PROJECT SQUID
TECHNICAL REPORT PR-116-Pu

GRAND SIZE AND LOW PRESSURE DEFLAGRATION LIMIT IN A COMPOSITE PROPELLANT

BY
ROY E. COOKSON AND JOHN B. FENN
PRINCETON UNIVERSITY

PROJECT SQUID HEADQUARTERS
JET PROPULSION CENTER
SCHOOL OF MECHANICAL ENGINEERING
PURDUE UNIVERSITY
LAFAYETTE, INDIANA

DECEMBER 1968
STRAND SIZE AND LOW PRESSURE DEFLAGRATION LIMIT IN A COMPOSITE PROPELLANT

by

Roy E. Cookson* and John B. Fenn**
Princeton University

PROJECT SQUID HEADQUARTERS
JET PROPULSION CENTER
SCHOOL OF MECHANICAL ENGINEERING
PURDUE UNIVERSITY
LAFAYETTE, INDIANA

December 1968

*Present address: College of Aeronautics, Cranfield, England
**Present address: Department of Engineering and Applied Science, Yale University

Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>I Introduction</td>
<td>2</td>
</tr>
<tr>
<td>II Experimental Apparatus Procedures</td>
<td>3</td>
</tr>
<tr>
<td>III Results and Discussion</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>
Abstract

The low pressure deflagration limit has been determined for a composite ammonium chlorate propellant over a range of pressures from 35 torr to 235 torr. The independent variable was strand size in terms of cross-section dimensions. A linear relation was found between the "hydraulic radius" of the strand and the low pressure limit. It was thus possible to extrapolate and determine the low pressure limit for a strand of infinite extent. At this limit it would seem that heat losses could only be by radiation from the surface.
I. Introduction

Some time ago we attempted to examine the structure of the combustion zone above a strand of composite solid propellant by means of interferometry. In order to increase spatial resolution we expanded the zone by burning propellant strands at subatmospheric pressure in a chamber which could be continuously pumped and which was provided with windows for observation. For reasons which we probably should have anticipated we fell somewhat short of our primary objective. In the course of our experiments, however, we did obtain some data on the low pressure deflagration limit, LPDL, for two composite propellant compositions. In particular we determined the dependence of LPDL on strand size. It seems in order to record these results because they may provide some grist for the theorist's mills and shed some light on the nature of the combustion process mechanics.

The realization that LPDL depends upon strand size is not new. Sutherland noticed when he ignited wedge shaped strands of a composite propellant from the thick end that the point at which they extinguished depended upon the ambient pressure. That is, the higher the pressure the thinner could be the web of the wedge at which combustion could be sustained. He did not present any quantitative details. More recently, Steinz and Summerfield report that the LPDL for one of their propellants was decreased by a factor of two when the strand size was increased in cross section from 0.25 in to 0.6 in. In common with Sutherland these investigators explained this trend in terms of relative heat loss by convection and conduction to the ambient atmosphere. On the other hand, in their studies of the deflagration...
of pure ammonium perchlorate strands Levy and Friedman indicate that the LPDL was independent of sample size. Consequently, Johnson and Nachbar ascribed the important heat loss to radiation from the burning surface in their attempt at an exact treatment of the LPDL of ammonium perchlorate. Most theoretical treatments of solid propellant combustion attribute the existence of an LPDL to the non-adiabaticity of real experimental systems. However, Barrere and Williams do suggest that mechanisms other than heat loss might be responsible. Our results hint that alternatives to the heat loss explanation might well be contemplated.

II. Experimental Apparatus Procedures

The main features of the apparatus are shown schematically in Fig. 1. The low pressure chamber comprised a standard six inch Pyrex Pipe cross (Corning). The open ends of the cross were closed by covers made of aluminum plate with O-ring seals between the plate and grooves ground into the Pyrex. Various leads for electrical, mechanical and gas connections were introduced through the cover plates which were also provided with plane windows for viewing and photography. Many features of the apparatus relate primarily to interferometry problems and will not be discussed here. The chamber was continuously exhausted by a mechanical rotary vane pump which had sufficient capacity to maintain the chamber pressure at any desired value from 40 to 200 torr with propellant strands up to one square inch in cross section. Control of the pressure was by means of a gate valve in the exhaust line between the pump and the chamber. It is noteworthy that at subatmospheric pressures the burning rate for most propellants is directly proportional to
the first power of the pressure. Thus, the volume flow of combustion gases
is almost independent of pressure. Because the volumetric efficiency of the
pump increases slightly with pressure there is an inherent stability
in the pressure control loop. This is fortunate from the safety standpoint
as well as for experimental convenience. We noted that with the large strands
the increased heat release could lead to "uncomfortably" high temperatures
in the chamber. In one case some soldered joints in the top cover were
actually melted. Dousing with water was required to avoid failure. We
strongly advise provision of effective cooling in future experiments of this
sort, not only to preserve the integrity of the equipment but to prevent the
increase in volume flow rate which would accompany high temperatures.

Ignition presented something of a problem because it was desirable to
provide combustion initiation which was uniform across the strand surface.
The most satisfactory method of the several tried was to lower onto the
surface a section of nichrome strip wider than the propellant strand. Passing
an electric current through the strip raised the temperature and resulted
in fairly uniform ignition. In most cases the burning surface tended to level
out during burning even though initiation was not uniform. In order to
obtain the minimum burning pressure each sample was ignited at a pressure
above the minimum value and the pressure was gradually decreased by opening
the control valve until the strand ceased to burn. The process was repeated
at least once for each strand size. It was found that the pressure had to
be reduced fairly slowly in order to obtain reproducibility. Rapid
reduction in pressure resulted in large variations in apparent extinguishing
pressure. With care reproducibility was within a few per cent.
The propellant composition was essentially the same as that used by Silla in his measurements of burning velocity at low pressure. (6) The fuel-binder was P13 polyester resin. The oxidizer was ammonium perchlorate in one of two particle grinds: 25 microns or less and 80 microns or less. Measurements were made with compositions having either 78 or 80 per cent by weight of oxidizer. No inhibitor was used. The strands were rectangular in cross section. The long dimension was always one inch. The short dimension ranged from 1/16 to one inch.

