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ABSTRACT

In diverse areas of physics and engineering, problems arise

which should properly be described by linear differential equations

with stochastic coefficients. Methods are developed here for finding

. - integral expressions for the second-order statistics (means, correla-

tion functions and power spectrum) of the dependent variable of an

th
D order linear stochastic differential equation. These expressions

constitute a generalization of the corresponding expressions for

linear time-varying systems to linear randomly time-varying systems.

The kernels of the integral expressions for the otatistical measures

of the solution can be interpreted as stochastic Green's functions.

In general, expressions for the second-order statistics of the

solution of either ordinary or partial linear differential equations

with stochastic coefficients requires knowledge of all the moments of

stochastic coefficients. An exceptional case is that in which the

stochastic coefficients are Gaussian processes. Then the knowledge

of rche second-order statistics is sufficient for tL . complete solution.

It is assumed that the coefficients of the differential equation

are separable irto deterministiz and stochastic parts, and the solution

for the deterministic part is known. In the c-se of a stochastic

ordinary differenrial equation, the problem now becomes a problem of

solving a Volterra integral equation with a stochastic kernel. Two

methods of solution of t.is integral equation are considered: the

Neumann seties expansion method and the degenerate kernel method.

A theorem which gives sufficient conditions for the uniform convergence

of the Neumann series expansion is proved. The proof of this theorem,

and the actual Neumann series expansion, is shown to be facilitated

I!



if the n th order differential equation is expressed in the stare-space

notation of control system theory.

The uniform convergence of the Neumann series expansion allows

the solution of the stochastic differential equation to be expressed I

in terms of the resolvent kernel of the stochastic integral equation.

The ensemble average and the covariance function of the solution are

expressed in terms of the corresponding statistical measures of the

resol-rent kernel and of the input process. The statistical measures

of the resolvent kernel are functions of both the Green's function

of the deterministic operator and the Rppropriate statistical measures

of the stochastic coefficients.

Both the Neumann series iteration and degenerate kernel approxi-

mation are applied to the investigation of the propagation of waves

in a randomly space- and time-varying medium. Aimost all the previous

work has used the so-called quasimonochromatic assumption which

essentially neglects the time variation of the medium. Stch an assump-

tion has been avoided in this dissertation and thereby some consequences

of this assumption discovered. The source and the stochastic medium

are assumed to be wide-sense stationary stochastic processes. All the

stochastic quantities of the scalar wave equation are expressed by

their spectral representation, and the equation is solved for the

spectral representation of the scalar wave function. From the spectral

representation of the scalar wave function, its power spectral density

and mutual coherence functions can be found. Both the Neumann series

expansion and the degenerate kernel approximation demonstrate the

spreading of the power spectrum of the source by the time-varying



meeif. in the Neumann series expansion, even the first-order approxi-

mation hows the spreading of the power spectrum. Higher order

approximations show further spreading of the power spectrum. Higher

order approxtuotions also show that the solution contains, in adeition

to the wide-sense stationary terms, terms which are no longer wide-

sense stationary,
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CHAPTER I

INTRODUCTION

1.1 General Statement of the Problem

Many problems of interest to electrical engineers are described

by linear differential equations with stochastic coefficients. Often

the randomness of the coefficients has been neglected because no

widely applicable and tractable mathematical methods have been known

th
for solving such problems. In this dissertation, an n order linear

differential equation with such stochastic coeff.lcicnz

£. y(t,w) - x(t,w) (1.1)

is considered. f is assumed to be a sum of an invertible deterministic

operator L and a stochastic operator R. The differential operator f,

is defined on some domain tET and a Frobability space (0,7,P). L

can be either an ordinary or a p.irtial difierential operator. Our

approach to the solution of (1.1) is to determine a "stochastic Green's

function" (Adomian, 19b1, 1963, 1964) for the linear stochastic opera-

tor r in terms of a deterministic Green's function for L and the

appropriate "statistical measurf's" of the tochastic coefficients.

The term "statistical measures" is ubed as a general term for the

quantities that characterize stochastic processes. For example,

Random functions. Precise defiritions &te given in Chapter I,
sction 2.2.

Probability spaces are also defined in section 2.2.

I
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expectations, or averages, spectral densities and correlation

functions are statistical measures. The integral ke:nel which

expresses the desired statistical measure of an output process in

terms of the correbponding statistical measure of an input and appro-

priate statistical measures of the stochastic coefficients is called

the "stochastic Green's function". In this thesis, an iterative

method (Adomian, 1967) for the construction of stochastic Green's

functions is investigated and applied to physical problems.

1.2 Significance of the Problem

Differential equations with ralndomly time-varying coefizcients

arise naturally in many practical problems. Analysis of seemingly

simple systems often produces _.ch d'¢ferential equations. For

example, to find the current drawn frcm a generator with finite

internal impedance operating into a randomly time-varying load

impedance one must solve a differential equation with stochastic

coefficients. A large interconnected power system is clearly a

randomly time-varying network. Its behavior and instartaneous

states are cnly predictable in a statistical sense. Many control

system probl-ms have randomly time-varying parameters. Adaptive

control systems are typical examples. In other cases, system para-

meters are modulated by tandom disturbances. The comtlInation of

complexity and uncertainty in a real problem often makes it necessary

to use stochastic analysis. Ut.-ertainty may result from unaoidable

experimentol errors in determining the parameters of the real system

or it may re;.ult from lack of prior knowledge of the condiL.ons under

which a rstem must operate. In the latter cAse, statistical analysis

_ 
A
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is preferable to the "worst case analysis", because the results of

the worst case analysis are often unrealistically pessimistic.

In some cases it is preferable to analyze a complex deterministic

system as if it were a simpler stochastic system. For example a

many-body problem may be attacked by considering the interaction of

the predominating forces a- deterministic forces and the totality of

all smaller forces as random forces. Note that the sum of all the

small forces may no be negligible compared to the larger forces, even

if each inuividual fc, ce by itself is negligible. In electrical

engineering, there are analogous problems, such as complicated network

problems which would require simultaneous solution of a large number

of loop or node equations. Here, also, the complexity can be traded

for randomness.

In addition to the above examples, another important class of

problems involving stochastic differential equations arises in almost

all wave propagation problems. The pro-agation of electromagnetic

waves through the atmosphere, ionosphere, plasmas, turbulent mixtures

of gases and water vapor are some examples. The propagation of sound

wves through water with varying temperature gradients, microstructure

or turbulence, results in stochastic scalar wave equations. Thus the

stochastic wave equations are of interest to sonar, radar and communi-

cation engineers. Furthermore, ptoper understanding of stochastic

wave equations may provide additional research cools for understanding

various random media.

In addition to the abovementioned examples stochastic operator

equations are significant in several furdamental problems of physics.

In spite of this, the stochastic operator approach has not been widely
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used because of mathematical diff :ulties. For this reason it ,

important to develon tractable mathematical rethods for solving

stochastic differential equations which arise in the protiems of

physics and engineering. According to the distinguished mathenotician

Solomon Lefschetz (1967), the study of stochastic differential

equations is one of the fertile but poorly charted fields ot mathe-

matical research.

Formulation of physical problems by means of stochastic

differential equations is a generalization of the corresponding

formulation by means of deterministic differential equations.

Conversely, one may consider all the coefficients of any differential

equation to be rndom variables or functions; then, when the randomness

of the coefficients vanishcs, the problem reduces to the deterministic

case, i.e., the random coefficients are replaced with their mean

values. Problems which need to be investigated include the determin-

ation of whether randomness can be neglected in a given problem and

what errors may result if this is done. A realistic approach to

such an investigation would be to introduce the coefficierc a a

random variable, obtain the "random solution" of the differential

equation, and then study its statistical properties. The general

approach to this problem is discusseJ later in this chapter.

1.3 Previous Related Work

Before reviewing the previous related work in the theory of

stochastic equations, some terminology needs to be clarified. The

solution of a differential equation can be radom for any ot three

reasons:
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1) Initial or boundary conOitions are random. j
2) Forcng functions are stochastic processes

3) The coefficients of the differential equation are stochastic

processes.

In the first two cases, the differential equation itself is

deterministic and the solution of the differential equation can be

expressed in terms of a deterministic Gieen's function and random

forcing functions, or random initial and boundary conditions. The

random initial and boundary conditions may simply be interpreted as

random forcing functions in the construction of the Green's function.

Fov this reason, the first two cases are not really stochastic differ-

ential equations. Two stochastic ocesses are simply related by

a de ermin4 -tic Green's function. In this dissertation, the term

"stochastic differential equation" means a differential equation

with coefficients which are stochastic processes. Similarly, a

stochastic integral equation is an integral equation with a stochastic

kernel. In general, a "stochastic operator" is an operator with

stochastic parameters.

For the first two cases, an excellent jeview of the solution of

differenLial equations with random initial conditions and '-:.;7om

forcing functions has been made by R. Syski (1967). Other useful

survey papers are by Kampe de Ferriet (1965) and an older one by

Edwards and Moyal (1955). Syski (1967) also reviews other special

topics such as Brownian motion problems or Wiener-Levy processes.

Important mathematical contrIbutions in connection with the Wiener-

Levy processes have been made by Kolmogorov, Feller, Levy, Doob,
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Kac, ItS and others. Syski also reviews the work that has been done

by Ita and Doob in characterizing Markoff diffusion processes- The

computation of the citput spectral density and the correlation function

for linear time-invariant systems has been thoroughly discussed in

standard texts (Laning and Batcin, 1956; Davenport and Root, 1958;

and Papoulis, 1965) and needs no further comment.

Among the other works in this line, A. D. Jacobson (1967) in two

recent papers analyzes second-order coherence properties of electro-

magnetic fields which are produced by random sources of arbitrary

spectral width. His principal field quantity, "the dyadic field

spectral density" is interpreted from both a statistical and a

physical standpoint.

Also, random boundary conditions have been used by D. E. Barrick

(1965) to study backscattering of electromagnetic waves from rough

surfaces. The starting point of his analysis is the Chu-Stratton

vector integral equation. He obtains closed form solutions for the

backscattering cross sections for - class of rough surfaces with

several different statistical -iodels. Barrick's dissertation also

contains an extensive list of references on backscattering of

electromagnetic wavt.: fi n rough surfaces. Another random boundary

value problem which has been studi d by several workers is the

backscattering of sound waves from turbulent sea surface (Eckart, 1953;

and Clay, 1960).

The study of linear differential equations with stochastic

coefficients (or, in the more general case, linear stochastic operators)

has proceeded along two lines. The first one, explicit solutions of

specific problems of physics and engineering have been pursued by

A
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Rosenbloom (1954), Tikhonov (958), Samuels and Erdingen (1959),

Astrom (1965), Chelpanov (1962), Adomian (1961, 1963, 1964) and others.

The most general approach to the subject has been taken by Adomiano

The second approach has been based on probabilistic functional analysis

and has been concerned wit proving existence and uniqueness theorems.

Work along this line has been done by Hanv' (1961), Spacek (1955) and

Bh'rucha-Reid (1960, 1964, 1965). As the theory of linear stochastic

operators matures, it ir expected that thf two lines of research will

merge.

th
Samuels and Eringen (1959) treated the problem of an n oLLe

linear differential equation with random coefficients. They restricted

their attention to differential equations with (i) small randomly

varying parameters, (ii) slowly varying random coefficients, and

(lii) only one random coefficient. They applied their mathematical

methods to an RLC circuit with a randomly varying capacitor and to

the analysis of dynamic instability of an eleastic bar subject to

a randomly time-varying axial force. They used a perturbation

method to solve the Problem. Tikhonov (1958) has calculated the

statistics of the solution of a first-order, linear, differential

equation with a single stochastic coefficient and a stochastic forcing

function. He asbumed that the coefficient and forcing function were

correlated, stationary and normally distributed. Tikhonov points out

that sometimes it is possible to analyze the effects of a random

forcing function on nonlinear systems by considering the solution of

the abovementioned linear differential equation. Astrom (1965) also

considers a first order stochastic differential equation with

correlated forcing function and coelicient. This problem arose in the
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study of control systems subject to random distrubancis. His

analysis emphasized the probability distributions, where Tikhonov's

work stressed correlation junctions. Caughey and Dienes (1962)

th
considered an n order linear differential equation with the forcing

function and lowest order coefficient being white-noise processes.

Syski (1967) reviews several other special differential equations

with stocbastic coefficients that have been solved. Other special

problems have also been solved. For example, Gibson (1967) obtained

a solution to a partial differential equation with random coefficients.

The differential equation arose in calculation of interaction of

electromagnetic wavcs and thv random flucLuation of electron density

in the wake of a reentry vehicle. The coefficients of the equation

were cssumed to be identically distributed Gaussian random variables.

In addition to the abovementioned methods, hierarchy techniques

have been widely used by ohysicists for solution of differential

equations with stochastic coefficients (Adomian, 1967; Adomian, 1968;

Keller, 1964; Richardson, 1964; and Kraichnan, 1962). In the hierarchy

methods, the differentia! equations i- averaged before attempting

to solve them. But by doing this, the equation for the average

(first moment) involves a higher moment of the unknown function. One

finds that the equation for a moment of any order involves moments of

higher order. This procedure results in an infinite system of

equations which must be solved simultaneously. To get a finite set

of equations, unverified and often unjustified "closure"

approximations are made. These closure approximations are the

basis for what Keller (1964) c'lls "dishonest" methods -or solving

stochastic differential equations. The difficulty with the hierarchy
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method is essentially that the average of the solution of a

differential equation with stochastic coefficients is not necessarily

the same as the solution of the averaged equation. Various closure

approximations simply hide this difficulty. It has been shown by

Adomian (1967, 1968) that hierarchy methods are valid only under

special cases, such as bmall randomness. Even then it is often

preferable to use approximate methods whose validity can be verified

and wherein errors can be evaluated.

An important application of stochastic differential equation

theory is the study of wave propagation in randomly turbulent media.

Wave propagation in random media 1As bh, r uti.e" ty Y-ller (.9"'0

Hoffman (1964, 1959), Twersky .1964), Wheelon (1959), Bugnolo (1959,

1961), Lax (1951), Cheriov (L960), Tatarski (1961), Mintzer (1953,

1954), Booker and Gordon (1950) and Booker (1959). More recent papers

have been published in the special issue on partial coherence of IEEE

Transactions on Antennas and Propagation (1967). Since the books by

Chernov (1960) and Tatars~i (1961) and the review article by Wheelon

(1959) contain excellent reviews of the older literature and extensive

bibliographies, only orief remarks are needed here. Nearly all

studies to date of wave propagation in random media have assumed

harmonic time dependence. In many cases, this "quauimonochromaticity"

assumption is clearly not valid; in other cases, it needs verification.

Examples of the first case are wave propagation through energetic

media and interaction of electromagnetic waves in excited media.

Also, small randomness is usually assumed irom the Outset, for

example, in the derivation of the wave equation. It would be

desirable to have a meLhod where one applies restrictive assumptions
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as late in the problem as feasible, so that it becomes clear exactly

where the restrictive assumptions sre needed and how they can be

removed, if required for a particular problem. For these reasons,

it is desirable to investigate wave propagation in the stochastic

media from a more general point of view.

The rigorous mathematical background for the theory of stochastic

equations has been reviewed in a survey paper by bharucha-Keid (1964).

He presents the basic definitiois and theorems from probabilistic

functional analysis that are used in the theory of ra-dom equations.

The paper also reviews different classes of random equations such as

random algebraic equations, random difference e',uations, random

differential equations, and random integral equations. In a recetic

Ph. D. thesis, Anderson (1967) has studied in great detail Fredholm

integral equations with stochastic forcing functions. Strand (1967)

has studied existence and uniqueness of the ordinary stochastic

differential equations. Goldstein (1967) has studied the sample

function behavior of the second-order ItS processes. The operator

theoretical treatment of this problem leads nonlinear semigroups

of operators. Ito equations are very special stochastic differential

equations and are not considered here.

The most general approach to stochastic differential equations

or, in general, to stochastic operator equations, has been taken by

Adomian (1961, 1963, 1964, 1967). He has developed the concept of

a "sochaatic Green's function". The integral kernel which expresses

the desired statistical measures of the solution in terms of the

corresponding statistical measure of the input and appropriate statis-

tical yaesures of the stochastic coefficients is called the "stochastic



Green's function". The term "statistical measure" is used as a

general term for the quantities that characterize stochastic processes.

Expectations, spectral densities, and correlation functions are the

statistical measures which are most widely used in physical problems.

In the view of the fact that Green's functions have been widely used

in applied mathematics, mathematical physics, linear system analysis,

and elecrom..,etic theory, it can be expected that the concept of a

stochastic Green's function may provide the unifying concept for a

large number of diverse problems that are described by stochastic

differential equations. The major oroblem in solving equations by

Pwans of stochastic Green's functions, as is the case with the ordinary

Green's functions, is the problem of constructing the Green's function.

The central problem of this dissertation is the construction and

interpretatior of stochastic Green's fun~ctions for various problems

L.hat arise in electrical engineerirg

1.4 General Method of Solution and SpetL:tc Statement of the roblem

The ultimate goal ot the solution of a stochastic differenital

equation is to express tW vcatisticdl mearures of the dependent

variable in terms of the statistical measures of the torcing function

and the stocha tic coefficients. One approach to the problem is to

determine all the orders of the multivariate orobability distribuions

of the dependent variable. This gives the complete statistical

descripLion of the depen,irti variable and hence is the complete

solution of Lhe problem. This m.thod is correct in principle, but

is too difficult to be uiseful for most prnctal problems. In most

applications, one is primai ily interested in correlation !unctions,
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spectral densities and mean values. These statistical measures can

be computed from multivariate probability distributions but, in view

of the complexity of the problem, it is desirable to see. expressions

for the desired statistical measures of the dependent variable in

terms of the same statistical measures of the fLrcing function and

appropriate statistical measures of the stochastic coefficients.

Another reason to avoid the intermediate steps is that, for the

calculation of the multivariace probability distribution function,

one needs to know all the multivariate probability distribution

functions of the forcing function and stochastic coefficients. This

information is not as frequently available as the second-order

statistics (correlatior, functions, spectral densities, etc.). One

needs to resort to more complicated experiments or unjustified assump-

tions to obtain the higher order inf rmtion which is disregarded

later anyway. Thus, a cleaner method is one which eliminates the

intermediate steps of obtaining multivariate probnblity distributions.

Because of the difficulty of solving differential equations with

stochastic coefficients, it is desirable to have a metnod which takes

advantage of known solutions of the corresponding deter,.Iniscic

equation. To this end, one would seek an expression for the

stochastic Green's function in terms of the known deterministic

Green's function function. With this an motivation, the centra!

problem of che disserta:ion can be rephrased in more precise terms

thas follows; Let P be an r, order stochastic ditterentlal operator

defined on som.. domain tLT and a probability space (i},2,P)
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n

VI-I

where a (tu) are time , -random functions, tET and wi'll on
V

(ft,Z,P). Let the operitor .' be :eparable into the sum of a deter-

ministic onerator L and a random operator R. In particular, let

the i:andom coefficiepnts bc. of the form

a (t - 0 + (t) --IV (t ,W.) ,(1.3)

where B (t) are deterministic functions of tire and a (t,w) areV V

stochastic processes ' (t) can be either the ensemble average

of a (t,,o) or some otner convenient tunction of time '. For :xample,

it may e posbible to choose (t) so that the inversion of the

dvtermiistic ditic-ential operator L is simplif:vd. It is asiaed

that L is in invertible differential operator" tit is, the Green's

r.unction G(tT) tot the dlffeiential operator L is knL-vn or can bo-

con&tructed. One can associate with the operator a stochatlc

differential equat ion

t , w) x(t,), tT and w on(1.4)
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)The forcing function x(t,w) can be either deterministic or random.

For greater generality, let it be random. It is also assumed that

x(t,w) is statistically independent of the random coefficients.

The problem is to find integral expressions for the statistical

measures of Y(L,W) in terms of the same statistical measures of

x(t,w) and appropriate statistical measur.s of the stochastic

coefficients. By the assumption that: the Green's function for the

deterministic operator L is known, the stochastic differential

equation (1.4) is converted to a Volterra integral equation with

a stochastic kernel and a stochastic forcing function. The integral

equation can be solved by a Neumann series expansion and a resolvent

kernel can be constructed. The stochastic Green's function can

be expressed in Lerms of the resolvent kernel of the stochastic

Volterra ir-egral equation. This method of solution has the following

advantages:

(i) Knowledge of the deterministic Green's function is used

to construct the stochasti Green's function.

(ii) An iterative method of solution is used. The previously

computed term is used to compute the next term and so on.

Iteration can be stopped as soon as the remainder term

reaches a .rescribed value.

The main disadvantage of this method is that a large amount of

labor may be required for the calclation of the resolvent kernvl;

but, on tle other hand, note any simplifying assumptions can be made

at places where their effects become clear. The solution of the

stochastic integral equation is simnlified if the kernel of the

integral equation ib degenerate. In many cases, the problem of
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solving a stochastic differential equation, with a time invariant

deterministic part, reduces to a problem of solv~ng an integral

equation with a degenerate kernel.

Chapter II contains general mathematical background, definitions

and terminology which will be used in subsequent chapters. Some

basic concepts from probability theory and from the theory of

stochastic processes are presented. The last part of Chapter II

contains a number of definitions and theorems from probabilistic

functional analysis. These theorems give sufficient conditions

for existence of a solution for the stochastic integral and differentil

equations. In reading this dissertation, one may go directly to

Chapter III without loss of continuity and refer back to Chapter II

for formal definitions and specific results as need arises.

The relations between resolvent kernels of Volterra integral

equations and stochastic Green's functions are discussed in Chapter III.

Both the Neumann serie.- expansion and the degenerate kernel method

are used for the construction of the resolvent kernel. In both cases,

the computation is simplified if the state space formulation is

used. The use of the state space formulation has the further advantage

that it connects modern control system theory with this work.

