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VIBRATION ANALYSIS

VIBRATION RESPONSES OF SIMPLE CURVED
PANELS TO HIGH-INTENSITY RANDOM AND
DISCRETE FREQUENCY NOISE

Carl E. Rucker
NASA Langley Rese: ~ch Center
Langley Station, Hampton, Va.

Unexpectedly short times-to-failure for curved panels under acoustic
loading led to detailed studies of their dynamic response chavacteris-
tics to determine the reasons for such short times-to-failure. Non-
linear response characteristics involving significant low-frequency
motions due to buckling were observed. Such behavior resulted in a
much higher percentage of large strain amplitudes than would have
been predicted for a normal etrain amplitude distribution. The acqui-
sition of joint strain-sound pressure distributions for significant time
durations was facilitated by the use of a pulse height analyzer which
digitized, classified, stored, and displayed large amounts of information,

INTRODUCTION

The responses of aircraft or spacecraft
structures to complex noise inputs involve such
important variables as the strictural materials,
the fabrication techniques, and the related envi-
ronmental conditions. Analytical procedures,
generally, have not been adequate for predicting
such responses, and hence, much reliance has
been placed on experiments.

As part of a series of basic research
studies of panel responses to noise, the effects
of panel curvature have been documented. This
paper has two purposes: (1) to present some of
the recent pane! test analysis results, and (2)
to describe briefly a unique method of collect-
ing statistical data.

SONIC FATIGUE FAILURES

Sonic fatigue data are shown in Fig. 1 for
three different panel curvatures for compari-
son, Root-mean-square strain for a strain
gage near the panel edge is plotted as a function
of time-to-failure in minutes. The excitation
was a broadband random noise from an air jet.
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o 8 o 0?0 A <
800 |- Y
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o 5 0 100 200
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Fig. 1. Time-to-failure for 0.020-inch-
thick aluminum-alloy panels of three cur-
vatures in a random noise field having an
overall sound-pressure level of 160 db

Its overall sound pressure level was 155 db and
the spectrum peaked sharply at about 100 Hz
(see Refs. 1 and 2). ldenticai 20- by 20-inch
sheets of materi~! were formed to curved fix-
tures with lap attachments. A&N bolts (3/16-
inch diam.) with nuts tightened to a given torque
were spaced around the periphery, 5/16 inch in
from the edge and 1-1/2 inches on center.
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TLis was done in &. ~ttempt to minimize the
eodge-attachment condition differences for the
test panels.

One of the main results of the above study
was the relatively short time-to-failure of the
4-foot-radius panels even though the measured
strain levels were markedly lower than for the
other curvatures. It was originally suggested
that significantly different stress concentration
factors may have existed. This paper, however,
contains results of other studies relating tc the
dynamic behavior of the 4-foot-radius panel
and which may also be significant in causing
shorter times-to-failure.

J'igure 2 shows a panel which failed due to
sonic fatigue while formed into a 4-foot-radius
configuration. It is believed that this failure
resulted from test conditions for which the
panel was buckled. Since buckling is a strong
indicator of nonlinear behavior, the panel re-
sponse was studied for other evidence of non-
linearities.

STRAIN RESPONSES

A series of dynamic response studies in-
volving different intensities of acoustic loading
were conducted, and some representative re-
sults are presented in Fig. 3. Overall root-
mean-~square strains are plotted as a function
of discrete driving frequency for sound-
pressure levels of 115 and 125 db impinging on
the lower surface of the panel. At the lower
excitation level, the panel appeared to be re-
sponding generally as a linear system. At the
higher level, however, there was definite evi-
dence of nonlinear response. The skewness of

the response peaks toward lower frequencies
represents a soft spring effect; that is, the
panel b. _.umes less stiff at large vibration
amplitudes.

The mode shape sketches in Fig. 3 illus-
trate qualitatively the modal pattern variation
fo1 these two levels of excitation. The sketch
at the top suggests a buckling condition such
that the center portion of the panel experiences
relatively large amplitude motions at frequen-
cies other than the driving frequency.

