, = -gjj Irf -f 2c, -f (d — 2c2 + 2c,) cos 20] sin Ö,    • 

'"' = ^ I- ^ + 2c3) + ^ - 2c» + 2<;»)cos 20Icos b> 

o« =-^-•-^-sinO {(d —cJslnOO + Id^—2Ä) + cl(l+ Ä + 2/i)4- 

+ ca(l-f 2Ä) —c,(2-Hft)(2 + H)lsin«ecos«0-}-IdÄ« —Cift — 
-c2(l+2ft)(14-A + 2«) + c3(2 + Ä)(2ft4-n) + 

+ c4 (2 -f- /I)] sin« 0 cos* 6 + Ic2Ä (1 + 2k:— ci (2k + n)] cos« OJ. 

ci —(aii —öu) 120,2 («* — *)+ (2aij +022 + 0«) ftftl — 

— ^fl« — Oi2)(flu*rt + 2a22)-f (fl„ • •flia)**«. 

^^(flii —flu)(fli,ftrt + 2fl22)-| fluCöu —fl,2)A(2 + rt), 
c» — («n — an) Ifl22 (« + 2rt) + (2fl,2 + a'2 + ßeo) *1 + 

+ {an — ai2) (fl22 — auÄ) + (öU - au)*k. 
c4 -0 (flu — oil) [On + (flea—022—fl'oo) k] + {alt — au)X 

. XI«22 4- («u + 2fl12 -j- ßci) k 4- 2flnftrtl — (flM — aUfk. 

iHCH) 

(^6.5) 

(46.6) 

(46.7) 

For an Isotropie plate with Isotropie core we obtain 

4Affl 

„      iMai2 /x   ■ 2-v'\ ,. 

fvd+v)  .  2v(l-v0-l — >') — 1 — "^    3 + 2^ — V» 

ff__34-2v —v»  .  gS-v-v^-{-v/      34-2/—^ 
£» £5' 

fa 

£'« 

!jcos2'jjsinÖ; 

(46.8) 

(46.9) 

In the case of an Isotropie plate and a rigid core (£' = «) 

SiMfl 
0'=J(3=WT^I2+(,-fv)cos2ülslne' 

2Ma 
^-7(3-7(1+>)1-2 + (l+V)COS2,J|C05B^ 
o,=.vor 

(46.10) 

In the limiting case of (46.6) we rearrive at Eq. (40.8) for 
the plate without core. 

The results of calculations for a veneer plate have been com- 
piled in Table 5 (cf. page 209) which contains the numerical val- 
ues of the stresses in fractions of Ma/J.   The x-axis is assumed 
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parallel tq the f^ers of the sheet (load applied to the sides 
perpendicular to these fibers). 

On the^ basis-of Table 5 the/graphs of distribu ions of o 

(Pig. lQ7:f arid ae'(Pig, 108) on the contour of the aperture con- 
taining a; core and empty.' ' ;':' ' ' 

'• ■''• ■ i   ' 

, ^ . The maximuin j value .of, the .stresses öe in the case of a rigid 

core ,is e^ual to qi.7.6.ii/a/J..an4 is: obtained near the point 0 = 6oc 
and the points' syntofö'trical liö 'it^ 

S 

i;      ;i;,Plg. 107. D.Elas.tic 
'' ''|i ■ core:  2)  ricrtd core. :f ■- '     corei  2) rigid core. *H 

■       • 
Ü 

■ .       '       4   ■        ■"' 

0 
,•     •■.• 

■■    ■. 

'.■■   =     ■■']■ 

'I - --—mecmnoe adpo 2 

Pig. 108. 1) Elastic 
core; 2) rigid core; 
3) no core. 

-..: 

■ ■ t   • 
'#!-?  'fiaUi 

in a plaice without core the maximum stress is equal to 3.23 
ya/Kas we know.Alretady from §i»Q.    .:)■' '.. 

'        ■ \     '■•,    '  ' '■.' rvi< ■ '    t ■■■;'''   ''^ '     ' 
The case-of an elastic core with this constants oy = 2fl,j takes 

an intermediate position and for it 

(46.11) 
■"•••-fe 1,50^ 

-j.v . L A.comparison of the graphs represented in Pigs. 107 and 108 
by,the solid and dashed, lines illustrates in sufficient clearness 
the influence of elastic and rigid cores on the stress distribu- 
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TABLE  5 

Comparison of Stresses at the Points of the 
Aperture's Contour 

6° 

• 
X   XfeCTKOt ««{tO Vapyroc upo sBoupt 

•r            VI "• K: • 'rl 
■  • ■ 

.«1 •• 

0 
15 
30 
45 
60 
76 
90 

0 
0.34 
ft54 
054 
039 
021 
013 

-013 
-021 
-039 
-054 
-054 
-034 

0 

0 
-0.09 

0.10 
044 
0,75 
0.68 , 
001 

0 
019 
029 
027 
0.J6 
0'J4 

-0.02 

002 
—004 
-0.16 
-027 
-029 
-019 

0 

0 
-002 

007 
023 
058  . 
1.01 
1.50 

0 
-029 
M)^2 
—O03 

034 
1,38 
3,23 

:    >..■'.t- 

1) Rigid core; 2) elastic core; 3) no core. 

tion in an anisotropic plate with round aperture. 
V. ' • 

If the forces are applied to the sides of the plate which 
are parallel to the fibers of the sheet, the, graphs of the stress 
distribution on the contour will generally resemble those shown 
in Pigs. 107 and 108. 

The maximum values of the stresses are obtained as follows: 
for a plate with rigid core 

.0,67—; 

for a plate with elastic core (ay=2a^ 

1.41^. 

(46.12) 

(46.13) 

while in the, case of no core the maximum stress is equal to 2.58 
Ma/J. 

V Thus, for the veneer plate considered, with core or wlthmit 
core, it is favorable to apply the forces on the sides which are 
parallel to the fibers of the sheet since the resulting stresses 
are then smaller than the stresses in such a plate leaded on the 
sides perpendicular to.the fibers. We must, however, make the re- 
servation that this conclusion (as that at the end of §43) need 
not apply to ah anisotropic plate with other elastic constants. 

';). 

• 
'.•! . 

...'.•, 
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Manu- 
script rp     ,      *-      1 Page [Footnotes] 

No. 

162 Savin, G.N., Kontsentratsiya napryazheniy okolo otvers- 
t'ly .[Stress Concentration Around an Aperture] Gostekhl::- 

• cjat [State Technical Publishers] Moscow-Leningrad, 1951 

163 See our paper: "Napryazheniya v neogranichennoy anizo- 
tropnoy plastinke, oslablennoy ellipticheskim otversti- 
yem" [Stresses in an Unlimited Anisotropie Plate Weak- 
ened by an Elliptic Aperture] DAN SSSR, Vol. IV (XII), 
No. 3 (107), 1936. All formulas given in this section 
were obtained for the case of unequal complex para- 
meters. In the case of equal complex parameters the 
formulas for the stress can be obtained from formulas 
corresponding to yi ^ ya, by means of a limiting tran- 
sition, 

164 See first Eq. (8.6). In the case given 
1 ,      .      . a sin 8 ■  ,      .v     __        ■    bcosb cos (n. jr) = ±   - ,   cos (n, y) = + 

l^flJsln'ö + ^cosJO ' ' T V a" slnJ 0 -|- 6» cos^ 8 

365 Savin, G.N. , Nekotoryye zadachi teoril uprugosti anlzo- 
tropnoy sredy [Some Problems of the Theory of Elasticity 

,_:.'.;iV   of- Anisotropie Media] DAN SSSR, New Series, Vol. XXIII, 
No. 3, 1939; see also his book: Kontsentratsiya naprya- 
zheniy okolo otvertiy [Stress Concentration About an Ap- 
erture], Gostekhizdat, Moscow-Leningrad, 1951, pages 
185-190. 

166      These cases were considered in our papers: 1) Teoretl- 
cheskoye issledovanlye napryazhennogo sostoyaniya anlzo- 
tropnoy plastlnki, oslablennoy ellipticheskim ill krugo- 
vym otverstiyem [Theoretical Investigation of the State 
of Stress in an Anisotropie Plate Weakened by an Ellip- 
tic or Circular Aperture], Trudy konferentsil po opti- 
cheskomu metodu izucheniya napryazheniy [Transactions 
of the Conference on Optical Methods of Stress Investi- 
gation], NIIMM LGU and NIIMekh MGU, ONTI, 1937; 2) Kon- 
tsentratsiya napryazheniy vbllzi elllpticheskogb 1 
krugovogo otverstiya v rastyagivayemoy anlzotrppnoy 
'piastlnke [Stress Concentrations Near, an Elliptic or 
Ci^cürär; Aperture in an Extended Anisotropie Plate], 
Vesth'ik Ih'zhenerov 1 tekhnikpv [Herald of Engineers 
arid Tecrihl'clahs], 1936, No. 5.' 

J  is the moment of Inertia of a cross section of a mas- 
sive nonweakened plate (we understand, of course, an 
initially given plate which, when we want to obtain an 
approximate solution, is assumed to be infinitely 
large). 

172» Savin, G.N., Izgib anizotropnoy balkl postoyannoy pere- 
rezyvayushchey siloy, oslablennoy ellipticheskim 1 kru- 
govym otverstiyem [The Bending of an Anisotropie Beam 
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172«* 

173 

179 

by a Constant Crosscut Force, Which is Weakened by an 
Elliptic or Round Aperture], Vestnlk inzhenerov i tekh- 
nikov [Herald of Engineers and Technicians] 1938, No. 4; 
see also: G.N. Savin, Kontsentratsiya napryazheniy okolo 
otverstiy [Concentration of Stresses Around an Aperture] 
GTTI, Moscow-Leningrad, 1951, pages 212-231*. 

A great part of these ca-es has been dealt with in our 
papers: 1) Teoretlcheskoye issledovanlye napryazhennogo 
sostoyaniya anizotropnoy plastinkls oslablennoy ellip- 
ticheskim ili krugovym otverstiyem [Theoretical Investi- 
gation of the State of Stress of an Anisotropie Plate 
Weakened by an Elliptic or Circular Aperture]^ Trudy 
konferentsii po opticheskomu metodu izucheniya naprya- 
zheniy [Transactions of the Conference on Optical Meth- 
ods of Investigating Stresses], NIIMM LGU and NIIMekh 
MGU, ONTIa 1937; 2) Nekotoryye sluchai raspredeleniya 
napryazheniy v anizotropnoy piastinke s krugovym otver- 
styem [Some Cases of Stress Distribution in an Aniso- 
tropie Plate with Circular Aperture], Uch. zap. LGU 
[Sclent. Journal of Leningrad State University] Series 
of Mathematical Sciences (Mechanics) No. 8, 1939. 

In the first edition of our book we gave the results of 
calculations and graphs for an anisotroplc plate with 
other values of the elastic constants and the complex 
parameters. 

This follows from the equations of the generalized 
Hooke's law for an orthotropic plate, (9»8). If o = x 

JE "v =■ -p  and e = 0 we have, obviously 5 oi, = -|-!- v,f». 

182 

185 

186 

Investigations of the stresses in orthotropic plates de- 
formed by tangential forces attacking at a certain angle 
with respect to the principal directions, and calcula- 
tions of the stresses for various materials and angles 
of 9 were carried out vy A.So Dorogobed (see his paper: 
"Raspredeleniye napryazheniy v ortotropnoy plastlnke s 
krugovym otverstiyem pri chistom sdvige" [Stress Distrib- 
ution in an Orthotropic Plate with Circular Hole Under 
Pure Torsion] Inzhenernyy sbornik [Engineering Collec- 
tion] Vol. XXI, 1955). 

The bending of an orthotropic plate-beam with an aper- 
ture, with various orientations of the principal direc- 
tions of elasticity was studied by V.B. Lipkin in his 
diplomate thesis "Raspredeleniye napryazheniy v orto- 
tropnoy plastinke s krugovym otverstiyem pod deystvlyem 
izgibayushchikh momentov" [Stress Distribution in an 
Orthotropic Plate with Circular Aperture Under the Ac- 
tion of Bending Moments] (Saratov State University, Sara- 
tov, 1951). In this paper we also find results of cal- 
culations for various materials. 

See §37, Eqs.   (37.9M37.1Ü). 
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188*     Payer-berg, I.I., Kontsentratsiya napryazheniy v anizo- 
tropnoy plastlnke s krugovym otverctlyem [Slvc-.-^ Con- 
centration in an Anisotropie Plate with Circular Apcr- 

- j       ■ ture] Ministry of Aviation Industry USSR, Transactions 
No. 67^, 1948. 

188**    A general solution to this problem and also solutions 
.-•;. 1      for other cases are considered in the paper: S.G. Lekh- 

, r.     nitskly, Raspredeleniye napryazheniy v anizotropnoy 
.plastlnke s elliptlcheskim uprugim yadrom [Stress Dis- 
tribution in an Anisotropie Plate with Elliptic Elastic- 
Core] (ploskaya zadacha) [Plane Problem], Inzhenernyy 
sbornik. Vol. XIX, Moscow, 19'ök. 

191      See pages 87-88 of our paper referred to in the preced- 
ing section. 

.192      See paper referred to, pages 99-101. 

19k   . This formula was derived in our paper, referred to in 
. „; , ■  '  §41 and §42. 

195      See our paper, referred to in §4l and §42. 

199      See our paper referred to in §§41-43, pages 95-96. 

202      See our paper mentioned in the preceding sections, page, 
97-99. 

206'  •   See our paper mentioned repeatedly in §§4l-45, pages 1C 
105. 
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Chapter  7 

APPROXIMATION METHOD IN ORDER TO DETERMINE THE STRESSES 
(N A SLIGHTLY ANISOTROPIC PLATE 

§47. THE ^LAN£ PROBLEM FOR A SLIGHTLY ANISOTROPIC PLATE 

The solutions derived in Chapters 3-6 for the two-dimension- 
al problem of a homogeneous anisotropic body show that the com- 
plex parameters MI and pa are the fundamental quantities on which 
the stresses depend. The complex parameters enter many formulas 
for the stresses on which the maximum stress, the stress concen- 
tration „ etc, depend. In an Isotropie plate yi = ya = i. When the 
complex parameters of a homogeneous anisotropic plate are repre- 
sented in the form 

^ = -'(1+«!). 

p3 = /(l+aa).- 

H = -.IV + -  ) (47.1) 

the quantities ai   and az  are in general complex and can Le con- 
sidered as quantities characterizing the deviations of the plate 
from the Isotropie one. The smaller |oti| and \a.z\   compared to uni- 
ty the more similar 2s the plate in its properties to the Isotrop- 
ie plate.* 

We shall call a plate "slightly anisotropic" when for it 
|ai| and [aal are so small compared to unity that higher powers 
and products of oti and at  can be neglected when they exceed the 
first or second powers. We restrict ourselves to investigations 
of the stresses in slightly anisotropic orthotropic plates in a 
second approximation3 seeking the stress function in the form of 
a series in powers of on and a.2,  neglecting higher powers of 
these quantities beginning with the third. This enables us to re- 
duce the problem of the anisotropic plate to some plane problems 
for the Isotropie plate and makes It possible to solve them ap- 
proximately with the help of the well-known methods of two-dimen- 
sional problems of the theory of elasticity of the Isotropie body. 

Note that many authors apply a similar method of power expan- 
sions with respect to small parameters, and a cutoff at higher 
powers (the "method of the small parameter") in order to develop 
approximate solutions of various prob'lems of the theory of elas- 
ticity (e.g., G.Yu. Dzhanelidze, N.V. Zvolinskiy, A.I. Lur'ye, 
D.Yu. Panovs P.M. Riz and others).** 

Let us consider the case where volume forces are absent,*** 

The stress components are given in terms of the stress func- 
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tion  F, 
o« = 

_»F 
Txy = 

&F 
dxdy' (n.2) 

which, in the case of an orthotropic body, satisfies the equation 

Expressing the.coefficient of this equation In terms of the 
complex parameters ji1 = /(^-f «iT and i*j = /(l+a2) , we omit powers of 
ai and eta higher than the second. Equation (^7.3) will then read 

t. * d*P V«W+(2a1 + 2a2 + af+«|) g 7^+4«^= 0, (^7.4) 

wh.ere V2 is the Laplace operator 

In the case of an orthotropic plate the quantities Oi-faj, aj-j-a* 
and aia2 are always real numbers. 

We seek the function F  In the form 

^ «= ^OO + («! -f flj) /"lO + («l + «2) ^Zfl + «l^l 1 ■ (n.5) 

where F. . Is  Independent of ai and az  and obtain the equations 

V»V«/:'0O = 0, 

V2V2P io- Z^V^oo. 

V»V^20 = -^V«(2f10 + F00)( 

v^v^,, = 4^(V^ '^!>l 10" 

(47.6) 

„<.,, Integrating these equations one after the other we obtain 
the following general expressions:* 

Fn = Re ü^ (z) -\- yM (*)], 

El0 = Re p«,0 (z) + x, o (2) — -J- ?«?'0o (z)]. 

f M = Re [i?20 (2)-f-/20 (z)-1 ?9;0 (2)+l is
?; (z)4-| PoJ,, (2)]. 

• ■'jB-.;«" "■•-■' 

'. ;.'C;    • - .* ■ 

Here 

ii- 

(47.7) 

r,. -Re z?uWcFXi, W-j?9»(2)-i4??»(«)--j5V.«w]. 

z-ax-j-O'«      t — x'—ly. 

?«5«A XyW are arbitrary analytical functions of the complex varl- 

■   : 

able s. In the following we shall use abbreviations omitting the 
argument: 

>>-'   cf^a u       ?«!=»-9«W>   tt^XtfC*)»    ?y = ?yW.   ty^XyW 

:   1 

-  214  - 

-■^L^-    . ■    ..»-_: .^..-.■.■.^     ■    >...^...-.-:-- .-.^A^..-      ■    ■■      ■■■       .-..-.-.■..-.^ 



•"—■■■■ ■"■"" ' "    ' I    '•-' mpgpppippiiijuiii   n     iiii...i,imumiwBww^wwwwiwiiwwp mw,M,iMnmiPpiffPiiHWii'WPP^,",Hi'"" '' ^ VK;-" ^1 

etc 

On the basis of Expressions (^7-7) we obtain general for- 
mulas for the first derivatives of F and the stress components 
which are convenient to represent in a complex form:, 

g^ +'-gp = «9M + l-oo + ?oo + («! + «a) [^»lo + ?io + TJO— 

— j (^M + 2Z«PM)J -1- (a? -f a*) [Z?M '- «ho + «FJO— 

—4 ^ ?io -f- 22?io)-f-gf ^-3 «oo + z Too + 2 7oo -f 22?oo) | +• 

+ «1
a2 [«Tu + «Fu + 9u —2 (zI?") + 2^?>o) -f 

+ -gf ^-3 ?oo — z too 4- Aoo — 2.^MjJ; 

0»—»a, 4- 2'T^ = 2 (i^+^M) 4- («t 4- «2) [2 (5?« 4- ♦AO)— 

— y ?oo — ?ooJ 4-(ai 4- ozj [2 (z'.p20-j- ^0) — _ ?,0 — ?,0 -|- 

4- j2 Too 4" j ?oo + 7 ?oo 4- y Too J 4" a...«: [2 (^u 4" tu) — 

— 29,0—2010+^<poo — 4-<!'uo4--2 Too—g-^uo); 

(^7.8) 

(47.9) 

0* 4- «, = Re [4 TM 4- (a. 4- «2) (^ Tio—22TM) 4- W 4- «D X 

X (-JipM — 27^0 4- 7. Too' 4- «Too) 4- 

4" ain2(4<?n — ^Tu»4-j Too — itoo j 
(47.10) 

The displacements are also given in terms of functions of 
the complex variables, but we shall not explicate them here« 

When the external forces X 3  1    acting on the boundary are 

given, the boundary conditions can be written in the following 
form: 

(47.11) 

We consider, as previously, the anticlockwise direction of 
circumvention around the contour to be positive; we must take the 
upper sign when we consider the outer contour of the domain oc- 
cupied by the body, the lower sign when we consider the contour 
of the aperture. 

In this case where the forces given for the contour are in- 
dependent of the elastic constants of the material, we obtain on 
the basis of (47.8) and (47.11) the following boundary conditions 
for the functions ^   and t|). .:* 
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'in + l-oo + ?oo -= =t J (lXn - Yn) ds + c00. 
o 

«?io + tio + «Pio = I (^?oo + 2Z?M) + ct0l 

^»20 + ^0 + ?20 = "j- (^'^O + 2 Jflo) — 

"T \T *'*-*'* too + « ?oo + 2«<pooj -f Cjpi 

i 
2 

1 /*' —'»       j-r//   .   -» »       «— / \ 
8" VJ ?oo — 2 «l»«» "I- ■* Too — 2z'>ooj + c,,. 

*9n + ^ii + ?u = 4- (zVu + 2z<?
,

u) ~ 

(^7.12) 

As we see from Eqs. (47.9), (^7.10) and Conditions (47.12), 
the functions ?oo and IJJOO give the stress distribution in an Iso- 
tropie plate of the same form as the slightly Isotropie one and 
loaded by the same forces X Having obtained Too and ij'oo on n' n 
the basis of the second condition of (47.12), we determine Tio-V; 

these functions give the stress.distribution in an Isotropie 
plate loaded on the contour by forces whose distribution law de- 
pends on the form of the functions ^oo and i^oo. Having obtained ?io 
and i|)io on the basis of the third and fourth conditions of (47.12) 
we determine T20. "^o and Tu>'Jv In this way, in order to determine 
the stresses in a slightly anisotropic plate in a second approxi- 
mation we must solve four one-dimensional problems for an Isotrop- 
ie plate of the same form. The theory of the one-dimensional prob- 
lem of the Isotropie body is available in a very good elaboration 
(thanks to the papers by G.V. Kolosov, N.I. Muskhellshvill and 
their pupils); we have effective methods of solving this problem 
at our disposal: the method of series expansions, the methods 
based on the application of eonformal mapping and Cauchy inte- 
grals, and others.* These methods enable us to obtain approximate 
solutions to a very broad class of problems of slightly anisotrop- 
ic plates and to derive approximate formulas in order to determine 
the stresses in such plates. 

§48. DETERMINATION OF THE STRESSES IN A SLIGHTLY ANISOTROPIC PLATE 
WITH AN APERTURE 

Let us consider a slightly anisotropic plate with an arbi- 
trary aperture, which Is exposed to the action of forces applied 
tp the outer edge and the edge of the aperture. The aperture Is 
assumed small compared to the plate dlmerislöns and remote from 
its edge.        -:  -; 

An approximate solution of the problem can be obtained by 
superimposing the stresses In an infinitely large plate with an 
aperture to the.edge of which,certain forces are applied; these 
forces are. chosen such that the necessary boundary conditions are 
satisfied,at ,the contour of the aperture. In this way we obtain 
stresses which satisfy precisely the conditions of the aperture's 
contour, and with increasing distance to them they tend to the 
stresses existing in a plate without aperture, on the outer edge 
of which the given forces are distributed. 

& 

■■'..■ 

Assume we have obtained the stresses o^, <j„. % ,0    • 
yt   txyi which would be 
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generated  under  tiie   action  of  the   given  forces   in  such  a plate 
which,   however,   in  massive,   without   aperture.   The   well-known 
functions "?£,(*)    and   ^0

t](
z)  of  the   complex  variable   correspond  to 

these   stresses.   Let   us   represent   the   functions   o.j.   •>;;    engering 
Eqs.   (^7.7)-(iJ7.10)   in  the   form  of  sums 

(48.1) 

where f. . and .r . . are unknown functions to which stresses corre- 

spond which tend to zero as the distance to the aperture increases 

Let us map conformally an infinite plane with a cutout in the 
form of the aperture to an infinite plane with a cutout of the 
form of the unit circle (i.e., to the exterior of the unit circle) 
Let the function performing this conformal mapping have the form 

z - O- (48.2) 

(48.3) 

We then replace in all formulas z   by Expression (48.2) and 
introduce the denotations 

/^-/„('"Oi-'VC), 

/ij(z) = vij(:).   /y(*)«tt'y(C); 

The problem is reduced to the determination of the functions 
®ijQ   and ^'ijG)'    which satisfy the definite conditions of regular- 
ity outside the unit circle and the boundary conditions which are 
obtained from (47.12) after having replaced ^ for z. 

can be used. When üJ(?) is an algebraic function *.. and f.. can 
In order to determine the unknown functions various methods 
e used. When üJ(?) is an algebraic function 

generally be represented in the form of series* 

%j (C) = ßij In C + Bl: + 2 B?/-- *. 
(48.4) 

The coefficients of the logarithmic functions can be given 
in terms of the projection of the vector sum of the forces acting 
on the contour of the aperture. The coefficients A17!,  and B"! .  are 

determined from the boundary conditions in which the given quan- 
tities must be represented in the form of series expanded in pow- 
ers of a~eni   ; this is the boundary value of the variable ? (in 
the general case the expressions for the given quantities will 
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also contain In o besides a). In certain cases it is more favor- 
able to use a method which is based on the application of Cauchy 
Integrals. 

When all functions have been determined we obtain the stress 
components from Eqs. (^7.9) and (^7.10). The stresses a„ in sur- 

v 
faces normal to the contour of the aperture, at the contour it- 
self, are in the general case deter.lined according to the formula 

"» = —0n + ax + 4 + 4Re["oo^)) \- 
+ («1 + a2)Re [4«10(o) - 2;; (-,.) U(W(o)j-f 

4- (al + *') Re { 4 "2o W + ^ (7) [- 2vl0 (a) f v00 (o) -f- (i| 8 . 5 ) 

+ T ^ (I) ^ W)] ) + aia2 Re {-1/,, (a)-H ^ (|) X 

X [- 4x/i0 (0) _ Koo (0) + 1 w (i) u'n (a)] I. 

Here a    is  the  normal  stress  acting  on  the  edge  of  the  aper- 

ture   (a given quantity),  o = e,H. 0   Is  the  polar angle  determining 
the positions  of the  points  on the  contour  of the unit  circle  and, 
at   the  same  time,   in  the  basis  to Eq.   (48.2),   also the  positions 

of  the points  on  the   contour of the  aperture; iü[—]    is  the  quanti- 
ty  conjugate to uiio). ^ 

In the  following  section we  consider by  way  of example  the 
stress  distribution  in  a plate with  an  almost  quadratic  aperture 
in greater detail. 

§49.   EXTENSION  AND   PURE   BENDING  OF  A   SLIGHTLY  ANIS0TR0PIC   PLATE 
WITH AN ALMOST  QUADRATIC APERTURE 

We  consider a plate  weakened by  a  small  aperture whose  con- 
tour is  given by  the  equations 

x = a (cos 0 -|- e cos 30),       y = a (sin 0 — e sin 30), (49.1) 

where T5 is a parameter varying from zero to 2IT; a  and e are con- 
stant coefficients where a> 0, |e|< 1/3.  A suitable choice of the 
coefficient e enables us to obtain a shape which differs but 
slightly from a square with rounded corners. 

The problem of the stress distrlbuti 
with an almost quadratic aperture, which 
applied to the outer edge, has been consl 
who solved it with the methods by N.I. Mu 
lov considered extension and shear,* G.N. 
bending** and M.I. Nayman bending alone.* 
the aperture's contour in the form of (49 
e = 1/9 and G.N. Savin supposed e = +1/6; 
contours determined by more complex equat 
approach to the square. 

on in an isotropjc plate 
is deformed by forces 
dered by several authors 
skhellshvili. P.A. Soko- 
Savin extension and 

** Using the equation of 
.1), M.I. Nayman assumed 
Savin also considered 

ions which give a better 

A function mapping an infinite plane with a cutout (49.1) on 
the exterior of a unit circle has the form 
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ligtilly   an ! :;f;l r'Op I c   but   orlholropl';   /■'.-clan-- 
d  by   a   ::mall   apjf.Tti.'re   In   It:;   center arid  de- 

formed  by  normaJ   force:,  p   distributed 
uniformly   on   two   :;ld(.-:;.    It   1:;   ;;up- 
püsed    ..at   the   rj,'11 rid j^a J   d 5 r-'.-etlon;i 
of   oxaLiticity   ;:   c   [jaralleJ   to   the 
Lildeu   JO  that   the   t«;ri:;lon   dJr'ectlon 
coincide:  with   the   prlncipaJ   dlrec- 
t 1 ori:; . 

Placing:  t-be   orl^Jn   of  coordinates; 
in   the   center  of   the   aperture   arid   di- 
rect   the   Xj   y-axe:;   of   ."yrnmetry   of  the 
platen   we  may   consider  the   contour  of 
the   aperture  given  by   Eq.    (^9.1).   With 
positive   e   the   "square"   has   a  position 
as   shown   in  Pig.   109a  and   the  tension 
acts   in  a  diagonal   direction;   with  ne- 
gative   e   the  position  of  the  aperture 
corresponds   to  Fig.   109b. 

In  the   case   of  extension 

W 0             0             n 
GX ~p, ov ^ x^ = 0; 

"/■»          P |0,\                  p 
Too 00—x2' ^oo(^)-=—t2- 

(49.3) 

?ie(^)^= 0. 

?5oW-0. 

?n CO - 0. 

^oW z, 

'UD^-fc, (49.4) 

■^W^ -I- 
which is easy to prove when these values and asz=P' 0i''^'iry~^  are 
substituted in Eqs, (47.9) and (47.10). 

The functions $.. and T0o which must be known in order to 

determine the stress a. around the aperture read* 

- 219 - 

... ■.  .......^ u-^.-^..^:^-..^^ 



1 ""■""'■"" 'mi i ■■iiuiiii. i nitmmemmmmi i ,i. 
 „ r„       jp „i,n,i m „im i,in  . II....I.II».I.»I 

^(O^-^i^.o-i- 8(1-0 

-4- _ ££!!_ frs i   '0^-t-3c-2   1 _ 413(1-«)  ,   O   i 
T"8(1-.)L   "^    '   1-«      "C C8       ^^J"1" 

+ J^ (f) [-»".oC) - 2Woo (C) -^ (|) t/ooC)]. 

^..(C) P' -13^(1 4-e)+l-e)ü) (g + 

(^9.5) 

8(1-.)' 

+   Pa*   frs i  1^+^-2.1 _4.3(i-c) ,   O . 
^8(1—oL * —'        ^ ^     ^CsJ^ 

4-i^ (1) [su.oQ-f 2^0-^(1) ^00(C)]. 

Supposing that C = o = e8< in these expressions and substituting 
It in (48.5) we obtain the stress distribution along the contour 
of the aperture. The formulas for o^ are very cumbersome and we 

do not give them here; we only give the values of the stresses in 
the two most important points. 

At the points B  and Si at the ends of the diameter which is 
perpendicular to the tensile forces (Fig. 109 a and b) we obtain: 

Oft = _ |^3 _|_ 2s - 3^-f-(a, + a2) (1 + 4e - 6^ - 3E»)+ (l-«)(l-3t 

+ («? + al) sirb) (- 5 + 5e -f- 32^ - 33S9 + 12^) + 

+a^2(r=o(1^8£-f'e2+38£3-21e< + 3E6)]- 

(49.6) 

In the case of extension in the direction of the diagonal 
(Fig. 109a) we obtain for e = 1/6 

o8 =/7 (7,80-Ka, 4-a2) 3.57--(sr +«2)0,15 —0,02.0.031; 

and for e = 1/9 

o8 = p [5.37 4 (^ -\- a2) 2.31 — (a] -\~ a]) 0,05 -f- a,^ • 0.02J. 

(49.7) 

(49.8) 

In the case of extension in the direction of a side of the 
"square" (Fig. 109b) for e = -1/6 

for e = -1/9 

o.==^II.47 + (a1 + a2)0.10 — (af 4-^)0,03 — 0^.0,09);     (49.9) 

o» = PII.854-(a, + a2)0,32 —(0?+'0^)0.02 + 0^. 0.06].     (49.10) 

With e = 0 we obtain a round aperture of radius a. At the 
points at the end of a diameter perpendicular to the forces we 
obtain according to Eq. (49.6): 

0»=/'(3+ 0,4-02). (49.11) 
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rate   reialtlsee  ^^1^°^  ^   '^^  ^  ^  — 

Is 
Ay 

IB 
-j— tr 

/l.i'Ti 

ß) 

—]- 

H ' 

Fig     110 

In  this  case*- 

(c/  Is   the  moment   of  inertia  of  a  cross   section). 

(^9.12) 

Ml 
?*(*) = -% z*.      .Uz) = %z*. 8J 

Ml 

8J 

o 
9JoW = -^^        ^o(z) = -^,2. 327 

^•«=-S7".  Aw=-Srt 32/' 

(^9.13) 

^ooro-~*ooC:)-^(1)^(0. ' 

+ (3 + 6e + e^ + 18£3) i - liUJl^l ] + 

+ T ^ (I) [2"'o (0 - "oo (0 - y - (|) ^oo (C) . 

4- (3 -f 6E - SSe^ -f 36e9) 1 - llil^Oj + 

+T;:;(r)h'o(r>)+^o«-^(fN
roo(C). 
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I 
At  the  points  A  and Ai   (Fig.   110  a  and b) o6 = 0.    At   the  points  B 
and Si 

a,«±;_I^i3r)l2(*l+2e)H-015(al + a2)(14-6E-6e') — 

— 0,25(^4-ap e2(3 —2e—17eJ—18e')—     " (49.15) 
— 0,50,0^(3-1-26+lle2—18£s)l. 

When the aperture has been cut out as shown in Fig. 110a, 
the results of tne calculation according to Eq. (49.15) lead us 
to the following: 

for e = 1/6 

O| = ±^[5133-lr(al + a2)1.97-(a! + ab01002-ala2.0.091;    (49.16) 

for e = 1/9 

o, = ±:^(3>67+(a1 + a2)l124-(aj + ^)0>01-a1a2.0l031.   (49.17) 

When the aperture has a position as shown in Pig. 110b we 
have for e = -1/6 

o8 = ±^l0,894-(ax + a2)0.09-(a!-fa?)0>004-a1a2.0.03];    (49. l8) 

for e = -1/9 

a,-rt^[l.I7+(a14-a2)0.l3-(a!4-a?)0101-a1a2.0.01).   (i,9#19) 

Assuming in Eq. (49.15) e = 0 we obtain the stress at the 

edge of a round aperture at the points ü=±~: 

c^±^(2 + ^-). (49.20) 

It is interesting tr note that also this result agrees with 
the accurate result [see Eq. (40.10)]. 

§50. DISTRIBUTION OF STRESSES IN A HOMOGENEOUS RING COMPRESSED BY 
UNIFORM PRESSURE 

In §26 we considered the solution of the problem on the 
stress distribution in a ring with cylindrical anisotropy com- 
pressed by normal forces distributed uniformly on the inner and 
outer contours. The solution has a very simple form: the radial 
directions are equivalent with respect to the elastic properties 
so that the stress only depends of the single coordinate r   (dis- 
tance from the center). The same problem for a homogeneous ring 
with rectilinear anisotropy is much more complex owing to the 
fact that the radial stresses are in this case not equivalent and 
it is therefore not Justified to expect the stresses to be inde- 
pendent of the polar angle 6. An exact solution to this problem 
has not yet been obtained. We shall here give the. solution for a 
slightly anisotropic orthotropic ring obtained in a second approx- 
imation. 
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Placing the origin of coordinates at the center of the ring;, 
vve assume the principal directions of elasticity in the direc- 
tions of the axes x  and y .   We denote by a  and b  the inner and 
outer radii of the ring (c = a./b)  and by p and q  the quantities 
of the inner and outer pressures per unit surface area (Flg. ^ 
in §26). 

Let us return to Eqs, (^7. 8)-;'I? . 10). The functions ?«> and 
i^oo determining the stresses in an isotrope: ring are well known, 
namely* 

'•'on \'1 — 2(1 - 
-JL, 

C2^  -' S'oo v' I —r? (50.1) 

The  other  functions   ?io> r20'    Y20' ?.M and i^ii are obtained in 
an elementary manner from the given functions <?oo and i^oo in the 
form of polynomials with positive and negative powers of 2; the 
coefficients of these polynomials are determined from the bound- 
ary conditions (47.12). 

We arrive at the result that ?io —'Wo^S'ao —'^o = 0 and only ?n 
and '^11 are nonzero. Omitting all the intermediary calculations 
which are elementary, anyway, we only give the final formulas for 
the stresses: 

o ^pc*-<j . cc - 9) c3 / * y I 

+,. J-3. (^'s(^-c(iy-0(A)"j fences«, 

+o(i)'+o,6(iyj^i'!l„«. j 
Here 

5 = -1(3 + 4^+3^), 

r = - 2T ('• + c2^ * + 6c^+c4•'■ D ^ 5?(;- + 4c2 + c^ 
ä = » 4- 4c2 H- 1 Or1 -}- 4c3 -|- c8 

(50.2) 

(50.3) 

Formulas (50.2) which give the stress distribution in a homo- 
geneous, slightly anisotropic ring in a second approximation, only 
contain products 0102 and do not contain first or second powers of 
ai and O.Z. Hence it follows that the stress distribution In such a 
ring agrees in a first approximation with the distribution in a 
ring of Isotropie material; the corrections for anlsotropy are 
quantities which are small of second order. 

When for a given material one of the complex parameters Is 
equal to t, i.e., 02 = 0, the stress distribution in an anisotrop- 
ic ring will be precisely the same as in an Isotropie one. This 
holds ti'ue not only for a slightly anisotropic material and in a 
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second approximation, but also for a material for which the sec- 
ond complex parameter is an arbitrary number, even when its ab- 
solute value is very high. In fact, with a-t  = 0  the equation for 
the stress function (47.^0 assumes the form 

[c + ^S+^j v2r = o. (50.4) 

The stress function for an Isotropie ring has the form* 

F=*Ar* + B\nr. (50.5) 

It Is easy to verify the simple statement that it will a^so 
satisfy Eq. (50.4) for a ring with an anisotropy of a given type, 
from which we can deduce the validity of what has been said 
above. 

It follows from Eq. (50.2) that in a ring compressed by pres- 
sures of equal intensities {p  =  q)  and also in a disk without ap- 
erture compressed by the pressure q, which is distributed uniform- 
ly along the edge 
lish: 

(c = 0) a uniform field of stresses will estab- 

of. = o6 —— ?. V8 = 0. (50.6) 

These formulas prove to be exact for a homogeneous ring and a 
disk with rectilinear anisotropy with arbitrary cti and 02- 

Applying the method of small parameters described in this 
chapter it is easy to obtain, in a second approximation, formulas 
for the stresses in a homogeneous ring which is deformed by forces 
distributed arbitrarily along the contours. 

Manu- 
script 
Page 
No. 

213* In the 
and X2 

[Footnotes] 

first edition of our 
instead of ai and 012 

book we used the symbols Xi 

213 ää 

213 A** 

A brief review of papers of this kind published until 
1948 and references are to be found in the collection 
entitled "Mekhanika v SSSR za 30 let" [30 Years Mechan- 
ics in USSR], Gostekhizdat, Moscow-Leningrad, 1950. 

Lekhnitskiy, S.G., Ploskaya zadacha teorii uprugosti 
dlya sredy so slabo vyrazhennoy anizotropiyey [The 
Plane Problem in the Theory-of Elasticity for Media 
Which are Slightly Anisotropie] I and II, DAN SSSR, Vol, 
XXXI, No. 5 and No. 9, 19^1. 

214 The function Foo is biharmonic; we do not know 
of a function of al expression 

plex variable 
for it in terms 
Knowing Fuo we 
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215 

216 

217 

218* 

218«* 

218*** 

geneous equation which is easy to integrate and, having 
obtained Fm  we use nonhomogeneous equations to deter- 
mine Fao and Fii and so on. 

Il^Cj, 

These methods and their applications to concrete prob- 
lems are discussed in detail in the book by N.I. Muskhe- 
lishvili "Nekotoryye osnovnyye zadachi matematicheskoy 
teorii uprugosti" [Some Fundamental Problems of the 
Mathematical Theory of Elasticity], Izd. AN SSSR, 1933, 
]')35J 19^9 and 195^. 

Muskhelishvill, N.I., Nekotoryye osnovnyye zadachi mate- 
maticheskoy teorii uprugosti [Some Fundamental Problems 
of the Mathematical Theory of Elasticity], Izd. AN SSSR, 
Moscow, 195^, page 185. 

Sokolov, P.A., Raspredeleniye napryazheniy v ploskom 
pole, oslablennom otverstiyami [Stress Distribution in 
a Plane Field Weakened by an Aperture], Buylleten' 
nauchno-tekhn. komiteta [Bulletin of the Scientlfical- 
Technical Committee] UVMS RKKA, No. 1, IV, 1930. 

Savin, G.N., 1) Raspredeleniye napryazheniy v ploskom 
pole, oslablennom kakim-lobo otverstiyem [Stress Dis- 
tribution in a Plane Field Weakened by an Arbitrary Ap- 
erture] Trudy Dnepropetrovskogo inzhenerno-stroytel'nogo 
in-ta [Transactions of the Dnepropetrovsk Institute of 
Engineering and Construction] Contribution 10, 1936; 2) 
Kontsentratsiya napryazheniy vozle malykh otverstiy v 
neodnorodno napryazhennom pole [Stress Concentration 
Around Small Apertures in a Nonuniformly Stressed Field] 
Ibid. No. 20, 1937; see also: G.N. Savin, Kontsentratsi- 
ya napryazheniy okolo otverstiy [Stress Concentration 
Around an Aperture], Gostekhizdat, Moscow-Leningrad, 
1951, Ch. II. 

Nayman, M.I., Napryazheniya v balke s krlvollneynym 
otverstiyem [Stresses in a Beam with Curvilinear Aper- 
ture] Transactions of the TsAGI, No. 313, 1937. 

219 

221 

These functions were obtained by N.I. Muskhelishvill's 
method with the help of Cauchy Integrals; for details 
see our paper mentioned in §47, Part II, pages 844-8^7. 

An approximate solution of this problem was obtained by 
I.S. Malyutin in his Diploma Thesis "Izgib slabo anizo- 
tropnoy plastinki s otverstiyem, blizkim k kvadratnomu" 
[The Bending of a Slightly Anisotropie Plate with an Al- 
most Quadratic Aperture] (Saratov State University, Sar- 
atov, 1951). 

223 MusKhelishvili, N.I., Nekotoryye osnovnyye zadachi mate- 
maticheskoy teorii uprugosti [Some Fundamental Problems 
of the Mathematical Theory of Elasticity] Izd. AN SSSR, 
Moscow, 1954, page 219. 
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224 Timoshenko, S.P., Teoriya uprugosti [Theory of Elastl 
ity] ONTI 1937, page 6«. 
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Chapter   3 

APPROXIMATION METHOD FOR THE DETERMINATION OF THE STRESSES 
IN AN ANISOTROPIC PLATE WITH AN APERTURE 

§51. GENERAL FORMULAS FOR A PLATE WITH Af 
MOST ELLIPTIC 

APERTURE WHICH IS AL- 

An exact solution of the prob 
in an anisotroplc plate with an ap 
case where the aperture is ellipti 
dealt with in Chapter 6. For no ot 
solution has been achieved so far 
difficulties. When, however, the f 
tropic plate is such that it may b 
ly different from elliptic or circ 
tc obtain an approximate solution 
parameter characterizing the devia 
elliptic or circular form and negl 
beginning with the, say, third or 
ter is devoted to this approximati 

lern of the stress distribution 
erture is only known for the 
c or circular; it has been 
her form of aperture an exact 
owirg to the great mathematical 
orm of the aperture in an iso- 
e considered to be only slight- 
ular form, it is not difficult 
to it by Introducing a small 
tion of the aperture from the 
ecting powers of this parameter, 
fourth power. The present chap- 
on method. 

Let us consider an anisotropic plate with an aperture whose 
contour is given by the equations 

jc = a COS 0 -|- e 2 ian cos nn + bn sin n^)     • 

^ = d   c sin M- e £ (-- o,isi,, rtf) -|- in cc- nO)    . 
(51.1) 

With e = 0 we obtain an ellipse with the semiaxes a and ac, 
and with small e, a form which differs only slightly from an el- 
lipse. Assume given forces X   ,   Y     (per unit area) distributed 

along the edge of the aperture. For simplicity we shall assume 
that the vector sum of these forces is equal to zero. It is re- 
quired to determine the stress at an arbitrary point of the plate, 
first of all the stress a„ in surfaces normal to the edge of the 

aperture, at the aperture itself (Fig. 111). 

The course of the problem's solution is the following: we 
map conformally an infinite plane with a cutout given by (51.1) 
on the ^ plane with a cutout in the form of the unit circle |?| = 
= 1; the mapping function has the form: 

^[Ltfc-, 1 —c 
' 2 A'Q\ (51.2) 
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where 

N 
,KQ= S (a„ + /6„)C-n. 

n-l 
(51.3) 

Fig. Ill 

In order to obtain a mapping which Is In one-to-one correspondence 
and conformal It Is necessary that all solutions to the equation 

l+c 
~4-+-e*'(r')=? (51.^) 

are mapped In the C plane as points Inside the unit circle |c| = 
= 1. The coefficients a   . b    and the pa] n      n 
sen so that this condition Is satisfied 

= 1. The coefficients a  j   b    and the parameter e are always cho- 

In the given case It Is more convenient Instead of $i and $2 
to Introduce the functions <Pj(^) and 9 (zj) of the variables 2'==2_^X2

: 

and ^ = 2 + ^> where Xi and X2 are complex parameters of second 

kind (see §7 and §8). 

When the external forces are given, the boundary conditions 
for these functions have the form 

2 Re (<?, {z[) + ?2 (/2)1 = J" yn Ar + C!. 
0 

a 

2 Re I^t?,(zi)-f ivf2(^2)) = — j Xnds-{- c2, 

(51.5) 

where ci, az  are arbitrary constants and the Integral Is taken 
along the arc of the contour for which the anticlockwise circum- 
vention Is considered to be positive. 

Replacing the variable z  by its expression (51.2) we repre- 
sent the functions 91 and 92 in the form of series expanded in 
powers of the parameter e: 

::) 
?l = ?10+e?U+eJ?l2+ •••• 
?2 = ?20 + E?21 + e2?22 -f 
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Here ?u and Vu  are functions which do not depend on e and are ex- 
pressed In the following way* 

?.o = /.o(Ci). ?20 = /2c(^). 

?1. - /„ (^l) + [-'i (C)   f kü (I)] /.'o (Cl). 

?2i = Ai (r4) + [■!> C) + x^ (gi /2'0 (c2'), 

•••+^IMC)+^(C)M(C:). 

?2*=/2fc (
r-2) + 1^0+).2t (gi K fc_. (cj) +.. 

(51.7) 

where /üCCI). ^(C^) are unknown functions of complex variables 

2  ^2  C^,V2  ^2  cy 

( ,/=l, 2; C  Is the variable conjugate to O- 

Assuming the forces X  3   Y    depending on e, we expand then In 

a power series of this parameter and then obtain In the general 
case 

J Knd5 + Cl= S ek ak0-\-  2 iakmo">-\-akmc-<n)   . 
j *-o  L    »"»I 

;        r_  »    _   i 
- J *„ rf* + c2 = S e* p40 + 2 (^„.o- + 8,mo-m) . 

o *"0  L    m"1. 

(51.9) 

Here a/"n. ?Am  are given coefficients depending on the law of 
distribution of the forces_ on the_edge of the aperture, akm,  ßkm are 
the conjugate quantities a,0 and ß,0 are arbitrary constants; for 

brevity of formulation we Introduced the denotation o = e8i, which 
will be used In the following throughout this chapter. 

Substituting the boundary values qn and cpa In the boundary 
conditions (51.5) and comparing the coefficients of equal powers 
of e,  we obtain a series of pairs of boundary conditions for the 
functions flk  and f2k   (the arguments of these functions, their 

derivatives, and also the conjugate quantities and the functions 
i^ and ^ are not given): 
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^^•^r/Jf,»,' ^'jW**!»»-K^lMP»-rj#, , 

/io"r/2o l"/io '\~f20 -- 
00 

= aoo+ S (aomOm-f :W"m). 
m-l 

^l/lO + ^2/20 + h/io + P2Ä0 = 
CO 

= ^00+ S a^-f^-"'): 
m-l 

(51.10.0) 

• • • + ir w+^vm-^ (M-x^vg'+ 
~H conjugate quantities = 

__   00 

= xkQ+ 2 (aim0"1 + a*,,.0""•). 
HI"» 1 

y-Jik + ^/2fc + IM (^ -f x,^) /,' k _ ,-f ll2 (^-f x2^)/2' fc^-j.. 

..•••+;T(^^)Vlo,+g(t + x2:)V^+ . 
+ conjugate  quantities   = 

_        a> 

m- 1 

(51.10.k) 

V/hen the variable ? runs along the contour of the unit cir- 
cle, the variable 

r—L+£r 1 Lui 1 
^ — 2 '"^ 2  c (51.11) 

runs along the contour of an ellipse with poles equal to 1 and a. 
Owing to this, the functions flk,  f2k  of the variables Ci—^-f-X^' 
and £'_£'_i_x,^' determine the stresses in an infinite anisotropic 

plate with an aperture in the form of an ellipse with the poles 1 
and c, somehow loaded on the edge of the aperture. The form of 
these functions is well known [see §37, Eqs. (37 .11!)-( 37 .15) ]: 

f\k — ^AO +   ZJ   \IJ\     > 
ill" I 

00 

fik ~ Bkü "f"   2J Bkmfi     > 

(51.12) 

where 

''.- 

tt = 

^ + J/"c;2-2(l+c2)Xl-(l-C
2)(l-|-X*) 

l+c + (l-0>-. 
^ + Kc22-2(l-l-C

!!))'2-(l-c')(l-[-X») 
l+c+(l-c)Xj 

On the  contour of the  aperture 

(51.13) 
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/u=:::'4*o4- S Akm°-m. 
m = l 

f2k:=BkO+   2 Bkm0'm- 
Dial 

(51.14) 

The constants 4. have no influence on the stress dis- 

! arbltr; 

the boundary conditions. From Conditions (51.10.0) we obtain 

tribution and can be arbitrary whj12 A,   . 5,  are determined from J km3     km 

H — H 
0 m 

fin 
Fo ■^lOpn 

f1! —Ha 
(51.15) 

and so we determine the functions /io and /ao yielding a solution 
to the problem "in a zero approximation." 

In the next bound 
ues of the unknown fun 
the known functions f\ 
tions we determine Lhe 
which, instead of /IOJ 
in a first approximatl 
Conditions (51.10.k) w 
/i2 and fa which, tog 
termine the solution t 
and so on. 

ary condition [ 
ctlons /ii and 
o and fz o are c 
coefficients o 
fz o, determine 

on. Knowing now 
1th ^ = 2 the c 
ether with thos 
o our problem i 

(51.10.k) for fe = 1] the val- 
fi i and the derivatives of 
ontained. From these condl- 
f the functions fix,   fzi 
the solution to the problem 
/io- /2o- ZIP /21 we find from 

oefflcients of the functions 
e obtained previously, de- 
n a second approximation, 

For an actual determination of the coefficients A,   , S, 

from Conditions (51.10.k) we must expand in power series of a all 
products of the form 

^-f-VW- ^('H \2mw. (51.16) 

The coefficients of these series will determine on the coef ici- 
ents A.   ,   B.,     of the functions f,, and f0, themselves. In order km       km ■' Ik ■' 2k 
to establish all these functions it is, obviously, necessary that 
the form of the function ty(t,)   is given, i.e., we must know which 
terms in Eq. (51.3) are nonvanlshing. 

§52. FORMULAS FOR A PLATE WITH AN APERTURE OF PARTICULAR FORM 

In this chapter we consider various cases of a plate with ap- 
ertures whose forms are given by equations of the type 

x — o(cos!)-} c cosAW), 

_y = ö (c sin f> •— e 

os AW). \ 

sin NO), ) 
(52.1) 

where 0<c<l. and N  is an integral number. With c = 1 and N =  2 
the aperture has three axes of symmetry and with a due choice of 
the parameter e it will differ only slightly from an equilateral 
triangle with rounded corners. With a =  1  and ^ = 3 we have four 
axes of symmetry and with certain values of e the aperture re- 
sembles a square with rounded corners. With c < 1 and A' = 3 an 
oval hole of special form. 

- 231 - 

,■■  ■  1 -*..^i—J ■ ■ ..^.„-n ,. .-^ .f,  I*... 
.J..--^.... ■-■-■■■-   -^^ 



lIMIiUIIKlJWIilil.MIIMMWmtMtim !B(WnH*i™w«V»^l-(™ "•'•« '  '  ".!■ Liiiii M   t.i     i W-TT" r^—^— rr- wry, *~. w~* ■   ■■>■■!■ ■'      '   T''"^i 

•».»I--»«»)«,. ,,,„,., 

The  mapping  function  has   the   form 

■l±£r , Lz 
^     2 (52.2) 

Let us give general formulas according to which we can deter 
mine the coefficients of the products (51.16) with arbitrary val- 
ues  of n  and N.* 

We   introduce  the  notation 
ui = l + c + Ml-c) 

_ i-c + Mi+O 
1 + c + Ml - c) 

(/-I. 2). 

ßj^iujXj 
(52.3) 

Each of the products of the type (51.16) is represented in 
the form of a sum of a finite number of terms with positive pow- 
ers of a and infinite series expanded with respect to negative 
powers of a. The first of the products of (51.16) with arbitrary 
(integral) k,   n  and N  Is  written as follows 

^ (*+vw - ~ (7* -1- vN)n w - 
Nn - n -! oo 
V   i"    '" _L V ^n 

mcO m = l 

(52.M 

All   coefficients  A-,     are   determined by  means   of  the   follow- km J 

ing general  formula: 

^fcm Zj ^t. "i t.Y»-n + i -Si^mi (^1>   al)- 
i-l 

The  g    .   are  here  integral  polynomials  with  respect   to rm 

(52.5) 

and a 1 

( -,Vn-l X 

X {('" -l-Nn -n   -I -1- 2) (m i Nn - n - /-1- 3) ... 

... (m +//n -/)'(' I-I) ■••('! "--2) ().,=.[•')'•+ 

+n(m + iVn-n —/-l-2--A')(m-hVi--n-/-f3—AO ... 

... (m + A^n — / - AO (/ - A') (' -H 1 - AO • • • 

•••(' + "-2-^(Xjaf^-' + Qjx 

X^+ATn —n-/ + 2-2yV)('n+A'/i-n-/ + 3-2A0.. 
... (m + A/n — / — 2A0 (/ - 2A) (/ -|- 1 - 2A0 • • • 

...(/ + „_2-2^)(Vl
N)',-2 + --- 

... + (j)(m-n-/ + 2 + 2W)(m-rt-/ + 3 + 2A0... 

... (m - / + 2/V) (/ - A^n + 2A0 (' - Nn + 2^ + 1) ... 

...(/- //n + n +2A/-2) (Xl(if )2+n (m-«-/ + 2+A0 X 

X (M - fi — / + 3 + AO • • ■ (« -' + AO ('- ^n + ^) X 
X (' - A^n + AT -I- 1)... (/ -- Wn 4- n 4- A/ - 2) (X^*) + 

+ (m-n —/ +2) (m-rt-/ + 3)...(m-/)(/ —//n)X 
X('-W/i + l) ... (/-A//i-)-n-2)} 
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[(!)■© etc., are the coefficients of Newton's binomial 

The use of Formulas (52. 
following way: carrying out t 
beginning with t = 1, we must 
coefficient A with negative s 
/,, on the contour is represe 

spect to negative powers of o 
termining the qn .   from Formul 

with negative powers of ou wh 
this reservation we obtain fr 
cients of the product (52.4) 
them also for negative m.   The 
(51-16) has the same form, A, 
by B,   Aa, 0.2   and W2 . 

5) and (52.6) must be done In the 
he summation in Expressions (52.5), 
eliminate all terms containing the 

econd subscript, since the function 
nted by a series expanded with re- 

such that all ^/t.-m^0- Further, de- 
a (52.6), we must eliminate all terms 

en they appear in the summation. With 
cm Eqs. (52.5) and (52.6) the coeffi- 
for arbitrary integers k,  n,   m3   among 
formula for the second product 

must everywhere be replaced 

ÜJ 

If o = 1 (aperture slightly differing from circular form), 
= 1, ai = pj=r-.;lj (/=.= !, 2). For this case Eq. (52.6) which in general, 

is very complex, can be simplified a little 

'//hen we :o-V 
in the expressions of cpi and 
meter z  and neglecting the higher cner 

the problem in a first approximation, retaining 
cp2 only the first powers of the para- 

reduced to two prob- 
lems for an infinitely large pi; v'th elliptic, or, in partic- 
ular, round aperture. Retaining in (SI-6) also the second powers 
of e, we obtain finally a solution in ?   second approximation; for 
this we have to solve three problems for a plate with an elliptic 
aperture, and so on. Considering concrete problems, we restrict 
ourselves to the third approximation and in a series of cases 
even to the second one. 

In every particular case we are first of all interested in 
the stress a-0 in surfaces, normal to the contour of the aperture, 
at the edge Itself. From the magnitude of this stress we may con- 
clude as to the stress concentration near the aperture. It is de- 
termined according to the formula 

Here we have Introduced new denotations. 

(52.7) 

/l = ccos!) — e.VcosA/f), 

B = sinO-f eA/sinAW, 

C2 = /12 -[- B2. 
(52.8) 

cpi and q:2 in Eq. (52.7) denote the values of the functions 
of complex variables on the contour of the aperture, determined 
in the one or other degree of accuracy. 

In the following we shall consider plates with three types 
of apertures: similar to an equilateral triangle, an oval form of 
special contour, and similar to a square with rounded corners. 
We give the boundary values of the functions cp,, for a nonortho- 
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tropic plate with an aperture, on the edge of which the forces 
X   .   Y    are distributed such that their vector sum is vanishing. 

Extension and bending by morrents of orthotropic plates is in- 
vestigated in greater detail. 

For such plates we give the formulas for the stress a  on 
the contour of the aperture and at individual points of it. 

In the case of equal complex parameters '.he limiting transi- 
tion must be carried out in the stress formulas, assuming H^ —Pi- 

Considering extension and bending of a plate with an aper- 
ture, we also give the results of calculations for a veneer plate 
for which, as already mentioned, i1!; ;-M1/, n., ■ 0,3-l3/, when the x-axis 
is directed along the fivers of the sheet and ^---■ 0,2-13/, [i^. .2,01/. 
when the axis is perpendicular to the fiber's. 

At the end of this section we give a compilation of the de- 
notations used when studying the extension and bending of an ortho- 
tropic plate with an aperture: 

Ä=-.- M^/|;, -- 'O'lt-!^); 
(52.9) 

/:-(#-   ^,4=) (ß=_ ,12..!=), 

D* = — A*l: + A*ßi{\-    2k   -k?) \  n'(2-\ Ai-n1), 

E* = A*(2k-— n--\ A)-| A'-ß-ik*     2k   - \) — B'k; 

(52.10) 

S = 

d = 

(TTV+^V   * = (TT£-MT'
I(1

     .")^(M-2n-6)l. 

 8_  
(1+ft-I-/!)' 