III. Results and Discussion

The raw experimental data are summarized in Fig. 2 which shows a plot of extinction pressure versus strand thickness. There is a clear functional dependence of LPDL on strand size. The hotter propellant (80% oxidizer) burns to a lower pressure than the cooler one for a given strand size. The two points for the finer grind 78% oxidizer composition indicate little dependence upon particle size in this range. There are too few data to draw firm conclusions on this point. The form of the curves indicates two asymptotes. In one limit there appears to be a minimum strand size below which combustion cannot obtain no matter what the pressure. This apparent limit probably is neither meaningful nor realistic because we know that the character of the combustion changes from a premixed to a diffusion flame mode as the pressure increases. Consequently, any conclusions drawn from extrapolation would have to be treated with great caution.

The other and more interesting asymptotic limit relates to the apparent possibility that there is a pressure below which steady state combustion will not occur no matter what the size of the strand. As we have already
indicated such a low pressure limit has been predicted by theoretical
treatments for the case in which the system is not completely adiabatic,
i.e. there is heat loss to the surroundings. (4, 6) Such heat losses in
the case of one dimensional strand models can generally be attributed
to conductive and convective loss to the ambient gas and to radient loss
from surface as well as from the burned gases. It is to be expected
that the relative heat losses due to convection and conduction and to
radiation from the burned gas would depend upon the surface to volume ratio
of the hot gas column rising from the burning surface. It is instructive,
therefore, to recast the data in terms which will reflect this surface to
volume ratio.

Fig. 3 shows a plot of the LPDL versus the ratio of strand perimeter
to cross section area. This ratio is, of course, simply the "hydraulic
radius" which has been very useful as a measure of wall effects in flow
through conduits of various shapes. The data for each composition appears
to fall on a straight line which is readily extrapolated. The abscissa
intercept would seem to correspond to the LPDL for a strand of infinite
cross section. In such a case the main heat loss should be by radiation
from the surface. It is just this kind of heat loss which the theoretical
treatments have contemplated. Unfortunately, it is not easy to relate the
exact theories to our experimental situation. Our composite propellant
is much more complex than the theoretical models and we cannot assign
appropriate values to the important parameters. Moreover, it is not entirely
clear to us that extrapolation to infinite cross section does not also
eliminate loss due to radiation from the surface. In a real limit of infinite cross section the surface would effect a net loss of heat by radiation only if it could "see" cool surroundings through an infinite depth of hot gas which is not entirely transparent. In fact, therefore, it would not see the surroundings. Thus, from the perspective of the surface the system might be adiabatic. If this is the case and if our extrapolation limit really corresponds to a burning surface of infinite area, we would have to seek an explanation for the LPDL of an infinite strand in some mechanism other than simple heat loss.

In light of this possibility it is instructive to look at burning rates in the low pressure range. In particular the results of Silla are relevant because he used a propellant which was essentially identical with our 80-20 composition.(6) Fig. 4 shows his results. The dashed line through the origin is equivalent to the line he drew through his points. The asterisk on the abscissa is the intercept value for the same propellant resulting from the extrapolation to infinite strand size in Fig. 3. It becomes inviting to draw the solid line shown in Fig. 4 as the extrapolation of burning rate data to the vanishing point. Clearly, the intercept is the same for both extrapolations. It is noteworthy that for the strand size used by Silla (0.25 x 0.25 in) the pressures at which he made measurements are quite far to the right of the corresponding curve in Fig. 3. Thus, they may be considered free of heat loss effects. This consideration is confirmed by the absence of any downward curvature in the solid line of Fig. 4.

Of course, strands of the size that Silla used will show a vanishing burning rate at pressures much higher than the "possibly adiabatic" limit
shown by the asterisk on Fig. 4. We can estimate from Fig. 3 at what pressure this should occur for a 0.25 x 0.25 inch strand. The result is shown by the triangle on the abscissa of Fig. 4. The dotted curve represents a guess as to what the intermediate burning rate-pressure relation might be.

In sum, the extrapolation of Silla's burning rate data to zero velocity and the extrapolation of our LPDL data to infinite strand size both lead to the same finite positive value of pressure at which the burning rate vanishes. Because it can be argued that both limits relate to adiabatic behaviour the possibility materializes that heat losses may not be the only cause of LPDL's. We would be the first to insist that the available data comprise far too shaky a foundation to support firmly such an intriguing conclusion. Nevertheless, they at least invite further investigation and analysis.
References

4. W. E. Johnson and W. Nachbar, ibid., 678.

LOW PRESSURE TEST VESSEL.

FIG. 1
VARIATION OF MINIMUM COMPOSITE PROPELLANT STRAND DIMENSION
WITH EXTINGUISHING PRESSURE.

FIG. 2
STRAND SIZE AND LOW PRESSURE DEFLAGRATION LIMIT IN A COMPOSITE PROPELLANT

Abstract

The low pressure deflagration limit has been determined for a composite ammonium chlorate propellant over a range of pressures from 35 torr to 235 torr. The independent variable was strand size in terms of cross-section dimensions. A linear relation was found between the "hydraulic radius" of the strand and the low pressure limit. It was thus possible to extrapolate and determine the low pressure limit for a strand of infinite extent. At this limit it would seem that heat losses could only be by radiation from the surface.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>deflagration limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ammonium chlorate propellant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydraulic radius</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>