Both analytical and experimental studies
have been made for the modal response of this
panel, and the results are presented in Fig. 4.
Frequency in Hz is shown for various modal
numbers (number of antinodes). Theoretical
calculations assuming both clamped and simply
supported boundary conditions (Ref. 3) are rep-
resented by the solid and dashed curves, re-
spectively. Experimental data obtained using
discrete frequency excitation are represented
by the circle points. They seem to fall close to
the simpiy supported values at low modal num-
bers and close to the clamped values at high
modal numbers. Note that the frequency for the
fundamental mode corresponds closely to that
of the sixth mode. As indicated in Fig. 3, the
sixth mode was excited at a level of about 115
db, whereas at a 120-db level, and higher, the
panel snapped into a buckled condition for which
the fundamental and sixth modes are superim-
posed (see upper sketch of Fig. 3).

Additional panel response data for high
levels of noise excitation are presented in Figs.
5 and 6. In Fig. 5 the mean square bending
strains are shown as a function of frequency.
The discrete frequency excitation (at a 145-db

Fig. 2. Aluminum-alloy panel {0.020-inch thick, ¢-foot radius)
after sonic fatigue failure due to siren excitation
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Fig. 5. Spectrum of bending strain re-
sponse of curved panel (4-foot radius)
due to discrete frequency excitation at
145-db sound-pressure level

-4
52 1074
(psi)z/m 10-8+ .
Low
10-8L ISE |
%0 (a) NOISE INPUT
1o
2 5
€ 2 |
W in L
E S MICROPHONE ” /cpce
(b) BENDING STRAIN RESPONSE 3
i =1

1 ]
0 200 400 600 800 1000
FREQUENCY, Hz

Fig. 6. Bending strain response spec-
trum of a panel (4-foot radius) due to
random noise input from a four-branch
airjet noise source




level) was provided by a siren for which the
harmonic content was at least 40 db lower in
level than the excitation frequency of the figure,
The data shown were obtained by means of a
15-second tape loop and narrow-band filters.
Note that relatively strong responses of the
panel occur at frequencies lower than the excit-
ing frequency.

The response of the panel to broadband
noise is shown in Fig. 6. Again, mean-square
dending strain per unit bandwidth is plotted as
a functlon of frequency. The spectrum shape of
the 150-db level random noise is shown at the
top. Note that this nearly flat random noise
spectrum was generated by a unique jet turbu-
lator nozzle represented by the sketch at the
right. A number of relatively strong responses
are observed at the low frequencies, even in
the range where the input spectrum tends to
drop off. These latter response data are thus
consistent with those of Fig. 5.

AMPLITUDE DISTRIBUTIONS

In order to study the statistical behavior of
the panel, a unique method was used to collect
and analyze appropriate sound pressure and
assoclated strain data. Figures 7 and 8 illus-
trate the method used, and Fig. 9 contains the
main results.

Included in Fig. 7 are schematic represen-
tatlons of the root-mean-square sound pressure
and total panel strain time histories. In the
course of this study the amplitude distributions
were obtained at several arbitrary input noise
loading levels. Such a procedure could be ac-
complished by the reading of oscillograph rec-
ords at the proper times, as indicated

ARBITR4RY LOAD WALUE
AMS
SOUND
PRESSURE

! | | | ! '
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| | | | ¢ |
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Fig. 7. Time histories of the root-mean-
square sound pressure and associated
total panel strain, Vertical dashed lines
indicate points at which strain values
were determined for an arbitrary sound-
pressure load value,

Fig. 8. Enlarged sectional view of oscil-
loscope display of a pulse-height analyzer
used for accumulation of joint probability
data

schematically in Fig. 7. In order to automate
the process of accumulating data of this type,
however, a pulse-height analyzer wis used in
the manner suggested by the diagrams ! Fig. 8.
Records such as those of Fig. 7 were digitized
about 300 times per second for their 80-minute
durations (time-to-failure of the panel). The
analyzer operates in such a way that all strain
values associated with a given sound pressure
are grouped together. Thus, it is possible to
determine amplitude distribution directly from
the analyzer.