2 

I. (1 n). l + k + n 

(10ft-3(1+ftJ)-f n(l+*)I- 

* = (1^.;^^ Ift3 + 3ft^n - 11) -| - ft (3,,= - 22n + 27) -f 

+ (1 —l)2(i-3)I; 

Pif^i — PalV     A    _ / Pt — ßa        r    _ PiUj—Pajxt. 
Uli    =   ' '   | L/ll        t I t- I 1  | 11 H-H H — V-i H-H 

a.pffi, — BjpJfi, 

'23 Pi —Pi *23 = ' H — P2 
f 21    ' 

P^2-PK 
H-Pt 

(52.11) 

(52.12) 
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For hn  Isotropie plate 

, 1 a,, : bu :--.ru-.-.      ----, 

023 " '^23'-   - C23 '   '-v, 

L-~  C*.    ^--FJ---    -C*. 

n ---- •/, 

- 1. 

(52.13) 

:53. DETERMINATION OF THE STRESSES IN A PLATE WITH TRIANGULAR AP' 
ERTÜRE 

Let us consider' an anisotropic place with an aperture whose 
contour is given by the equations 

Ar ~ a (cos 0 | =cos2f)j, | 

(c = 1. A/ --. 2).   ' 
(53.1) 

tVlth an appropriate choice of the ( c;ra;;.cter c (whese absolute 
value must be smaller than 3.5) Ch1s aperture will differ only 
slightly from an •equilateral triangle witn rounded corners. With 
c = 0.25 the curvature of the middle sections of the sides is 
equal co zero. For simplicity, let us agree upon an aperture of 
the form (53-w which in the following will be called "triangu- 
lar." 

Come problems on the stress distribution in an Isotropie 
plate with triangular aperture were considered In papers by G.N. 
Savin* and M Navman.** 

Let us assume the forces X  ,   1    distributed on the edge of n       n & 

an aperture, tne vector sum of them being equal to zero; in other 
respects, the distribution may be arbitrary. 

In order to obtain a solution to this problem in a third ap- 
proximation, in the expressions of the functions epi and cp^ the 
third powers of e must be retained and the higher ones are omitted 
We have 

:) 
(53.2) ?i = ?io "f E?n + e'fia + e8?^. 

<?2 — ?20 + e?21 -f e29„ + e3(p23. 

Since c = 1 the form of the functions /,, and /„, [Eqs. 

(51.12) and (51.13)1 is simplified a little; in the case given 
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(53.3) 

On the contour of the aperture Conditions (51.10.0; and 
(50.10.k) must be satisfied, where k  =  1,   2,   3. 

The final expressions for the functions 
of the aperture have the form;* Ik on  the   contour 

in = t •' ' 

- A     I     V   ßlm — KjO 
^t-^a 

?i2 = ^4- 2 ''--    '' ••'0" 
Pl — fr 

'4- 

-f-/loiXfo-f- ^Ol^(lA2-f1
1)-(-So1'

;:2(!J2-f12) I 

l1»-^ 

^=^+S-^ ^^M  a_m_|_ 

m-1 
Pa 

(53.T 

'             (jVg - jgog) (H2 - K.) + g^g - 4g^) (^ -^2) " 1 _ 
+ ' Pi —Pa "   0 

Pi-Pa ' 0'" 

Here a = etl: A0, Ai, Ai   and j43 are arbitrary constants, =*m. ?fcm 
are coefficients entering the integrals of (51.9) and which depend 
on the distribution of the external forces. 

Expressions for the functions cpp, will not be given, neither 

here nor in the following sections of this chapter; they are ob- 
tained from the expressions for cp,, if everywhere in the latter 
A, B, [A,, }i2l \v  x2  js replaced by B, A,  ji2> [x,, X2, X, i  respectively (or, 
briefly, when the letters B  and A  and the subscripts of y and X 
are exchanged). The constants An   and B\\  are determined from the 
formulas 

An Pu-Pa^n 
Pi —Pa 4-2/V-.. 

an ^_^    + 2ß02X2 

(53.5) 

( A«. ^02    are  the  coefficients  at  a  2  in the  functions  cpio  and 
920 )• 
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In order to find the stresses a, at the edge of the aperture. 
v 

we must use Formula (52.7) substituting in it 

A ^cosO —2ecos 20,     \ 

B ■-. sin n 

0== 1 4   4£ 

l-2Ssin20.        J (53>6) 

Is2—^cos30. J 

§54. EXTENSION OF AN 0RTH0TR0PIC PLATE WITH TRIANGULAR APERTURE* 

An orthotropic rectangular plate with small triangular aper- 
ture in the center is extended by normal forces p which are dis- 
tributed uniformly along two sides. The principal directions of 
elasticity are assumed parallel to the sides of the plate and the 
aperture has been cut out such that the direction of one of the 
three sides is parallel to a principal direction. 

J 
tribut 

these 
in the 

ust as in the case of an elliptic aperture the stress dls- 
ion in this plate is obtained by superposing the stresses 

in a massive plate, without aperture, 
which is extended by the forces p, 
and the stresses in an infinitely 
large plate with an aperture loaded 
by forces arranged on the edge of the 
aperture. The additional stresses are 
determined by the functions ?1(

2[) and 
'T^J). which are chosen in such a way 

that the conditions ^„ = 0, Kn = 0 are 
satisfied at the contour of the aper- 
ture. This application of the solution 
to an infinite plate will be justified 
if the dimensions of the aperture are 
small compared to the dimensions of 
the plate sides and If it is located 
in the center of it. For each of 

we give the values of the coefficients $k,n, atm. A0,n, B0m 

the stress o . on the contour of the aperture 

Fig. 112 

cases 
formula for 

and at individual points of it obtained in a third approximation, 

Case I . 
the aperture 

The forces are perpendicular to one of the sides of 
(Fig. 112). 

& 01 2 • "12 
pal 

2 (5^.1) 

the other ^m and äkm   are vanishing. 

J        _   _ P"1 R Pal ] 
01 ~    ~ 2 (uf- - ^ •    "" - 2 (IM->,) • (5^.2) 

"Om ~     "L"I 2); 0. («1 

= P& + ]^i WD* cos 0 -I- BC*n sin 0 — 

— 2t(ADi cos 20 -f- BC*n sin 20) -f- -JC<n {Agk cos 0 + Bit sin 0) • 

- eMC4A:n (dh -f- gi -f- dgn) cos 20 -f t^BC'ii (itgk — hi) sin 20]. 
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Remember that C2
}   D*  and L  are determined according to Eqs. 

(52.8) and (52.10) where we must put 

/l = cos0 — 2ecos2!), 

ß = sin04-2ei 

At  point A   U =  0,  Fig.   112) 

: cos 20, | 

sin 20.  / 
(54.4) 

('.)x = j[-1 + r^ ^ - pr2i«(^ + £/+ rf^o] • 

At  point   C (0 = T.) 

(a,)c = J [-'l -f j-jL- gn + j-^ n {dh + gl + ^z,)] ■ 

(5^.5) 

(54.6) 

The  investigations  show that  the  highest  value  of a»  is  at 

the points  D and D\  where the  tangent  to the  contour  is  parallel 
to the  extending  forces   (Fig.   112).   The  position  of  these points 
is determined by  the  values 0=rt0OI   where  1)0   is  the   smallest  solu- 
tion of the  equation 

cos0o —2eco5 20n = 0. (5^.7) 

In particular, for e = 0.25 we obtain «0=11 lo30'. At the points D 
and D\  the stress is determined by the formula 

(o,)0 = p^l+-glsin00—2esin20o-j-e'/isin0() + e9(rfg*—/,0sin2öol\.    (5H.8) 

For an  Isotropie plate |ii = jA2 = /, g = A =0, </= I,/ = —1 

o» = ^ (I — 2 cos 20 -f 4: cos 0 — W) (5^ . 9 ) 

and Eq. (5^.3) obtained in a third approximation proves to be 
Identical with the exact formula for an Isotropie plate.* 

Case 2. The forces are parallel to one side of the aperture 
(Fig. 113). 

-   -   __       pa , 
aoi — "iz 2 ' 

the other äA.,n and all pA.m are vanishing; 

(5^.10) 

ül~2(n1-n2)> 01 ~     2(K-M' 
*Om = ßom = 0     (ffl>2); 

y»> 

(54.11) 

o»=Pfä+zfe {AC*kn cos 0 + B£l sin 0 + 
+ 2s (AC*kn. cos 20 -f BE1 sin 20) -}- 
+ e'C^Art I—/ (g/i +/i) cos 0-f ßgsin 0)-|- 
+ v>AC*kn I(te(/i2 — k) + {dh + £/) n + A/1 cos 2!) — 

— i*BCtknidlt-'rgl + dgn)s\n2b]. 
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The  stress  will   be  maximum at  point  A   (Fig.   113): 

— Mgk -f- e3 (gn.+ It) (dn + /)]. (5^.13) 

By means of a limiting transition from the approximate equation 
(5^.12) we obtain the stress formula for the Isotropie plate ex- 
tended as shown in Pig. 113: 

o6 = ^ (1 -f 2 cos 20 — 4z cos 0 — 4£2). a (5^.1^) 

ftttt IP 

111111'- 

Pig.   113 

This formula is also identical with the exact one. 

Let us give some results of calculations for a veneer plate 
with an aperture characterized by the parameter e = 0.25. 

In Table 6 the numerical values of the stress (in frac- 

tion 
tour 
case 
side 
diff 
alle 
The 
of y 
fer 

sign 

s of p) are compiled for the most 
as obtained in first, second and 
of tension in the direction of wh 
of the aperture (Case 1) the nume 

erent according to whether the dir 
1 to the fibers of the sheet or pe 
same holds true for the extension 
(Case 2). Por each of the cases 1 

to both extension along the fibers 
£",„»,) and across the fibers (^ =■-=/:,„(„ 
ificant ciphers have been retained 

important points of the con- 
third approximations. In the 
ich is perpendicular to the 
rical results obtained are 
ection of x  is directed par- 
rpendicular to the fibers, 
in the principal direction 
and 2 the values given re- 
of the sheet (/;x^Eniai and 
and ^i/r:: ^mio)- Everywhere two 
after the comma. 

The results of a calculation of the stresses in a fourth ap- 
proximation (which are not given here) differ only very little 
from the results of the third approximation; in any case, in the 
fourth approximation the first cipher after the comma remains one 
and the same as in the third approximation. It is therefore unnec- 
essary to calculate higher approximations, it is sufficient to use 
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TABLE  6 

The Strv 

Triangular Aperture 

The Stresses a. at Points on the Contour of a 

j      CiyMifl I 2   CnyijA 2 

Ex — ^ m»» Ex == ^ mlo Ey — ^ .n»« F  ~F 

A D C A fl C , /» C A C 

1-e 
2-e 
3-e 

-0,71 
-0,74 
-0,77 

10,61 
10,94 
10,86 

-0,71 
-0,72 
-0.70 

-1.41 
-1,36 
-1.43 

7,80 
7,93 
7.90 

-1.41 
-1.40 
-1.37 

14.38 
13,95 
14.09 

2.49 
2,34 
2.30 

10,45 
10.27 
10.33 

2,05 
1,99 
1,97 

1) Case 1; 2) case 2;   3) points; 4) approxi- 
mation. 

the third or even the second approximation In order to estimate 
the stress concentration. 

For an Isotropie plate with an aperture at which e = 0.25 we 
obtain the following results. 

Case I . At the points A  and C 

at point D 

Case 2. At point A 

at point C 

i°i)Ä = 7/>; 

(oi)c=l,67p. 

(54.15) 

(54.16) 

(54.17) 

(54.18) 

Prom the table 
both cases (1 and 2) 
rectlon of the fiber 
With an extension in 
the sheet (i.e., in 

is distributed over 
between the maximum 
erably smaller than 
large E. 

given we see that the stress concentration in 
is higher if the plate is extended in the di- 

s of the sheet (in the direction of higher E). 
a direction perpendicular to the fibers of 

the direction of smaller E),  the stress o^ 

the contour more uniformly and the difference 
and minimum stresses on the contour is consid- 
in the case of extension in the direction of 

Comparing the results obtained for a veneer plate and an Iso- 
tropie plate we see that in all cases the maximum stresses in a 
veneer plate are considerably higher than in an Isotropie plate 
of the same type. 
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All these conclusions are valid also for a series of other 
anlsotroplc materials applied In practice (for example, for vari- 
ous forms of wood). 

The solution of the problem on the extension of an anlsotrop- 
lc plate with a triangular aperture by means of the method de- 
scribed was obtained for the first time by V.P. Krasyukov.* Anoth- 
er approximation method of determining the stresses in an extended 
orthotroplc plate with triangular aperture has been suggested In a 
paper by K. Stephens.** 

§55. PURE BENDING OF AN ORTHOTROPIC PLATE WITH TRIANGULAR APER- 
TURE*** 

An orthotroplc rectangular plate with a triangular aperture 
In the center is deformed by forces distributed on two sides, 
which can be attributed to the action of the moments M  in the 
mid-plane. It is suggested that the directions of the sides of 
the plate and one of the sides of the aperture are parallel to 
the principal direction of elasticity of the material. 

Approaching the problem in the same way as the problem of 
the extension considered in 45^ we distinguish also here between 
two cases. 

Fig. 114 

Case I. The sides of the plate parallel to one of the sides 
of the aperture are loaded (Fig. 114). 

Po2 — -or1 

Pts- 

Pu 
Ma* 

8J ' r,1— 47 ' 
Ma*      -a   —Mat 

4J '     P2*— 8/ 
(55.1) 

{J — moment of inertia_of a plate cross section perpendicular to 
the x-axis, the other 0,  and all a.  are vanishing; 

A), = -i3ol = 0/ 

02 - ay (^-,*,)• 

01 

R     —_ Ma2 

Aom — B0m — 0     ('« > 3): 

241   - 

(55.2) 
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oft=^(sin{)-£sin2n)g + 

+ 5jlä f~ BC4"cos 2f, t"/,D< sil12f) + 
■-fei—ßC4/J(cosf)—3cos3D) -|-/ID1 (sin H —3 sin 30))-f- (55. 3) 
+ 2E

2
 [— flC4/i cos 10-4- AD* sin 10| -f 

-f t^BOn [li -\ 0,5 {dgk — lli)\ cos 0 - tWOgkn sin 0 + 
-f O.SeMC^/; (</// 4 ^/ -f ^/j)sin f)J. 

where ,4 and B  are determined according to Eqs. (5^.4) 

At the points A  and C (Pig. 11^) oe =0- The stress reaches its 
highest absolute value at the points D  and Di   where the tangent to 
the aperture's contour is parallel to the x-axls (i.e., the non- 
loaded side of the plate). At point D 

("»^ = ^ (3in Oo -3 sin 2!)o) 1 -^ • ^ (-cos 2004- 

+ e (3 cos 30o — cos 00) — 2e2 cos 40o -f- 

+ .8(A + 0.5(^—/z/)]cos00) 

(55.4) 

[the angle i>o is determined from Eq. (54.7)]. 

Carrying out the limiting transition, we obtain from (55.3) 
a formula for an Isotropie plate which coincides with the exact 
expression:* 

ai = -~ (sin 0 — Fin 30 -f- e sin 40 — 622 sin 0). (55.5) 

Fig.  115 

Case  2.   The  sides  perpendicular to  one  of the  sides  of the 
aperture are loaded   (Pig.   115). 

*02 • AM =a13 = 
Affl» 

Afa' 
(55.6) 

«2«: 
87 

(J  is the moment of inertia of a plate cross section perpendic- 
ular to the a?-axis); ou  with other subscripts, and all ß,  are 
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equal  to  zero; 

3    -= -   -  Mn-p.t 

1-1*2) 02"    ~  ÜJH-^' 

Aom — Rom =-- 0   (w > 3); 

/,02~ 8/017^2) (55.7) 

'»---(cosO   |-ecos2f))'^ + 

+ 27zfj (/1CJA," CÜS 2n  I" Bßi sin 2I) + 
+ e MC^/i (cos D -) ■ 3 cos 3f1) -f- /?/:< (sin f)  f 3 sin 3D)|  f- 
+ 2e!!l/lC'/:/jcos-lf)-(-i9£'sin40|-f    ' 
+ 0l5ziAC*kn[li{l — 2)-\-dgin*-k) f (rf/!| ^--2^)//) cos 0-f- 

4- t*DC*gkn sin 0 — 0,5-SßC*kn {dh -f g/ -j- rf^/i) sin DJ. 

(55.8) 

At  point  A   (Fig.   115) 

-|- 0,2553 [/J (/ — 2) + dg (n2 — A) + (rfA + ^ — 2g) nl) • 

Prom (55.8) we obtain the formula for the Isotropie 
It also coincides with the accurate expression:* 

0» = -j£ (cos I) -f- cos 30 -f- s(cos 40 — 2) — 6s2cos 0). 

(55.9) 

plate; 

(55.10) 

In Table 7 the values of the stresses a. (in fractions of 

Ma/J)  are given for a veneer plate calculated in first, second 
and third approximations (for Case 1 at point D  and in Case 2 at 
points A  and C).   The parameter e is taken to be equal to 0.25. 

In each of the two cases numerical values are given for a 
plate in which the fibers of the sheet are perpendicular to the 
external sides ( (£,a; = £'raax and Ey = Em&x),   and for a plate where the 
fibers are parallel to the external sides (£* = £,„,„ and Ey = EmlB). 

TABLE 7 

The Stresses a. at Points on the Contour of a 

Triangular Aperture 

j Ciyiafl 1 2     Oiynifl 2 

Ex — f max ^x — ^mln £y — f max Ey — ^rnlo 
~^ a   TOMKH 

npHö.vi;  ~^ 
) D A C A C 

I-e 
2-e 
3-e 

6,77 
6,73 

.      6,71 

5,11 
5.09 
5,08 

10,16 
10,71 
10.70 

-0.75 
-0,91 
-0,91 

7.56 . 
7,95 
7,94 

-0,75 
-0,88 
-0,88 

1) Case 1: 2) ca^e 2; 3) points; 4) approxi- 
mation. 
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From the table we see that the third approximation, within 
the limits of accuracy accepted (two significant ciphers behind 
the comma) differs very little from the second or is even the 
same. Therefore already the second approximation renders it pos- 
sible to estimate the magnitude of the coefficient of concentra- 
tion with an accuracy sufficient for practice. 

For an Isotropie plate with the same triangular opening we 
obtain: 

Case I. At point D 

(0^ = 3.63^. (55.11) 

Case 2. At point A 

at point C 

(°*h 5.50 ^i; (55.12) 

(0»)o = 0.83 ^i. (55.13) 

Table 7 shows that the coefficient of stress concentration 
in a veneer plate in all cases reaches much higher values than 
the coefficient of concentration in an Isotropie plate of the 
same form. Of the two basic cases of orientation of the principal 
directions with respect to the loaded sides of the plate the 
first one is less favorable as the forces are there acting on the 
sides perpendicular to the fibers of the sheet and in this case 
the stress concentration around the hole is higher. 

§56. DETERMINATION OF THE STRESSES IN A PLATE WITH AN OVAL APER- 
TURE 

Let us consider an infinite anisotropic plate with an aper- 
ture whose contour equation reads 

x=.a{  cosO-j-ecosSO), | 
y = a(c sinQ — e sin 3f}). J 

(56.1) 

When o  is positive and smaller than unity the aperture has 
a lengthy form and the x  and y-axes  are the axes of symmetry. 
With c = 0.36 and e = -0.04 we obtain a figure which differs only 
slightly from a rectangle whose short sides have been replaced by 
half circles; with such a form the length-to-width ratio is equal 
to 3 and the curvature in the middle of the long sides is equal 
to zero. With a  = 0.537 and e = -O.038 the hole has an oval 
shape; the length-to-width ratio is equal to 1.93. An aperture of 
the type (56.1) with c < 1 will be called oval in the following. 
The problem on the extension of an Isotropie plate with such an 
aperture (and, in particular, with an aperture for which a =  0.537 
and e = -O.038) has been considered by Greenspan* and the problem 
on bending caused by moments by Joseph and Brock.** Solutions to 
a series of other problems for an Isotropie plate with oval aper- 
ture were obtained by Ye.F. Burmistrov*** (using the method by 
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N.I. Muskhellshvlll). 

Assuming in Eq. (56.1) c = 1, we arrive, as already Indl- 
-_ted, at a figure with four axes of symmetry which, with certain 
values of e  will differ only little from a square with rounded 
corners 

Assume given forces X  ,   Y    attacking at the edge of the oval 

aperture (56.1), whose vector sum is equal to zero. In this case 
the functions <?u(zi) and ^(^s) have the form (51.7) and /,(([) and 
y2(r'2)  are represented by the series (51.12)-(51.13) 

Solving the problem in a second approximation, we omit in 
the expressions for cpi and cp 2 powers of e higher than the second, 
i.e., we have 

'f2. + B2<?22. , (56.2) 

In the right-hand sides of the boundary conditions (51-5) 
we also neglect all powers of e higher than the second. 

After some transformations we obtain the following expres- 
sions for the boundary conditions of the functions cplfe: 

m»l ■ftj 

00   _ _ 

«u-l 
1^1 — V-i 

o-' -\^ 

„.^.+ 2^ ■+ 
m»l 

H- [(3Aoiai + 6A03) ß?- An^] o -f 3/102?fo2 + /.01ßfos + 

,   [(3lo,;i-i-6^03)Ff-^. J, 1 (;W1)-H(3äui;a+6äUJ) K-Bj2] Qy-^) v 

w 1   ,   , ^oa^fra- i^i) "I- ßna&a (.^ - ?2)    1    . 
x __h .j _ _ „^ 

Ki —Ha 

"^   "  "    Hi-Ha      "  " cS 

Here AQI AV A2   &re arbitrary  constants. 

Ha 
A   —      PM — Ha'11 _    Z»1'1 ^HlÜl) itjy ^ (;'3' ' t3) 4. 

.  + (^i-l-S^)?!. 
dojMHJ -Hi)-)-^.!^!- - Hal 4. 

Hi — H^ 

4-(ß01a2-f 3ßOJ)ß2; 

Bn = — IlLZlHiuil 
. Hi —Pa 

^Om  and  s0m  are  obtained  from Eqs.   (15.15). 

-   2i<5  - 

(56.3) 

(56.4) 

-^ .-.■■^-^■..—^„1^.1.^..-.--....^   — . 
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The expressions for the boundary values of the functions cpp, 

are obtained from (56.3) by an exchange of the letters A  and B  and 
the subscripts of y, a and 3. 

For the determination of the stresses a^ at the edge of the 

aperture Eq. (52.7) Is used In which we must substitute 

A = ccosD — 3ecos3f>, 

B—   sin 0 + 3B sin 3f). 
(56.5) 

The formulas given here can also be used In order to deter- 
mine th? stresses at the edge of the aperture for which ^=1, 
ai = Pi = X,, a2 = ßj = X2. 

§57. EXTENSION OF AN ORTHOTROPIC PLATE WITH OVAL HOLE* 

A rectangular orthotroplc plate with small oval aperture Is 
deformed by tensile forces p distributed uniformly on two sides. 
The principal directions of elasticity and the axes of symmetry 
of the aperture are parallel to the sides. 

/%ZZZ 
B 
ft 

y////'f'. 

'T^TTT/.TPTTT-y 

Pig. 116 

Solving the problem In a second approximation (by means of 
superposition), we consider two cases (denotations see §52). 

Case I. The plate Is extended In the direction of the major 
axis of the aperture (Fig. 116), 

Poi = —2'/,flc/' Pia ^y/"7': 

P*m = 0  for the other k,m\<xkm^§   for all fe, m; 

(57.1) 

101 
pad 

2(fh-H2)' ß, oi 
pad 

^o». = Km ==0  ('« >2); 

o8 = p £7 -f- -^ {c(^D1 cos 0 - f- BC*n sin ü)~\- 

+ e I2/lC^ucA/i cos 0 — 3/1D1 cos 30— 

— BC*n (2fluc sin 0 -f 3 sin 30)] + 

. 4- 2e5C4cn [— Aft {b2{ cos 0 •-[- Zbi3 cos 30) + 

-f-fl(a2IsinO-f 3a23sin3D)l}. 
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The stress distribution on the contour is symmetrical rela- 
tive to the axes of the aperture. It reaches its highest (abso- 
lute) value at the points A  and Ai   or at the points B  and ßj at 
the ends of the axes (Fig. 116). 

■<J 

HHt 

777777.7777/ 

IUH 

M M IP 

IHUP 

117 

At   the  points  A  and A\ 

(0») 
1 

f- e (3 + 1bnai) — ItHn {bn + lbu)\. 
(57.^) 

at  the  points  B and  Si 

{o*)B = P + y^gi n [c + e (3 - 2ailc) + 

+ 2eJc(a21 —3a23)l. (57.5) 

In an  Isotropie  plate  at  the  same  points  A,   A\   and B>   Bx,  by 
virtue  of   (57.4)  and   (57.5) 

/\ PT 3 — C,,8C1 
MA = - r-3i [c -e r^ +"e oT^J: 

(^-p-fri^K^n c    '   e    (1 + 

(1 + , 

2 . 
-c)l)- 

(57.6) 

(57.7) 

In contrast to the plates with triangular apertures, Eqs. (57.6) 
and (57.7) for an Isotropie material do not agree with the exact 
formulas but are approximations [to the same degree as Eqs. (57.4) 
and (57.5)]. 

Case 2. The plate Is extended in the direction of the minor 
axis of the aperture (Fig. 117), 

the other a,  and all ß-,  are vanishing; 

01 ~ 2 on - ^' ^ -"- -• 2j- --y • 

(57.8) 

(57.9) 
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"» = P^j + ^7 {/IC^ft« cos 0 + ß£* sin 0 -j- 

+ «[A&kn (— 2CJ, cos ft 4- 3 cos 30) + 
H- ZBObukn sin 0 + 30/:* sin 30] f (57.10) 
-f 2e2C<#A:n (/I (c2l cos 0 4-3f23 cos 3»)— 

— B(b2l sin I) -f 3^3 sin 30))). 

At  the  points A  and 4i   (Fig.   117) 

(<'.)^ = P+7^Tc--Jl'+e(3-2fll) + 2enc2l + 3r23)]; (57.11) 

at points  fl and Bi 

(ao)B=r=3;*'-1+e(3 + 2*i»'I) + 2e2'I(~^i-i-3*23)I- (57.12) 

At the  same points  of an Isotropie  plate 

<«.). = P + Ä[l+sT^ + "(TRr]. (57.13) 

(«.).,-"r^[i+s'r^+"(rT5?]- (57-11|) 

In Table 8 the results of calculating the stresses a. at the 
V 

points A  and B of a veneer plate with an aperture for which a = 
0.36 and e = -0.04 are compiled; we consider the cases where the 
major axis of the aperture is parallel to the sheet fibers and 
where it is perpendicular to the fibers. The values of a are 
given in fractions of p. ^ 

For an Isotropie plate with such an aperture we obtain the 
following values for the stress o^ at the points A  and B: 

Case I . 
{ob)  =-0.92p.   (oB)3= 1.39p. 

(57.15) 
Case 2- (^ = 4.44^.   (a^-O.Mp. ^^ i6) 

In Table 9 we give the results of calculations for a veneer 
plate with an aperture characterized by the parameters 
c = 0,537, e = —0,038. For such an Isotropie plate we have at the 
points A  and B: 

Case I . 
(o0)x = —0.92/;. (a^-^ljlp. 

(57.17) 
Case 2. (c,,).-3.58p.   (^)/,---0.92/;. 

(57.18) 

In Tables 8 and 9 only the first and second approximations 
have been given. The calculations show that with given values of 
the parameters of the aperture and other constants the third and 
higher approximations do not alter the first two ciphers behind 
the comma. 

Comparing the ciphers of these tables for different cases 
and Juxtaposing them to the values obtained for the Isotropie 
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TABLE   8 

Stresses a. at Points of the Aperture's Con- 

tour, C = 0,36, . = -0,04 

.       C.iyMafl 1 2    Oiymfi 2 

£x " ^-max ^x — ^ mln Ey 
== tmai Ey- = ^mlo 

--^3  TO'IKH 

tlpllfi^.  lj^~~^ A           B A ■ B A B A -   B 

1-e 
2-e 

-0,62 
-0,63 

179 
1,78 

-1.25 
-1,24 

1.59 
1,58 

8,54 
8,50 

—0,61 
-0.61 

6.39 
•6.38 

—1.20 
-1,19 

1) Case 1; 2) case 2; 3) points; 4) approxi- 
mations . 

>' 

TABLE 9 

Stresses cfl at Points of the Aperture's Con- 

tour, c = 0.537. € = -0.038 

j   OyiiA I 2 Oiymft 2 

f» — f mix Ex — f mln fy -T Cnjjjt EV — ^mio 
■^-»^3   TO'IKH 

npiifi^nr^—«^ yl fl A ß >1 B A Ä 

l-e 
2-e 

-0.63 
-0.63 

2,51 
2.50 

-1,27 
-1.27 

2.10 
2,09 

6,65 
6,63 

-0,63 
-0,63 

5.04 
5,03 

-1,24 
-1,24 

1) Case 1; 2) case 2; 3) points; 4) approxi- 
mations. 

plate, we arrive at the same conclusions as in the case of the 
extended plate with triangular aperture, namely: 1) the stress 
concentration is highest in the case where the plate is extended 
in the direction of the higher Young's modulus (I.e., along the 
sheet fibers); 2) the coefficients of concentration for a veneer 
plate are in both cases 1 and 2 higher than the coefficients of 
concentration for the same Isotropie plate. 

§58. PURE BENDING OF AN 0RTH0TR0PIC PLATE WITH OVAL HOLE* 

On a rectangular orthotropic plate with a small oval hole, 
as considered in the preceding section, forces are assumed to act 
which are distributed on two slues and which are due to bending 
moments M. 

-a^e I. The forces are applied to the sides parallel to the 
minor axis of the aperture (Fig. 118). 
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the other ßfem and all ä^ are equal to zero; 

MaW /MaJca 02" ^x-^)'   ^ Ty^r^j. 
/lom = ßon. = 0    (ffl>3) 

(58.1) 

(58.2) 

o» = ^(Csinf)-esin3D)g4- 

+2^5 {c2(—BC<rtcos20-f-/l£Msin20H- 

+ 2ec I— ßC</i (coi 20 — 2 cos 40) + 
-f /ID1 (sin 20 — 2 cos 40)] -f- 
-f 3e2 (5^/1 (2023^05 20 — sin 60) -f- 
+ 2AC*c2l>23kii sin 20 4- AD1 sin 60) | . 

(58.3) 

Pig. 118 

At the points A  and Ai   at the ends of the major axis (Fig. 
118) o9 = 0. 

At the points B  and Si, at the ends of the minor axis, we 
obtain the highest (absolute) values of the stress; at point B 

(a9)fl = ^{Cfe + -r43-,l0^
i!+3"4-i.5a2(l-2a23c

2)i}.    (58.4) 

The stress at the same point of an Isotropie plate is equal to 

(09)s ^yir^ö ^C+0+^(1 + 3C)i. 
(58.5) 

It  is interesting to note that this  formula,  obtained from 
the approximate relation   (58.4),  agrees with the  exact expres- 
sion,* Just as in the  case of the triangular aperture. 

Case  2..   Forces  are  applied  to the  sides  parallel  to  the ma- 
jor axis of the aperture   (Fig.   119), 
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Ma*    -        - Ma*     ~ 
a02 — Yj   •   ai2 -" aU -~ 

AJflJ 
V a2o-"---g7-. (58.6) 

«Am--0      for  other *.  m; ^.„, = 0; 

02 " 8/0*1-1^'        02~ 87 (^-^ • 

^o». =-: Bom ^ 0    (^ > 3) 

(58.7) 

(J is the moment of Inertia in a cross section of the plate par- 
allel to the major axis of the aperture); 

oe = ^ (cos f) -f £ cos 3f)) ~ -f 2~~ [AC* kn cos 2D + ß£4 sin 21) + 

4- 2e [A&kn (cos 20 -f- 2 cos 40) + BE* (sin 20 4-2 sin 40)] + 

-f 3E
Q
 I/1C4A:« (2c23 cos 20 -f cos 60) — 

— 2BC*b2ikn sin 20 + BE* sin 60)) . 

At the points B  and Si (Pig. 119) od = 0. 

At point A,   at the end of the major axis, 

(^ = ^[1 + « + 7^-f 10.5+3s+1.5^(1+ 2c23)l). 

At the same point of an Isotropie plate 

Ma 

(58.8) 

(58.9) 

iaiih (1+c-f-e(3-}-C)l. 

and this formula agrees with the exact one 

(58.10) 

The numerical values of the stress cr  (in fractions of Ma/J) 
v 

at point B  in Case 1 and at point A   in Case 2 are compiled in 
tables for a veneer plate. 

Table 10 applies to a plate with an aperture whose parameters 
are: a =  0.36, £ = -0.0^. For an Isotropie plate of this form we 
obtain; 

Case I. At point B 

Case 2. At point A 

(O»)D = 0,36 -y-. 

(0^ = 2,55 
Ma 

(58.11) 

(58.12) 

In Table 11 we give the values for a plate whose aperture 
is characterized by the parameters o  - 0.537 and e = -O.O38. For 
an Isotropie plate with such an opening we obtain the following 
values: 

Case I. At point B 
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Case 2. At point 5 

(0^ = 0.65^. 

(0^ = 2.16^. 

(58.13) 

(58.14) 

Two significant ciphers are everywhere retained after the comma. 

^ 

Pig. 119 

TABLE 10 

Stresses Co at the Points of the Aperture's 
Contour, c =.0,36. t = -0,04 

flpHÖJI. 

3 

j    C^yqafl 1. TOIK» B 

Ex — f ra« Ex — Cmlo 

l-e 
2-e 

0,41 
0,41 

0,38 
0,39 

2     CiymR 2, TOMKi /» 

Ey — Emli 

4,50 
4,49 

Ey — Emla 

3,47 : 
3,46 

1) Case 1, point B;  2)  case 2, point 4; 3) ap- 
proximation. 

TABLE 11 

Stresses a^ at the Points of the Aperture's 

Contour, c = 0,537. J =-o.öas 

npHfiji. 

3 

C^yiafi 1, TO'IKI B 2     dytilt 1, TOMKi A 

Ex ~ Emtx Ex — E,aia Ey — £nii Ey = ^ rain 

l-e 
2-e 

0.84 
0,84 

0.74 
0,-4 

3.61 
3.60 

2.84 
2.84 

1) Case 1, point S; 2) case 2, point A;  3) ap- 
proximation. 
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As we see from these tables, the coefficient of stress con- 
centration Is higher In the case where the sides of the plate 
perpendicular to the fibers of the sheet are loaded. 

§59. EXTENSION OF AN ORTHOTROPIC PLATE WITH A SQUARE HOLE* 

Consider an orthotroplc plate with the principal directions 
of elasticity parallel to the directions of the sides, which is 
weakened by a small central hole whose contour is given by the 
equation 

x--~- a (cos f)-f-£cos3f)), 

y — a (sin 0 -esin 3D) 

(the axes x  and y  are parallel to the sides). 

(59.1) 

With certain values of the parameter e (e.g., with e ——Vg) , 
the aperture differs only little from a square with rounded cor- 
ners; in the following, for the sake of simplicity, we shall call 
it square. 

With positive e the (rounded) corners of the square lie on 
the axes x and y, i.e., these axes coincide with the diagonals; 
with negative e the sides are parallel to the coordinate axes. 

Let us assume the plate extended by the forces p which are 
distributed uniformly on two sides (Pigs. 120 and 121). 

;>!/ 

x     _» 

g^'f% 

L <%kt?. 
8, C. 

-4 I 
VTZV.TPTZtt' 

Fig.   120 Fig.   121 

The formulas in order to calculate the stresses a,, on the 

contour of the hole and at individual points of it are obtained 
in a second approximation from Eqs. (57.3)=(57.7), assuming c = 1, 

oj = p^--1-^ (/ID* cos fH-ßC'rt sin !)— 

— e |/1C< dkn cos H  3/1D' cus 3^  |  BVn {I sin f)  {- 3 sin 30)] 

— zWn [Ah (r cos D -   3g Los 30) \- B{s sin D — 3/i sin 3D)J). 

(59.2) 

At the points A  and /I i at the ends of the diameter parallel 
to the forces the stress is given by 
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= _p_J (oo)x = j-f^.-J-(-1 + e (3 - «rfM - e^ (3g - r)). (59.3) 

At the points B  and Si, at the end of the diameter perpendic- 
ular to the tensile forces. 

('»)ö--p^Tell+n--e(3-|-nd---5/i) -s7n{s \-Vi)]. 
(59.4) 

At the points C, Ti, £"2 and C3 at the ends of the diameters 
making angles of 45° with the forces, we obtain 

(0»)c = rf3i-nT7f.-^Z17i{
1-*'+«-hM3(l -Ä)-/I(3|-Ärf-K)l + 
+ 82«[3(/j —ftg')—Air —s]) 

(59.5) 

For an Isotropie plate Formulas (59.3), (59.4) and (59.5) as- 
sume the form 

("iU - piajC- I + e - 2s2 ~ 2ea); 

(0»)fl = r^T. (3 + 5s + 2E2 + 2e-3): 

(59.6) 

(59.7) 

(59.8) 

The first two of them are approximative, the third agrees 
with the exact formula.* 

From Eqs. (59.2)-(59.8) one can calculate the stresses In a 
plate with aperture, both In the case of extension along the dia- 
gonals (Case 1, e > 0, Fig. 120), and In the case of extension In 
the directions of the sides of the square (Case 2, e < 0, Pig. 
121). In order to pass over from one case to the other, we must 
only change the sign of e wlhout changing the value of this para- 
meter. 

The values of a    at the points A,   B  and C  (In fractions of 
p) for a veneer plate with aperture, for which |e| = 1/9, are 
given In Table 12. In both cases we considered the extension In 
the direction of the higher young's modulus (E    = E       ) and of 

the smaller one {E    = E  ,   ).   The results given have been calcu- x        mln 
lated not only In first and second approximations but also In the 
third approximation [according to a formula which Is not given 
here);** we retained everywhere two ciphers after the comma]. 

For an Isotropie plate with the same aperture we obtain the 
following values for the stresses a. at the points A,   B  and C: 

Case   I,   e  =  1/9 

(0^ = —1,38 p, 

(o»)fl = 5,38 p, 

(09)0 = 0,5 p. 
(59.9) 

Case   2,   e  =  -1/9 
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TABLE 12 

Stresses a. 

Square Hole 

(o6)x-=. 0.85^. 
("a)« 7 - 1.85/), 
(^)c- Sp- 

at  Points of the Contour of a 

(59.10) 

~~.^3 TO'IKII 

i 

Cfly MM 1, ,- 
1 

"9" 
C/iyiaii 2, t -^ — 

1 
9 

^x — ^mai ^x — ^mla ^x " - ^nmx Ex 
— ^-uiin 

A   |   B c /I 

-2,03 
-2,(15 

-2,0G 

B C A       B C A B C 

1-e 
2-e 
3-e 

-1,01 
-1,05 
-1,05 

I0,9() 
10,79 
10,82 

0,20 
0,22 
0,21 

7,92 
7,85 
7,80 

0,10 
0,11 
0,11 

- 0,55 
-0,57 
- 0,57 

2,70 
2,G1 
2,G0 

0,81 
0,82 
0,83 

- 1,11 
-1,12 
-1,11 

2,27 
2,23 
2.22 

1,2G 
1.27 
1,28 

1) Case 1; 2) case 2; 3) points; k)  approxi- 
mation. 

Within the limits of accuracy accepted, the third approxima- 
tion for the plate given differs only little from the second or 
is even equal to it. 

The 
for a ve 
the cone 
other apertures 

conclusions which can be 
neer plate and an isotrop 
lusions drawn previously 

The stress a^ in 

the contour more rapidly than the 
ic plate, forming "peaks" at indi 
the fact that the maximum stress 
cases higher than in an Isotropie 
coefficient in a veneer plate is 
the direction of the high Young's 
the sheet) and smaller when tensi 
of the small E (across the fibers 
cu is distributed more uniformly 

also be mentioned that the maximu 
the direction of the diagonal of 
the maximum stress when the plate 
the side of the aperture (at leas 
here ). 

drawn when comparing the results 
1c plate are quite analogous to 
with respect to the plates with 
an Isotropie plate varies along 

stress in an analogous isotrop- 
vidual points. This also explains 
in a veneer plate is in all 
plate. The stress concentration 

higher in the case of tension In 
modulus (along the fibers of 

on is exerted in the direction 
); in the latter case the stress 
along the contour. It should 

m stress In a plate stressed in 
the aperture is much higher than 
is extended in the direction of 

t for the plates considered 

§60. PURE BENDING OF AN 0RTH0TR0PIC PLATE WITH SQUARE APERTURE* 

Consider a rectangular plate with a small quadratic hole in 
its center, as considered in the preceding section, which is sub- 
ject to the action of forces applied to two sides, which are due 
to the moments M,   With e > 0 the moments act in such a way as 
shown in Fig. 122, with c < 0 such as in Pig. 123. 
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Prom the formula, for a plate with an oval opening  (58.3) 
with c = 1 we obtain 

o» = — (sin 0 ~e sin 3f>)~ -f- —^ [ — BOn cos 20 -1- /ID« sin 20 f 

-f 28 [-' BC*n (cos 20 -- 2 cos 40) f /ID4 (sin 20 — 2 sin 40)1 -f- (60 .1) 
+ 3e2 lßC4/i (/«cos 20 — cos 60)— 

— A&gkn sin 20 + /ID1 sin 60)) . 

At the points A  and /h (Figs. 122 and 123) o8 = 0. At point 5 

(<'»)a=7^3^[l+0>5/i —e(2-3«)-3eni+015/m—0.5«)].    (60.2) 

At the opposite point ßi a» will have the same absolute value 
but the opposite sign. 

At the points C  and Ci 

Ma yi 
(<i»)c: 

70+3«) •n' + (A-V1~fe+2^1-<:-2ra)-+ 
4-382(A —^fcrt-l)). 

(60.3) 

The stress at the symmetrical points C2 and C3 differs from 
the stress at the points C  and Ci  only by the sign. 

Fig.   122 

,,y 

irra L 
%. 

1 
IJ# « mw 

Fig.   123 

For an Isotropie plate we obtain for the points B  and C. 

{°b)B 
2Ma    1+2*. 

J     ' l-3e: 

f„s   _       2 V^Ma 
\ai)c = —f  

(60.4) 
. (60.5) 

i-l-at* 

These  formulas,  which have been obtained from the  approximate 
formulas by means of a limiting transition,  are  also Identical 
with the exact ones.* 

In Table  13 the numerical values of a^ are  compiled in frac- 
tions of Ma/J for the points  B and C of a veneer plate obtained 
in first and second approximations;  the aperture parameter is 
taken equal to   e='±:V9.  The third approximation is not  given;  in 
the worst  case it differs  from the  second by at  most  0.01. 
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In an Isotropie plate the stresses at the points B  and C  are 

Case I, e = 1/9 

(O8)B=1.17^; 

(^=0,47^. (60.6) 

Case 2, e = -1/9, 

(0^ = 3.67^; 

Mc 0.24^?. 

TABLE 13 

Values oj 

Square Aperture 

Values of a^ at Points on the Contour of a 

- 

C^yiafi  1, e = -g- 
i   .                       a 

Oiyqafl 2. . = --i 

Ex — ^ max ^x — ^inlo Ex — Emtx Ex — Emia 

 ^3 TO'IKH 

npno.i. i,"--— B C B C B C B C 

l-e 
2-e 

6,73 
6.71 

-0.13 
—0.13 

5,11 
5,10 

-0,11 
-0,11 

1,47 
1.46 

0,18 
0,18 

1,31 
1,30 

0,34 
0,34 

(60.7) 

1) Case 1; 2) case 2; 3) points; 4) approxi- 
mation. 

A comparison of the values for a veneer plate and an Isotrop- 
ie plate leads us to conclusions which are quite analogous to 
those drawn for plates wich triangular or oval apertures. 

Manu- 
script 
Page 
No. 

229 

232 

235* 

[Footnotes] 
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[Certain  Cases  of Elastic  Equilibrium of an Anisotropie 
Plate  with Noncircular Aperture],   Inzhenernyy  sbornlk. 
Vol.  XXII,   1955. 

3ee  our paper mentioned  in the  preceding section. 

Savin,   G.N.,   Kontsentratsiya napryazheniy  okolo otverstly 
[Stress   Concentration Around  an  Aperture],   Gostekhlzdat, 
Moscow,   Leningrad,   1951,  Ch.   II. 
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25lt*     See paper by M.I. Nayman, page 5^, mentioned In §53. 

25^**    See our paper, reference on page 253' 

255 See our paper which has been referred to in §59. 

256 See the paper by M.I. Nayman, page 5^, Eq. (80), men- 
tioned repeatedly. 

- 259 - 

■ ■^■. .... ^... -    -—.-■.-..,!  ■  ■ , ^^.^^.„.■, .i^i.J.fc^t^^.^^J-.>J^..-.J..-^>^^^-T...-. ..-■...■—J„...,... -ii-.,.-^-,-•■■■ yfl, ...,. L. .^  i 
— ---'-■'■ ■ ■,-■'■' — ■  "-- ^~^--..^;...-^ fa ,-.--. 



ifatttSKOf-XM^—m 

Chapter 9 

THE THEORY OF BENDING OF ANISOTROPIC PLATES (THIN SHEETS) 
§61. APPROXIMATE THEORY OF BENDING OF ANISOTROPIC PLATES (THIN 

SHEETS) 

The cases considered In Chapters 2-13, dealing w 
formation of anlsotroplc plates are characterized by 
that the median surface of the plates remains plane, 
sent chapter we shall consider the general theory of 
of anlsotroplc plates with which the median surface b 
curved, that Is, the theory of bending. Here we shall 
this category of plates which has become known as the 
sheets" and we shall deal wi+.h the approximate theory 
sheets. The basic conceptions of the theory of bendin 
tropic plates may be found in the papers by Gehring* 
nesque.** The approximate theory of bending of anisot 
was developed mainly in the papers by Huber.*** 

ith the de- 
the fact 
In the pre- 
deformations 
ecomes 
only treat 
"thin 
of thin 

g of aniso- 
and Boussi- 
ropic plates 

In the theory of elasticity the term thin sheet is applied 
to a plate whose thickness is small compared with the other di- 
mensions, carrying out studies on bending and investigating de- 
flections which are small relative to the thickness (in any case 
they must not exceed the thickness). 

Since within the framework of the present book we are only 
concerned w'th thin sheets, we shall call them in the following 
simply "plates." 

Let us consider the elastic equilibrium of a plane homoge- 
neous anlsotroplc plate of constant thickness, which is fixed on 
its whole edge or partly, and which is deformed by a bending load. 

In the general case the bending load consists of the load q 
in  kg/cm2, distributed on plane surfaces and normal to the median 
surface In its nonctrained state, and of loads which are distrib- 
uted on the edges, in the form of bending moments m  and forces p 
normal to the nonstrained median surface; the latter may be given 
or may be reactive moments and strains arising at the fastened 
places. 

In the most general case the plate is assumed to be nonortho- 
tropic but possessing at every point a plane of elastic symmetry 
which is parallel to the median surface. 

We assume the mid-plane of a nondeformed plate in the zy- 
plane; the origin of coordinates is placed at an arbitrary point 
0, the 3-axis is directed to the nonloaded outer surface (Pig. 
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Pig. 124 

124). Volume forces will be neglected. On the basis of the suppo- 
sitions made as to the elastic properties we shall assume the equa- 
tions of Hooke's generalized law in the form (2.5) applicable to 
the plate. 

The approximate theory of bending of plates (thin sheets) is 
developed on the following two suppositions: 

1) rectilinear sections which in the nonstrained state of the 
plate were normal to the plane of its median surface remain rec- 
tilinear and normal to the curved median surface after bending 
(hypothesis of the straight normals"); 

2) the normal stress a    In sections parallel to the median 
a 

surface  Is  a  small  quantity  compared with  the  stresses   in  the 
cross  sections a   .   a    and T x1     y xy 

Let us denote by h  the thickness of the plate, by u  and v 
displacements of arbitrary points in the directions of the axes 
x  and y  and by «(x, y)   the deflection of the median surface, i.e., 
the displacement in the direction of the s-axis of particles of 
zhe  plate lying in the median surface; the form of the function w 
depends on the form of the curved median surface. 

From the first supposition it follows that 

u — 

tcPw 
' dx*' 

dw 
zd7 

ey^ 

v — 

dhv 

dy ' 

Txy --- — 2z dx dy' 

(61.1) 

(61.2) 

Assuming the equations of Hooke's generalized law (2.5) valid 
for the plate, we use three of them (neglecting a ): 

2 

&x--all:3x-\-nl2'Jy-\-al0'jly ' 
\ (61.3) 

Solving these equations with respect to the stress components 
we obtain 
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'J-fJ 

(61.4) 

The constants S. . are expressed In terms of a. ., namely: 
13 ro 

8 1 = ä (n22a6 6),       *22 = Ä-(V«-a?e)' 

fll2 = -j(ölOa26-    fll2%)'      ^O73 Ä"(flllfl22—a^)■ 

ß10== T^U0:« a:2fltc)'      52G="   T(al2ai«^-aila2c)' 

•  A: 

0,.,    a. a, IV "W "18 

fll2' "22' a20 

al6.      fl26'      ö60 

(61.5) 

The components of the strains T  and T  are determined from 
the equilibrium equations "J     z^ 

fox    .   fo 
17 + 
dx 

dy 

ox    '   ay   '   az 

(61.6) 

Taking into account  that  on  the  outer  surfaces z~z*zhj2 x., = •:.„ = 0, 
we  obtain 

d-Hv 

*zx = r ( za "^ 1) [ßl1 dS + ^'o M7 + 

+ 3Z?Z8 di 5p + ß" d/TJ • 

^=2 
(61.7) 

Let us consider separate areas in the plate which are normal 
to the initial mid-plane xy,   with a height equal to the thickness 
of the plate and the base sides dx  and dy;  the stress components 
a . a . T  can then be reduced to the moments ALrix. Hxudx  and x3     y3     xy u xu 

and T to the forces Nxdy.  Nydx.   The quantities M^dy.    Myxdy.     ""- -2X>    -Zy 

M ,  M    are called the bending moments, ^i/' 'V the torsion moments x3     y o > 
and N  ,  N    are the crosscut forces (all referred to a unit length x3     y 
of the median surface). Obviously, 

; 
-A/2 

MX~=J a^dz, Mv= § OyZdz, HlV 

hn 

;■ 
-ft/2 

ft/2 

//, yx J  tXyZdz, 
-ft/2 

»/2 ft/2 

^8=       ]       tzXdZ< Ny=       J   t.ydZ. 
-h/2 

(61.8) 
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From u.is and from (61.^) and (6l.7) we can derive the functions 

^ — i^ + oj^o^). 

+ 3D26ä-^ya-|-D22-^3j- 

The constants Z). . are connected with the S.. 

(61.9) 

(61.10) 

(61.11) 

In analogy to the Isotropie plate for which we Introduced 
the conception of the "rigidity" we call the constants D. .  the 

rigidities of the anisotropic plate, namely: DM, ^22 - the rigid- 
ity of bending about the axes z/., x;   Dee the rigidities of torsion; 
Di0, D2(i     the secondary rigidities; taking the formulas for the 
orthotropic plate into account (which will be given below) the 
ratiosD12/D2r^-^.D^/Dn^T;, can be called the reduced Poisson coeffici- 
ents . 

The stress components, moments and crosscut forces are 
linked through simple relations which follow from the formulas 
given above: 

12 Mr ■ X        r. = 7 

^.^ = t. ~ A3 V'J    /' tyz '- ~:y 

UHxy 
A' 

(61.12) 

In Pig. 125a the stress components are shown for the areas 
normal to the axes a; and y,  and in Pig. 125b the moments and the 
crosscut forces Inducing the stresses. 

If the plate is orthotropic and the directions of the axes 
x  and y  coincide with the principal directions of elasticity, we 
shall have instead of Eqs. (6l.3), (6l.9) and (61.10) 

■^r^* Vi/). v      E ;~(3ir'"Vx)'  Txi/: 1 , 
G '■'y 

(61.13) 
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Flg.   125 

Mr 

My~ 

Hj.y   — 

._ n (d-v   i      ir-w\ 

- n /^^  i     <r-u>\ 

— in   d'v' • 

N   ~ —.d (n ^  I   n d::w\ 

(61.1^) 

(61.15) 

^a ti:r:o^s ^;%L^-fo
yr^s

P^--■/---=n-e---nt3 

D,= Exh* En/l* 

^(l-Va)"'    D2-T2Trt^'    ^"12 ofc = ^5 
(61.16) 

olpal1!^^?!^^?^^?^«^ 0^""^ r t-ion for the prln. 
exascicity,   or the  principal rigidities 

D0 = D1v2 + 2Dk: (61.17) 

^secondary rigidities  for the principal directions  are  equal 

In the case  of an Isotropie plate E^E^E,   V1==V =V C7 = -^_ 
and all rigidities  can be reduced to a single  one:      *      '        2(I+V, 
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D: . Eh» 
12(1-vs) ' (61.18) 

Formulas (6l.l4) and (61.15) assume the for m 

M. nld"-w   .     dn-w\   \ 

^      °{% + 
D(l -.) 

dx'dy'' 

(61.19) 

(61.20) 

\ d.xt  ' dyy- 

We shall here give those expressions for the potential en- 
ergy of bending for nonorthotropic and orthotropic plates which 
result from Eqs. (2.2)-(2.^) when we neglect x^, T  and a : 

xz- 

(the integrals are taken over the areas occupied by the plate). 

(61.21) 

(61.22) 

Apart from the components of the stresses, moments and cross- 
cut forces acting on the elements of the plate perpendicular to 
the axes x  and y,  we may sometimes encounter the stress components 
V '."i- T.-"  in a surface making an arbitrary angle with the direc- 
tion of the normal n, which correspond to the moments M  ,   H.     of 

bending and torsion and the crosscut force N     (Fig. 125). The lat- 

ter are determined from formulas resulting from (8.5): 

/M„=Ma.cos2(/i, x)\-Muco%i{n.y) j-2//J.ücos(/;, x)(ios{n, y), | 

Hin=--{My—Mx)co%{n,x)<:os{n,y) f HJV(cos3(n, A:)-COS
5
(/I,_>0I'} 

Nn^Nxcos{n, x) -\-Nycos(n, y); I 
12Afn 

0" = —A3- ^ 'tn — 
]2fltj. SNn 

h H?--2)- 

(61.23) 

(61.24) 

The signs of the moments and crosscut forces will be deter- 
mined according to Eqs. (61.12) and (61.2*0, respectively; the 
moments and crosscut forces arc considered to be positive when 
they are produced in positive directions with s > 0. 

§62. EQUATION OF A BENT SURFACE AND THE BOUNDARY CONDITIONS 

As we see from the formulas of the preceding section, the 
moments and crosscut forces (and thus also the stresses) can be 
expressed in terms of the deflection w  of the median surface. This 
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function satisfies a differential equation of fourth order which 
we obtain when we consider the equilibrium of a plate element In 
the form of a rectangular parallelepiped with the sides dx,   dy, 
h.  A cross section of this element with the area xy  is shown in 
Pig. 126, together with the forces and moments acting on it. 

Fig. 126 

The conditions of equilibrium of the element (the sum of the 
projections of the forces on the x-axls is vanishing and the sum 
of the moments relative to the axes x', y'  parallel to the axes x 
and y  are vanishing) have the form 

A/   -^ UdHj:u 

dy 

v       dy 
dll 

dx ' 

(62.1) 

q  is here the load distributed on the outer surface, per unit area, 

Substituting in the first equation expressions for the cross- 
cut forces (61.10) we obtain the equation of deflection of a non- 
orthotroplc plate 

^S+^e ^ + 2(^ + 2^)-^ + 
+ 4DS 

d<w 
■Udxdy* 

D. 22 
d*w 
dyi 

(62.2) 

In particular, for an orthotropic plate where the directions 
of the axes x  and y  coincide with the principal directions, we 
obtain 

n d'w  L on     d,w     1 n 'd*w — a 
dx* dy* dy* (62.3) 

For an Isotropie plate 

Dl = D2=D3 = D = 
Eh* 

12(1-v3) 

and Eq. (62.3) assumes the form* 
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DV*V*w=--.q. (62./J) 

The problem of the e 
some arbitrary forces Is 
w{xJ   y)  In the sone occup 
a differential equation o 
(62.^1), respectively] and 
the plate which depend on 
give the boundary condltl 
general case the edge Is 
normal n  whose direction 
trary: * 

lastlc equilibrium of a plate bent by 
thus reduced to determining the function 
led by the plate. This function satisfies 
f fourth order, Eq. (62.2) [or (62.3) and 
the boundary conditions on the edge of 
the way of fastening or loading. Let us 

ons for five fundamental cases. In the 
considered to be curvillnear, with the 
relative to the axes x  and y  is arbi- 

1) The edge is rigidly fixed (pinched) 

W — O, -.- --0. dn 

2) The edge Is resting (hinged): 

3) The edge is free: 

Mn=-0. Nn-\-d^^0 

(62.5) 

(62.6) 

(62.7) 

( as is the derivative with respect to the arc s of the contour) 

^) The edge is loaded by given bending moments and forces 
whose magnitudes per unit length are equal to w  and p, respective- 
ly: 

Mn = m.    Nn + d-%f- = p. (62.8) 

5) The edge has been deformed and we know the deflection w* 
and the angle a* of slope of the curved surface with respect to 
the xy-plane: 

dw  

(62.9) 
w -- W,    —- = a 

dn 

In Eqs. (62.8) and (62.9) the known right-hand sides of the 
equations are assumed given either in the form of functions of the 
arc s of the contour, or as functions of any other variable deter- 
mining the position of a point en the contour. 

§63. CONNECTION BETWEEN THE THEORY OF BENDING OF A PLATE AND THE 
THEORY OF FUNCTIONS OF A COMPLEX VARIABLE 

The equation of the deflections of an anisotropic plate, 
§62.2), belongs to the same type as the equation for the stress 
function (5.9) In the theory of the plane state of tension. We 
know a general expression for the function u; it depends on the 
roots „ „ ~ -  of the characteristic equation 
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D22|x* + 4D20ii8 4- 2 (D12 -f- 2Dn6) i^-f 4D]o!l -|- Dn ^ 0. (63.1) 

As we have shownj, for an arbitrary elastic homogeneous mate- 
rial, this equation,, cannot possess any real solutions.* The com- 
plex of purely imaginary quantities IM—M-?' and P'z —T-M are 
called the complex parameters of bending (of first kind); in gen- 
eral they differ from the complex parameters of the plane state 
of stress for this pla-e and only in the case of an Isotropie 
material they and others are equal to i. 

The general expressions for the deflections read: 

1) in the case of different complex parameters (ya ? vn): 

w = w0-f 2Re I-u:., (*,) + v>2 {z2)\: (63-2) 

2) in the case of equal complex parameters   (y2  =  yi): 

u> = wQ + oKcW,i{Ziy+;iWAZi)]. (63.3) 

Here üg  is a particular solution of the nonhomogeneous equa- 
tion  (62.2)  whose  form depends  on the distribution of the  loads 
q over the  surface, «»iC^i). w2(z2) are arbitrary analytical functions 
of the  complex variables ^ = •*-}-Hi.)'   and zz — x + p^. 