In Chapter IV, both the degenerate kernel method and the Neumann

series expansion are used to study propagation of a scalar wave

function in a randomly time- and space-varying medium. The statistical

measures of interest aj'e the power spectral density and the coherence

functions of the scalar wave function. The expressions for the

spectral density will reveal the spectral spreading caused by a

randomly time-varying medium. The usual quasimonochromatic
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assumption, which is avoided in this thesis, fails to show the

spreading of the power spectrum by the randomly time-varying medium.

Chapter V summnarizes the results obtained in this thesis and

discusses possible extensions to this work.



CHAPTER II

MATHEMATICAL BACKGROUND

2.1 Introduction

The purpose of this chapter is 'o establish the general

mathtmaticcl background for the subsequent chapters, clarify

terminology, give definitions, and to state useful theorems and

inequalities. Since most material is readily avails 'e in standard

books (Cram& and Leadbettcr, 1967; Papoulis, 1965; Pugachev, 1965;

Lo~ve, 1963; Doob, 1953; Sveshnikov, 1966; and Blanc-Lapierre and

Fortet, 1965) and review papers, (Moyal, 1949) the treatment is

brief and necessarily incomplete. Most of the theorems are stated

without proofs. First, some of the fundamental concepts f-,m the

probability theory and from the theory of stochastic processes are

presented. Probability spaces, probability distributions, random

variables and stochastic processes are defined. In the next section,

various moments suc[ as expecLed values (means), correlation functions,

covariance functions and higher mometts are discussed. A number of

useful inequalities for the moments of stocha6tic processes are also

presented. Then, in section 2.4, various concepts of stationarity

are defined. The concepts of strict stacionarity, wide-sense

stationarity, reducibility to wide-sense stationarity are discussed.

The following section (2.5) deals with the calL. Lochastic

processes. The discussion begins with the definitions of various

modes of convergence of the stochastic processes. Interrelations

between these modes of convergence are briefly discussed. Using
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the concept of convergence in the quadratic mean, quadratic mean

continuity, quadratic mean differentiability and integrability are

defined. The convergence of the iterative solutions of stochastic

differential equations can be interpreted according to one of the

modes of convergence of the stochastic processes. In section 2.6,

spectral expansion of the stochastic processes is discussed and the

power spectrum of wide-sense stationary stochastic processes is

defined. In the iollowing section the power spectrum of the non-

stationary stochastic processes is defined in terms of a double

Fourier transform. Section 2.8 develops some simple results which

express the expected values end the covariance functions of stochastic

processes which have been transformed by a linear deterministic

operator. It is also shown that a Gaussian stochastic process

remains Gaussian under linear transformition.

The final section of the chapter presents some definitions and

theorems from probabilistic functional analysis. Probabilistic

functional analysis provides a n~wber of existence theorems for

stochastic integral and differential equations.

We use the folloniing convention. If a word is underlined in a

sentence, that sentence serves to define the underlined word. The

reader may go directly to Char'er III without loss of continuity

and refer back to this chapter as need arises.

2.2 Probability Spaces. Random Variables and Stochastic Processes

Probability theory has its own terminology which is directly

related to its intuitive background but, as a branch of mathematics,

its concepts are expressible in terms of measure spaces and measurable
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functions. To establish the basic concepts, let us consider a random

experiment E with possible outcomes A,B ..... AB,... are various

observable events associated with the experiment E. A sure event,

denoted by 2), is an event which always occurs when the experiment E

is performed. An impossible event, denoted by 1, is an event which

never occurs as an outcome of E. Both the sure event 11 and the

impossible event 0 are regarded as observable events. One sure

"levent" is the collection of all possible outcomes. For the

processes we are considering that is the only sure event. Thus we

use the symbol 11 to denote the whole space of events.

A space 12 with points W, together with a a-field 2 of sets in 0,

and a probability measure P(A) defined on the sets A of X constitutes

a probability space denoted by (1,Y,P). A field X of w sets is called

a Borel field, or a p-field, if it includes all countable (finite or

enumerable) unions and intersections of its sets. P(A) is said to

define a probability distribution in 02. P(A) is a function defined

on all events or sets AcZ and it has the following properties:

0 < P(A) _< 1 , (2.la)

P (0) - 0 , (2.1b)

P (u) - 1 , (2.1c)

and P(A) is countably additive; that is:

P ( ,I' Aj) - " P(A ) , (2,ld)

J-I
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for disjoint sets AJ (Aj ' A k 0 for j + k). The orobability

measure defined in this manner ag: ees with the usual intuitive

concepts of the probability: the nrobability of an impossible

event is zero, that of a sure event is one, and e(A) is approximately

equal the relative frequency of occurrence of the observable event A

when the experiment E is performed a large number of times.

It is also assumed, for mathematical convenience, that the cr-field

. is completed with respect to the nrobability measure P(A). This

means that all subsets of 7 set,, of P-measure zero are adjoined to Z,

and the smallest cr-field, including this extended family of sets, is

formed. The completed cr-field has the oronerty that if it includes

a set A which has a P-measure zero, then it also includes every subset

of A which will then also have a P-measure zero. The extension of

P(A) to this completed a-field is called a complete probability

measure. This extension of probability measure defines orobabilities

for the events which may not be strictly observable, but this extension

gives additional analytical freedom. Namely, a nrnbability measure

is defined for events that are obtained troam the observable event

by any set operations.

In the literature, the probability theory and the measure theory

terms are used interchangeably. The correspondence between some oi

these terms is shown in tl t ollowing table.
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TABLE I

RELATIONSHIPS BE~TWEEN PROBABILITY THEORY
AND MEASURE THEORY

PROBABILITY THEORY MEASURE THEORY

Probability space Normed measure space

Sure event Whole space nl

Impossible event Empty set

Event Measurable set

Elementary event Point wJ belonging to the
space

Probability P-measure, normed measure

Almost sure, almost surely, Almost everywhere P ,a.e.P.

Random variable, r.v. Measurable function

Expectation, statistical average IntegralF

mean, ensemble average, < >

*1
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As ststed in Table I, a random variable is a P-meaurable function.

MAthematically the definition of a random variable is simply the

definition of measurability. A function X(w) on il to R w (-a*, +a)

is said to be measurable if, for every real number a, the set

(w CU: X(w)_< a)

belong& to the a-field X (o--field, measurable aets, events).

The measurable function X(w) is called a random variable.

Probability distributions are defined for all measurable sets or

events. When needed, X(w) may be alloyed to become infinite or

even undetermined on an w set of P-measure zero. When the two

random variables x(w) and y(w) are equal with probability one,

written

P[x(,) - y I

they are called 11H.valent random variables. Equivalent random

variables differ at most on an w set of P-measure zero.

When (w) is a random variable the probability F(x) - P(r < x)

is a non-decreasing function of the real variable x. Fx) is

continuous to the right, and

I i F(x) - 0 (2.2a)
X - --

lie F(x) - 1 (2.2b)
x
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The function F(x) is called the distribution function (or cumulativef

distribution function, d.f.) of the random variable . The knowledge

of F(x) for all x determines the probability P( cA) for every Borel

met A. A is a subset of the real line R.

The random variables 1, 2,.. ;n will jointly induce a

probability in n-dimensional Euclidean space Rn. The probability

F(x1,x 2 '' Xn) - P(;I - xl, - 2  x2' "" . n - x n ) is a nondecreasin S

function in each variable x l, x2 ... x, it is continuous on the right

in each variable and

lm F(xl, x2 . .. xi,.x n) a 0 i - 1,2,...n, (2.3a)
Xi-- -m
Xi

and

lim F(xl,x),...x) - I (2.3b)
xl,X2 ,. ..Xn- n1

F(x1 ,x2 . . . x ) is the multivariate diptuibutic q unction (joint

distribution function, J.d.f.) of the random variables ' n

Its knowledge determines the probability assigned to every loral

set of Rn by the n-dimensional distribution of the The random

variables lcan be thought of as components of an

n-dimensional random vector

- l 2'

The distributiun function of the random v-ctor is identical with

the multiveriate distribution of its compon-nts.
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Now we turn to a generalization of the preceding concents of

random variables and their distribution functior,s. That is, we ahall

consider an arbitrary family (X't,w)) of random variables where t

runs through some index set T. If T consists of a single point we

have a single random variable; a finite T-set corresponds to the

finite family of random variables. When T is an interval of real

numbers, the family (X(t,w):tcT] is called a concinuous-parameter

stochsstic rocessj or a random function. Physical systems subject

to random influences can be described by stochastic processes.

Another way of looking at stochastic processes is the following.

A random variable X is a set function on the sample space 0; that

is, a random variable X assigns a number X(w) to every wED. In the

case of a stochastic process, for every wcQ, a function X(t,w) is

assigned. Hence, we are dealing with an ensemble or a family of

functions. X(t,w) is often a function of time, but it may very

well be a function of any other quantity such as position. With the

preceding discussion as motivat)on, a rigorous definition of a

stochast, proceab is now given. Let a probability space (fl,Y,P)

and a parameter set T be given. A ftochastic process is a fi nite

real valued function X(t,w) which, for every fixed tcT, is a

measurab'e function of wtO. A L i Oct v l c':or proceol is an

n-dienional vector whose components are stochastic process; that

is:

-~w {X 1(t~w), X2 tw) -- Xn(t,'o)!

i0
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A particular vector process, with n - 2, is a complex-valued stochastic

process X(t, i) + i Y(t,w). There are several ways to interpret

stochastic processes. Stochastic processes can be considered as a

collection, or an ensemble or a family of functions. Each particular

function in the coliection is called a sample function, a realization

of a stochastic process, or a representative function. If t is fixed

at any particular to, then X(to,..) is simply a random variable. On

the other "Iqnd, if w is fixed, then X(tw ) is simply a sample function

of t. If both w and t are fixed we have a single number. The

stochastic process can be very complicated or quite simple. An

example of a complicated process is Brownian motion. The sample

functions are the coordinates r a particular narricle which is in

irregular eotion in a liquid or gas. The irregular motion of the

particle As caused by the random impacts with the particles in the

surrounding medium. it the particle has negligible bonds with the

medium excett at times at impact, almost all Brownian movemert

samp)le fnct io,1s e It V unbot nded varlation . (Doob, 1953; p 3-5),

An example of a s ir.pie proces-. ts the outut of a signal gt nerstor

Cos () COs (2nt(,.,)t + O(W)) , (2.4)

whetc. a () :S the racd n amp]ltude, (,.) is the rarldom trequeiicy and

ti(-,) is thc r-lvdow phai . Th is ')iecifvv what is exnected It, a

usual ex'el , S1 kl: atoI.: titt ;i.::.; i Lld', eqLWric'C aCo .hlaf's of

the signa I gerr ator art oiiv nown wIthl,. the limits of th*1

measuremen;t ICCtIciCV. \ ,,t 4 s givev by (2..) IS a stc hattic proLes8

but its SOMiP tuCt o h.1V' VeI .i le ,irai yt i" properties. From

Stilt' t " h,,' i. trc.I DP lt 01 \ lt'W. N .toChi.'- It I t %c"'SS i a toic t |on
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) X(tw) of two variables t and w. The domains of definition of t and w

are the rets T and Q.

For t fixed at t, we have a random variable X(t1 ,w) with a first.-

order distribution function for the stochastic X(t,w) given by

F(x;t 1) - P _X(t. I x) . (2.5)

For an arbitra-y finite set of values of t, ti p t2 --- tn, we

have the corresponding random variables X(tl,W), X(t2,w) --- X(tn,)

with the n-dimensional joint 2istribution function

F(XlX2---,pxn ;tl ,t2 ,---tn) - P (X(tlW) 1,---X(tny ) X i n)

(2.6)

Clearly a stochr-tic process is completely specified if the dist:i.-

tion functions are known for all n • In many physical problems,

nuch a complete knowledge is not available and one must be satisfied

witl. a knowledge of .ay its second-order statistics (a atistics

calculated from the second-order distribution functions, for example,

ccrrelatiorq, power spectrum). Second order properties are discussed

in the next section.

If *he distribution functions are differentiable, the probability

d#.,A U functions exist and are given, for the first-order distribution

fuuc tion by

f (x, t) - ix-a (2.7a)
)x

LI
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and for the n-dimensional joint distribution function, by

n

6 nxl~x2,-----nX tllt2,---tt)
2 ) t n 1 1 n 3 X I  x 2  - - - 6 n

(2,7b)

2.3 Moments of Stochastic Processes

As was stated before, a stochastic process is completely specified

if its distribution functions are known for all finite n • in many

physical problems, such complete knowledge is not available or it: is

excessively complicated or costly to measure these distribution functions

experimentally. An alternative bpeci.2a .. .. to use v-ious moments

(defined below) of the stochastic process. The first two mome-ts have

found wide use in the communication and control system theory. The

expected value (ensemble average, mathematical expectation, statistical

average), of any function g(x,t) of a stochastic process is giveni by

< g(x(W),t) > = g(x,t) d F(x,t) . (2.8)

In this dissertation, the symbol < g(x,t) > is used to denote the

ensemble averaging. Equation (2.8) is a Riemann-Stieltjes integral.

If the probability density function, f(x,t) of x(t,w) exists, the

expected value is given by

UO

< g(x(.,),t) > - g(x,t) f(x,t) dx , (2.9)

-0
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j where (2.9) is the usual Riemann integral. The particular expected

value of x, < x(tw) > x (t), is the mean or first moment, and

< (x(t,w) - 1(t)) 2 > M 2 (t) the variance of the stochastic process.

The function < x(t,w)n > is the n-th moment of x(t,w) and < (x(tw)

A(t)) > is the n-th central moment of x(t,w).

If X(t,w) and Y(t,w) are independsat stochastic processes, then,

by definition of independence,

F(x,y;tlC 2 )  F(x; I ) F(y;t 2 )  210)

and

X(t.;w) Y(t2 ;;W) >- J g(x;tl) h(y;t2) dF(x,y;t11 t2)

* ff g(x;t ) h(y;t 2) dF(x;t ) dF(y;t 2 )

S (x;tl ) dF(x;t 1 )  h(Y; 2) dF(y;t 2 )

-< X(tlW ) > < Y(t2,w ) > (2.11)

The above property of the expectation operator will be used frequently

to separate the ensemble averages of statistically independent

stochast!c processes. If either < X(tlW) > or < Y(t2 ;w) > is zero

and X(viw) and Y(t2 ,w) are statistically independent, then obviously
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< X(tlw) Y(t') >- < X(tlw) > < Y(tw) > 0 (2.12)

The stochastic processes X(t,w,) aid Y(t,w) are said to be uncorrelated

if

< X(t,w) Y(t,w) > - < X(t,w) > < Y(tW) >

Statistical independence implies that random processes are uncorrelated,

but not vice versa. If

< X (t,w) Y(tW) > - 0 , (2.13)

the stochastic processes are said to be orthogonal. Orthogonality is

u~ed frequently to simplify expressions involving stochastic processes.

The most widely used moments are the first and second moments, the

mean and correlation functions, respectively. The theory based on t! e

first two moments is called the second-order theory or the correlation

theory. This dissertation deals principally with the second-order

theory of stochastic differential equations. Unless Lnerwise stated,

it is assumed that second moments of the stochastic processes exist.

For a complex process, the autocorrelation function is defined by

RXX(tl,t 2 ) < X(tl3 ,i) X (t 2,w) > , (2.14)

where denotes the complex conjugate. The autocovariance is defined

by

C X (tilt 2 )  < [X(tlW) - (tl )) [x(t 22W) -44(t2 )

- R(tlt 2 - (t ) V*(t ) I
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where p(t1) - < X(tPw) > and

(t2 ) < x (t2,w) > (2.15)

When the means p(tl) 11(t 2 ) 0 0, the autocorrelation and the auto-

covariance are equal. Often, it is convenient to work with zero mean

processes for this reason. In such cases, the terms correlation and

covariance can be used interchangeably.

The cross-correlation of two stochastic processes is defined by

RXY(tlt 2 ) = < X(tlw) Y (t 2,w) > , (2.16)

and their croes-covariance by

CXY(tl't2) - RXY(tl't2) - 1AX(td) Ly(t 2  (2.17)

A numner of useful inequalities can be derived by considering:

[X(t1 ,w) + k Y(t2,W)] [X(t 11 w) + k Y(t 2 ,w)]

- RxX(tl,t 1 ) + k [RXy(tlt2) + RyX(t 2 ,tl)] + k2 RYY(t2 ,t2 ) > 0

(2.18)

The above quadratid in k is nonnegative for every k; hence k must

have no real roots. This means that the diacriminant of the quadratic

in k must be nonpositive. Therefore, we have the following inequality;
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rRX('l2)+ RY(t2 l)
2  

< X..tl ftt

(2.19)

If X(t,w) and Y(t,w) are real processes, (2.19) simplifies to:

R 2 (it2 RXt"I Y~~2

(2.20)

If X(t,w) -Y(t,w) then we have a special case of (2.20)

RX2 (lt): X~ll X~2t)(.1

The normalized correlation coefficienL is defined by

Pxx~tlkt RXX(ti't 2) (.2

and crr, q-correlation coefficient by 2.2

(RXY(tlt)

From (2.21) and (2.20) we have

o < <x 1 (2.24)

o < IOXI 1 (2.25)
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( ) The second order statistics of an n dimensional stoclastic vector

are given by a covariance (or correlation) matrix. The covariance

matrix of an n dimensional stochastic vector X(t,w) =

[X (tw), X2 (t,W) --- Xn(t,w)] is a n x n matrix with the elements

C x (tilt 2 ). If all the elements of a stochastic vector have

zero mean, the covariance matrix can be obtained by computing

<X(t1 ;w) X'(t 2 , w) >, where X(t1 ;w) is an n dimensional column vector

and t denotes the complex conjugate transpose (hermetian conjugate).

In section 3.6, the solution of a control system problem with a

stochastic state transition matrix is expressed in terms of the

covariance matrix of the state variables. The terms "state transition

matrix" and "state variables" are defined in section 3.6.

Another term used for the correl3tion or covariance functions

(both terms may be used interchangeably since we are talking about

zero mean stochastic processes) in partial coherence thtory is the

mutual coherence function. The mutual coherence function is simply

the following ensemble average:

*

(tilt 2 ;Plop 2 ) " < Y (tI'PIow) Y2 (t2 (2.26)

where Y1 (tl,Pow) and Y2 (t2,P2 ,w) are complex field disturbances at

two points P and P2. The mutual coherence function defined in this
1 2

manner is the ensemble coherence function. If time averaging is used,

one has a time coherence function. Both the ensemble coherence

functions and time coherence functions have been used in statistical

"etics and in general stochastic electroagne'tic theory. The ensemble

coherence functions are discussed further in Chapter IV.
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A number of basic inequalities and properties can be established

for stochastic processes. Some of n-.- -ore useful ones are stated

without proofs. Proofs and more complete discussion is found in

Loive, (1963, page 156).

1. If for some m > 0, < IX(t,w)Im > < -, then < IX(t,w)In >

is finite ror n < m, and < X k(t,w) > exists and is finite

for k < m.

2. Holder inequality

For any two processes X and Y or the finite moments,

I 1  1

< XYJ >< < 1xlm>m < YIn n, where m > 1 and - +_. 1.
in n

(2.27)

3. A special case of the H6lder inequality is the Schwarz

inequality < > 2 2 >< lyi >
_ _ _ _ < 1 XI (2 .28 )

4. Minkowski iue9uaiitj

Under the same hypothesis as 2,
1 1 1

< Ix + y'0 >n XI" +< lyln >T
(2.29)

5. If < IXIn > exists for e.-ch n, then < lxIn .>

is a nondecreasing function of !..
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) 2.4 Stationarity Concepts

In some applications, the statistical properties of stochastic

processes exhibit some invariance under translation of time, space or

some other independent variable. As more or less stringent conditions

of invariance of the statistics are imposed, different types of

stationarity may be defined. A stochastic process X(t,w) is said to

be strictly stationary (stationary, stationary in the strict sense,

statistically homogeneous) if the whole family of its finite-dimensional

distributions are invariant under a translation in the parameter t;

i.e.,

F(XliX2 ... nj tlst 2 ...t) - F(x 1 ,x 2 1 ... x ; t1 + h, t2 + h,. .t + h)

(2.30)

for any n, t1*t2,.. ,t and h. The statistics of the strictly2""n'

stationary stochastic processes are not affected by the choice of

time origin. The processes X(t,w) and Y(t,w) are lointl stationary

(in the strict sense) if the joint distributions are invariant under

a translation in the parameter t. A complex process

z(tW) - X(tuJ' + i Y(t,w)

is said to be stationary if X(t,w) and Y(t,w) are Jointly stationary.