Such a display is illustrated in Fig. 8 which
contains a cathode ray oscilloscope presenta-
tion of the strain and sound-pressurz data. The
abscissa represents panel strain, the zero value
being in the center and the negative and positive
values being to the left and right, respectively.
The ordinate is root-mean-square sound pres-
sure; the vertical coordinate represents the
number of measurements for given values of
sound pressure and panel strain. Thus, at a
given sound-pressure value, the display indi-
cates the number of straln samples at each
strair. value for the entire time of the data re-
cording. Thae type of display illustrated in the
figure is useful qualitatively, but the numerical
data are obtained directly from the tabulation
circuits,

Sample strain amplitude distribution data,
as measured with the pulse-height analyzer,
are presented in Fig. 8 for the 4-foot-radius
panel. The distribution shown is for a sound-
pressure level of 157 db and contains over
79,000 samples., Also shown is a eolid curve
representing a normal or gaussian distribution.
The probability of being equal to or less than a
given value of strain is plotted on the vertical
scale for various multiples of standard devia-
tion (0). It can be seen that the measured data
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Fig. 9. Total strain amplitude distribution for
a panel (4-foot radius) due to random noise
loading compared to a normal distribution

generally follow the normal distribution curve
up to nearly 20 and then deviate from the nor-
mal distribution curve at higher values. This
result implies that a greater percentage of the
panel lifetime is spent at strain values above
30 than would be the case for a normal distri-
bution of strain amplitudes. Although not shown
on the figure, similar data for the other two
panel curvaturzas of Fig. 1 fell generally along
the gaussian curve at the higher ¢ values., The
implication from these data is that the 4-foot
curvature panel, probably because of its non-
linear behavior characteristics, experienced an
abnormally high number of high strain values.

These strain peaks may account for the shorter
time-to-failure of these panels.

CONCLUDING REMARKS

Unexpectedly short times-to-failure for
curved paneis under acoustic loading led to de-
tailed studies of their dynamic response char-
acteristics. Nonlinear response characteristice
involving significant low-freguency motions due
to buckling were cbserved. Such behavior re-
sulted in a much higher percentage of large
strain amplitudes than would have been predicted
for a normal strain amplitude distribution.
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DISCUSSION

S. Davis (Fairchild Hiller): Can you tell
me where the strain gage was located and why
the particular location was chosen? Obviously,
the strain measurement you take would vary at
different locations on the panel depending upon
the particular mode shape being excited.

G. Brooks (NASA) (for C. E. Rucker): Well,
of course, quite a study went into determining

the best locztions for these gages. They had
strain gages located on all four edges out about
1/2 inch from the bolt line. In addition to this
there were also strain gage bridges located
near the center of the panel in some cases.
These strain gage locations were selected on
the basis of the experience of the survey of the
panels to find out where the strains were usu-
ally the largest.
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J. Rice (Goodyear Aerospsce Corp.): Was
your acoustic excitation normal, grazing, or in
a reverberant room 7

G. Brooks: It was normal. The acoustic
excitation was provided by a horn which was
placed below the panel so that the panels were
2xcited from the bottom, or tke center of the
radius of curvature,

*




RANDOM VIBRATION USING FINITE ELEMENT APPROACH
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illustrated by a number of examples.

The finite element method of structural analysis is extended to deter-
mine the response of complex structures to multiple random loadings.
The method is used to calculate the output power spectral densities and
mean square values of deflections and internal forces. The method is

INTRODUCTION

The finite element method is one of the
most effective tools for analyzing static and
dynamic problems in structural mechanics, and
many authors [1-5] have contributed to its de-
velopment. The approach has been used for vi-
brations [6{, acoustics [7), seepage []8], heat
conduction [8], wave propagation [10], and sta-
bility {11) problems. In this paper, a consistent
matrix formulation for the response of any
structure to multipie random loads is presented
using this approach.

Using exact mathematical formulation,
several authors “ave discussed the response of
linear elastic systems to various types of ran-
dom excitations [12,13). Because of the diffi-
culties encountered in analyzing multiple ran-
dom inputs using exact differential equations,
most authors have analyzed beam and plate
random vibration problems due to single ran-
dom inputs or completely uncorrelated inputs
{14-16]. The results are of academic interest
and have some application to physical problems.
The difficulties encountered in analyzing the
response of a structure to multiple random ex-
citation can be overcome, however, if the
structure is divided into finite elements, thus
reducing a continuous structure with infinite
degrees of freedom to a structure with a finite
number of degrees of freedom. The method
used is illustrated by several examples,

It is assumed throughout that the random
process is stationary and ergodic.