On the basis of Eqs.   (6l.9)  and  (61.10) we obtain general 
expressions  for the moments and the crosscut  forces   (for the case 
yz / yi): 

Ma = M° — 2Re [plw"(zj + pw't(z2)], 

My = Ml — 2Re \qlw"(zj-f q2w2(z2)], 

HXy = Hey — 2Re lrl w" (zj -f r2w2 iz2)]; 

Nx = N%— 2Re ([i^^f (z,) + \).2s2w'2(z2)], 

Ny=Nl-\-2Re [s.wTiz^s2w2 {z2)]. 

(63.4) 

(63.5) 

Here Mx,  AI°  A^ are the moments and crosscut forces cor- 
responding to the functions wo [they are determined from Eqs. 
(-61.9) and (61.10)]; 

r 

/?, = Ou -f Dl2[iJ + 2£>16!x1, p2 = Dn -1- D12ii
2

2 + 2016!x2. 

1\ = Dn -f- DK\i\ -f 2D26u.,, <72 = D12 + D22:4 -f 2026JJ.2, 

ri ~ Öl8^- DK\i\'\- 20^^,    r2 =^ D16 -|- D26i4 + 2D66|i2, 

^i = 77 4- 3^6 + (O12 + 20Ö(J) h + Ö26!i?. 

5» = T7 + 3D'6 -f (0.2 4- 2D«,) H + D20^. 

s. ■r  -?!. 5.. — r, — Pa 

(63.6) 

2 ' ?         "i 7      Ha   . 
s, -f r, = — ^a,    s2 -|- ^ ^ — q2li2. 

Let us consider the case where the plate is bent only by 
forces and moments distributed along the edge (q  =  0). Equations 
(62.2)-(62JO become homogeneous and in Eqs. (63.2)-§63.5) we 
must put Wo ^ Ml ----- Ml =■■ lily - A/° = A/S = 0. 

-  268 - 

^^u....,..^^. H    -     -  ■ ^■^^^üaw--. -..-  »-.<-... ..■:.;.■ „w,.^..,,       '   ■ mUflatpMifliMl 



fcjjiHiimtjjJiwwWBPPPW^^ 
1 i""" i m —p——W^WP™ 

MIJI..1.>     I     II    m   Il^_l «im^vp yr^ 

If at the edge of the plate the bending mcments mfs)  and the 
forces p(s)   (per unit length) are given as functions of s, the 
boundary conditions (62.8) are transformed In conditions for the 
functions w{  and wi:* 

o 

« 

2Re l^C^) I  72^(^)1 --■- J (- "' <1x \-f<iy) \Cy-\Cr 

(63.7) 

C,   Ci,   C2  are here unknown constants, f—jpds,  the Integrals are 
0 

taken along the arc of the contour, from the Initial to the vari- 
able point. 

With given strain of the edge of the aperture caused by un- 
known forces [ w'is)  and a«(S) given] the boundary conditions (62.9) 
assume the form: 

dw' 
2 Re [T^ (z,) -f w't (z2)l -- -- - -^- cos (/,. 3/) f a* cos («. AT), 

2 Re I|Alw; (z,) -f n^ {z2)\ = ~ cos >i, A:) -f a* cos {n. y) (63.8) 

(n Is the direction of the outer normal to the plate's contour). 

Inside the region of the plate bent by forces distributed 
on the edge, the functions wl  and 1)2  must satisfy a series of 
conditions derived in our paper and given in §62, namely: 

1) if the region S of the plate is simply connected (the 
plate has no aperture), the functions w'i(zi) and ^(-a) must be 
holomorph and unambiguous in their regions Si and 52 (see §8, 
Fig. 9); 

2) If the region of the plate has holes but the forces dis- 
tributed on the edges of the holes are in equilibrium on each of 
them (vector sum and resulting moment being equal to zero), the 
functions ^'O2',) and ^(^•.,) are holomorph and unambiguous in their 
domains Si  and 52; 

3) when the zone of the plate is limited by certain contours 
(and the plate as a hole) where for one of the contours the vec- 
tor sum and the resulting moment of forces are not vanishing, the 
functions ■»[(c,) and -^(z)    will be multiple-valued. 

Consider, for example, a plate with one hole and forces and 
moments act on the edge of this hole which can be reduced to the 
resultant (vector sum) P    and t   moment with the components m     and 

m . On a circumvention on an arbitrary closed contour surrounding 

the aperture, the functions wi  and wz   grow by the increments A} 
and A2 and their derivatives w"  and w"   (i.e., the second deriva- 

II tl 
tlves of the functions Wi and W2)  by the increments Ai and A2 
which are determined from the equations:** 
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li,Äi-|-ji2A2-[- [ijA,   |-(i2^2 =0, 

Ml "I- 1^2 4- ^A, -I- 11;Ä2 ==: 0, 
(63.9) 

Hi Ha 
^Ai' + -i-A2' + ~Ä;'4-i-Ä;' = -^L- 

^2 Di 

(J1A1-f u2i2- 

AJ+AZ-I-AI + äJ-O. 

JA' 2A' 2ä' I _2r' 1*^1 +^2A2 4- i^Ai-f- ;)2A2 
y/5. 

D, 
1 

22 

m,. 

D M 

-   *'   i    '   t'   i    '   T'  ■    '   r' my   ,   xPi 

Hi HJ HI Ha On       On 

(63.10) 

On the basis 
^aC^)  becomes cle 
plate by a load dl 
the plane problem 
herent dlfficultle 
of the functions o 
Just as the plane 
has the form of a 
cases the problem 
tations; in more c 
tatlon may prove t 

of this the nature of the functions ^i^i) and 
ar. We see that the problem on the bending of a 
stributed on the edge has much in common with 
and at the same time it presents the same in- 
s, which are connected with the determination 
f the different complex variables z\  and 32, 
problem. With simple contours where the plate 
rectangle, strip or circle, in a series of 
can be solved simply, without complex represen- 
omplicate cases, however, the complex represen- 
o be very valuable. 

The deflection, the moments and crosscut forces may also be 
expressed in terms of functions of the generalized complex varia- 

z-\-\;z,     and z'^z + \2;  where bles   z'l = 

;..= 
l-'Hi 

)   _  1+,H? (63.11) 

are  complex parameters  of  second kind  for  the  case  of bending. 
The  deflection can then be  represented  in the   form 

w-^0 4-2 Re (0,(2;)-l-O^^)), a^z'J' (63.12) 

where 0i and 02 are arbitrary analytical functions of the varia- 
bles z[  and 22. In the following this representation of deflec- 
tions will not be used so that we restrict ourselves to what has 
been said above. 

Let us also give the formulas for the Isotropie plate which 
are analogous to the formulas of the plane problem:* 

w-'uv-f-RcU-'fu) j-x(j)i; . 

My — Mx+<llHxu = Ml- Ml-\~2lH% + 
-h 2D(l-v)[J?"(z) j-fCz)!. 

Mx+My^ M°-f- /M° ~ 4D(1 -f v) Re (?'(/)!; 

Nx — lNy^Nl-iNl-Wf" {z). 

(63.13) 

(63.14) 

(63.15) 

Here wo is an arbitrary particular solution of the nonhomoge- 
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neous equation (62.^) depending on the distribution of load q; 
Ml, Ml, 11%, Nl, Nl      are the moments and crosscut forces correspond- 
ing to the deflection wo   [they are determined from Eqs. (61.19) 
and (61.20)]; 7(2). xOO are analytic functions of the variable 
z^--x + iy, tl)(z) = ^'(z); D  is the rigidity of the Isotropie plate 
(61.18). 

Owing the complex representations of the deflections, moments 
and crosscut forces, the methods by G.V. Kolosov and N.I. Muskhe- 
lishvili developed for a plane problem can also be applied to find 
a solution of the problems on the bending of Isotropie plates. The 
first complex representations of bending was used by A.I. Lur'ye 
who considered the bending of an arbitrarily loaded round plate.* 
M.M. Fridman obtained solutions of a series of problems on the 
bending of Isotropie plates; in particular, he studied the bending 
of plates weakened by various forms of holes «# 

§64. THE EQUATION OF A CURVED SURFACE WHERE THE LONGITUDINAL 
FORCES ARE TAKEN INTO ACCOUNT. PLATE WITH LARGE DErLECTIONS 
AND PLATE ON AN ELASTIC BASE 

Assume a homogeneous anlsotropic plate loaded by forces and 
moments which cause a bending (as considered in §§6l-62) and, 
moreover, by forces which act in the median surface (longitudinal 
forces). When only the first forces and moments are acting the 
stress distribution which develops in the plate corresponds to 
bending; when only the longitudinal forces are acting, the state 
of stress in the plate will be generally plane. 

When, however, these forces act simultaneously, it would be 
incorrect to determine the stress by a simple summation of the 
stresses due to bending and the stresses corresponding to the 
plane state of stress; the longitudinal forces exert an influence 
on the bending and Eqs. (62.2)-(62.4) are no longer applicable. 

When we investigate (approximately) the simultaneous action 
of the bending loads and the longitudinal forces we assume that 
the stress components in the plate consist of two parts: 

= 0 4-0', ay = 0 -fo', 
V   r   V 

x  =7 -fx' , 1 
xy xy   '  -r« 

I/s ") 
(6H.1) 

Here "V V Vy are the stresses averaged with respect to the 
thickness, which are caused by the longitudinal forces alone; 
0' 0' -' *'   y'   xy  are the stresses proportional to z  and determined from 
Eqs. (61.12) and (61.9). In order to obtain an equation which, in 
the ease given, must be satisfied by the deflection w,   we intro- 
duce the quantities Tx< Ty^xy syx ,   i.e., the longitudinal and tan- 
gential forces per unit length: 

h/2 

-ft/2 

Ty — liay, SU1. =^ Sj.y-- h-jy . 

(64.2) 

It is obvious that T  ,   T    and S     , in the absence of volume 
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Tx^dr 

Pig.   127 

forces,   satisfy  the  equilibrium equations 

dx 
dS 

+ dS ■Ttf = 0. 

■cy 

dx 

dy 

dy 

(64.3) 

in order to determine them the plane problem must be solved for 
the plate. 

Let us separate an element of the plate In the form of a 
rectangular parallelepiped with the sides dx,   dy  and h  and con- 
sider its equilibrium. Besides the forces and moments shown in 
Pig. 126 longitudinal forces will act on the element, which are 
represented separately in Pigs. 127 and 128. Taking into account 
that in the deformation the element is curved and the forces 

Tx' Ty sxv   in the deformed plate will not lie in the xz/-plane, we 
obtain the component of these forces in the s-dlrection: 

or per unit area 

M^^Ä+vf-^ 

/3! dx"- 'I" ■^ ~6xdy "^ " dy*' 

(64.4) 

(64.5) 

This force must be added to the load q  in the equations of §62, 
and we obtain for a nonorthotropic plate 

Ai-5F-+-4D16g:^J-f-2(D124:2D00)^^3 + 'lD2od-r5yl + 
.   n    d<W ,   r    ^«f    ,   9C        ^W     ,   _   &W (64.6) 

d>< 

and for an orthotropic plate 

'xu dxdy  r   " dy* 
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D.S + ^ 2 + U2   ,5^ c)y< 

-7+^ 25 3xdv    i    'v dv'J 

(64.7) 
■rJ' dx dy dy* 

The problem of the bending of a plate where longitudinal 
forces are taken Into account becomes much more complex when It 
Is not based on the assumption that the deflection is small com- 
pared to the thickness. In this case the deflection and the stress 
functions are determined from a system of two nonlinear equations. 

3i diäy 

Fig. 128 

Such a system for an Isotropie plate was obtained by Karman.* 
Let us give a brief derivation of the corresponding system for an 
orthotropic plate. 

Let us suppose that the stress components are determined by 
Eqs. (64.1) and the strain components also consist of two parts: 

x' £ -he'.  T xu        ixy   '    >xy (64.8) 

The quantities &x'  V Txy are the strain components in the median 
surface; they depend not only on the displacement u  and v  but 
also on the deflection w.   From the general expressions (1.5), 
which are expanded in series where we retain the first powers of 
the derivatives with respect to u  and v  and the second powers of 
the derivatives with respect to ?J , we obtain 

dx 
.    1  /dw\* 
+ -2\d7J ' 

ey — dy "^ 2 V dy j  • 

—      _ du   .   dv   .   dw     dw 
"^l/ "~ dv ''   Jx "i  ~d~K '  dv 

(64.9) 

dy   ' dx   '    dx     dy 

Eliminating u  and v  by means of differentiation we obtain 

i^. -L ry. __. "'ixJL _. [. u:'aL] _.. "iz.. rw (6 4. i o) fcj.       dn-tv       d'-uy __ / Pw \a       dhv     d^-w 
dy3 ~r -(jjz" -" JJdy " \d7d7/  — llx* ' "äy^ 

The components V ^^ Txy depend on the bending of the plate 
and are determined from Eqs. (61.2). The total stresses "a:. V '*,/ 
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are reduced with respect to the thickness of the plate to the lon- 
gitudinal forces TxJ   T      S      and the moments MX, MU, Hxy.   and the 
stresses T^„, T n  are reduced to the crosscut forces N s   N     [see xz       yz x        y 
(61.1^1) and (61.15)2. The stresses 'ax. äy.'xxu   satisfy the equilibri- 
um equations 

' dy dx 0. 
di 

dx    ^ dy      v' (6^.11) 

from which  It  follows  that  can be  expressed in terms  of the  stress 
function F: 

dPF 
^ = - 

ißF 
dxdy (64.12) 

These stresses are linked with the strains by the equations 
of the generalized Hooke•s law 

-x — >- K — ^,0.). «,— 
fi 

ey=>-(o ^). 

Tiy — 

£2 V-V — ^ui 

J^ - 
(64.13) 

The crosscut forces and the longitudinal forces satisfy the equa- 
tion 

dr-w d-w 
'2S-[" dx dy 't" Tv dy* 

-=0, (64.14) 

which Is obtained from a consideration of the equilibrium of a 
rectangular plate element as shown In Pig. 126, taking Into ac- 
count the force components In the direction of the 2-axls which 
are caused by the longitudinal forces (Figs. 127 and 128). 

Let us substitute (64.13) in (64.10) and express the stress 
In terms of the function P; In addition to this, substitute the 
expressions for the (61.15) In Eq. (64.14) and give the longitu- 
dinal forces In terms of the function F. 

We then obtain a system of two nonlinear equations which are 
satisfied by the stress and deflection functions: 

£3    dx «'MO       If, ) dx* dyi  •" £1 ' dy* ~~ 

- ( ^.V       ^u/    dtw 
-\dxdy) ox*    dy* 

D ^ 1" 2Ö;1   dx* dv*  + D2 d"^ ~ 

1 1./^"   t 

dx* dy*   '      2 dy 
dPF    d^w      n   d*F 

'dx* " dxdy ' dxdy   '   dx*" dy' 

(65.15) 

These equations were derived by G.G. Rostovtsev.* 

Owing to the fact that the first equation contains nonlinear 
terms, their Integration entails great difficulties; at present 
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we do not know of any case of bending for which these equations 
would have been solved exactly. 

In the case of small deflections the nonlinear term in the 
first equation can be neglected and the stress function is then 
determined independently of the deflection. 

When a homogeneous plate lies on a massive elastic base and 
is benled by the load q,   its deflection may be considered zo  be 
small relative to the thickness so that we can obtain the deflec- 
tion equation on the basis of Winkler's assumption that the reac- 
tion R  of the base at a given point of the plate is proportional 
to the deflection at this point:** 

R == kw, (64.16) 

k  is the elastic coefficient of the base or else, the bed coeffi- 
cient. The equation of a plate on an elastic base is obtained in 
the same way as that for a plate which does not lie on an elastic 
base; it must only be taken into account that in the given case 
the load q — kw  act on the element. As the result we obtain the 
equation for the nonorthotropic plate 

d'iv d'u dhv 

I 

For an orthotropic plate 

(64.17) 

(64.18) 

When a plcte lying on an elastic base is exposed to the ac- 
tion of both a load q  and longitudinal forces, the deflection 
equation is obtained from (64.6) and (64.7) when we add the term 
kw to  the left-hand sides. 

§65. DETERMINATION OF THE RIGIDITIES OF BENDING AND TORSION OF 
PLATES AND OF CORRUGATED AND STRESSED EDGES 

The fundamental quantities which characterize the elastic 
properties of a homogeneous orthotropic plate on bending are its 
principal rigidities Di,   D2   and D, and the Poisson coefficients 

vi,V2. In order to calculate the rigidities of bending and tor- 
sion of an orthotropic homogeneous plate we must know its thick- 
ness and the main elastic constants f^ £2i v,, v2, 0. 

Note that the rigidity can be represented in the form 

1  1 - -v. 
U2-      1_-Vlv, Du OJ. 

IM 
(65.1) 

/i' 
where J=yö    are the moments of Inertia of beam sections cut out 

of the plate in such a way that the directions of their1 axes co- 
incide with tne principal directions. For plates of constant 
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thickness the cross sections of all these beams are rectangles 
whose height Is equal to the thickness h  of the plate, with unit 
base area. 

In practice, plates of Isotropie material corrugated and re- 
inforced by crimp or often provided with stiffening ribs may be 
considered approximately as homogeneous and orthotropic. Let us 
give examples of determination of the main rigidities of some of 
these plates. 

I. Corrugated plates. A corrugated plate of Isotropie mate- 
rial, i.e., a plate which is rippled in one direction, may be 
considered approximately as orthotropic and homogeneous (of 
course, if the number of corrugation waves along the side is high 
enough, or, in other words, if the corrugation wavelength is 
small compared with the side length of the plate). 

The determination of the rigidity of the corrugated plate 
(or a plate reinforced by a close arrangement of parallel stif- 
fening ribs) is reduced to the calculation of the moments of Iner- 
tia per unit length, for the fundamental cross sections [see Eq. 
(65.1)]. 

Let us consider a corrugated plate as shown in Fig. 129. The 
principal directions of it are the direction of corrugation and 
the directions perpendicular to it (x  and y  in Fig. 29). We intro- 
duce the denotations: I  is the chord of a half-wave, e the length 
of arc of a half-wave, h  the plate thickness, E,   v Young's modulus 
and Polsson's coefficient of the material. Let us assume the cross- 
sectional profile of the corrugation to be sinusoidal 

z = H s\n 
nx (65.2) 

/ •y 

< 

i 

0 M-t*- 
— a - —»———i»- 

Fig. 129 

According to Seidel, the approximate formulas for the rigid- 
ity have the form* 
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n, l' Eh3 n c ;        r> s f"1 

(65.3) 

wherj  J  Is  the  mean moment  of  Inertia of  a plate  cross   section  In 
the xs-plane,   equal  to 

y^o.S/i//2 l 0,81 

■+«(#)T (65.1) 

2. Plate reinforced by a close arrangement of stiffening 
ribs. For an Isotropie plate which is reinforced on two sides by 
parallel stiffening ribs (Fig. 130), the rigidity is determined 
according to the formulas 

D -D  --   •£-/'-- ul -. Ui ~    12(l...,2) ' 

'V—i^r :•/;)"« d'1 
(65.5) 

where J  is the moment of inertia of a rib cross section with re- 
spect to the axis lying in the median surface, E,   v are Young's 
modulus and Poisson's coefficient for the plate material, £" is 
Young's modulus of the rib material, d  is the distance between 
the ribs (the ribs are supposed to be equal and arranged at like 
spacings). 

When the ribs are arranged only on one side of the plate, 
the moments of inertia of the cross sections must be calculated 
relative to the lines passing through the centers of gravity of 
the cross sections which will not lie in the median surface. 

For a plate whl?h has been reinforced in two orthogonal di- 
rections by ribs arranged symmetrically on both sides of the me- 
dian surface, the rigidity can be calculated according to the for- 
mulas 

£/z3 _     ,  £7, n _"_:*:. i : 1" 12(1---.2) n    dt 

n Eh3      L 
E-h 

^2"- 12(l-v3)"r di  • 

A,- 
Eh* 

12'J — vV 
(65.6) 

o htrd *J 

Fig.   130 

* 

/i /> 2n*l 

.J\ 2n 

2n-l 

1 i____J__ 
" ^ 

Fig.   131 

>'Z 

I 
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The rib axes are assumed to be parallel to the principal di- 
rections; £", E"  are Youngls moduli of the rraterials of which the 
ribs parallel to the axes y   and x  consists, Ji   and J2 are tne mo- 
ments of inertia of the cross sections of these ribr relative to 
the lines passing through the centers of gravity of the cross 
sections and which, owing to the symmetry, lie in the median sur- 
faces, dis   dz  are the distances between the ribs parallel to the 
y-axls  and the x-axis. 

The formulas for the plate's rigidities in the case of rein- 
forcement by corrugation and when the plate is considered to be 
orthotroplc are contained in the book by S.N. Kan and I.A. Sverd- 
lov mentioned previously (pages 255-257). 

§66. DETERMINATION OF THE RIGIDITIES AND OF THE REDUCED MODULI 
OF LAMINATED PLATES 

An Inhomogeneous plate which consists of elastic anisotropic 
layers glued or soldered together can in a series of case be con- 
sidered as homogeneous and anisotropic. First of all this holds 
true for plates of symmetrical structure which consists of an odd 
number of homogeneous layers. Knowing the elastic constants of 
each layer we can determine the rigidities of bending and torsion 
for all plates, and also the reduced elastic moduli for the 
plates deformed by forces which were acting on their median sur- 
faces . 

Let us consider a multilayer plate consisting of an odd num- 
ber of homogeneous anisotropic layers arranged symmetrically with 
respect to the middle layer. More precisely, two layers of equal 
thicknesses and of the same elastic properties are attached to 
either side of the middle layer; another two equal layers are at- 
tached to the outer surfaces of the former and so on such that 
the whole plate is a body symmetrical in both geometrical and 
elastic respects (relative to the mid-plane). 

We shall suppose that the adjacent layers are prevented from 
sliding on the contact surfaces by means of gluing or soldering. 
We restrict ourselves to plates consisting of orthotroplc layers 
whose planes of elastic symmetry are parallel to one another^ one 
of them being parallel to the mid-plane.* 

We assume the mid-plane of the middle layer which, at the 
same time, is the mid-plane of the plate as a whole, lying in the 
xy-plane  of coordinates and the directions of x  and y  being coin- 
cident with the principal directions of elasticity of the layer. 

We introduce the following denotations: 2n + 1 is the number 
of layer (we count them from bottom to top so that the lowest 
layer is the first, the middle layer is number n + 1 and tne top 
layer is the 2n + 1st layer); h  is the total thickness of the 
plate, f'i, /h '2/1' /'•„ are  the distances   from the mid- 
plane  to  the  surfaces  of the  various  layers   (Fig.   131); 

'in denote  the   layer thick- 
.-("0        ,,(„!) nesses from the first to the n + 1st including; lA"", 4"". 0("". •//'", 4"" 

are the main Young's mcciuii, the shearing modulus and Poisson's' 
coefficients of the orthotroplc layer number m; /jf"')> j,,»     is  Young's 
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modulus and Polsson's coefficient of the isotropic layer number 
m; o''"\ o'"'», -'"", -;("'), T(".) are the stress components in this layer, 

w(x,   y)   is the deflection of the median surface. Owing to the 
r.!2)l I I)  _ pfl)   r-'2'l)    r'2) 

symmetry Li  r-/-i. /^i :-^i  etc.; the same conditions are satis- 
fled by the other elastic constants. 

Investigating the generalized plane state of stress of a 
multilayer plate we introduce in our considerations the reduced 
moduli and Polsson coefficients of the plate in a plane state of 

stress, which are denoted in the following by f., £2. 0, v v More- 
over, considering (in the next section) the bending of a plate 
which consists of analogous orthotropic layers with different or- 
ienrations of the principal directions, we introduce the new de- 
notations E(, EI.G', ■v(, v£ , the reduced moduli and Polsson coeffici- 
ents for bending. 

Consider a mu 
is distributed on 
and the forces p  d 
the rigidities of 
layer, based on th 
hypothesis of the 
to which the relat 

expressed in terms 
following way (see 

Itilayer plate bent by a normal load q,  which 
one of the plane surfaces, and by the moments m 
Istrlbuted along the edge. We want to determine 
bending and torsion and the stresses in each 
e supposition that for the multilayer plate the 
straight normals remains applicable, according 
ive elongations e""» e'"" and the shear v'!"' can be a x   '     y 'ill 

of the deflection of the median surface In the 
§61): 

The results are the following. 

zr-w 
dxdy' (66.1) 

The plate which is bent as a whole and considered homogene- 
ous and orthotropic, possesses the rigidities Z?i., £»2., D, and the 
Polsson coefficients vl and vl, which are determined by the for- 
mulas 

D, 1 
p{m) 1    M 

D2^| 

^-| 

. in = I     '  2 

n v_ 
J*i   l_v(m)v(m) 

in = 1     '  « 

r " 

c(nhi),.S 

«miirt-    (ll+l) (n + i) 

p{m) c(M+i)/,a   n 

{"■„ - - «m I t) ^ v(r.H)v(,..1.l) 
1  "I   ^2 

'  3D, 

m-1 

r " -.    /.("I) '»I) 
t . .i 
/»'  '* in ■) 

r.('i I !).,(" I l)v< 
1 // 

1   ..(»I I l)J»iM) 

(66.2) 

The moments and crosscut forces are determined according to 
Eqs. (61.14) and (61.15) and the deflection u  satisfies Eq. (62.3) 
The boundary conditions on the edge of a multilayer plate do not 
differ from the boundary conditions on the edge of a homogeneous 
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plate given In §63. 

The stress components, however, will not be connected with 
the moments and crosscut forces by the same simple relations 
(61.12) which hold good in the case of the homogeneous thin 
sheet. The stress components in the layer number m  are determined 
by the formulas 

a(m) -_. 

V 

,("') 

dxdy 

T(m) 

Z ' I 1-v(m) . 
l~vim,v'""   \().v3    '      2      dyx/' 

4""     itr-w x   l   r-w\ 

&      d   r        £(m) 

"I'Jx     1 — v<"'^ 

2     dy \\\ ~ v}"')^"') ^ ydxa 'T" 1 _ v(m)v(I(.) • -dp 

(r(m)    .    r.f-.lmn'^W    .    „(m) f'-U'' 
IC12   -4-2CCG  ;ö--3-+C22   ^5    . 

 L / !     ;       1  20   ' ]  

' 2 ' dy 

The denotations are the following: 
£</> 

^H — : TTTTTT ■       (-22 = 
4" 

Cja 

. v(i)v(i) ' 

r*1' _ r,11' 

C(m) 
22 

Wm) 
U» jo 

r m-i 
__^     V __f\ (,.2 ,2    \  ,      gi   "m 
— Ä3 Zi 1 _ V(*)V(M v   *■'      "A + '''~r1_<v(m)v(,n) 

1 Vl C2 (1,1 1.2      ^    1        C2     "m 

1 V '     2       /■A2 A2      ^   I        '       2        " 

1 — v}"'>v^") 

rm-l 
1        V G(n^-^-.)-hC7(,",/'?(. 

(66.3) 

(66.4) 

(66.5) 

(m-.2, 3, ..., n-\   I). 

The stresses in the symmetrical layers are distributed sym- 
metrically. 

If the plate consists of Isotropie layers arranged symmetric- 
ally relative to the middle layer, it is bent like an Isotropie 
plate with the rigidity D  and the Poisson coefficient v' which are 
determined by the formulas 
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D \ T / 3      3   \ /i -4 I 

2 
3D 

m' i 

r " 1   £("i)v(m) c(nH).(rtH)Aa 

p/>" l   v   ; l-(v", + ") (<i + l)v2 
J  J 

(66.6) 

The following formulas are obtained for the stress components 
in layer number m: 

Here 

.(">) - 2 

- Z 

E(m) 

1 -|- v'""' " dxdy ' 

Jl»)     1 
^ - -2 

r9- 
1 

- A2C("" £(VM. 
Jw)         1 

1 

£(m) 

— (v("")2~ 
- ^C'""' 

•*(''")■ 

'-S4 <J3 

l-(v<")a' 

r i'i-l 
->(III) 

hi 

;(fc) 

Srz:^)^"'-^')^ 
fi""'/.2,, 

(/«-- = 2. 3. .... n-|-l). 

(66.7) 

(66.8) 

(66.9) 

In particular, for a plate which consists of three orthotrop- 
ic plates of like thicknesses fr/S, which are arranged symmetrical- 
ly, we obtain the rigidity formulas 

(66.10) \  Ih \3/    26/4"      , £f
2
2'     > 

D^i12(y)3(2GO,,,^-G(3,)■ 

These expressions can also be written in a more illustrative 
form when we use D',

1
', D{1\  D"' to denote the rigidities of the outer- 

most layers, which are considered as Isolated plates, and 

Di ,  Do. D/..1  are the rigidities of the middle layer. Instead of 
(66.10) we have 
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ft 
D1 = 26D'1

l,-t-Di:,
1 | 

D, 2GDi." Dl2'. 

(66.11) 

If the whole layer is Isotropie, 

D=26D(,,-f-D'2 

v,-^(26/y,^", 
D'3,v<2'), 

(66.12) 

where £>(", v») denote the rigidity and Poisson's coefficient of the 
outer layers, D'2», v«)  is the same for the middle layer. 

Let us now consider the generalized plane state of stress of 
a multilayer symmetrical plate. An approximate expression of the 
reduced moduli for the plane state of stress is obtained under 
the supposition that the strain components ^ v TJV  are the same 
for all layers and that they do not depend on 2, while the stress 
components in the given layer do not vary along the thickness of 
it. The stresses averaged with respect to the thickness of the 
whole plate are given by the formulas 

_. 1 
^ 

'" "h 

'av — 1 
h 

■xu ~ 
I 

0 V „'"'',-  1 J" ' 'b 

m-i 1 

n 

in -^ 1 

n 

9 V T'"'1^ 1 ''"' "; 
i-J ■'•'/ '"' 'J'!/ "ll 

111 = 1 

(66.13) 

Taking these expressions into account and using the equa- 
tions of the generalized Hooke's law for each layer we obtain the 
relations 

(66.1^) 

The reduced moduli and Poisson coefficients entering these 
equations are determined by the formulas 

^ -^ •=- i°x -•'i^u)' 

1 r -^O- 
1 - 

- 282 - 

'• ■-  - ■ 

-  -- -■ 
 ■ ■ —  — 

 " * 



■■in jiuiiimim  mmmi^m ^mm ■PWWMHMMimmHmpf" .niiiiniiLLj^i, jgq| 

' pl"')}. 
1  -   V. ''2 , £"" "6 

,, ' 'l       2 '        >1 '2 / 

£(1 + 1) J 
c2 gn I 1 

2 A 1 ^ 1 -. v'"')v(''')    '    1     _.,('" "v1" ' " 
\     l/l - I '        2 1 2 

0- A I2   L G     J"'   '   0 ^'j.   , 

Jj   I J"')j"li   '     l_   V("M)   (ll+l) 
t/1 a 1 * * 1 * 

III" 1 '      ' 

-2        un I 1 

.,('1 l DJ" I I) 
'    1 V2 

V,  i r  -V,  --- 

f. 

(66.15) 

A.L, Rabinovlch studied in detail a series of particular 
cases of multilayer plates which are of interest in practice.** 
Apart from plates which consist of layers whose moduli and thick- 
nesses are given with a certain arbitrariness, A.L. Rabinovlch 
considered plates consisting of veneer sheets and delta wood, 
which were bent by loads and forces acting in the median surface 

§67. RIGIDITIES AND REDUCED MODULI OF PLATES CONSISTING OF SIMI- 
LAR LAYERS 

All formulas of the preceding section become simpler when 
the layers are of equal thicknesses as in the case given: 

ht-hi -/;, 

. -r 0, 

,IM -/'/(2'H-l). 
/'/(2/i f-1). (67.1) 

If, moreover, all layers are of one and the same orthotropic 
material and are arranged in such a way that in adjacent layers 
analogous principal directions are orthogonal, all summations in 
the formulas of §66 are easy to carry out so that the final for- 
mulas will not contain any sums. 

Let us denote by ^i- ^ 0' vi and V2 Young's moduli, the shear- 
ing modulus and Polsson's coefficients of the outer layers for 
the principal directions x  and y  and by A the ratio of Young's 
moduli 

For all layers with odd numbers we have 

(67.2) 

-fm) pdu) Er^-Ev ' Ef'^E. G (HI) 0. . (no 

(/nr.-= I, 3, 5 2/i-fl). 

For all layers with even numbers 

du) 

(67.3) 
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£V (m) 

(m---. 2, 4, 6, .... 2n) 

(in) du) 
'2      ^--\ 

(67.4) 

Substituting the values of (67.l)-(67.^) In Eqs. (66.2) we obtain 
expressions for the rigidities of the plate given. Introducing 
the reduced moduli for bending E'U r^, 0   and the reduced Polsson 
coefficients -v ^. we can write the rigidity formulas In the same 
way as for a homogeneous orthotroplc plate* 

D, 
£>' 

12(1-V4)' 
«2 

n, 

E'2h
3 

12(1-.-^y 

oA l-2/\. 

r>k 
(67.5) 

Here 

+ (3(2/H-l)2--2l(l-X)). 

-(3(2« 4-l)2-2)(l-).)}. 

2(2rt + l)3v3 y_  
»      (2n-|-1)3(1 -i-).) —(3(2/i-|-l)a-2J(l —\)' 

2(2n-)-l)3va 

(2/i-i-i)S(l-|-X)-I-[3 (2,1-|-1)2-2] (1 -/.)' 

t, ^2 = CjV!   = E^2   -. = f 2V.  . 
'   ^    1  — VJVJ '   '   I  — VJVJ 

1-VJ, 

(67.6) 

The moduli given for a plane state of stress and the reduced 
Polsson coefficients for such a plate are determined from formulas 
obtained from (66.15): 

g _ p 1 — Va    n + H-Xn H^E, 1—VJ        2n + l 
I — v,v2    n -l-\ ~\- \n 

'M- ttVj 2/i -I-1 
(67.7) 

The given moduli and Polsson coefficients In the case of 
bending can be given In terms of the reduced moduli and coeffici- 
ents In a plane state of stress. We arrive at the result:* 

E' = £ LlV?. (^-l-i)3(i-l->-)-l-[3(2/l-[-i)
2-2](i-X) 

1 ' 'l—Va*      2(2n-l-\)*{n + l+\n) 

-  l-v;./2 (2/,-|-l)3 (H).)-(3 (2,i-I-1)2-2] (l-X) 
c 2 = £.. 

o' = o = o. 
2(2n + l)2(n-l-),-|-X/j) 

v, =^ v, r„- 2(2/j-|-l)2(n4-X-|-X/i) 
(2«^-l)3(l-|0.)-[3(2,J-l.l)2-2](l-X)• 

/    / f2 
V2^V, —. 

(67.8) 
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By way of example we consider a 
sheet flued together with a bakellte 
of the reduced moduli and coefficient 
were already given In §11. The reduce 
of shear for the principal directions 
nlk avlakonstruktora" [Handbook for t 
equal to 1.2-lü5, 0.6-105 and 0.07*10 
efficients calculated from tabulated 
and 0.036. For blrchwood the ratio be 
higher Young's moduli Is equal to abo 
value as basic and using Eqs. (67.8) 
that n---1, 2/i-h l r.. 3, we obtain the foil 

three-layer woode 
glue. The numeric 
s in a plane stat 
d Young's moduli 
, taken from the 
he Aircraft Deslg 
5 kg/cm2 and the 
values are equal 
tween the smaller 
ut 0.05.* Conslde 
and (67.5) on the 
owing results. 

n veneer 
al values 
e of stress 
and modulus 
"Spravoch- 
ner] are 
Polsson co- 
to 0.071 
and the 
ring this 
assumption 

Case I . The a;-axis is parallel to the fibers of the sheet 

E^l^-IO'-,      /72=--0,C- 103,        G —0.07-106, 

v, = 0.071, : 0.036, 1=^0,05; 

£1 = 1,69 • 10r',    £2 - - 0,1 •} • 10".    O' =--■ 0,07 • 10", 

vl = 0l31, •4^0,026, 
^ 
F' 

(67.9) 

D, ^ 1,70 ■ 1Q-' ;',},      D2 - 0,14 • 10'' ^-,  gl ^ 12,1, n 
Do —0,183- 10^,   -^^1,307,   /V-0,07- 106-f, 12 '    D 12 

(67.10) 

The complex parameters. I.e., the roots of the equation 

(67.11) 

will not be purely imaginary as in the case of the plane problem. 
Solving Eq. (67.11) we obtain 

(1^1,04-1-1,55/, |i2 = —1,04+1.55/. (67.12) 

Case 2. The x-axls is perpendicular to the fibers of the 
sheet 

Zr^o.e-io5, £2=1,2.10», 0 = 0,07. io&. 

vj —0,036.    v2 —0,U7I,    Xr^20; 

£•( = 0.14. lO-, £2-= 1,09- 10', O'-.0,07. 105. 

v;^ 0,026. 0,31, :ir-_-4^ 0.0824; 

0,-0,14. lO5-^,  0,-1.70- 10-'-JJ. gi=-0,0824. 

Ou = 0,183. 105-^-, ^ = 0,108,  OA.=--.0.07- 10''^-. 

-2   2 

;i - 

(67.13) 

(67.1^) 

For complex parameters we obtain the following values 

li, ^ 0,299 -\- 0,444/. ^ - - 0,299 -| 0,4 14/. (67.15) 

Considering numerical examples In his paper, A.L. Rablnovlch 
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used somewhat different Initial data assuming for Young's modulus 
and the modulus of shear in a three-layer birch veneer 1.3*105 

and 0.08»105 kg/cm2. The numerical values obtained for the re- 
duced moduli in the case of bending were also different from our 
values but this difference was relatively small (see page 22 of 
the paper referred to). 

It must be noted that the reduced Young's moduli in a plane 
state of stress may differ essentially in their values from the 

reduced moduli in the case of bending 
for the same laminated material as can 
be seen from the numerical example con- 
sidered. When for a three-layer birch 
veneer the ratio of the first moduli for 
the principal directions is equal to two, 
the ratio of the second moduli is con- 
siderably higher: it is equal to about 
12. 

Considering (in the following chap- 
Fig. 132 ters) some particular cases of bending 

and rigidity, we give in most cases the 
results of calculations for a plate with 
these reduced moduli and rigidities as 
obtained above for the three-layer birch 

veneer [see (67.9)-(67.15)]• For the sake of brevity we shall 
call in the following "veneer." Certain authors (Ya.I. Sekerzh- 
Zen'kovlch, L.I. Balabukh et al.), in papers on the rigidity of 
anisotropic plates published until 19^0, used other values for 
the reduced moduli and coefficients of a three-layer birch veneer, 
namely 

^ 
* 1.4- \0r'kz/cmz/z'2r:-i,  O'^0,12- 10'kp:/cm2 

•'; = 0,46, '/2 12 
(67.16) 

(the x-axls is parallel to the fibers of the sheet). Discussing 
the contents of these papers we shall give the results of calcu- 
lations carried out by the authors for plates of a material for 
which the constants have the values given in Eq. (67.16). 

A nonhomogeneous plate consisting of an even number of anal- 
ogous orthotroplc layers, 
have on bending just as a 
sider a given plate which 
ic layers glued together; 
elastic properties and are 

under well-known conditions, will be- 
homogeneous and orthotroplc plate. Con- 
consists of two equally thick orthotrop- 
they are assumed to display the same 
Joined In such a way that the equlva- 

lent principal directions of elasticity of these two layers make 
an angle of 2 cp (Fig. 132). 

The investigations show that such a plate behaves on bending 
just as a uniform and orthotroplc layer. Its principal axes of 
elasticity, x  and zy, are in the directions of the bisectrices of 
the angles made by equivalent principal directions of the layers. 

•■Formulas (61.l^') and (61.15) and Eq. (62.3) apply to such a plate 
and the rigidities are given by Eqs. (67.5) where 
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I '  ' 
£''^T:7~(^cos'?-|   2\l:l:i  1  20(:-V2)|X 

X sin-'a cos2 'f  f- /:"2 sin* 9) 
1      .'.' 

f2 = jr-^-{/:. sii^o  (  21/f^  f 2G(1   - -v-^lX 

X sir.2 9 cos1 o\- f:2 cos* 9), 

•/ ~ A^J± L£i "I' £3 '   2£"^ - ■ 'G (1 - • •-,■,,)] sln^j? cos2 9_ 
'1    '^cos'v-l'JIAV'a^ 2(7(1    -v,:.)! sup/co^f 1 /fasiuicf' 

V    =^-: *J    —  - 
2       1 p> ' 

(67.17) 

Ev E2, G, being the main elastic constants of each layer.* 

§68. DETERMINATION OF THE RIGIDITIES OF PLATES WHOSE ELASTIC MOD- 
ULI VARY AS FUNCTIONS OF THE THICKNESS 

Using the hypothesis of the straight normals it is not dif- 
ficult to determine the rigidities for plates whose elastic mod- 
uli vary symmetrically with the thickness (that is, the values 
of the moduli are the same at points which are at equal distances 
on either side of the median surface). In the present book, §66, 
we discussed in detail the bending problems of such plates. We 
shall now restrict ourselves to the most important results ob- 
tained for orthotropic and Isotropie plates with variable moduli. 

Consider a plate of constant thickness h  which is orthotrop- 
ic but at the same time nonhomogeneous: its moduli are the same 

for all points in a plane parallel to 
the mid-plane, but they vary with the 
thickness in a symmetrical manner. At 
each point we have three planes of 

jZ elastic symmetry, one of them being par- 
allel to the mid-plane, and at different 

Fig. 133 points the corresponding planes of elas- 
tic symmetry have one and the same di- 
rection. We assume the mid-plane coin- 
cident with the xy-plane and, as usual, 
the axes x  and y  agree with the princi- 

pal directions of elasticity (Pig. 133). We denote by £,, £"2. 0, v,, v2 
the principal Young's moduli and Polsson's coefficients. In the 
case given these quantities will be even functions of z: 

El{~z)-^El{z).    E2{-~z) = E2(z).    G{-2)^G(z), 

We shall consider these functions to be given. As regards the 
continuity of these functions we make in no way any suppositions: 
the functions may be unsteady and may possess discontinuities. 

The results are the following. The nonhomogeneous plate is 
bent as a homogeneous orthotropic plate; the moments and crosscut 
forces In it are calculated from Eqs. (61.14) and (61.15), the 
deflection w  of the mid-plane is determined from Eq. (62.3). 
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The rigidities are obtained from the formulas 

J    1-V3 

02.-.-=2 f r^
3 -dz, 

h/2 

Dk~2 j Gz2 dz, 

h/2 

^, 

(68.1) 

'«> '^ are quantities corresponding to Poisson's coefficients for 
a homogeneous plate). 

The stress components are determined by the formul 

Etf     Id"--*»   .       d-iu \ 

as 

'Xy 

1 

- 20z 4 
d.x dy ' 

(68.?) 

v 

r  z * 
_  d     if-w     f EX!     j    ,  d-'-w    {I   £,v,     \   1 

~n'2 -h/2 

^    -h/2 • v/»     ' J 

(68.3) 

In particular,   for a nonhomogeneous  plate  possessing  the 
properties  of Isotropy,   for which 

El = E2 = E{z),    v1-v2 = v(2)1     0- 
2(1-hv)' (68.4) 

we obtain the following result: a plate is bent like an iLotropic 
one when its rigidity D  and the Poisson coefficient v are equal 
to 

D=2jr!£>, 
u 

h/2 

0 

For the stress components we obtain the formulas 
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L2    IdT-ui cr-w\ 

V3  Xdf'^^'dx*]' 

1 
F.z     (iT-xa 

1 - 

1 •]-v" d.V^ ' 

dx 
(V-^O 1 ,"'.-■ 

A/2 

v-   j/^^ 
'1/2 

(68.6) 

(68.7) 

Example. We have a plate which is Isotropie but nonhomogene- 
ous; its Poisson coefficient v is a constant quantity for any 
point of the plate and Young's modulus is a square function of 
the thickness : 

M;)' (68.8) 

This plate is bent as a homogeneous Isotropie one with Pois- 
son's coefficient v and a rigidity calculated from 

12(1 ■■.3) ^ 
1 I 0,15 

;)■ 

(68.9) 

§69. CALCULATION OF THE RIGIDITIES FOR ARBITRARY DIRECTIONS 

The rigidities of an anisotropic plate, £>..., are quantities 

which depend on the directions of the coordinate axes chosen, 
i.e., the D. .  are changed on a transition from the x,   y,   z  system 

of cooruxnates to the system x'}   y',   z'.   Let us consider the for- 
inulas for the recalculation of rigidities for the transition from 
one system of coordinates to another (analogous formulas were 
given in §9 for the elastic constants). 

Assume in the x, !/_, z   system of coordinates the rigidities 
op a generally nonorthotroplc plate equal to Dn, D..v Dn, D60, nXÜ     and 
#26 while in the x', y'> z '   system which has been turned about 
tne 2-axis through an angle of cp, the rigidities are equa] to 
On. D'i2, n[2, D'M,  D'C  and D'ZS.   TO derive the rigidity recalculation 
formulas we consider the expression for the potential energy of 
deformation per unit volume; if in Eq. (61.21) the derivatives 
of the deflections are replaced by the strain components Ej,-v Tur 
we obtain: 

in the x,   y3   z   system 

V = ^[ün^-\-2D^xH-\-022^ 1 0007^4-2(0,0^ | ■ D .o^) T^l. 

and in the x'3   y'}   z'   system 

(69.1) 
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i    H 

—       6  r^/  /' ^-^[Oa^-I^O^V   I  D^-f-^-l 
+2(D;C5: I-D^T^]. 

(69.2) 

The strain components ^ sy Ixv   and z'x, tu< ^'vu    are linked by the 
relations* 

; e'cos2'i   t   e'siii3«       7'    sin o cos'5, 

sii.2 'L t    - -t    Sll.   'i    i    E    COS-'f. •(       SIM 'i COS 7, 

Txv=:2(£x-   ^) sin'f cos-f  I   -r^ (cos2 9      sir,2 ?). 
(69.3) 

Substituting these expressions in (69.1) and setting It equal 
to (69.2) we obtain the transformation formulas sought: 

Dn^DuCnj4» I  2(/),,  (  2/),,) sin2 o cos2 ?  |  /),, sin4 o  | 

■f 2(/)l(,cos2o -|-D2Csiii2o)si.i2'?, 

D'22 -. -. D,, sin4 <? -I- 2 (D12 -I  2/),,) sin2 ? cos2 7 f Di2 cos4 <? — 

— 2(Dl8siii2(f  |r>2Gcos-9)siM2?, 

0^2 =- D12 I  ID..  \ D.n - 2 (D12 I  20BÜ)| sii-2 o cos2 ? -f- 

+ (028~ Oi6)cos 2? sin 2<?. 

Deo = D6o "t- [0,, -f- D22 - 2 (D12  i 2^)1 sin2 ? cos2 o + 
4-(D20 —Dic)cos2osin2?, 

0(6 = j [D22 sin2!?-Du cos2 «■|-(D12 -|- 2DCü)cos 2?1 sin 2«? + 

-1~ bXi cos2 o (cos2 cp — 3 sin2 tp) -f- D20 sin2 «(3 cos2 o — sin2 o),' 

DM = ^-[D22cos2
?--D11sin2

t? -(D,., -f-2D86)cos 2?1 sin 2<f-f 

-f- D16 sin2 o (3 cos2« — sin2 o) 4- D2Q cos2 9 (cos2 7 — 3 sin2 o). 

(69.M 

Let us consider the case of an orthotroplc plate. Let the 
directions of the axes x and zy coincide with the principal direc- 
tions and the main rigidities be given by Di, p2. Dk,  Zi, — D^-f 2Dk. 

When It Is required to pass over to a new system of coordi- 
nates, x'j z/'j z'j whose axes make angles of cp with the former, 
the deflection equation in the new system will read 

d*w 
dx' 

0"S+«..^+^+*oa,^ d*w 
dx'2d/ 

-+- 4D2C  7 -P Ö22 r 
^ dx'dy'3   r        dy'1 

(69.5) 

and the  expressions  for the moments  and  crosscut  forces  are  ob- 
tained in the  form of  (61.9)  and   (61.10)   (where  D.. must  be  re- 

placed by  £>!.).   The  rigidities  of bending about  the  new axes.   Du 

and 022,   the  rigidity  of torsion,   öes,   and the  rigidity   Ö12   are 
determined  from the  formulas  resulting from  (69.^): 
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D^:    D, cos 'f   j  '2/)JMII -feus <f  I   /J^sin4'^, 

D'2:    O^ii/o  I  2/.)J sin2'f cos2'j>  I  /^cos4'f, 

n[2-  n,\ j (/) i Di -2/).)siii2
?cos2

?. 

(69.6) 

The secondary rigidities Die   and Dzf,   which vanish in the main 
system x}   y}   z,   are equal to 

^ic - : ■.,-(/^ sin-9      D, cos2'!  i  D^ cos 2'f) sin 2'31 

/5?c =- ^ (/)2 cos5 'f    • D, sin5 o -   Dj cos 2«) sin 2o. 
(6.7) 

Note  that   the   expressions   for   o'i | /)'.. 2« and  l\c -Dl2    remain 
unchanged whatever  the   system of  coordinates,   i.e 
variants : 

they are in- 

(69.8) 

The complex bending parameters yi and \i2  transform in a 
transition to new axes according to formulas which agree precise- 
ly with the transformation formulas for complex parameters of the 
plane state of stress (see §10). 

§70. THE BENDING OF A PLATE DISPLAYING CYLINDRICAL ANISOTROPY 

Using the same suppositions and simplificatiors as applied 
in the development of the approximate theory of bending of homo- 
geneous plates (thin sheets), it is easy also to develop a theory 
of bending of plates of curvilinear anisotropy and, in particular, 
of plates possessing cylindrical anisotropy. This type of plates 
will be considered briefly. 

For simplicity the plate with cylindrical an 
posed to be orthotropic at the same time, with th 
tic symmetry being all radial planes passing thro 
of anisotropy. The pole of anisotropy, the point 
of the axis of anisotropy and the mid-plane (whic 
perpendicular to this axis), may lie within or wi 
We let the pole of anisotropy coincide with the o 
lindrlcal system of coordinates, r, 6, a, the s-a 
direction of the axis of anisotropy and the x-axl 
polar axis, arbitrarily in the mid-plane. In this 
dinates the equations of the generalized Hooke's 
the form (3.3). 

isotropy is sup- 
e planes of elas- 
ugh the axis g 
of intersection 
h is assumed 
thout the plate, 
rigin of the cy- 
xis being In the 
s, which is the 
system of coor- 

law will have 

The equations of the theory of bending are derived in the 
same way as in the case of the homogeneous plate. Neglecting a 

we can write the three equations of the generalized Hooke's law 
in the form: 
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er = ^-("r —v^,), 
T 

1 

J_ 
ee --- -p- (o0 >- -^o,.), 

lr8- 

(70.1) 

Hereof^9 are Young's moduli for tension (compression) In 
the radial direction r and In the tangential direction 0; v "a are 
the main Polsson's coefficients (/v9 —/:>,); CM is the modulus of 
shear for the (principal) directions r  and 9. On the basis of the 
hypothesis of the straight normals we obtain expressions for the 
displacements of points u    and uQ In the directions r  and 6 In 

terms of the deflection wir,   0) of the rnld-plane: 

dw 1 iw 

r ' dB" 
(70.2) 

We thtn determine ei- ee- Ti-o- From Eqs. (70.1) we find va*'"rB'- 
from the equations of equilibrium [see the first and second equa- 
tions of (1.^) where /? = 0^O] we obtain the components T._ and vz 
Te3. The stresses or,o, are reduced to tbi bending moments Atr. M9, 

the stresses T Q to the torsion moment H a  and the stresses r o VKJ 
Tr, = Xlr. T»i "'* to the crosscut forces N    and Na r 9 A schematic re- 
presentation  of the  stress  distribution around a point   in the 
plate  Is  given  In Pig.   13**   (upper  diagram);   the moments  and  cross- 
cut forces  to which the  stresses  are  reduced are  shown schematic- 
ally In the  lower part of Pig.   134. 

Fig 134. 

Por the stress components, the moments and crosscut forces 
the following formulas are obtained: 
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A'      ' (70.3) 

--■7,3 i'i2 r   ^--»-[T "*}' 

M,: n, 
Or 

Or 

I"   d^-w   .    \    dm   .    1    ^u)l 

^ = W^"2DA.^.0.(^); 

(70.4) 

'V' ■""        i'^U^   '  >    dri)   '   /J'' K'dÖJ ic)r ' '  r) " 
1   /d^ I   ^\1 

Nt - - [O.t 7 • ^-J0 -I- A>■ • -d0 (-   \- r' -dlyi) 

(70.5) 

Here D»- A are the bending rigidities for the directions r,   6 
(I.e., about the axes 6 and r  passing through a given point), D. 
Is the rigidity of torsion 

n ~     Erhi n   J    E''li u' -  12 (1 ~ ve) '   *"' 12(1 -37rTe)- • 

D» 
12 ' Dr(, = Drv8-|.2DA.. 

(70.6) 

Considering the equilibrium of a plate element bounded by 
three pairs of coordinate surfaces, and of the analogous element 
represented In Fig. 126, we obtain the following equations for 
the deflection ^{r, 0): 

^ d77 -r 2ürt >3 • J-^OJ +1\ -T ■ JOT4" ^r 7• -drT — ^n -^ j^gp 

- D» >T ' ^T  f- 2 (^  I - D^) 7,- • JOT  I" D9 73 • ä/ ^ •? (^ ")• 
(70.7) 

where q  Is the Intensity of normal loading distributed over the 
plane surface.* 

In the case of an Isotropie material 

D^-D9--.Df„=-D 
Eh* 

12(1 — vZ)- 

Equatlon (70.7) takes the form 

DWw^q^r',  Ü), 

where V2 Is the Laplace operator in polar coordinates, 

<)3 
V2 z--. 

d/-3 
1  <* * 1_ _d3 

(70.8) 

(70.9) 

- 293 - 

   '■ 



■Wi...j.ii|W||iiFWiwpill-i iiu.wwwUlip 

L 

^^■,_.^^^-^,   ..■,..^l    ,   ,,,   . -^—L.w.wuALnum^miipiiiimj. i- , .mi .   i    ,       i i i uw   m-   u.iimJM mi .1   j ...i. J-LIIH....   .1  I., m   n ■■"'■■■   '■' 

Manu- 
script r-o    4-     4-     -\ page [Footnotes] 

No. 

260*     Gehring, F., De aequatlonlbus dlfferentlalibus quibus 
aequlllbrlum et motus laminae crystalllnae deflnitur 
[Differential Equations Defining the Equilibrium and 
Motion of Crystalline Layers], Berlin i860. 

260**    Bousslnesque, M.J., Complements ä une ^tude sur la 
th^orie de l'^quillbre et du mouvement des solides ^las- 
tlques [Supplements to an Investigation into the Theory 
of Equilibrium and Motions of Elastic Solids] Journal 
de Math, pures et appl. [Journal of Pure and Applied 
Mathematics] Ser. 3, Vol. 5, 1879. 

260***   See paper by M.T. Huber: 1) Teorja plyt [Theory of 
Plates] Lwow, 1921; 2) Einige Anwendungen der Biegungs- 
theorie orthotroper Platten [Some Applications of the 
Theory of Bending of Orthotroplc Plates] Zeltschr. f. 
Angew. Math, und Mech. [Journal of Applied Mathematics 
and Mechanics] Vol. 6, Fasc. 3, 1926; 3) Probleme der 
Statik technisch wichtiger orthotroper Platten [Prob- 
lems of the Statics of Technically Important Orthotrop- 
lc Plates] Warsaw, 1929. 

266 The equations of the theory of bending for an anisotrop- 
1c plate have been derived, for example. In the third 
of Huber's papers mentioned In the preceding section and 
in our own paper: "0 nekotorykh voprosakh, svyazannykh s 
teorlyey izglba tonklkh pllt" [On Some Problems Connected 
with the Theory of Bending of Thin Plates] Prikladnaya 
matematika 1 mekhanlka, novaya seriya [Applied Mathe- 
matics and Mechanics, New Series], Vol. II, No. 2, 1938, 
and for an Isotropie plate in the books by B.C. Galerkin 
"Upruglye tonklye pllty" [Elastic Thin Plates] Gosstroy- 
izdat [State Publishers of Construction Engineering] 
1933 and S.P. Tlmoshenko "Plastlnkl 1 obolochki" [Plates 
and Shells], OGIZ, Gostekhizdat, Moscow-Leningrad, 19^8. 

267 See, e.g., the book by S.P, Tlmoshenko, mentioned, 
pages 92-98. 

268 See page 187 of our paper mentioned in the preceding 
section. The formulas given below are also derived in 
this paper. 

269*     See our paper, page 191, mentioned previously. 

269**    The determinant of these systems for unequal complex 
parameters Is always nonzero (see footnote In §8). 

270      See our paper mentioned in §62, where derivations are 
given for Eqs. (63.1^) and the boundary conditions for 
fuactlons of a complex variable and where these func- 
tions are investigated. 
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271' 

271** 

273 

27^ 

275 

276 

278 

the 
zadache o ravnovesii plastiny s opertym 
Equilibrium Problem of Plates with Sup- 

politekhn. in-ta [Bull, of 
Institute] Vol. XXXI, ly28, 
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No. ^ 1950; 4) Izgib krugloy pi 
silami [The Bending of a Round P 
Forces ibid ., Vol. XV, No. 2, 1 
shch^y zadac hi ob izgifce tonkoy 
vdol Kl- aya [Solution of the Gene 
ing of a Thi n Elastic Plate Supp 
ibid. , Vol. XVI, No. 4, 1952. 

Lur'ye, A.I 
krayami [To 
ported Sides] Izv. Leningr. 
the Leningrad Polytechnical 
pages 305-320; see also nis 
izgibe krugloy plastinki [Some Problems on the Bending 
of a Round Plate] Prlkladnaya matematika i mekhanika 
[Applied Mathematics and Mechanics] Vol. IV, No. 1, 
19^0. 
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erture]. Ibid. Vol. IX, 
tropnoy pllty s vpayan- 
uprugogo materlala [The 

e with Soldered-in Round 
erial] Ibid. Vol. XIV, 
ity sosredotochennymi 
late by Concentrated 
951; 5) Resheniye ob- 
uprugoy plity, opertoy 
ral Problem on the Bend- 
orted Along the Edge], 

Karman, Th., Encyklopädle der mathematischen Wissen- 
schaften [Encyclopedia of Mathematical Sciences] Vol. 
IV, 1910, page 3^9- 

F.ostovtsev, G.G., Raschet tonkoy ploskoy obshivkl, pod- 
kreplennoy rebrami zhestkosti [Calculation of Thin Panel 
Reinforced by Stiffening Ribs] Trudy Leningr. in-ta in- 
zhenerov grazhdanskogo voadushnogo flota [Transactions 
of the Leningrad Institute of Engineers of Civil Avia- 
tion] No. 20, 19^0. 

Timoshenko, S.P., Plastinki i obolochki [Plates and 
Shells] Gostekhizdat, Moscow, 19^8, page 37, 243. 