A process X(t,w) is stationary of order k it (2.30) is true only for

n < k. A process which is stationary of order 2 is also a wide-sense

stationary (weakly stationary) process, A stochastic process is a

wide-ocnoe stationary process it

< X(t,w) - a constant,

-i
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< X(c1 ;W) X (t2 ;w) > < < X(t;"') X (t1 + T; ) > RXX(,r)

(2.32)

The wide-sense statlionariy involves only the first two moments. For

this reason, in a second-order theory only the weaker assumption of

wide-sense stationarity is used instead of the stronger assumption of

strict stationarity. Two processes are Jointly stationary in the

wide sense if each is stationary in the wide sense and their cross-

correlation depend& only on t 2 -t:

K y(T) = < x(t ;W) Y (t + T; W) >
1Y (2.33)

One often meets stochastic processes which can be expressed

comparatively simply in terms of wide-sense stationary stochastic

processes. Such stochastic processes 5:e said to be reducible to

wide-sense stationary processes. Ar example of such a process is

Y(t, ) - t(t) X(t, ) + g(t). (2.34)

where X(t,w) is a wide-sense qtaticnarv stochastic process, f(t) and

g(t) are real functions. The mean of Y(t,w) is

tt) - 1(t) kX + g(t), (2,35)

the covariance of Y(t,w) is

|-
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C (tilt N W

yy 22

t)t ) ft ( Ct (0 .t2.71 2 x 2 1 2.36

athe omlzcvaria nce fucfo Yc1w is,~

cCt,2  - Ytt 2 2 W c K-i(),),3)

(2.38)

wihich is the sam~e as the njimalized alt Iin. tunct icu ot the wide-

sense stationbry orocess X(t,w)

The important concepts ot 1. mw aver. gvs, t i au tc urrein .i in

functions and ugodic itv itc not. disc.usset~d here btc.iu!.c i~i this~

d issertation, er emb Ic S LJt 1, II Oiid LlX- V u~

.. 5 Calculus j! Stochastic Fru)cesse,-

ln older to &cud the ji.ii .~i l~ i)_) rtue it so h s i

;lrocessr&, the concent ot ! (;- 1vvru v.c d I irsi Supose

a. .equet;ce Af tandom vat iabiev. 11, . , A te~nd all
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the randomt variables x (UJ) are defined on the same r.-obability space

02. Let x(w) be another random variable defined on the same probability

space. One could define convergence in the same manner as it is

defined in deterministic analysis, requiring that the sequence x (w)n

converges to x(w) for every iealization of the sequence. Such a

definition of convergence is too restric ive. In stochastic theory,

it is convenient to allow less strinp nt modes of convergence. Three

most important modes of convergence of x (w) to the limit s(w) sEn

n c-€o are:

I) x (w) converges to x(u) almost everywhere P-measure (a.e.P),n

or wita probability one, or almost sure (a.s.), if

P(x (w) - x (w)) - I.r,

2) x (M) converges to x(w) in quadratic mean kq.m., or In mean

n

square (m.s.) or limit in the mean (l.i.m.), if
5

< x (W) - -4 0
n

3) x (w) converges to x(-,2 in Probabli t, or ;n P-measure, it,

tot every 0 • , P( Ix (i ) - x u)f > r ) -(. .

In addition to the . thie. , tourt h tte, is sor tlineb used.

4,) x (w) cozlveuL/tyso k(,) in diStributon) tuoct oT', it Or every

point ot continuity A! F(x), F(x ) - F(x).

The tirst three mc-es .," convv'rgence are Ai'.qlogous to the corresponding

modes ot convelget-ce in measure theory. One can show that almost

evez)vhere (A.e P.) ind qundratic awan (q.m.) convergence imply

ciarni'l ai'd L'ndHttt , [b

I
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convergence in probability and convergence in probability implies

convergence in distribution function (Papoulis, 1965). The relations

between thk e four modes of convergence are shown in Figure 2.1. In

this dissertation, almost everywhere and quadratic mean converger.ce

are used most otten. Using the defiaition of quadratic mean conver-

gence, quadratic mean continuit3 and quadratic mean differentiation

can be defined. A second order stochevtic process is continuous in

cuadratic mean at LeT if X(t + h;w) converges to X(t,w) in q.m. as

h -*0, t + hET. A second-order stochastic process X(t,w) on T has a

derivative in quadratic mean dt at tcT if

fit + h, w) - X(t.w) Xtw hw3 as h 90, (t + h)ETh d .m t

(2.39)

By using almost everywhere convergence instead of quadratic mean

convergence, almost everywhere continuity and differentiability can

be defined. Higher order derivatives and partial derivatives in

quadratic mean cap be defined similarly to (2.39). The quadratic mean

Riema,;n, Riemann Stielties and Lebesgue integrals can be defined by

using the quadratic mean convergence of the approximating sums which

are used in the definitions of these integrals. The ordinary formal

properties, such as additivity and integration by parts, hold for

integrals in quadratic mean under the appropriate conditions (Loeve,

1963). The following theorem, which is stated and proved by Lo'eve

(1963), will be later used to tind expectations of iterated integrals.
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\CON"'ERGENCE IN PROBABILITY

CONVERGENCE IN DISTRIBUTION

NO CONVERGENCE

Figure 2.1 -Comnparison of Various Modes of Convergence
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() Theorem 1. Let the second order stochastic processes X(t,w) [with

covarimnce function C XX(t,t') ] be independent of the second-order

incremept function AY(t' w) (with covariance function A6'C yY(tt')

on an interval I X I, where I - fa,b] is a finite or infinite interval).

Then,

] X(t,w) dY(t,w) exists if, and only if,

J CXX(t,t') dd' Cyy(t,t') exists; also, if the integrals

in quadratic mean which appear below exist, then

< X(tia) dY(tW) j X (t',w) dY (t',u)

i'

< < X(t,w) X (t',) > dd' C (t,t')YY (2.40)

The double integrals are the usual Riemann-Stiel'tjes integrals.

The independence condition of this theorem is fulfilled when the

stochastic process X(t,w) and Y(t,w) are independent or when either

X(t,w) or AY(t,w) degenerate into deterministic functions. The

independence condition can be suppressed altogether when the elements

of the double integrals are replaced by dd < X(t,w) X (t',W) Y(t,w)

Y (t' ,) >
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The convergence of the iterative solutions of stochastic

differential equations can be interpreted according to one of the

modes oi convergence. Probabilistic functional analysis, as dis-

cussed in section 2.9, uses the almost everywhere P convergence

(almost sure convergence). The convergence in quadratic mean (mean j
square convergence) also has found wide use in applications such as

communication and control system theory.

2.6 Expansions of Stochastic Processes and Spectral Theory

Analytical operations with stochastic processes can be

simplified if they can be represented as linear combinations of

ordhogunai ran citn variables. A stochastic process x(t,w) can

frequently be expressed either as an infinite series

X(t,) X x(t) + X k(W) gk(t) (2.41)

k-I

or as an integral

x(tw) x p(t) + / X(s,w) g(ts) ds

(2.42)

In (2.41) X (w) are orthogonal random variables and gk(t) are deter-

ministic iLnctions. In (2.42) X(s,w) is a random function of the

parameter s, g(t,s) is a deterministic tunction of time and s. The

random variables Xk (w) satisfy the following orthogonality condition:

x i(W) X.(w) 2 = 0 for i 4 j
2

- gi for i - j. (2.43)
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) The corresponding orthogonality condition for the integral expansion

(2.42), written as the following Riemann-Stieltjes integral,

x(tW) (t) + f g(t,s) d X(s w), (2.44a)
J S

is

< d X(s,w) > 0 (2.44b)

and

< d X(s ;w) d X (s2 ;w) > xx (S 1) (s1  s 2 dsI ds2

(2.44c)

The expansions (2.41) and (2.42) have been called in the literature by

a number of different names. They are known as the canoni:al expansions

(Pugachev, 1965), orthogonal decompositions (Loeve, 1963) or as the

Karhunen-Loeve expansion. In Chapter IV, the integral expansion (2.42)

is used to study a wave propagation problem in a randomly time- and

space-varying medium. The dielectric permittivity is assumed to b-

a wide-sense stationary stochastic process. For this reason, the

following discussion is restricted to the integral expansion. For

simplicity, it is assumed that px(t) - 0. For the wide-sense

ctatior.ary zero mean process, the integral expansion (2.42) is

(Pugachev, 1965, p. 239):

x(t,W) = X(s, ) e is ds , (2.45a)

S -~---O
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where X(s,w) is given by

___ -1st

X(s,W) 2 x(t,W) e dt
2x J (2.45b)

The integral expansion (2.45a) is also known as the spectral

representation of the wide-sense stationary stochastic processes,

and (2.45a) should be written as a Riemann-Stieltjes integral

x(t,W) j e d X(s,w); (2.46)

however it is more convenient to oerate with the integi-al expansion as

it is expressed by (2.45a). In; such case, it must be kept in mind

that X(s,w) may be a generalized function. If X(s,w) is given by

(2.45b), then we have, for the wide-sense stationary processes,

< X(S1 ,w)X (s2,W) > W

2 - is t is t
< x(t;w)x (t2;W) >e e dt dt

*(271J 00 2 222

R ( -Rxe I 2 2 dtI dt 2

(2.47)

Making the change of variable t2  tl t T, (2.47) becomes

< X(s 1 ,w) X (SW >

2 -s ti is 2 TI2P 2

2 00 R) ( ) e - e d s 2tT (2 4 8 )

2 j ii . X( -8
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() But,

1 i I l(82 a I()
2 J d 61 - (52 - s 1 )  (2.49)

Hence

U

X~alW) X - /is2'T

< X(s;W) X(s 2 ;w) >- 8(s 2  ) 1 R R )( ) e d
2w

I - -is?
C(s2. sl) a J Rx(r) d •

- i

(2.50)

This relation (2.50) will be used often in Chapter IV. The gower

pesctral density 0 xx() (power spectrum) of a wide-sense stationary

stochastic process is, by definition,

*x(B) - -x R xx(T)ee d (2.51)

The spectral density and the correlation functions are Fourier trans-

form pairs of one mnotheri.e.;

R xx(T) - j xx() e e ds . (2.52)

- U

There is no universal agreement whether the factor 1/2 * is placed

in front of (2.51) or in front of (2.52). The variance of the

stochastic process X(tw) can be fourd from the power spectral

density by:

2U
Rx (0) 2 f () ds , (2.53)
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Frcm the assumption that X(t,w) is a second order process, that ie

2
a is finite, we have:

Sxx(s) ds < (2.54)

For real stoc i sti, processes, R xx(-r) is an even function of T, and

it can be easily shown by making a .hange of variable T --r in

(2.51) that

xx xx( ' s ) (2.55)

The pec.trl function is defined by:

61

S- J x(s) ds (2.56)

It can be shown that S xx(s ) is a real rondecreasing bounded function

of its argument sI (Khintchine, 1934). From this property it fc-ows

that

* (s) ? 0 (2.57)xx

The mutual spectral density of jointly wide-sen'e stationary second

order stochastic processes X(t,w) and Y(t,w) is given by

- isT
(a) R (T) e dT . (2.58)

xy 2A. xy
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In this section the diacussion of the power spectrum was limited

to the wide-sense stationary processes. In the next section, the

definition of the power spectral density is generalized to be appli-

cable to the nonstationary proresses. This generalization is .eedod

for the discussion of nonstationary solutions cf the scalar wave

equation.

2.7 Spectrum of Nonstation'ary Processes

When the stochastic orocess X(t,w) is not wide-sense stationary,

its autocorrelation function is R (t 2 ); that is, the autocorrela-

tion function is a function of tI nd 2 rather than just t2 -t .

For this reason the power spectrel ,. csty for a nonstaticnary process

is given by the double Fourier transfoti of Rxx(t 1 t 2):

I +is 1t -is 2t?0 (2s) .a R(tlft ) e dt, t2
XX 12' T27 'r R. 22

(2. >,')

with the inversion formula

R~~t ft + is t a
R(tl,t 2 ) r (-,2 e d2  1

(2 .60)

From the fact that R (t 1 ,t 2 ) - R.. (t 2 ,t 1 ) and from (2.59),

'XX(tl't2 )  = UX ('2'tl) (.l

P (sits 0 - (2.61)

Papoulis (1965), and Blanc-Lapierre and Fortet (1965).
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If R(t 1 ,t 2 ) is real, then

&S '1 s 2) 0xx (Bl'S2) (2.62)

It is easy to see that the general double transform (2.59) reduces

to our previous result of X(t,w) wide-sense stationary, i.e.:

(sL'2 " s21 2- RXX(T) e dr

6 6(s2-S) xx(S1) (2.63)

On the other hand, it 0XX(sips2) is equal to b(s2-S1) 0oxx(sl) the

inversion formula (2.60) becomes

f t;ist + is2 t2
R, (tt) (P ( ! s  (s-s) e ds da

12 j 1 21 1 2

F /is (t2-t ) I4
j X( I  e dis Ixx i

-XRx(t2-t) 1 RX(T), (2.64)

which show. that X(t,w) i& a wide-sense stationary stochastic process.

Tlie above results can be umniarized as the (ollowing theorem.
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x (tLX t, W)

Figure 2.2 -Linear Deterministic Transformation of a
Stochastic Process
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function of the output process, if it -an be assumed that the

expected value operator and the linear operator can be interchanged.

The expected value operator and the linear operator ara interchangeable

for practically almost all deteiministic linear operations. For

example, it can be shown that the differential and integral operators

are interchangeable with the exnected value operations, (Pugachev,

1965, o. 387). Thus, the expected vaiue of Y(t,w) is

< Y (t,w) > < K L X (r.o) > - L X (r, ) >, (2.67a)

or

",(t) - LWx(T) (2.6/0)

It (2,o7) is subtracted trom (2.65), we have, according to

(2 .6b)

Y (t,. - L X (-r,,. , (?.h8)
0

where the : ' 1Pt 0s t d t that Y (t,-) iod X ( 3,) " re r:-ce tsvs0 0

WI th z e i ;q'ans Fo t rz ct i a Di, oro I-es , vs L h the c ova r v-- ce

tUIICtI) VO I a ia t .); I W it; I Y ( tl".)  a l a e give l b-, the Sr newU

I' D ' iI
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RY Y 1' 2' 'Y 0 2

0 0

< L X(TI'w)(L Xo (T,)) >
T 0 T 20 z

22

-< L L ' "'(I ) X° (T' 2 ,w) >

0 0

- K L !L 2 X o(r,w) Xo (t2,w) >

o2 o 2

where the subscript on the operator denotes that the operator acts on

illustrate applicetion of (2.69), simple lineer ditferential and

dtintegral operators are considered. First, let L be - t('. Then

by (2.67b)

d

;'Y(t) "-t 'x(t) (.oa

and by (2.69),

2 Rx (tipt2)
RYA (0t t 0 (2.70b)

For higher derivatives, that is,

dnL ' - n . ( 2 . 7 1 a )
d t
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we have

dn

YO(t d Lix(t) (2. 71b)
d t"

and

( 2nRx X (ti't 2 )

RYogo(ti2n n (2.7l€)

All these relations, (2.70) and (2.71), can also be derived directly

from the definition of the quadratic mean derivative (2.39).

Another important class of linear operators are integral

operators of the following type:

Y(tw) - g(t,r) X(T,w) dT , (2.72)

where g(t,'r) is a deterministic function. g(L,T) may be a Green's

fun tion or the Impulse r ionse of a linear systemr From (2.67) 3nd

we havP

a () g(tT) P (r) dT (2.73s)

T

and

R 0 (t 1 t2 ) f g(t 11 'l) g(t 29 r 2 ) RX X (Tl'T 2 ) di' dr2

T T
(2.73b)
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The expressiotis (2.73) car be also derived directly from the ;afinition

of the quadratic man integrals. It is also a special case of the

integral (2.40). The results of this section will be frequently used

in the subsequent chapters of this dissertation.

The special case of a linear tronsformation of Gaussian processes

is of interest. The characteristic functional of real stochastic

processes X(t,w) and Y(t,w) is

gy(X) < exp i , Y(t, w) I >

< exp [ i X L X(t,u) I > , (2.74)

where X is a lnear functional. For comntinuous stochastic processes,

X is an integral

X j Xo(t) Y(t,w) dt (2.75)

T

and for discrete stochastic processes, X is a sum

N

x . (t ,W) (2.76)KN L n rn

n-

Since X is a linear functional the relation (2.74) shows that the

characteristic functionals for X(t,w) and Y(t,w) are related by

gs(X) gX [XL] (2.77)



If the "-al stochastic process X(t,w) ha, a Gaussian distribution.

its characteristic functional is (Puga( ev, i965, p. 193):

gx(-) exp [ i & 4X(t)- Xt 1 t2 CXX (' 1,t 2 ) (2.78)

Using either (2.77) or (2.69) and (2.67) the characteristic functional

of Y(t,w) is given by

1

gy(X) -exp [ i\L pX(t) - (XL) Cx(tilt 2)] =

exp L x(t) - 2 I. t 2 (L 1 LT2 Cxx('T1 3 T2))

*~ ~1. 2 1 2(z.79)

This relation (4.79) shows that for Gaussian stochastic processes

the characteristic functional .-mains invariant under linear trans-

formation. Since the multivariate distribution functious enn be

determined from the characteristic functional, it can be concluded

that a linear transformation of Gaussian processes yields Gaussian

processes. The spectral expansion of a Gaussian process is also

a Gaussian process, because spectral expansion is a linear trans-

formation of a random process. As '.,s r-tod hPfore, all the

multivarlate distribution function can be obtained from the charac-

teristic functional. But, from (2.78) it can be seen that the

characceri-tic Ifunctional for the Gaussian process is completely

determinz- if the mean .d covariance of the process are knowi.

fknce, a Gaussian process is completely determined if its mean

and covariance are known. For the same reason a wide-sense stationary

Gaussian process is also strictly stationary.
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) Theorem 2. A second order stochastic process X(t,w) is wide-sense

stationary if and only if its bifrequency power spectral density

xx (site2) is equal to '(s2-S I ) 0 xx(sl) (or equivalently to

2- s1) ®xx(S2)].

This result will be used in Chapter IV to identify wide-sense

stationary and nonstationary components of a random wave function.

This is done by computing the bifrequency spectral density 0xx(Sits2)

and identifying the coefficients of 6(s^-- as the wide-sense

stationary parts of the sp'ectral density. The terms which do not

contain b(s2-s1) are identified as nonstationary parts of the spectral

density.

2.8 Linear Transformations of Stochastic Processes

In this section some of the known results from linepr determin-

istic operator theory are presented. A liaear determil stic system

is shown in Figure 2.2. Let the input to the system be X(t,w) and

the output to the system be Y(t,w), tET and wcfl on the probability

space (f ,Z,P). ,Mathematically the relation between the input and

output is

Y(t,.) L I X(L,w), (2.65)

where L is a linear operator. (An operator L is said to be

linear if

L [a x (t) + b x2 ()] = a L x (t) + b L x2 (t) (2.66)

for every constant a and b, and for every function x() and

x2 (t). It is easy to compute the expectation and the covariance



2 9 Definitiors .. s - Theorm- r ...- t. .. Eory of Rando1 , 0j2.ator

Probabilinric ,, .,,n analysis, d. .vcloped mainly by Spacek

(1955), Han1 (1961), and Bharucha-Reid (1960, t964, 1965) provides

rigorous definitions and useful existence theorems for random operator

equations. The main results of this work have been conveniently

summarized by Hanv (1961). Some of the definitions and theorems that

are used later in this dissertation are extracted from his work.

Let (.Q,7,P) denote a nrobability space with a complete probability

measure P; that is, it is a non-empty set, 2 is a a-algebra of subsets

of the space Q, and P(A) is a nrobability measure defined on the sets

A of 2.7

i) LhiS section, X and Z are arbitrary separable Banach spaces,

T and t the a-algebras of all Borel bsets of the spaces X and

Z, respectively (Zaanen, 1953).

Next, the concepts of "generalized random variable" and "random

transformation" are defined.

A mapping V of the space 12 into the space Z is called a

generalized random variable it (u: V(o) EB) c7 fur all BES.

Two generalized random variables V(ua) and W(w) are said to be

equvalent if V(w) - W(w) with probability one.

A mapping T of the Cartesian product space 11 x X into the space

Z is called - rand,-n transformation if T(',x) is, for every xEX,

a generalized random variable.

In th must general form, a random operator equation is written as

T [I ,X(,) ] J z=(W) (2.80)
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where T is a random tr nstormation of the Cartesian product space

f) x X into the space Z. z is a generalized random variable -ith

values in the space Z. As is seen from (2.80), the solution of a

random operator equation does, in general., depend on the choice of

wel. If the solution of (2.80) satisfies the measurability condition

(i.e., it is a random variable ) we call it a random solution of the

operator equation. Hence, the following definition:

Every generalized random variable x with values in the soace

X satisfying the condition T [w,x(w)] - z(w) with probability one will

be called the random solution of the candom operator equation (2.80).

e following theorems which are useful for our investigation

ha,.. been stated and proved by Hans (1961).

Theorem 3. Let T be an almost surely linear bounded randC Lransforma-

tton of the Cartesian product space it x X into the space X. Then

for every real number k 0 0 such that

P ( n-l (w: 1 T n  (w,.) 11 - iX n  )) 1 , (2.81)

there exists a linear bounded random transformation S that is the

inverse ot Luk tandom Lransformation (T - XI) and it satisfied

P ((~ (W: S(Wx) - (-1/l) En Xs (w'x)}) 1 (2.82)

xfX naI

where the sum converges uniformly. I denotes the identity operator,

and I denotes the norm in the Banach space (Zaanen, 1953).

Discussed in section 2.2.
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In many applications, it is sometimes convenient to use a

different version of thc above theorem.

Theorem 4. Let T be a random transformation of the Cartesian

product soace il x X into space X which is, for every wcD, linear and

bounded. Then, for every real number k 0 0, the set

. (w:IIT(,.)J <k (2.83)

belongs to the c-algebra 7, tl-e random transformation (T-XT) is

invertible for every wEO(k), the resolvent operator r(w,x,') exists

for every u~6t(A) and, for these w0, the resolvent operator is given by

EC,06 X, n Tn-1 (w,.) (2.84)
V. I

Furthermore, for every wl1(&) the solution a(J) of the operator

equa t ion

- -z() (2.85)

is, for -very generalized random variable z with values in the space X,

given by

(W) ,,z(()] (2.86)

where the resolvent operator F(w,.,')and, consequently alio the

solution s, are measurable with respect to the a-algebra fl()fl.

Next, three theorems which are useful in establishinig the ePrst-

ence oi solutions of the random integral equations are stated. Let C

denote the space of a I conttntoi S func t ions defined u" the L loCU

interval [O,d], 0 <. d.
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If the norm x is givte hy

Il x J - max Ix(u)l 0 < u < d, (2.87)

the space C becomes d separable Banach space.

First, a theorem that gives the relationship between the

measurability of the random integral operator and the measurability

of its kernel is stated. Let K crnote the space of all functions

k defined and bounced on the set [0,d] x [0,d] all of whose discon-

tinuity points are located on a finite number of curves v - 0 (u)

and such that for every uE[U,d], vd[O,di, and for every sequence

of real numbers d > 1  62 > . > b -- 0, we have k(u,0) -
n

lim k(u,b ) and k(uv) - lim k(uv-f ) provided 6i < v in the
n (T- 0n I-

latter case. If Le norm of k :s 11 k . D so Jk(u,) where

sup is taken over u c[O,d] and v E[O,d], then it can be shown that

K is a separable normed linear space.