DEVELOPMENT OF BASIC THEORY

The general procedure of the finite element
method is used to divide the total structure into
a number of elements. These elements are
connected at their corners or nodal points,
When a typical three-dimensional element n is
being considered, the displacements are given
by

u(x.y.z,t) = Ax.y.z)v,(t), (1)

where the elements of u are components of the
displacement vector and A is a transformation
matrix giving displacements u in terms of v ,
the generalized coordinates or nodal displace-
ments for the nth element. The kinetic energy,
T, the strain energy, U, and the dissipation
function, F, can be written as

T= l/2j muty dv,
v

U= 172 _L_' o dv,

and

F

1/2 _[c atu 2v.
These can also be written as

T=1/2v'N_ v

U= 1/2v'K
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Here, B(x.y,z)is a trancformation matrix giv-
ing strains in terms of v, and the D matrix
consists of appropriate material constants giv-
ing stresses in terms of strains, The mass
matrix M for the assembled structure can be
obtained by applying the Boolean iransiormation
of Ref. 1 in the form

v=ar (2)
Thus,
M=a'ma
Similarly,
K=-a'%ka
and
C=a'ca

bl

where m, k, and ¢ are diagonal matrices, the
nth elements of which are the matrices N, K,
and C,, respectively. When the generalized
forces corresponding to the generalized dis-
placements r are denoted by R, the equations
of motion for the complete structure can be
written as

Mi+Kr+Ci=R. (3)

The' displacements r can be expressed in terms
of the normal coordinates q as

IERTON @)

where ¢ is a matrix of normal modes. By sub-
stituting (4) in (3) and premultiplying by ¢!,

(M) + [C))a + [K)lg = ¢'R, (5)
where
(N, = ¢t Mo,
(c;] = ¢tce - = [N

and
(k) = ¢t Ko.

The response of the above system to a sinusoi-
dal loading R = R,e!"* can now be found. By
using the notation

KN, = w i C /KM, = 20,
the equations of motion are of the form
G+ [2w]a+ [w2q= (M) ¢t R eivt. (6)
Therefore,
Q= [Z,(w))"! ¢* R, ei™ (1)

where

Z (w) = My(-w? +w? o+ 200w, w)

M (-wl+ w2+ cw/mi), (8)

and is known as the impedance matrix for the
normal coordinates. Finally, the displacements
r can be written as

= H(w) R, ei™t, ®)

where
H(w) = o [Z (W)~ " ¢t . {10)

and is known as the matrix of complex response
functions. The complex response function

H; (%), which is the ij element of H(w), i8
dehned as the displacement produced at i due
to a unit force at j having the same direction
as ei"t_ Equation (10) may also be written in
terms of the frequency f (in cycles per second).
Thus,

H(f) = ¢lZ ()] ¢* (11)
where
Z(f) = 4PN (-f2+ fRe2il f ). (12)

If the forces R are random, the cross-
correlation matrix Ry (7); may be defined as
i i
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T2
Rg,z (") = lim % J R(t) R'(t+7) dt
Too Jr/2

= <R(t) RE(t - 7)>, (13)
where < > represents the time average.
The i.j element of Rg, g, matrix gives the
cross-correlation the loadlngs R; and R; for
i + j and the autocorrelation function othevwlse.

The input power spectral density matrix S,(f)
of the excitation forces R is defined as

Sp(f) = 2 J Rp .z (7) il g (14)

The output power spectral density matrix S (f)
of the response displacements r can similarly
be written as

® -s2vrf
S(f) = 2j R e (T)e A (15)

-®

where

y (72
R, , (r)= lim TJ r(t) rt(t+7)dt

L T -T2

cr(t) rt(teTy . (16)

Denoting by h(t) the matrix of impulse re-
sponse functions, the i,j element of which
gives the response at i due to a unit impulse
at ;, the displacements r(t) can be written as

r(t) J h(r) R(t-7)dr. (1
]
By substituting this value in Eq. (16),
R, . (")~ JJ [h(e.)~5(t-0.)3'(t*1-9,)»1‘(8,)
070 0 Yo
1
x d(')2 dOlJ
or
Br.‘rj(1) = J; J; [b.(el) Bgigl(f’el'ez)

x h%(8,) d8, do,] . (18)

oK T PR KRR R

By substituting this value of g,m(r) in Eq. (18),

2 J:: e-nh[‘[’.‘[’.b_(el)g.il‘(r+8| -8,)

x h'(6,) de, de,] dr

So(f)