Cf. paper by E. Seydel, Schubknickversuche mit Well- 
blechtafeld [Shear-Breaking Tests with Corrugated Iron 
Sheets] DVL-Bericht [DVL Report] or the book by S.N. 
Kats and I.A. Sverdlcv, Raschet samoleta na prochnost 
[Strength Calculation of Airplane] Oboroygiz, Moscow, 
1910, page 25^. 

See paper by S.G. Lekhnitskiy, Izgib neodnorodnykh ani- 
zotropnykh tonkikh plit simmetrichnogo stroyenlya [Bend- 
ing of Nonhomogeneous Anisotropie Thin Plates of Sym- 
metrical Structure] Prlkladnaya matematika 1 mekhanika. 
Vol. V, No. 1, 19^1. In this paper the more general 
case where the layers are not orthotropic war; also in- 
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Rabinovlch, A.L., 0 raschete ortotropnykh slolstykh 
paneley na rastyazhenlye, sdvlg i Izglb [On the Calcula- 
tion of Orthotroplc Laminated Panels as to Tension, 
Shear and Bending] Mlnisterstvo aviatsionnoy promyshlen- 
nosti SSSR [Ministry of Aviation Industry USSR] Trudy, 
No. 675, 1948. 

In the same form the rigidity can be given for the more 
general case of a laminated plate, only the form of the 
reduced moduli will be more complex. 

Equations (67.5) (67.8) agree essentially with the for- 
mulas obtained by A.L. Rabinovich in the paper referred 
to in §66 (pages 13-14, 17-18). A.L. Rabinovich used 
other notations. 

See A.L. Rabinovich's paper mentioned, page 15. 

See paper by C.B. Smith, Some New Types of Orthotroplc 
Plates Laminated of Orthotroplc Material, Journ. of 
Appl. Mech., Vol. 20, 1953, No. 2. In his paper Smith 
uses other denotations. This paper contains general con- 
siderations with respect to the determination of the 
rigidity of plates consisting of four and more (even 
number) plates. 

These formulas 
ous media. 

are derived in the mechanics of continu- 

This equation agrees essentially with an equation de- 
rived independently by Carrier in the paper: G.F. Car- 
rier, The Bending of the Cylindrically Aelotroplc 
Plate, Journ. of Appl. Mech., Vol. 11, 1944, No. 3. 
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Chapter 10 

THE BENDING OF PLATES UNDER NORMAL LOAD 
§71. THE SIMPLEST CASES OF BENDING 

In this chapter we shall consider a series of concrete prob- 
lems on the bending of homogeneous plates of rectangular, ellip- 
tic and round form, of strips and of a curvlllnear-anlsotroplc 
round plate. 

Th 
pure be 
face. T 
obtaine 
formula 
to be h 
tlon re 
and the 
form of 

e simple 
ndlng; 2 
ie defle 
d in the 

wlthou 
omogeneo 
ferred t 
express 
(61.9) 

st cases of bending of a 
) pure torsion; 3) bendln 
ctlons, moments crosscut 
se cases in an elementary 
t derivations. In all cas 
us but not orthotropic so 
o the chosen axes x  and y 
ions for the moments and 
and (61.10). 

uniform plate are: 1) 
g on a cylindrical sur- 
forces and stresses are 
way, and we give the 

es the plate is assumed 
that the bending equa- 
has the form of (62.2) 
crosscut forces have the 

Fig. 135 

I. Pure bonding. A rectangular plate is bent by the moments 
Mi   (per unit length) distributed uniformly on two sides and the 
moments A/2 (per unit length) distributed uniformly on the two 
other sides. 

Denoting the lengths of the sides by a  and b  and directing 
the axes along the sides (Fig. 135), we obtain 

W '■ 

M,. Mu Al,. //.„-AL-A/., 'li "'y ■   - "'2' • • jy ■      • -m " ~  "v 0; 
Co. 

(71.1) 
(71.2) 

where A,   B, C  are the constants determined from the equations 
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/ID,.-! ß^-l-CD.^.-^l. 

(71.3) 

and tci' C2' co   are constants obtained from the conditions of fixing. 
For examole, for a plate which is fixed at the three corners (0, 
0), (a, 0), ^0, b), 

w^-.Aix* — ox)  |- Dxy 4- C(y*  - by). (71.it) 

Another case of pure bending is the bending of a plate of 
arbitrary form by the moments M  (per unit length) which are dis- 
tributed uniformly along the edge (Fig. 136). 

/(.. 

Fig. 136 

In this case for an arbitrary element with the normal n 

Mnr-.M,     Htn~=0,    Nn^0. (71.5) 

2. Pure t. -f. Ion. A rectangular plate is deformed by the tor- 
sional moment // (per unit length) distributed uniformly on all 
sides (Fig. 2 37). In this case 

Mx---My~0,    Hxur-.H.    AV-A/,,-0. (71.6) 

The deflection w  has the form (71.2) and the constants A,  B3 
C  are determined by the equations 

/IDU + /3D1(I.|-CD12^0.  ] 
ADn+DDn-\-Cnn^Q': 

ADir\. BDm-[ Cü.^^ H 
(71.7) 

Another variant of pure torsion is the deformation of a 
plate hinged on two opposite sides, by the forces 2H,  applied to 
the free corners (Fig. 138). For this variant the same formulas 
(71.6), (71.7), (71.2) are applicable. 

3. Bending on a cylindrical surface. A plate In the form of 
a long rectangle fa. u.-wed uniformly on the long sidt';.; and ;;rbl- 
trarily on the shore jides, is deformed by a load which does not 
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vary along the long sides. In this case at points remote from the 
short sides the curved surface of the plate will be similar to a 
cylindrical surface; for an Infinitely long plate the surface 
will be precisely cylindrical. 

Fig. 137 

Placing the origin of coordinates on the long side far away 
from the short sides and directing the x-axis along the long side 
(Pig. 139), the deflection w(y)  may be assumed to be a function 
of y  alone. 

Then 

Mw - - On«'". Myr-.- ■ Dnw", 
Ns,^-D2üw"'.    Ny 

H^^--D2Qw\ 
- D22w"'. 

The deflection is determined from the equation 

D2iw"~q{y). 

(71.8) 

(71.9) 

This equation coincides with the deflection equation of a 
beam with the rigidity D22 bent by an arbitrary normal load q; 
the quantities M    and N    are determined as the bending moment 

and the crosscut force in this beam. The fixing of the beam ends 
must correspond to the fixing of the long sides of the plate. In 
this way the problem on the bending of a plate on a cylindrical 
surface is reduced to the problem of the bending of a beam which 
can be solved within the framework of the elementary theory of 
bending. The unnecessary force factors M  .   N       and A' which do 0 J x3     xy x 
not exist for the beam are easy to determine from the deflection 
obtained. For an orthotropic plate at which the principal direc- 
tions are parallel to the sides, //  = yv =0. r '    xy x 

flmirafriiiiiirnd'"/' xr-   1/ 
777777?, 

"Z 

Fig.   139 
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§72. BENDING OF AN ORTHOTROPIC RECTANGULAR PLATE WITH HINGED 
SIDES 

A rectangular orthotroplc plate whose principal directions 
are parallel to the directions of the sides rests (on hinges) on 
all four sides and is bent by a normal load distributed according 
to an arbitrary law. 

Fig. 1^0 

We orient the x  and y  axes along the sides (Fig. 1^0) and 
denote by a, h  the lengths of the sides of the plate and by o 
their ratio: o = a/h .   The equation of the deflections will have 
the form of (62.3); when integrating it the boundary conditions 
to be taken into account are the following: 

with *~ 
With y 

= 0. x--*a       w — M^-O; \ 
z 0, y ~ b      w^Mu ---- .0. J (72.1) 

^ 

All these conditions will be satisfied when we use the solu- 
tion of Eq. (62.3) in the form of a series 

In order to determine the coefficients A 

function q(xJ   y)   In a double Fourier series 

W=ZL  iA^sm —sin-/. (72<2) 

we  expand the mn 

in »l n-'l 

mr.x   ,   «"V 
- - - sin - . 

a b 

where 
a     6 

4 
Ob 

f    f       .    mr.x    .   Itr.y 
> J   J VS">   a"Sin   Jilxdy. 

(72.3) 

(72.^0 
0     0 

Substituting Expressions (72.2) and (72.3) in Eq. (62.3) and 
equating the coefficients of equal sines on the left-hand and the 
right-hand sides, we obtain the following expression for the de- 
flection 

oo   oo , niT.X 

--2S- -   '   ' 
in -1 »i '■ i D1(.;y.h2^(^Ji-/.v/ (72.5) 

This SDlution l.; analogous to Navler's solution for an iso- 
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tropic plate* 
CO oo mr.x       nr.y 

*' W     5,n-a-s|n^2- 
W"^ ZZJ" 'f(^fi-^T (72.6) 

»1-1    11=1 l\c/    '        J 

(Z? is the rigidity of the isotropic plate). In Eq. (72.5) we must 
substitute the values of the coefficients a  which depend on the 

law of load distribution. Thus, for the case of a load distributed 
uniformly over the whole area, we obtain 

^n^^-' — ^Orm. nr-.\,  3. 5. ...:| (72_7) 

a^n rr-. o for all other m  and n  | 

where p is the load per unit area. 

For a concentrated force P  which attacks at the point (t "n)- 

4P    .   mn; . rtn-n 
fl«'.^^sm-T-s,n-r  ' (72.8) 

(m^l. 2. 3 rt= 1. 2. 3. ...)• 

The moments and crosscut forces are determined from Eqs. 
(6l.lil)-(6l.l5) and are likewise double series. 

A solution in the form of a double series Is of theoretical 
Interest but not suitable for application in practice. Though the 
series expressing the deflection, moments and crosscut forces are 
virtually always convergent, the convergence is so slow that many 
terms of these series must be taken for a calculation. Therefore, 
in cases where one can do it without the double series, one pre- 
fers to use simple series for the solutions, which converge much 
better (we shall consider such solutions below). 

When on the sides of a plate, which is bent by an arbitrary 
load q   (72.3), the normal forces pi and pz   are distributed uni- 
formly, we shall have an equation of the form (6^.7) where we 
must substitute 

Tx = Pl'     TyT--P2'     Sxy^Q- 

Also in this case the deflection is easy to determine in 
the form of a series 

mr.x 

x       "■■■■'■ * 

sm: .sin"^ (72.9) 

-.(^•^(^.^•.(^[.(^■l^]- 

If we are concerned with tensile forces, pi > 0 and pz   >   0; 
the denominators of all terms of the series are positive and high- 
er than the corresponding denominators of the series (72.5). From 
this it is clear that an adding of tensile forces distributed 
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along the sides will reduce the deflection; the pla 
if It were more rigid. If the forces are compressiv 
P2 < 0 and the denominators of Eq. (72.9) are dlffe 
sltlve quantities. An addition of compressive force 
the deflection or, in other words, reduces the rlgl 
plate. With compressive forces we may also encounte 
one or several denominators of Eq. (72.9) are vanls 
deflection under the action of the load q therefore 
oretlcally infinitely large. This Indicates that a 
sed by the forces pi and pz   alone is in unstable eq 

te behaves as 
e, ft,   <  0, 
rences of po- 
s increases 
dity of the 
r cases where 
hing and the 
becomes the- 

plate compres- 
uilibrium. 

P, 

mmm 

mvMzzi 
Pig.   141 

The stability problems of the plate are also considered in 
Chapters 13-16. 

§73. THE BENDING OF AN 0RTH0TR0PIC RECTANGULAR PLATE WITH TWO 
RESTING SIDES 

A rectangular orthotroplc plate with two opposite sides sup- 
ported and the other two sides fixed in some way is bent by a 
normal load q.  We consider a case where the load Is constant 
along the supported sides. A more general case of load will be 
discussed In §76. For a given plate we can obtain a solution in 
the'form of simple series which is a generalization of the well- 
known Morrls-Levi solution for the case of an orthotroplc plate.* 

Let us place the origin of coordinates in the middle of the 
supported side and direct the x-axis along the supported side and 
the j/-axls perpendicular to it (Fig. l^a). 

The deflection equation will have the form 

Ox* Of tty« 
(73.1) 

where  q(y)   is  a given  function.   The  function w defined by  this 
equation must  satisfy the boundary  conditions   for the  supported 
sides 

with-y-o. y^b *'-:-d?} \-dxi~v (73-2) 

and four  conditions  for  the  other  slde3. 
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We ^hall seek a solution In the form of a sum 

■w^w0iy)  | w,(.v. y). 

Here wo(y)   Is a function satisfying the equation 
(V 

and the conditions 

fywo   --^q(y) 

w0(0) =-: w
n

0 (0) - -. 0. wo {b) - : w-o (A) ~ 0; 

(73.3) 

(73^) 

(73.5) 

this Is the deflection of a beam of length b  and rigidity /?, 
which rests on Its ends and is loaded by the load q   (Pig. 1^2b) 
The function wi satisfies the homogeneous equation 

n d~Wl. -)- 2D -~w-* - 4 n d,iVi - n (73.6) 

and Conditions (73-2) and 1? chosen so that It satisfies the con- 
ditions on the sides x = +a/2. 

Fig. 1^2 

In many cases of loads the function WQ  can be determined in 
a finite form by the methods of the theory of materials resist- 
ance, but in order to satisfy the conditions on the sides x = + 
+a/2  it must be represented in the form of a Fourier sine series. 
This series will have the form 

ft4     \T an   .   nr.y 

where 
o 

J7S11.7 '"       b J '' D"' ' A" ^ 
0 

(73.7) 

(73.8) 

are the Fourier series expansion coefficients of the function 
q(y)  representing the law of load distribution. The function wi 
Is sought in the form of a series 
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(73.9) 
U>-1 

The total deflection « = «»0 + «», will satiSfy the conditions 
on the resting sides and we have only to take care that the con- 
ditions on the sides x —:±:a/2, are satisfied which is always pos- 
sible. 

For the functions X    we obtain the equation 

DX:- ^{^jx^D^yx^.o. (73.10) 

The form of the function X    depends on the roots si, 82 of 
the characteristic equation   " 

Dls* — 2Dts'i-[-D2 — 0. (73.11) 

These roots are connected with the complex parameters y1, ya of 
bending: ^^//iv 52 = //tv 

According to the relations between the quantities of rigid- 
ity of a plate we may distinguish three cases. 

Case I. The roots of Eq. (73.11) are real and unequal: 

ztsp its, (s^O, s2>0). 

Case 2.  The roots of Eq.   (73.11)  are  real and palrwise  equal 

its   (s>0). 

Case 3«  The roots of Eq.   (73.11)  are complex: 

srhti,   —srt«   (s > 0. / > 0). 

In Case 1 

■n^AnChlr^ + BnSh!l^^Cllch^-\-Dl>shn^-.        (73.12) 

In Case 2 

(73.13) 

(73.1^) 

*n~i\i-nnx)ch n-rf- -t-(c,.-f-/V)sii^-. 

In Case 3 

Xn — ^„cos -j - -f- ß,, sin - b-j ch -r- f- 

+ ic»cos   i - l-D-.S1"-^-js,1-y-• 

where An, Bn, Cn, Dn    are arblbrary constants. 

In this way we obtain the  following expressions  for the de- 
flection.   In Case  1 
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w 

In  Case   2 

w 

In Case  3 

+ Cn ch -^ -i  0,. sh —^ -) sin - ^ 

OO 

-iknv7«+^''+/?''x)cll-y- + 

-t-(CH-f-ZV)sh^jsin^ 

CO 

^ ^ 1 [jj^ni + i-4»cos -«-i ß»sin -r-)cl1 -^ + 

+ ^ cos —4 ■ • j- D,, sin -6—j sh _^—I sin -f. 

(73.15) 

n- I (73.16) 

ti" i (73.17) 

In each case the denominator contains four arbitrary constants 
and as many conditions as we have on the sides x ^ j.:a/2;   these con- 
dltl^nr, can be satisfied with an arbitrary fixing of the cldes. 

In the following It is not necessary to analyze all three 
cases (1, 2, 3) In detail. It Is sufficient to consider Case 1; 
the solutions for the other cases are obtained by means of a lim- 
iting transition with s, = s,--5. or by a separation of the real 
part of the complex expression which Is obtained when we put 
Sj: - s\ li.  52 —s — //. 

In the case of four supported sides we obtain 

w ■■ 

f j       /irx,.v 2       nrj.j.rv 
ijcli     b-        i.eh     i'-> 

ch 
/lnS|i: 

2   " Ch ■ 
■2 

■ nry sin- ,-, 
(73.18) 

For a plate whose sides .v:>.,:«/2 are fixed 

CO 

....    , ,.,   /.A    I *'       Vf»   V 

X- 

,   n;-.s-,c    ,   IIKSIX ,   nr.s.c    ,   nns-xX 
ijsh —.,:-ch - .' —Sjsh-   „--ch       " 

2 
r.s] 
'2 

,   n-s,c   ;   nr.S'iC 
b 

ri. 
2 

2 b        .   nity 
.   rms-.c   .   nr.StC   "       b 

(73.19) 

Knowing the expression for the deflections, we determine 
from Eqs. (63.1^) and (61.15) the moments and crosscut forces and 
from them the stresses. 

Series of the type (73.18) are much more suitable for the 
calculation than the double series of the last section of the 
book; they are usually converging rapidly. For the calculation 
of the deflections and stresses at given points in an accuracy 

•i 
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sufficient for practice we can restrict ourselves to a few terms 
of the series. 

§74. THE BENDING OF A RECTANGULAR ORTHOTROPIC PLATE BY A LOAD 
DISTRIBUTED UNIFORMLY 

When a load q  is distributed over a plate as considered in 
the preceding section in a uniform manner (Fig. 1^3), 

4<? with rt = 1, 3. 5. ...; an:-=Q wl,h n ^ 2, 4. 6. . 

(7^.1) 

(7^.2) 

The  series   (73.18) and   (73.19)  will only contain terms with 
odd n. 

Let us  consider two cases in greater detail. 

2 * ocnziin 
2 b) ''2 

Pig.   143 

I.   Plate   with   four  supported   sides.   The moments  and  crosscut 
forces are determined from Eqs.   (61.lH) and  (61.15).   For the de- 
flections and bending moments we  obtain the  following expressions 

w-:7ikO'4-   -V I ^.v) I- 
*   ,   llr.s.X 

n-l, 8, 6, .. 

(74.3) 
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n-l, 3. t, . 
ch-2- 

ch 
nns2jf 

^~^T-n 
b 

ch ^-^ 
2 

^=—|(y-^) + 
.   Aqb* \_ 
'     .9    ' 72       ,2 

• oo 

2i 
nxl.B, 6. 

^C—v?l — -- 
ch — 

ch 
nnjgj: -i 

2 ch-l^l 

.   nny 
sin-,— . 

o 

(7^.4) 

The maximum deflection and highest bending moments are ob- 
tained In the center and can be represented In the following way 

V)„ 
bqbi 

384/J, a: 

Wn.M~f ?'.     W„^^P. 

(74.5) 

(74.6) 

a, 3' and ß are dlmenslonless correction coefficients which take 
Into account the influence of the lateral sides x--^.,t«/2. When the 
side ratio o  = a/b  is high these coefficients can be taken equal 
to « --I. P' ^. P ''. and then we shall have a bending on a cylin- 
drical surface. 

The determination of a, B1 and ß with finite o  in Case 1 Is 
obvious from Eq. (74.3)-(7i*. 4). We give the values of the coef- 
ficients for Case 3. 
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n -1 
■  2 - 

•Mi >' v.- .X 

(l.-l, S, 6.  ... 

X   2A7ch-^—cos- y   -j (s2 —/:)sh—2—-sin—2-j, 

\ 

2 ' 

not, 3. S.S., 

X [(^ + ^ _ V2 + VJ) sh ^. sin 'i^ 

- -2v25/ch —„--cos 

;.1 + L-     £ (--I)"2' 
n'b, "X 

n-l, 3,5, ... 

X [(v.s1 +- V - ^ 1 ^) sl> ■flr2-C- sin 'i^- 

2s/cli   -„    co nntc ] S    '2   J' 
8n =-- ch nr.sc -j- cos «it/s. 

(74.7) 

As shown in §67, the parameters yi, M2 and, consequently, 
also ei, 82 are found to be complex for such a material as ve- 
neer. For a veneer plate the series entering Eqs. (7^.7) converge 
satisfactorily. 

The formulas for Case 2 are obtained in the way shown above 
by means of a limiting transition with t =  0. 

The bending of a plate with four supported sides, under the 
action of a uniformly distributed load was studied in detail by 
Huber for the case where the rigidity satisfies the condition 
D^-zYuiD-i     (Case 2). Huber gives Tables for the calculation of 

the maximum deflection w  , the maximum moments (M..) • (My)    . 

and other quantities, which are of Interest for strength calcula- 
tions, such as 1) the maximum crosscut forces (^'J-)1„ai'(A/J)iM,it. obtained 
in the middles of the sides; 2) the maximum values of the support 
reactions (A!,).^. (W2)oii][.  obtained for these points; 3) the total 

pressure R\   of the plate on the support x  -  +a/2 and Hz  on the 
support y  = 0, y  =  b;   k)   the reaction R  at the corners of the 
plate. All these quantities are considered as functions of the 
ratio 

0 -.V lh    , •^V VA- (« i-- i>): (7^.8) 

they are determined from the formulas 

w 
^ 

(^W'(^ i i^/l;)"*5 

(74.9) 

(74.10) 

- 3^ 
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c 

11 
c 

(7^.11) 

(in  the  middle   of  the  plate x   ■■Q.y.~bj2y. 

(^L. [...lf,..(vf^)lAg] 

(at the points x ~. .  >:n/2. y.-.ö/2.    i.e., in the middles of sides b); 

(^„-[^-f-h.^vt-2^)/"!]^ 

the   siLra);3 ^"■^^   ^   ^^-^    '^'>   -  the  middies  of 

(7^.12) 

^-k;f-Kl2(vt-
4^)/"g]^; (74.13) 

(74.14) 

We shall give Huber's table (on page 310) for the coeffici- 
ents |iu, |i?2 y'i2   for a series of values of the ratio £.* 

2. Plate with two supported and two fixes sides. Deflection 
and bending moments are determined from the equations 

—2-4a-(-v'-2*y-f^) i--^ £ ^sh^fc,,- 
n^l, 3. 5, 

b 

-^sh-^ch^sin'^-; 
(74.15) 

11-1,3, S.... 

— \\ ~ 52) Si sh - 2-i- ch - y- sin -^-, 

oo 
.   Aqb*        \\ If/, 2^       L nr.SjC    .  nnSiX 

n^l.S, S. ... 

•        -(1 -v^).. sh-^üch ^]sin^. 

An = Sl sh W ch Ä __ 52 sh ^_ch nns± 

(74.16) 
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TABLE  U 

Values of the Coefficients In Eqs 
(7^.11) 

(7^.9)- 

i I 

! 

1 
• 

f Hn ^ (Mil 

0,119 
0,101 
0,181 
0,183 

Hn 

I 
1.5 
2 
2,5 

0,00107 
0,00772 
0,01013 
0,01150 

0,03C3 
0,02.S0 
0,0171 
0,0009 

0,0308 
0,0728 
0,0'JGI 
0.1100 

0,219 
0,199 
0,139 
0,183 

0,187 
0,186 
0,186" 

0,219 
0,335 
0,110 
0,'153 

3 
5 

CO 

0,01223 
0,01297 
0,01302 

0,0055 
0,0001 
0,0000 

0,1172 
0,1215 
0,1250 

0,185 
0.186 
0,186 

0,-176 
0,'199 
0,500 

-■ I Hin Mill 
/ 

Pm hj 

I 
1.5 
2 
2,5 

0,119 
0,O.S9   • 
0,0.55 
0,031 

0.157 
0,115 
0,138 
0.137 

0,093 
0,122 
0,133 
0.131 

0,157 
0,211 
0,299 
0,338 

0.093 
0,081 
0,006 
0.051 

0,0100 
0,0G1I 
0,0063 
0,0670 

3 
5 

00' 

0,017 
0,001 
0.000 

0,130 
0,13G 
0,130 

0,135 
0,130 
0.13G 

0,305 
o^ig 
0,500 

0,015 
0,027 
0,000 

0,0675 
0,0679 
0,0079 

The maximum bending Is obtained In the center and may be 
described by the formula 

w.. ~ libL 
3810, 

a. (7^.17) 

As regards the bending moments, they reach their highest val- 
ues in an Isotropie plate In the midpoints of the fixed sides; Ir 
the case of an orthotroplc plate we cannot exclude the possibil- 
ity that the bending moments reach their highest values In the 
center. Denoting by M'^, MuSi    the bending moments In the center and 
by Mxb, Mvb   the bending moments at the midpoints of the fixed 
sides, we can represent these quantities by the formulas 

Mn AU^-P. 

A^--£X <76' 

8 /Vf„6 = —-ö-Pi- 
(7^.18) 

With high ratlos  c  = a/b 

a~U    p'==v    P=l.    Pi^/g.    P.-v./gi. 

We restrict ourselves to giving the expressions for the co- 
efficients a, p'.p. ft    and 3i only for Case 3: 
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P' 

1      2.008       ^] 

ß-1 

(    I) 

n- I 
~~2 ' 

n    1, 3, B, ... 
n'*n 

X 
) 

. . /    .   nnsr   .   nr.tr   ,   .   .   nr.sc        nRtc\ 
X^ch-j--sin- 2    ( /si: - 2 -cos- j-1. 

n-.l, 3. 5. ... 

X   (V -s2      ^)JCh-2sin    2     |- 

2,004      y 
n^I, .1, 6. 

n - 

(-"IP 
n'4„ 

l2)tsb    „-cos nr.tc' 2 J' 

-X 

x[(i 

P. - 1.032 1/^-      V      LI)   2 

H"I,3, 6, .. 

v2-v^ci1
,7f

Si„',^.|- 

}   (1    l-V'   Iv^/Sh-^COS"-^)- 

(/sluice— 5sin/(-/c), 

n-l 

"=1.3.6,... 

^.-Wsh/z-sc-l  ssin/ir./c. 

■5sin/i-/c), 

(7^.19) 

In the case of a veneer plate the terms of the series appear- 
ing In Eqs. (7^.19) decrease rapidly enough so that In calcula- 
tions, with accuracies sufficient for practice, we can be satis- 
fied with a few terms. The convergence of the series become worse 
as the ratio a  decreases. 

§75. THE BENDING OF A STRIP WITH SUPPORTED SIDES 

Another proble 
the problem of the 
plate with supporte 
uted over a limited 
plate Is considered 
This problem was so 
and for many partlc 
tal results obtalne 
to their bases and 

m which is very interesting for practice is 
bending of a long rectangular orthotropic 
d sides, under the action of a load distrib- 
part of its surface (in the theory such a 
as an infinite band with supported sides). 

Ived by M.T. Huber in both the general form 
ular cases. We shall here give the fundamen- 
d by Huber, without entering into details as 
statements.* 

Pig. 1^ 
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I. Strip loaded along a straight line section. An infinite 
band of width b with supported sides is subjected to the action 
of a load distributed arbitrarily on a straight line section per- 
pendicular to the sides. The principal directions of elasticity 
are assumed parallel and perpendicular to the directions of the 
sides. When the a;-axis agrees with the side and the y-axis with 
the loaded section as shown in Pig. 144, we expand the given load 
q'(y)   (per unit length) in a Fourier series; we obtain 

q  ^«„sm-/-- (75<1) 

■ 

The expressions for the deflections will depend on the solu- 
tions of the characteristic equation (73.11) and, for positive x, 
they may be written as follows (for parts of the plate on the 
right-hand side of the loaded section): 

in Case 1 (see §73) 

■ ■ 

63 1 w — —  - y 

In Case 2 "^ S£(s Xlj^tis.e     6 ■ s./ "*"")sin^; 
n-i'~x-\  . „r.v        (75.2) 

in Case 3 
AJfD^s &   n3\     ^    b    )' 

'      ' '     n-l 
« - r-.-:-.W- >; ^".l 1 -\- -'-]€  ^ sin ^        (75'3) 

w ft3            V   <*r. I 1         "TJX   ,    1    .   nnlx\   --T— .    nr. 
 r — 7. -TI-COS -v ^--rsin-r- e     b   sin-x 

P^L. (75.4) 

The expressions for the deflection on the left-hand side of 
the loaded section are obtained when x  is replaced by -x. 

In each particular case given we must find the coefficients 
a    of the Fourier series and substitute them in Eqs. (75.2)- 

(75.4). Knowing the expressions for the deflections, we can de- 
termine the bending and torsional moments and the crosscut forces 
from Eqs. (6l.14)-(6l.l5) and from them we obtain the stresses. 

Note that the formulas for the cases 2 and 3 are obtained 
from Eqs. (75.2) by means of a limiting transition; in the follow- 
ing we shall restrict ourselves to giving only the deflection ex- 
pressions for Case 1. 

If load q'   is distributed uniformly on a section of length 
bi  of the j/-axis, the midpoint of t-his section being at the dis- 
tance n from the origin of coordinates (Fig. 145), we have 

4g'    .    nnb,   .    nnri 
 7  cm ._L  cm  L 

«»^ ™ s'n 2rsin-r-; (75.5) 
Qq'P 1 
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fjuyBy^iV--'^1 'y-'w-g" 

00    . /      )l-',r nrf,T\ 
v . \1  i    /ir.o. . nr.T) . -     - >. ' I • "ty 

( '"' ^>0). 

(75.6) 

In particular, if the plate is loaded by load q'  distributed 
uniformly along the width (V- *, ^A/2,  Fig. 1^6), we obtain for 
parts on the right-hand side of the loaded section 

w -- - 27'A^ ^  -n,-U^"
6 '- V" 6"Vsin-7-.   (75.7) 

' 12  '  2 n 1,3,5,... 

An investigation of this case results in the following.* 

Pig. 1^5 Pig. 1^6 

The maximum deflection is obtained at the point *----0. .y^/2. 
corresponding to the midpoint of the loaded section and is deter- 
mined by the formula (independent of the case of solution consid- 
ered) 

«'_.. — 
0,9J0 

K 2o2 ' 2K D; 
(75.8) 

The  maximum bending moments  for this  point  are 

]/>H-v, 
W„. = 0,0029 y    -     -O. 

v 20; + 2 V ift 

K 2/J, ' 2 K /x 

(75.9) 

If the load is applied not to the whole length b  of the sec- 
tion but only a part of it, of the length bi   (with the center at 
the point x — 0,   jr.A/2), the maximum moments are determined by for- 
mulas which differ from (75.9) only by a numerical coefficient 
after the equality sign. The coefficient exceeds 0.0929 and de- 
pends on the ratio bi/b;   the smaller this ratio, the higher the 
coefficient or the stress concentration. Thus, according to 
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Huber, we obtain with the ratios V*--= Vg. 'A-o.'/^ values of 0.2736, 
0.3370 and 0.3517 for the coefficient. 

Fig. W 

2. Strip loaded by a concentrated force (Pig. 1^7). The con- 
centrated force may be considered as a limiting case of a load 
distributed along an infinitesimal section, with a finite result- 
ant. Denoting by P the magnitude of the force, assuming q'bi  = P 
and carrying out the limiting transition with ii = 0 we obtain 
from (75.6) the deflection formula for the right-hand side of the 
point to which the force is applied: 

w 
00 • v        /    nr.ijü tm,x\ 

=;^ra:-7f=7fWs'n-r-^ '-v »jsm-y-   (75.10) 
'12'   » n^t 

The deflection decreases rapidly as we remove from the point 
of attack of the force. Huber shows that in practice the deflec- 
tion may be considered vanishing even at a finite distance from 
the point of attack of the force, which is given by 

JC-I.SV (75.11) 

where b       Is the reduced width which, according to Huber, is de- 

termined in the following way: 

in Case  1 

^/^YWri-.        (75.12) 
In Case  2 

>„P^/£; (75.13) 

in Case  3 
"np /IFW (75.1^) 

When the force is applied to a point on the axis of the 
ctrlp, ■nr^6/2, the deflection under the fo-ce is equal to* 
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I /,' n2 ■JV 
(75.15) 

An investigation shows that all formulas for a strip with 
supported sides, which is bent by a concentrated force, can be 
transformed such as if they would not contain infinite series. 
This is a consequence of the fact that the second derivatives of 
the deflection w  of the plate considered contain series which can 
be summed up. In the case of real unequal si and S2 (see §73) the 
expressions for the second derivatives of the deflection are 

d'lw ^ -& 0*10 '}'--? —   . 
dxl *l dy* s2-   ?2 ' 5l     -S2 

where 
TtS,^ It P     , ch-J--cosy(T->) 

a ^     --—- -In-  

V-l.T.nT'n 

b' Ch-i~--COS -/(T)-[-)') 

^^ ""  2r.Dl(5j-52
2) ^ 

X 

(75.16) 

(75.17) 

/                                           "»,1!                                                                                                       «»,1! 

e      "    sln^(vl-y)                          e      6    sin ^-(i,- -y) 
nrrfp*              -                               -   1   nrrffr                                      ... 

1-«      6    slny(v|.y)                   l-e     *    slny^-y) 

r.»,*                                                                                     rg.a;                                         » 

rdg-    -    rax              --      -arctg-         r^ -      -   - 
1_,     b    sln-^vl)-)                 l_r   »    slny^-y) 

• (75.18) 

SubFtituting Expressions (75.l6)-(75.18) in Eqs. (6l.l4) we 
obtain the bending moments and torslonal moments. Knowing the ex- 
pressions for the second derivatives of the deflection, we can, 
by means of Integration, also determine the deflections w  them- 
selves; these are rather complicated expressions but do not con- 
tain any series.* 

From the con 
load distributed 
plane strip. The 
In a final form, 
caused by infinit 
way. Let /^(.v, y,  T() 
from the point (0, 
flection at the p 
(;■ Tj), is represen 
subject to the ac 
tain ar?a S}   the 
of surface area, 
deflection due to 

centrated force It Is easy to pass over to a 
over the area of an arbitrary figure 5 on a 
solution is obtained in the form of (75.10) or, 
as obtained by summation over the deflections 
eslmal forces; it is derived In the following 
be the deflection at the point (x,   y)  distant 
Tj); of attack of the concentrated force; the de- 
oint (a;, y)  caused by a force applied to point 
ted by a function /^(.v- -[, y,  TJ). When the plate Is 
tlon of a load pfx,   y)  distributed over a cer- 
load />('• T))^:^I, which falls on the element d\di\, 
may be considered as a concentrated force; the 
this force at point (x,   y)  will be equal to 
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The deflection caused by  the whole  load  is  obtained by  In- 
tegrating  the  preceding expression over the area 5: 

■w = JJPO. *i)5(*--e. y, ^d-dti. (75.19) 

; Certain cases of distributed load were studied In detail by 
Huber; In particular, he studied the case of a load distributed 
uniformly on the area of a rectangle.* 

§76. APPLICATION OF THE THEORY OF BENDING OF AN ORTHOTROPIC STRIP 

With the help of a solution for an orthotroplc strip bent by 
a given normal load, we can obtain a solution of the problem on 
the bending of a rectangular orthotroplc plate w'th two, three or 
four supported sides, under the action of an arbitrary load (In 
§§73-74 we only considered a load which did not vary along the 
supported sides). This solution Is obtained In the following 
way.** As we wish to determine the deflection, moments and cross- 
cut forces In a plate of length a  and width b  where side a  Is 
supported, we consider a fictitious auxiliary plate In the form 
of an Infinite strip of the same width b  with supported sides. By 
means of straight lines perpendicular to the sides we cut the 
strip In a series of rectangular sections of side a  whose area Is 
equal to the plate Investigated; we then load these rectangles by 
loads which are connected with the load acting on the given plate 
In a certain definite manner. This definite distribution of load 
on the sections will at the boundaries of the sections produce the 
same conditions as exist on the sides of the plate investigated; 
we shall show this below. 

The solution of the problem for a strip loaded arbitrarily 
may thus be considered to be solved [it is obtained from the solu- 
tion of the case of a concentrated force, see Eq. (75.19)] and we 
can therefore also obtain the solution for a rectangular plate 
with arbitrary distribution of the load. The problem is reduced 
to a summation of the deflection of the strip as caused by a load 
repeated periodically which is easy to carry out. Let us consider 
three basic cases of fixing of the sides of a rectangular plate 
which is bent by a given load. 

I. Two sides supported, two sides fixed. On the sides b  of 
the plate the following conditions are assumed satisfied: 

w = 0.  -^- = 0. (76.1) 

Considering an auxiliary strip divided into sections corre- 
sponding to the given plate, we shall distribute the load in the 
following way: one of the sections, we shall call it the first. 
Is loaded by q   (equal to the load acting on the plate investi- 
gated); the adjacent second section is loaded by q*  distributed 
symmetrically with respect to the loads q  relative to the line of 
interrsection of the fields; the third one is again loaded by q, 
the fourth by q*and so on as shown in Fig. l48a. Under the action 
of these forces the strip is bent and the cross-sectional line of 
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Fig. 148 

the surface will have the form shown in l^Sb; by virtue of the 
symmetry the second condition of (76.1) will be satisfied at the 
lines of intersection. We then distribute on the lines of inter- 
section the loads q[  and qz  in upward direction, which are repre- 
sented in the form of series with indeterminate coefficients 

/   V   . nr.y ,        V .  . 
9, = 2j "" *" ~b    '       q* '''-'' Id t''t s," 

nr.y 
(76.2) 

The total bending at an arbitrary point of the strip is re- 
presented in the form of a sum of the deflection ui from the 
loads q  and q*  and the deflection «2 from the loads qi   and qi: 

W : Wl -f- Wj (76.3) 

It is required that the condition w = 0 is satisfied on the 
lines of intersection and we determine the coefficients a     and i^ 

and the deflection w  itself. The boundary conditions for the 
first section will here be exactly the same as the conditions on 
the edges of the given plate and the deflection of this section 
will therefore be equal to the deflection in the corresponding 
site of the plate. 

2. All sides supported 
fled on the sides b  are 

In this case the conditions satis- 

w ■■ 0. 
dhi) &i 

^3—0- 
(76.4) 

We load the first field of the auxiliary strip by the loads 
q  acting on the plate investigated, and the second field by -q* 
symmetrically to the first relative to the line of intersection, 
but of opposite direction; the third field is again loaded by q 
and so on (Fig. l^a). The cross-sectional line of the bent sur- 
face will have the form shown in Fig. l49b. It is obvious that 
the first conditions (76.4) are satisfied on the boundaries of 
the fields. It is easy to show that also the second conditions 
will be fulfilled. In fact, to the lines of intersection corre- 
spond the displaced points of the cross section of the bent sur- 
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a) 

Fig. 1^9 

1 
^h^t 

face at which the second derivative of w  with respect to x  is 
vanishing; the derivative O^ijfdy2   vanishes at the same points 
where ü= 0 so that on the Intersecting lines ^

W
...\..I^

:W
.--.Q     Hence 

It Is clear that the first field can be considered as an Isolated 
plate with supported sides. 

1 

3. Three sides supported, one fixed. If one of the sides b 
of the plate Is supported and the other, opposite side is fixed, 
Conditions (76.^) must be satisfied on the former and Conditions 
(76.1) on the latter. In this case the first field of the auxili- 
ary strip Is loaded by the same forces q  as are acting on the 
plate; the second field is loaded by the forces q*  which are sym- 
metrical relative to the line of intersection; the third field is 
loaded by -q  distributed just as q  but directed oppositely; the 
fourth field Is loaded by -q*  symmetrically with respect to the 
line of intersection, the fifth one by q  and so on (Fig. 150a). 
Considering the cross section of the bent surface (Fig. 150b) we 
see that on one of the lines bounding the first field Conditions 
(76.4) are satisfied, on the other line only one of the condi- 
tions, dw/dx — O.     In order to achieve the fulfillment of all condi- 
tions, we distribute on the lines of intersection alternately the 
loads qi   and qi  which we shall represent in the form of series 
(76.2). The total deflection of the strip consists of the deflec- 
tion wi  under the action of the loads ?. .9*. -<7- "7* and the de- 
flection W2  under the action of the loads q[  and qz 

w = ■wl-\- w2. (76.5) 

o) 
r 

Fig. 150 
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We determine the unknown coefficients a    and b     on condltl 
«     n 

that on the lines of intersection of the fields the deflection 
equal to zero. 

In this w 
bendJ .ng of a p 
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checkered orde 
of plates with 
tion of loads 
here to deal w 
only for the c 
on a plate whe 
151) 

ay Huber obtained a solution to t 
late with supported sides under t 
e P and under the action of force 
r, and he also studied a series o 
two, three and four sides suppor 

distributed in various ways. As i 
ith all these cases we 3hal] ^ive 
ase of a concentrated force actac 
re all four sides are resting on 

he problem of th» 
he action of a c< 
s distributed In 
f cases of bendlj 
ted, under the ai 
t is not possible 
Huber1s solution 

king at point (';, T)) 
a support (Fig. 

The form of the expression obtained for the deflection de- 
pends on which of the three cases, 1 2 or 3, is considered. In 
Case 1 we obtain:* 

for 0<^<$ 

w ----- wtx, a - f,  y) .-_- ~~~l L-- x 

xi- 
nr.ri 

S, Sll 

«3 

/IM, (a--$)      nnsj* 
b     ' b 

h 

0 0 

(76.6) 

sh nnSia 
sin nr.y 

for   i<x^a 

w ---- w^a —x, I, y). 

In the case of equal and complex roots of the characteristic 
equation (73.11) the formulas for w  are obtained easily from Eqs. 

(76.6) by means of a limiting transi- 
tion or a separation of the real part 
of the complex expression. 

Using the solution for an ortho- 
tropic strip bent by a concentrated 
force, W. Nowacki considered a series 
of other problems on the bending of a 
rectangular orthotroplc plate and 
also a semlstrip, infinite In one di- 
rection, and a strip with transverse 
incision.** 

Fig. 151 

Solutions of problems on the 
bending of an orthctropic semlstrip with supported sides by a 
concentrated force or moment were obtained by Z. Cywlnsky and J. 
Mossakowski*** who also used the solution for a strip bent by a 
force (in a finite form). 
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Let us here also recall the papers by Z. Kaczkowskl who ob- 
tained solutions to a series of particular problems on the bend- 
ing of anisotropic plates In the form of a parallelogram, rec- 
tangle and equilateral triangle, lying on an elastic support and 
deformed by a normal load and forces acting in the median sur- 
faces. * 

§77. THE BENDING OF A RECTANGULAR ORTHOTROPIC PLATE REINFORCED BY 
PARALLEL STIFFENING RIBS 

Let us consider a rectangular orthotroplc plate whose princi- 
pal directions are parallel to Its sides, which is reinforced by 
elastic rods (stiffening ribs) parallel to one side. We suppose 
the ribs to be connected rigidly with the plate on their whole 
length and the sides of the plate on which the ends of the ribs 
are fixed to be supported while the two other sides are fixed ar- 
bitrarily or are free; the ends of the ribs are also resting on 
a support and cannot be turned. The principal axes of Inertia of 
the rib cross sections are assumed parallel and perpendicular to 
the mid-plane. We consider the bending of such a plate by a nor- 
mal load distributed both on the sections between the ribs and on 
the ribs themselves. 

The solution of an analogous problem for an Isotropie plate 
with ribs was obtained by A.S. Lokshin** (for the case of equal 
ribs arranged at equal spacings) and by A.P. Pllippov who used 
another method.*** Some static and dynamic problems for Isotropie 
plates with ribs were dealt with in the papers by W. Nowacki.**** 

Let us give the fundamental results for an orthotroplc 
plate.***** We place the origin of coordinates in one of the cor- 
ners of the plate, directing the x-axls along the side parallel 
to the ribs and the y-ax±s  along the side which is perpendicular 
to the ribs (Pig. 152). Let us Introduce the following denota- 
tions : 

a) for quantities referring to the ribs: N  is the number of 
ribs, ru the distance between the front edge of the plate and rib 

number fe; EJ*   is the rigidity of bending in planes parallel to xy; 

C*   is the rigidity of torsion; W,(x)   and Q*(x)   are the deflec- 

tions and the angles of twist; Q,   are the loads acting on a rib 

(per unit length); Af, and N,   are the bending moments and the 

crosscut forces in the ribs: 

(K-^I, 2, ;... A/); 
(77.1) 

b) for the quantities referring to the plate: a is the 
length of the side parallel to the'ribs; b  is the length of the 
side perpendicular to the ribs; D,. D2. Dk     are the rigidities of 
bending and torsion for the principal directions ;Oa'---£V'2-f-20^ V2 
is Poisson's coefficients; w^Ca:, y)  are the deflections of the 

sections between neighboring ribs and between th3 outer sides a 
and between the outer sides a  and the outermost ribs, 
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AfxA> Alvt. //t, A/j-j. N^     are i-^g bending moments, the torslonal moment 
and the crosscut forces for these sections; Ih^j   H)   Is the nor- 

mal load (per unit area) distributed on the sections of the plate 
(«—I. 2 N.  A/-f-l). 

The bending and torslonal moments and the crosscut forces 
for each section of the plate are linked with the deflection by 
Eqs. (6l.l^) and (61.15) and the deflections satisfy the equa- 
tions 

D ~4wk- 

(A- 1. 2 AH I) 
(77.2) 

Pig. 152 

The conditions on the sides z/ = 0 and y  = b  depend on the 
way of fixing and on the sides x = 0 and x = a  have the form 

wk--:0.   AU---0- (77.3) 

Since, according to agreement, the ribbing cannot be separ- 
ated from the plate, the deflections and angles of twist of the 
ribs are expressed in terms of the deflections of the plate sec- 
tions in the following way: 

\Vkix)--.Wk{X.    T)A.)   -WA(1(.V, T]k). I 
(77.4) 

where at the ends of the ribs, i.e., at the points * — 0, .y~^ and 

UV-0, 0^=0. Mk-~--0. (77.5) 

Moreover, on the lines of contact of adjacent plate sections 
y—Vit  the following equilibrium conditions must be satisfied 

(the width of the ribs is neglected) 
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f 

y 
I; 

M -MC   dyWk 

M 1    ""*i-l »/ ""k r • ,   d'w/i dHk„                    dllk 

(Ä-1.  2 A/). 

(77.6) 

I 
The problem Is reduced to determining the functions w,(x,   y) 

satisfying Eqs. (77.2) and Conditions (77.3), (77.^), (77.6) and 
also the conditions on the sides y  =   0  and y  = b.   If one of these 
sides rests on a support, on it v>k---- Muk: -0;   but if It Is fixed 
^* = ^ = 0(ft==l or  k  =  N +  1). 

tain 
Expanding the loads q, and Q,   In Fourier sine series we ob- 

(77.7) 

9*-= S ^„.(^sit.pJC. 
m-l 

Qk=  2 Qk,n unfix 
m->l 

We shall seek solutions to Eqs. (77.2) In the form of series 

CO 

yA--= ^A-mOOsinßjc. (77.8) Wt 

These expressions satisfy Conditions (77.2) on the supported 
sides. 

For functions f,  we obtain the differential equations J Km 

DAl--*mL-\mll.l>-<!nJy) (77.9) 

and the conditions on the lines j^--rlA. (A: --1, 2 N): 

f        = /   /■'   -■•- ^' ■'An, m   ^A...'   •'AM. ui ""•'Am' 

ckp /,".    • - /"  -. = = -^C /' 
•'All. ill   -A.,!    £)a 'Ai 

<■/"      /'■' __ VAm _ 
•'All. m   •'AM  ' "if. ' P'A-ir 

(77.10) 

Moreover, the functions f,  and f,7,n   must satisfy the con- 

dltlons on the sides y = 0 and y = b.   When these slues are sup- 
ported, on them /, =^/" r= n- on the rigidly fixed sides we have 
^        ' •'Am   •'Am     " o     ^ 

fkin-fL-0{k^l        or  k =  N +  1). 

It  is not difficult to notice the analogy between this prob- 
lem and the problem on the bending of an arbitrary beam. With m 
given and constant, equal to an arbitrary integer, the functions 
/,, (y)  may be considered as the deflections of sections of a beam 

of length b  with a rigidity equal to Dz-   Equations (77.9) show 
that this beam lies on a massive elastic support with the elastic 
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coefficients öiß1* and is bent by a normal distributed load a    and 

extended by an axial force equal to 7': '-'
0

J.
V

- Conditions (77.10) 
show that apart from the distributed load, the beam is subject to 
the action of concentrated moments M1     and concentrated forces P, 

km km 
applied to the points y-'-'ik    (Pig. 153a). The moments are propor- 
tional to the angles of slope of the bent axis /*/ , the forces are 

linear functions of the deflections at the points of their applica- 
tion, i.e., 

M 

(77.11) 

'*s~&jyjy 

'  1 6; -l/-^ i 
i 

Ü. 6 ........ ^-rl 

Pig. 153 

This may be interpreted in the following way: at the points 
^ = rK there are elastically rotating and at the same time elas- 

tically pliable supports at which the rigidities in turning and 
setting are equal to C, 32 and EJj3k,  respectively. Finally the 

functions fi.m(y)  represent the deflections of beam sections with 

N  intermediate supports which are elastically pivoted and elas- 
tically pliable, and this beam is assumed loaded by given dis- 
tributed loads q    and given concentrated forces Q,     applied to 

^m Km 
the supports (Pig. 153b). The ends of the beam are fixed in agree- 
ment with the fixings of the plate's sides y =  0  and y = b. 

Having established this analogy we can use the methods of 
calculating multiple-span beams in order to determine the unknown 
functions f. . Let us consider one of these methods. 

Km 

We introduce In the consideration functions of the influence 
of the force and moment for the beam on th' elastic support, by 
the tensile force /•   q, y)   and a(T]. y)- 

-   'I?     - 

y tei.tteJä.SM.m-****'*-^-- 
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The function »(^.v) is the deflection of the beam at point y 
caused by a concentrated force equal to unity and applied to point 
n. Analogously, ^{T\. y)   is the deflection of this beam caused by a 
concentrated unit moment applied to point n (Fig. 154). Knowing 
these functions we can write an expression for the deflection of 
the beam at an arbitrary point in the form 

(77.12) 

;■ 

i tz I i a) 
I 
I 

rU^Z22!x] 
-«- 1 JKTrmrJp^^ 

tz 

■y H       | 

Fig.   15^ 

F    Is  here  a particular  solution of the  nonhomogeneous  equation 

m of the type (77.9)  depending on the distribution of the load q 

(the values taken for the sections of the beam are equal to 

The coefficients P,  and M,     are determined from Conditions 

(77.11) which yield a system of 2N  equations corresponding to the 
number of unknowns. Introducing the abbreviations 

s' „r^(Vi. y)] A' _ pi(o„ y) | ,J - [ "Ty—Jtf.^ • ^ -  [—d-y~~\y..^ 

we can write this system in the following way 

N N       . 

A' 

V 
1 = 1 

,V 

( = 1 

(Ä:-=l, 2 A/). 

(77.13) 

(77.14) 

The symbol 6 denotes here a quantity vanishing If i  ? m  and 
equal to unity if i  = m. 
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Having determined the unknown coefficients we obtain the 
following expressions for the deflections of plate and ribs: 

«'- 2 (21/VKli. 304 AUMv J')l f/7,,, Wising;     (77.15) 
m = I «=-. I 
oo   N 

Wk -2(2 (^„/'.A I AUA*) - f ^m (^)] sin PA: (77.16) 
(Ä= 1, 2 A^). 

When we neglect the rigidities of torsion of the ribbing, as- 
suming C, = 0, all equations and expressions become simpler. All 

moments M-,     will be vanishing and for the forces P,  a system of km & km •* 
N  equations is obtained. 

This method can be used successfully in all those cases 
where the number of .lbs is small (not more than three). With a 
great number of ribs one must have recourse to other methods of 
calculation of multiple-span beams, since Eqs. (77.14) become very 
complicated. 

§78. FUNCTIONS OF INFLUENCE FOR AN 0RTH0TR0PIC PLATE WITH SUP- 
PORTED SIDES 

The Influence functions Introduced in the preceding section 
are represented in the form 

3(1), y) 
4^ /Ö7ü3 

- gi-n-   y)-       A (T). y) : = —-.-r^-rx h (T], y), W V'ofi-, (78.1) 

where .7(^. y)   and //(TJ, y)   are nondimenslonal functions 

In many cases it is expedient to seek the function gi^. y)   in 
the form of two analytical expressions, one of them describes the 
form of the curved axis on the left-hand side of the point of at- 
tack of the force and the other that on the right-hand side: 

#(v y) 
gAy) w"h o <>-<*,, 
g2(y)  w.h T).<:_vO 

Both functions satisfy the equation 

Dig"~-,2nw~\-nj<(r--.o 

and the conditions 

>C2(
T.): ■■Sl(

Ti)' 

(78.2) 

(78.3) 

^(^)-=j?;(^   ] 

.<^)-- s';^   g'ii-n)    g';'(-n) •i?3 /' ih 
IK 

) (78.4) 

The first three conditions express the continuity of the 
beam deflections, their first derivatives and the bending moments 
while the fourth condition expresses the fact that in the transi- 
tion through the point of attack of the concentrated force the 
crosscut force undergoes a discontinuity, i.e., a jump, equal to 
unity: 
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D/VCr). ,)-1-0)      D25"'(-ri. ^-O):.. 1. (78.5) 

In addition to this, the function gi  must satisfy the condi- 
tions at the end of y = 0 and gz   the conditions at the end of y  = 
= b  corresponding to the fixing of the plate's sides y = 0  and 
y = b. 

The function h  can also be represented In terms of various 
analytical expressions on either side of the point of attack of 
the moment. Considering the unit moment as the limiting case of 
equal and opposite forces Q  attacking at the points n and''"n-M"'! 
and satisfying the condition Qd-t\~l,   it Is easy to recognize the 
following simple relation linking the functions 6 and A: 

Hence It follows that 

A (7). y) 

ACn. y)- V . dg (n). y) 

(78.6) 

(78.7) 

The  form of the  functions  g ana  h depends  on the  roots  of 
the equation 

D2//< - 2D3M2 -\- D, = 0. (78.8) 

These roots are connected with the complex parameters of 
bending by means of the simple relations "i^ — 'iv "2=—-'i^;  they 
are the reciprocals of the quantities sij 82 introduced In §73. 
Here too, three types of roots may be encountered. 

Case I. The roots of Eq. (78.8) are real and unequal: 

rtüp it//2 («, >01 «2>0). 

• Case 2. The roots are real and equal: 

±: u  (-/ > 0). 

Case   3.   The  roots  are  complex: 

u -Jz vl,    — a ztz vl   (H > 0. x; > 0). 

For a plate with four supported sides which corresponds to 
a beam supported at the ends, the function g may be represented 
In the form of a series 

sin - .- sin - - 

n" 1  l- 

Here d  = b/a. 

For an Isotropie plate we obtain the series 
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nr.n nr.y 
sin        ' sin • .— 

b b 
|(///</)a-|-/i-']2 

(78.10) 

For a supported plate this function can also be determined 
in a finite form, when it is represented by the two analytical 
expressions gi   and g^  which will not be given here.* 

The values of the functions g and h and their derivatives 
with respect to y3 g' and h'} with ^ = 7), and y^r\j will be ab- 
breviated by gij, ihj'S'ii   and h'. .. 

In the following we shall tabulate the numerical values of 
the functions siri'}')   for the plate considered in §6? with four 
supported sides, which is produced of ar Isotropie material and 
of veneer. In Table 15 we have compiled the values of g  for an 
Isotropie plate. Table 16 gives the values of g  for a veneer- 
plate in which the fibers of the sheet are perpendicular to side 
b,   i.e., D, > D2; in Table 17 the same is given for a plate v/hose 
sheet fibers are parallel to side a  and, therefore, D, < D2. 

The values of the functions are calculated for the variables 
n and y  taken at intervals equal to b/Q.   It is taken into account 
that the functions g  for a supported plate are symmetrical rela- 
tive to its variables so that gji:'~Sij-     Moreover, in this case the 
relation will hold good 

^in - " ^7,8-«'   S211 — Ss, 8-ii" 61 n    ~ 61, 8 - n • (78.11) 
for example. 

/ ft      36\ fbb\ 

The functions g  depend not only on n and y  but also on the 
product md  which represents a parameter. In our tables for each 
pair of values of n and y  six values of g  are given, which corre- 
sponds toind-- =0,5;   1; 1.5; 2; 2,5  and 3- T)ie numerical values of g 
are given in throe to four decimal places. 

Let us also give the form of the functions g  for a plate in 
the form of an infinite strip of width a  with supported sides, 
which corresponds to a beam of infinite length which extends on 
either side of a point taken as the origin of coordinates. 

Case   I 

gU y)-{ 

'l~"'2 

for   - - 00 < _y < T); 

(78.12) 
2 2 

(or     7) ^ _y < CO. 
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TABLE 15 

Functions of g  for a Supported Plate. Isotrop- 
ie Material 

V y=-.i 2 3 4 5 6 7 
I 

md\ 
6/8 6/4 36/8 6/2 56/8 

0,0618 

36/4 76/8 

/=-= I 0.5 0.0137 o.or.91 0,0783 0,0719 0,0119 0.0233 
1 O.ISO O.l'öO 0,258 0,223 0,172 0,115 0,0576 
1.5 0.328 0.113 0,318 0,259 0,171 0,105 0,0486 

A/S 2 0.-!6t 0,509 0,355 0,220 0.12,\ 0.0651 0.0272 
2.5 0.531 0,557 0,319 0.165 0,0882 0,0339 , 0,0121 
3 0.677 0.570 0,266 0.115 

0.141 

0.0151 0,0157 0.0011 

2 0.5 0.122 0,144 0.120 0,0861 
1 0.'I3S 0,480 0,430 0,310 0,230 
1.5 0,676 0,661 0,522 0,367 0,222 

6/1 2 ^21 — ^12 0,818 0,715 0,479 0,295 0,153 g27 - gm 
2.5 0.899 0,697 0.397 0.215 0,0903 
3 0,943 0,650 0.312 0,157 0.0197 

3 0.5 
I 
1.5 

0,185 
0,610 
0,850 

0.189 
0,595 
0,767 

0,165 
0,488 
0.570 

" 

36/8 2 
2.5 
3 

gn ~ ga #\3 ~ ^21 0,914 
0.977 
0,988 

0,780 
0,731 
0,665 

0,507 
0,109 
0,316 

fi'.io - gn gsi — gli 

4 0.5 
1 
1.5 
2 

0,208 
0,667 
0,898 
0,971 

/ 

6/2 eii = gi\ git ~ gn ^J1-^31 gK = ^31 gK = gU g\i = g\i 
2.5 0,990 
3 0,992 

Case 2 

i  1 JLg?" (i/-',)(l —$u{y-~i\)\ 

g^ y)^\ \ 
„   — oo < ^ < i); 

.e?"(v-i/)|l }.p«(_y—T))| 

Uor  •n<>'<00. 

(78.13) 

Case 3 

gi-n. y) = 

g?»(y-'.) flcos^x;(y — fi) ----- sin f/y (y ~ TJ)] 

for  — oo <Cy-^i\; 

e?u^y) ficos^Cy —TO-l'^siii^»^— Tj)] 

, ror T}<#y<oo. 

(78.14) 

For an infinite plate 

P g'i-n.y) r^-Hri.y). (78.15) 

which is easy to prove by differentiating Eqs. (78.12)-(78.14) 
with respect to y  and T\. 
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TABLE 16 

Functions of g  for a Supported Plate. Veneer. 
Z?i > Z?2 

V y 'i 2 3 1 5 G 7 
I 

md\ 
6/S 6/1 

0,171 

36/8 

0,182 

1 

  

0,166 

56/? 