Theorem 5. Let k be a mapping of the space 0 into t - space K and

let the mapping T ot the Cartesian product space i2 x C into the

space C be defined for every wtd by

.4

T(w,x) " k(i .,,u) x(u) du (2.88)

0

Then, the mapping T is tor every wff a compact linear transtormation

of the space C Into itself Furthermore, T is a random tr.naformlation.

The next theorem gives a sufficient condition for the i'verti-

j bility of a linear ranlom transformation.

I



rheoree Le-, a i th.e siumt ions it Theorem 5 be fulilied, Let,

In addi, Jn, the real number A. satisfy the ineq iality

d Ilkuw,-,) < !K X with Drobability one. Then the linear random

tra-sforw tion (T- .I) is invertible; that is,

P X:(wX) E (T)) - I, (2.89)

where p(l) deiotes the -t of *. o .r (-,X) t. A i fx hich

the linear random transformation (T - XI) has a liesar bounded inverse.

R dpnotes the rL:al number 8xis.

The above theorem applies to tiandom Fredholm integral equations.

The next theorem is its analogue for the Volterra kernels.

Theorem 7. Let all the assumptions of Theorpm 5 be fulfilled. Let,

in addition, the kernel k satisfy the condition

P (w; k(wJ,u,v) - 0) - I for every 0 < u < v - d. Then, fot every

re I number X 0 the li, ear random transformation (T - &I) in

invertible.

Ptooi. Similarly to the classical rroot of the convergence of

Volterra tegrai vquation , it foilos t },t for almost every "

and every n - ,,,.., we htive

Tn( ) T 1 ' , /n I (,2 -0)

Hence, Theorem 3 ib applicable and the Neuni series expansior, (2 .i

converges unifor:Llv.

The above theorems give sufficient conditions tor the existence,

uniqueneso, and measurabiiity cf random solution oi the randcw

Zasnen: (1l')J)
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operator equations. These are sufficienit conditions; that is,

solutions may also exist under we.-ker conditions. Unfortunately,

no necessary and sufficient conditions are known for the existence

of a solution of the general random operator equations. The main

restriction in all the aboe theorems in that T is almost Eurely

linear and bounded.

Many interesting stochastic processes are not bounded, hence the

preceding theorems are not strictly applicable. We can use a trunca-

tion method, suggested by Loeve (1963), to overcome this difficulty.

The random variable X(w) is truncated at c when we replace X(w) by

Xc(w) , where

Xc ( W) - X(w) if IX(W)I < c,

XC(w) - 0 if fx(m)f c

and

c > 0 and finite. (2.91)

Then, all the moments of X C(W) exist -nd are finite. We can

always select c sufficiently large so as to make P [X(w) XC()]

P [ IX(w)I > c) arbitrarily small. Whenever boundedneas of the

stochastic processes Js needed Ii the application of the preceding

theorems (Theorems 3 through 7), it is assumed that the stochAstic

processes are truncated 4n the above sense.



CHAPTER III

GENERAL METHODS OF SOLUTION

3.1 introduction

In this chapter, two methcds for solving differential equations

with randomly time-varying coefficients are developed. In the first

case, we consider a stochastic differential equation of the form

V ,(t, ) - x(t,W)

where

n

- (t,u) ddtv
v=O

and x(t,w) and the a (t,w) are random functions whose statistics are
V

known and defined on tET, WE" on (4,Z,P). (CI,7,P) denotes a probability

measure space; i.e., fl is a non-empty abstract set, ! is a a algebra

of subseto of £2, and P is a complete probability measure on 7. It is

further assumed that the random operator I' is the sum of an invertible

operator L and a random operator R. The objective is to determine a

stochastic Green's fuihction (AdoLnian, i964) for the stochastic

operator r, in terms of the deterministic Green's function for L and

the appropriate "statistical measures" of the forcing function x(t,w)

and the randomly time-varying coefficients a(tw). The term "statiattcal

measures" is used as a general term for the quantities that characterize

vtochastiL processes. For example, expectations or means, spectral
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densities and correlation functions 8re statistical measures. The

integral kernel which expresses the desired statistical measure of

the output process In terms of the corresponding statistical measures

of the input and appropriare statistical measures of the stochastic

coefficients is called the "stochastic Green's function". Adomian

(1967) has developed an iteraEriv process for finding the stochastic

Green's functions for the expectartion and the autocorrelation function

of the output process. ;his iterative method achieves the desired

seperations of ensemble averages without a priori restrictions to

perturbation-type approaches or recourse to the generally non-valid

closure approximations of the hierarchy equation methods.

The similarity between Adomian's iterative method and the solution

of an integral equation by means of Neumann series suggests that the

stochastic Green's function can be expressed in terms of the determin-

iatic Green's function for the operator L and the resolvent kernel for

the Volterrs integral equation. In this chapter, the ensemble average

and correlation function of the dependent variable are expressed in

terms of the Green's function of the operator L, the average and the

correlation function of the forcing function x(t,w) and the resolvent

kernel of the Volterra integral equation. The reso~vent kernel is a

function of appropriate statistical measures of the random coefficients

and the Green's function of the deterministic operator. By finding the

resolvent :ernel, the solution of the problem of finding the average

and the correlation function of the dependent variable is expresed

for a class of forcfn functions. The Neumann series expansion is

exceedingly laborious; for this reason, other methods for solving the
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problem are investigated. The solution of the stochastic integral

equation is simplified if the kernel of the integral equation is

degenerate. In many cases, the problem of solving a stochastic

differential equation, with a time invariant deterministic part,

reduces to a problem of solving an integral equation with a degenerate

kernel. Three different cases of degenerate kernels are considered.

In the first and simplest case, the degenerate kernel consists of

a single term. In the second case, the degenerate kernel is a sum

of n products. In the third case, the degenerate kernel is a product

of the state transition mtrrix and a matrix f stochastic coefficients.

The last case is applicable to the state space formulation of control

system problems where the system matrix is the sum of a determinit.ic

time-invariant matrix and a stochastic coefficient matrix.

3.2 Integral Equation Formulation and Sciution by Neumann Series
Expans ion

th

Following Adomian's (1967) approach, let f be an n order

stochastic differential operator, such that

ni

d V

V~UO

where a (t,w) are random functions, tET and wr (i ,,P). Let the

operator S' be separable into a deterministic operator L and a random

operater R. In particular, let the random coefficients of f, be of the

form

!I
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a (t,w) -V (t) + Ut (t,i) (3 lb)V V V "

where OV(t) are deterministic functions of time and u (t,w) aie

stochastic processes. 0 kt) can be either the ensemble average of
V

a (t,w) or some other convenient function of time. For example, itV

may be possible to choose P (L) so that the inversion of the determin-V

istic differential operator L is simplified. It is assumed that L is

an invertible differential operator; that is, the Green's function

G(t,r) for the differential operator L is known or can be constructed.

One can associate with the operator r a stochastic differential

equation

£ y(tW) - x(tw) tET and Jcfl on (f,X,P). (3.2)

The forcing function x(t,w) car, be either deterministic or random.

For greater generality, let it be random. It is also assumed that

x(t,w) is statistically independent of the random coefficients. By

the assumption that f = L + R, the eqstion (3.2) can be written as

follows:

L y(t,w) - x(t,w) - R y(t,,) (3.3a)

where

n

L V (t) (3,3b)

dt
v=O

0
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anJ

= (t, d (3.3c)

w0 0
V=O

By the a.%sumption that te Green's function for the deterministic

onerator L is known, (3.3) can be converted into an integrsl equation:

y(t w) C x(T,w) -L- R y(T, ) , (3.4a)

where,

L -II

L 1 ,r dT G(t,T) (3.4b)

0

and

n

C dT G(t,r) a(.,1U) d (3.4)

0 v -O d

The usie of 0 as the lower limit assumes that either the system was

initially at rest or the initial conditions have been zaken into

account in the construction of the Green's f,,nctiolm G(t,T). The upper

limit is 9: for causal systems since, for causal systems, G(t,r) ,

ior t T. To simplify the notation, let

• " (L n(t,w) - F(t,wa), (3. 54)

I
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( ) And let

n

V" dv
d (3-5b)K(t,T) ,, (t,T) a °(TW°) (.

dr
V-O

With this notation, Equation (3.4) can be expressed as an integral

equation which resembles the Volterra integral equation:

t

y(-,w) F(t,w) + %, K(t,T) y(r,w) d? (3.6)

0

In this case, X - -1. The solution to Equation (3.6) can be expressed

analogously to the Neumann series solution 4n terms of iterated kernels

(Courant and Hilbert, 1953; and hildebrand, 1952):

t
y(t,w) - F(t,w) + X'm  fK(t,T) F(t, ) d'r (3.7)

where K (t,T) is defined by the recurrence formula

t

K m(t,T) K(tr ) KmnI (-rT) dr1  (3.)

0

and

KI(t,T) - K(t,T) (3.8b)
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If the sum converges uniformly, the order of summation and integration

can be interchanged in (3.7), which then becomes:

~t

y(t,w) -F(t,ii) + x / M K (t,T) F(T,w&)dy j
0 m-O 

j

(3.9)

Then equation (3.9) can be written in terms of the resolvent kernel

r(t,T,W) as follows:

t

y(t,W) = F(t,w) + % r(t,T,.,,w) F(T,W) dT (3.lOa)

J

where

00

1'(t, T,XW) K , Xm  (tTkW)* (3.10b)

In-0

Since, in this case, , is -1, the resolvent kernel is written from

now an without X in its argument. At ttik point, we have nothing

essentially different from classicai difterenftal equation theory.

The difficulty arises because y(t,w) is not a physically significant

quantity, only Its s1 t!sticai measures are. The mean value of 0*

dependent variable y(t,w) can be computed by taking the ensemble

Discussed later in thi section.
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) average of equation (3.10). It must be noted that because of the

assumDtion that the random coefficients and forcing function are

independent, the problem simplifies in that the resolvent kernel

r(t,T,w) and F(T,w) are statistically independent of one another.

Hence, the ensemble averages separate and the ensemble average of

y(t,w) is given by:

tr
< y(t,w) - < F(t,w) > - < I'(t,T,W) > < F(T,W) > dT,

0 (3.1la)

where from(3.4b) and (3.5a)

L

< F(t,w) > - J G(t,T) < x(t,J) > dT (3. lib)

0

In this case, the stochastic Green's funiction is simply <~ ~,T~)>

Similarly, the autocorrelation function of y(t,w) can be computed.

For greater generality, y(t,;.i) Is taken to be a complex function. Then,

the autocorrLlation function of y(t,w) denoted by R (tl,)) is:

Ry (t t 2 " < Y(tio, ) Y*(t2,W) >

.t2 F'22

< Fr) (t T,w)' (T3 ) dr>

t0

t2
FI (*t2,w) r u* F (,,w) d, 2

0
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- F(tpw) F (t2,)

t

< " P(t 1 ,(. , J) > < F(l1 w) F (t2, w) > dT
o

t2

< r (t2 ,rT W) > < F(tiw) F (T '# ) > dT2

0

+ / / r (tT1 )  P (t 2 .r 2 ,w) > F(TIw) F T2,o) > dT I d r2
o 0

(3.12a)

The quantity < F(tls) F (t2 w) > can be denoted by RFF(tl,t) and

(3.12a) can be written more compactly as:

yy 't2)  FF( 1't2)

t'

!I < r'ct dT , F/ 1 w) " KFF(TI t )  IT

0

t 2

P (t T2 ,0w) > R. ii(tl#T1 ) dT2

t t 
,

+ ./ 02< T,(t ] 1 .') (t 2 ,v2 , ) > RFF( Ih ) dT dv , (3.12b)

0 0
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where

ii. t 2

RFF(tl,t 2) ) - X(TIW) X (T 2, w) >dT dT 2

0 0

t. t2
-

/ t( ,T G (t2,)IT R XX(TI T 2 )  d- t  dT 2

0 0

(3.12c)

Equation (3.12) looks quite :ovnplicoted, yet it expresses one of

the most important pro-erties of y. It is unfortunate that many

of the interesting properties of y are given by nonlinear functions.

If the coefficients of the differential operator are strictly deter-

ministic, then the .ast terms in (3.12b) vanish and R yy(ti, t 2 ) is

giver by (3.12c) which agrees with the well known result [or non-

rando systems. The cross correlation between the output and input

can be also found by using equation (.3.10):

RYtt 2 ) "< yv a) X (t 2' W)

t

- G(t , i ) R (Til t ) drri xx ? I
0

1 T

,< r(t ,W) .> , G(i','o) R (T o ,'i -ro dl.

:0 < o~Pl xx o ~ 0

o

(3.13)
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Examination of equations (3.11), (3.12b) a-:d (3.13) sheds somie

light on the sLochastic Green's functions (Adomian, 1964) for a

differential operator which can be separatcd into 8 sum of the deter-

ministic operator L and the random operator R. In all three cases,

the first term in the expressions is due to the deterministic opcrator

alone. If the randomness of the coefficients of .7 vanishes, only the

first terms remain. The succeeding terms are .ompliLzited functions of

random coefficients and deterministic Green's function for the operator

L. When higher order coefficients (v > I) Ere random, consLruction of

the resolvent kernel involves differentiation as indicated by (3.5b).

This is not too surprising for a relatively complicated problem. In

other physical problems, simila. complications arise, For example,

an expression for the dya'., Green's function associated with the

solution of a vector wave equation involves differentiation (Levine

and ';chwinger, 1951).

In the actual solution of problems, construction of the resolvent

kernel presents major ditticulties. As shown by Adomian (1967),

Neumann series type of iteration can be successtully used when the

lowest order coefflci'nt is otochastic. This type of iteration has

the advantage that the previously computed term fi used in the next

term and so on. One can stop the iteration at any time when the re-

sn(!n-r term becomes saaile than s prescribed value.

When only the lowest order coefticlent a is a rarido function,

it i0 easy to show the convergence of the NeumAnn series expansion

(3.9), Sutticient conditions for the uniform convergence of this

Neum~nrr seties exnarsion Are simnlv the hypotheses of rheorew 5 and 7
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of section 2.9. The hypotheses of Theoiem 5 require thatr G(t,T) (1 (,L j)
0

i a maj Ing of the space f2 into space K and zhar the maoping

t
r

dr G(t,T) U0 (r,W) F(T,W)
00

of the Cartesian Droduct space f2 x C into the space C is defired for

every wcE2 and every F(T,(J) E C. C denotes the space of all continuous

functions defined on the closed interval rO,dj, C ,. d. Ihe st>ace K

has been defined in section 2.9. The additional hypotheses of

Theorem 7 simply state that the kernel of th" integral equation is

a Volterra kernel wit, prob ility one Under these conditions, the

integral equation (3.6) Is invertible and che Neumann series expansion

converges uniformly.

When the higher order coefficien-s are also stochastic, it is

more difficult to carry out the Neumann s ties expansion and to

establish the sufficient conditions for the conveigence of the series.

It .an be seen from (3.5) that the expansion as it stands requires

dif:'erentiation in add.,tion to integration. For computation and for

th
investigation of convergence, it is convenient to express the n

order differertial equation as n first-order differential equations

which are In the matrix form:

y(t,W) a(t,W) y(t,W) + U x(t,) (314)
__________(3.14)
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where y(L.,w) and y(t,.) &re n-dimensionaI vectors, a(t,w) is an n x n

coefficient matrix, U is an n x r matrix, and x(t,w) is an r-dimensional

vector. lhis allows the system to have r different inputs. in the

single forcing function case, r is equal to one. In contiol system

Theory, this matrix formuiation is called state space representation.

The methods of converting the single order differential equation

into state space representation are discussed in many texts on control

system theory and need no elaboration here (Schultz and Melsa, 1967;

jeRusso, Roy and Close, 1965; and Lapidus and Luus, 1967'. Because

of the original assumption that the differential operator can be

expressed as a sum of a deterministic operator and a stochastic

operator, we assume that the coefficient matrix a(t,w) can be expressed

as

a(t,w) - 0(t.) + u.(t,w0) ,(3,15)

where 0(t) is a matrix with determi.nistic elements and ct(t,w0) is a

matrix with stochastic elements. Using (3.15), the differential

equation (3.14) can agatn be written in the integral equation form

t

y(t,W) - F(t,W) + X F' *(t,r) (T.,W) y(",W) dT,

0

(3.16a)

where

t

r di $(t,T) (3. 16b)
O

0|
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is the inverse operator of -he differential equation

y~t ,) (t) y(t,oW) (3.17)

The term F(t,w) is obtained by applving the inverse operator (3.16b)

to all forcing terms and non-zero initial conditions. in control

system terminology, t(t,T) is called the state transition matrix. In

this case, A is equal to one. The Neumann series expansion of (3.16a)

gives che following iterative solution:

y(t,W) - y (t,w)
numO n

YO (t,w) - F(t,w)

t

Y,-(t~) 0(tr) CK(TL) y Or,w) dT
o0

J*(tT) Q(rt&) F(TW) dT

0

(3.18)

or, in general,

t

yn(twj - *(t,T) L(T,W) y 1 (T,W) dT

0
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As before, the resolvent kernel for the integral equation (3.1,6) can

be written in terms of iterated kernels by

n K (t,

r(t,'rX,) I K ,w) "
n-

where the iterated kernels are defioed by the recurrence formula

L

K (t,T,w) - K(t,y I) K .mI(TI,T) d l I

and K I(t,T,W) - K(t,T,W) " (tT) Ce(, ,) (3.19)

The solution to the matrix stochastic differential equation (3.14)

can be written in terms ot the matrix resolvent kernel as

t

y(t,w) - F(t,uw) + k r(t,T,X,w) F(T,w) d-r (3.20)

0

This expression is conpletely analogous to (3.10). Construction

of the resolvent kernel in (3.10) requires diiferentiation in addition

to integration, whereas, in this case, the resolvent kernel can be

constructed by Iterated integration and matrix multiplication. The

previously computed terms are used Lu compute the next term anA o on.

The ensemble average of y(t,w) is

t

< y(t,W) > =< F(t,w) > + / < P(tr,) > < F(T,w) > dy

0

(3.21)

_-- :
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The stochastic Gri.en's function for the ensemble average of y(t.w) is

Simply < l(t,T,W) >. The expression for the covariance matrix i;

< Y(tl, ) yt(t 2,w) > - < F(tlw) Ft(t2,w) >

tt 2
+ / < F(t ,) Ft(T,W) > < P (t 2?,() > d-r

0

+ j2 < r(t1 ,Tw) > < F(TW) Ft(t2 ,w) > dT

0

1 2 < r(tl,T,w) F(T,w) Ft(,w) Pt(t 2,o,w)>dTdo

0 0

(3.22)

where t denotes comlplex conjugate transpose (hermetian conjugate) of

the matrix. The ensemble averages of (3.22) also separate in the

last term because P(t,.r,w) and F(r,0 are statistically independent,

but this cannot be shown with the matrix notation because the order

of matrix multiptzcatlon must be preserved. Separation of ensemble

averages takes place after 'ie matrix multiplication has been carried

out.

A sufficient condition for the convergence of the Neumann series

(3.19) can be given by a theorem analogous to Theorem 4 zf section 2.9.

)
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iheorem I. Let (P(t,¢) a(T,W) - k be a mapping of the space 0 into

the space K and let the mapping T of the Cartesian product space

. x C into the space C be defined for every wAei and every F(T,w) 6 C

by t

T(LJ,L,F(T,)) = (t,t) a(T,w) F(7,(-) dT

(3.23)

In addition, let the kernel O(tT) ct_(Iw) satisfy the condition

P (W: 0(tT) a( r,W) 0 0) 1 (.24)

for every 0 < t < T < d, then the integral equation

It

y(tw) -F(t,') + x J (t,r) a(r,w) y(T,w) dT

0

is invertible for every finite X.

Proof. Consider the norms of the iterated solution:

!yo (t, i) ___-_,___ ,,, ,,

where jj denotes any suitable norm for the matrices in the Banach

space.

t

II Yo~t, °  fI - ! /' (t,r) C(T,0) y (r,w) d- fI
0

The space K has been defined in section 2.9.
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t

_< Jf i 0(t,'r) Cr(T,,) Il l F(rw) (1
0

< t jj $(t,r) ctkr,J) jj F(T,W)

The last step follows because the norms O(t,r) ca(r,w) ard

I F(T,tJ) are real non-negative numbers.

r

II y2 (t'w) It " I! / 0(t,T) ,(T,w) y1 (r,,w) dT

0

t

" T ?(t,T) c(T,W) 12 F(T,W) d

0

22.ktK 2!~ It 0(t,r) cr(T,,) II2  II F(r-,w) !

or, in general,

n

I! y(t) _< "- It , a(W,)1)' (n ) F(r,.J)

(3.25)

thn
or the norm of the n transformation Tn satisfies the following

inequality

n
l nII _< t, * t,) cx(,& ln (3.2b)
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Hence, by Theorem 3 of section 2.9, ie integral equation is invertible

and its Neumani, series expansion converges uniformly for all finite t

and X. In this case, k - I.

Sufficient conditions have been given for the invertibility of

the stochastic integral equation (3.16) and for the convergence of the

Neumann series expansion. These conditions state that the solution

exists for almost all sample functions, but the theorems say nothing

about the existence of expected value or covariance of the solution.

The sample func'ions y(t,w) may not be second-order stochastic pro-

cesses. A st)chastic process y(t,) is said to be second order if

< I y(tW) [2 > < - is satisfied.