2J h(e|) eilwf7
(]

x [J- !Rilj(T +8, - e’)e‘ilwf(700|.o’)dr]

-

[ f ht(e,) e 102 doz]

-

r_i‘mx[zf Bpg (1) dv] H(f)

H*(f) S;(f) H(f), (19a)

where H'(f) is the complex conjugate of H(f).
Similarly,

S, (w) = H'(W) Sy(w) H(w) . (18b)

The diagonal elements of the matrix s (f) give
the spectral densities of the responses, while
the off-diagonal elements give the cross-
spectral densities of the responses. The mean
square of the ith response r; can be obtained

from the ii element of the matrix S (f). Thus,

<ri’(t)> :J- on(f) df 'J' Soii("') dw . (20)

0 [}

It is clear from Eq. (20) that

on(f) - 2"5011( )

Numerically, the integrations in Eq. (20) can be
performed by calculating S_,;(w) at various
values of w and then applying the trapezoidal
formula for area calculation.

For manipulations on an electronic com-
puter, Eq. (19) can be written in a slightly dif-
ferent form by decomposing S,(f) into real and
imaginary parts. Let

S;(f) = p+iq’, (21)
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Where p is a symmetric matrixand q' is a
shew symmetric matrix, Also, let

(z) '=E,+iD,.
where
L - (-f’+ fn’)/h’lln [(f,,'- f’)’ ENE f’]
and
D, - -2(,,f,,f/4n’ln [(f,,'- f’)’ + &2 fn’f’] .
Then,

H(P) = 9E,¢" + 18Dy (22)

() = B¢t - igDet.  (29)

By substituting Eqs, (21) through (23) in Eq.
(19), the real part of S,(f) is determined as

¢tpeD ¢t + ¢D, ¢’ $D, ¢t . (25)
If required, the mean square values of the

internal forces in the structure can also be ob-
tained. The internal forces P can be written as

[lg -]
(L3

OF ) (26)

T

[lg -/
1=
I»

The complete cross-correlation matrix for the
output forces P is given by

<P(t) PY(t+T)>

B p,

ka <e(t) rf(teT)atkt.  (27)
Similarly to Eq. (19), the output power spectral

density matrix Sy (f) for the forces P can be
shown to be given by

Spo(f) = kaH'(f) Sy(f) H(f) a*k!

10
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Spo(f) = kas(f) atkt. (28)

To czlculate the mean square values of the
forces, only the real part of the output power
spectral density matrix S (f) for the general-
ized displacements r, given by Eq. (24), should
be substituted in Eq. (28).

An automatic computer program was set
up to calculate the output power spectral densi-
ties and mean square values of the displace-
ments and internal forces from the initial data
in its simplest form. The program has the op-
tion of either automatically generating the stiff-
ness, mass, and damping matrices or obtaining
these as input data, A set of spectral matrices
and their associated frequencies to describe
the power and cross-spectral density functions
is required as input. The program calculates
the natural frequencies, mode shapes, and cut-
put power spectral densities at the desired fre-
quer ‘es. In addition, it performs numerical
integration to obtain the mean square values of
displacements or internal for:es. Equations
(24) and (25) are used to calcilate the real and
imaginary parts of the output power spectral
density matrix s,. If only the mean square
values of the responses are desired, then only
the real part of the matrix S, is computed.

TYPICAL EXAMPLES AND RESULTS

A few typical cases have been solved here
to show the accuracy obtained using the finite
element approach as well as to demonstrate its
versatility. In all cases the damping coefficient,
c, is assumed to be equal to 0.1 yEIn/L4. The
cases solved are for the following:

1. A simply supported beam subjected to a
uniformly distributed load such that there is no
cross correlation between ioading intensities,
Thus,

Sp(w.xp. %xg) = Sp(w.xp) 8(xp- xg) .

(The 5 -function has zero value except when
x, = xg.)