0,133 

36/1 76/8 

/-I 0.5 ■ 0,113 0.002 0.016 
I 0.307 0,350 0.25'.) 0.156 0,080 0,035 0,012 
1.5 0.165 0,386 0.178 0.053 0,00V -■0.001 - ■ 0,003 

6/8 2 0.565 0,337 0,0S7 0,005 -0,005 -0.003 ■ -0,00! 
2.5 0.617 0,265 0,0?'')1) -0,006 - ■ 0,003 0.000 0,000 
3 0,610 0,187 0.031 - 0,006 

0.315 

0,000 0.000 

0.179 

0.000 

2 0.5 0,295 0.337 0,258 
1 0,566 0,506 0.33'J 0,195 0.092 
1,5 0.613 0.111 0,186 0.0051 0,001 

6/1 2 Biv' 'Sn 0,651 0,312 0,081 0,032 - 0,006 g-n ~ gM\ 
2.5 0.616 0,251 0,027 0,013 - 0.002 
3 0.613 0,183 0,003 0.061 0,000 

3 0,5 0.428 0.128 0.362 
1 0.6 IG 0,511 0,351 
1.5 0,650 0,137 0,182 

36/8 2 
2,5 

^.n^Sn £.n ~£JI 0,616 
0,6 H 

0.339 
0,251 

0,080 
0,028 

/r.'.6 =-= /r^ö Sv ~ g]i 

3 0,611 0.182 0,002 

4 0,5 
1 
1,5 

0.475 
0.656 
0.617 

6/2 2 
2.5 
3 

Ä'n^ii ^43=^1 itr-Szi 0,615 
0,6 H 
0.611 

Sx = Su Sa = E-u gil = gu 
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In the following we give tables of the numerical values of 
the functions g,   h  and h'/fr  for Isotropie and veneer strips. 
Table 18 gives the values of the functions for an Isotropie plate 
while Table 19 gives them for two cases of venner plates. Every- 
where m - 1. 

TABLE 17 

Functions of g  for a Supported Plate. Veneer. 
Di   <  Dz 

■ 

r 

; 

V y~i 2 3 A 5 6 7 

0.5 

6/3 

0,0170 

6/4 36/8 6/2 56/8 36/1 76/8 

Ü,02.S0 0,0326 0,0322 0,0276 0,0201 0,0106 
1 0,116 0,188 0,215 0.209 0.177 0.128 0,067 
1.5 0,29G O.IGI 0,507 0.171 0,339 0.271 0.111 

6/8 2 0,000 0,730 0,718 0.652 0„r)01 0.338 0.168 
2,5 0.098 0,913 0,877 0,691 0,181 0,298 0.110 
3 0.S92 1.106 0,910 0,637 0,383 0,209   . 0.038 

2 0.5 0.0196 o,oGr: n,0G03 0,0523 0.0332 
1 0,331 0,396 0,392 0,337 0.213 
1.5 0,803 0,935 0.897 0.719 0,531 

bl-\ 2 &t = £12 1,218 i ,383 1,252 0,995 0,673 gn = Sit 
2.5 1,575 ) .631 1.361 0.996 0,625 
3 1,811 1,712 1.303 0.856 0,177 

3 0.5 
1 
1.5 

0,0772 
0.503 
1.193 

0.0802 
0,521 
1.209 

0,0708 
0,170 
1.037 

36/8 2 
2.5 
3 

£ai = £n £)2 —    2.1 1.752 
2.060 
2,200 

1.720 
1,932 
1.951 

1,121 
1,502 

' 1,395 

£w = &!5 Sn " S\'o 

4 0.5 
1 
1.5 

• 
0.0878 
0.575 
1.331 

bl'2 2 
2.5 
3 

/?41 ~ Eu gfi = Sv gn — i3\ 1,920 
2.200 
2.288 

£l5 = #11 £io = f2< git = gu 

The values of the functions were calculated for an arbitrary 
point of attack of a unit force or moment n for the points of the 

beam-y^T-H'- 
quantities 5, 

!)• i.e the tables 
are 

contain the where '" ^ ?' "■•>  !3! 
quttiiuj-uj-co mv f'n    and /i'uß.   Other values of g^j  are obtained from 
ddca tabulated on the basis of the following relations 

fill = /?22: 

Rl2 =•■ /?23 

= Sa- 

^ Hi. Hi' (78.16) 

Sln~- S2,n\i — • • • — Si, H+l- !•• 

The same relations also exist  for the  functions  h and h'/$. 
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TABLE 18 

The Functions g,   h,   h'/B   for an Infinite 
Strip. Isotropie Material 

-  ,   __.. ,  

h v/p 

0 — 1 

0,358 - 0,0978 

-   0,327 0.119 

- 0,223 0,129 

•   0,136 0,0925 

- 0I077^ 0,0577 

-- 0,0123 0,0331 

- - 0,0225 0,018« 

-0,0117 0,0099 

— 0,0000 0.0052 

-0,0031 0,0027 

-0,0015 0,0011 

-0,0008 0,0007 

Figure 155 shows the graphs of the functions g,   hs   h'/&   for 
an Isotropie strip. In Fig. 156 these functions are shown for a 
veneer strip in which the sheet fibers are perpendicular to the 
sides (Di > Dz)  and in Fig. 157 the analogous graphs are shown 
for the case where the fibers are parallel to the sides (Z?i <  Di). 
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TABLE  19 

The Functions g,   h,   h'/$  for an Infinite  Strip.  Veneer 

y 
Di>Oa DiKD,                    1 

« h A'/P g h /»7?    1 

i 0.615 0 -2,211 2,252 0 - 0,618 

k-r 0.338 — 0,166 0,207 2,091 - 0,355 - 0.287 

1          » 
0,0805 -0,189 0,305 1,751 -0.188 -0,0707 

N+4 0.0030 — 0,0357 0,100 1,361 - 0.193 0,0155 

1 + « -0.0058 0,0021 0,0139 0,999 -0.133 0,0977 

.5a N+T - 0,0026 0,0039 - 0,0032 0,092 - 0.319 0,111 

L3a 
N + -2- -0,0006 0,001« - 0.0025 0.452 — 0.261 0,101 

. 7a 
0,0000 0,0002 - 0,0007 0.276 -0,183 0,0876 

N + 2a 0.0000 0.0000 - 0,0001 0.151 -0,123 0,0683 

L9" 0.0000 0.0000 0,0000 0.0737 — 0.0304 0.0502 

■ 5a 1+y 0,0000 0.0000 0,0000 0,0216 — 0.0172 0.0318 

h+ 4 0,0000 0.0000 0.0000 - - 0,0030 - 0,0218 0.0228 

1 1-1-3a 0.0000 0,0000 0.0000 -0,0163 — 0,0105 0,0110  | 
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§79. THE BENDING OF A PLATE WITH ONE RIB 

By way of example we consider a rectangular orthotroplc 
plate which Is reinforced by a single rib directed along the axis 
of symmetry, y  = h/2.  The sides of the plate perpendicular to the 
rib are assumed supported, the two other sides fixed arbitrarily 
but likewise (for example, both sides supported or both sides free 
and the like ). 

Let us assume that the load Q  acting on the rib Is arbitrary 
and the loads q\i   qz  acting on the plate are distributed symme- 
trically relative to the rib, i.e., qx{x, y)^q.i{x, b   -y). 

In the case given /V---I. TJ ^V-- The system of Eqs. (77.15) for 
the two unknowns .¥,  and P,  takes the form 

Im 1m 

P.,,.0 llll'll 

EJU '    ' '" \2j ' 

(79.1) 

where  Q     is  th< tn 
ß   = mir/a. 

By virtue  of the  symmetry 

4 ^„„(^i--^:.)- K,. (■•-). 

Fourier series expansion coefficient  of load $, 

K.(Y) = Q.    Sn-An-O. (79.2) 

Consequently, 

Mlm*=0.   Pm=-~ l+EJWu (79.3) 

and we obtain an expression for the deflection of the plate 

Qllt--EJVFtll(jj ^ 

-S 
m-l 

1 -f- EJtSi {'2' y)+Fmiy) sin'iix. (79.4) 

In order to obtain a final expression for the deflection, 
the given loads «71 and qz  must be expanded in Fourier series 
(77.7) and we must find a particular solution to Eq. (77.9). 

Let us consider the case of an Infinite strip with supported 
sides reinforced by a single rib which receives the whole exter- 
nal load of (3 (<7i ^ ft ~ 0). We let the a;-axls coincide with the axis 
of the rib and the y-axis  with the side of the strip (Fig. 158) . 
The load Q  is assumed to be arbitrary function for y   (which, of 
course, must satisfy the Dirlchlet conditions as, otherwise, it 
could not be expanded in a Fourier series). 

In the case of real and unequal roots wi, uz  the function g-, 
which is proportional to the Influence function 6, has the form 
of (78.12) and 
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5   ^5(0, 0)«—TJ .     Fh -0. (79-5) 

The deflection of the  strip In front  of the rib.  I.e.,  with 
co<y<Q Is determined from the formula 

w I    v    QuA"^"''J - "■/"•")  \        yji'A.l       _.-•!.—'— .-sill^AT. (7Q    f:\ 

The  deflection of the  strip behind  the  rib   (0<.v<cu)   Is  ob- 
tained when In this  expression y  is replaced by -y.  Prom  (79.6), 
on the assumption that  z/  =  0, we obtain an expression for the de- 
flection of the rib 

L FJ-m J 

i!z^  sin  a 
(79.7) 

The expression for the deflection of a beam with supported 
ends, which possesses the length a  and the rigidity EJ  and which 
is not fastened with a strip, I.e., It bridges over an empty 
space, loaded by 6, can be represented In the form of a Fourier 
series 

W EJr.* IrA  HI« 
Sill 

rnnx 
(79.8) 

A formula for the deflection of such a beam, which lies on a 
massive elastic support and which is bent by the load Q, can be 
obtained on the supposition that the support reaction is propor- 
tional to the deflection, and has the form 

W -__fi-V §.'5 sin 
- EH* ZA    . /,  .     Aa«    \ ^ 

mux 
a (79.9) 

k is here the elastic coefficient of the  support  (bed coef- 
ficient). 

Comparing Eqs.   (79.7)  and  (79.9) we  see that the strip with 
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which the beam Is reinforced (the rib) need not be considered as 
an elastic base according to Winkler; it is obvious that the ser- 
ies entering these formulas are different in scructure. If the 
load Q  is distributed uniformly over the length of the rib, the 
coefficients of the Fourier series are equal to 

fur     III  ■   ■   \,    3,   5, fl<? 
O    ■.:;{""1 

\ 0        for  in ^■■2, '1, 6. . 
(79.10) 

The terms of the series (79-7) and (79.8) will decrease fast 
enough as m may only assume odd values. Retaining in these series 
only the first terms we obtain an approximate formula for the es- 
timation of the deflection of the beam (rib) fastened by an elas- 
tic strip: 

(79.11) 

We  obtain formulas  for the other two cases of roots of Eq. 
(78.8)  from the above expressions when we assume  «, — w2^«  or,  in 
the case of complex roots, w, - -«-f-^ "2 — «— v/.   In particular,  for 
an Isotropie  strip with Young's modulus E' and Polsson's coeffici- 
ent  S(ul — u2=: \)    we obtain the  following approximate  formula: 

Wix)^W{x)- 
l+a* 

3r.J   £(:-•/*) (79.12) 

§80. THE BENDING OF HOMOGENEOUS ELLIPTIC AND CIRCULAR PLATES 
FIXED ON THEIR EDGES 

Let us consider an elliptic homogeneous plate whose edge is 
. ixed throughout its length, which is bent by a normal load q 
distributed uniformly over the whole surface area. This case of 
bending problem may be solved by elementary means in an exact way 
and We shall derive the solution. In the general case we shall 
assume the plate to be nonorthotropic. 

Pig. 159 

the x  and y  axes coincide with the principal axes of 
(Pig. 159) and denote by a  and b  the principal semi- 

, c = a/b.   In the general case of the nonorthotropic 
plate the deflection equation will read 

We let 
the ellipse 
axes of it. 
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Ö'W d'u» >Vu) D>^+^£^-wo.-^om)^+ 
i   An     äiw     .   „   d{w (80.1) 

dx dy* ldyi 

On the right-hand side we have a constant quantity. The 
problem Is reduced to the determination of a solution to Eq. 
(80.1) which satisfies the boundary conditions 

w 
dw      dw dui o. ^^(«. .H-^cos(;t.yh.o 
dn" dx~^ '  '   0y (80.2) 

(n Is the direction of the Inner normal to the contour of the 
plate). It Is easy to show that this solution Is a polynomial of 
fourth degree 

where 
D' = i 130U.-|- 2 (D12 -[■■ 2Doa) c

2 -|- 3D.J2cM. 

(80.3) 

(80.^) 

Knowing the deflection, we obtain from Eqs. (6l.9) the mo- 
ments which, obviously, will be polynomials of degree two with 
respect to a: and i/, and from Lqs. (61.10) we obtain the crosscut 
forces which will be linear functions of x  and y.   It Is also easy 
to find the points at which the stresses are highest. The deflec- 
tion has Its maximum value In the center 

 qa* 
'wmixi — 6127' ' (80.5) 

Let us  consider In greater detail the  solution for a plate 
of orthotroplc material In which the principal directions  of elas- 
ticity are parallel to the directions  of the principal axes  of the 
ellipse.   In this  case 

Oii = Oi.    D22 = D2>    D12-f-2DÜ3-= Dj.    D10--D26-0. 
l (80.6) D' = j(3D1 + 2Dac2-l-3D2c<).        J 

The moments and crosscut forces are determined from the formulas 

M, ■^-[(S + V^Vd + Sv^-l-V2]. 

" *=- w [^+c2) ä'+ ^ -»-3c2) § -:v' -c2]' 
n*U—  16D'   abX'V' 

Ns~- azi UD^S-l-v2)-1-20^1^-. 

Nu £;lß2(-v} 3^)-|-2DAcl|. 

(80.7) 

(80.8) 

The bending moment reaches Its maximum values at the ends of 
the major axis or at the ends of the minor axis. 

If 
D, > D2c2. 
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we have 

'"mm — I "'a l-E -a jr • rj;, 
(80.9) 

but if 

we have 

D, < Dj^. 

(80.10) 

The deflection of a plate of Isotropie material with a rl- 
gldlty D — jg(1 —   -   is obtained by means of a well-known formula 

obtained from (80.3):* 

«»—- i, 
^a» 1 
8D 3-|-2c3| 3c<\   aJ  6V (80.11) 

The solution for the homogeneous circular plate of radius a 
Is a particular case of the solutions given above with b = a and 
o = 1. Thus, for example. In the case of an orthotroplc plate 
where the axes x  and j/ coincide with the principal axes of elas- 
ticity, 

D' = ^(30,+ 203 + 30,); 

//. «1/ 1^*. 4 
160'' 9' 

= -8D'(3D> + D3)j:' ] 

(80.12) 

(80.13) 

(80.14) 

(80.15) 

Note that the solutions given can be generalized to the case 
of a more complex load distributed according to the law of an In- 
tegral algebraic function 

u   N 

(80.16) 

In this case the expression for the deflection must be sought 
In the form of 

M     N 

»-(•--.l-^X» '■"'"■ (80.17) 
III - I II ■ I 

This function satisfies the boundary conditions (80.2) for 

- 337 - 

— -     ■ -  -    ■   ■  <•-  — ■ ■ -     "       ' - -■ -1- 



BPiippBiiPiiiipippfPia^^ m■ ■" iww"' ^ •l|"'" WWWP ""'Ul mwwwiiwwiiipw 
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arbitrary values of the coefficients A      and the coefficients are 
mn \-:- 

all determined on the basis of Eq. (80.1). 

Let, for example, an elliptic orthotroplc plate be subject 
to the action of a normal load given In the form of a linear func- 
tion of the variables x and y: 

g^tfoohtfio J-l-7oiy- (80.18) 

where 9oo> 710- 7oi    are  constant  coefficients.   After all  transforma- 
tions we  obtain the  following expression for the  deflection 

6-\\ a3      bi)   [ü'   ' 
Rn r «n u1 (80.19) 

•" 3 (5^! -I- 2D3ca -|- /J,/«) 'a   r 3 (Dl | 70^ -\- 5iJ./')' b \ ' 

The problem of the bending of an elliptic plate whose edge 
rests on a support is more complicated. At present we only know 
an approximate solution for a circular orthotroplc plate with 
given elastic constants bent uniformly by a distributed load; 
thin solution was obtained by Okubo.* 

§81. THE BENDING OF A CIRCULAR CURVILINEAR-ANISOTROPIC PLATE UN- 
DER SYMMETRIC LOAD 

Let us consider a circular plate of radius a  and constant 
thickness /i of a material which is orthotroplc but possesses cy- 
lindrical anisctropy. It is supposed that the axis of anisotropy 
passes through the center and is perpendicular to the plane of 
the plate and that planes parallel to the mid-plane and also 
planes which pass through the axis of anisotropy are planes of 
elastic symmetry (in other words, in each point there are three 
principal directions of elasticity: the normal, radial and tangen- 
tial directions). The plate, whose edge is fixed, supported or 
free'on its whole extersion, is subjected to the action of a nor- 
mal load distributed s^ imetrically relative to the axis of aniso- 
tropy (axis of rotation); this load causes a bending with respect 
to the surface of revolution. We have to determine the deflection, 
the moments and all other quantities necessary for a strength cal- 
culation. 

Let the point of intersection of the axis of anisotropy and 
the mid-plane. I.e., the pole of anisotropy, coincide with the 
origin and the axis of anisotropy with the s-axis of the cylin- 
drical system of coordinates; the arbitrary radial direction x  is 
taken in the direction of the polar axis from which the angle 9 
is measured (Fig. 160). In this system of coordinates the equa- 
tions of the generalized Hooke's law will have the form (70.1) 
and the equations of the theory of bending of plates will have the 
form (70.3)-(70.7) • The load q is a function of r and the deflec- 
tion w, which determines the surface of revolution, is also a 
function of r alone. On the basis of this Eqs. (70,4)-(70.5) and 
Eq. (70.7) can be rewritten as follows: 
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//rj =- 0.    W8 = - 0; 

w'v-f- '"-I  ^(-.  i^-l-^')^^ 

(81.1) 

(81.2) 

With k =  \  Eq. (81.2) coincides with the deflection equation 
of the Isotropie plate with the rigidity Z? .* A general expres- 

sion for the deflection, i.e., a general Integral of Eq. (61.2), 
for k i-  \  has the form 

■w = /I -1- ö/-2 -|- C/"1 > *-]- Zir1 "* + w0(/-). 
(81.3) 

where uo(r) is a particular solution to Eq. (81.2) which depends 
on the law according to which the load q(v)   is distributed in the 
radial direction; A,   B,   C}   E  are arbi :rary constants which are 
determined from the boundary conditions on the edge of the plate 
and from the conditions in the center. The boundary conditions 
will have the form: 

for a fixed edge 

for a supported edge 

with 

th /■■ 

■-:■ a   w---Q,    IJ'--Q\ 

a    w^O. w"-f ^-«/'^O; 

for a free edge 

'   r r 

A5 
w'^O. 

(81.4) 

(81.5) 

(81.6) 

The conditions in the center (r = 0) are reduced to the re- 
quirement of llmitedness of deflection and absence of a corner 
point on the bent surface [™'(0)^-0)  or, in other cases, according 
to the load, to the requirement of llmitedness of the moments and 
crosscut forces. 

By way of example we consider the bending caused by the load 
q  distributed over the whole area of the plate (Fig. l60). This 
problem was already solved Independently by Carrier.** 

In this case q  =  const. Assuming k  not to be equal to 1 or 3 
we obtain 

«I -- /I -l-Cl-l H* I -'?- • (81.7) 

the constants B  and E  are assumed to be equal to zero since other- 
wise the deflection and the crosscut force in the center would be 
infinitely high. Having determined the constants A  and C  from the 
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conditions  on the edge we obtain the  following results 

When the edge of the plate  is  fixed. 

"" 8'(9^-«lfflV«)7'-
|3""''"■' ,-[3-"-'(ri<M'o(:,)i; 

«■"fr^h-i-1)({-r",--(^i')(0]. 
^—i- 

The maximum deflection (In the center) 

w,. 
(7a' 

^„ —g-(l3:j:x.)(1 .|.*)/V 

The bending moments at the plate's edge are equal to 

qn M'~~T$Tk)-       M*--'*Mr 

(81.8) 

(81.9) 

(81.10) 

(81.11) 

The value of the bending moments In the center depend essen- 
tially on the rigidity ratio iyDr or, which is the same, on that 
of Young's moduli ^,/£rl i.e., on the quantity k. 

With *>•- Ei>Er in the center ^, = ^„^0; the bending moment 
will then reach its maximum value on the edge: 

/M„ i/,,rlr = a   2 (3-j-ft)' (81.12) 

With A<1> ^6<^r the moments grow unllrritedly as we approach 
the center; in this case in the center a stress concentration will 
arise and, theoretically, at this place Af^^Afj^oo. 

plate 
With fe = 1 we obtain for the deflection of an Isotropie 

- 3^0 
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In the case of the supported edge 

«.  _ -^  r(3-^)(-i-|-^ l-y-)   4(3 (-v6)  /M*+i 
^ ""8{9-^)Ör[' (l-|-A')(A-|-v9) "(l-f-^^-l-vj) U; 

The maximum deflection (In the center) Is equal to 

qa1 'H-*-|-v8 • 

(81.13) 

(^J; (81.14) 

(81.15) 

On the edge (r = a) 

ra»"" 8 (3 -|- k) Dr   (i -|- k) (A -|- v6) • (81.16) 

(81.17) 

Also In the case where the edge Is resting on a support, 
with A > l /Mr~/M, = 0 In the center and k < 1  the moments grow un- 
llmltedly as we approach the center. 

For an Isotropie plate 

■w 
?flir5-|-v     2(3|-V)/AY , /_ryi 

(81.18) 

The formulas for the case of fe = 3 is obtained from those 
given above by means of a limiting transition. 

It is quite simple to obtain a solution of the problem on 
the bending of a curvilinear-anisotropic plate with respect to 
the surface of revolution in the case where a round hole is lo- 
cated in the center. In addition to the two conditions on the out- 
er edge we have two conditions for the edge of the aperture. From 
these four conditions we can determine all constants. A,   B,   C, E. 

§82. BENDING OF A ROUND CURVILINEAR-ANISOTROPIC PLATE BY A CON- 
CENTRATED FORCE 

If a circular plate possessing cylindrical anisotropy such 
as considered in the preceding section is bent by a normal con- 
centrated force P applied to the center (Fig. 161), the deflec- 
tion equation for it has the form (8l.3) where wo = 0. The con- 
stant E  must be set equal to zero since otherwise the bent sur- 
face would have a corner point at r = 0, whereas we should have 
w'(0) = 0. From the conditions on the contour we obtain two equa- 
tions for the three constants A,  Bi   C.   The lacking equation is 
obtained when we cut out of the plate a disk with arbitrary ra- 
dius r  and consider its equilibrium. It is obvious that the cross- 
cut forces distributed on the edge of this disk must be in equi- 
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Fig. 161 

llbrlum with force P and therefore 

A/r.2*r-|-P-=0. 

from which we obtain 

0 ~ 4« (1 - ft0-) Dr ' 

The expression for the deflection takes the form 

XV 
Pa* 

inn»   A*{\-\-kfOr 

(82.1) 

(82.2) 

(82.3) 
4TI (1 — k*) Dr        '   ' 

For a plate with fixed edge and k ? 1 

^-^o^T^+^^r'-c-^o)]. 
^^^-Pj^+^^r--:^-^. (82.5) 

The maximum deflection (In the center) Is equal to 

(82.6) 

It must be remarked that with A>l(^o>/i'r) the bending moments 
in the center are finite, but with A<1 (^e<^) they grow unllmlted- 
ly toward the center. Approaching the center, the crosscut force 
grows unllmltedly. Independent of the ratio of moduli r.,jF.r. 

For an Isotropie plate with fixed edge 

10 -- Sf'-Q'-i-^KK IG' (82.7) 

In the case of a supported edge 
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Pa' ("(2 4- A-  |  v0) 0 -   *)   ,   /' V 2 (•  Lvö>_   -/A V ' kl • 
W"'4n(l--^)'ü;L   0  PO^I-'-'o)      ''U/       (l-|-*)(* l-^la/      J'     (82.8) 

w   ni-i ^(A-V-I i) //_\*-i_..n ,   J Af 

A/r-- 2«-' 

•uv 
"'""   : In (1-|-*)3 Or 

2 + A -|- v, 

(82.9) 

(82.10) 

As regards the moments the same holds true as in the case of 
the plate fixed at the edge. 

For an Isotropie plate 

■w «l::[|-fö!J-i2t«M (82.11) 

Note that the deflection, moments and crosscut forces in a 
curvilinear-anisotropic plate bent by a force [or also by an ar- 
bitrary symmetric load q(r)'\,   only depends on Young's modulier- fj 
and Poisson's coefficients v,., v, and is independent of the modulus 
of shear O,o- For a curvilinear-anisotropic plate for which Er~n% 
and vr~''j' the deflection, moments and crosscut forces obtained 
are precisely the same as for an Isotropie plate under the same 
conditions. 

A solution of the problem on the bending of a circular plate 
with cylindrical anisotropy by a force attacking at the center 
was also obtained independently by Carrier.* 

The problem on the bending of a circular plate possessing 
cylindrical anisotropy by a normal force applied at a certain 
distance h  from the center (which agrees with the pole of aniso- 
tropy) is more complex. For the case of a fixed edge this problem 
was solved by Sen Gupta.** We shall discuss the method of solu- 
tion and give the fundamental results obtained by this author. 

We place the origin of coordinate 
plate and direct the x-axis from which 
along the line connecting the center w 
the force (Pig. 162). Let us denote by 
part of the plate which is bounded by 
outer edge v = a, and by w-i the deflec 
plate which is inside the circle r = b 
fy Eq. (70.7) while the moments and cr 
and inner parts are connected with the 
and (70.5) where w  must be replaced by 

s in the center of the 
the angle 9 is measured 

ith the point of attack of 
Wi the deflection of a 

a circle of r = i and the 
tion of the part of the 

These deflections satis- 
osscut forces for the outer 
deflection by Eqs. (70.4) 
wi  and W2 respectively. 

The concentrated force P may be considered as a limiting 
case of a load distributed on a small arc of the circle r = 2? 
whose resultant is equal to P. Having expanded this load as a 
function of the variable 8 in a Fourier series, in the limiting 
case we obtain a divergent series 
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Fig.   162 

In the center of the plate the deflection Wz  and its deriva- 
tive with respect to r, and also the crosscut forces, must be fi- 
nite quantities. On the outer contour r = a two conditions must 
be satisfied which depend on the way of fixing of the edge. In- 
side the plate the deflection, its derivative with respect to r 
and the moments M    are steady functions whereas the force N    has r ^ r 
a discontinuity in the outline of the circle r = b.  Consequently, 
on the contour r = b  the following conditions must be satisfied: 

(82.13) 

«/! — W,, 
dwi      aw, 
dr ~" dr ' 

My~M(?. N{?~N{?: 
n»! 

where'"i-1. A'"'  denote the moment and crosscut force for the outer 
part of the plate and M^\ A/J.

2)
 these quantities for the inner part 

Of     Ito 

Seeking the  solutions to Eqs.   (70.7)   in the form of series 

«, - Wir)-I- /?'."(0 + 2 Z?!.0 (0 cos «0. 
11 = 2 

w2 = R? (r) + /?«' (,). (. 2 /?(„2) (0 cos H'J . 
n"2 

(82.14) 

we obtain the following expressions  for the  functions R (i) 
n 

(82.15) 
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(/-I. 2. rt-2. 3. 4   4". ßi0. 4°. z^'are arbitrary  constants;. 

We  used the  denotations 

(82.16) 

For the Inner part (r < i>) we obtain from the conditions for 
the center 

(82.17) 

The other constants are all obtained from the conditions on 
the outer edge and on the line r = b. 

For a plate with fixed edges we have 

with r =  a 
«V.O.  -,-1^0 (82.18) 

The final expressions for the variable coefficients of the 
series (82.1*1) take the form 

.,. --, ^.^ - - -^-j - ■ k .^7j    j. 

«■«-^-["■■©'"'■"i^—'C-)""-'- 

oi"M-, ^ r..i'»_frfi,,.j«ir.,,,\,Ui.yh'"., 

(82.19) 
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mi' +        H-s 

*'<"—^["-^(7)'*"-l-2<|-^V+ 
+ 2|i, In rf ■■;-].   I (82.20) 

+(Ärf'-^rf'")"'"(T)',"- 
-g(i)H'"-i-(Tn- 

Here d =  i/a. 

The deflection at the point of attack of the force Is equal 
to 

6"0 «■■! H "1 (82.21) 

For a plate of orthotroplc material 

*=,!.  pj:=2,  p^-1-I-rt. T„--l—n. 

The expressions for the functions Ro\ R\l,\    which will not be 
given here are obtained from Eqs. (82.19) arid (82.20) by means of 
a limiting transition.* 

Example. An anisotropic plate Is given for which 

^-1 
ft ~ 4 ' -T-.   '*. — ^r .   Yi -- 

I 
8" V' ^ris- 

When the force is applied at a distance equal to half the radius 
(b  = 0.5a) the deflection caused by the force is, according to 
Sen Gupta, determined by the formula 

(^0.20.14^. (82.22) 

§83. APPROXIMATION METHODS OF DETERMINING THE DEFLECTIONS OF AN 
ANISOTROPIC PLATE 

In practice one often encounters such cases of bending for 
which we have no exact solution. An exact solution has not been 
obtained so far for a homogeneous, anisotropic circular plate 
with supported edge, or for a rectangular orthotroplc plate fixed 
on its whole contour, not to mention plates of more complex out- 
lines. For anisotropic plates approximation methods for the deter- 
mination of deflections can be given, which are analogous to the 
methods applied successfully in order to solve problems on the 
bending of Isotropie plates. We restrict ourselves to two methods 
which are based on the theorem of the minimum energy of an elas- 
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tic body formulated previously In §^1. 

Let us consider a given anisotropic 
load q. Denote by w the possible deflect 
a deflection for which the plate remains 
tions on the fixed parts of the edge are 
the theorem mentioned above, applied to 
be formulated as follows: the real defle 
is in agreement with the given condition 
and the load q, differs from all possibl 
that for it the following expression is 

plate bent by a normal 
ion of the plate, i.e., 
unbroken and the condl- 
satisfied. In this case 

an anisotropic plate, may 
ction of a plate, which 

of fixing of the edge 
e deflections by the fact 
minimum: 

3r = 

AD 

JJIMS)"'-20 

..(Ä)'H(", 
12 äJa Oy 

dy 
1 * '-i'vij'dxdy 

(83.1) 
-- 2qw \dxdy. 

Integraclon extends over the area of the plate. Wher. the 
plate is orthotropic and the directions of the axes x  and y  coin- 
cide with the principal directions of elasticity, Eq. (83.1) is 
simplified a little and takes the form 

(83.2) 

When we use Ritz's method an approximate solution of the 
bending problem can be obtained in the following way. When we 
give the expression for the possible deflection in the form of 
a sum 

w — S S'W-W*. y)> (83.3) 

where w „  are functions, which satisfies the boundary conditions 

[at least the kinematic ones],* yielding a smooth surface; they 
depend in the two integral parameters m  and n, while A      are in- 

definite coefficients. Substituting this expression in (83.1) or, 
correspondingly, in (83.2), we obtain after all integrations the 
quantity 3  in the form of a quadratic function (a polynomial of 
degree two) of the coefficients A„„.   We then minimize the function 
for which the equation mn 

_d9_ 
OAmr 

^0. (83.^) 

is established and solved. 

Note that with a successful choice of the functions w      we 
mn 

can obtain the deflection sufficiently accurate for practice when 
we retain a few terms of sum (83.3): two, three and sometimes 
only the first single term (first approximation).** 

The errors of the bending and torsional moments and, to a 
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yet higher degree of the crosscut forces obtained In a first ap- 
proximation are usually much higher than the deflection error. 

Another method of deriving approximate solutions Is also 
based on the theorem of the minimum of energy of the elastic body; 
It consists of the following. The expression for the deflection Is 
sought In the form of a sum of products of functions of a single 
variable: 

(83.5) 

^ 

Here   ?*W (^ == '> 2 ")   Is  a  system of linearly  Independent  func- 
tions;  they are chosen in  such a way that  the  expression for w 
satisfies part of the boundary conditions while ^.(^y)    are unknown 
functions which must be determined. 

Substituting w in Eq.   (83.1)  and   (83.2)  and integrating with 
respect  to x,  we obtain an integral which contains a function of 
a single variable,  'h(y)-     We  then have to solve  a varlatlonal prob- 
lem:   we  have to find the  function   ^(y)-   which minimizes the inte- 
gral 9   .   Solving this problem according to the  rules of the varla- 
tlonal calculus,  after a series  of transformations we obtain a 
system of ordinary differential equations  for the determination 
of the  functions  fytOO;    the  number of these  equations is equal to 
the number of unknown functions.   In an abbreviated form this  sys- 
tem may be written as  follows:* 

K Ou^+<Dl.^i + i'.Dn+20u)^ + 
1   Art      dtw    ,   n    d*w 

(A = l, 2 n). 

]?A.(x)rfx = i (83.6) 

w  is here understood to be the sum (83.5). 

If we restrict ourselver. to the first approximation, i.e 
with 

w = <f{x)^(y). (83.7) 

where y(x)  is a given function we obtain a single equation in- 
stead of the system (83.6). For an orthotropic rectangular plate 
with sides of the length a  and b  it reads 

D/<iy (y) / <f2 dx -f 2D,'Y' (y) j ??" dx + 

+ ö1-l-(>)J<f'f
IvrfA; = J<7<?^ 

(83.8) 

(the origin of coordinates  lies at an arbitrary point of side b, 
the Ä-axis is parallel to the  side whose  length is  given by a). 

Other approximation methods will not be  considered here. 
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§84. APPROXIMATE SOLUTIONS FOR RECTANGULAR PLATES 

Let us give approximate solutions for two cases of rectangu- 
lar orthotroplc plates loaded by normal forces q  which are dis- 
tributed uniformly over the entire area. 

I. Rectangular plate with supported sides. A rectangular 
plate whose principal directions of elasticity is parallel to the 
directions of the sides a  and b  is supported on all sides and 
bent uniformly by a distributed load. 

With the directions of the axes of coordinates as shown in 
Pig. 1^0 (see §72) we may assume 

lb inn ■ 
.    mnx        nny 

= sin sin --. •-: 
a b    ' (84.1) 

(84.2) 
m-'i »I-.i 

These functions w      and w  satisfy all  conditions on the four 

sides (and not only the kinematic ones). A substitution of the 
function w  In Eq. (83.2) and subsequent Integration results in 

where 
mal n-l 

a   b 
4   f  f mnx   .    nny   .    , 

0    0 

(84.4) 

When we set equal to zero the derivatives with respect to 
all /L... of (84.3) we obtain mn 

Amn r • :— 

MY 
(84.5) 

These coefficients agree with the coefficients of the double 
series (72.5) which represents an accurate solution for a given 
plate such that Eq. (84.2) with an infinite number of terms of 
the sum proves to be identical with the exact solution. 

When we want to solve this problem by another method in a 
first approximation, we lay the x-y frame as shown in Pig. 163 
and have 

w — 9 ■.^(x'-lox* \ a\x).}iy). 
(84.6) 

The first factor, which depends on x,  represents the deflection 
of a beam of length a  supported on its ends, which is under the 
action of a uniform load. This expression satisfies the necessary 
conditions on the supported sides of the plate, namely 
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with -v- ^Oami.v: -a    a' ■    /Ux. - 0. (ÖÜ.7) 

For the unknovr" function tyiy)  we obtain the differential 
equation 

3021  /)i ^     81  /Jj ^ ' ^ (84.8 

Solving this equation and determining the arbitrary constant 
from the conditions on the sides y = +b/2 where u - M = 0, we ab 
tain the following expression for the deflection:    ^ 

■w 

Here we used the denotation 

(84.9) 

ftIi2 = i j/^9.871 A ri: |/ 97,-136 ( ^-)3 -   97.5 18 . (84.10) 

The  deflection  in the  center (.v   ■njQ.y^O)   is  determined   from 
the  formula 

w 
6      qa* H^i "l 

,cli 
ft,6 

ch 
ft2& 
2' 

(84.11) 

A calculation for an Isotropie plate with Polsson's coeffi- 
cient v = 0.3 according to a formula obtained from (84,10) by 
means of a limiting transition shows that the error of the approx- 
imate solution is small. Thus, for example, the difference between 
the amount of deflection w        obtained according to the approxi- 

max D       ^ 
mate formula and the value obtained from a well-known exact for- 
mula amounts to: 2.1%  for a square plate, 0.4% for a plate with a 
eides ratio of 1:1.5 and only 0.2%  for a plate with a sides ratio 
of 1:2.* 

I7 ^^9f^---r rrr v 
— a 

Pig. 163 

2. Rectangular plate with four sides fixed. With an orienta- 
tion of the x-y  frame as shown in Fig. 164 we have the following 
boundary conditions: 
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with y 

a ().;• 
2      ' J.t 

A Ö:;' 

•/      " e)> 

0; 

0, 
(84.12) 

We can elve a whole series of expressions for w       which are 

steady functions and satisfy Conditions (84.12). 

wz 

Fig. 164 

(84.13) 

For example, we can choose for w      an integral polynomial 

(m —0. 1. 2, ...; n-.O. I, 2, ...)• 

We obtain in a first approximation 

--^--;■)'(/■■■?)'• 

Substituting w  in Eq. (83.2) we obtain 

The minimum value is obtained with 

19 a 

(84.14) 

(84.15) 

A--. 
8  7/.'^' I MjyV- \7D..u<' (84.16) 

Prom this we can derive an approximate expression for the 
deflection 

PV 

10 ■■  ■ 
«   7/^,4" | l/V'/'; i 7/J,,ii- 

(84.17) 

The deflection in the center is 

w -=0-003n8Z;H-ä57^.M^' 
(84.18) 
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where o  = a/h. 

In particular, for an Isotropie plate with the rigidity D 

^,^0.003.11^;^ (j;;;if,|fl)-. (84.19) 

We can also derive an approximate expression for w  with the 
help of trigonometrical functions which satisfy all Conditions 
,84.12). Without giving the intermediate calculations we only 
give the expression for the deflection at an arbitrary point and 
In Lhe center as obtained in a first approximation: 

w     ^"'.L ._a-A.__.,. b >. (84.20) 

I ^"-
0

-
003122

D1.Pü;üö^:MV<- W-2^ 

For an  Isotropie  plate 

^m„-0.003122D{{ :f:0^7c3-.pCT). (84.22) 

Without knowing the exact solution it is difficult to Judge 
which of the two approximate solutions is more accurate, (84.18) 
or (84.22). 

It is easy to show that, as to their values, the expressions 
obtained for w differ only slightly from one another. Consider, max J b       J , 

for example, a quadratic plate (c = 1) of Isotropie material. 
From Eq. (84.19) we obtain for it 

and from Eq. (84.22) 

0.00133-^-. (84.23) 

Wm„-0,00128^. (84.24) 

The results coincide precisely in the first two decimal 
places: when we retain in both cases two significant ciphers we 
obtain one and the same coefficient: 0.0013. 

Treating the problem considered from the point of view of 
the second method, we can put 

^2.iV-v-ö)2^(-y)- (84.25) 

This expression satisfies the conditions on the two sides 
x = 0 and x =  a   (see Pig. 163). Determining the unknown function 
ty(y)  analogously as in the case of four supported sides we arrive 
at the following final result:* 
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We used the denotation 

uy-x-\ i | 

: /• 

k h 
k-.-u  :2  eh/,,)

1 

n. 
,/' 

/,■,-!, A',''-cli/;.v 

h 7   ll' 2 

1 I 
(.;) 

50 1 

(8^.26) 

(84.27) 

An approximate formula for the maximum deflection has the form 

w 
3.SI/.>, 1 t 

k. sh 
k,h 

■1 

kh 
2 

Avh 
2 

, , *./,  A',6 (84.28) 

§85. APPROXIMATE SOLUTIONS FOR TRIANGULAR PLATES 

With the help of Ritz's method it is easy to derive an ap- 
proximate solution for a triangular orthotropic plate with fixed 
or supported sldeu bent by a load q  distributed uniformly. Let us 
give the approximate solutions for several cases of triangular 
plates; in all cases the expression for the deflection Is given 
in the form of an integral polynomial with one or three indefi- 
nite coefficients which are obtained from the minimum condition 
of the integral 3     [see (83.2)]. 

Pig. 165 

1. Plate in the form ot a rectangular triangle fixed on all 
sides. A plate is given which (In the ground plan) Is of the form 
of a rectangular triangle cut out of an orthotropic sheet such 
that the principal directions of elasticity in it are parallel to 
the legs a  and h.   All three sides are fixed. The axes x  and y  are 
directed along the legs as shown in Fig. 165. 

An expression for the deflection obtained In a first approxi- 
mation has the form* 

-U'l 
/J. 

0,3l25r/c2 .vy(l x 
a ■92- (85.1) 

Here and in the following a =  a/b. 

The maximum deflection Is obtained for the center of gravity 
of the triangle, i.e., for the point .v^^/3,- v^-^/3: 
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m"       D, I-Oaf3 f/V7" ' (85.2) 

In the  case  of an  Isotropie material  we   obtain 

w D (i-|-C3 .f c<) •«> ^     7-yj . 

w. 

(85.3) 

(85.4) 

2. Plate In the form of a right triangle with supported 
sides. Consider a plate as represented in Fig. 165 where all 
three sides are resting on a support. As a first approximation we 
can use an integral polynomial of degree three which vanishes on 
all three sides and contains an indefinite coefficient. Substi- 
tuting the expression for w  in Eq. (83.2) and requiring that 3 
must become minimum we determine the coefficient and at the same 
time the deflection in a first approximation: 

w- qa-c 

:      ~m(a      b\ 0,000926 
40 (D, -\-0.:i3D3c' + Dac') xy [   "   a       b) ' 

ÖMO^'T-D-iC* qa ' 

(85.5) 

(85.6) 

Imatlofwe's^ppose^10" 0f ^  bendlnS Pr0blem ln a Second ^^ 

^ = (^oo + Ax*x -\- Aoxy) xy (l - ^ -1) 
(85.7) 

The expression for 3    is represented in the form of a square 
function of the three coefficients /loo- Ao- An- Minimizing this 
function we obtain the values of the coefficients of the polynomj- 
als (85.7). As a result in second approximation we obtain for the 
deflection of the plate considered the formula 

W^S31XM- f.__ L\ ( 0^ , w  24 ^V   a       bjyOi-i-0,^30^-\-Dac*   r 

+ • H 'Di -\- 1 .(JDjC-i  I- 2f).ic* ^ ' 2/Ji -\-]ßfhc 

The maximum deflection is equal to 

H:/VV 
(85.8) 

w      ^aat( 0.000926 . _0,0Ü0_515 
'3c3 I- D^i   "' 'D\ -f. l.ö/V-T- 2/Jsc« 

,    1 0.000515 
c ■^üHf.ö/VH-Vv 0 (85.9) 

In the case of an Isotropie plate 

_£flV      0.000926 .   _ 0,000515        .   1      0^000515   \ 
""       D \l + 0,33c3 + c«" "•' 1 H- i.(icH: 2i:' ^' c * 2-Vl.i5fHcrj ' (85.10) 

In particular, for an Isotropie plate in the form of an iso- 
sceles right triangle (o  = 1) Eq. (85.10) reads 

«W-0.000619 2?- 
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The approximate solutions given for the triangular plate 
with supported sides were obtained by V.G. Rusin.* 

3. Plate In the form of an isosceles or equilateral triangle 
with fixed sides. An orthotropic plate having the form of an isos- 
celes triangle with the angles 7r/2 — a, 2a, v/2  - a, which is 
fixed on all sides and bent by a load distributed uniformly. The 
principal directions of elasticity are assumed parallel and per- 
pendicular to the base of the triangle. 

h<-  t>~-i 

^NX^^N^V^^^^NJ ■- 
^ 

Pig. 166 

We direct the x-y  frame as shown in Fig. 166. 

The final formula according to which we can determine (In a 
first approximation) the deflection of a plate with an arbitrary 
angle a < 90° can be written in the following form: 

5 • j COS2a , s, 
W "" ' W1"   /•V'TS'3 h^Cl^a "I Wh*   ^ 

X (..y-.- iV--. -^ T 
\(i COS a    /   (I3 slil- J J 

(85.12) 

(a is the length of the lateral sides). 

The maximum deflection at a point coinciding with the center 
of gravity of the triangle is given by 

m" '       PlClg,3\2l);iC[£'3\-tJL>2 

For an  Isotropie  plate 

, qn1   Sill1 a cos' a 

(85.13) 

n  nitror 1"       :,,ll    a COS' a 
■U'I      ^-- 0,00080 '    ■.   .-, -.- . - 

"lu D       I   -|- t) Sill1 3 (85.14) 

When the plate has the form of an equilateral triangle, for 
It a = 30° and on the basis of Eqs. (85.12) and (85.13) we obtain 
the following expressions for the deflections at an arbitrary 
point and in the center of gravity: 

192 
.- I"2 y:\(Jj ..-iV_Jf:l2. 
Dil 0,1)07/),, | n.,     l^a ]r3 J        fl2 J  ' 

(85.15) 

- 355 - 



immiFimmmBfm*''*''"»W»   * "'ß' 
.11 Jill     ill   III   III    WJWJW.I'JilWJI'l'. Jin   »in   I m 

 —-    -—1 

• 

0,000127        ^       i (85.16) 

In particular,   the  maximum deflection  of an Isotropie plate 
In  the  form of an equilateral triangle  Is   In  a  first  approximation 
determined according to  the  formula 

w 0.0001Ü0^- (85.17) 

An approximate solution of the problem for a plate with ar- 
bitrary angle a was obtained by R.V. Feodos'yev,* and for a plate 
in the form of an equilateral triangle by Ye.P. Burmlstrov. ** 
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I 
I 

1 
Chapter   11 

THE BENDING OF A PLATE BY A LOAD DISTRIBUTED ALONG THE EDGE 

§86. THE LOCAL STRESSES AROUND A RECTILINEAR EDGE OF A PLATE 

In the present chapter we consider some cases of bending of 
orthotroplc anlsotroplc plates by a load In the form of bending 
moments and forces distributed along the edge. 

Let us consider an orthotroplc anlsotroplc plate whose con- 
tour has a rectilinear section. Let us assume the plate bent by 
a load distributed on a short part of the rectilinear section of 
the boundary. As regards the elastic properties, we shall suppose 
that the plate Is orthotroplc, with the principal directions par- 
allel and perpendicular to the rectilinear section of the edge. 

We can obtain approximate formulas for the determination of 
the moments and crosscut forces near the loaded part of the rec- 
tilinear boundary when the plate is considered to be infinitc-ly 
large, as an "elastic semiplane." The method with which we solve 
this problem has much in common with the method used In order to 
investigate the plane state of stress of an "elastic semlplane" 
described in Chapter 4.* 

si > 

Pig. 167 

Restricting ourselves to cases where a finite section of a 
rectilinear boundary loaded by bending moments and normal forces 
distributed symmetrically relative to the midpoint of this sec- 
tion, we assume the midpoint of the loaded section coincident 
with the origin of coordinates, the y-axis  agrees with the direc- 
tion of the boundary and the a-axis lies inside the semiplane 
(Pig. 167). The deflection equation will be homogeneous (q =  0): 
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dho d<u) d"w 
^   I^O,^1^^-0 (86.1) 

Let  us denote  by m^z/j   the bending moments  and by p(y)   the 
bending normal  forces  per unit  .length   (given  functions  of y which 
are  even by virtue  of  the   symmetrical  distribution).   The  boundary 
conditions read: 

A\x~-m(y).   Na 
all. jy 

---■p{y)- (86.2) 

We represent the given moments and forces In the form of 
Fourier Integrals: 

m 

CO (yj 

0') ^ V J ^ (a) ,-"os ■■'■y d*'    P&) ---■ | J / (a) cos a^ rfa. (86.3) 

where 

^ (a) =- J //: (r,) cos «r, f/v),      / (fl) = -= f p (r() cos at) rfr], (86.4) 

o o 

and seek the solution of Eq. (86.1) In the form 

GO 

■w -- f 'I' (a, x) cos ay da. (86.5) 

The form of the function $ will depend on the roots of the 
equation 

Dls
t- '2Dis

2]-D2^0, 

which was already  considered In §73. 

(86.6) 

Taking Into account that with Increasing distance from the 
edge the corresponding stresses o^ or txu    must tend to zero, we 
obtain: 

Case 

Case 2 

Case 3 

«I» — Ae-'>'x-\~ Be-'»"1*. 

<]>;■ {A-\-ßx)e','x. 

•I'. .^/Uos/xv 1 B'.\:ly.x)L'  "•':. 

(86.7) 

(86,8) 

(86.9) 

Satisfying the boundary conditions we obtain the following 
expressions for the moments and crosscut forces In the case of 
unequal roots (si ^ 82): 
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Mx ■-■■ D, J [A (v, - s^c- *',x 1  /? (•-, -   s?)f ■vr) cos v </.. 
0 

o 
oo 

2ük j {As^-"-^ -|- Ds.ze v) sin a_jr ,/j; Hxy^= 

where 
A = 

^^.flAiD/.-D^s.e-^ )- 
o 

4- B{Disl   - Dj) J?^"''"] 2 COS 2^' ll2, 

CO 

0 

'+ ßiD3sl - - 02) e  •vr)a sin ?;'(h.. 

24 
^rX 

X [t (a) ^ (D.s*  - Dj - 2DA.) f "^ D, (.^ - v2)] . 

B=-- 24 
-v=r X 

X [* («) ^ (D,^ - 03 - 2D*) 4 4°- D. (s' - ^] 

(86.10) 

(86.11) 

(86.12) 

The determination of the moments and crosscut forces in each 
concrete case Is reduced to a calculation of the integrals ^(a) 
and x(a) and the integrals of Eqs. (86,10) and (86,11). With a 
simple law of load distribution all integrals can be calculated 
without much work and expressions for Mx, Mu, .... Nu   are obtained 
in a finite form. 

The solutions for Case 2 can be obtained by means of a lim- 
iting transition with sl^-.st^-.s\   a solution for the case of complex 
roots may be obtained from the above solution with 5,-51 // and 
sj^-s—'tl      and when the real and the imaginary parts are separated. 

A solution of this problem can also be obtained by another 
method, when we represent the deflections, moments and crosscut 
forces in terms of functions of the complex variables wiisi)  and 
1^2(32), using Cauchy integrals or Schwartz's formula. The course 
of the calculation is essentially the same as in the case of the 
plane problem (see §29) and we shall not consider It. 

§87. THE ACTION OF A CONCENTRATED MOMENT 

Let us suppose that at point 0  of the rectilinear edge of the 
plate (which is considered to be infinitely large) a concentrated 
moment is applied; we have to determine the local stresses caused 
by this moment (Pig. 168). 

Replacing the concentrated moment M  by moments which are 
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^{w^ 
H<-   C   -V; -<-C ->H 

Fig.   168 

statically equivalent to It and which arp nf fh« i^~     A*. 

tW = ^-si^. Z(.)^0. (87.1) 

Substituting these expressions in (86.12) and then in (86.10 
(86.11) and carrying out the limiting transition in which we let 
the length of the section 2e tend to zero, we obtain integrals 
which are easy to calculate. As the result we obtain the follow- 
ing distributions of the moments Mx, Mu, Ih-j    caused by the concen- trated moment.* 

M. m       (£2.tH -IG/U 

(87.2) 

Here 

Y'D,D.t Si- -5. 9 =r- iL'V^ 

(87.3) 

mulas in order to determine the crosscut forces we can use the for- 

N. 
dMx   , dH, 
07 

SU 

Oy    • N..-.-. 
Oy' dx   • (87.4) 

The moments Mr> Ah' H,v referred to the polar coordinates (the 
point of application of the moment M is the pole, the x-axis coin- 
cides with the polar axis) are determined by the formulas 

'M^^?
e^0{2G(I-|-..J).|.l/T2_.2O(1.|.V2)]cüs20]i 

// /•i) 
Afß    . 

■27/,osinOf2r7(l.   v,)(-/:V(|/:,    20(1  | u,)] Cl,s20j. 

(87.5) 
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Here 

D6 --- D, sin4 0  (  2D, sin3 0 cos-' 0  {- D, cos' 0 (87.6) 

Is the rigidity of bending about an axis In the radial direction 
| r  [cf. Eqs. (69.6)]. 

The expressions given show that the bending and torslonal 
moments decrease with Increasing distance from the point of ap- 
plication of the concentrated moment, Its variation Is Inversely 
proportional to the distance r; the variations of the stresses 
Oa,- V *JCV      and a'' Vi- are governed by the same law. The crosscut 
forces vary Inversely proportional to the square of the distance 
r; the same way of variation Is shown by the tangential stresses 
v*f V-  At point 0  Itself we obtain (In the theory) Infinitely 
high stresses. At a certain distance r  from point 0  the moment 
M    reaches Its maximum value on the normal to the edge of the 

plate and the torslonal moment ff fl Is there vanishing; the bend- 

ing moment vanishes at the edge of the plate. 

In an Isotropie plate 

., 2/Vf      1 -f- ■>     cos 0 

Mt == 0. 
„ 2Af        1        slnO 

(87.7) 

On the basis of these formulas it is easy to see that the 
points at which the radial moment M    has one and the same value r 
lie on a circle with centers on the normal to the boundary (i.e., 
on the a;-axls) passing through 0, the point of application of the 
moment (we met these circles already in the theory of the plane 
problem, see §30, Pig. 5^). The lines of equal torslonal moments 
B Q  are circles orthogonal to the first; they pass through the 

point of application of the concentrated moment and their centers 
lie on the edge of the plate. In an anisotroplc plate the lines 
of equal moments will be more complex curves of fourth order. 

§88. THE BENDING OF A PLATE WITH ELLIPTIC APERTURE WHOSE EDGE IS 
FIXED ARBITRARILY 

Let us consider an anisotroplc, homogeneous but generally 
not orthotropic plate of arbitrary form, with an elliptic aper- 
ture and bending strengths and moments which are distributed on 
the outer edge and along the edges of the aperture. 

The question of the influence of an elliptic or circular 
aperture on the stress distribution is well investigated for the 
case of a generalized plane s<"ate of stress (at least for a small 
aperture distant from the outer edge, see §§37-^0). A complex re- 
presentation of the deflection, the moments and the crosscut 
forces with the help of the two functions wi(zi)  and waUz) en- 
ables us also to study this problem in the case of bending.* 
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Assuming the dimensions of the aperture to be small compared 
with the dimensions of the plate and the aperture Itself being 
remote from the edge, we shall consider the plate to be infinite- 
ly large, i.e., to represent an "elastic plane with elliptic cut- 
out." Let us consider the case where the load in the form of bend- 
ing moments m  and the bending normal forces p are only distributed 
along the edge of the aperture. 

We assume the median surface in the xy-plane  and the origin 
of coordinate^ In the center of the aperture, the x-y  frame being 
coincide;.!, with the principal axes of the ellipse (Pig. 169) and 
all rigidities D. .  for the x- and y-&xes  are assumed to be known. 

The contour equation of the ellipse, in a parameterical form, can 
then be written down: 

JC---■ n cosO, _v-:^sinf); (88.1) 

m  and p will be functions of -0. In the general case we shall sup- 
pose that the load distributed on the edge of the aperture is re- 
duced to the force P    and the moments m    and m     (relative to the 
axes a: and y). x y 

The moments and crosscut forces can be given in terms of the 
two functions ^(^i) and "^(-a) of the complex variables ^r-^-hv 
and .v-.v-IViV [see Eqs. (63.^) and (63-5)]; the derivatives wi and 
Wz  satisfy Conditions (63-7) on the edge of the aperture. Having 
obtained the expressions entering the right-hand sides of the 
boundary conditions (63.7), in the general case of load distribu- 
tion we have 
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J(/«d> + Mv)-?^f)cosf)   ■ ^O.|-a0-|, 
0 

CO 

+  ^](<V"-f-äm^-"')- 
m=>l 

^6, m rfx + /rf>) = - -£ 0 sin 0 - -jf 0 -|- p0 -h 

CO 

4- >](P„.^"-(-P».o-")- 
Here «»"il 

(88.2) 

f=r^pdS, a ~~ e Di- 

a_ ß are coefficients which depend on the law of load dlstrlbu- 

tlon [we obtain them when we expand m  and p In Fourier series with 
respect to the variable  and Integrate as provided for In Eqs. 
(88.2)]; a,,, pin are coefficients conjugated to the former. 

The solution Is obtained with the help of the functions w[ 
and «2, in the form 

w;(z1) = (/l'z1 + /l)lnri-M0 + 

00 

W'2(z2) = (ß'z2+ß)lnC24-ß0- 

— 7 [lJi7iai —PiPi —~2 (!xi7i« -f-Pi*')] •c--~ 
00 

-^^(^Wn-^Pm)^'". 
»H = 2 

(88.3) 

J'I. 'a    are here  functions of «i  and 3z: 

^l + V^\-a^~?lb■' 
a — Ipib 

r   - 't + Y'l-S-W 
'2 a — /[ijft 

(88.4) 

(88.5) 

A, B, A', B' are  constants determined  from the  following system of 
equations  [see  §63,  Eqs..   (63.9)-(63.10)]: 
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-4'-f-    ß'  -    /l'--    ß' =.0, 

[ilA' \-i,2ß'     ^Ä' — Tj.ß' ---0, 

uj/l'   lf-nlß'       nfÄ'—Yilß'  -..0. 

A' 
Pi 

:.ß'. 
3 IM 

L /!'- - i- ß' 

/t -f    ß —    /1 —     ß   =. 0. 
|j,/1 -f-;j2ß —^,^4 — u^ß   ^=0, 

2^/0,, ' 

't\A   l-^ß -.jS/l     - -;j.2ß    ^: 2n/ü2.J 
1       •   1 
~A-\-~-B 

1 - 
-.-.- A - 

Hi 

1 - 

IM 

my 

S/Du 

(88.6) 

(88.7) 

The constant C 1s Äetermlned on the basis of the requirement that 
the deflection w  Is an unambiguous function. 

When the contour of the hole Is subject to the action of a 
/«„- 0 we have load In equilibrium, I.e., If Pz^mi 

A'-  B'~-A-.^ D---0     and the solution becomes simpler. 

Let us also give the solution of the second fundamental prob- 
lem for an Infinite plate with an elliptic aperture. 

The deflection and the angle of slope of the curved surface 
with respect to the Initial xy-plane of the plate are assumed 
given on the contour of the aperture. Let us also know that with 
Increasing distance from the aperture the deflection and the 
slope decrease and can be considered to be vanishing at a suffici- 
ently large distance from the edge (theoretically: at Infinity). 
In this case the boundary conditions read: 

■w^np). dw 
dii «(fl). (88.8) 

where F{ü), a(f)) are the deflection and angle of slope, both given 
a? functions of the parameter -0. These conditions can be written 
in the form 

dw 
dx 

dw 
17 

(//•'     dx 
<is      (Is 

aT/r ;^ I' ^(Vml-*>-■''). 