Consider now an example which demonstrates that the mean or co-

variance may not exist. Assume that the probability distribution of

the amplitude of the stochastic coefficients a (t,w) is Gaussian
V

(normal). The normality is conserved under repeated differentiation

and integratior. Hence, in computing < y(t,w) > or < Y(tW)

yt(t2,w) > by averaging the i-finite series term by term, we are

computing higher and higher moments of a (t,w). Higher moments of
V

the zero mean Gaussian random variaules are related to the second2
moment, 2 , by the foilowing expression (Miller, 1964):

n
n -n 2 2

< D > i < H (0) (3.27a)
n

Discussed in section 2.8.
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where H (0) is the n
th Hermite polynomial given by

A n

H (0) - 1n 0,1,2,... (3.'7b)
2n 2n n!

and

H2n+(0) 0 n - 0,1,2,... (3.27c)

Thus the even moments -, as n -+a. Because of tnis, the convergence

of the averaged series requires further investigation. The terms in

the averaged series are

< Yo(t,w) > - < F(t,w) >

t

< y (t,w) > - < 0(t,t) O(T,w) > <- F(T,W) " dT

0

7 (t,T,W) > F(T,W) >" dT

0

(3.28)

The enemble averages separate in (3.28) because of the statistical

iDdependence of cg(r,ui) and F(T,&). The norm of the general even term

is
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ii < Y2k(t,- )  "I "

t t2

2k-i
* ~ ~~~~~~ '(F 1 )?tk ~~) ~ t2K~ > dt ~dtk

0 C)

< (2k)!. ~'l . .(t k-' ) K> Fj< (t,} .>

2k(2) I__ 2k-I' 2

t 2 k  K F(2,2) 1 <>292-< (2k): 2 9 < > ,)

where we have chosen [or the nor of the averaged mnatrix < 7 > ard

tipper bound of its elements. The odd women" vanish becsiae elements

Y are zero mean Gaussian processee. Recall that 'y io An n x n matrix.

For Gaussian random variables, we have:

2 k2

and

2k+l 
k< H > k - ,,2 .... ,

(3.30)

2
where < m '> is the upper bound of mean squares of the elemnts.

Hence, the nor* of the general term of the Neumann series expansion is:
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< Y2k(t w) > < <k m 2 >k I < F(t,.,) (

(3.31)

The inequality (3.31) means that the av raged Neunmnn series expansion

converges uniformly ever. if the stochastic coefficient matrix consists

of Gaussian random variables. Similar analysis may be applied to the

Neumann series expansion of the covariance matrix (3.22). The only

term 'that presents any complications in the analysis is the last

term of (3.22).

Inspection of (3.21) and (3.22) shows that for calculation ot

the second-order statistics of the output process, knowledge of all

the moments of the coefficients is required. In many physical problems,

such complete knowledge is lacking or it is ditticult to obtain. In

such cases, one muit be satisfied with the approximate solution.

However, the iterative mathematical approach suggests that an 41erative

approach could also be used in conrtructing a physical model One

could obtain experimental data for computation Gt the mear: and co-

variance of the stochastic coefficienta. Then 'he first few terms

of (3.21) and (3.22) could be used to calculate the approximations

for the nan and covartance of y(t,-) which could be compared with

experimental results. I the agreement between calculated and expert-

artal results is unsatisfactory, more complete data should be obtained

om the stochastic coetfficients and the procedure should be Iterated

until he results become adequate.
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(It the stochastic coefficients are Gaussian, then the knowledge

of their second-order ratistics is sufficient for complete solution

of the problem.)

In the so,'i ton of an actual problem, the Neunann series

expansion oecomes quite involved. For this reason, other methods of

solution are investigated in th, following sections. The advantages

of the Neu-inn serie; expansion are that it is more generally applicable

than other methods, sufficient conditions for convergence are known,

and it provides usetul insight to the nature of stochastic Green's

funct ions.

3.3 -.onstruction of Reselvent Kernel in the Case of a Degenerate

Inte&ral Equatioll

The construction ot the resolvert kernel by means ot the Neumann

series expansion is, in general, laborious. For this reason, it is

desirable to investigate other methods ot solving the integral equation

(3.1b). Closed iorm solutions to the Fredhoim ind Volterra integral

equations can be tound it these equations have d.-gener.Ate Kernels

(Courant and Hilbert, 19)3; hildetnrand, 1,452; and K.ntorovich and

Krvlov, 1456). A kernel i said to be degepetate if it cAn be rep-

resented in the torm of a finite fi.i of products of tunctions of a

single (deterministic) vari.2l.

K(t,T, ) t h. (T,.) n '-. (3.32)

k-I
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() Such representation is possible if, for example, the Green's

function of the deterministic part of the differential equation (3.2)

is a sum of exponentials. The, the terms in (3.32) are:

ck(k) Kk exp a 8k t (3.33a)

and

bk(T,w ) -exp [-sa T a OW) P (3.33b)

where ak and Kk are complex numbers. a (T,) is the random coefficient

of the v - 0 term in (3.1). By considering kernels of the integral

equation which can be represented by (3.32) and by (3.33) we have

lost generality in two ways:

1) An exponential solution of the form (3.32) and (3.33)

implies that the deterministic equation is time-invariant.

2) The form of bk (t, w) in (3.33) implies that only ao(F,W)

is stochastic. This restriction will be removed later

when a state function representation of equation (3.2) is

ron. idered.

The first restriction is the penalty we pay for the simplification

of the computation. The impulse response of most timw-invartant

linear systems consists of a sum of exponentials (Schultz and Melsa,

1967). Exceptional cases Are when the impulse response is either a

constant, t or an exponential times t. From the control system point

of view, the exponential soiutions are the most c.,,mon. Thus, even
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with this specialization, we are still considering an interesting

case.

Also, representation of an arbitrary kernel by a degenerate kernel

leads to a useful approximation technique; This will be discussed

after development of the solution. fordegenerate kernels.

3.4 Single Term Degenerate Kernel

To demonstrate the essential ideas, we start with the simple case

where the degenerate kernel consists of a single term. The Integral

equation is

t

y(tw)- F(t,W) + X f K(t,v,w) y(T,(&) dr , (3.34a)

0

where

K(t,v,w) - c(t) b(r,w) (3.34b)

The functions c(t) and b(r,w) are

st
c(t) - es

and

b(,,w) - ST a (TJ) , (3.35)
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() where a(TW) is the randomly time-varying coefficient. Note that the

factor c(t) may be taken outside the integral in Equation (3.34a) and

the rtmilning integral is some constant independent of t. Thus, y(t,w)

must be of the form

y(t,) - F(tw) + A(t,w) c(t) , (3.36)

where A(t,w) is, for the time being, an unknown random process.

Substituting Equation (3.36) into Equation (3.34), we obtain:

A(t,w) c(t) - X j c(t) b(r,w) F(T,w) d'r

0

t

+ F c(t) b(T,W) c(7) A(t,tw) dT

0 
(3.37)

Solving for A(t,w), we have:

t t

A(t,w)- X exp [xFc()b(T,d)]fexp-kc(c) b(o,w) do' F Tw)b(,,w) dr.

0 0

(3.38)

Substituting Equation (3.38) into Equation (3.36), the solution of

the integral equation becomes:

y(tw) - F(t,w)

t 
rT

+ c(t)expl. fc()b(?,w)dT]fexp-\IJ c(o)b(o,w)doI F(T,w)b(i,r) dr.

o o o (3.39)
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y(t,W) = F(t,W)

F t 1T

+ c (t) exp c J(,r)b (T.~)dT/ [exPL-k rc(o)b(,)dlF .T,w)b(-,,w)dT.
0 0 0

(3.39)

Using Equation (3.35), and recalling that %.- -1, we have

y(t,w) - F(t,w)

t t T

-exp! -Ici(r,wa)dr ep XO d +s(t--r) a(r,W)F(r~w) dT.
L J 1

0 0 0

(3.40)

In Equations (3.39) and (3.40), the resolvent kernel of the integral

equation (3.34) can be identified.

t T

S(tT,w)-c(t) exp[XJc(a)b((a,w)daJ exp[- j c(o)b(oaw)do]b( .w).

0 0

(3.41)

or

t 7

r, (t iW) -exp - fJa(o~w) do] exp a(t-r)j Li (O.W) do]aTW

0 0

(3.42)
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If a(rw) were an ordinary function of time instead of a random

function, Equations (3.39) and (3.40) would be the complete solutions

to the problem. In the case of stochastic coefficients, we are still

faced with the difficult problem of computing the statistical measures

of y(t,w). We shall investigate the comptation of the expected value

of y(t,w) first. Averaging Equation (3.40), we have

< y(t,w) > - < F(tw) >

St t
exp[-fa~t~iJodYJ/exp

-< exp Cw(T,w)d T aexp[ a w(,,w)> exp[s(t-T)] < F(r,w)>dr.

0 0 0

(3.43)

The difficulty arises in computing the following expected value:

t .T

< fxP[ -J((,w)dJ exp[ Ta(os)da cr(T,W) >

0.44)

This expected value is a nonlinear function of a(t,w) and we must resort

either to nonlinear transformation techniques or power series expansion

of Equation (3.44). To shorten the notation, let

Y(t,W) = z(T,w) dy

(3.45)
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Then, the power spries expansion of (3.43) becomes:

< y(t,w) > =

< F(t,w) >

t

I exp[s(t-T)]< exp[7('r,w)-y(t,w)] C(Tw) ><F(T,w) > d

0

- < F(t,w) >

t

-J exp[s(t-T)1 < a(T,W) [1 + (rW)-(T,Y)) +

0

.. (+(T w)_'(t'w))n > < F(T,W) > dT
n!

- < F(tw) >

t

expfs(t-T) n., <C-('r,W)[Y(TW)-Y(tW)in > <F(T,W) > dr
o n-0

(3.46)

Conditions for the convergence of the power series expansion (3.46) can

be easily established. By an argument similar to the one used in

section 1.2, it can be seen that (3.46) converges even when a(T,w)

is a Gaussian process. The first two terms of the power series

expansion are quite easy to compute.
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O
< y(t,w) > f < F(t,w) > - exp [s(t-')] < a(',w) > < F(T,w) > dr

0

C T

" fexp fS(t-r)] R (T,o) < F(T,W) > dr do

ii4 0o
t t

+ J exp fs(t-r)) RC (r,o) < F(T,W) > dr do

n o (3.47)

(In using R (r,) for < ca(r,w) Cf(o,w) > we have implicitly assumed

that ca(T,w) is a real process. This assumption is not essential and

can be easily removed when a(T,w) is a complex procese.) Of course,

if C(T,w) is a process with zero mean, the integral containing

< a(T,w) > drops out and the approximation becomes:

t T

< y(tw) > - < F(t,w)> - / exp fs(t-T) R (i,o) < F(r,,) > dT do
Sj ory

o o

t t

+ fj f exp [s(t-T)j R on(T.0) < F(r,W) > di' do

0 0

(3.48)

From (3.47) or from (3.48), we can make some observations. First, if

< F(t,w') > - 0, then the mean of the solution < y(t,w) - 0. On the

other hand, if < F(t,w) > + 0, the contribution from the random
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parameter ai(t,w) does not vanish even if < a(t,W) > -0. This follows

from the fact that

t 1'

fr fexp~s(t-T)) R(T,C) < F(i,w) > dr do4
0 0

t t

Ij expas(t -T)I R (-r.a) < F (rw) > d do

0 0
(3.49)

Similarly, higher order terms of the power series expansion (3.46)

also contribute to the mean value of < y(t,w) >

Next, we assume that F(t,w) has zero mean. Then, the auto-

covariance of y(t,wi) is obtained by using (3.40) and (3.45):

IR yt 1 't 2  < y(tio) y*(t1W) >

-Iexp[ s(rtT)j < eXp[Y(,W)-Y'(t1,()]a(r,w) > F(rt)d

0

t

- .Pte(t2- T) I eXP(Y(T.W)-Y(t ,')j ( , w) > R FF(c tr)di'

0
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t It2
+ GX fep (t I-)-s*(t 2 -0)

0 0

exp((y7Cr1 W-~~ y,w)-y(t 2 1 O,)YtW)I 1,~ (o,w) >

377 (T') dT do

(3.50)

The tvo center terms can be expanded in the same manner as in (3.46).

An analogous expansion of the last term can also be made.

< OP([(T.)-Ytll~l+ Iy(Gw)-(t )]* )a,~)a* 0)>

< <Q(T.W)a (a'OP + [7TtJ-~ 1 ~]+ r?(0,wj) - (t 2 paJ)j

+ frw)-7416w) + 7 (a,".' y *(t WA)] 2

+ t [Y(y.w) - Y(E jiw) + 7 (o)-7( 2 W)]

<- cz6',W k~ a ~ w [ ( ' w ( + 7* (a,w) - n 2 ~ )
n0O

(3.51)
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The expansion iovolves higher End higher moments of cf(t,w) but does

not involve repeated integration as the Neumann series expansion does.

The power series expansion (3.51) demonstrates that knowledge of all

the moments of stochastic coefficient a(t,w) is required for computation

of the correlation function R (t t2 ). We must compute the moments

* * * ]
<c (T,w) * (o,0j)[Y(TW) - Y(t 1 ,v) + Y (a,w) - Y (t2 ,W)]n >

where 7"s are given by (3.45). Obviously,

* *"]

* a(T,W) Cy (O,W.)(Y(T,uJ) 7(t 1 pJ) + Y (0,W) - 7 ()]n >

+ C(T, ) (,') > < {,(r,.') - y(ti,.) + Y (o,W) - Y (t 2  --.

(3.52)

It (-f(t,w) is a Gaussian process, then the higher moments of the

process can be computed from the second-order statistics. Hence,

a complete solution can be obtained trom the knowledge ot the second-

order statistics.

If aI(t,w) is a process with zero mean, the simplest approximation

of R yy(t l,t 2) , which still takes into account the stochastic coefficient,

is obtained by disregarding all but the first terms in the power series

expansion of (3.50)

t I t2
R (ti t 2 ) RrF(tI~t 2 ) + e 0- )-s (t2 i)J R (T,c')R (r,o)dTdo

O 0

(3.53)
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3.5 P-Term Degenerate Kernel

In this section, the integral equation

t

y(t,w) - F(t,1) + X fK(t,T,W) y(T,w) dr (3.54a)

vith the kernel

n

E (3.54b)

is investigated. We assume a solution of the form

n

y(t,w) F(t,w) + A (tw) c (t) (3.4c)
1"1

Substituting (3.544.) into (3 54a), we get

n t n

A1 c (t) - , ck(t) b (t,w) j F(,t.) dT

i o k-I

t n n

+ C tck(t) Ok(T) (, A_ c (T) dT

o k-I J-I

(3.55) 

II
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By equating the coefficients of c (t), we obtain n simultaneous
i

integral equations for the unknowns Ai

n t

A 1 " Z / Aj b,%r.,w) c(-) d-r

t

x . . b (TL,) F(T,w) dr

o ( 1- 1,2 ...... n) (3.36)

To aimplify algebra let:

b (T,W) C(1) , B (3.57s)i ij

and

t
C

b (i(,w) F(T,i) dt - f . (3.57b)

0

With this notation, the simulcaneour equations (3.56) can be

written Ls:

t n

Ai " - (A5B15) dv - )'ft

o (i - ,2,...n)

(3.58)
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- which can be expressed in the matrix form as:

r t

A- X B AdT -X . (3.59)

To find the unknown functions Ai. we must solve the matrix integral

Equation (3.59). Because the integral Equation (3.54a) is a special

case of the more general matrix formulation of the problem, the

discussion of further details of the solution are pnstponed until

the next section.

3.6 State Function Formulation

State function formulation has been widely used in modern control

system theory and in formulation of lAgrange's equations in classical

mechar 4cs. For a system that may be represented by le- differential

equations, the state space equations are

y(t,w) - a(t,wo) y(t,w) + U uj,") , (3.60)

vhere y(t,w) is an n-dimensional state vector, a(t,w) an n x n system

matrix, U is an n x r control matrix and u(t,w) is an r-oimensional

control vector. Here, the terminology of control system theory has

been used. General mathematical terminology or terminology from

classical mechanics could have been used equally veil.

Let each member of the system matrix be separable in a determin-

istic term and a random term. In particular, let the members of the

kystem matrix be of the form
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aij(tw) - OiJ + c ij(t W) (3.61)

where .8ij is a constant and the ij(t,w) are stochastic processes.

Because 0i, is assumed to be a constant, the determiniatic part of

(3.60) is a linear time-tnvariant differential equation. The solution

to the deterministic differential equation can be expressed in terms

of the state transition itrix t(t). The methods of construction of

the state transition matrices (STm's) for linear time-invariant mystems

are discussed in several texts on control system theory (Schultz and

Helsa, 1967; Zadeh and Desoer, 1963; and De Russo, Roy and Close, 1965).

Therefore, it is assumed that the state transition matrix for the

deterministic part of the state space equation (3.60) is known. Using

the state transition matrices, the state space equations can be con-

verted into a matrix integral equation

t

y(t,w) - F(t,w) + X K(t,T,w) y(-,w) dT , (3.62)

where y(t,w) and F(tw) are n-dimensional vectors and K(,tT,w) is an

n x n matrix. F(t,w) is the solution of the deterministics part (part

with deterministic coefficients) of the state space equations. The

kernel of the integral equation is

K(t,i,w) - O(t-T) ct(',w) (3.63)
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All the matrices in (3.73) are n x n matrices, i(t-T) is the

state transition matrix. For linear time-invariant differential

equations, the state transition matrix 0(t) has the following useful

properties (Schultz and Melsa, 1967):

1) It is nonsingule- for all finite values of t.

2) (t 1 ) (t2 ) - 0(t 1 + t2)

3) 0(t) - 0

4) *(t)r'" 4(nt) (3.64)

Using the second property, the kernel of the integral equation becomes

K(t,-r,w) = 0(t-) a(T,w)

- 0(t) (-) a(,,w)

t *(t) b(.r,w) , (3.65)

i"re, for simplicity, the product 0(-i) ca(i,w) is denoted by b(T,w).

Now, the integral equation (3.62) has a degenezate ker-'l and can be

solved by assuming a solution of the following form:

y(t,w) - F(t,w) + 0(t) A(t,w) , (3.66)

where A(t,w) is an n-dimensional vector. Substituting Equation (3.66)

into Equation (3.62), we have:

i~ _)

1IJ
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tr
O(t) A(tW) X / (t) b(-r,t) F(T,w) dT

t

+ / O(t) b(',W) O(i) A(t,w) dT. (3.67)

0

Premultiplying both sides of Equation (3.67) by 0- (t) (0- (t)

exists according tc the first property of Equation (3.64)] and

rearranging gives

t t

[ A(tt) - . . b(rtw) O(T) A(.r,w) dr ] 'b(T.w) F('r,w) d".

0 0

(3.68)

This matrix integral equation must be solved for A(tw). This can be

done by again using Neumann series expansion; i.e.,

A(t,w) - A (t,w) , (3.69)

no0

where the A (t,w) terms are : )y the following iterative solution:

t

A (t, w) - b(T,w) F(r,w) dr (3.70a)
0

0

II
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C) and

t

Al(t,W) J b(rw) O(T) Ao(T,w) dr
C0

t -

+ f b(T,w) 0(r) b(o,w) F(o,w) dr do , (3.70b)

0 0

or, in general,

t/-
A (t=w) b(-rw) *(T) A 1 (r,w) dT. (3.70c)

0

Sufficient conditions for the convergence of the Neumann series (3.69)

sLe given by Theorem 1 of section 3.2.

Using (3.66), the expected value of y(t,w) is:

< y(t,w) > - < F(t,w) > + O(t) < A(t,w) >

= < F(tW) > + O(t) E < An(t,.w) >

n= 0

where A (t,w) is given by iterative integrals (3.70a), (3.70b)n

and (3.70c). Here again, it can be observed that if < F(tw) > + 0,

< y(t,w) > does not necessarily vanish when < a(t,w) > - 0 because

expressions for < A (t,w) > contain higher moments of a(t,w) whichn

my not vanish. The first two termi in the Neumann series, A (t,w)

and A (t,w), can be computed from the second-order statistics; for

/
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higher order terms, we need more complete statistical knowledge of the

stochastic parameter matrix a(t,w). For the approximation which uses

the second-order statistics of the stochastic parameters, we have:

tr
< y(tw) > < F(t,w) > + j Z(t-T) < c(T,W) > < F(T,w) > dti

0

tT

+ jj / (t-T) < a(T,w) O(1-O) a(uw) > < F(c7,w) > dido.

0 0

(3.71a)

If the coefficient matri-x a(r,W) has zero mean; i.e.,

<aC(T,w) > 0,

then, (3.71a) simplifies further and it becomes:

< y(tW) > f < F(tw) >

+ 1 *(t-r) < o(T,W) *(T') a(Ow) > dirdo.

0 0

(3.71b)

The Equation (3.71b) demonstrates how the man value of y(t,w)

depends on the second moments of the coefficient matrix. Of course,

in this approximation, we neglected the functions which contain higher

moments of the coefficient matrix.

LI
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The expression for the covariance matrix is obtained by post-

multiplying y(t 1 ,w) by the complex conjugate transpose of y(t 2 ,W)

(hermetian conjugate denoted by t) and averaging; i.e.;

R yy (tit 2 )  < y(t 1 ,w) Yt(t 23 W) >

= < F(tow)) + t(t) A(t1 ,w))(F(t ,J) + O(t 2 ) A(t W))t >

= < F(t13w) Ft(t2 ,w) > + < O(tI) A(t1 ,w) Ft(t 2,) >

+ < F(%ltw) At (t2,W) st(t2 ) >

+ < O(t 1 ) A(tl,w) At(t2, u) st(t 2 )

RFF(tist 2 ) + (t 1))< A(tlw) F (t 2 ,o) >

+ < F(t 1 .w) At(t 2 ,w) > Of(t

t ~ + (t) < A(t[,,) At(tz,,) > Ot(t 2  .