(88.9) 

Here da is the differential arc of the ellipse, a function of the 
parameter '1.«,,.. pm are given coefficients whose conjugated quanti- 
ties are denoted by cT •< J        in'   I'm 

The deflection and slope of the curved surface given for the 
contour must be periodic functions of O . Hence it follows for the 
relation between the coefficients of the first terms of the ser- 
ies on the right-hand sTdes of Conditions (88.9) 

(*. — *,)« UVl-fMö/^o. (88.10) 
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POJ  iflniteness of the problems It is necessary ; . ..;,: .v ir.-^ 
vector su  and the resultant moment of the forces acting on the 
edge of t. e aperture, P . m ., ^-m . z       x       y 

The functions of the complex variables determining the solu- 
tion of the problem have the form 

^(^-(/IVM)'" Vt-VF- 2 ^rJ^kcr"'. 

'2 (22) - (ß'22 -f ß) 1 „ C, f - ö0 - V %Ä!. r2- "'. 
Hi —Ha 

(88.11) 

The coefficients A',   B'  and 4, B  are obtained from Eqs. (88.6 
and (88.7) and Ao  and BQ  and the conjugate quantities satisfy the 
two equations 

Ao + Bo -f; -''o + ßo ~ ao- | 
i,/>o-f-H2ßoH-HiA)-t-^Ä = Po' I (88.12) 

Some simplifications are obtained for the case where the 
plate is orthotropic. 

When a load is also applied to the outer edge of the plate, 
the stress distribution is obtained when we add the stresses in a 
massive plate and the stresses in a plate with aperture loaded 
along its contour. An approximate solution for some of these 
cases are given in §§89-90. 

§89. THE PURE BENDING OF A PLATE WEAKENED BY A CIRCULAR APERTURE 

A rectangular orthotropic plate weakened by a round hole in 
its center is bent by the moments M  distributed uniformly on two 
sides; the edge of the hole is assumed free from loads. The dia- 
meter of the aperture is considered to be small with respect to 
the dimensions of the sides. 

To begin with we consider the general case where one of the 
principal directions of elasticity makes an arbitrary angle cp 
with the direction of the axis of symmetry of the plate denoted 
by x'   (Pig. 170). 
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The directions of the coordinates axes x  and y  coincide with 
the principal directions of elasticity. An approximate solution 
to the problem Is obtained when we add the moments and crosscut 
forces In the massive plate 

Mx~ Mcos^-o,    My--^Msin2?,   //xl/^--/Msin tpcostp, 

N, Ny^O (89.1) 

to the moments and crosscut forces In the Infinite plate with an 
aperture whose edge Is loaded by forces and moments. The latter 
must be chosen In such a way that on the edge of the aperture to 
following conditions are satisfied: 

M  ~0, N -ul^Jsi — Q mr       u,  /vr-t- r    ^    — u. (89.2) 

In the case given the additional moments and crosscut forces 
are determined by means of functions of the form 

w lAi CW-i cos2 ? — Pi sin2 v) 
i^V-T 2d 

+ 
4- 

Ma 

■w'(z ) ^ — (^i-'-i^ cos2 IrA'i sil,2?) 

(ji.J — 1) sin 9 cos'<f 1 Ma^ 

1 Ma 

OA:H-  i'j)["(i-i^2)h2( 
;»2 ClMi cos2 ;f -^p, siii2 i)   . 

  (jji!/—1) sin 9 cosj?  
Di (1*1 — l1a)I"(l~lAili2)-h2 (vi —1*1^2)1'    ^ 

(89.3) 

(for the denotations  see  §§63 and 88). 

After a series of rather cumbersome transformations we  obtain 
the  following expressions  for the moments M,   and //,.,,   referred to 
polar coordinates,   on the  edge  of the  aperture: 

-|- M —'uf'1- (^p   K sin' 0-1 az sin2 0 cos2 Ü -| al cos' 0) — 

2H (A--I-/i  1-1) r1"!-"'!   — r,   i   /i    i      ^r s nl w 
-TTöTFrrr^rMiI * s"1'J 'f"(1"'""^/ccos 0Jx 

X sin <? cos o sin 0 cos 0 j, 

Hrr^M ^^D- j-- ,'. j - (rv, sin2 0 ■ |- fla cos2 0) sin 0 cos 0 -\- 

. n(k-\-n  \  1)        /,        .,,       1    •  ,,A   • 1 
+ «TH-"!) r2Tvr-h A-y rcos ü ~ *s"1 JJ s,"? cos ^1 ■ 

Here we used the new denotations 

(89.4) 

D,. ■-.-. Dl cos "J. (• 2/J, sir.2 0 cos2 0 -|- D, sin« Ü 
(89.5) 

(the rigidity of bending about an axis tangent to the contour of 
the hole): 
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R^fltJUwnKtX ■aaMwWBMwa. 

fl0 — /JCOS2(p-j- fl 
1-l-v, 

•/l^ 

1 — A - - 'tß'-1-^---1) sin2 (p, 

I+'lS'CW-^X» 4 «)]cos^<?-h 

+[^(l-ftT«)-«^-|-4gr(l-}-.1)(f+i)]sm^'^ 
a4 = ft[l - -It — 4g-(l -f- v2)] cos2 (p  [-A« siii2(p, 

«i = — [« -I - • + 2<? (1 _ v2 — v2nj j cos2 ? — 

-[Ä_2^(-^iÜ-i^-l)]siI1
2
?. 

a, = [ä + 2^ (l ~ « - '-4—)j cos2 <? + 

+ \k (ft ( «) |- 2^ (ft - -^  - -VL)] sin2
?. 

For an isotroplc plate we obtain: 

(89.6) 

JM, — M f 1 

H,,, = — M 

2 C^cos 2(0-J, 3-l-v 

——sin 2(0 
3 |-v    v ?)• 

(89.7) 

Figure 171 shows the distributions of the moments M0 and 
Z/,., on the edge of a hole In a veneer plate cut out such that 

the principal directions (the direction of the sheet fibers and 
the directions perpendicular to It) make an angle of Intersec- 
tion with the sides of 45°. The numerical values of the complex 
parameters are taken equal to 1.04 + 1.55^ (the direction of the 
ar-axls agrees with the direction of maximum rigidity, see §67). 

Fig. 171 
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Fig.   172 

The maximum values of the bending moments are obtained near 
the point 0 = 90° and the point symmetrical with respect to the 
center; they are equal to 

WLax"-- 2,55/M. (89.8) 

The torslonal moment reaches Its highest value with 

(//,',)„...--= 0.S2/U. (89.9) 

When the plate Is cut In such a way that Its principal direc- 
tions are parallel to the sides (9=0, Pig. 172) all formulas 
become simpler. Instead of (89.^) we obtain:* 

X-^p^-KsitHO.f-^sii.aOcos^J (-««cos<0)],   } (89.10) 

//r, ^ M -*—£-J • k,\(til sin- 0 -[- n, cos3 0) sin 0 cos 0. 

where 
a0 = n. 

(89.11) 

The bending moment A/g reaches its maximum value either at 

points Aj Ai or at points 5, Bi (Fig. 172) where the principal 
directions of elasticity Intersect with the contour of the hole 

At the points A,   Ai   (Pig. 172) 

at the points B  and Bi 

^-^-xrf - "'^O' 

M^M{1 '-w/)- //^0- 
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f-- 
For a plate of an Isotropie material at the points A  and Ax 

Mt~MTj.r' (89.14) 

and at the points B  and B: 

(89.15) A<."4iv- 

Figure 173 shows the moment distribution on the edge of a 
hole In a veneer plate. The direction of the fibers of the sheet 
agree with the direction of the x-axls; the outer sides are per- 
pendicular to the fibers. 

At the points A  and Ai 

Afo — O.l/Af; 

at the points B  and B\ 

The maximum torslonal moment Is 

("r-.),Hax = 0,6/Vf. 

(89.16) 

(89.17) 

(89.18) 

Fig. 173 

Figure 174 gives the moment distribution on the edge of a 
hole In a veneer plate where the sides parallel to the fibers of 
the sheet are loaded. 
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Pig. 17^ 

At the points A  and Ai 

at the points B  and Bi 

Fig. 175 

Mi = 2,09^1;- 

Al«=I.56/Vf. 

The maximum torslonal moment Is given by 

("A«* --- M. 

(89.19) 

(89.20) 

(89.21) 

Comparing 
the principal 
plate which we 
of the moments 

where the load 
sheet. Inverse 
where the side 
The case where 
respect to the 

the graphs for the three cases of orientation of 
axes relative to the loaded sides of the veneer 
considered, we see that the highest concentration 
MQ  and the directions aQ Is obtained for the case 

ed sides are perpendicular to the fibers of the 
ly, the minimum concentration occurs In the case 
s parallel to the fibers of the sheet are loaded, 
the fibers of the sheet make an angle of ^5° with 
sides of the plate takes an Intermediate position. 

For comparison we show In Pig. 175 the moment distribution 
on the edge of an aperture in an Isotropie plate with a Polsson 
coefficient equal to 0.3. Here, at the points A  and ^i (Fig. 172) 

at the points B  and Bi 

/Wj=-=0.21/Vf; 

Me--: 1,79/M. 
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The maximum torsional moment  ij 

Wr-.L.x^^.GlM. (89.2^1 

A comparison of all graphs shown gives us a clear idea on 
the influence of the anisotropy of the material on the stress dis- 
tribution in pure bending in a plate weakened by a round hole 

§90 OTHER CASES OF DEFORMATION OF AN 0RTH0TR0PIC PLATE WITH A 
CIRCULAR APERTURE 

Let us still consider three cases of bending of an orthotrop- 
ic plate with round hole and give the formulas and graphs of mo- 
ment distribution for them. 

I. Bending on a I I sides. A rectangular orthotropic plate 
with a circular central hole is bent by the moments M  distributed 
uniformly on all four sides (Pig. 176). It is supposed that the 
principal directions of elasticity are parallel to the sides. 

fm^ffe 

Knowing the solution for the case of unilateral pure bend- 
ing considered in the last sections, it is easy to obtain a solu- 
tion also for the case of omnilateral bending by means of a super- 
position. The results are the following. 

The formulas for the bending and torsional moments M^  and 
i? Q on the contour of the aperture have the form r D 

Aft = 2/M -f- 

//,v 

Here 

+/M"   D, ' * Ä+47 (*osin4 O-h62 sin* 0 cos'0-f ^cos< 0). 

= M —^-1 . -_1_ {bi sin2 o _j_ a3 C0S2 o) sin 0 cos 0 

(90.1) 
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(90.2) 
-I ^d !•'.) ^V-- 

bi---.k\n     k  \'\      •U'CI   l-OI. 

A.-^ I " I   1)(^''J      1) | 2,/("? ! ^     ' -l). 

/.,::(/.  I  n  1   l)(/e       ^',-)  I  2^(/e      «J   I-y). 

The  other denotations  are  the  same  as  in the  previous  section.   In 
an  Isotropie  plate 

AV =2/U.     //,o: =0. (90.3) 

At  the points A and Ai   of  an  orthotroplc  plate   (Fig.   176) 

M*~M{\\ ':,^"}:1^).     /AO-O; (90. iO 

at  the  points  B and  Bx 

^^Ai(i  |-^i/';^L).   //„^o. (90.5) 

In Fig. 177 we show the distribution of the moments MQ  and 
H Q  along the edge of the hole in the veneer plate; the direction 

of the x-axis agrees with the direction of the fibers of the 
sheet; the dashed circle shows the moment distribution in an Iso- 
tropie plate. 
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At  the points /I and /I x   (Fig.   176) 

Afo— 1,71/H; 

At the points B  and 5i 

/11^-= ö.OG/lf. 

The maximum torslonal moment Is equal to 

(^o),)ial-0.8AI. 

(90.6) 

(90.7) 

(90.8) 

As we see from these values, the concentrations of the 
stresses aQ In a veneer plate, which may be estimated on the 

basis of the value of the moment MQJ  proves to be more than 2.5 

times higher than In an Isotropie plate. This case of bending was 
Investigated for the first time by M.V. Nlkulln.* 

2. Torsion. An orthotroplc rectangular plate with round ap- 
erture In Its center Is deformed by torslonal moments Ä, which 
are distributed uniformly on all four sides (Pig. 178). 

C^/^J^iOlCX 

Let us only consider the simplest case where the principal 
directions In the plate are parallel to the sides. The solution 
of the problem Is obtained by a superposition of the distribu- 
tions of the moments and crosscut forces In the form 

Af^/M^O. Hxy = H,   Ns^Ny^O 

and the distribution corresponding to the functions 

wi W D^-H) [n(k+l) + 2(v1 -j-k)]    d ' 

Ha (1 —/.u,) 

(90.9) 

<og- __      _____ L 
DiilH - Pa) I« (A -H 1) + 2 (v, -\- k)l " "C3 

(90.10) 

After the transformations we obtain the following distribu- 
tions for the bending and torslonal moments A/fl and Ä fl on the 
contour of the hole: ö     rö 
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^- •2//-' Jr-ni 

//,, 

/D.Öä n{k 1  n-\   \) 
(ft-I-1)|-2^-1-ft) -x 

X[--,fc-j si,'^0  1  ('   I  "'ü) /■: tos2 ol sin 0 cos 0, 

«(ft t«-1-1) l/YP^ 
D, "(ft |  1) l-'iOvM) X 

x( /e cos- 'J |-siiiMjV 

(90.11) 

The  moment  distribution near the  aperture   in an Isotropie 
plate  is  characterized  by  the   formulas: 

Af. •//--ü-i-l) Sill20l 3-l-v 

//,5-     //-„-,   -cos20. 
(90.12) 

Figure 179 shows the graphs of distribution of the moments 
WQ and tf - on the contour of the aperture in a veneer plate; the 

x-axis is parallel to the fibers of the sheet. The bending moment 
reaches its maximum value near the point 6 = 60° and the points 
symmetrical with respect to it; the torsional moment reaches its 
maximum absolute value at the four points A,   A\t   B,   Bj: 

| AI, !,„„:= 2,15/-/; 
|//f9|m„-1.09//. 

(90.13) 
(90.14) 

i   ,i 

Fig. 179 

In such a plate of Isotropie material, with Poisson's coef- 
ficient equal to 0.3, we obtain 

|AIoL„-1.58//; 
l/AoL.---1.21//. 

(90.15) 
(90.16) 

The moment distribution graphs for the contour of the hole 
in an Isotropie plate are in their nature the same as the graphs 
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for the veneer plate and we shall not give them here. 

This problem was solved by V.N. Al'pert.* 

3. Pure bending of an orthotropic plate with a rigid circu- 
lar core. Consider an orthotropic rectangular plate with a round 
hole in its middle in which a core is soldered or glued in, which 
was not prestressed and which consists of a perfectly rigid non- 
deformed material. Let us consider the pure bending of such a 
plate for the case where the principal directions of elasticity 
are parallel to the sides. The position of the axes and the load 
distribution is shown in Fig. l80. 

Fig. 180 

In this case we are concerned with the second fundamental 
problem of the theory of elasticity since on the contour of the 
aperture the strains are given: owing to the rigidity of the core 
the edge of the aperture cannot be deformed,- it can only be dis- 
placed in space and rotated. Using the results of §88 we arrive 
at the following results. The bending and torsional moments and 
the crosscut forces are constituted from the moments and forces 
corresponding to pure bending of the massive plate 

Mxr----M,    M. Hxil^Nx~Ny. (90.17) 

and the additional moments and forces determined by functions of 
complex variables in the form 

Ma  l'i -hH . J_ 
V2)' ^1 - lla ' ^1 ' 

Ma  /•<! -|- Ht ' J_ 
• V2) t1! — V-i    ^2 ' 

(90.18) 

Here do and fl» are constants which do not influence the 
stress distribution in the plate; we can set them equal to zero. 

The formula for the bending moment M    acting on the edge of 

the core from the side of the plate and on the edge of the aper- 
ture from the side of the core has the form 

^-1~[(H-
:H^)co^o_-.gi(v1-t-VI-H/Osin2o].   (90.19) 

The moments A/Q and H  - near the core are determined by much 0     rS J 

more complex formulas. We cannot give these formulas in their 
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full length, we restrict ourselves to the values of the moments 
at significant points. 

At the points A  and Ai   (Pig. l80) 

A1,^r^(l-|^),/M^ = ^lr. //„..0.        (90.20) 

at the points B  and Si 

M A.    /    0 (90.21) 

In an Isotropie plate the moments near the core are equal to 

\i-l-v ' i-v    ;• J (90.22) 

(v  is  Poisson's  coefficient). 

At  the points  A  and Ai   of an  Isotropie  plate 

Mr~Mf±l.    Mh~-,Mr; 

at the points B  and Bi 

M, -Afiil'. /Mo^vAV 

(90.23) 

(90.24) 

In Fig. l8l we show the distribution of the moments M    along 

the core for a veneer plate loaded on the sides perpendicular to 
the fibers of the sheet, in Fig. 182 the same is shown for the 
case where the sides parallel to the fibers are loaded. The 
dashed curves represent the moment distribution in an Isotropie 
plate for which v = 0.3- 

Fig. 181 
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to 
In the first case cf a veneer plate the moment M    Is equal 

and in the second case 

(/U,.)mi:-.4,213AI. 

In the case of an Isotropie plate 

(90,25) 

(90.26) 

(90.27) 

Comparing the graphs of Pig. l8l and Fig. 182, we can see 
that the case where the sides parallel to the sheet fibers are 
loaded is less favorable. We see from these two graphs that the 
difference between the distributions of the moments M    in these r 
two cases is quite significant. In both cases the moment M 

reaches a maximum which is much higher than in an Isotropie plate. 

Fig. 182 

An approximate solution of the problem of bending of an an- 
isotroplc plate with rigid core, circular or elliptic, was ob- 
tained by B.Ya. Rodin.* 

M.F. Sheremet'yev derived a solution of the problem on the 
bending of an infinite anisotropic plate with a circular aperture 
whose edge is reinforced by a thin elastic ring (in the case of 
constant bending and torslonal moments applied "at infinity."** 
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[Footnotes] 

A solution of this problem Is to be found In our paper: 
"0 nekotorykh voprosakh, svyazannykh s teorlyey Izglba 
tonklkh pllt" [On Some Problems Connected with the The- 
ory of Bending of Thin Plates] Prlkladnaya matematlka 1 
mekhanlka [Applied Mathematics and Mechanics] Nov. 
Seriya [New Series], Vol. II, No. 2, 1938. 

See our paper mentioned In the last section. In this 
paper we used somewhat different denotations. 

This paper has been dealt with carefully in our paper 
mentioned In §86. 

Lekhnltskly, S.G., 0 nekotorykh voprosakh svyazannykh 
s teorlyey Izglba tonklkh pllt [On Some Problems Con- 
nected with the Theory of Bending of Thin Plates] Prlk- 
ladnaya matematlka 1 mekhanlka, Nov. Seriya, Vol. II, 
No. 2, 1938. In tils paper other notations were used. 

Nlkulln, M.V., Izglb pryamougol'noy tonkoy plity s el- 
llptlchesklm 1 krugovym otverstlyem Izglbayushchlm mo- 
mentaml, raspredelennyml ravnomerno po storonam [The 
Bending of a Rectangular Thin Plate with Elliptic or 
Circular Holes Bent by  Moments Distributed Uniformly 
on the Sides]. Diploma thesis, Saratov State University, 
Saratov 1954. 

Al'pert, V.N., Izglb pryamougol'noy ortotropnoy plity s 
elliptlchesklm otverstlyem pod deystvlyem krutyashchikh 
momentov, ravnomerno raspredelennykh po krayu plity [The 
Bending of a Rectangular Orthotroplc Plate with Ellip- 
tic Aperture Under the Action of Critical Moments Dis- 
tributed Uniformly on the Edge of the Plate] Diploma 
paper, Saratov State University, Saratov, 1954. 

Rodin, B.Ya., Izglb pryamougol'noy anizotropnoy plas- 
tlnki s zhestklm elliptlchesklm yadrom momentami, rav- 
nomerno raspredelennyml po dvum storonam [The Bending 
of a Rectangular Anisotropie Plate with a Rigid Ellip- 
tic Core by Moments Uniformly Distributed on Two Sides], 
Diploma thesis, Saratov State University, Saratov, 1954. 

Sheremet'yev, M.P., 1) Izglb tonklkh pllt s podkreplen- 
nym krayem [Bending of Thin Plates with Reinforced 
Edge] Ukrainskly matematicheskiy zhurnal [Ukrainian 
Mathematical Journal] Vol. 5, No. 1, 1953; 2) Izglb 
anizotropnykh 1 izotropnykh pllt oslablennykh otverstl- 
yem, kray kotorogo podkreplen uprugim tonkom kol'tsom 
[Bending of Anisotropie and Isotropie Plates Weakened 
by an Aperture, the Edge Being Reinforced by an Elas- 
tic Thin Ring] DAN UkrSSR, 1950, No. 6. 
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Chapter  12 

TRANSVERSE VIBRATIONS OF ANISOTROPIC PLATES 

§91.   FREE  VIBRATIONS  OF  A  PLATE 

In all cases  dealt  with previously  the  plates were  assumed 
to be  deformed by  static  loads.  The problem of the  investigation 
of  strains and stresses  in an anisotropic  plate  becomes  much 
more  complicate when the   load is assumed to  vary with time  or  to 
be  applied suddenly,   i.e.,   in the  case  of dynamic  loads.   The  dy- 
namic problems are  closely related with the problems of vibra- 
tions  of plates.   In the present chapter we  shall  consider brief- 
ly some problems of transverse vibrations  of anisotropic plates 
characterized by curvatures of the median surface. 

Let us consider a plate of arbitrary  form which is aniso- 
tropic and homogeneous but  generally not  orthotropic, with arbi- 
trarily fixed or free edges.  Let us suppose that certain forces 
distributed on the  surface  impart deflections  and velocities  in 
a direction perpendicular to the initial   (nondeformed) median 
surface, to the particles  arranged on the median surface;  at the 
njoment of time following the initial,  the plate  is  suddenly dis- 
charged from all external  loads.  Having receive the initial de- 
formation and velocity the plate, when unloaded,  begins to vibrate 
and the particles in the median surface move perpendicularly  to 
it;  the result is that the plate is bent  at  any moment of time. 
This type of oscillation is called free transverse vibration. 

The differential equation of vibration is obtained when we 
set up the equation of motion of an element  of the form of a 
rectangular parallelepiped of height  h and base dxdy. 

Let Y be the  specific weight of the material,  u^a,   i/,   t)   is 
the deflection of the median surface;  the  other denotations  for 
rigidities,  moments and crosscut  forces are  the  same as previ- 
ously.   Let us return to Fig.   126   (load q must  be  assumed absent). 

Instead of the  first  equilibrium equation   (62.1) we obtain 
the equation of motion 

On    \'li{['" Ox*'  '  *n"0xldy  '   ^n,i  '   -'^ O.xtOyi   ' (91.2) 

or 

^I)M OxOyt i ">= ^l 
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wh^re the force of inertia Is taken into account while the resist- 
ance of the surrounding medium and internal friction are ne- 
glected. 

tion 
In particular, for an orthotropic plate we obtain the equa- 

%-H{D-ä£+w D. ^)-»' (91.3) 

and  for  an Isotropie  plate  with rigidity  Dy   the  equation 

OP   '   in 
(91.4) 

The deflection w  satisfies boundary conditions which depend 
on the method of fixing of the plate's edge (with fixed, supported 
or free edges these conditions do not differ from the conditions 
in the case of equilibrium), and the initial conditions 

w ith ^---=0  ™-=w0(.v, y) dw' 
' Jt"' Vo{x, y), (91.5) 

where wt3   V9  are given quantities of initial deflection and ini- 
tial velocity of point (x, y). 

A comprehensive Investigation Into the problem of free vi- 
brations must be reduced to the determination of the deflection 
at an arbitrary point and at an arbitrary instant of time, but 
the most Important part of the problem is the determination of 
the frequency of natural vibrations and the elgenfunctions. In 
problems of the dynamics of plates the frequencies of the natural 
vibrations play an important part; they must be known in order to 
determine the dynamic stresses caused by a variable load. 

Let us briefly describe the course of solution of the problem 
on free transverse vibrations by the Fourier method. 

Let us introduce (for the sake of brevity) the operator L 

Equation (91.2) can then be written in the abbreviated form 

(91.6) 

dp    ' /it 
(91.7) 

We seek a solution of this equation in the form of the product 

■u» .--•(/! cus/;/ |- IUinj>t)\V{x. y), (91.8) 

where p Is the proper frequency of the plate which is to be deter- 
mined. * 

Substituting (91.8) in (91.7) we obtain for W  the equation 
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L\V pVif 1   W ■-■ ; 0. (91.9) 

We then determine the solution of this equation which satis- 
fies the boundary conditions (the conditions for W  In the case of 
a fixed, supported or free edge will not differ from the condi- 
tions for w).   In the case of simple contours, for example, a rec- 
tangular plate, an expression for W  can be chosen beforehand 
which makes It possible to satisfy the boundary conditions or 
rather satisfy them; the expression for them will contain arbi- 
trary constants. It is required that the function W  satisfies the 
boundary conditions and Is a solution to Eq. (91.7) so that we 
obtain a system of homogeneous equations for the unknown con- 
stants; this system has solutions which are ncnvanlshlng only In 
the case where Its determinant A(p) vanishes. From It we obtain 
the frequency equation 

A(/;)-0. (91.10) 

This equation will have an Infinite set of solutions which repre- 
sent the frequency spectrum for the plate given. The frequencies 
will In general depend on the two parameters: m  and n (m = 1, 2, 
3, ...; n =  1, 2, 3, ...). The lowest frequency Is called the fre- 
quency of the first harmonic, the other frequencies are the fre- 
quencies of higher order or the higher harmonics. . 

A function W „(x.  y)  corresponds to each frequency p  . 

which, on the basis of the homogeneous system of equations is de- 
termined to within a constant factor which can be taken equal to 
unity. The functions W      which are called eigenfunctions determine mn 
the form of the vibrations (i.e., the form of the bent surface 
corresponding to vibrations with frequencies p „)• 

When the problem is to be solved finally, i.e., when we have 
to determine wfx,   y,   t)  at an arbitrary point and an arbitrary 
instant of time the following is to be done. The given initial de- 
flection and initial velocity are expanded in series with respect 
to the eigenfunctions 1/ . i.e., we represent them in the form of 

UO CD CO CO 

in -j 1 /i -^ I i/i - I ii . I 
(91.11) 

and find the solution to Eq.   (91.7)  in the form of a sum of all 
solutions of the  form  (91.8). 

When the  coefficients a    .  3   ^  have been determined,   the de- mn      mn ' 
termination of the constants A  and B  is quite simple. The result 
obtained reads 

U3   CO 

W ''-' X X (a"", C0* /'"",' ■ I 'p2n  Si" /,""'/) U/""r (91.12) 
III--1 /ml 

The total deflection at an arbitrary point is obtained as 
the result of a superposition of an infinite series of deflec- 
tions whose variation with time is governed by the law of the 
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law of the simple harmonic vibrations with the frequencies p mn 

The  equation of  free  transverse  vibrations  in the more  gen- 
eral case where the plate rests on a massive  elastic base with an 
elastic  coefficient   k and  Is  subject to the  action of longitudinal 
forces  T  , ...     y. ar T  ,   S      which  are  time-Independent,   has  the  form; 

■3      xy 

dr-w 
"dfi 

g 
in -(/^-l ■ lav — T. -29    --"' 0a:f dxdy '"dytj 

0. (91.13) 

In  order to determine  the  natural  frequencies  and elgenfunctlons 
for  this  case we  can  use  the  same Fourier method which results   in 
an equation for the   function of W which,   of course,  is more  com- 
plicate  compared with   (91.9). 

§92.   DETERMINATION  OF   FREQUENCIES  OF  A  RECTANGULAR  0RTH0TR0PIC 
PLATE 

Let us consider a given rectangular homogeneous orthotropic 
plate whose principal directions of elasticity are parallel to 
the  sides; we have  to determine the  frequencies  of the natural 
vibrations.  This problem  can be  solved exactly  only  in the  case 
of an orthotropic plate with four supported  sides. 

Fig.   183 

We let the axes coincide with the sides of the plate (Fig, 
183) whose lengths are denoted by a  and b.   The function W  [see 
Eq. (91.8)] must satisfy the conditions 

with-« —0, x~a 

with.y^O, y^b 

^-0,  STl-v^-O; 

'dyi u^0- -d^ + v.^o. 

These conditions are satisfied by the expression 

wf .1   nmxi .   nny 
W',,,,,--Sill-■--Sill-ji-. 

(92.1) 

(92.2) 

Q 

(92.3) 

where m  and n  are Integral numbers. This expression is required 
to be a solution to Eq. (91.9) which, in the case of an orthotrop- 
ic plate assumes the form 

(92.10 

Substituting Eq.   (92.3)   in the  left-hand  side  and setting the 
result  equal to zero we  obtain 
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(92.9) 

D.(^*-I2"'("r)'l°=(7:)' 'I'-O.        (92.5) 

Prom this we obtain the frequency p  = p     : 

where o = a/b. 

The fundamental frequency is equal to 

Pn ■-- £ ]/^ /zvr^qro^.        (92.7) 

In particular, for a quadratic plate of side a 

., r- ,         (92.8) 

When the plate is Isotropie, we have* 

The given frequency p      corresponds to the deflection 

Vmn = (^m;. COS/?,,,,,'/ -|- /?,„„ sin plimi) sin - ~ sin -^. (92.11) 

The eigenfunctions (92.3) determine the form of the vibra- 
tions, i.e., the form of the bent surface of the plate executing 
the vibrations with the given frequencies p  . In Pig. iS^la we 

see the shape of the bent surface at an arbitrary moment of time 
for a plate vibrating at the first harmonic frequency pii; the 
point of maximum deviation or antinode is in the middle. Figure 
l8^b and £ show the bent surfaces of a plate vibrating at the 
frequencies P21   and piz',  in each case there are two antinodes 
and one of the axes of symmetry remains immobile, i.e., it re- 
presents a line of node. 

The total deflection of the plate whose arbitrary initial 
deviation w» and initial velocity V9  are given is obtained as the 
result' of a superposition of an infinite series of deflections 
of the form (92.11) 

CO    00 

«I ""-xLi  S(a'''"cos/VA|-^,-si,I/w)Sin'''^.Sin'i^     (92 12s 
m"i H-I p>"n I        « .   b \yz.ld) 

Here o^, ß^ are the expansion coefficients of initial deflec- 

tion and initial velocity in series of the eigenfunctions- in 
the given case they are double Fourier series^hose coe??icients 
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Fig.   181 

's- 

are  determined  from the  well-known  formulas 

a   6 

«HIM 
r-- M } }woSl" - a~

Sl"  / dx (ly. 
0   0 

a    6 

P'"" '" aft J  J l'o s"1 ■ a ■ sin "«   '^ ''-V- 

(92.13) 

For a plate where the two sides x =  0,  x  =  a  are supported and 
the others are fixed arbitrarily or free, the expression of the 
function of W  has the form 

where 

irt.yX   .    «n:A' 
-•■) sm -    - 

a    ) a 

k^^l/rt-'njhV n 

^■■Vu/*-lVh\ D*e«"> ' "> 

p"h-\aK      Dx 
- gr.'ill* l')i 

pVria*   .   O, 

(92.14) 

(92.15) 

This function satisfies the conditions 
From the conditions on the other sides a sys 
ous equations are obtained with four unkno'-.n 
frequencies are determined from equations ob 
terminant of the homogeneous system is set e 
value of m = 1, 2, 3> ••• corresponds an inf 

for supported sides, 
tern uf four homogene- 
s ; C,,,,, (?:ml C.im, Clm  the 
tained when the de- 
qual to zero. To each 
inite series of fre- 

quencies p  since the equation ^(p)^o    is  transcendental and has 

an infinite number of solutions. In each case where all sides of 
the plate are supported we obtain Eq. (92.6) for the frequencies. 
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§93. APPROXIMATION METHODS FOR THE DETERMINATION OF FREQUENCIES 

An accurate determination of the frequencies of a plate (ex- 
cept for a rectangular plate with two or four supported sides) en- 
tails considerable difficulties which are connected with the Inte- 
gration of the fourth-oräer equation (91.9) or (92.4) 

In practice It may prove to be valuable to have approxima- 
tion methods for the determination of the fundamental frequency, 
which are analogous to the methods applied in the investigation 
of the natural vibrations of beams. There exists a series of ap- 
proximation methods for the determination of the frequencies of 
transverse vibrations of beams which permit a quick determination 
of the frequency without an Integration of differential equations* 
(mainly the frequencies of the fundamental harmonics which are of 
greatest Interest in practice). These methods can easily be gener- 
alized for the case of a plate. 

We shall here consider one of them, the method by Rayleigh- 
Rltz, and we shall use it in order to determine approximately the 
fundamental frequency of rectangular, round and triangular plates. 

Using this method, we consider an elastic body executing free 
vibrations with the fundamental frequency (in our case a plate) 
as a system with one degree of freedom whose state in an arbitra- 
ry moment of time is determined by a single generalized coordi- 
nate q(t). 

In the case of a plate the deflection at an arbitrary instant 
of time is assumed to have the form of 

w^qiOWix. y), (93.1) 

where V is a given steady function satisfying the boundary condi- 
tions (depending on the method of fastening of the edge) and re- 
presenting approximately the form of the bent surface of the vi- 
brating plate. We then set up the equation of motion of the sys- 
tem with the help of the well-known Lagrange equations. In the 
given case we obtain a single equation corresponding to the number 
of degrees of freedom, which has the form: 

rf/ \dq')       dq   r dq ~ "' 
(93.2) 

where T  is the kinetic and 7 the potential energy of the system. 
For an orthotropic and homogeneous plate 

(y is the specific weight and h  the thickness). 

We denote the expression for V  in the abbreviated form 

-  388 - 

(93.3) 

i^i^^^gii^^ig^g^^ UM [^liiiirkaAMf--- -•---■■-"■ Mtt ■ —lIKinm i      i   üü mtm mmm - mm A 



II     -       :"    '■'   ^      - ■ "1." 
pilllMJ.Jll»HW l>   (I- wmmmm**" *r**^mmim. Ill „.vl"' . m" H ■■■     '[ 

V 11 V{\V)(lx(1y. (93.^) 

After having substituted the expressions for T  and V  the La- 
grange equations takes the form 

where p Is the frequency determined by the equation 

2 2* nv'm"xdy 

(93.5) 

(93.6) 
111 JJ Vi/'i'txdy 

The expression  for the  deflection  Is  obtained In the  form 

in -■■ ■■ (/I cos/;/ -1   B sin/;/) \V. (93.7) 

The a 
ing to Eq. 
the expres 
functions 
several dl 
an express 
as a first 
fixing of 
load. This 
the plate 
same form 

ccuracy of the determination o 
(93-6) depends essentially on 

slon of W.   For simple contours 
Is not too difficult; sometime 
fferent expressions for them. 
Ion proportional to the static 
approximation for W3  with the 

the edge under the Influence o 
Is equivalent to the supposlt 
executing the vibration of the 
as the surface of a plate bent 

f the frequencies accord- 
the suitable choice of 
the choice of these 

s one can give at once 
We can, for example, take 
deflection of the plate 
same conditions for the 

f a uniformly distributed 
ion that the surface of 
lowest harmonic has the 
by uniform pressure. 

Equation (93.6) determines the frequency p in a first ap- 
proximation. More accurate values of the frequency can be ob- 
tained when we determine the minimum of the expression 3'   dealt 
with in §4 [see Eq. (4.5)]. In the case of a plate executing a 
simple harmonic vibration with the frequency p, the expression 
for & takes the form 

9 ..~-rgqi» 

where 

S^\\\^V{\V)~p*\vi\dxdy 

(93.8) 

(93.9) 

(integration over the area of the plate). The problem is reduced 
to the determination of the function W  satisfying the boundary 
conditions and minimizing the Integral (93.9). 

An approximate solution of this variatlonal problem can be 
obtained by means of, e.g., Ritz's method, applying it in the 
same order as in the case of static bending of a plate, namely, 
by choosing an expression for W  in the form of a sum with inde- 
finite coefficients 

"^SS/U^mOf. S>). 
(93.10) 

where V  are continuous functions depending on two parameters mn 
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and satisfying the conditions on the edge of the plate (at least 
the kinematic ones). After having substituted this expression in 
Eq. (93.9) and integration, the quantity 5 can be represented in 
the form of a homogeneous square function of the coefficients A     . 

This function is then minimized and a system of homogeneous equa- 
tions of first degree is obtained for the coefficients 4. It is 

required that at least one of the coefficients is nonvanlshing, 
the determinant of this system is set equal to zero and the follow- 
ing frequency equation is obtained: 

A(p)-0. (93.11) 

The lowest nonzero solution will also be the approximate val- 
ue of the fundamental natural frequency. 

§94. EXAMPLES OF FREQUENCY DETERMINATION IN A FIRST APPROXIMATION 

Let us consider some examples. 

I. Rectangular plate with fixed sides. Let us determine the 
fundamental natural frequency of a rectangular orthotropic plate 
whose four sides are all fixed (Fig. 185). 

Pig. 185 

An exact solution to this problem is unknown as yet, but we 
can obtain an approximate one assuming that, say. 

W,m~{x>~*J(y*-^r, (9^.1) 

where m,   n are integral numbers. 

It  is obvious that all these functions   (and the  function W 
as a whole) will satisfy the boundary conditions 

. 

With ^-H-|-   Wmir--.dJ^i^0; 

with'.y-:±4 Wmn^fi^0. 
(94.2) 

(94.3) 

As a first approximation we take only the first term of the 
sum (93.10): 
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Substituting w In Eq. (93.6) and Integrating, we arrive at 

P"--j- /J(- Vk-io^w^-io^. (94.5) 

In particular, for a quadratic Isotropie plate with the ri- 
gidity D 

30,0 /'ffD 
a*  V    In 

We can also give another expression for W 

(94.6) 

mn 

W, 1()^[l.-..(-l)."cos2'^].[l -( -D-cos2'^]. (94.7) 

which, obviously, also satisfies all boundary conditions. The 
first approximation for the fundamental natural frequency Is ob- 
tained on the assumption that 

U^/l(l-l-cos2^)(l-| cos2^). 

The result of all calculations reads 

(94.8) 

^^^^I/Tvfö^z/VM-^-        (94.9) 

For an Isotropie quadratic plate we obtain from this formula 

„ -3_7,2 A^D (94.10) 

The difference between Eqs. (94.6) and (94.10) Is small: It 
amounts to 3'5%  referred to the lower of the two values. 

2. Circular plate with fixed rim. Let us determine the fun- 
damental natural frequency of an orthotroplc homogeneous plate 
whose rim Is fixed (Fig. 186, the x-y  frame coincides with t^e 
principal directions of elasticity). 

In order to obtain a first-order solution we use the ex- 
pression for the static deflection under the action of a uniform- 
ly distributed load derivad in §80. Assuming 

we obtain 
\V^.Aiai--x'*-~y'1)'i, 

In particular, for such a plate of Isotropie material* 

10.32    fj 
ii -- aä' y 
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3. Plate in the form of a rectangular triangle. Let us con- 
sider an orthotroplc plate In the form of a rectangular triangle 
with the legs a  and b,  the principal directions of elasticity 
being parallel to the legs (Fig. 187). 

Ht- 0 -JH 

° j^^^^bi^ -5^ 

Pig.  187 

When all three sides are fixed we can assume (see §85) 

W = /U'y(i-J-|)2 (94.14) 

and we then obtain from Eq. (93.6) the fundamental natural fre- 
quency 

Pn - ^ /i V^-TD^TD^- (94.15) 

Here o  = a/b. 

The formula for the frequency of the first harmonic of an 
Isotropie plate Is obtained from (94.15), assuming that 
D, = D2 = D3 = D. In particular, for an Isotropie plate with equal 
legs (c = 1) 

P"~    a*    V    AT ■ (94.16) 

In the case of three sides supported we have In a first ap- 
proximation 

For the frequency of the first harmonic we obtain 

Pn~--ir /^/öTT^äDTcvi-ü^       (94.18) 

For an Isotropie plate in the form of an isosceles rectang- 
ular triangle 

62,01 .fgß 
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Equations (9^. 15)-(91< • 19) have been obtained by V.G. Rusln (in his 
diploma thesis, see reference in §85). 

4. Plate in the form of an isosceles and an equally-sided 
triangle. The next example we consider is a plate in the form of 
an Isosceles triangle with a vertex angle of 2a fixed on all 
three sides. It Is supposed that the principal directions of elas- 
ticity are parallel and perpendicular to the axes of symmetry of 
the triangle. 

Pig.   188 

Using the approximate  expression of  static  deflection  [see 
Eq.   (85.12)]  we  obtain 

■^  [\acosa /        rt3slnaaj (94.20) 

Substituting (9^.20) in Eq. (93.6) we obtain after a transforma- 
tion 

9/5. (9^.21) 

In particular, for a plate in the form of an equilateral tri- 
angle with fixed sides Eq. (94.12) takes the form 

Pn - -6g- /f.- //VhÖ.GGT/V I - b,. (94.22) 

The frequency of the first harmonic for such an Isotropie 
plate is determined In a first approximation from the formula 

lO.J.l;. . (94.23) 

These results were obtained by R.V. Feodos'yev.* 

§95. FORCED OSCILLATIONS OF A PLATE 

The equation of fo ^ed oscillations, i.e., the equation of 
motion of a plate under  ^  ction of a variable load q(xJ   y,   t)^ 
is derived analogously as in the case of free vibrations, with 
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the only exception that the normal load q  must be taken into ac- 
count in the derivation (see Pig. 126). 

For a nonorthotropic plate we obtain the equation 

-•rr - - ■;-■• I-™ 
dt*    '   /it 'n 7<ii*> y- 0. (95.1) 

and for an orthotroplc one we have 

+l7(".S-i-2».Ä+D'^)"^'(- ^""-    (95-2) 

The problem is reduced to the determination of a solution to 
Eq. (95.1) or (95.2), which satisfies the boundary conditions and 
the initial conditions. An exact solution can be sought in the 
following way. 

At first we solve the problem of free oscillations and de- 
termine the frequencies of the natural oscillations, p  . and the 

elgenfunctlons W    .  We then represent the load q, as a function 

of x and :/, in the form of a series expanded with respect to the 
elgenfunctlons, 

9= 2 S «„„.(/)^„„.(x. y) 

and seek the solution in the form 

«»- S  S TmJl)\Vllln{x, y). 
HI c 1 || ^ 1 

For the functions T      we obtain the equation 

(95.3) 

(95.M 

T      J  2 X 1 mn~\- Pmnl mn '■ hi "mn(0- 

from which we arrive at 

7''"" ^: A cos t>"J + ^m si» l>mJ  I  Tm/1 (0. 

'W ~ Mi ,S [A"'" C0S', ' "f • D'"n *" P i + * (01 W., 

(95.5) 

(95.6) 

(95.7) 

T ^ is here a particular solution to the nonhomogeneous mn 
equation (95.5); its form depends on a    .   i.e., on the law of 

variation of the load with time. The constants A „  and B „  are mn mn 
determined from the initial conditions just as in the case of the 
free vibrations. 

Let us give the solution for a particular case. 

Consider the load acting on a rectangular supported plate 
given in the form of the function 

q-~-%{■■<•   ^CÜS/A*. (95.8) 
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I.e., Its distribution on the surface of the plate remains un- 
changed and the magnitude of it varies at each point according to 
the law of a simple harmonic oscillation with the frequency p. 
When we suppose that at the initial Instant of time the plate is 
at rest, we obtain 

w -- 
in y v- 

HI - I  11 -. 1 

--, (cos o/ 

where 

(■inn ~~ 

■1 

ab 

a    o 

JJ 
o   o 

(/„Hill sin 

<osr Osin-^sin^ 
a b 

nr.y   ,    , 

(95.9) 

(95.10) 

If the frequency of the load p coincides with any of the 
frequencies of the plate, the plate will oscillate in resonance 
Thus, if for any m  and n p = p , the corresponding term of the 

series (95.9) w      takes the indefinite form 0/0: disclosing the 

Indeterminacy we obtain 

«'., _. ^ 
/'T     'tPmn 

fsi»p,linlsin sin-   -<■ 
a o 

(95.11) 

This motion appears as a free oscillation with an amplitude 
increasing unlimitedly with time (proportional to the time). But 
this result was obtained when the resistance was ignored complete- 
ly, i.e., both the resistance of the surrounding medium and inter- 
nal friction were neglected in spite of the .cast that both factors 
influence essentially the process of oscillation; owing to them 
the amplitude of the oscillation remains finite. 

In practice resonance in the fundamental natural frequency 
may be dangerous if p = pii; the fundamental harmonic oscillations 
characterized by the antlnode in the middle of the plate are am- 
plified In the case of resonance and this may result In effects 
which can be dangerous for the strength of the plate. 

Manu- 
script 
Page 
No. 

383 

386 

388 

[Footnotes] 

More accurately, p is the circular frequency, a quan- 
tity connected with the oscillation period T  by the 
relation p = 2-n/T. 

See, e.g., Tlmoshenko, S.P., Teorlya kolebanly v Inzhe- 
nernom dele [The Theory of Oscillations in Engineering] 
GTTI, 1931, §56, page 308. 

In this connection see, e.g., the book by Tlmoshenko, 
S.P., mentioned in the preceding section and the book 
by S.A. Bernshteyn "Osnovy dinamiki sooruzhenly" [Fun- 
damentals of the Dynamics of Buildings] Gosstroylzdat, 
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1938, Chapter 5, where various methods of determining 
the frequencies of beams are considered in detail and 
Illustrated by many examples. 

391 See,  e.g.,  the  book by  S.P.   Timoshenko,   mentioned in 
§92,  page  313."Equation  (94.13)  yields a  first approx- 
imation;  in the  second approximation,   for an Isotropie 

plate,    P"~'iirY -j^'   (of.  this book). 

393 See footnote at  the  end of §85. 
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Chapter  13 

THE FUNDAMENTALS OF THE THEORY OF STABILITY OF PLATES 

§96. GENERAL STATEMENT OF THE PROBLEM OF THE STABILITY OF PLATES 

In the present chapter we shall formulate the problem of 
stability of plates and give the basic methods used to determine 
the critical loads, together with some general formulas which are 
in connection with the stability problem. 

A plate which is deformed by forces acting in the median 
surface possesses a single state of equilibrium which is stable 
as long as the forces are small in magnitude. The single and 
stable form of equilibrium corresponding to sufficiently small 
loads is characterized by the fact that the median surface of the 
plate remains plane; in the following we shall call this form of 
equilibrium fundamental. When, without altering the law of force 
distribution on the edge of the plate, the forces are increased, 
the moment may be reached at which the fundamental form of equi- 
librium is no longer unique and stable and other forms become 
possible which are characterized by a curved median surface. The 
plane form becomes unstable and the plate deformed by the forces 
may, under the action of even an insignificant transverse force, 
pass over from the unstable form to a stable, with a curved medi- 
an surface. In such cases the plate is  said to lose stability. In 
most cases the loss of stability of a construction element in the 
form of a plate is an undesirable effect ; it may disturb the cor- 
rectness of constructional work and even destroy it. In strength 
calculations of thin-walled construction elements in the form of 
slabs it is therefore necessary to pay great attention to that 
part of the calculation which deals with the choice of the dimen- 
sions or the magnitude of the effective forces such that in the 
construction work no effects of stability loss may appear. 

The problem of the stability of a plane plate in its general 
statement may be formulated in the following way. 

Consider a plate of given form on which external forces are 
applied such that they act in the median surface. In the general 
case the load is supposed to consist of two components: a load 
whose n^gnitude and law of distribution on the edge remain un- 
changed and a load which is given to within the factor A; this 
means that the law jf force distribution on the edge is given, 
but the magnitude of the forces may vary between zero and arbi- 
trarily high values. It is assumed that with X = 0 the plate is 
in stable equilibrium (general state of plane stresses), but as 
X  increases a moment may be reached when the uniqueness of equi- 
librium becomes disturbed. It is required to determine those 
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values of X = Xi3  Xz,  X*,   ... which describe the branching points 
of equilibrium. I.e., where besides the plane form other possible 
forms of equilibrium may exist (In the general case there Is an 
Infliilte series of such values). The lowest value of X with which 
the fundamental form of equilibrium ceases to be the only stable 
form Is called the critical value and the load corresponding to 
it is the critical load. 

Though an investigation of all possible forms of equilibrium 
of a plate is of great theoretical Interest, in practice one re- 
stricts oneself usually to the determination of the critical load 
and the form of equilibrium of the plate which becomes possible 
besides the plane one, when the load is equal to the critical 
load. The obtaining of an exact solution of the problem of the 
various forms of equilibrium and the stability is connected with 
great mathematical difficulties; one has to solve nonlinear equa- 
tions of the theory of elasticity taking high strains into ac- 
count . 

In practice we restrict ourselves therefore almost always to 
approximate solutions. 

§97. THE BASIC METHODS OF DETERMINING THE CRITICAL LOAD* 

Among the various approximation methods used in the determi- 
nation of critical loads, which at present are at our disposal, 
we shall consider the following three: 1) the static method; 2) 
the energy method and 3) the dynamic method. 

I. The static method. Considering the equilibrium of a plate 
loaded by forces acting in the median surface (part of these 
forces remains constant, the other part is given to within a fac- 
tor X) it is supposed that with a certain value of X a small cur- 
vature of the median surface becomes possible. A differential 
equation is set up to describe the curved surface taking the lon- 
gitudinal forces into account which are caused by the external 
load. Some of the coefficients of this equation will contain the 
factor X as a parameter. We then seek a solution to the equation 
obtained which satisfies all boundary conditions (depending on 
the way of fixing of the edge of the plate), which is not iden- 
tically equal to zero. Such a solution exists not with all values 
of X, but only with certain definite values Xi, X2, Xs ... (the 
characteristic numbers); the lowest nonvanishlng value of them 
is the critical, denoted X, . 

The equation of the curved surface is obtained from Eq. 
(6^.6)- or (64.7) where we must set q = 0  and substitute the val- 
ues of the longitudinal forces T  .  T j  S    .   In order to determine x       y       xy 
the longitudinal forces we must solve the plane problem; we ar- 
rive at the result: 

T^Vt-XT-;. V-T-j-f-m'. Sxtl^S-\-ls' (97.1) 

and the equation of the curved surface of an orthotropic plate 
has the form 

- 398 - 

; 

■, 

Pi 

™»""—' 1   mum 1      ■ .  - 



n—-.■'■T«^ -.  r-,,.-,, 

n div>   i on ilu;  l-b -<)--- — L)i~fcC~r*U'iWOy*   ' '^ dy' (97 2) 
....(,l+,y,)^-2(,s.|...sV^/-(VVMr;)^^o. 

According to the form of the plate's contour and the fixing 
of Its edges we seek a solution to the deflection equation In 
such a form which makes It possible to satisfy the boundary con- 
ditions or even satisfies them. The solution, a function w(xt   y)i 
will contain arbitrary constants. Satisfying the boundary condi- 
tions, one obtains a system of homogeneous equations for the con- 
stants which has a nonzero solution only if its determinant is 
vanishing. When we set the determinant of the system equal to 
zero we obtain an equation for X. From the Infinite series of 
solutions (the equation is usually obtained in a transcendental 
form) we must take the lowest nonzero solution. When the critical 
value X,  has been obtained the expression for the deflection can 

be determined with an accuracy to within an arbitrary constant 
factor. 

An arbitrary constant factor indicates that the state of 
equilibrium of the plate will be indifferent, which is also the 
case when the load is precisely equal to the critical. In partic- 
ular, when the factor is equal to zero, the form of equilibrium 
will be plane. 

2. The energy method. This method is based on the general 
theorems of equilibrium of a mechanical system. 

As we know from mechanics, the potential energy of a system 
in the state of equilibrium has an extremum. The equilibrium will 
be stable when the potential energy in the position of equilibrium 
has its minimum value (relative to the values corresponding to ar- 
bitrary possible small deviations from the position of equilibrium) 
and unstable when the energy has its maximum value; it is inde- 
finite when in the position of equilibrium the energy has neither 
a maximum nor a minimum. Applying this criterion to a plate one 
proceeds as follows. 

We consider two states of the plate: the state of equilibrium 
under the action of a given load with which the median surface re- 
mains plane, and the neighboring state, in which the median sur- 
face is slightly curved as the result of small possible displace- 
ments imparted to the plate. Let VQ  be the potential energy in the 
equilibrium position and V  the potential energy in the neighboring 
state. The equilibrium will be stable, when for all possible small 
deviations (i.e., deflections w)   7o < V,  unstable with V*  >  V  and 
indefinite with Vo = V-   If small possible deflections are imparted 
to the plate the potential energy will grow at the expense of the 
bending energy V.       and decrease owing to the work A  done by the 

external forces on the bending of the median surface. For the in- 
definite equilibrium 

VV-W4V„Jl.--/l1 (97.3) 
or 

Vti3.--AQ). (97.4) 
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Thus, for the determination of the critical value of X we 
must set equal to one another the potential energy of bending cor- 
responding to small curvatures of the median surface, and the work 
of the external forces. 

Applying the energy'method In practice one usually proceeds 
In the following way. According to the form of the plate and the 
fixing of Its edge we choose a suitable expression for the. de- 
flection In the form of a sum with Indefinite coefficients 

■ 

■w ~ S S/Vm..,"W (97.5) 
in ri 

«here w      are continuous functions satisfying all boundary condl- 

tlons. Substituting this expression In Eq. (97.^) we obtain a 
fraction for X, whose numerator and denominator are both functions 
of the coefficients A mn 

When In the expression for w  only a single term of the sum Is re- 
tained. In Eq. (97.6) the coefficient can be reduced and an ap- 
proximate value Is obtained for X which depends on m  and n and 
corresponds to the indefinite equilibrium of the plate. When Ex- 
pression (97-5) is taken in the form of a sum of two, three or 
more terms, the coefficient in Eq. (97.6) cannot be reduced. When 
we want to obtain the smallest of all possible values of X we 
must find the minimum of the fraction (97.6), i.e., the deriva- 
tives of X with respect to all A  „ are set equal to zero. But as mn 

d\  ._ I (DM      M    dN\ _\      d   (M     .'.,,       /q7 7N 

the problem of determining the minimum of the fraction (97.6) is 
equivalent to the problem of determining the minimum of the ex- 
pression 

U = M—\N. (97.8) 

As a result we obtain a system of homogeneous equations with 
respect to the coefficients A      and setting its determinant equal 
to zero we obtain an equationmror X; the smallest nonvanishing 
solution will be X, . 

3. The dynamic method. When a plate in the state of equili- 
brium under the action of external forces (where the median sur- 
face is a plane) is led out of the state of equilibrium by im- 
parting its particles small Initial displacements and velocities 
in a transverse direction, the plate will move and the nature of 
the motion will depend on the kind of equilibrium, stable, un- 
stable or indifferent. A plate which, by an initial perturbation, 
is brought out of its position of stable equilibrium will tend to 
return to this position, i.e., it recovers; if resistance is ig- 
nored, a perfectly elastic plate will perform undamped oscilla- 
tions about this position of equilibrium. If, however, the equi- 
librium was unstable, the plate will not tend to return to the 
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position of equilibrium but will remove from It and Its curvature 
Increases. 

Using the dynamic method we assume that the plate, which is 
In a state of equilibrium, receives an Initial arbitrary deviation 
and an initial velocity in a transverse direction. We set up a 
differential equation of motion, i.e., an equation of the trans- 
verse oscillations taking the longitudinal forces into account 
[see Eq. (91.13)]; this equation will contain A as a parameter. 
We then determine the frequencies of the natural oscillations of 
the plate, p , which will depend on the dimensions and elastic 

constants of the plate and on X.   Considering the expressions for 
the frequencies (or the equation from wnich they were derived) we 
notice the following. As long as A is small all frequencies ob- 
tained are real and the deflection of the plate is the result of 
superpositions of the deflections w ^  in  the form 

Vmn ' ■   {Ami COS /)„„/   I   /?„,„ sin />„„/) W„ni. ( 97 • 9 ) 

This means that the plate will oscillate about a position of 
equilibrium and equilibrium will be stable. As A Increases, for 
some frequencies zero or Imaginary values are obtained: p  = 0 

or p  = ip' ; the corresponding expressions of the type of 

(97.9) which constitute the deflection must be replaced by terms 
which grow unlimltedly with time: 

V>mn r ~ fAiii ■ H ^m-iO ^m»i (97.10) 
or . • 

wmn ---- {A e" ' 1 n '" ) ^ • (97.11) 

Owing to the presence of terms of this type the deflection 
will tend to grow unlimltedly with time and, consequently, with 
such values of A the plane form of the plate will be unstable (or 

The smallest nonvanishing value of A corresponding to the 
transition from the undamped oscillations (97.7) to a motion, 
which is characterized by deviations from the plane form which 
grow unlimltedly, is the critical value. 

In the following we shall only use the static method and 
the ,energy method. 

§98. THE WORK OF THE EXTERNAL FORCES 

When solving the problems of the stability of plates by 
means of the energy method, we encountered an expression for the 
work A  of the external forces, which results In small deviations 
from the plane form. Let us derive this expression. 

The derivation Is based on the assumption that the median 
surface of the plate is bent without suffering tensions or com- 
pressions; owing to this, bending Is accompanied by a mutual ap- 
proach of the plate's edges and the longitudinal forces perform 
work. 
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Let us consider elements of the median surface perpendicular 
to the axes a: and y  which are subject to the action of the com- 
presslve forces p  ,  p    and the tangential forces t   (per unit 
length)        x      y 

?• -/V ,<? 
■'U 

(98.1) 

We cut out of the plate a strip parallel to the x-axls of 
the width di/, and from It an element of the length dx. The ap- 
proach of the ends of this element (Fig. 189) Is equal to 

rfA     dx     dx cos a      ^ dx siII= a    . •' dx (^ \2 

The work of the forces is equal to 

d,\.   p^ty .A<lx[0x)  . 

(98.2) 

(98.3) 

The work Ai   of the forces for the whole plate is obtained by in- 
tegrating Eq. (98.3) over the area of the plate: 

Analogously, we have for the work of the forces p 

;9'3.i*) 

(98.5) 

In order to calculate the work of the tangential forces we 
consider the same element dxdy  shown in Fig. 189. Under the ac- 
tion of the tangential forces the element is distorted and its 
projection on the xy-plane has the form of a parallelogram with 

rfS; : w'-V (98.6) 

'ine displacement Y  is determined from the sixth formula of 

(5.1) assuming In it sinf„.„- - 7,rl/ and u = y = 0. Retaining only the 
terms which are small in second order we have 

7. •u dx    Oy 

Consequently, 

rih dw   Out 
dx ' Oy 

dy 

(98.7) 

(98.8) 

and the work of the tangential forces producing the displacement 
d&   is equal to 

1 A        11    0w    ihn  , dA,      tdx.    •   .   dy- J      dx    Oy   ■ 

The work of the tangential forces for the whole plate is 

vJK 0w   Ow 
v ' Oy 

dx dy. 