-(3.72)

K()
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If only the first terms of the power series expansions are used, an

approximate expression for the covariance matrix Ryy(tlVt 2 ) is

R yy(t1 t 2 )  -RFF(tlt 2 )

t

+ 1(tI ) f -I(T) < a(r,w) > RFFr,t 2 ) dT

~0

+( (t 1.) <at((T,W) >01(T) dT)0~ 2

+ ( t1) ( / r 0 (r) R 2F2(6%cl) 0 -t(a) dr do ) ot(t2
0 0 (3,73)

where

Rc 2F2(To) - < (a(T.,) F(T.w)) (a(Ow) F(o,w)) t > (3.73b)

The approximate expression for R (tl,t 2) simplifies further if

< Z(TW) > - <at(TW) > - 0

Then. (3.73a) becomes:

Ryy(t lt 2) - RFF(tl't 2 ) +

t t

+ 0(t 1) ( fftl .) Rc2 2 ( 9 o) I'I.(O) d, do ) ,t(t 2 ) (3.74)

00 __ _____ .... ( 3 .. ..)
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( The equation (3.74) also shows some interesting results. The first

term in (3.74) is the contribution of the deterministic part of the

differential equation. The next term is the simplest term which takes

into account the randomness of the coefficients. To compute additional

terms in the expansion, we need to know the higher moments of the

coefficients. If only the second-order statistics of the coefficients

are known, (3.74) is a far as we can go without additional knowledge.

In the state space formulation, one has considerable freedo. in

tle selection of the coefficient matrix representation. The evaluation

of the truncation error is greatly simplified if one can select a

representation for the coefficient matrix which will make the Neumann

series expansion of A(t,w) an alternating series. Then, for a conver-

gent series, the truncation error is smaller than the tirst term

neglected, provided the norm of each term is smaller than the norm

of its preceding term.

3.7 General Remarks

In using the degenerate kernel approach for bolving the Volterra

integral equation, we still have to resort to New.iaou series expansion.

From the standpoint of computational difficulty, there is no essential

difference between the straight Neumann series expansion and the

degenerate kernel approach. Selection of the method depends on the

physical problem and computational convenience. For example, in the

study of wave propagation in random media, iterative integrals of the

Ne mann series expansion have the convenient interpretation of

repeated scattering of waves. On the other hand, in -he case of a

control system problem, the deterministic transition matrix may be
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already known arid, therefore, the degenerate Kernel method may b

convenient. Both methods of soiution converge under the same general

cuot.dtions. Hence, we have two complementary methods for solving the

stochastic Volterra integral equations. Other methods, such as the

Fredholm method and the Hilbert-Schmidt method, do not offer any

computational auvantages. To use the Hilbert-Schmidt method, one has

to solve a pair of first kind integral equations. This problem is no

easier than solving an integral equation of the second kind. Fredholm

theory has been very important in the development of the classical

integral equation theor), but to use the Fredholm method for construc-

tion of tie resolvent kernel is prohibitively difficult in oractice.

Many aribtrary kernels can be approximated by the degenerate

kernels. A Taylor series expansion of an arbitrary kernel can be used

for approximating it with a degenerate kernel. For example, a kernel

sin (t r) can be approximated by

sin (t T) . -tT + 3.75)

3! 5!

A Fourier series expansion of the arbitrary kernel or special inter-

polation devices can also be used. The use of the method of momenta

for solving integral equations in equivalent to the replacement of an

arbitrary kernel by a degenerate kernel. In the case of deterministic

integrai equations, the estimates ot errors caused by the replacement

of a given kernel by a degenerate ome are known. One such theorem,

slightly modified for stochastic application, is stated below

(Kantorovich and Krylov, 1958).
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Theorem 2 Let there be two kernels, k(t,T,W) and K(t,T,W) and let

it be know that

t I II1 :I((tT,W) - k(t,T,W) I dr < h (3.-6)

t0

almost everywhere P (a.e.P.). and that Yhe resolvent kernel (t,T,,X)

of the equation with kernel k(t,T,W) satisfies the inequality a.e.P.

SI (tr,w,X)! dT < B (3. 77)

t0

and also that

If(t) - f ' a.e.P. (3.78)

Then, if the followaing condition is satisfied a.e.P.:

1 - I X h(l + IXI B) :> 0 (3.79)

the equation

y(t'W) - K(t,w) y(-,w) dr - f(t,4) (3.80)

t
0
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has a unique solution y(t,w) a.e.P., and Lhe difference between this

solution and the solution y(t,w) of the equation

t

y(t -) I k(t,T,ui) y(T,) dT - f (T, ) ".81)I It0

is smaller a.e.P. than

ly(t, ) -. 1 N)XI hl + IXI B + r (1+ Ix\ B),
y t. (I + X B

(3.82)

where N is the Lipper bound of if(tW)I a.e.P.

Proof is a trivial modification of the determiratic proof given

by Kantorovich and Krylov (1958). The theorem is less than satisfactory

for many interesting processes; however, the hypotheses of the theorem

are too restrictive and the conclusion of the theorem should give the

mean square anproximation error. To ake the above theorem applicable

to the Volterra Integral, we define the Volterra kernels as follows:

K Kt: - g t T ,W ) T ' t
v

- 0 t >t (3)

3.8 Conc lus iong

,,is chanter presentU two methods for obtaining expressiors for

th
the en&aeble average and covarlarce ot the solution of an n order

d~fleretial equation with stochastic coetticlents. In both cases, it

is assurwd tiat the coefficients of the difterential equation are



) eiarabie into deterministic and stochastic coefricients. Tle

problem now becom-s a problem of solving a Volterra integral equation

w.-n a stochastic kernel. In the first method, the problem is solved

by the Neumann series expansion. The Neumann series exnansion is a

series of iterated integrals. A previously computed term is used

to compute higher orde:. terms. Sufficient conditions for the conver-

gence of the Neumann series r-e given. The Neumann series is used

to find the resolvent kernel of the stochastic integral equation. The

ensemble averages and covarlance functions of the solution are expressed

in terms of the resolvent kernel and the corresponding statistical

measures cf the input process. The krnels of tnese integral expressions

for the statistical measures of the solution can be interpreted as the

stochastic Green's f -ctions.

In the second method, it is assumed that the deterministic part of

the differential equation is time invariant. Then, in many cases, the

kernels of the integral equztion are degenerate kernels. In these cases,

we have a slightly different method for solvin3 the Volterra integral

equation. We still have to resort to Neumann series expansion for the

complete solution of the integral equation. From the standpoint of

computational difficulty and convergence of the solution, there is no

escential difference Ltween the two methods.

However, we have two complementary methods of solving the problem.

Applying these methods to some very simple equations and just computing

the first couple terms of the expansion, '-e are able to observe some

interesting results. Even if the stochastic coefficients have zero

mean, their contribution to tile mean value of the solution does not
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vanish. This demonstrates that the average of the solution of a

differential equation with stochastic coeffic-I, s is not necessarily

the sdme as the solution of the averaged equation. Both methods of

solution also show that cxpressiors for the second-order statistics

of the solution of linear stochastic differential equations requires

knowledge of all the moments oL stochastic coefficients. An excep-

tional case is that in which the stochastic coefficients are

Gaussian processes. Then, the knowledge of thp second-order statistics

is sufficient for the complete solution.

In both cases, the computation is simpliified if the state space

formulation is used. The use of the state space formulation has the

further advantage that it connects modern control system theory with

this work.

The concepts developed In this chapter will be generalized in the

next chapter to partial differential equations and applied to the

propagation of the scalar wave function in a randomly time-varying

mtd jum.



iCHAPTER IV

WAVE PROPAGATION IN A RANDOMLY TIME

AND SPACE VARYING MEDIUM

4.1 Introduction

The problem of propagation of an electromagnetic wave in a

random continuous media has been studied extensively by many workers;

however, in almost all cases, attention has been limited to a random

medium with space-varying statistical properties. In these studies,

a so-called "quasimonochromatic" solution has been assumed. This

quasimonochromatic assumption essentially neglects the ti;-izg

properties of the meuium- In many cases, this ae'mption may very

well be correct, for example, in the case of the propagation of light

through frosted glass. In cases when one deals with wave propagation

through hot or very energetic media such as the atmospheres of stars

or plasmas, the quasimonochromatic assumption is clearly incorrect.

In other cases, such as in the study of synchronization of spatially

separated frequency standards, doppler broadening of radar signals

or interaction of two signals in a nonlinear medium, the small fre-

quency shifts caused by the randomly time-varying medium may be the

important questions under study. In all cases, the validity of the

quasimonochromaticity assumption should be verified.

*

See the references in section 1.3.

One assumes that the solution of the wave equation is essentially a
sinusoid at a single frequency, if the source is a sinusoid at a

single frequency.( )i
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It is assumed that the dielectric permittivity C(t,P,tw) is a

random function of time t and position P. It is further assumed that

it can be separated into a constant term E plus a randomly space-

and time-varying term. The wave equation (4.1) for the electric field

can be derived from the pair of Maxwell's equations that connect the

electric and magnetic fields

x 7 x xE + - (poE) -- (4.1)

where Y is the current density.

To the quasimonochromstic assumption, it is assumed that

2-
3t2 o 0 t2 E (4.2a)

and that the equation (4.1) can b vritten, in the current free

region,

2

V x V x E - 2 - 0 (4.2b)

where E- eist

These assumptions are avoided in this dissertation. Instead, it

is assumed that the spacial gradient of the dielectric permittivity

over the distance of one wavelength is small:

An overbar - denotes vectors.
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The problem of propagation of an electromagnetic wave in a

random continuous media has been studied extensively by many workers;

however, in almost all cases, attention has hp: limited to a random

medium with space-varying statistical properties. In these studies,

a so-called "quasimonochromatic" solution has been assumed. This

quasimovochromstic assumption essentially neglects the time-varying

properties of the medium. In many cases, this assumption may very

well be correct, for example, in the case of the propagation of light

through frnsted glass. In cases when one deals with wave propagation

through hot or very energetic media such as the atmospheres of stars

or plasmas, the quasimonochromatlc assumption is clearly incorrect.

In other cases, such as in the study of synchronization of spatially

separated frequency standards, doppier broadening of radar signals

or interaction of two signals in a nonlinear medium, the small fre-

quency shifts caused by the randomly time-varying medium may be the

important questions under study. In all cases, the validity of the

qu~simonochromaticity assumption should be verified.

*
See the references in section 1.3.

One assumes that the solution of the weve equation is essentially a
sinusoid at a single frequency, if the source is a sinusoid ait a
single frequency.
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It is assumed that the dielectric permittivity E(t,P,W) is a

random function of time t and poeition P. It is further assumed that

it can be separated into a constant term e 0pus a randomly space-

and time-varying term. The wave equation (4.1) for the electric fi.lid

can be derived from the pair of Maxwell's equations that connect the

electric and magnetic fields

2 (V " o 4 t (4.1)

where J is the current density.

In the qussimonochr-matic assumption, it is assumed that

2 C 2 E (4.2a)

and that the equation (4.1) can be written, in the current free

region,

2 -

S 2E - s E - 0, (4.2b)

where E -E eSt

These assumptions are avoided 1i this dissertation. Instead, it

is assumed that the spacial gradient of the dielectric permittivity

over the distance of one wavelength is small:

*An overbar - denot, s vectors.
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1 I VIE << 1. (4.3)

Then, (4.1) becomes the following wave equation

72 " 2_ Ao e o M 't 4(4.4)

To keep the basic problem uncluttered of nonessential mathematical

complexity, we restrict the analysis to the solution of the following

scalar wave equation:

V2y(t,r,w) )t2 ( c2 + c(tr,w))y(t,r,w) - x(t,r,w) (4.5)

- 3
ttT, reR and wel on the probability space (fl,X,P). a(t,r,u) is

stochastic coefficient; that is, a random function of both tim.±

and apace. x(t,r,w) is the stocnaStic source term. The source

term could be a deterministic function but, for greater generality,

it is assumed to be stochastic. It is assumed that the source term

x(t,r,w) and the coefficient a(t,r,w) are statistically independent,

For simplicity, it is assumed that Cj(t,r,w) is a real stochastic process.

In order to be able to ume some of the results from the theory of wide-

sense stationary stochastic processes, it is assumed that both

a(t,r,w) and x(t,r,w) are wide-sense stationary or reducible to

wide-sense stationary stochastic processes. This assumption

*Discussed in section 2.4.
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simplifies the development in that the spectral representations of

cl(t,r,w) and x(t,r,w) have some useful properties. Wide-sense

stationarity only in time t is required. It is rot required that

al(t,r,w) and x(t,r,w) are wide-sense stationary in their spacial

vr-iable r. The statistical properties of ct(t,rw) and x(t,r,) may

change in an arbitrary manner in the spacial variable as long as

c(t,r,w) and x(t,rw) rennain second-order processes and (4.3) remains

sati:fied. By placing no overly restrictive conditions on the spacial

statistics o the medium, physical reality is maintained. The

statistical properties of the medium may vary in space in a manner

that accommodates the usual physical problems. The randon-ness of the

medium my be restricted to be in a given volume, shown by Figure 4.L,

or the mean square amplitude of the fluctuation of a(t,r,w) may vary

with height as it is common in the tropospheric communication problems.

The reducibility to wide-sense stationarity also allows us to consider

physically reasonable problems. The sample functions of cr(t,r,w) and

x(t,r,w) fluctuate rapidly in time, but their averaged properties vary

slowly wit" time. It is rapid time fluctuation of the sample function

c(t,r,w) which makes the quasimonochromatic assumption dubious. The

coicept of reducibility to stationarity permits slow variation of the

statistical properties of c(t,r,w) and x(t,r,w). These slow variations

f the statistical properties must be sufficiently slow so that they do

not mask the spectral spreadingi wich is caused by the rapid time

viriation of the sample function Cr(t,r,w). This condition is satisfied

if the power spectrum of the function which modulates the statistical

properties of q(t,r,w) and x(tr,w') contains only frequencies which
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are very much lower than the significant frequencies of these

stochastic proces.es. In future work, it would bo desirable to

remove even the wide-sense statlonarity assumption.

The use of a scalar wave equation also limits the en.r2Ljt of

the analysis. It neglects the change in polarizatior, due r -; rdnL.In

medium, and it is strictly applicable only to the forward s'i_tering

of electromagnetic waves. Of coL:.rse, in case of sound propigacion,

there is no loss of generality when a scalar wave equation is used.

The statistical meJsures _f interest in this chapter are the

power spectral density an' c ,ercnce functions of the scalar wa,,e

function y(t,r,wa). The exp~ .sFons for the spectral density alli

reveal the spectral spreading caused by a randomly tm.le-varylng

medium. Coherence functions have been found useful in statistical

optics (Born and Wolf, 1964; Beran and Parrent, 1964; O'Weili, 1963;

and Mandel and Wolf, 1965) and more recently in general eLectromagnAic

theory (Special issue on Partial Coherence, 1967). To so .e our prob-

lem, the differential equation (4.5) is converted i.tu a difi-rential

equation for the spectral representations of y(t,r,.), then the

methods of Chapter III are applied. Both the Neumann serit- expansion

and degenerate kernel ap;-roximations are investigated.

4.2 Spectral Represent'tion of the Scalaz Wave Equation

In principle, it is possible to apply tlie Neumann series solution

of section 3.2 directly to the scalar wave equation (4.5) but, after

the first few iteratios, the time-domain expresibons become unmanage-

able and difficult to interpret. Furthermore, the interesting staLl.-

tical measure in this case is the Power spectrum of the scalar wave

K-)
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function. Other second-order statistical measures such as variance

and mutual coherence functions can be obtained by taking the inverse

Fourier transform of the power spectrum. Because there is a simple

relation between spectral representation of a random variable and the

i power spectrum (Chapter 11), equation (4.5) is solved for the spectral

representation of y(t,r,w). The spectral representation is also called

the "integral canonical expansion" of the random functions (Pugachev,

1965).

If the random coefficient cj(tr,w) and the forcing function

x(t,r,w) are wide-sense stationary stoUiiasLic processes with zero mean,

their integral expansions are:

cj(t,r,w) - A(u,r,w)eiut du (4.6a)

and

I - izt
x(t,1,W) - / X(z,r,u)e dz (4.6b)

where u and z are real variables. The integrals of (4.6) should be

written at; Stieljes ititegrals

A,(t,r,w) - ;e d A (uw) (4.7a)
J, 0

aud

izt
x(t,r. ) X (z, , (4.7b)
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because d Ao (u,w) and d X (z,w) are stochastic processes with

orthogonal increments, and the functions A (u,w) and X (z,w) need

not be differentiable. For simplicity, the integral expansions

(4,6) are used with the urderstanding that A(u,r,w) and X(z,r,w)

may be generalized functions. The assumption that x'.L,r,w.) and

a(t,r,w) have zero mean constitutes no loss of generality, because

the mean value of a(t,r,w) can be included with the deterministic

part of the coefficient and the non-zero mean value of the source

term x(t,rw) can be easily taken care of by suDerposition. The

wide-sense station-rity assumption constiLutes a more serious loss

of generality but, without this assumntion, the solution of (4.5)

becomes very difficult. In future work, it would be desirable to

remove this assumption Actually, the statiotirity assumption cat)

be slightly relaxed by assuming that ;I(t,r,w) are processed reducible

to atationary. This will be discussed shortly.

Substituting (4.ba) and (4.b) in to (4.5), then multiplyi ng both

sides of the equation by e and integrctitn%, equatien' (4.5) becomes:

dt e (V y(t,r,.,)) - 2e Y2

-wo -

tut -at e -1t 2 du e A(u, ,:.;) y(tr,uo)

list - IlZt
dt e dz X(ztr,) e

J

- m - - ( .8)
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where s, u an. z are real variables. Interchanging the order of
i a

2integration and 7 operation, the f irst term in (4.8) becomes

2 7V7 Y(s, ,w). Integrating by parts, the second term in (4.8)

2 2 -

becomes 2n s /c Y(s,r,w), and the third term becomes

2 ' - - -i(s-u)t
s du A(u,r,w) dt y(tr,w) e

-0-0

or

22ff s du A(ul,r,0- ) Y(s-u,r,w) \'4.9b)

To obtoin these results, the tollowrg quantities

e t_ (t, , (4. 1Ob)

t iute-C t du A(LI, r,,' v(t rw) , u 4 t-

and

- tnt - "- jt
e du A(u,r ,) v(t ,: ) t, (4.1l "i)

must vr.si h I aip ru.ch.s + '.



If x(t,r w) is a wide-sense statiotia-y stochastic nrocess, the

te:rms of (4.10) do n:t vanish as t -t + -, because wide-sense

stati-nM.rTty of x(t,r,W) implies that the forcing function is active

from time -- to +-. This is physically unreasonable. To remove this

I U.fficulty, it can be assumed that x(t,r,J) is a process that is

'reducible to a stationary process". A st~ochastic process is said

to be reducible to a stationary process if it can be expressed In

terms of stationary stochastic processes. An examole of a stochastic

process which is reducible to a stationary process is any process of

the form

x(t,LO) - g(t) z(t,W) + f(t) , (4.11)

where z(t,w) is a stationary stochaetLic process, and e(t) -Ind f(t)

are real nonrandor, functions of time. In particular, we may take

f(t) to be zero and g(t) can be selected so tha. the terms of (4.10)

vanish as L - + -. For example, if taken to be

-kt
2

g(t) - e (4.12)

where k is some small ,)oaitive number, then xit,r,i) is a process

reducible to a stationary process and terms of (4.10) vanish as

t -4+ so. (This device is frequently used in the theory of diztributiona.)

The source term becomes

DDiscussed in section 2.4.
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I f I ,r -) - i(z-s)t d
/ k Z, r t) e. dz '

-0 -0o

= , / X(s,r,w) b(z-s) dz

2ir X(sr w) . (4.13)

Collecting the results, the spectral representation of the differential

equation (4.5) becomes

2 - 22 - - 2 -
V Y(s,r,w) + s /c Y(s,ro) X(s,r,o) -S du A(u,r,w) Y(P-u,r,w) .

(4.14)

The left-hand side of the equation (4.14) is simply the Helmholtz

equation fur the F'ectra. representation of the scalar wave function

Y(s,r,w). Solutions of the Helmholtz equation are known for a number

of different boundary conditions; therefure, for these conditions

(4.14) can be expressed as an integral equation:

- - -12 - dY(s,r,wo) - F(a,r,W) -L s Y(s-u,r', i) A(u,r',tw) du

(4. 15)

I.
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where L. is the inverse onera tor or the He mhol tz equat ion to, thc

appropriate boundary conditions. F(s, , w) denotes L X(sriw),

that is, F(s,r,w) is simply the solution ot the deterministic Helmholtz

equation. The iterative solution is simplified if a change of variable

is made in the last integral and the integral equation (4.15) is written

as:

00

- - -1 2 F -Y(s,r,w) F(s,r,w) - L s Y(ur',u) .(s-u,r' ,) u

(4.16)

Now, the scalar wave equation (4.5) has been converted into a Fredholm

integral ejuation for the spectral representation of the scalar wave

function. To solve these integral equations, either the Neumann

series expansion or the degenerate kernel approximation can be used.

For the sake of being more specific and for simplification, attention

is restricted to the wave propagation in a spherical coordinate system.

The degenerate kernel approximation is considered first.

4-3 Qge_ nerate Kernel Approximation

The integral equation (4.16) becomes an integral equation with a

degenerate kernel if the following usual approximations for large

R are used:

r- r' R- R' cos ' 0 - (4.17a)

and

1 1 R R
-r ' R+ 0 (-;7-) .(4. .17b)

( 2



2t ) t ox I ois , (4.