(98.9) 

(98.10) 

Adding the  expressions   for Ai,   /12  and /Is  we  obtain the work 
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of the longitudinal Forces In the case of small curvature of the 
plate: 

^JlMi")'!" dm dm 
O.K ' dy '•J\0y') . 

dx (I v. (98.11) 

Another (stricter) derivation of a formula for the work A 
may be found in S.P. ^'imoshenko's book.* 

Manu- 
script 
Page 
No. 

398 

^03 

399 
4oo 

[Footnotes] 

See, e.g., the book by S.P. Timoshenko: 1) Ustoychivost' 
uprugikh slstem [Stability of Elastic Systems] Gostekhiz- 
dat, 19^6, Chapter 7, Section 62; 2) Plastinki i oboloch- 
ki [Plates and*Shells] Gostekhlzdat, Moscow, 19^8, Chap- 
ter 8, Section 62. 

See his book "Ustoychivost1 uprugikh slstem" [Stability 
of Elastic Systems] Gostekhlzdat, 1946, Section 58, 
pages 280-282. 

[Transliterated Symbols] 

M3r = izg = izgib = bending 

Kp = kr = kriticheskiy = critical 
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Chapter 14 

THE STABILITY OF PLATES DEFORMED BY A DISTRIBUTED LOAD 
§99. THE STABILITY OF A RECTANGULAR ORTHOTROPIC PLATE WITH FOUR 

SUPPORTED SIDES, WHICH IS COMPRESSED IN THE PRINCIPAL DIREC- 
TION 

Among the various problems of stability of anlsotroplc plates 
which are Interesting for practice, there are relatively few which 
have been studied In detail and for which numerical results are 
available. In this connection we must, first of all, mention the 
stability problems of a rectangular orthotroplc plate and a plate 
In the form of an Infinitely long strip, which are deformed by 
forces distributed along the edges according to a simple law. We 
only know the solutions for the cases of normal load distributed 
uniformly and following a linear law, of a uniformly distributed 
tangential load and of the case of simultaneous action of normal 
and tangential loads. These solutions will be considered in the 
present chapter. 

Let us begin with the consideration of stability of a rec- 
tangular supported plate, which is compressed in a principal di- 
rection. 

We have a rectangular orthotroplc plate, all sides of which 
are resting on a support; along two sides normal compresslve 
forces are distributed uniformly. The principal directions in the 
plate are assumed parallel to its edges. We have to detw^mine the 
critical value of the forces Py,v»  with which the plane form of 

equilibrium ceases to be a unique and stable form (the plate loses 
equilibrium). 

rp 
' y 

*- 
9 

0 

Fig.   190 

X 
—>• 

Let us denote by a  and b  the length of the sides of the 
plate, Q  = a/h  is the ratio of the sides and p is the magnitude 
of the force per unit length; the coordinate frame is allowed to 
coincide with the sides of the olate (Fig. 190). 
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Before stability Is lost, the state of stress of the plate 
Is plane, with T;u — --p,  T^S,.^ ^ 0. 

The problem is easily solved with the help of any of the 
three basic methods described in §97. We prefer the static meth- 
od.* 

The equation of the bent surface has the form 

P, d'w   ,  „,, dhu      , n ö'w , dim      _ 
(99.1) 

We have to find a solution to this equation which is nonzero and 
satisfies the boundary conditions 

With-v-t).. .v^ ^O.^ + v/^O; (99.2) 

(99.3) 

These boundary conditions are satisfied by any of the expressions 

tu — Ah sin sin -~, 
a b 

(99.4) 

v;here A„„  is a constant coefficient and m  and n are integral num- 

bers. Substituting (99.4) in Eq. (99.1) we obtain 

As we are interested in a nonzero solution >the expression in 
the braces must be set equal to zero. From this we obtain 

The constant A      remains indefinite. Equation (99.6) yields 

all values of p corresponding to the values of m = 1, 2, 3, .. ., 
n  = 1, 2, 3, ...5 with which a curvature of the form (99.4) be- 
comes possible. Among the set of p-values we must choose the smal- 
lest one; it will also be the critical. It is obvious that the 
smallest value of p is obtained with « = 1 corresponding to a cur- 
vature in the direction of the side i, in the form of a sinusoidal 
semiwave. We then have to determine for which m  the expression for 
p, which corresponds to the given side ratio o, has the smallest 
value, and we have to determine this smallest value. 

With n = 1 the equation for p assumes the form 

---■!??5[/I:(v)!+^+^i1(i)T   
(99-7> 

We  shall here not  enter into details  of elementary investiga- 
tions  into Eq.   (99.7)  and only give the  fundamental results. 

1)  When the side ratio a  satisfies the condition 
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-//i'^gi, (99.8) 

where m'  Is an Integral number, we must set m = m' in Eq. (99.7) 
and we obtain the following formula* for the critical load 

^Ä^H-^). (99.9) 

This value will be the smallest of all values determined 
from Eq. (99.7). 

2) When 

c = c11p«y/«(//H-l)}/rgj. (99.10) 

where m is an arbitrary integer, two forms of equilibrium are 
possible with one and the same critical load: with w  semiwaves in 
the direction of side a: 

«^/l^siÄin-Y-; (99.11) 

and with the m  + Ist aemiwav- 

W = /l,B+Msinill±ilH.sln^. (99.12) 

On the basis of Eq. (99.10) it is easy to establish the num- 
ber of semiwaves m  corresponding to a given ratio o.  We have 

(99.13) 

if 0 < C < 1.4 1 {/g-1 , th.n /» = 1; 

if    '•4' l^W, < c < 2,45 {/gj . ,hen m =, 2; 

i f   2.45 y^gi < c < 3.46 y& ,  lhBn ,„ ^ 3 

etc. 

3) With an arbitrary value given for the side ratio a  the 
critical load is determined in the following way: the number m 
is established which corresponds to the given value of o [on the 
basis of the inequalities described above, or Eq. (99.10)]; the 
value obtained for m is substituted in Eq. (99.7) which also 
yields the value for the critical load. With high side ratios 
a > 3  the critical load is determined from Eq. (99.9). The for- 
mula for the critical load can be represented in the form 

Pv tVWLk, (99.14) *a 

where fe is a coefficient which depends on the ratio o/m  and the 
rigidity ratio. 

Dividing the quantity of the critical load by the thickness 
of the plate we obtain the. load per unit area or the critical 

- 406 - 

llljjljl^—J.^- ....... .... - , ■     |    ,1, - --  ...... .      ,       -..-■....—— - 



stress. 

In the particular case where the plate consists of an Iso- 
tropie material, Di =■-D2 =-= Dj ==--£> and we obtain from (99.7) the well- 
known formula* 

TJD im  , c y (99.15) 

The limiting ratios o  , with which the transition is carried 

out from m  semiwaves in the direction of the a-axis to the m + 1 
semiwave, are equal to 

fnp^/m(m+l). 

When o  is an integral number, m = a  and 

(99.16) 

(99.17) 

Let us give the results of calculations and graphic represen- 
tations for a veneer plate, using the numerical data of §67. 

Lot us consider a rectangular plate cut out of a veneer sheet 
in such a way that the principal directions of elasticity in it 
are parallel to the sides. When the plate is compressed in the 
direction of the fibers (Di > Dz),  the limiting side ratios cor- 
responding to the transition from m semiwaves in the direction of 
the compressive forces to the m  + 1st semiwave, are equal to 

Hence we obtain 

cnp---V"i{in-\.\). 1,86. 

if Ö < c < 2.63, .hen in =--- 1; 1 

if 2.63 <c< 4.56, «"en „i^2; | 

if 4.56 <c< 6.-15. 'hen,„r.;3 J 

(99.18) 

(99.19) 

etc. The minimum value of the coefficient k  is equal to 

ft-2,76 (99.20) 

and is obtained with 0 = 1.86 m'  where m'  is an integer. 

In the case of compression across the fibers of the sheet 
(Di  < Dz)  the limiting ratios are obtained from the formula 

c,,,.~/'«('«• I-!)• 0.54. (99.21) 
Hence we obtain 

(99.22) 

If 0<c<0,76. ihen m--.~. 1; 

if 0,76 <c< 1,31, «hen m : :2; 

if  1,31 <c< 1,86. then  m--^3; 

if   1.86 <C<2,41     then    Hi:-. 4 

etc. The minimum value of k  is also in this case equal to 2.76 but 
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Is obtained with a = 0.54 m'   Cm'  =  1,   2,   3,   ...). 

I »,852       7..C3   3        3.77.   A     4.51     5  C 

Pig.  191 

The values of the coefficient  k for certain ratlos o are 
given In Table  ?0 where also the corresponding number m of the 
semlwave Is giver;. 

Figure 191 shows a graph of fc as a function of the  side ra- 
tio o for a veneer plate compressed along the fibers of the sheet. 
Pig.  192 shows the  same  for a plate compressed across the  fibers. 

TABLE  20 

Values of the Coefficient k  for a Veneer Plate 
Compressed In the Principal Direction 

\    C>Knriic iiAO.ii. «o.ioKoii pyöniitKii (D^D.J 

c 
k 

L"' 

0,5 
ii.75 

1 

1 
»,53 
1 

1,86 
2,76 
1 

2 

2,79 
I 

2.63 
3.27 
1-2 

3 

2.96 
2 

00 
2.76 

2  CwaTiie noncpcic IIOAOKOII pjönniKii (/?i<D3) 

c 
k 

1 "* 
0.5 
2,79 
1 

0.51 
2.76 
1 

0,76 
3,27 
1-2 

1 
2,79 
2 

1.31 
2.93 
2-3 

1.62 
2.76 
3 

1.86 
2,85 
3-'l 

2  * 
2,79 
4 

00 
276 

: 

1) Compression along the fibers of the sheet; 
2) compression across the fibers of the sheet 
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Each graph consists of sections of the curves k  = f(o3  m) 
corresponding to different values of the Integer TO. When we want 

to determine k  for a given side ratio from 
the graph we must, from the point on the 
abscissa corresponding to the given o,   drop 
a normal to the next curve of the set. 

The value of the coefficient k   (In the 
given scale) Is equal to the distance from 
the abscissa to the next curve, and this 
curve will show which m  corresponds to the 
critical load. For example, we see from 
Pig. 191 that the normal dropped from the 
point c = 2.63 on the abscissa, passes 
through the point of Intersection of the 
curves with the parameters TO = 1 and TO = 2; 
consequently, with a  = 2.63 two values of 
TO are possible at the same time: TO = 1 and 
TO = 2, corresponding to k =  3.27. When we 
take a ratio of, say, c = 3, the next 
curve will be that with the parameter TO = 
= 2. This Indicates that a plate with this 
side ratio, having lost Its stability, pro- 
duces two semlwaves In the direction of the 
compresslve forces. Considering the curve 
makes us under.' tand the nonunlformlty of 
the variation of k  with a. 

-,---01-3 

O.S-li 11 1,31 1.6? 1.30 Z 
0,76 1,08 

Pig.  192 

Table 20 and the graphs show that the 
number of semlwaves. Into which the plate 
is divided, which is compressed across the 

fibers, is, as a rule, considerably higher than vin the case of 
compression along the fibers (with the same dimensions). Let us 
consider, for example, two olates with a side ratio of c = 2; the 
sheet fibers in the one are assumed parallel to the long sides and 
those in the other parallel to the short sides. In a compression 
along the long sides the first plate, having lost the stability, 
will form one semlwave in the direction of the compresslve forces, 
while in the second there will arise four semlwaves. 

When 
duced modu 
the limlti 

remain unc 
ward highe 
k is 3.^3. 
modulus of 
which is n 
which is c 

for a birch veneer we take the other values for the re- 
11 and coefficients also given in §67 [see Eq. (67.l6)], 
ng ratios a       and the ratios for which fe is a minimum 

hanged while the values of the coefficients k  change to- 
r values. In particular, the lowest value obtained for 
This Increase is chiefly due to the higher value of the 
shear, G's   entering Eqs. (99-7) and (99.9) (through Z?,) 

ow taken to be not 0.07*10s kg/cm2 but 0.12'105 kg/cm2, 
onslderably higher. 

§100. STABILITY OF A RECTANGULAR PLATE WITH TWO SUPPORTED SIDES 
COMPRESSED IN THE PRINCIPAL DIRECTION 

When a plate, as shown in Pig. 190, is supported on its 
loaded sides x = 0 and x = a,  while the sides y =  0  and y = b  are 
fixed arbitrarily or are free, the solution of Eq. (99.1) must be 
sought in the form 

-   ^09  ~ 
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w --/{y)sin mr,x (100.1) 

This expression satisfies the conditions on the supported 
sides. Substituting Eq. (100.1) In (99-1) we obtain the equation 
used to determine f(y): 

DJ* _ 2 ^ D,j" + ^ ffl ._.. „ (."^y] A.. o. (100.2) 

Let us denote the roots of the characteristic equation 

D^-2(^)JZV=4 D.^)'  .('^-O (100.3) 

by :,:/ii, Jzik-i   , respectively, where 

The expression for the deflection assumes the form 

(100.1) 

inr.x 
TO -: (/I cli k.y ■{- ß sli li^y 1 Ccos It^y |  D sin k.,y) sin -^ (100.5) 

The constants A,  3, Cs  D  are determined from the conditions 
on the sides a.  For each of the sides we have two conditions, al- 
together four; the unknown coefficients are equally many. We can 
therefore satisfy the conditions on the sides a  for any loading 
mode. Satisfying them we obtain a homogeneous system of four equa- 
tions for A,   B,   C3   D;  we set equal to zero the determinant of this 
system and so obtain an equation for p. Among all the solutions 
of the latter we must select the lowest nonzero solution which 
yields the critical load p. . 

For example, with a plate where the sides y =  0  and y  = h 
are fixed, the critical load is determined from the equation* 

ti.M W-v^r( cli £,6 cos k^bj 
(100.6) 

(which, of course, cannot be rjolved with respect to p). 

For long plates with a side ratio of c=-n/^>4 the critical 
load may be considered to be Independent of c. 

In particular, for a given Isotropie plate** 

P*P (100.7) 

An exact determination of the critical load for a plate with 
two supported sides is connected with the solution of a compli- 
cated transcendental equation.*** Approximate formulas for the 
determination of the critical load can be obtained with the help 
of the energy method. Assuming that the plate (compressed in the 
principal direction), having lost its stability, takes a sinusold- 
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al curvature In the direction of the compresslve load, we shall 
seek the expression for the deflection in the form of (100.1). 

The potential energy for the curved plate has become higher 
at the expense of the bending energy, which is determined by Eq. 
(61.22) and in the given case is equal to 

6 

0 

(100.8) 

When the plate is bent by a compresslve force, this force 
performs work which is equal to* 

0 

Equating Eqs. (100.8) and (100.9) we obtain 

(100.9) 

m\ p(ly0 

(100.10) 

We then choose an expression for the function / satisfying 
the conditions on the sides a  and yielding a smooth surface in 
the form of a sum with indefinite coefficients 

/-S'U.Cv). (100.11) 

Substituting this expression in Eq. (100.10) we determine the 
:Inlmum of p which, as shown in §97, is equivalent to the minimum 
nbtained for the expression 

u = f[,/«;r ^(^)\/§//",. (7)'/-K/M- 
(100.12) 

For a plate  with  fixed  sides y  =  0  and y  = b vie  can  obtain 

/-»(i-'-";■'■)■ (loo.«) 

Let us consider the first approximation in greater detail. 
In the first approximation, for a plate with two sides supported 
and two sides fixed, we have 

/-=.')„(.  cns'7). 
(100.Ill) 
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where n Is an Integer to be determined in the following. Substi- 
tuting f  In Eq. (100.10) we obtain 

It Is evident that p will have Its smallest value with n = 1 
and the critical load can therefore be determined by means of the 
formula 

p^im[/^ , 2,6??|r+6.33/5(.L)'].   (100.16) 

We then have to determine the number m  of the semlwaves in 
the direction of the compresslve forces, which are formed by the 
plate after having lost its stability. 

The results of an investigation of Eqs. (100.16) carried out 
in the same way as in the case of a plate with four supported 
sides results in the following: 

1) If the side ratio satisfies the condition 

c=:-0.058/;/)/^. 

where m' is an integer, then m = m'  and 

_ n» VO{D 
up 

(100.17) 

(100.18) 

This value will be the  lowest  of all values determined ac- 
cording to  Eq.   (100.16). 

2)   If 

c -^ cup ^ - 0.65S Ym (m -\- 1) |/*gi, (100.19) 

where m is an integer, with one and the same critical load, in 
the direction of the a-axis there may exist forms of equilibrium 
with m semlwaves and with m +  1  semlwaves: 

■w == Ay 11 —cos—r-1 sin , 

w »M 1 ~ cos 2ny ) sin -—,—-!— 
J a 

(100.20) 

(100.21) 

For a ratio a  which does not satisfy Conditions (100.17) or 
(100.19) the number of semlwaves is determined on the basis of 
the following inequalities: 
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3) In order to determine the critical load with a given side 
ratio we determine the number m  on the basis of Eq. (100.22), 
i.e., we determine the line in which the given ratio is mentioned 
and, having obtained m, we determine p,  from Eq. (100.16). With 

high side ratios the critical load can be determined from Eq. 
(100.18). 

tion 
For a long Isotropie plate we obtain in a first approxima- 

p   ^^.7 29 (100.23) 

whereas the coefficient of the more exact formula (100.7) is equal 
to 7. The error of the first approximation amounts to about i\%. 

For a given veneer plate we obtain in a first approximation 

p .M^o,. 5;63. 
b* (100.24) 

§101. THE STABILITY OF A RECTANGULAR PLATE COMPRESSED IN TWO DI- 
RECTIONS 

A rectangular orthotropic plate whose principal directions 
are parallel to the sides is compressed by the load p distrib- 

uted uniformly on two sides and the load p distributed uniformly 

on the other two sides (Fig. 193). The problem of the stability 
of such a plate is solved for the case of four supported sides.* 

y 

mxrn 

nrmi: 
M- 

Px 

• 

Fig.   193 

The deflection equation will have the  form 
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if 0,931 

if 0 0.931 

<c< 1.G1 

V ßa' 
,hen in ---- I; 

then   in —- 2; 

if l.GI     |/"gi<c<2>28   ]/"gi.   then   WI_3 

(100.22) 
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D' dF + 2D^ ^ + ^ T/4 -1- (101.1) 

The solution Is sought in the form of 

w = /lm,,siii-ä-sin-^. (101.2) 

Requiring that Eq. (101.2) be a solution to Eq. (101.1) we 
obtain the dependence 

For Ithe definiteness of the problem It is also necessary to 
give additional conditions for the forces p and p    which deter- x y 
mine the interrelation of these forces. This interrelation may, 
of course, be of various types; one of the forces may be constant 
and the other variable, or the ratio of the forces may remain con- 
stant, etc. If one of the forces is tensile, it must be provided 
in Eq. (101.3) with a minus sign. 

Let us consider several particular cases of force distribu- 
tion. 

1) The forces p    and p are variable but the ratio of their x y 
magnitudes remains constant 

Px — )••   Py — >-a. 

The critical value X is determined on the basis of the for- 
mula 

^v^fm+^wm- 
Out next task is to determine the values of m  and n  corre- 

sponding bo the smallest X and the critical value X,  Itself. If 

the force p is a tensile force a must be taken with a minus sign. 
y 

Let us give some numerical results for a quadratic veneer 
plate (the a-axis is assumed in the direction of the sheet fibers, 
i.e., i?i > Z?z). 

a) A square plate is compressed by forces distributed uni- 
formly on all sides (p^=/)„=:--= X, 0^= I): 

X^üiV^.s^; m^\l n--~.2. (101.5) 

Having lost its stability, the plate forms one semiwave in 
the direction of the fibers of the sheet and two semlwaves in a 
direction perpendicular to the fibers. 
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b) A square plate Is compressed by forces distributed uni- 
formly on two sides and extended by forces of the same magnitude 
distributed uniformly on the other sides {p^^-h p,j — —h o. — ~\). 

In the case of compression along the fibers of the sheet and 
tension across the fibers 

X^^.^p"?. 19.67; „1^2. n-l. (101.6) 

With compression across the fibers and tension along the fi- 
bers 

K.t^ltYh2i.it72;    m^2. n-1. (101.7) 

In the first case the plate's stability Is higher; the criti- 
cal value X,  Is higher than this value for the second case by a 

factor of about 5.3. In both cases the loss of stability Is ac- 
companied by the formation of two semlwaves In the direction of . 
the compresslve forces and one semlwave in the direction of the 
tensile forces. 

For a supported Isotropie plate with arbitrary side ratio o, 
compressed by forces X which are distributed uniformly along the 
four sides we obtain* 

^ ^ 4?" (l + i"): '" ^ '.• " ^ 1.- (101.8) 

2) Compresslve forces X are distributed uniformly on the 
oides a; = 0 and x = a, and tensile forces p are distributed uni- 
formly along the sides y =  0  and y = b;  the compresslve force may 
vary In Its amount, the tensile forces remain unchanged. We have 
to estimate the Influence of additional tensile forces on the val- 
v e of the critical compresslve load. 

In Eq. (101.3) we must substitute Px---)., pvr^—.p    ; then 

''" r.3 YThn-i ^'"' " i 

The lowest value of X Is obtained with n = 1, where In the direc- 
tion of the tensile forces one semlwave Is formed. The results of 
a further investigation of Eq. (101.9) may be formulated in the 
following way: 

a) When the side ratio o  satisfies the condition 

^V/^TW' (loi.io) 

where m'  is an Integer, the critical value of X is equal to 
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1  _ rlVjlS [f (101.11) 

This value will be the smallest of all values determined fron 
Eq. (101.9) and the side ratios (101.10) will not be the most 
favorable ones. Additional tensile forces will raise the critical 
load, i.e., increase the stability of the plate, as this was to hi 
expected. 

b) The limiting ratios of the sides at which the transition 
from m  semiwaves in the direction of the compressive forces to 
m + 1 semiwaves takes place Is equal to 

""W1**]' Pb'r 

V    /V'r.VJ, 
(101.12) 

With these side ratios the plate has maximum stability. 

§102. THE STABILITY OF A RECTANGULAR PLATE LOADED BY FORCES WHOSE 
DISTRIBUTION IS GOVERNED BY A LINEAR LAW 

Let us consider a rectangular orthotropic plate whose prin- 
cipal directions are parallel to the sides and all fcur sides are 
supported. Assume normal forces distributed on two sides according 
to a linear law (Fig. 194) 

,=a(,-a|) (102.1) 

which, in the general case, can be reduced to a tensile or com- 
pressive force and a bending moment. It is required to determine 
the critical value X,  at which the plate loses stability. 

P=M'-T-0 

In the case given the deflection equation (97.2) will have a 
variable coefficient, a fact which encumbers its integration. We 
shall therefore use the energy method.* 

When the plate receives slight deflections, the forces per- 
form work equal to 
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a b 

^Stt-mp""-        (io2-2) 

From the equation 

u -A (102.3) V,„P^A 

(see §97) we obtain 

a 6 
r r 

>■" IT-.' 

IJ■('-0(^)!""",o d«-« 

The expression for the deflection which satisfies the bound- 
ary conditions can be chosen in the form of a sum 

»-S»...si"-'™s'""?- (102-5) 

Substituting this expression in Eq. (102.4) and integrating 
yields a result in the form of a fraction whose numerator and de- 
nominator are homogeneous square functions of kmn'  With the sum 
(102.5) consisting of a given number of terms we have as our next 
task to solve the problem of the minimum of the fraction mentioned 
above. 

In a first approximation we put 

iu^Ams\n.~~sU\-f (102.6) 

and then we obtain from (102.4) 

(102.7) 
(c == a/b). 

Comparing this expression with (99-7) it can be noticed that 
in a first approximation the critical value X.  agrees with the 
critical load for a plate whose sides are equal to «yi—0,5a an(j 
öl/T —0.5a,  compressed by force? which are distributed uniformly 
on two sides. Equation (102.7) can only be used in the case of 
small a where the distribution of the load is almost uniformly; 
in the case of pure bending a = 2 the formula becomes senseless. 

The second approximation is obtained when the sum (102.5) 
consists of two terms, i.e., when 

W^.(A,11siI,-7--Mii1aSi..^)MnÄ-. (102.8) 

The problem of determining the minimum of the  fraction.(102.4) 
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proves to be equivalent to the problem of the minimum of a square 
function of the  form* 

U = - n'c     tn i.l^(^IiKa-.X'(l-0.5a)l-- 

-2/l„a-4m^
,-f/t!.2[«/„2-->/(»-0.5a)l), 

(102.9) 

Here we Introduced the abbreviations 

X'-- 
).63 

r.' /DjOj 

(102.10) 

Setting up arbitrary functions U  with respect to Aml  and yl^ 

and setting them equal to zero we obtain the equations 
IGcrV 

/'«.. K,. — >>' 0 " 0.5 a)| - Ain2 -(jr.j .r-—-0, 

ICaX' 
- A«n -Tjä- -I" "»»u l«H.2 ->/(!-- 0.5a)l - 0. 

(102.11) 

When we set the determinant of this system equal to zero we 
obtain two series of values of X: 

'D,Di f (1 — 0.5a)-0,5(ff,„i + a„,,.) .H 

]/o - 0. 5a)3.0.25(ffml-flm2)3 
/lCa\ 

III3 

(I—0,5aP lÜaVJ 

(102.12) 

In the following we have to determine the number m  which, 
with the given side ratio, corresponds to the smallest X, and we 
have to determine this X which will be the critical value in the 
second approximation. 

Let us enter into details of the case of pure bending where 
0 = 2 and the forces can be reduced to the moments M.   The formula 
ror the critical value of the moment can be represented in the 
form of 

r.2 V^D,,  . 
Mtif — g «. 

where 

* r^ J2 /«Hil"m2  =: 2.78 V<lmlat 

(102.13) 

(102,14) 

The quantity of the critical  stress in the outermost  fibers 
of the plate,  j/  = 0 and y = b,   is determined from the formula 
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*VDjj:ib (102.15) 
ftJ/i 

An investigation of the coefficient k  corresponding to vari- 
ous side ratios is carried out similarly as this was done in §99 
in the case of uniform compression and yields the following re- 
sults. 

1) If 

c-0-707"1'^' (102.16) 

where m' is an integral number, we must, when k  is determined 
from Eq. (102.14), set m = m'  and then we obtain 

ft= ll.l (1.25-1---^^). (102.17) 

This value will also be the lowest of all possible values 
for the plate with given rigidities and the ratio (102.16) will 
therefore be the smallest favorable one. 

2) The limiting ratios a      with which it becomes possible 

that two forms of equilibrium exist at the same time, namely 
those with m and m + 1 semiwaves, are obtained from the formula 

Cu9^/¥Mp.^    (m^l.2^....).        (102.18) 

Taking this formula into account we arrive at the following 
result: 4/"7T 

If 0<c< K a'  ,h'"n "'::= 1: 

if   V^zrl<c < l-^ V^TV 
,hen "' ^2; 

if 1.73 ^"^<c<2.45|/rg4.,hen w..3 ) 

(102.19) 

etc. With a given ratio a  we first determine the number m  and 
then, on the basis of Eq. (102.14), the coefficient of the cri- 
tical moment. 

In particular, for the veneer plate considered previously, 
where the sides perpendicular to the fibers are loaded (Di > Dz) 
the limiting ratios are equal to 

flip == l ,32 /w («rpl)- (102.20) 

The lowest value of the coefficient k  is pqual to 

Ä---18.1 

and is obtained if c = 1.32 m (m = 1, 2, 3, •••)• 
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For such a plate loaded on the sides parallel to the fibers 
(01 < Dz) 

C„P = 0,382 Ym\m  \- 1) (102.22) 

The lowest value of k  is equal to 18.1, as before, but now 
it is obtained with a =  0.382 m. Just as in the case of compres- 
sion, the plate whose sides parallel to the fibers are loaded 
will, when it has lost its stability, form a greater number of 
semiwaves than a plate where the sides perpendicular to the fi- 
bers of the sheet are loaded. 

In Table 21 we give the values of k  for a veneer plate, for 
several values of a  and given values of the number of semiwaves 
m. 

TABLE 21 

Values of the Coefficients k  for a Ve- 
neer Plate Bent by a Moment 

Ö 
Di> 

k          1 

0.5 
1 
2 
3 

■15.5 
19.S 
19,8 
18.5 
18.1 

i Di < O-a               j 

m 
■ 

1 • 19,8 1          I 
1- 18.5 3          i 
2 13.2 

5         1 
2 18.2 8         ! 

*  18,1 """                   \ 

A further improvement of the coefficient k  is obtained when 
we use a third approximation 

V) - ("U sin? + AnA sin 
2^+ Am, siu3-^) si,.^-.       (102.23) 

For an Isotropie plate bent by moments, the critical value 
of the moment is determined in a second approximation according 
to the formula 

where 

*=wsM(M-S)- 

(102.24) 

(102.25) 

The minimum value of this coefficient is obtained for ratios 
which satisfy the condition c^m/V^ (/n~-l, 2. 3, ...)'.  it is (in a 
second approximation) equal to 25.0.* 

§103. THE STABILITY OF A RECTANGULAR PLATE DEFORMED BY TANGENTIAL 
FORCES 

Consider a rectangular orthotroplc plate deformed by tangen- 
tial forces t, which are distributed uniformly on all four sides 
(Fig. 195). The principal directions are parallel to the sides, 
all sides are resting on supports. We have to determine the cri- 
tical forces t,     at which the plate loses its stability. This 
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problem is solved approximately by the enargy method of Ya.I. 
Sekerzh-Zen'kovich.* 

The work of the tangential forces corresponding to slight 
deflections is equal to** 

a b 
yi ... / f f (ho    din   ,     , 

(103.1) 

When we set this work equal to the potential energy of bending, 
we obtain 

a 6 

•l>(lx(ty 

/ = _' 
a b 

of C dw    dw 
J J üj--dy<tx'ly 

(103.2) 

o o 

where 

The expression for the deflection w  satisfying all conditions 
on the sides can be chosen in the form of a sum 

(103.3) 

The further progress of the solution of this problem is gen- 
erally the same as in the case of normal load distributed accord- 
ing to a linear law (see §102). 

The problem is solved such that numerical results and cal- 
culation formulas are obtained for a plate of birch veneer. Ya.I. 
Sekerzh-Zen'kovich used the followjng values for the reduced mod- 
uli and coefficients in the bending of such a veneer: 

E[^ 1,4 . I0r'kg/cm2, 

G'r-0,12. lO-'kg/cm^ 

(103.4) 

—>-  —>- —>- —>■ — >- 

j 

t 

■ 1 

1. 
 a   , 

Pig. 195 
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The fundamental results consist of the following. When the 
fibers of the sheet are parallel to the long sides, it is suffici- 
ent for practice to be satisfied with an accuracy yielded by a 
deflection expression in the form of the sum of five terms, i.e., 
we put 

u< ..--- (/I,, sin -^ I- A,, si"- ^-) siii^-l- An sin ~ si,, 2y + 

. / , .   r.x   .    ,      .   3-.v\ . 3^y       (IO3. 5) 
I ^13

s'" „   I ^js'l'v)s,n /• 

For the constants i4 . . we obtain a system of five homogeneous equa- 

tions whose determinant depends on t  and must be set equal to 
zero. 

Considering a plate in which the sheet fibers are parallel 
to the short sides, the author mentioned above, intending to ob- 
tain the same accuracy, took another number of terms in the sum 
of (103.3) according to the side ratio. For a square plate the ex- 
pression for w  was taken in the form of (103.5). For a plate with 
the side ratio o = 2 it is suggested to use the formula 

^iiSin —+ ^1sln-rjsin ^--f 
■ /,     .   3it.r  .    .     .   5T:A\  .  2™ (103.6) 

For a plate with a side ratio c = 3 

/ ,      ,   3r.x   ,     .      .   5r.x\   .   ny   . w ---- ^ sin — -I- /l0l sin —j sin f -|- 

,   / ,      .   dn.f   .     .       .. Gn.v\   .   2r.y 

-f-(/t«sin--4-^2Sll,-^js1"-/'' 
(103.7) 

The author gives the following formula for the critical load: 

'«P^'O^*' (103.8) 

where fe is a coefficient depending on the side ratio. 

The critical tangential stress is obtained by dividing the 
load by the thickness h: 

-Kr^l0'[j)\. (103.9) 

In Table 22 we have compiled the numerical values of the co- 
efficient k  for several ratios 0. 

For  a veneer plate with the elastic constants (103.4) the 
following approximate formulas have been suggested: 

a) the fibers of the sheet are parallel to the long sides: 

j ,^(0,*, f^); (103.10) 
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b)  the fibers of the  sheet are parallel to the  short  sides 

f^ i- 0*c) 

TABLE  22 

Values of the  Coefficient  k for a Veneer Plate 
Tangential Forces 

1. no.ioKim py- 
CmiiKii imp.n.i- 
^c.ii.MMKopor 
KII.M  C'lOpOlia.M 

2. fio.ioKiia py- 
önntKii nnpn.i 
JICAbdIJ A.1IIII- 
IIIJM CTOpO- 
IIXM      .... 

c= 1 1,2 I.I ,.» 1,8 2 

38,39 -■ — •- — 35,0G 

38.39 27,39 21,23 I7.Ü3 15,35 13,87 

2,5 

11,08 

3 CO 

33,0G 32.15 

11,29 9,28 

1) The fibers of the sheet are parallel to the 
short aides; 2)  the fibers of the sheet are 
parallel to the long sides. 

(103.11) 

In these formulas c = -.a/l>, a>b; n'  is the reduced Young's modu- 
lus in the direction parallel to the fibers of the sheet. 

The first formula yields resul s of errors not exceeding l\%, 
the second formula such of an error up to 2%. 

§104. THE STABILITY OF 
TIAL FORCES 

INFINITELY LONG STRIP LOADED BY TANGEN- 

In the case of a high side ratio (c > 4) the influence of the 
short sides can be neglected and a rectangular plate may be con- 
sidered as an infinite strip. 

Let us consider an infinite band on the sides of which tan- 
gential forces t are distributed uniformly per unit length (Pig. 
196). A strict solution of the problem of the stability was ob- 
tained by Seydel for an orthotroplc strip whose principal direc- 
tions are parallel and perpendicular to the sides, in the case 
of supported and fixed sides; the solution was obtained with the 
help of the static method.* 

Pig. 196 
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Let us Indicate briefly the way of derivation of this solu- 
tion and give the basic results. 

The deflection equation reads 

It Is required to find a nonzero solution to this equation 
which satisfies the boundary conditions: 

a) on the supported sides 

— g 1-^-0; (104.2) 

b) on fixed sides 

w-f-^o. (104.3) 

The solution Is sought In the form 

For the function / we obtain the equation 

^/,V~2D8(
2-i)V" + '/^/' + Ol(J)V«01 (104.5) 

whose general Integral depends on the roots of the characteristic 
equation 

D^-2^{^)2^-l4'5-t-D'(y)^0-        (104.6) 

Introducing the new quantity 3 = bs/Zi  we obtain the following 
equation for It: 

P'+^M^+B-;-'"«- (1°^) 
This equation has the solutions 

P 
Ps 
.-«(l-M).   P.-aO-«).   ] 
9-a(._l..|.,n). p, = a(-l-Wl). J U0M.Ö) 

where a Is a real number, m  and n are real or complex numbers. 

An expression for the bending Is obtained In the following 
form: 

w - ^~*UW^ -t-C^ +CaCT^ +ClCT^).       (l0l+>9) 

On the basis  of the boundary conditions   (104.2)  or   (104.3) 
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we obtain four homogeneous equations for the constants C,, C21 Cv Cv 
and when the determinant of the system Is set equal to zero we 
obtain an equation for the determination of the critical force 

kr 

The load t  with which bending becomes possible Is obtained 
as a function of K. We then have to determine the value of K cor- 
responding to the minimum value of t  and precisely this minimum 
value will be equal to the critical value t,    . 

Having lost the stability, the plate forms a series of waves 
which make with the sides a certain angle; the wavelength Is char- 
acterized by the parameter ;<, 

Seydel introduces the quantity f) :-=i-_y.-? and gives the results 

of calculations of the critical load as functions of 

For plates where 0 Is between 1 and «> we obtain 

Vn,T4 (104.10) 

(104.11) 

the values of the  coefficients C    and C  are compiled In Table 
23. a a * 

TABLE   23 

Values  of the  Coefficients  C 
and  C a 

a 
1     CTO|iUllM 

2 oncpiu 

Q    | 

13.17 
1(VS 
9,95 
9,25 

8.7 
8.'1 

8.25 
8,125 

2,-l9 
2,28 
2,16 
2,13 

2,08 

2,05 

1 Cm 1UP1N 

y=- ^ 
3    n.nc i.i iiu 

cn c'a 

22.15 1.6G 
18.75 1,51 
17.55 1.13 
IG.6 1,11 

15.85 l.'ll 
I5;'I5 

— 1,33 
15.25 — 
15.071 *"~ 

1) Sides; 2) supported; 3) 
fixed. 

For plates where -is  lies within the limits of zero and 1, 

(104.12) 
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■/ ---. 0 •s^/S- (104.13) 

The values of the coefficients C, and C'  are compiled in Table 
24. b b * 

For  a strip with supported sides, which may also be nonortho- 
tropic, we can obtain an approximate solution by means of S.P. 
Tlmoshenko's method. 

Let us first consider an orthotropic plate whose principal 
directions are parallel and perpendicular to the sides. 

TABLE 24 

The Values of the Coefficients 
Cb  and C£ 

1   CTOIIOIIN 1    CTO HHII4                     | 

.   b .   * y = ±-2    • y - ± 2 
20iicpri4 3    "Ac 131114 

0 Co c; cb c'b 

0 11.71 18,59 
0,05 — 1,92 — 1,16 
0,2 11,8 1,91 18,85 1,20 
0,5 12,2 2,07 19.9 1.36 
I 13.17 2,19 22.15 1.G6 

1) Sides; 2) supported; 3) 
fixed. 

The directions of the axes are not the same as in Pig. 196, 
but a little other: we take an arbitrary point on the side of the 
strip as the origin of coordinates and the a;-axis coincident with 
the side. We shall seek an approximate solution to Eq. (104.1) in 
the form 

.«y w — A sin ~ sin — (A: —y lg ty). (104.14) 

This expression satisfies the necessary boundary conditions and 
represents the equation of a surface with oblique waves, the length 
of which In the direction of the x-axis is equal to e and the an- 
gle of slope with respect to the j/-axis is equal to \\>.   An exact 
solution does not exist in this form but we can choose the quan- 
tities, a, t  and i|i such that Expression (104.14) becomes an approx- 
imate solution to Eq. (104.1). We shall use the following method: 
we substitute Eq. (104.14) in the left-hand side of Eq. (104.1), 
multiply the result by 

sin ■{- sin —(x 
b        s y ylgtydxdy 

and Integrate with respect to y  from zero to b  and with respect 
to a; from zero to e.* Note that 
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j   J  SiM "/ ,:0S 7 Sin ^ (*      - y 'S '^ COS ~ (X   - J, lo ^) f/.v- Uy     : 0, 

whereas 

6    .i 

J   J bil.2 -^ sin-' /- (X    - ^ l;r ^) (/A- ,/y 7. o, 

where the coefficient of the latter Integral Is set equal to zero. 
We then obtain 

(104.15) 

where 

7-(*-)'. - ik"?. (104.16) 

We determine the minimum of Expression (104.15) which is a 
function of the two variables a and y  according to the usual 
rules, i.e., we solve the equation 

l^0- IH0- (104.17) 

When the a and y  obtained in this way are substituted in Eq. 
(104.15) we obtain the sought critical strain. 

The complex formula according to which the critical tangen- 
tial forces are determined, can be simplified in the case of a 
plate with markedly expressed anisotropy where the rigidity in one 
direction is several times higher than the rigidity in the other 
direction (as, e.g., veneer plates). L.I. Balabukh derived approx- 
imate formulas for the critical tangential forces for such plates. 
These formulas have the form: 

for a strip with supported sides 

for a strip with fixed sides* 

^ ^ M^J^Z^ /..-1:;:^^::, .r^~:.        (io4.19) 
b      y .n3      \rihih 

Considering a plate of three-layer birch veneer, L.I. Bala- 
bukh used for the reduced elastic constants in bending the same 
numerical values as Ya.I. Sekerzh-Zeh'kovlch in his paper refer- 
red to in §103, i.e., 
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(104.20) 

In the way shown above we can obtain approximate solutions 
also for orthotroplc plates where the principal directions of 
elasticity are not parallel to the sides. For this purpose one 
must first of all calculate the rigidity D..  for the directions 

x  and t/, parallel and perpendicular to the sides, using Eqs. 
(69.6) and (69.7). Then the equation of deflection of a plate de- 
formed by tangential forces takes the form 

D dfw dhu d<w ',^Wy + 2(D.3»-2D66)^^-f- 

4-n   ^E. 2/ &w 
(104.21) 

dx dy - — 0. 

Let us give the results of calculations for veneer strips 
[with the elastic constants (104.20)] where the fibers make an 
angle of 45° with the sides.* 

I 

Pig. 197 

When the action of the forces on the fibers Is such as shown In 
Pig. 197a ("shear at an angle of 45°"), we have 

A' 
^=-.9.21-10^. (104.22) 

When, however, the forces act In such a way as shown In Pig. 
197b, ("shear at an angle of 135°") In this case 

/,.. r= 50.6G ■ 10^ 6a (104.23) 

In the latter case the strip proves to be much more stable 
than in the case of "shear at an angle of 45°," the critical load 
is higher by a factor of almost 5.5. Equations (104.22) and 
(104.23) apply to a plate whose side ratio is not smaller than 4. 

§105. THE STABILITY OF PLATES UNDER THE SIMULTANEOUS ACTION OF 
NORMAL AND TANGENTIAL LOADS 

Let us consider a rectangular plate with supported sides 
which is deformed by normal forces p (per unit length) which are 
distributed uniformly on two sides, and by tangential forces t 
distributed uniformly on all four sides (Pig. 198). We must de- 
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termlne the critical values of the forces. 

At present we know an approximate solution for an Infinitely 
long strip compressed along the sides and also deformed by tangen- 
tial forces (c = «>). This solution was found by L.I. Balabukh [by 
the same method as In the case of the sole action of tangential 
forces]. * 

■ ■!/ 

i 
r—t —■  

■< 

I r 
<- 

-< - 

Pig. 198 

In the case of an orthotroplc strip whose principal direc- 
tions are parallel and perpendicular to the sides, the equation 
of the bent surface has the form 

(105.1) 

An approximate solution to this equation can be sought In 
the form 

w--- A sin J 
6-Sillv(.V .^Ij.-,!;). (105.2) 

We substitute Eq. (105-2) In the left-hand side of Eq. (105.1 , 
multiply the results by 

sin-^sin-" (x-- y\\i^)ilx<ly, 

integrate with respect to y from zero to b and with respect to x 
from zero to e and finally require that the result must be equal 
to zero. We then obtain the relation 

r-f£Wb 9/") 

- ;'^.- («Vl-i) l- 

where 
.'■( 1 i'tk 

r=(n!. -^ 

irx- ;)]i^. (105.3) 

(105.A) 

Assuming (temporarily) the force t  constant, we shall seek 
the minimum of p as a function of the two variables a and y. 
From the equations 

429 - 

        --"■-  "■'  ^....■lJll^..,t- .■■■^.-lAJ'--^^^ •-"-■    " ■ 



mpi 

f 

dp 
d, 

0, dp 
(105.5) 

we obtain the relation 

(105.6) 

Substituting the value of y  in Eq. (105.3) and the first formula 
of (105.6) we obtain 

p =.-. - V'ofa 
b> 

l       /'-t-Df^'B;-0'/ 

(105.7) 

These equations represent in a parametrical form the rela- 
tionship between p and t  with which stability is lost; they become 
more illustrative when we interpret them geometrically in the fol- 
lowing way. 

When the parameter a is allowed to vary from zero to infinity 
and plot the corresponding values of p on the abscissa and the 
values of t  on the ordinate axis we obtain a curve which resembles 
& quadratic parabola (Pig. 199). The length of the abscissa sec- 
tion is equal to the critical compresslve force p/ in the absence 

o.-" tangential forces and the ordinate section cut off by the curve 
-a equal to the critical tangential force t'    in the absence of 

noirmal forces.* When the curve is considered to be a quadratic 
;. ii-oabola, the relation linking p and t  can be given the form 

^•1.   'KI. 
(105.8) 

-:t 

Pig. 199 
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As we know how to determine p' and t'     (see §§99 and 10^), 

we can always determine the critical normal load from Eq. (105•8) 
when the tangential forces are given, or the critical tangential 
forces If the normal forces are given, or, finally, the critical 
value A.  If the normal and tangential forces are given, with an 

accuracy to within a factor X (i.e., if the ratio of their values 
is given). 

The critical normal load p'  for an orthotropic strip is 
equal to 

..„^-(M -,,;:■,> (105.9) Kp 

The critical tangential load t/  was dealt with In the last 

section, 104. For such plates where the rigidities in the princi- 
pal directions differ essentially from one another (e.g., a ve- 
neer) one can use the approximate formula 

2../  " nS\"^{v'"'"'in:>- (los.io) 

where a.  and T are the normal and the tangential critical stres- 
ses. 

Equation (105.8) can also be used in the case of a strip 
whose sides are fixed. In this case, for a veneer, we shall have 
the equation* 

tvrK'-'Vö;) (io5.il) 

instead of (105.10). The problem becomes more complicated when 
the principal directions make an angle with the sides of the plate 
L. I. Balabukh arrived at numerical results when solving the prob- 
lem for a veneer plate [with the elastic constants (104.20)] rest- 
ing on a support, where the fibers of the sheet crossed the sides 
at an angle of 45°. 

These results are the following. 

Let us agree in calling tangential forces which result in 
a "shear at an angle of 45°" (Fig. 197a) positive and tangential 
forces producing a "shear at an angle of 1350,' (Fig. 197b) nega- 
tive, and let us denote by t'    and t" the quantities of the cri- 

tical tangential forces producing a shear at an angle of 45° and 
135° in the absence of normal loads. With concrete values of p 
and t  of the normal and tangential loads acting simultaneously, 
one obtains a parametrical representation of the same type as 
(105.6), only with more complex expressions depending on a. 
Analyzing this relation the following may be remarked. When var- 
ious values are attributed to the parameter a and the correspond- 
ing p-values are plotted on the abscissa and the t-values on the 
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ordlnate axis, we obtain a curve resembling a parabola. This 
curve cuts off on the abscissa a section p/ whose length cor- 

responds to the value of the critical compressive load for com- 
pression at an angle of 45° to the fibers of the sheet. When the 
curve is considered to be a parabola we can represent (approximate 
ly) the dependence between p and t  in the form of the equation 

P\ Hvr-'Hi-'-'H tl05-12) 

For a veneer plate with the elastic constants (104.20) the 
values of t'    and t"    are given in §104. The critical compressive 

load TpJ    in the case of compression at an angle of 45° with re- 

spect to the fibers of the sheet is, according to L.I. Balabukh 
approximately equal to the critical load in the case of compres- 
sion along and across the fibers of the sheet. 

Equation (105.12) permits the determination of the approxi- 
mate value of the critical compressive load with given tangential 
forces, the critical tangential forces with given tensile or com- 
pressive forces and the like. 

It is interesting to note that withi positive tangential' force' 
the amount of the critical compressive load decreases and with ne- 
gative tangential forces it increases relative to the forces p. 

in the absence of tangential loads. In this way it proves to be 
possible to increase the stability of a compressed strip by means 
of distributing tangential forces along its edges.1 

Manu- 

?agePt [Footnotes] 
No. 

405 This problem was solved for the  first time   (by means of 
the energy method)  by Huber   (see M.T.   Huber,  Probleme 
der Statik technisch wichtiger orthotroper Platten   [Prob- 
lems of the  Statics of Technically Important Orthotropic 
Plates],  Warsaw 1929). 

406 This formula was derived by Yamana   (M.   Yamana,  On the 
elastic  stability of aeroplane  structures,  J.  Fac.   Eng. 
Tokyo Univ.   Vol.   20,  No.   8,   1933). 

407 See,  e.g.,   the  book by  S.P.   Timoshenko,   Plastinki  1 
obolochki   [Plates and Shells]  Gostekhizdat,   1948,  page 
296. 

410* L.I.   Balabukh,  Ustoychivost'   fanernykh plastinok  [Sta- 
bility of Veneer Plates] Tekhnika Vozdushnogo flota 
[Aviation Engineering]  1937,  No.   9- 

410** see,   e.g.,   S.P.   Tlmoshenko's  book  "Plastinki  1  oboloch- 
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kl" [Plates and Shells], page 306. 

The only exception Is the case of a plate with four 
supported sides. 

411      See (98.11). 

MS      See our paper "Ustoychivost' anlzotropnykh plastlnok" 
[Stability of Anisotropie Plates], Gostekhizdat, 19^3, 
§17. 

415 Timoshenko, S.P., Ustoychivost' uprugikh sistem [Stabil- 
ity of Elastic Systems] Gostekhizdat, 19^6, §64, page 
299. 

416 See our paper "Ustoychivost1 anlzotropnykh plastlnok" 
[Stability of Anisotropie Plates], Gostekhizdat, 1943, 
§19. 

418      See Eqs. (97.6) and (97-7). 

420      Timoshenko, S.P., Ustouchivost' uprugikh sistem [Stabil- 
ity of Elastic Systems] §66, pages 312-318. According 
to S.P. Timoshenko, the third approximation yields k   . 
= 23,9. mm 

421*     Sekerzh-Zen'kovich, Ya.I., K raschetu na ustoychivost' 
lista fanery, kak anizotropnoy plastinki [To the Calcu- 
lation of Instability of a Veneer Sheet as an Anisotrop- 
ie Plate] Trudy TsAGI, No. 76, 1931. 

421**    See Eq. (98.11). 

423      Seydel, E., 1) Beitrag zur Frage des Ausbeulens von 
versteiften Platten bei Schubbeanspruchung [Contribu- 
tion to Buckling of Stiffened Plates Under Shearing 
Stress] DVL Bericht, Luftfahrtforschung [German Soc. of 
Aviation Report, Aviation Research] Vol. 8, No. 3, 1930. 
2) Über das Ausbeulen von rechteckigen isotropen oder 
orthogonal-isotropen Platten bei Schubbeanspruchung [On 
the Buckling of Rectangular Isotropie or Orthotropic 
Plates Under Shearing Stress] Ing. Archiv, Vol. 4, No. 
2, 1933; 3) Ausbeul-Schublast rechteckiger Platten 
[Buckling Shearing Load of Rectangular Plates] Z. Plug- 
tech, Motorluftsch. [Journal of Aviation Eng., Motor 
Aviation] Vol. 24, No. 33, 1933- 

426 See the paper by Ya.I. Sekerzh-Zen'kovich, mentioned in 
§103. 

427 See the paper by L.l. Balabukh, Ustoychivost' fanernykh 
plastlnok [Stability of Veneer Plates], Tekhnika voz- 
dushnogo flota, 1937, No. 9. In this paper other denota- 
tions are used. 

428 See the paper mentioned previously, by L.I. Balabukh 
and "Spravochnik aviakonstruktora" [Handbook of the 
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Airplane Designer], Vol. III, Prochnost' samoleta [Air- 
plane Stability] Izd. TsAGI, 1939, page 24?. 

See the paper by L.I. Balabukh mentioned in §104. 

The graph was taken from the book by S.N. Kan and I.A. 
Sverdlov "Haschet samoleta na prochnost'" [Strength 
Calculation of Airplanes] Oboronglz, Moscow, 1940, 
§93, page 263. 

See the paper by L.I. Balabukh mentioned in the preced- 
ing section, pages 31 and 33. We use somewhat different 
notations. 

See the paper by L.I. Balabukh, pages 35, 36. 

4 06 

407 

411 

[Transliterated Symbols] 

Kp = kr = kriticheskiy = critical 

np = pr = predel'nyy = limiting 

M3r = izg = izgib = bending 
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§106 

Chapter  15 

THE STABILITY OF PLATES LOADED BY CONCENTRATED FORCES 
, THE STABILITY OF A RECTANGULAR ORTHOTROPIC PLATE LOADED BY 
CONCENTRATED FORCES 

In this chapter a number of problems concerning the stabil- 
ity of anlsotroplc plates where the load Is given In the form of 
concentrated forces are considered. 

To start with, let us consider an anlsotroplc homogeneous 
rectangular plate two opposite sides of which are fixed In an ar- 
bitrary manner or free, whereas the two other ones are supported 
and under the action of normal concentrated forces X, XPz*   ...j 
XPN  grouped by pairs (Pig. 200). The forces are given except for 

the factor X; the critical value X,  must be determined. We shall kr 
restrict ourselves to the Investigation of the stability of an 
orthotroplc plate with principal directions parallel to the direc- 
tions of the sides. 

• AR, 

<— ,\p. 

i-A. 

Fig. 200 

We shall place the axes along the plate sides and designate 

'A? by a  and b,  as usually, the side lengths, and by m, na, 

the ordlnates of the points of application of the forces; we shall 
leave the designations for the principal elastic constants and ri- 
gidities as before. 

Let us solve the problem by the energetic method.* We shall 
assume that small deflections are Imparted to the plate. The 
lines of action of the forces divide the plate Into rectangular 
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regions whose number Is ^ + 1; we shall designate the deflections 
of these regions by üi., Wz^   ...,   w^+1- If the mldsurface Is dis- 
torted the forces perform a work equal to* 

"■4>>j(t-):.,/- (106.1) 
I. _. i       n •'   *k k- \ u 

Putting this work equal to the potential energy of the bending we 
obtain: 

MI 
r* " 

S     J J-V/.v./y 
x^ tl^0 

(106.2) 

where 

(In this equation -n^-o, \Sn---=b, P^-A). 

We shall seek the expressions for the deflections In a form 
which ensures the satisfaction of the conditions on the supported 
(loaded) sides: 

Wk^AOOsi"?*. (106.3) 

where $—~,   and m  Is an Integer. The functions fi(y)  and fff+-\(y) 
must fulfill the conditions on the sides y  =  0  and y  = b,  accord- 
ing to the way In which they are fixed; e.g., 

yW'^O (106.4) 

on the fixed side, 

f-f'-O (106.5) 

on the supported side, etc. Besides, on the line of action of the 
forces the functions K must fulfill the conditions due to the 

quite natural requirement that the bent surface should be continu- 
ous and have no fissures: 

A-(''■,;,•) ^Aii(%)- 

/*(%)-'A'11 Cn;..) 
(/v. : 1 , 2 A/). 

(106.6) 

*> 

Aiming at the determination of the smallest value of X not 
equal to zero we shall pose the problem as follows: to find func- 
tions fij   fz,   ..., /«+1 fulfilling Conditions (106.6) and the con- 
ditions on the sides y = 0 and y  =  b,   for which Expression (106.2) 
becomes minimum. 
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The problem of finding the minimum of the fraction (106.2) 
Is equivalent to the problem of finding the minimum of the ex- 
pression* 

jV (106.7) 
-( ^,/'l-i/^V;2)'/y--^v/^(^. 

We solve this problem according to the rules of varlatlonal 
calculus: we set up the variation 6 i/ and set It equal to zero, 
taking account of Conditions (106.6) and the conditions on the a 
sides. 

After a number of Intermediate calculations we obtain the 
following result. 

The functions f,   satisfy the equation 

DJk - inffk -(-- /y'A = --■ 0 (106.8) 

and the following conditions: 

a) on the sides y = 0, y = i> the conditions corresponding to 
the way In which the sides are fixed; 

b) on the line of action of the forces y  = rir,- 

AMI 
z ' fk' 

fk + \=~fk< 

'/fcn---/k.      [ (106.9) 

(«== 1, 2 N,  P,-'I). 

Each function fp(y)  contains four arbitrary constants; the 

overall number of constants Is 4# + 4. The same number of condi- 
tions for the functions /, Is obtained (4 conditions on the sides 

a  and 4tf conditions on the lines y  = I-K). Fulfilling these condi- 

tions we shall obtain a system of 4^7 + 4 homogeneous equations 
with the same number of unknowns, and setting the determinant of 
this system equal to zero we obtain an equation (an algebraic one 
of Nth  degree) to determine A. 

Equation (106.8) and Conditions (106.9) show that the func- 
tions h   may be regarded as the deflections of the zones of a 

beam of length b.   This beam has a rigidity of Dz,   lies on a mas- 
sive elastic base with a coefficient of elasticity Dig1*, Is 
stretched by a force T = 2Di$2  and bent by the forces Si, $2, 
...j QN   (Fig. 201); Its ends are fixed according to the fixation 

of the sides y  =  0  and y  =  b.   The fourth conditions (106.9) show 
that the forces Q^  are proportional to the deflections /, at 
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their points of application. 

r.o       f-       r 

i 
i 
i 

-JH 
6 - I 

-JH 

Pig. 201 

Designating the beam deflection at an arbitrary point by 
f(y)  without subscript we may write the latter conditions in the 
following form: 

Q,--=)^/V(r;2). 
(106.10) 

The analogy with a beam which we have established permits a 
considerable simplification of the problem. We may further leave 
the plate out of consideration and solve the problem of a beam 
acted upon by forces proportional to the deflections. Designating 
by <S (n, y)  the force influence function.introduced in §77 we shall 
write the expression for the beam deflection at an arbitrary point 
in the following form: 

f(y) 
N 

-S'W*-. y). 
, fcr-l 

(106.11) 

Substituting the value of the deflection at the points y  = 
= r\ij  y = nit   •••* y  = 1« into Conditions (106.10) we obtain a 

system of homogeneous equations for $,: 

- Qi> Wi2 4- Q2 (1 - WnPt) - 

— Q1>-?
2
/
3
.V51.Y-(32A?

2
/
5
.V52.Y - • •. -f Q.Y(1 --X^AVS.VAO ^ p 

(106.12) 

Putting the determinant of this system equal to zero we ob- 
tain an equation for X: 
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(106.13) 

Hence we find. In general, N different values of A each of 
which will depend on m. The minimum of all values of X which Is 
not equal to zero will also be the critical value X, . 

If there are stretching forces among the forces deforming 
the plate they must be regarded as negative In Eq. (106.13). 

The problem of determining the critical value X,  and the 

corresponding number of semiwaves m in  the direction of the force 
action is considerably simplified if there are tables of the in- 
fluence functions for a beam with the necessary values of Zh, Dz, 

§107. THE STABILITY OF A RECTANGULAR 0RTHOTROPIC PLATE COMPRESSED 
BY TWO FORCES 

Let a rectangular orthotropic plate be compressed by two 
forces applied at a distance n from one of the sides; the sides 
where the forces are applied are assumed to be supported, and the 
other ones fixed in an arbitrary manner or free* (Fig. 202). 

In this case 

ttf —Qo(7), _v)siii|5.v. 
(107.1) 

iy 

'I 

::.J. 
— O IM 

Pig. 202 

Instead of the determinant (106.13) the equati on 

is  obtained.   Hence 
>"--;^-0- (107.2) 
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(107.3) 

^ is here a function proportional to the 
troduced in §78 [see Formulas (78.1)]. 

influence function 6 in- 

We shall represent the critical value of the force X,  as 
follows: Kr 

,  4K Y'nVn', . 
(107.'O 

The coefficient k  is equal to the minimum of the ratio m/gu 
which is easily established by using the tab'les of the g  functions 
(if, of course, there are such tables for the given material and 
the end fixing in question). 