, ~ s ex,-) - (R - ! Cos ') .,

+ Y (li ',) A(s-uR' ,w) du dv

(4.18)

The geometry of the problem is shown in Figure 4.1. V denotes volume

integration over the volume occupied by the random medium. This is an

int gral equation with ; degenerate kerne! and it can be solved by

assuming a solution of the following form:

, exp [-i t RI
Y(s,R,w) - F(s,R,w) + B(w) s- c (4.19)

4,. R

Substituting (4.19) into (4.18) and solving for Bk,"), we ,wre:

/ / exp[i I R' cos ,'] F(u,R',w) A(E-u,R',w) du dvC

V -00B(W)-
2- 0 2 exp [- (s cos ' -u)] A(s-u,R',w) du dv

1 j _C ___________________

4% R'
V -00

(4.20)

SuL~tituting (4.20) into (4.19), tne solution of the degenerate

integral equation (4.18) becomes:
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Figure 4.1 Geometry for the Degenerate Kernel Approximation
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.xpfi -s (R - R' cos )i i(uR' ,J) A(s-uR',.J) du dv
2 -' C

S u iR'

1 - ' R expf-,(s os 4' -u)] A(s-u,R' ,,) du d'v/ 't R1 cV

V 0

(4.21)

As in section 3.3, the resolvent kernel of the degenerate integral

equation (4.18) can be detined trrm (4.21):

r(s,u,R,Rl w<) =

2 expr-i s (R - R' cos y')] A(s-u,R',w) du dv

4 R ff 2 R4 1 / R 4 2 expf-(s cos 4' u)1 A(r- R',w) du dv1 -/. 4n R' dud

V -00

(4.22)

Inspection of (4.21) and (4.22) reveals the same difficulties that

were discussed in section 3.3. Namely, the denomirator of the

resolvent kernel may vanish because A(s-u,R',w) is a stochastic process.

If the denominator vanishes, the resolvent kernel does not exist.

However, it can be shown that this is an event of zero probability if

the probabilitLy density function of Y,

00

/ I V (a, , cos ' -u)] A(s-u, R',w) du dv), 1 , 41( R' ex t -.c o

V(420
(4.23)
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the statistic1 measures of Y(s, R,w). the d(nomlnator of the rebolvert

kernel must be expanded in a power series of ?. The power series

exppnsior, is valid with probability one if 71 <, 1 with probability

one. "ote that (4,23) does not have a siogularity Bt R' 0 O, because

the volume element dv contains a R' squared term.

The power series expansion for (4.21) is:

Y(,R,w) - F(s,Ru)

2

+ / exp[-i _ (R -R' cos i')j F(u,R',w) du dv
4w R J j c

V -

2 n
+ ) + Y (4.24)

%.here Y is given by (4.23). It can be seen from (4.24) that the

ensemble average of Y(s,R,w) is zero if the ensemble average ot

F(s,R,w) is zero. This follows from the asbumption that X(t,r, J)

and a(t,rw) are statistically independent, zero gean stochaEtic

proceases. Tie statistical measures that are of greater interest

are the power spectral derlslty and the coherence functions. These

quantities are Fourior transform pairs of one another. The power

spectrum 0 (s) is related to the spectral rcpresentation of the

random variable by

Sd X (s d X (a2) > b(sl 1 2) xx(a ) d sl d r2

(4.25)

Discussed in greater detail in Chapter I, sections 2.6 and 2.7.
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Because wt- -ire v, rtuwI liv :nreeted in _oimput A! :-h crt:PrenCe

between two spa tially se-;)ira ted points (Ffgure 3.), we calculate

1' (Si ki WL.2) -1. U tJin 1 s t r fst te r.

power series expansion (4 .24), we hmve

Ky .0) Y(s,.,1 F& F (~ ~ 1* +

2 F 22

H4s PII V V .R
ii 22

V V

F~4,- u R ')- ,,~- A~ 6 U R du d u dv 

R, R 2 ~

2F 2 1 2) ' ' uR 8)~(-'

2 2 1' 1 2E

2 22

V V

d u d v Ov P ki4 2bal
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where

H(ls2 RIR 2 , R',R") -

I  s 2

exp[-i - (R -R' cos ' + ic (R2R" cos,

2
(4x)R R

1 2
(4.26b)

The cross terms of the form

2

< F(slR,u) R2

rF * *
expf + i I (R -R' coo V')] F (u,Rlwl) A (a 2 u,R:,w) > du dv

J C

(4.27)

vanish because the average < A (a 2-uR',w)> vanishes.

From (4.26), we note that using just the first term of the expansion,

< Y(sI,RlW) Y (s 2 ,R2 ,Vi) > is equal to a delta function times the

sum of twc terms. The coefficients of the delta function b(s- S 2 )

are interpreted as the power spectral density of the solution of the

scala-r wave equation. The face that we get a delta function b(s -a 2 )

shows that, at least as far as the first approximation is concerned,

the solution of the scalar wave equation is a wide-sense stationary
*

process. (For greater generality, the correlation between two spatially

Discussed in section 2.
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separated wave functions was compuied. Of course, we have a special

case when R ecuals R,.) Thus, the sir;plest approxi-ztion of the

1
power spectra1 density of the wave finction is, from (4.26),

(sR , R( 0FF(s,R 1 ,R2) +

+ s H(s , s , R I),R 2 R' R') 0 k (s-u,R' R") (FF(UR',R") du dv dv'.

V V -

(4.28)

This crude approximation has already some interesting features. The

first term is the power spectral density ot the wave in the deter-

ministic time-invariant medium. The second term demonstrates the

spreading of the power spectral density of the wave function by the

randomly time-varying medium. Even if I (s,R',R") is a lcwpass

function and its power spectrum does not overIrp the power spectrum

of FF(u,R',R"), the power spectrum of Cyy (s,RR ) is modified by

the randomly time-varying medium. This is illustrated on Figure 4.4.

Thus, the widely used quasimonochromatlcity assumption is incorrect,

or at least should be seriously questioned. Equation (4.28) is an

approximate expression for the stochastic Green's function. It is an

integral expression that relates the power s'ectral density of the

solution to the spectral density of the source tcrm and stochastic

medium.

The next approximation can be computed by including the Y term

in the power series expansion (4.24).
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Figure 4.4 - Spreading of Power Spectrum by Randomly Time-

Varying Medium
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The cross terms give:

2 0

< F (aR 9,W) I r r..1 [-Is (R -R'o Fu,R,w

A(s..u,R',w) du dv I j s

V p

< Fk'u,R',w) F (s 2 9R 2 )w)> < A(a1=u,R',wi) A(s1-u',R",w)> du du' dv dv'

2 CO 0

e x p I[ -x- ( R 1 -R ' c o s ~ + ' - ( R

-2 2 7R C C

Z (4,r) R 6(u-C (

(a 1,R',R 2 ) 0D (81 +6 2 0R',R") dv dv'

(4.29)
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< (F(sj)Rp:W) 82 I exp ti (2 (R R'cosy'' F(uR)

A (s -u,R',w) du dv) (

22

4xR2  J 4SR" r fi (R R cos (a cas'4i"-U')]
V V -

< F(SaR1w F (uR' ,b)> < A (s2- U,R ,w) A (a 2-u' ,R",w) > du du' dv dv'

2

2 2 f/ 1jR 2

* 1 2 j exp (R (5Cos*') - - (~oi " '
2 v (4s 22 "

*FF (a,RlR) 6(-s1 u(Bi 82' R,R',) ,u u)ddu dv dv'

(4.30

0430
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These two terms exhibit the nonstationary behavior of the solution,

because of tLe absencc of delta functions b(Sl-62). However, these

terms vanish if the power spectra o(sl+s2) and 0FF(sI) do not overlap

as happens 17 some cases of practical interest. If this is true for

all sI and s,, theo (4.29) and (4.30) vanish and the wave function

still remains wide sen..e stationary. Note that even in the case of

the nonoverlapping power spectra, the time-varying random medium still

spreads the power spectrum of the wave function as shown by (4.28).

The next term that contains a delta function (s l- 2) is:

9 2 8 2 / * , RI R2R' R") < F(u,R',w) F (u',R",w) >
~ I~2 j J J/ 5  s2 R1  2'

V V -

< A(s -u,R<,w) A (s2-u',R",u) y(s Y (s2) > du du' dv dv'

(4.31)

To evaluate chis term, we need to know the fourth moment of A(u,R,w)

or make an additional assumption that (I(t,R,(,) is Gaussian. If

((t,R,w) is Gaussian, then A(u, R,LJ) and Y are also Gaussian processes.

This, howr er, vioiates the condition for validity of tlie power series

expansion of the denominator of (4.21). For the power berles (4.24)

to converge almost everywhere in probability, 1Y4 < I a.e.p. This

condition is not satisfied when 7 is a Gaussian process, and the

power series does noz converge. This also follows from the actual

*Discussed In section 2,8. sd also in Moyal (1949).
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computation of the higher order terms in the power series expansion.

For example, (4.31) produces a sum of three averages or, in general

computation of the average of 2n A(u, ..,W)'s, gives a sum of 2n ,
2 n.

terms. Because of t;,is large number of terms except for the trivial

case of zero variance, the power series expansion diverges when y is a

Gaussian random process. In such a case, the power series expansion

is not useful and other methods for computing the statistical measures

of " ,.21) must be found.

Since (4.22) is a nonlinear function of A(s-u,R',w), the various

techniques for calculation of statistical measures at the output of

nonlinear devices can be used to calculate the statistical measures

A (4.22) (Middleton, 1960; and Deutsch, 1962). The nonlinear trans-

formation of random processes is a speciall-ed topic in itself, and

it is not discussed eny further here.

Simplifying (4.31) and retaining only ie coefficient of

8(S -a2), the next approximation to the stationary part of the power

spectral density *yy(s,RiR 2 ) becomes, for the Gaussian coefficient

ayy(s,R1,R2 ) FF(SRI,R2) +

+ 4 -J4 [ H(a.s.RRP ,R',R") 0 (s-uR',R") s FF(uR',R") du dv dv'

V V

As stated before, the power seris expansion (4.24) does not converge
.or the Gaussian coefficient. This step is for illustration purposes
only.
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0|

sop r
(1 + H (s,u,R',R") CA(s-u,R',R") du dv dv' .),

V V/-

(4.32a)

where H(s,s,R1 ,R2,R',R") is defined by'..2ab) and

H(s,u,R',R")

u exp [ is (R' cos R co ") -LU (R' -R")]
2 c c(4r)2R' R"

(4.32b)

Thus, beside the stationary term, two nonstationary terms are

obtained, even when the random coefficient cr(t,R,w) is a Gaussian

process. If cr(t,R,i) is not a Gaissian process, as mentioned before,

Knorilodge of its fourth mo ,-t is required for the detailed evaiuation

of (4.31). It more terms are included in the pow-r series expansion,

knowledge of still higher order statistics of a(t,R,,) is required.

Even If the power series (4.24) converges almost everywhere, this
.

does not imply the existence of < Y(sl,R11 W) Y (a2,R21w) > because

Y(a ,R I,w) and Y (s2 5R21,w) may not be second-order rando processes;

that is, < IY(s81 R"l' )2 > and < IY(s2 R2,W) 2> may not be finite.

(It is perfectly reasonable for the power spectral density to have

singularities provided they are integrable.) In such case, one may

calculate the Integrated power spectrum, denoted by S'(a',s",R 1,R2)
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by integrating 0 (s,R1,R2) over the frequency band from s' to s":

S(s',s",R1,R2) J (s,R 1,R2 ) ds (4.33)

The above integral is only applicable for wide-sense stationary

stochastic processes. If one takes into account the nonstationary

part of the solution, the power spectral density is a function of two

frequencies as discussed in section 2.7. Hence, the integrated power

specrino mi " - ,ritten as a double integral:

F F' *

S'(s',s",s"',s"", RIR 2) < ! Y(s ,RI ) Y (2'R2" w dsI ds2

(4.34)

TLe integrated power spectrum is actually a Lietter representation of

the ohysically measured energy, because all instruuitsiLs have nonzero

bandwidth.

Other statistical measures of interest are the mutual coherence

function and normalized mutual ohertence tunction (Born and Wolf, 19b4;

Beran and Parrent, 1964; ONeill, 1963; and Handel and Wolf, 1965).

We denote these by Cyy (R I k 2,r) and by cyy (R1,R2,T) for the wide-

sense stationary proceises, and by C (R R,,tlt 2 ) and c (R1 ,R,  ,t)

for the nonstationar, processes where, in the first caSe, T - t 2 t

The symbols r and Y are used in the Iit erature for the coherence

function and the normal ized coherence func t ion, but F' has a ready been

used to designate the resolvent kernel of the integral equatio'. 7 has
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ai ) t.Deen frequently used. For the wide-sense stationary process,

the mutual coherence function C yy(R 1 ,R 2 , ) is simply the Fourier

transform of yy(s,RlR 2 ) :

f i sr
Cy(R 1RI T)- j (s,RR ) e ds (4.35),R 2,T yy R2)

and the normalized mutual coherence function c (R1 R 2T) is

C (R I R 1')

[Cyy(RIR11O) Cyy(R 2 ,R 2 ,0) ]

/" ts'r
t y(s,RIR 2 ) e s ds

(s,R R) ds (s,R2 ,R2 ) ds
YY 1 1y

(4.36)

c is also known as -he complex degree of coherence. It is a useful
YY

concept In interpleting interference patterns of prtially coherent

light (Beran and tarrent, 1964). The crCept ip also useful In

optical and radio astronomv. Mandel and Wolf (1965) show that,

on one hand c (R t< -Y) is a measure of the correlation of the
Yy 1 2

complex field at two points K1 and R2 , and, on the other hand, it is

a measure of the shartpness and location of the tringe axima obtained
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by superposing the beams propagated from tese points. C y(R1,R2,T )

and c yy(R 1,R2 T) here are e-semble coherence functions because they

are obtained by ensemble averaging, rather t0in time averaging. Both

ensemble and time averaged coherence functions are used (Mandel and

Wolf, 1965). From Schwarz's inequality, we have:

IC(R 11 R 2______
0 < IC y(k 1 R2 ,T) < ICYY <2)I

[C (R R10 ) ]  (R
yy P ~ y (c2 ,  21

(4.37)

These extremes characterize complete incoherence and coherence,

respectively. The quantities C (R1,Rl T) Pnd C (R2,R2 T) are selfyy Rl 2' 21y

coherence functions at R, anid R2 , C yy(R1 ,R,U) and C (R ,R2,O) areji yL -

the ordinary light intensity (in optics) at R and R2 ,

When the wave function is not wide-sense stationary, the coherence

functions must be defined in terms of the bifrequency Fourier transforms;

that Is,

Cyy(RIR 22t1.t) -

, , t + is t< Y(s l R1,w) I (a2,P R e 2 d 1  d 2

(4.38a)

Discussed in siction 2.7.
(.-
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c (R -Rpt

go~~ - is t I

< KY(S13 R W) Y (s RIM -i> ed 1d 2
1 2

(4. 38b)

and

yy 22 2 2

(4 38c)

yy 1' 2' 2' 2

d dor neIuc o i is n+ ~~-sne i oayb:
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c ( (R2 R t 2 ) ]

yy(R , (R 1R2,t1 t I C (R R '

i yy R , 1  tlY!) 2'2,?A 2 1I A , 2.(R , 1 t ,) iCyy(R 2 ,R2 ,t2,t 2 )L1

(4.39)

The normalized mutual coh.rence futtion as defined by (4.39) is a

generalization of the wide-sei., stationtary concepts to the case

when the wave funcLion is not wide-sense st.tioiary. The Fouriei

transforms (4.35) and (4.361) exprezv the autual coherence functions

for the wtde-sense stationarv and for the nonstationary proceases.

If satisfactory approximations for the < Y(s1,R1 ,o) Y (s 2 ,R2 ,i) >

have been obtained, then, at ieast in principle, it is a simple

matter to compute the mutual coherence functions from (4.35) or

(&.36). To carry out the detsile6 computation of these Fourier

transforms, knowledge of the statistics of the source and stochastic

medium is needed. In particular, tot the source, we need the power

spectral density *FF(u), and for the stochastic coefficient, we need

its power spectral density and higher order spectral moments. We

have r-icated a method by which the mutual coherence functions may

be calculated for a scalar wave propagating it, a randomly time- and

space-varying meditri. A-cording to Beran and Parrent (1964), this

has been an unsoived problem.
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in the next section, the Neumann series expansion of the integral

equation (4.16) is investigated.

4.4 Neumann Series Expansion

To obtain a Neumann series solution for the integral equation

(4.16), a solution of the following form is assumed:

Y(s,r,w) X Xo Yo(s'.") + l Y1 (Sr,w) +

y (s1r,w) (4.40)
n

Substituting the assumed solution (4.40) into the integral equation

1 2 F -Y(srw) F(srW) + XL a Y(u,r',w) A(s-u,r',w) du ,

(4.41)

and equating the coefficients of the same powers of X, the following

iterative solution is obtained:

y' (s,r, )- F(s,r,w) , (4.42a)0

, -1 2 V
"(,r,w) - L s j y(ur',w) A(s-I,r',w) du

DO

-l2 J - -
- L 2 F(ur,w) A(s-u,r',W) du (4.42b)" s F~u0 r
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and

Y - (8 r w- 1 2 ;"-
Y- L ,' (u,r' * YA(s-u"r',) du

00

- 2 -1 2 r
L 5 L u du F(u',r",Lj) A(u-u',r',w) du'.

(4.4 2 c)

The general term is

2 C
(s,r~) L / Y -u,r ,,) A(s-u,r',w) dun n-1

-00

(4.42d)

where L " Is the inverse operator for the Helmholtz equation and its

boundary conditions. In the spherical coordinate system, the inverse

operator for an outgoing wave As:

exp r - r -
Jdv c )4. {"r- '1(4.43)

where iv is the volume element in the spherical coordinate system,

and f indicates volume integration over the space containing the

andomly space- and time-varying medium. For simpliciLy, denote
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... ex i rs - r" f
G(s,r,r') c __ C - (444

G (s,_ (4.44)

4 r I r r'f

Recalling fronm (4.16) that - -1, the Neunann series iteration becomes:

z( ,-, ) -F(sr.o) +

+ s G(,rr) A(fr-u,r',w) F(u,r,w) dv du

V -

+ 2 8 / / / (u G(S,r,r'j G (u,r' ,r"), j j

V V

A(s-u,r') A(u-u",r") F(u' ,r",,)) dv dv' du du'

(4.45)

This series has some interesting physical interpretations. The first

term after F(s,rw) can be interpreted as the first-order scattering

of the wave by the random medium. It is the widely used Born approxima-

tion. A number of papers and books consider only the Born approximation.
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The Born app tn gives a satisfactory answer if only single-

scattering is important. The higher order terms are the niultiple-

scattering corrections arid must be taken into account in long distance

wave propagation through the random medium.

The single-scattering approximation is investigated first. After

trot, the multiple scattering and the convergence of the Neumann series

expansion is investigated. The statistical measures of interest are

the power spectral density and the mutual coherence functions. The

single scattering approximation gives:

< Y(s,,rl,W) Y (s 2 ,r 2,)> < F(s1 ,rl,w) F (s2,r2W)>

+ 2 2 a2  j I Ij V G(lr,r')G (s2,,r") < F(u,r',t) F(u',r",w) >
1 2 2 J j120

V V -

< A(sl-u,r,w) A (s 2 -u',r",w) > du du' dv dv'

FF(Sl,rl3r2) (s1C2) +

2 S2l2 j J CG(sl,r,,r ) G (sr 2 r) DFF(urr) b(u-u')

V V

< A(s-u,r',w) A (s 2 -u' ,r",w)> du du' dv dv'
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(FFs IYI,r2) (F1"s2)

22 2 / *"

+ I S IS G(S ,r ,r) G(s ,r ,)

v v

0Oa(sl-UIr''r") ;FF(ur' r")du dv dv' J (l 2 )

(4.46)

The cross terms have vanished because A(s-u,r,w) i6 a process with

zero mean. The approximate expression for the power spectral density

is the sum of the coefficients of the delta function 6(s1-s2); i.e.,

Syy(s,rl,r 2 )  (FF(s,rl,r2) +

a4  JJ G(s,r1 ,r )G (s,r2,r") 0cM (s-u,r' ,r") *FF (u,r' ,r") du dv dv'

V V -,

(4.47)

This expression reduces to (4.28) if the approximations (4.17) are

used to simplify the factor G(s,rl,r') G (sr 2 ,r"); that is, this

factor becomes then H(s,s, 1,R2 ,R',R') as defined by (4.26b). This

expression again demonstrates the spreading of the power spectral

density of the wave function by the randomly time-varying medium.

Equation (4.47) again shows that, as far as the first approximation
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is concerned, tLie wave function is a wide-sense stationary process.

An approximation for the normalized mutual coherence function can

be obtained by substituting (4.47) into

( - --) -isT

yy(S,rPr 2 ) e ds

c-(r,r 2,1) u -_
y 2 y 2)d y

yy(s'rVr 2) ds (D 0 (sar 2 r 2 ) ds I

(4.48)

and cariying out the indicated integration.

If multiple scattering is important, more t'rms must be included

in the Neumann series expansion. In such instances, we have for the

th
n approximation

< Y(slrl lw) Y (s 2 ,r 2 ) >

< (-o2-Y (a ,rl,) + X V8 r,w) + ' Y2(srW) +
o 1V ' P 2 1'

+X! -,r,)) (X.. Y0 (,"r2 ,W) + Yl * (a 2 ,r 2,W) +

2 • - n) *

(a 2# r 2',n Y n (as2 r 20 )  >

(4.49)
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Carrying out the indicated multiplication and averaging we ge':

< Y(s1 3 r1,w) Y (s2rV) >n

= Xo < Yo(sl,r[,) * -(S2, 2W

+ K2 {< Y o(s I rl',°) Y 2 (s*r 2 1 W) ' + Y y2(sltirlow Yo (s 20 1Wo- rl , (s21r2 ,w) ¥ 2 ~~ 1  ~(s,r2,w) >

- * - ,4 - * -
+ < Y (Sl,r 1 ,w) YI (s 2 , r 2 ' W) >  + X Y 2 ( , r l V ) Y 2 (S2'r 2 W )

Y3(s ,ui),+X f -Y, )Y (rs rt) )

+ < r Y s r -,) + < Y 1 ?

+ < Y (s r Y (s,r 2 .) 4- Y (Sl,r[,w) Yo(s 2 ,r 2 ,w) )

+ k. 2 (2n + t terms)

(4.50)

The coefficients ot odd po,,ers of A are zero because It is assumed

that the odd moments o A(u,r,j). It this assumntion i, not nade,

the odd terms must be included. The terms - Y 0(sl' r )

Y (s r W) ad s Y(sr ) Y (s'rand < Y (si r ,)
0 2' 2' 1 '~ 1 ( 2 -,.

Y (s 2 r 2 w) > were already cooputed tot the first-order approximatton

(3.47). The k2 terms are:



Y0 (a1 ,r 1,W) 2(a 2- 148 )

2 ~ f2G r r U( ,r 3 Ur' ,r" < A (a -u.7') A*(u-u ,r") >

< F (u rI,w) F(s1 ,r,,W) > du du' dv dv'-

a If u G (s 2'r 2 -r ')G*(u,r', ) < A*(s 2-u~r) A*(u-u' rt') >

FF (u'rl.r") E,(u'-s I du due dv dv'

2 pp2*(~)~ U ( ' )G ( ,r'r) s Ur As urt>~2 2.A(.' )( -,r)

* (a " du dv dv'

2 /2* - - * . -b~~~~a~ Ga )a I /(a r r)2 1 2 ~ j2' 2' 1 (ur. )
V V -

*(aCIO (a 2) 0 FF(a lr',r") du dv dv'



[49

The contribution of thi'- term to the power spectral density is

r r

2 : ( 2G* -- * r,, FF s-,r d
s 2 JI u G (s,r2 ,r' )G (u,r ,r") (s-u,r',r")0FF (a r ",rI)du dv dv'

V V-t

(4.52)

Similarly, the contribution to the power spectral density from the term

< Y.,(Fl ' r , i).  Yo t2',r2 W) >  is-

0 2

22

'' ' CFF r)2 d) d isr

* G(s , r' )G(u,r' ,r") ' (s-u,.- ,r") tFF (s, 2,r") du dv dv.

V V

(4.53)

'rhese two terms, (4.52) and (4.53), do tiot contribute any energy to

the trequenct,6 which are outside the specLrum ol F(s,R,uo) because,

in both ot these IntegralI, the arguiient of the power spectral density

term (0 T (a,r",rI) in (4.52) and FF(t,r 2 ,r in (4.53)) s a; i e.,

same argument as the argument ot the dependent variable. For both

cAses, the variable of Integration 1i u. The:otor-, at trequencies

where the tactor& : FF(8r " ) ) and 0FF (s r2,r") in the I.ntegrsnd

vanish, the respective Integrals vanish and these terms do not

contribute to the sprealing ot the pi,r spectral density. This is

not the case with the last Lerm of (4.47) where the argument of
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FF (u r ,r") is same as the variable of integration (u). Hence,

this term shows spectral spreading beyond the original band of

frequencies. These two terms, (4.52) and (4.53), are also exoressions

tor spectral density of wide-sense stationary processes because they,

too, are cnetficients of delta functions t(s-s2).

The computation of the higher order terms requires, in general,

knowledge of higher crder moments of the random coefticiei: Q(t,R,).

Only if a(t,R,w) Is a Gaussian nroces6 is knowledge of the first two

moments sufficient to specity all higher moments. As s_,,wn in (4.50),

x\2 r, is multiplied by the sum (if 2n + I averages. In the case ot the

Gaussian Process, each 3verage nroduces i terms. For this
2 n

reason, it can be expecto,' that the 'ewnarni series expansion dIverges

for the Gaussian orocesses. D.etaiied calcuiitior shows that only one

of the n terms produces i delta tunction t(s -s) Thus, the2 n  n. i s

stationary part of the t. uiann series expansion may converge (it

additIonal cond it ions tot corvergence are sat ist ied) even II the

nonstatlonary part ot the series diver,:ts.

The series expansioln (4.50) converges It the ouL'nitudes o tne

coefficients of . 2 n arc .maller than (2n + I) M2 11, where M 1 It

these conditions are true. then the series expansion 4. 50) converges

>ecause It ia domtiiated by

(1X- ) -2 I + 2x + 3x" + . (n + 1) X

These are sufficient coudit Ions tor onvergeuce the series (z..5u)

may converge , :r less restrictive conditions. The u factor It, the



1fty~: ri t u(4< il0 2) (J r). not c,;hc iI. iry Jitt icuityv With) tie ill frII

integra t ion hecaiuve roia (') i T F () are either bandlinited

or they netidve in manyv cases appraxino te ly as 4 r least as
U

2 far large u (Tatarski, l ol).
U

In the dotui I uva lu ion o1 the valun integralIs, simplifying

approximations car, he ::20Cc othou,-h we shali not do any such

calculations. For cx-mplt, in .)I~a i'a the -olume iitegra I in

(3.44), it can. 5e ohbcrveu tnuar tire rki contibution to the Integral

comres tram the volume where r' r'; that is, tI am. the volume where

r r' li a the same order as the correlation length at the

spatial variaton o! the randor- mcd, in. This Is clearly so in the

case at some 01 the WIdUI'l Used snvatial correlatior tunctions )t the

b exp r' - r~r ,(.5a

0

b exp -1 C-' r ,(4. 555)
0

and

V- I 'V N,..iK r 45 5c)

where r iis the cartecut ion icngtn ant' K kx) is c:. S -Pee tunet ion

of the secolnd kind ot n:.-gli'Arv iiigtrnt (Tatarsi 1i46i). Roo r

and Gordon (195 0) have %.sd (4 h)and, inure recently, Krasllihikov

Kraalnlkov's work Is discussed by 'Tataraki (19b1).
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has user (4.55c). Tatarski (1961) discusses the theoretical

justification for assuming these forms for the spatial correlation

functions and compares the consequences of these assumptions with

the experimental results. It has Aso been pointed out by Comstock

(1963 and 1964) that the autocorrelation functions of the same form

as (4.55c) are capable of satisfying the theoretical 4nd experimental

requirements for wave propagation problems in a random medium.

4.5 General Remarks and Conclusions

Both the Neumann series expansion and the degenerate kernel

approximation demonstrate the spreading of the power spectrum of

source by the time- and space-varying random medium. The quasimono-

chromatic assumption it. the previous work has totally neglected this

spreading of the power spectrum of th_ wave function. Even the first-

order approximation provides a useful method for the computation of

the approximate spreading of the power spectrum of the wave function.

Hijher order approximations show further spreading of the power

spectrum. It thus appears that the successive convolutions of the

power spectral density will spread the power spectral density of the

wave function even further, make its spectrum wider and, therefore,

its correlation titr- bdtorter. This agrees with the intuitive concept

thac the multiply scattered waves become decorrelated.

In both methods of solution, the first term in the solutior

(zeroth approximation) is the solution of the wave equation in the

nonrandum medium. %%en the next approximatioxi is used, the wave

function is a wide-sense stationary stochastic process if the source

and random medium are wide-sense stationary processes. If toe higher
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order approximations are used, terms ippear which are no longer

wide-sense stationary. For the first approximations, the mutual

coherence function was a function of difference of the observation

times; that is, C(RIR2,T), where T - t 2 -t But when higher order

approximations are used, the mutual coherence function is a function

of the actual observation times t1 z rd t 2  The mutual coherence

function must be written as C(R 1, 2, t t2 ) to express the dependence

on t and t2. Because of the close relationship between the coherence

functions and optical images, one would expect fluctuation of the light

intensity when the light propagates through a randomly time-varying

medium. Both "twinkling" and "quivering" are common in observation of

stars by telescopes (Tatarski, 1961). Twinkling is the irregular

fluctuation of the light intensity and quivering is the irregular

fluctuation of the angle of arrival of the light. A large ntmber of

experimental papers have been devoted to the twin.ling and quivering

of stellar images. (Chapter 13 cf Tatarski (1961) gives a number of

references.) Under unfavorable observational conditions, instead

of a luminous coce and a series of concentric rings, one observas at

the foccl plane of a telescope an irregular patch of light which is

dancing around and fluctuating in light intensity. A theoretical

model which would explain this phenomenon could be based on the non-

stationary mutual coherence functions.

Both the degenerate kernel approximation and the Neumann cc lea

expansion havc the disadva;,tage that they are extremely laborious, but

this is to be expected of a problem which is fundamentally very complex.

In spite of this, even the first approximations provide- useful results.
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The Neumann series iterations represent multiple scattering of the

incident wave. This interpretation appears to be useful even if the

Neumann series expansion does not converge. What is needed is a

method for interpreting the divergent part. W. P. Brown (1967) has

used a selective summation method to interpret a divergent Neumann

series expansion. The basic idea of the selective summation technique

is to identify the terms in the Neumann series that causes the uAver-

gence, and to sum these terms to obtain a closed-form expression for

the multiple scattering effects.

In the degenerate kernel method, we do have a closed form

expression for the sectral representation of the wave function.

However, when we attempt to compute the power spectral density and

the coherence functions by expanding the denominator of the resolvent

kernel in a power series, wL may obtain a divergent power series.

In this case, the power series expansion i not an essential part

of the solution, it is just a computational method. If it does not

work, other methods. such as the nonlinear random transformation methods

(Middleton, 1960; and Deutsch, 1962) must be used. Application of

the nonlinear random transformation techniques is complicated and

it is a major topic in itself. Development of such computational

methods would be a possible extension of this work. Other extensions

of this work are discussed in the concluding chapter.



CHAPTER V

CONCLUSIONS, APPLICATIONS AND EXTENSIONS

In the diverse areas of electrical engineering, problems arise

which s'aould be properly described by linear differential equations

with E.ochastic coefficients. In most cases, the randomness of the

coefiicier's has been ignored because no widely applicable methods

have been known for solving such problems. In this dissertation, an

n order linear differential equation with such stochastic coefficients

has been considered. It is assumed that the coefficients of the differ-

ential equation are separable into deterministic and stochastic parts.

In the case of ordinary stochastic differential equations, the problem

now becomes a problem of solving a Volterra integral equation with a

stochastic kernel. Two methods of solution are considered. the Neumann

series expansion and the degenerate kernel method. The Neumann series

expansion is an ,xpansion in terms of iterated integrals. A theorem

which gives sufficient conditions for the uniform convergence of the

Neumann series expdnsion is proved. The proof of this theorem and

th
the actual Neumann series expansioti is facilitated if the n order

difierential equation is expres.sed as n first-order differential

equations. This formulation has the additional advantage of using

the notation and terminology of the state-space formulation of modern

contr,, ystem theory. (This clarifies the connection between this

work and the control system problems.)
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() The uniform convergence of the Neumann series expansion allows

the solution of the stochastic differential equation to be expressed

in term of the resolvent kernel of the stochastic integral equation.

The ensemble average and covariance function of the solution are

expressed in terms of the corresponding statistical measures of the

resolvent kernel and of the input process. The statistical measures

of the resolvent kernel are functions of the Green's function of the

deterministic operator and appropriate statistical measures of the

stochastic coefficients. These results constitute a generalization

of the corresponding expressions for linear time-varying systems to

th. linear Sgj4MjX time-varying systems. The kernels of the integral

expressions for the statistical measures of the solution can be inter-

preted as stochastic Green's functione.

The construction of the resolvent kernel by means of the Neumann

series expansion is, however, extremely laborious. For this reason,

other methods of solving the integral equation with the stochastic

kernels were Investigated. When the deterministic part of the

stochastic differential operator is time-invariant, the separation

of the stochastic and deterministic parts of the differential operator

gives a Volterra intgral equation with a degenerate kernel. In solving

this Volterra integral equation, we still have to resort to Neumann

series expansion. From the sandpoint of computational difficulty

and convergence of the solution, there is no essential difference

between the straight Neumann series expansion and the degenerate

kernel approach. Selection of the method depends on the physical

problem and computational convenience. For example, in the case of

a time-invariant deterministic part, the transition matrix may be
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already known and, therefore, the degenerate kernel method may be

convenient. In the case of the time-varying deterministic part,

the straight Neumann series expansion is more convenient than the

degenerate kernel method.

Thus, we have two complementary methods for solving stochastic

Volterra integral equations. The degenerate kernel method is also

important in that many arbitrary nondegenerate kernels can be

approximated by degenerace kernels. Other approximate methods, such

as the method of moments, are equivalent to the replacement of an

arbitrary kernel with a degenerate kernel. Other methods, such as

the Fredholm method and the Hilbert-Schmidt method do not offer any

computational advantages for solving this problem. To use the Hilbert-

Schmidt method with unsymmetrical kernels, one has to solve a pair of

integral equations of the first kind. This problem is no less diffi-

cult than solving the integral equations of the second kind. The

Fredholm theory has been very important in the development of the

classical integral equation theory, but to use the Fredholm method

for construction of the resolvent kernel is prohibitively difficult

in practice.

Both the Neumann series expansion and the degenerate kernel method

are very laborious. In pr tical computation, ,he must still resort

to the truncation of the Neumann series expansions. The iterative

procedure makes it possible to improve the approximations, because

the truncation of the series is made almost as the last step In the

solution. In other methods, such as in the hierarchy methods or in

methods which use approximate dlitteretiLal equations, the approxima-

tions are made at the beginning of the problem. To improve these
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approximations, one must essentially rework the whole problem. The

() method suggested here does not have this disadvantage.

It can be seen from the expressions for the covariance function

of the solution that the knowledge of all the moments of the stochastic

coefficients is required for the complete solution of the problem. If

only the second-order statistics of the coefficients are known only

an approximate solution of rhe problem is possible. This approximate

solution can be obtained from the first-order approxiwation of the

Neumann series expansion. An exceptional case is that in which the

stochastic coefficientr are Gaussian processes. Then, the knowledge

of the second-order statistics is sufficient for the complete solution

of the problem.

Both the Neumann series iteration and degenerate kernei approxi-

mation were applied to the investigation of the propagation of waves

in a randomly space- and time-varying medium. Almost all the previous

work has used the so-called quasimonochromatic assumption which essen-

tially neglects the time variation of the medium. Such an assumption

has been avoided in this dissertation. To solve the problem, all the

stochastic quantities of the scalar wave equation are expressed by

thel- spectral representation and the equation is solved for the

spectral represeitation of the scalar wave function. From the spectral

representation of the scalar wave tunction, its power spectral density

and mutual coherence functions can be found. Both the Neumann series

expansion and the degenerate kernel approximation demonstrate the

spreading uf the power spectrum of the source by the time-varying

medium. In the Neumann series expansion, even the first-order

approximation shows the spreading of the power spectrum. Higher order
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approximations show further spreading of the power spectrum. The

successive convolution of the power spectrum of the source term with

the power spectrum of the random coefficient shows a further spread

of the power spectral density of the wave function, making the

correlation time of the wave function shorter. This agrees with the

intuitive concept that multiply-scattered waves become decorrelated.

The quasimonochromatic assumption does not show any spreading of the

power spectrum.

Another interesting phenomenon is demonstrated by both methods

th
of solution. The first term of the solution (zero approximation)

is the solution of the wave equation in the non-random medium. When

the next approximation is used, the wave function is a wide-sense

stationary stochastic process (if the sourcc and the stochastic medium

are wide-sense stationary processes). If the higher order approxima-

tions are used, the solution contains, in addition to the wide-sense

stationary terms, terms which are no longer wide-sense stationary.

Thus the power spectral des'hy must be expressed as a bifrequency

Fourier transform of the mutuel coherence function C(R1,R2 ,tl,t2 ).

The mutual coherence function Is written in the above form to show

that it is a function of the a,:tw.l observation times. tI and t 2' not

just the ditferi.cc ot the obst'ivat on times. Becatse of the close

relationship hetween the cohereince lunctLion and optical images, one

would expecL iluct',IA.io of ti' inkiges which have been Icrmed from

light that is propagated through a randomIy time-varying medium. Under

A
unfavorasl, Istronorl:cal observation cotd itions, twinkling and quivering

of the stellar 1nin gts s I iid ut'd :.2o n-iro . The existc'oce of the nonsta

tLionirv mutual co!#renct. !to ot iors iy he expec'ied to be useful in
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studying nonstationary optical images. Up to now, almost no work

has been done in studying the properties of the mutual coherence

functions in randomly time-varying media. The use of nonstationary

coherence functions may be useful in the investigation of the factors

which limit the performance of the optical and radio interferometers

and high gain arrays.

An interesting future area of work is development of the statis-

tical communication theory for multiplicative interference. Statistical

communication theory has been based almost completely on the assumption

that the interference has been added to the signal. This assumption

is clearly not valid when one is working with rapidly fading signals

or with signals that have been scattered by randomly time-varying media.

Besides the usual additive noise, one has multiplicative noise. A

useful approach to communication, radar or sonar system design would

be to solve first the wave propagation problem through the stochastic

medium. Then, the solution could be used to design the optimum signals

and signal processor. The actual solution of the problem may be very

complicated and, for tractability, one probably would have to base

the analysis on the first approximation in the Neumann series expansion

in the same manver as was done here.

There are a number of interesting applications of this work in

control system theory. The obvious ones are the cases where the

system perame' era change randomly with time. For example, the center

of gravity or tne moment of inertia of a controlled vehicle changes

due to motion of fuel in tanks or due to a change of operating condi-

tions. The sensitivity analysis of control systems can also be baped

on stochastic differential equation theory. It the sensitivity of the
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controlled variable to the change of a certain parameter is to be

investigated, it may be assumed that this parameter is a random

variable. Then, the stochastic differential equation is solved for

a desired statistical measure of the controlled variable or error

term. The solution is in terms of the Green's function (impulse

response) of the system and the statistical measures of the random

parameter. This functional relation constitutes a solution to the

sensitivity problem. Incompletely identified control systems may

also be treated as stochastic systems. In such cases, statistical

measures of the system parameters are determined instead of a precise

analytical expression for the coefficients.

In addition to the application of stochastic operator theory to

control system and communication theory, it may be applies as a method

for investigating the stochastic medium itself. For example, the sun

has been used as a source of random signals to investigate the props-

gation of microwave signals thruugh the atmosphere from the sun to

a receiver on the earth. Measurements of this type are used to predict

the propagation of signals between an orbiting comin ncation satellite

and a ground station. Mathematically, such a problem is completely

analogous to the wave propagation problem considered here. Many other

examples of this type can be cited. Among these would be investigation

of plasmas by microwave and laser signals.

While a number of inreresting results have been obtained in this

dissertation, the work is far from being complete. Many useful and

interesting extensions can be suggested. Specific problems should

be worked out in great detail to check the practical utility of the

computational methods. Problems should be realisticslly selected so
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() that the numerical result:s can be cnmpared with the experimental results.

An example of this is an electromagnetic wave propagation problem. The

statistical measures of the medium's dielectric permittivity should be

determined experimentally or derived theoretically from the theory of

turbulence. Then, the wave equation should be solved for the statisti-

cal measure of interest, e.g., the mutual coherence function. Then, the

mut.al coherence function should be measured experimentally to check the

ability of the theory to predict physical phenomenon. The various ex-

perimental methods for measuring the mutual coherence function are

discussed in the IEEE special issue on partial coherence, (1907) and by

Mandel and Wolf (1965) in their review paper.

Experimental comparisons are also possible in control system

problems. A control systems problem could be solved by the methods of

Chapter III, and the results could be compared with a hybrid computer

simulation. The stochastic coefficients of the differential equations

can be simulated by noise modulating the coefficient potentiometers of

the operational amplifiers in the analogue portion of the computer. In

such a !etup, the analogue part of the computer solves the stochsstic

differential equation for a sample function (or realization) of the

dependent variable. Computations are repeated for a large number of

times and each time sample solutions are stored in tht computer's

memory. Then, the desired statistical measures, such as mean and

correlation function, are computed by the digital portion of the

computer from the stored sa.ple solutions. Then the siumilated results

may be compared with the results obtained by either of the two methods

in Chapter I1. It may be expected that the mathematical methods

developed in this dissertation would provide * systematic procedure for
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understanding and interpretation of the resultm which are obtained

in similation of systems with stochastic parameters.

A number of generalizaticnrs and improvements to this work can be

suggested. in the degenerate Kernel method, it would be useful to

find methods other than the power series expansion for computation

of the statistical measures of the inverse matrix. Application of

nonlinear transformation echniques may be useful in special cases.

If tractable comp.tational methods can be developed, the troublesome

convergen,:c problem of the power series expansion can be avoided.

This would be especially val-iable in the wave propagation, problem.

It is desirable to eliminate, in the wave propagation problem, the

assumption that the dielectric p mnittivity is a wide-sense stationary

stochastic process. i. canonical integral expansion (Pugachev, 1965)

of the stochastic processes should 6e used instead of the spectral

representat ion, which is a spec ialI case of integral expansions for

the wide-sense stationary stochastic processes. The solution with

nonstatiorary coefticients Lan be expected to be more difficult than

the wide-sense stationary case, since tht- familiar Fourier transiorm

techniques are not uIrectly applicabl~e.

In Chapter IV, propagation of a scalar wave function in a stochas-

tic inedium was considered An obvious generalization of this io the

Doitition ot the stochastic vector wave equation. The statisticoi

measure of interestL in this cise is Elhe cohcrencv matrix (8Bryn and

Wolf, 119b4). 'P,. coherenicy mAtrix with elements in) a cartestarn

coordinate system
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can be used to study the change of polarizat-on of a wave as it

propagates through a stochastic medium. It is conjectured that

the Green's dyadics (Levine and Schwinger, 1951; and Van Bladel, 1964)

can be used to lind the statistical measures of the stochastic -:-tccor

wave equation. The mathematical manipulations with the Greer.'s dyadics

are more complicated than the use of scalar Green's functions, but the

ge- .ral procedure "or constr~tction of stochastic Cree 'a functions

(or possibly stochastic Green's dyads) would be analogous to the scalar

case. This problem would constitute a generalization of the stochastic

scalar wave equation solution to the stochastic vector case.
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