Table 25 presents the values of k  for the plate considered in 
§67* with four supported sides, made of Isotropie material and 
plywood. The corresponding values of m —  the number of semlwaves 
(in the direction of the force action) into which the plate is 
divided after having lost its stability - is also indicated there. 
Pour cases are considered where the distances of the points of 
force application from the side a  are equal to b/S,   b/k,   3b/Q  and 
b/2  and four ratlos d =  b/a. 

TABLE 25 

The Values of the Coefficient k  for a Supported 
Plate Compressed by Two Forces 

b b 36 b 
d 

Y) = 
8 

T) = 
4 

1) = 
8 1-2 

k m k m k ;;( k m 

1 0,5 8.61 5  " 4,4 1 3' 3,28 2 3,00 2 
HsoTponnufi 1 ■Ul 2 2,23 1- 1.61 1 1,49 1 
iiaTepun.i 2 2,16 1 1,22 1 1,06 I 1.03 1 

3 1.48 I 

3 

1,06 1 1,01 1 1.01 1 

2 
«Paiicpa.   C;i<a- 0.5 6,45 3,53 2 2,31 1 2.11 1 

TIIC   nAO.ib 1 3.25 1 1.77 1 1,55 1 1,62 1 
IIO.IOKOII 2 1.77 1 1.51 1 1,55 1 1.55 1 

(Di>/5a) 3 1,66 1 1,56 

3,17 

1 •1,55 1 1,55 1 

3 
'tMiicpn. C-.K.v 0,5 6,73 6 • 5 2,28 1 2,03 4 

TIIC iionepcK 1 3,36 3 1,60 2 ■   1.14 2 1.01 2 
no.iOKOii 2 2,00 1 0,801 1 . 0,571 1 0,521 I 

; (O1<D.J) 3 1,12 1 0,552 1 0,154 1 0,437 1 

1) Isotropie material; 2) plywood. Compression 
along the fibers; 3) plywood. Compression across 
the fibers. 

Let us pay our attention to the case where the forces com- 
pressing the plate act along the axis of symmetry (n = b/2),  and 
give the formulas for the coefficient k.*  The expressions for 
this coefficient depend on the roots of the equation 
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/>,//'       -2/^«=      |      /),:        0 (107.5) 

and are different according to which of the three possible cases 
of the roots is given. 

For a plate with four sides supported we obtain:* 

Case I [the roots of Eq. (105.7) are real and unequal]. 

"r "I     .   I m 
k ---■ ■    ,.   nun        .  - -     . 

2 , Mr//.,./      inr.u.d 

l"'"'  i       ■"■•!,,,■ ■/ (107.6) 

Case 2 (the roots are real and equal), 

k ■■ -• // mill 
Hi 

/;/ -.//(/ ///:.//(/ 
2 ,•,,.,  mr.iiit 

2cli-.   2   ■ 
(107.7) 

Case   3   (the  roots  are  complex) 

. .   /       rli mr.ud I  co.i m.vd \ 
k - ■ iiv www \m ■ ■ ' —1. 

\    v all;//.-..'///      a sin mr.iulj 

Here  and in the  following d =  b/a. 

(107.8) 

Prom Formula (107.7) for w = 1 we obtain the value of the 
coefficient k  found by S.P. Timoshenko for an Isotropie plate with 
supported sides, compressed along the axis of symmetry.** 

For a plate whose sides acted upon by the forces are sup- 
ported, and the two other sides fixed we obtain the following 
formulas for k. 

Case   I 2 2 n. — iq 
k ■■    ■    „      in in X 

X w 

,   mr.ilid , inrii.,it 
"l Hi     ■   ' •• ll-AU ./ ■ 

'■'"\"i                     .,           , /  2   , ?\ ,,  111-11,1/       m: II .it 
,                                    ,              III,II; \ll. //,)        I                .                   |                    ■     - mr.n^i      iir.iij           i - i v, i  i -7          2               2 

Case   2 

ch      2'cli      2 

min 

(107.9) 

/;; sil inv.iiii -|   in.-.ntt 

mr.ud 
sl.--2 

(nnuiitV' 

■2   ) 

(107.10) 

Case   3: 

^ n   , ., im ml        , ill: I'd 
\     V^h.      2 .».sin.      2 (107.11) 

The solution of the problem of the stability of an Isotropie 
plate with two supported and two fixed sides if it is compressed 
by concentrated forces along the axis of symmetry was obtained by 
A.P. Filippov*** and, by another method, by A.I. Lur'ye.**** The 
results of A.P. Filippov and A.I. Lur'ye are obtained from For- 
mula (107.10) for u = 1. 

- im - 
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The problem for which m the expressions in the parentheses 
of Formulas (107.6)-(107.11) assume the minimum values for a 
given ratio d  of the sides is solved by calculations. Apparently, 
it is impossible to determine beforehand the number of semiwaves 
for a plate with an arbitrary side ratio (excluding an jnfl-" ■ 
strip). 

Table 26 shows the values of the coefficient k  and the cor- 
responding values of m for a plywood plate with two supported 
and two fixed sides, compressed along the axis of symmetry n = 
b/2). 

TABLE 26 

The Values of the Coefficient 
k  for a Plywood Plate with Two 
Supported and Two Fixed Sides 
Compressed Along the Axis of 
Symmetry 

d 
CisaTiic u.io.iu 

j     no,ioi;oii 
Cvuariic noncpcK 

2           IIO.IOKOM 

* m k "' 

0.5 
1 
2 

3 

3,37 
I.C9 
1,55 
1.55 

2 
I 
1 
I 

3,22 
1,61 
l.,.)l7 
0,537 

6 
3 2   i 
i 

■ ■■■ 

1) Compression along the fibers; 
2) compression across the fibers. 

Making the value of d in Formulas (107.6)-(107.11) infinite- 
ly large we obtain in the limit the coefficient k for an infinite 
strip with supported sides, compressed by two forces. The formula 
from which the critical force for an infinite band will be deter- 
mined (Fig. 203) has the form: 

v- ■i« \rn{D'3   ut -i- u3 m ■--■-- 1 (107.12) 

[in the case of unequal real roots of Eq. (107.5)] or 

4r. VD'^ 
'•KP -iZ-S. u. m^-.\ (107.13) 

(for equal or complex roots). 

The critical for an Isotropie strip (D^   D.i^D, ur;\)   was 
nd by Sommerfeld.* 

The tables presented show that a plywood plate compressed 
across the fibers, i.e., in a direction for which the reduced 
Young's modulus is minimum will tend, after having lost its sta- 
bility, to form a number of waves in the direction of the line of 
action of the forces; the number of waves is the greater the 

- ^2 - 
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longer the plate. I.e., the smaller d. A plate which Is compressed 
along the fibers (in the direction of maximum reduced Young's mod- 
ulus) with the same size forms a smaller numbers of waves, and for 
d  >_ 0.5  one or two semiwaves. 

§108. THE CASE OF FOUR FORCES 

Let us consider a rectangular orthotropic plate which is de- 
formed by four forces applied to two sides, as shown in Pig. 204. 
The loaded sides are assumed to be supported, the sidew without 
load may be fixed in an arbitrary manner or free.* 

Let the values of the acting forces be equal to X and XP. 
The critical value of X will be determined from the equation 

0.,, 

o,,, 0.,., 
i.P:.- 

0, (108.1) 

from which two  series   of values  are  obtained,   after  some  straight- 
forward transformations: 

■i- f/Vö.; 

a '  Mn   \Pt:--: 

2 

(108.2) 

(108.3) 

The smallest nonvanishing value of these two series must be 
selected; the work becomes considerably simpler if there are 
tables of the influence functions for the given material and the 
given fixing. 

We shall pay our attention to two special cases. 

Case I. All forces are cor.pressive, equal and applied at 
symmetric points with ordinates y  =  n  - r\  and y  =  n   (Fig. 205), 
all four sides are supported, 

-  ^3  - 
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form; 
Formulas (108.2) and (108.3) are simplified and assume the 

/. .- 
■i;. 1 /;,/;.. 

^n (108.4) 

(108.5) 

To the values of X' corresponds a symmetric shape of the 
bent midsurface of the plate (Pig. 206a, where the approximate 
form of the surface for m = 1 is shown). An antisymmetric or obli- 
quely symmetric shape of the bent surface corresponds to the val- 
ues of X" (see Pig. 206b, where also m = 1 is assumed). 

'■y 

V 
ill 

0 M a 

AP 

Fig. 20^4 

b 
b-T 
-T> 

n 
I_LJ_. 

•     0 
-« a >- 

' 1  >- 

Fig. 205 

It is impossible to tell beforehand to which of the two ser- 
ies of X the critical value belongs and which m corresponds to It; 
the question is answered by calculations. 

. f 

b 

■- ■  —■>- 

b-n 

.  1 
A 

I 

0 
K a  >- 

Fig. 206 Fig. 207 

The formula for the critical value X,  will be represented 

in the following form, as in the case of two forces. 
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K 
'Ir.   /l),!).. 

It. (108.6) 

Table 27 gives the value 
tropic plate with four sides 
considered in §67, also with 
k  and the corresponding m  are 
(see §78). The calculations s 
cept for two, the bent plate 
stability must be symmetric w 
ceptions to this rule which a 
may exist, by insufficient ac 
tions or by an inaccuracy in 
constants of plywood. 

s of the coefficient 
cupported and for th 
four sides supported 
found with the help 

how that in all case 
surface after the pi 
ith respect to the 1 
re labeled by asteri 
curacy of the tables 
the determination of 

k  for an iso- 
e plywood plate 
. The coefficient 
of Tables 15-17 

s considered, ex- 
ate has lost its 
ine y   = b/2.   Ex- 
sks in Table 27 
for the g  func- 
the elastic 

TABLE 27 

The Values of the Coefficient k  for a Supported 
Plate Compressed by Four Forces 

«t'niicpn. CiK.irnc 
BAO.1l.   DO.IOKOII 

'I'ancpa. r.;i;niiic 
nouepcK no.ioicon 

0„r) 
1 
2 
3 

0,.r) 

T — 

— ■   - -   

njOTpomii.ii: 
Maicpna.i 

0,5 
1 
2 
3 

7.or 
■1,07 
2,01 
1.17 

b b 36 
8 

T) : -.  - 

( •i^v 
L", k m k 

3 2,09 2 1,82 
2 
1 
1 

1,50 
1.03 
1,01 

1 
1 
1 

0,911 
O.liSO 
0.7Ü7 

0,27 
3,13 
1,77 * 
1,56 

5,00 
2,90 
1,50 
1,02 

2 
1 
1 

2,11 
1,52 
l,52f 

1 
1 
1 

I 1,56 1 

5 2,08 
■• 

2 
1 
1 

1,01 
0,521 
0,137 

2 
1 
1 

1,27 
1.00 
1.38 
1,55 

1.3b 
o,(i.n 
0,315 
0,278 

1) Isotropie material; 2) plywood. Compression 
along the fibers; 3) plywood. Compression 
across the fibers. 

Case i1. All forces acting on the plate are equal and applied 
at symmetri-: points; two forces are compresslve and two stretching 
(Fig. 207). 

The critical value X.  will be determined from the Formula 

(108.6) where 

k ■■  ■- min 

' -Ml   "'li (108.7) 

The formula for the critical value X,  may also be written 

in another form: 
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k    mi,. ]//.'/.", (108.8) 

where  X'   and X"  are  determined by  Formulas   (108.4)  and   (108.5)   of 
the preceding case. 

Kanu- 
script [Footnotes] 
Page 
No. 

^35      The solution is to be found in our book "Ustoychivost• 
anizotropnykh plastinok" [The Stability of Anisotropie 
Plates], Gostekhlzdat [State Publishing House of Theoret- 
ical and Technical Literature], 19^3. §23, pages 60-64. 

436 See Formula (98.11). 

437 See (97.6)-(97.8). 

439     The solution of this problem is found in our -nentioned 
work "Ustoychivost1 anizotropnykh plastinok," §26, 
pages 22-75. 

440*     I.e., of that plate for which the reduced Young's moduli 
and the Poisson coefficients in bending have numerical 
values (67.9) or (67.13) (rather than (67.16) as was as- 
sumed in §§103-105). 

440**    See our work "K raschetu na ustoychivost' ortotropnoy 
plastlnki" [On the Calculation of the Stability of an 
Orthotroplc Plate], Vestnik inzhenerov i tekhnikov [Her- 
ald of Engineers and Technicians], 194l, No. 1. 

441*    Minimum values of the expressions not equal to zero and 
corresponding to the Integer m  are implied. 

44l#t    Timoshenko, S.P., Ustoychivost' upruglkh sistem [The 
Stability of Elastic Systems], Gostekhlzdat, 1946, §68, 
pages 326-327. 

441»»»   Filippov, A.P., Ustoychivost1 pryamougol'nykh plastinok 
szhatykh sosredotochennymi silaml [The Stability of Rec- 
tangular Plates Compressed oy Concentrated Forces], Izv. 
AN SSSR [Bulletin of the Academy of Sciences of the 
USSR], OMYeN [Department of Mathematics and Natural Sci- 
ences] 1933, No. 7. 

441»»»»  Lur'ye, A.I., Ustoychivost' plastlnki szhatoy sosredo- 
tochennymi silaml [The Stability of a Plate Compressed 
by Concentrated Forces]. Trudy Lenlngr. industrial'nogo 
in-ta [Transactions of the Leningrad Industrial Insti- 
tute], 1939, No. 3, Department of Physical and Mathe- 
matical Sciences, No. 1. 

In another work A.I. Lur'ye gave a method of solving 
also the more general problem of the instability of an 
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Isotropie  plate  with  one  axis  of  symmetry   in  the   com- 
pression along  the  axis  of  symmetry. 

^2 Sommerfeld,   Ueber die  Knicksicherheit  der  Stege  von 
Walzenprofilen   [On  the  Buckling  Strength  of Webs   in  Rol- 
ler Profiles],   Zeltschr.   f.   Math.   u.   Physik  [Journal  of 
Mathematics  and  Physics],  Vol.   5^,   1906. 

^3 As to  the  solution of  this  problem,   see  our work  "Ustoy- 
chivost'   anizotropnykh plastinok,"   §26,   pages  75-77. 

[Transliterated  Symbols] 

^35 Kp   =  kr  -  kriticheskiy  =  critical 
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Chapter 16 

THE STABILITY OF PLATES REINFORCED BY STIFFENING RIBS 
§109. THE STABILITY OF A RECTANGULAR ORTHOTROPIC PLATE WITH LONGI- 

TUDINAL RIBS IN THE COMPRESSION IN THE MAIN DIRECTION 

A plate with parallel stiffening ribs placed close to each 
other may be considered orthotropic and homogeneous; it was shown 
in §65 how the rigidities of such plate are determined. If, how- 
ever, the plate is reinforced by a small number of ribs, as, e.g., 
one or two, the consideration as a homogeneous and orthotropic 
plate is not well founded, but the combined effects of the plate 
and the ribs must be taken into account. In this chapter we con- 
sider problems of the stability of rectangular orthotropic plates 
with longitudinal and transverse ribs, compressed by a normal 
load which is uniformly distributed along the sides, or by con- 
centrated forces applied to the rib ends. 

Let us consider first a homogeneous orthotropic rectangular 
plate with principal directions parallel to the directions of the 
sides, which is reinforced by several parallel stiffening ribs. 
Let a compressive load p which is distributed along the sides per- 
pendicular to the ribs act on the plate. It is assumed that the 
sides on which the rib ends are fastened are supported, the other 
sides are fastened in an arbitrary manner, the rib ends are also 
supported and fixed with respect to revolution about their axes. 
Moreover, we assume that the ribs are rigidly fastened on the 
plate, and their cross sections have symmetry axes perpendicular 
to the undeformed midsurface of the plate. The critical value of 
the compressive load p.  at which the plate which is reinforced 

by ribs loses its stability must be determined. 

Let us direct the coordinate axes along the plate sides (the 
x-axis is parallel to the ribs. Pig. 208) and introduce the de- 
notations: ^,. /)a. DA.. -',, •'.  are the rigidities and Poisson coefficients 
of the plate; Ei   is Young's modulus of the plate for directions 
parallel to the ribs; a, b  are the side lengths of the plate; N 
is the number of ribs; f''l). ^ /;(-v' are Young's moduli of the 
ribs; /:'./,, ''U f'Jx   are the bending strengths of the ribs in 
planes perpendicular to the plate plane; C,. c.^ c.v are the tor- 
sional rigidities of the ribs; /•',, ^ ^.v are the cross-sectional 
areas of the ribs; V \- •••  % are the distances of the ribs from 
the lower edge of the plate; 

■ 
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(109.1) 

An approximate solution of the problem of the stability of 
an Isotropie plate with longitudinal ribs was for the first time 
obtained by S.P. Timoshenko with the help of the energetic method, 

Using the energetic method it is easy to obtain an approxi- 
mate solution of the problem also for an anisotropic plate in an 
analogous manner; we shall pay our attention to this approximate 
solution in this and the following sections. 

y 

  .;.  H 

>- 

2 

"["■ 
' .  -     _   .. 

•1/ ..i. ; 

.:E 
n ' 

-p. 

-p. 

-'', 

'!..<- 

Fig. 208 

Until it loses its stability the plate is in a plane stressed 
state, and the ribs are in the state of simple compression along 
their axes. We shall easily determine the compressive forces P, 

applied to the rib ends if we assume that the relative compression 
of the plate e  is equal to the relative compression E , of any 

rib (we neglect the rib width). 

Obviously, 

v* -- (109.2) 

but with e  = e , we have. 
X xk 

„'^ (109.3) 

Approaching the solution of the problem we assume that the 
whole system has undergone small deviations from the plane shape: 
the plate has been bent, and the ribs have been bent and twisted. 
Designating '«'(x, y).  ^..(.v).    the deflections of the plate and the 
ribs and the angles of rib torsion we have by virtue of the rigid 
connection of the plate with the ribs: 
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^(.v). ^(.v, ,,,), o,(.v) ('';;')  . (109.^) 
\U )    /If        t^ 

In this case the potential energy of the system Is Increased by 
the quantity 

n     b 

^"HlK5)'+2'V^-£j+o,($)'+ 
oo 

+ W^7f]'ix'ly+ (109.5) 

fc «■ i L   o o   •  . 

and is decreased on account of the work performed by the external 
forces: 

o  6 y   . o 

^ill^yx'-'y+ll''^^"- (109.6) 
0 0 k"l 0 

The conditions on the supported (loaded) sides of the plate 
and at the rib ends are satisfied If we put: 

«^/OOsinp*.      | (109 7) 

Prom equation 

V,w=--A (109.8) 

we obtain an expression for the load p which may give rise to a 
distortion of the system: 

6       N 

J * dy + b 2 [uW (1*) + v.^2/3 (%) 

P^/öä-
5 p~ .     (109.9) 

where 

The further procedure may be as follows: we may choose an ex- 
pression for the function f(y}  in the form of a sum with undeter- 
mined coefficients 

/-E'lmnÄ.OO. (109.10) 

where f    are continuous functions fulfilling the conditions on 

the sides i/=0, y = i; substitute this expression into Formula 
(109.9) and determine the minimum of p as a function of the coef- 
ficients A     .   The problem of finding the minimum of the fraction 

(109.9) is equivalent to the problem of finding the minimum of 
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the expression* 

\  0 

Vl/ D' 

</V' 

.V 

" ;V 

M'-'rCi,.)! 
1 

1 (109.11) 

/V J /J'0' I ^V{oA./
;,(vl,) 

0 Al 

Substituting here Expression (109.10) and carrying out the 
integration we obtain U as  a  homogeneous quadratic function of 
the coefficients A_..   Further we seek the minimum of this func- mn 
tion for which purpose we differentiate U  with respect to the A 
and put the derivatives equal to zero: 

dU 

mn 

dA 
'- :-  : 0. 
1/11 

ou 
'dAm- 

-0, (109.12) 

Putting the determinant of the homogeneous system (109.12) 
equal to zero we obtain the equation 

A(P)- 0. (109.13) 

whose minimum root will also yield the value of the critical load. 

Considering a plate with ribs which are symmetrically distrib- 
uted with respect to the line y  =  b/2  we may- assume in first ap- 
proximation: 

a) for a plate with supported sides a 

f*~-A„insn\   b-: 

b) for a plate with fixed sides a 

/—-''„.„(l-cos-"^-); 

c) for a plate with free sides a 

A-U (•'."''•' I'l'^2 v«--^ 7y) 

(109.11») 

(109.15) 

(109.16) 

If, however, the ribs are asymmetrically distributed the bent 
surface will, in general, be asymmetric with respect to the line 
y  = V2, after the stability has been lost, for which reason the 
first approximation may yield a value of the critical load whose 
accuracy is not sufficient for practical purposes. In these cases, 
the expression for / n.ust be assumed in the form of a sum of sev- 
eral terms, in accordance with the number of ribs. 

As is shown by S.P. Timoshenko, the first approximation yields 
quite satisfactory results for an Isotropie plate which is rein- 
forced by some equidistant ribs of equal rigidity, in other cases 
the first approximation yields, according to S.P. Timoshenko, 
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quite satisfactory results for long Isotropie plates, for which 
o  >   2.* 

§110. THE CASE OF A SINGLE LONGITUDINAL RIB 

A plate which is reinforced by a stiffening rib in the di- 
rection of the axis of symmetry is compressed by a normal load 
which is uniformly distributed along the sides perpendicular to 
the rib (Pig. 209). 

We shall introduce the designations: EJ   EJ3   C,   F  are Young's 
modulus, the bending strength, the torsional,rigidity and the 
area of the rib cross section; 

F.P EJ 
bF.^'     7"i/Dt7)i' 

(110.1) 
•/ = 

b YL>\D% 

the designations of the  quantities referring to the plate will be 
left  as before. 

Pig. 209 

Let us consider two cases of side fixing. 

1. The sides i/ = 0 and y = b  are supported. 

Putting 

nr.y mr.x   .   iir.y 
f = Amn sin -f.   w - Amn sin -j- sin -f-. 

we obtain on the basis of the general formula (109.9): 

(for n  = 1, 3, 5, ...) and 

'=^^[^t(f)3+K7fe+')«,+/|'"(f)1 
(for n = 2, k,  6, ...). 
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The critical load p.  will be obtained as the minimum of all 

values determined by Formulas (110.3) and (110.4). Obviously, the 
minimum value of the series (110.3) will be obtained for n = 1 to 
which bending in one semiwave in the direction of the y-axls cor- 
responds, and the minimum value of the series (110.4) will be ob- 
tained for n = 2 to which corresponds bending In two semlwaves in 
the direction of the y-axls. Which of the two formulas must be 
used cannot be told beforehand; that depends on the value of the 
ratios njn,,  nj/i^n,, v.   <S, y- 

Let us introduce the brief denotations: 

Ti; 

2 

1  I 20 
2 u/ D, 

yoJw' 

(110.5) 

form 
We  shall represent  the  formula for the  critical load In the 

' "'•"■■    yr~u- (110.6) 

The results of the rather elementary investigation may boil 
down to  the   following  statements: 

1)   if  the ratios  of the  plate  sides  satisfy  the   condition 

c =---//( r,, 

where  m'  is  an integer,  then m  = m'  and 

2) if the side ratio  satisfies the condition 

c ■- - 0,5 iii'r2, 

then m = m'  and 

3) for  large  side ratlos  c ^ 3 

k. ■■'kv if    Ä, <_!;,, \ 

It--   l<\.  if 

(110.7) 

(110.8) 

(110.9) 

(110.10) 

•M ^ ■'•' i 

lit > IL J 
(110.11) 

It is convenient to arrange these results in a table in which 
the values of c and the corresponding values of k  and m  (for n =  1 
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"1 

and n = 2) are given. 

Survey Table of the Coefficients k   for the Case 
of Supported Sides jy = 0 and y  =  b 

n c m * n c ffl k 

1 0<c<r1         j 1 *.i 

i 

2 0<c<ira 1 *»j 

:      c^rj     .       | 1 *i 
1    • 

C=2r» 1 
^ t 

'•i<c</2>1     . 1 *n 2rt<c<   2   r» _ 1 *u 

/fr1<«<2r1 2 *« i-ra<c<ra 2 *M 

.     e-ar, 2 
1 Tl 

c = r, 2 
^ 

2r1<«<Y6V1 2 Aai ..«C^fr. 2 ^ 

V&r^e^ry 3 *« 5fr.<(<|,. 3 
^ 

1    ' e«=>3/-, 3 *. 
3 

«•=-2^ 3 *1 

lii   ■'•'•■■, , - i; H T. A.; 
I 

i 

1) etc. 

Let us assume that we know K, Y and the ratio of the rigid- 
ities D\/D2  and the critical load for a plate with given side ra- 
tio a  must be found. In order to determine the corresponding k  we 
establish at which place of the table there is the given ratio o 
for n = 1 and n = 2. Having the lines in which a  is to be found 
we choose the corresponding value of this coefficient from the 
column for fc; the lower of the two values found must be taken 
(which of the two values will be lower depends on the ratio of 
the plate parameters). 

c; 
Let, e 

plate (o = 
is found in 
in the 4th 
values may 
smaller. Ac 
the two pos 
wave in the 
the t/-axis; 
rectlon of 
«/-axis; k  = 

.g., the values r, = 1.5, ^=1,2 be found for a square 
1) and be determined k.  The given ratio of the sides 
the Ist^ line of the table, corresponding to n = 1 and 
line of the table for n = 2. Consequently, one of the 
be chosen: k  = ku  or k  = ^22» i.e., that which is 
cording to the ratio of the plate parameters one of 
sibilities may be realized: 1) the plate forms one semi- 
direction of the load (rc-axis) and one direction in 
fc " fcii; 2) the plate forms two semiwaves in the di- 

the x-axls and two semiwaves in the direction of the 
^22.* 

2. The sides y =  0  and y = b  are fixed. 

Putting 
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(110.12) 

(110.13) 

/=   '4im1(
1    -COS-^'j. 

w — Amn sin ~ ^1 —cos -6^j . 

we obtain on the basis of the general formula (109.9): 

+ 5,333/§.;„• (^)'] 

(for n  = 1, 3, 5, . . .); 

j^g^r /gT/.y  GG7  D^J 

(for n = 2, 4, 6, ...). 

Obviously, the minimum value of p of the first formula will 
be realized at n =  1, and of the second formula, at n = 2. 

The formula for the critical load will be represented in the 
form (110.6). We shall introduce the brief denotations: 

(110.14) 

s,-- 

*' 

y D3' 

4- 

+ 2.607—.-^=--h 5.333 lA^f-Y] . 

4"-= /I (") + '°'667-7^+e"33 /ffe)" 

*;= ,0,667(1/3 + -^). 

The  results boil down to  the  following: 

1) if the  side  ratio a  satisfies the  condition 

l    , 

where m'   is an integer, then m = m', 

2) if the side ratio is equal to 

l    , 

(110.15) 

(110.16) 

(110.17) 

(110.18) 
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then m = m'j 

(110.19) 

3) for great values of the side ratios c we may choose: 

=*k[.    if ^<i^. \ 

= *2.   If  *I>Ä2- i (110.20) 

Survey Table of the Coefficient k  for the Case 
of Fixed Sides y = 0 and y =  b 

n e 
■ 

m k      n c . m k 

f 0<c<±sl 1 *;. 2 0<c<lSa 1 # 
*12 

e-=YSl 1 *; -4». ) 
*1 

jSl<e<Xfsl 1 *u \'.<•<*?*, 1 # 
*1J 

^s,<c<s1 2 *;. 
VT             1 ^sa<c<-5-Sj 2 *22 

e^s1 2 *; c = ^- sa 2 *» 

..«^ 2 *;. I'.K«'1?*, 2 "1 

*11 

¥;<-<l., 3 *« 
,fs,<c<5Sl 3 

3 
^2S' 3 *; 3 3 *» 

1         H  T. A. 1     H T. A. 

1) etc. 

This table must be used as in the case of supported sides. 

§111. THE STABILITY OF A PLATE WITH TRANSVERSE RIBS COMPRESSED BY 
A UNIFORMLY DISTRIBUTED LOAD 

Let us consider a rectangular homogeneous orthotropic plate 
reinforced by parallel stiffening ribs, compressed by a load p 
which is distributed uniformly along the sides parallel to the 
ribs. It is assumed that the sides along which the compressive 
forces are distributed are supported, and the other ones are fixed 
in an arbitrary manner. The ribs are rigidly fixed to the plate, 
their cross sections have axes of symmetry perpendicular to the 
original midsurface of the plate. 

The critical value of the compressive is to be determined. 

Let us direct the a; and y  axes along the plate sides (Fig. 
210). We shall retain the denotations adopted in §109, and intro- 
duce new ones: Zij   ^2, ••., C» - the distances of the ribs from 
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one of the loaded sides, 

(111.1) 

„i 

* I 0 
—I—>• 

-.— 0 
—►-J 

-t^ 

X 

Fig. 210 

The problem of the stability of an Isotropie plate with 
transverse ribs was solved approximately with the help of the en- 
ergetic method by S.P. Timoshenko.* An approximate solution of 
the same problem for an orthotropic plate is obtained analogous- 
ly, also making use of the energetic method. 

The potential energy of the bending of a system which has 
experienced small deviations from the plane shape is equal to 

a    b 

' HII- —- 

N *> b 

(111.2) 

where 

W. "»(■w). v^L 

As in the case of longitudinal ribs we neglect the rib width. 

The forces p in the distortion of the system will perform 
the work 
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■i 

a    b 

P 
'2 

o    ö 
JKnr^^ (iii-3) 

For a plate with arbitrarily distributed ribs the expression 
for the deflection may be assumed in the form 

«' = S/mO')sin?x (111.4) 
m 

and, moreover, determining p from the equation V.       = A  the func- 

tions f must be chosen such that they satisfy the conditions on 
tn 

the sides y =  0  and y = 2? and yield the minimum value for p. 

Let us consider the case where the ribs are distributed sym- 
metrically with respect to the axis of symmetry of the plate x  = 
= a/2, in which case the bending strengths and the torsional ri- 
gidities of the ribs which are at equal distances from the loaded 
sides are the same, i.e., 

EJX^EJL   Qv :=<:,;   £yw_, = £/21   C^_,-C29tc. 

In this case 

\n~-a — (j, ^v-i = a — 52> • • • 

We shall assume in first approximation that the section of 
the mldsurface of the plate with a plane normal to the loaded 
sides is a sinusoidal curve with a certain number of semiwaves. 
According to S.P. Timoshenko, this assumption usually yields sat- 
isfactory accuracy in the case of an Isotropie plate.* 

Putting 

we find 
W = /O0sinßx, (111.5) 

N      " 

JVy-|-22 j^dy (111.6) 
P~vm>2* ^—_. 

pjpdy 
where 

Let us consider the cases of supported and fixed sides. 

1. The sides t/ = 0 and y  = b  are supported; the rib ends are 
supported and cannot be twisted. 

Let  us  put 
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(111.7) 

Substituting this function into Formula (111.6) we find: 

t     A      ■ nny 

P = 
rfi VDtD2 

63 

(111.8) 

Obviously, the minimum value of p will be obtained for n = 
=  1; consequently. 

n2 /D,D3 

/Ö,Da 

a    , 

(111.9) 

To  these  conditions  corresponds  a bent  surface of the   form 

w~ A,„, sin —sin 'ml • 6   " 
(111.10) 

For a plate with given ratio a  t 
termined as the minimum of all loads 
In order to finish this problem Expre 
the side ratios c = c  for which the pr 
to m + 1 semiwaves takes place, must 
favorable ratio a  and the correspondi 
found, etc. This investigation may be 
for an arbitrary number of ribs N  in 
of one longitudinal rib. As a result 
we shall not present here will be det 

he critical load will be de- 
determined by Formula (111.9). 
ssion (111.9) must be studied: 
transition from m  semiwaves 

be determined, the minimum 
ng critical load must be 
carried out in general form 

the same way as in the case 
rather cumbersome formulas 
ermined. 

2. The sides y  -  0  and y  =  b  are fixed; the rib ends are 
also fixed and cannot be twisted about the rib axes. 

In this case we obtain in first approximation 

w 

(111.11) 

(111.12) 

instead of Formulas (111.9)-(lll.10). 

§112. THE CASE OF A SINGLE TRANSVERSE RIB 

A plate which is reinforced by one rib along the axis of 
symmetry is compressed in the direction perpendicular to the rib 
(Fig. 211). 
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Pig. 211 

Let us Introduce the designations: 

EJ 
T' = 

a = 

C 
a YDjT» ' 
EJ 

aD. * 

(112.1) 

Different formulas are obtained for. odd and even m  for the 
critical load on the basis of Formulas (111.9) or (111.11). 

We shall choose two cases of fixing of the sides on which 
the rib ends are fastened (the loaded sides are assumed to be 
supported, as had been said already). 

1. The sides y =  0  and y  =  b  are supported. 

For an odd number of semlwaves m we obtain: 

ß ,= ^m [/|(f)'+7^.+(.ir(/f+v)]. (ii2.2) 
for an even number m 

We shall represent the formula for the critical load, as before, 
in the form: 

P*v ■p 
(112.4) 

The  results  of studying Expressions   (112.2)  and   (112.3) boll 
down to the  following. 

If the  side ratios  a = a/b satisfy the  condition 

i f 
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where m'  is an odd number, then m = m'  and 

^2(/rw+7§|s=), 
For ratios c fulfilling the condition 

where m' is an even number, we have* m = m'  and 

(112.5) 

(112.6) 

(112.7) 

(112.8) 

The limiting ratios a      for which a simultaneous existence of D       pr 
two forms of bent surface is possible - with m  semiwaves and with 
m + 1 semiwaves — will be found in the form 

cDp = VniM+])-rm, (112.9) 

where we have used the denotations 

'/"^i 1 /Vnfl(m+l)V;-|-(2/»+ l)'i-|-2(2/>i+l)(»1+1)»=.'+ m(«+!)%'      /-, -, p   , n v fm = ]/   oil/ 2/n + l+2(m+l)aa' ! kix^.iu; 

for m = 1,   3,   5,   .••; 

*/"Z)7 i /Vm* (m -I   l)=x'2 + (2/«+I)2 - 2 (2m +1) mW — m (m + l)x'      c T 1 ?    11 I 
'"^V   DlV    : 2^r+l-2mV       UX^.i-U 

for m =  2,   4,   6,   ... 

The number semiwaves m  is determined for different values of 
a  with the help of the following inequalities: 

if 0 < c < Mir,, thenn; = 1; ] 
r1<c<2, 

If   2.45r2<f<3, 
if    Mlrj < c < 2,45/-;,, then m ~ 2; | 

(."IGrj, thon in -- 3   J 
(112.12) 

etc. 

If the quantities d\/T)-is   y' and K
1
 are known it is easy to 

determine the number m  corresponding to the given side ratio. If 
an odd m  will be obtained Formula (112.2) must be used to deter- 
mine the critical load; if, however, even m is obtained the crit- 
ical load will be determined from Formula (112.3). For large ra- 
tios G Cc > 4) the coefficient will be determined either from 
Formula (112.6) or froni Formula (112.8), according to which of 
the two formulas will yield the minimum value. 

2. The sides y = 0 and y  =  b  are fixed. 
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(112.13) 

For odd m 

for even m 

For ration o  satisfying the condition 

(112.14) 

where the number m'  is odd the coefficient of the critical load 
will be obtained from the formula 

^2.667(1^/1+^ + -^). (112>l6; 

If 

c^^f/'S. (112.17) 

where m' is an even number, then m = m'  and 

,.,„ «J^2.667(,,73+V+ _|_). (112.18) 

The limiting ratios of the sides are equal to 

cnp = 015/m(m+I)sm, (112.19) 
where 

c - l
4/'gTi/'//"M/M-l)^,2+3(2/>1-t-l)H6(2m+i)(ffH-l)

2^+^("'+')^  en 9 on\ 
•'"- V   D%V ^     2m + I-I-2 (m-|-1)^ '  Ul^.^Uj 

for m = 1, 3, 5, ... and 

if Pi 1 fVmHm + D2*'2 + 3(2m + 1)'- 6(2/» -j- l)mV-nl(m-HK  fmp pi ^ 

for m = 2, 4, 6, ... 

Instead of (112.12) we have the following inequalities with 
the help of which the number of semiwaves for given ratios a  is 
determined, in this case: 
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if 0<c<01707ir1>th.nm = !; | 

1 f 0.7075, < c < 1,22 521 Ihen m — 2; J 

,, Ihen ffj = 3    j 

(112.22) 

If 1.22 s2<c< 1.73 s. 

etc 

§113. THE STABILITY OF A PLATE WITH STIFFENING RIBS DEFORMED Bi 
FORCES APPLIED TO THE RIB ENDS 

In all cases considered in this chapter it was assumed that 
the load acting on the reinforced plate was uniformly distributed 
along the two sides. We shall now pass over to cases of deforma- 
tion of a plate with ribs under the action of concentrated forces 
applied to the rib ends. 

Let us pose 
ular orthotropic 
parallel to the 
parallel to two 
plate; the sides 
the other other 
ends are support 
rib ends act axi 
al value X.  mus 

the problem as follows. Let be given a rectang- 
plate with principal directions of elasticity 
side directions, reinforced by stiffening ribs 
sides. The ribs are rigidly connected with the 
on which the rib ends are fixed are supported, 
sides fastened in an arbitrary manner; the rib 
ed and fixed in order to prevent twisting. At the 
al forces given except for a factor A; the critic- 
t be determined. 

i.i>' 

N        N+l XPu 

AP. 

x 

'^t- -*-l 

Pig. 212 

Let us direct the x  and y  axes along the plate sides (Pig. 
212) and introduce the denotations: a, b  are the lengths of the 
plate sides; £>,. Dv  £>•,, v v2 are the principal rigidities and the 
Poisson coefficients of the plate; N  is the number of ribs; 
X, ).P2, .... IPN     are forces deforming the system; EJ^   C, are the 

bending strength and the torsional rigidity of the ribs; 
R^i'll.m-1,2.3. . 
1        /5 ni, na n„ are the distances of the 

ribs from the lower edge of the plate (from the x-axis). 

We shall solve the problem starting from the energetic method 
as well as the problem of the stability of nonreinforced plates 
compressed by concentrated forces. 
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Let us assume that the system has experienced small devia- 
tions from the plane form; the plate has been deflected, and the 
ribs have been deflected and twisted. The lines of the ribs di- 
vide the whole plate into a number of sections whose number is 
equal to tf + 1. We shall denote the deflections of the plate by 
Ui,(x,   y);  the rib deflections will then be w^x, T\k),   by virtue of 

the rigid connection of plate and ribs, and the angles of their 

twisting* will be e* = (^r),..^• 

In the distortion the forces will carry out a work equal to 

»ol    0 '* 

/! = 

to the potential energy of the system the energy of bending 7._ lag 
added which consists of the energy of bending of the plate sec- 
tions and the energy of rib bending and distortion. Prom the equa- 
tion 

we find: 
(113.2) 

■ +<^j>^+il>Ä, + 
4 = 10 

V 

(113.3) 

i). 

We seek expresslonf ror the plate deflections satisfying the 
conditions on the sides a: = 0, a; = a, in the form 

t^AOOsinpjc; (113.4) 

the deflections and angles of rib twisting will be, respectively. 

The problem boils down to the determination of the functions 
f%(y)  minimizing (113-3), and this is equivalent to the problem of 

seeking the minimum of the expression** 
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u = % /(D2/;
2
-2D1V.JPV;:+D1P^-F-4D^

2
)^+ 

N (113.5) 
+ S l(£AP( - >^ß2)/| (^) + c^f? (\)l- 

*=1 

Solving this problem by the methods of varlatlonal calculus 
we obtain the following results. 

The functions f,   satisfy the equation 

D2/i
v-2D#/;'4-D1ß

<A = 0. (113.6) 

and the conditions: a) on the sides y  =  0  and y  = b  the conditions 
of fixing; b) at the boundaries between the sections _y = ^ («= i, 2, 
..., N) y   I.e., on the rib lines 

h+i — A- 

■D^-DJl-c^, |        (113.7) 
v;;t-ö2/;'=(^-^i2)ß2/k 

(«=1. 2 TV). 

Each of the functions /, to be determined from Eq. (113.6) 

contains four arbitrary constants. The conditions for /, yield a 

system of 4^ + ^ homogeneous equations with the same number of un- 
known. As in the case of the compression of a plate without ribs 
the problem can be simplified considerably by using the analogy 
with beams and the influence functions. 

Equation (113.6) and Conditions (113.7) may be Interpreted 
as the equation and the conditions for the sections of a beam 
(whose length and rigidity are, respectively, equal to b  and Dz), 
which lies on a solid elastic base (the coefficient of elasticity 
is fe = Piß1*), is stretched by an axial force T  = 2Z?332 and bent 
by forces Q*   and moments M-,   applied at the points y  = TK ) (see 

Pig. 213, where the forces and moments shown are considered posi- 
tive). With such a beam the deflection f(y)  and its first deriva- 
tive are continuous whereas the second and third derivatives at 
the points of application of forces and moments are discontinuous 
in the following way: 

DJ" (% + 0) - DJ" h/; - 0) - ^. | 
DJ"'(-r]k + 0)-DJ"'irlk-0)~Qk.   f (113.8) 

The third and fourth conditions (113.7) show that the forces act- 
ing on the beam are proportional to the deflections, and the mo- 
ments are proportional to the first derivatives of the deflection 
at the points of their application. Adopting the designation f(y) 
for the beam deflection at an arbitrary point we have 
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T^l 

0, 

Ji 

Fig.   213 

•     ■     • 

iMK = CwPV dw).    Q^ = (^w- £^P2) P2/(-nN)-1 

(113.9) 

The beam deflection / can be represented in the form 

w (113.10) 

where 6 (TI, «/) is the influence functionof the force, and A(TI, y) 
is the influence function of the moment, which were introduced in 
§77. 

Substituting the values of f and /'  into  (113-9)  we  obtain 
a system of 2H equations for Q,   and W^:* 

■' ■+^;N+Q2
8Lv+----fQAN = o. 

MiAn + A12A« + • • • + ^^Nl +     " 

+Q« (8» - IF=W)+q^+• • •+^^=o• 
AI1A11-f-iWA,+• • •+>W^2 7K 

+ Q,8i2 + Q2 (»22 - XP^lf^p«) + ■ • • + QW^-2 = 0. 

>WAwH-^2^+-*-+^A^-t-   .. 

4- Q.8.* + Q282^ + • • • + QN ^N - XP^ET^T) = 0- 
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Having solved the first N  of these equatlors for the moments 
we obtain expressions of the form: 

N N 

Mi =  S  QkVkl •     ^2 = .2  <3A?A2- 
*=1 km ■ 'M^ = 2 QtfkN- (113.12) 

Moreover, we shall substitute the moment values found into the 
rest of equations and obtain N  equations which will only contain 
Qij   besides X: 

Qi (Äii - X^JEJ^ ) + Qi^-h• • • + QA-AM = 0. 

(113.13) 

We have used the brief denotation here 

fty = 8y4- S 7i».&..j 
(113-14) 

n=--1 

Putting the determinant of the system equal to zero we obtain 
an equation for the derermination of X: 

*.. 
1 

^' —£y,p< ' v21 

«12. Aoo  
1 

MAT' 

22        XPjp2- EJrf* ' kN2 

,   ftNN- WKP-EJXV 

= 0; (113.15) 

This is an i^th-degree equation;  generally,  it will determine 
N values X  each   ^f which will depend  on m: 

\(jn), )^(m) \N{m). 

The minimum of these N series of values not equal to  zero 
must be selected;  it will be the critical  one. 

§114.   THE  STABILITY  OP   A  PLATE  WITH  ONE   RIB 

A rectangular plate which is reinforced by one rib is  com- 
pressed by axial forces X applied to the rib ends   (Fig.   214).   In 
the general case we assume that the rib axis does not coincide 
with the  axis of symmetry of the plate. 

Let us designate by EJ and C the bending strengths   (in the 
plane perpendicular to xy) and the torsional rigidities of the 
rib and 

c = . Cn 
A'a YDiDj ' 

In the case  considered W — 1. "»h = TJ. 
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Equations (113.11) assume the form: 

X — f^m«   .    4n y Z)iDa     m^ .   1 
a*      ' a 'J?I, 

Hence 

cmh'ix~\   glx 

(11^.1) 

(llil.2) 

(114.3) 

(114.4) 

The number of semlwaves will also here remain undetermined, 
for the present. The determination of m and X.  is simplified if 

there are tables of the functions ga   h  and h'. 

In a special case, when the torsional rigidity is negligible 
and the rib resists only bending and not twisting 

where 
^i 

(114.5) 

Pig. 214 

In the case of infinite torsional rigidity, however, when 
the rib cannot be twisted, but may only be bent 

A = 
Aii ^n (114.6) 
h'. uSn 

Let us briefly consider two cases where we do not make any 
additional assumptions with respect to the rib rigidities. 
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I. The symmetric rib. If the rib is directed along 'i he axis 
of symmetry of the plate when &li = gii  = 0, 

•x = (114.7) 

where Sn — sibß,  b/2).    The number of semiwaves will be determined 
by calculations or with the help of the tables of Influence func- 
tions (In those cases where there are such tables). It Is evident 
from Formula (11^.7) that the critical force for a plate with a 
rib directed along the axis of symmetry does not depend on the 
torslonal rigidity of the rib, but only on Its bending strength 
and on the rigidities of the plate. 

y 

Fig. 215 

2. The band with one rib. For an infinite band with one rib 
(Pig. 215) 

en'-g^' Ti)^y("i-|-"2). 
(114.8) 

where ui, «2 are roots of the equation 

4"1 —2DJH
2
 + D1 = 0. 

From Formula (114.6) we obtain: 

X = a*       * a m («, + Uj). 

(114.9) 

(114.10) 

Obviously, the minimum value of X will be obtained for m = 1, and, 
finally. 

Kv = —r- H '-^^-^ (u, + u2). (114.11) 

The formula apply to any of the three possible cases of 
roots 1, 2, 3 (see §78). 

It is interesting to note that the critical force for a band 
with rib is obtained in the form of a sum of the Eulerlan critical 
force for the rib (i.e., for a rod with supported ends compressed 
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by axial forces) and of the critical force for a band compressed 
by two forces of opposite directions (see §107). 

§115. THE STABILITY OF A RECTANGULAR PLATE REINFORCED BY RIBS 
ALONG TWO SIDES AND COMPRESSED BY CONCENTRATED FORCES 

Let us consider a rectangular orthotroplc plate with princi- 
pal directions parallel to the side directions two sides of which 
are reinforced by stiffening ribs. The system Is deformed by two 
equal forces with opposite directions X applied at the ends of 
one rib, and two forces \P  applied to the ends of the other rib; 
the critical value \.     is to be determined. The sides on which 

the rib ends are fixed are assumed to be supported; the rib ends 
are assumed to be supported and fixed with respect to twisting. 

Pig. 216 

Let us direct the x-axis along the reinforced side (Pig. 216) 
and Introduce the designations: EJi,  EJz  are the bending strengths 
of the ribs in the planes perpendicular to the original plate plane 
«y; Ci,   Cz  are the torsional rigidities of the ribs; a, b  are the 
lengths of the plate sides; d = b/a,  ß = mir/a (m = 1, 2, 3, ...). 

We shall solve the problem by the energetic method.* Let us 
assume that the system has undergone a small distortion: the 
plate has been bent, and the ribs have been bent and twisted. 

Let us designate by wfx,  y)  the plate deflection; w1 = w(Ar1 0), 

t»I = t»(j:, b)    are the rib deflections; öi — (l^r),,.,,, and Ö2==(?y)-t 

are the angles of-twisting of the ribs. The potential energy of 
oendlng V*      will be composed of the potential energy of the 

plate [see (61.22)] and the potential energy of the ribs 

•   ■   >  • 

i j IE/, (w*)* -f EJ, K)2 -h C^y -f- C2 {Up] dx. (115.1) 

In the distortion of the system the forces will perform a 
work of: 

a 

Ar±-jl(w[f-\-P(w'2f\dx. 

- ^70 - 
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Prom equation  V.       = A we  find lap; 

^\\H™h-+™&]''*^ 
a 

+ f (£7, {wy -j- ^2 («#' -i- c, (ü;)2 - I - C2 (ü;)'I ^^}: 

JiK f-\~P(xv'S\dx. 

(115.3) 

We focus our attention on the expression for w  satisfying the con- 
ditions on the supported sides a; = 0 and x = a, in the form: 

then 

w«=/(^)sinpx; 

a», = / (0) sin p.v.      w-i = / (Jb) sin $x, 

"^/'(O) sin PAT.      *2=* f'{b)s\\\$x. 

(115.M 

(115.5) 

Substituting w  into (115.3) we shall seek the function fty)  minim- 
izing X. We reduce this problem to the problem of determining the 
minimum of the expression* 

•    » 
t/ = J {DJ"1 - 2D1v2ßV/"+ ß.PV^ 4D,ßV'2)^ + 

+ [EJtf - X) ßV2 (0) + {.EJ^ - IP) ßV2 (t) + 

+ |C1/
/2(0) + C2/'2(ft)lp2. 

(115.6) 

Solving it  according to the rules of varlational calculus we ob- 
tain the following results. 

The  function / satisfies the equation 

D2/'
v — 2D3P2/''+ ^^7= 0 (115.7) 

and the conditions 

/'" (0) - v.p V(0) - ■% p2/'(0) - 0. 

'a 
/"(*)_vipvw+gP2//(*) = o. 

/'" (0) - (>, +4^) P2/' (0) + ^ (EJ.pi - \) p V(0) = 0. 

/,"(ft)-(^+4-gL) P2/'W-^ (^2P
2-XP)PVW = O. 

(115.8) 

The general integral of Eq. (115.7) depends on the roots of the 
characteristic equation which has occurred already several times 

Dju«—2ZV24-D1 = 0 (115.9) 

and is written in a different form according to which of the three 
cases o: roots is realized. 
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Case I . Real unequal roots ~wi' —"2: 

f-^Ach ßtf,^ -|- B sh p«^ -f- C cli p//2>' + D sli ß«^. 

Case  2.   Real equal  roots  Hi: 

/= (/I -f /J.y)ch ß«^ • |-(CH- O^) sh ß«y. 

Case   3.   Complex roots w±/v. —udz/v: 

/ = (/I cos Pt^ -}- ß sin ßv^) ch pay -f- 

-f (C cos $vy -{- Dsin Pu>) sh p«y. 

(115.10) 

(115.11) 

(115.12) 

On the basis of Conditions (115.8) we obtain a system of four 
homogeneous equations for A,  B3  C,  D,  and putting the determinant 
of this system equal to zero we obtain an equation for X. The lat- 
ter equation is of the second degree; it will yield two series of 
values: \i   (m)  and X2 (m).   Furthermore, the number of semiwaves 
(in the direction of the ribs) n to which the minimum nonvanishing 
X corresponds and this minimum value itself must be determined. 

§116. THE PLATE REINFORCED BY IDENTICAL RIBS ALONG TWO SIDES 

Let us deal in a more detailed manner with the case of a sym- 
metric system where the ribs have identical rigidities and the 
forces are equal. 

In this case 

EJ^EJt^EJ,   C1 = C2 = C, P=l. 

Two fundamental forms of plate distortion are here possible 
after the stability has been lost; the first one is characterized 
by the fact that the plate, having lost its stability, will bulge, 
thereby forming a surface symmetric with respect to the axis y = 
a b/2,  the second one is characterized by an antisymmetric bent 
surface. 

I. The symmetric for.-. 

If the roots.of the characteristic equation (115.9) are real 
and unequal (Case 1) then the equation of the bent symmetric sur- 
face has the form: 

/=/lchp«1(^-*/2)+flchptfa(>f-^*/2).        (116.1) 

Conditions (115.8) will be reduced to two conditions: 

/"(0)~vIpV(0)-^ßV
,(0) = 0. 

r(0)-(v1 + ^)pv'(0) + ^.(^p2_A)py(0) = o. 
(116.2) 

Substituting the values of f,  f't  f",   and /'" for y = 0 
into these conditions we obtain two homogeneous equations for the 
constants A  and B, and putting the determinant oc" this system 
equal to zero, we obtain, after some simple transformations: 
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4- Völ mj. (116.3) 

The quantities /"', e">' sm entering this formula are functions 
of the ratios d = b/a and depend on m which Is equal to the num- 
ber of semlwaves in the direction of the forces. 

In Cdse I (see §llr') these quantities have the form: 

fm ^ 77^ (". ch --^ sli -y "2 cli -y- sh -^i-j. 

1    , ,        ,.   .  mr.Hxd   i niTM2d s„.      yy—K — fpsh -y-sh —^-, 

Wm = w, sh -y- ch -y^ - H2 sh -y- ch -^i-. 

(116.^) 

The  same  formula for   (116.3)  Is  obtained In Case  2 and Case 
V   emJ   and  8m wil1  have  another  form: 

In  Case   2: 

lm = -jT~ 2H (ch m^urf-f- 1), 

(116.5) 

1 

-(sli mrueT — mnud), 

sm — — 2« (ch mitud —1), 

Hm = sh mTtud -{- mnad. 

In  Case   3: 

lm ~ jf- 2« (ch m-ud + cos wnvrf), 

'm = 77— (sh m-z/rf — — sin mtivdj, 

Sm = 77- 2M (ch w-wrf — cos iniivd), 
I'm 

Hm — sh m-ud -\- — sin mxvd. 

(116.6) 

For large ratlos d  we may assume: 

/m == *,„ = «1 + «a 

(or, respectively,/m = sm = 2K). 

2. The antisymmetric form. 

In Case 1 we obtain the equation of the bent surface 

" / = /l sh p«, (.y — ft/2) + B sh ?u2 (.y — ft/2) 
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and Conditions (116.2). Putting the determinant of the system of 
equations for A  and B  obtained from Conditions (116.2) equal to 
zero we find 

I EJn*m* 
■f 

+' AD, {/%-*/%)*'* + l£+7k'"1'* (116.9) _— m -— . . 

aD 

The investigation of Formulas (116.3) and (116.9) obtained 
permits us to draw the following conclusions. 

1) For any finite side ratios a symmetric form of stability 
loss with one semlwave (m = 1) in the direction of the compres- 
sive forces must exist, and only for large ratios d  (theoretical- 
ly, for i = «) the symmetric and the antisymmetric form are equal- 
ly possible. The form of the symmetric and antisymmetric surfaces 
for m = 1 is shown in Pig. 217. 

*A -£^4 c 
V 

*•» ^z 
« . /y^y ? 
^ -^C/ X 

9 i . • 

V' • 

■ \ 

/ 
" \   ' 

..--^ 

* I          i 

. 

'U 

Pig. 217 Fig. 218 

where 

2) The critical load is determined from formula 

^•=.-fliH a *' 

/i + 
«C 

(116.10) 

(116.11) 

aD* 

The critical load, as can be seen from these formulas, is 
composed of a Eulerian critical force and of an additional force 
depending on the elastic constants of the plate. 

If &7 = C = 0 we obtain the critical load for a plate without 
ribs with two free and two supported sides compressed by forces 
applied at its free boundaries: 
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3) For large aide ratlos d  we may take 

(116.12) 

(116.13) 

C = 
4)  For a plate with ribs  for which the torslonal rigidity 

0 we obtain: 

*~i(/gM/M4 (116.14) 

This case is equivalent to the case of a plate which not ri- 
gidly linked with the ribs, but freely supported by ribs because 
the equation C = 0 may be regarded as the condition of free revol- 
ution of the plate boundaries about the axes of the ribs. 

5) For a plate with infinite torslonal rigidity 

k = st (116.15) 

physically, this means that the ribs can only be bent, but not 
twisted (owing to, e.g., special side fixing devices). 

The stability calculation of plates reinforced by ribs along 
the edges is considerably facilitated if there are tables of the 
quantities Zi, ei, sj. These tables (brief ones) will be given 
below for an Isotropie plate and for a plywood plate as considered 
in §67. 

TABLE 28 

The Functions Zi, ei, si for an 
Isotropie Plate 

d h 'i *I 

0.25 2.81 0.0503 0,393 
0,5 1.81 0.189 0.661 
0.75 1.67 0.379 I.M 
1 1.71 0.572 1.44 

2 lv96 0.951 1.95 
3 2.00 0.997 2.00 
CO 

1 
2.00 1,00 2,00 

If we want to obtain X,  for a plate with given side ratio d 

we take the corresponding table and substitute the values of Zi, 
ei, 8i found from it into Formulas (Il6.10)-(ll6.11). The values 
of these quantities for ratios d  not appearing in the table may 
be determined approximately by interpolation since the functions 
hid)' e^d)     and si(d)  for d >  1  are sufficiently smooth curves. The 
diagrams of these functions for an Isotropie plate are shown in 
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TABLE  29 

The Functions li,  ex,   a\  for a Plywood Plate 

d 
CWBTMC BAO.ib DOflOKou (Di>Da) Cwniiie uoiicpcK UOJIOKOII fOi<£>a) 

h «i *l 'i 'l «1 

0,25 
0,5 
0,75 
1 

2,98 
2,47 
2.84 
3,0C 

0,174 
0.585 
0,006 
1,01 

1,36 
2.52 
3.08 
3.16 

2.57 
1,33 
0.918 
0.784 

0.0141 
0.0576 
0,129 
0.224 

0,112 
0.225 
0.336 
0,445 

2 
3 
00 

3.10 
3,10 
3,10 

1,00 
1,00 
1,00 

3,10 
3.10 
3.10 

0.734 
0.851 
0.888 

0.7U3 
0,972 
1,000 

0,790 
0,901 
0,888 

1) Compression along the fibers; 2) compression 
across the fibers. 

Fig. 218 which also explains the general character of the varia- 
tion of Zi, e\t   8\  In the case of a plywood plate. 
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[Footnotes] 

See his work "0b ustoychlvostl plastlnok podkreplennykh 
zhestklml rebraml" [On the Stability of Plates Rein- 
forced by Rigid Ribs], izd. In-ta inzhenerov putey soob- 
shchenlya [Institute for Communication Path Engineers], 
Petrograd, 1914, or his book "Ustoychivost' upraglkh 
sistem" [The Stability of Elastic Systems] which has 
been mentioned several times, §70, pages 331-3^3, 

See (97.6)-(97.8). 

See the first footnote. 

In the latter case the rib remains rectilinear, but in 
this case it is twisted. 

See the works by S.P. Timoshenko, mentioned In §§109- 
110. 

See the first footnote in §109. 

If m  is an even number the rib remains rectilinear and 
is only twisted after having lost its stability. 

We neglect the rib width. 

See (97.6)-(97.8). 
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As to the designations hij-h'ii>\r^j    see  §77. 

Lekhnitskiy,  S.G.,  Ustoychivost'   anlzotropnoy plastinki 
usilennoy rebrami po dvum storonam  [The Stability of an 
Anisotropie Plate Reinforcrd by Ribs Along Two Sides], 
Nauchnyy byulleten1  Leningr.  gos.  un-ta  [Scientific Bul- 
letin of the Leningrad State University],  1945,  No.   2. 

See  (97.6M97.8). 
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[Transliterated Symbols] 

Kp = kr = kriticheskiy » critical 

war = izg = izgib = bending 

np = pr = predel'nyy = limiting 
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