This problem was solved by dividing the
beam into eight equal parts. The mass and
stiffness matrices for a besm element can be
obtained froma Ref. 3. The uniformly distrib-
uted load is assumed to be acting at the node
points, The generalized displacements used
and the corresponding loads are shown in Fig.
i, while stiffress and mass matrices for the
uniform simply supported beam are illustrated




oot St S

s

"o 2 s

2\ JL'S ‘L’s ‘t\:v ‘L"v *1\:|| ‘L'Ii {'u}'u
] [) v K] ] ‘Q
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(b} EQUIVALENT CONCENTRATED
FORCES

FOR A UNIFORMLY
DISTRIBUTED LOAD

Fig. 1. Generalized displacements and con-
centrated forces for simply supported beam

in Figs. 2 and ?. The power spectral density, S, TABLE 1 :
per unit length of the load is assumed constant Mean Square Values (times EI vEIm/SL%) of
for all frequencies (Fig. 4). The power spectral Displacements due to Uniformly Distributed
density matrix S,(w) in this case is a diagonal Random Load
matrix with diagonal elements corresponding to
Ty Tay Ty Tgy Trgy Ty, and r,,, each equal L Exact Finite Elen.2nt
to SL/8. Table 1 delireates the mean square (Ref. 14) Approach
values of the displacements for various points
along the beam and, in addition, gives the exact 1/8 0.0626 0.0539
results from Ref. 14. 1/4 0.1838 0.1814

2. A simply supported beam subjected to a :Ifg ggggg ggg;g
concentrated load at the center. This beam was 5/8 0.2873 0.284'
also divided into eight equal parts. The power 374 0.1838 0.181:
spectral density S for the load was agzin as- /8 0.0626 0‘0599
sumed tc be constant for all frequencies. The iy :
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Fig. 2. Stiffness mairix for a simply supported
beam divided into eight equal parts
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Fig. 3. Mass matrix for a simply supported

beam divided into eight equal parts

input power spectral density matrix, S;, in this
case is zoro except the diagonal element, S;,,,
which is equal to S. By using the procedure
outlined in Ref. 17, the mean square value of
this displacement at the center is approximately
given by 0.6538SL*/EI ymEl compared to

0.646 SL*/E1 vinEI obtained by the present
method, giving an error of only 1 percent. The
mean square values of the displacements for

all points of the beam are shown in Fig. 5.

3. A simply supported beam subjected to
two completely uncorrelated loads correspond-
ing to generalized displacements r, and r,,.

In this case, S;,, and S;,, ,, Were both
equal to S which was assumed to be constant
for all frequencies. Since the higher frequen-
cies do not contribute significantly to the re-
sults, the integrations were performed only
fromw=0to w= 10.8

The same problem was solved with the as-
sumption that the two loads were completely
correlated. In this case,

St12,12° Sta,0 * S1e.127 Sniae 7 S
For the correlated case, the output power spec-
tral densities were found to be twice as large
as those for the completely uncorrelated case.

The mean square values for the two cases are
shown in Fig. 6.

4. A cantilever beam subjected to a ran-
dom concentrated load at the free end.

Here the input power spectral density was
assumed to be given by

w.d

S = g
™) w4 wd

w/ JivmI —

Fig. 4. Constant input power spectral density
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Fig. 5. Mean square values of displacements
due to a random concentrated load at the center
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COMPLETELY
CORRELATED

COMPLETELY
UNCORRELATED

Fig. 6. Mean square values of displacements
due to iwvo rardom loads

where

This i8 shown in Fig. 7. The mean square val-
ues of the displacement along the beam are
shown in Fig. 8. By using Eq. (28), the mean
square values of the internal moments were
computed and are shown in Fig. 8.

SUMMARY AND CONCLUSIONS

A general method for the determination of
the response of a structure to multiple input
random vibrations is outlined; the finite ele-
ment method was used to characterize the
structure. To illustrate the method, the re-
sponse of a uniform beam with various end

R

w /et
Fig 7. Input nower

spectral density for
the cantilever beam
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Fig. 8. Mean square
values of the displace-
ments for a cantilever
beam due o a concen-
trated load

constraints was determined when the beam was
subjected to multiple random inputs. It is be~
lieved that these examples are sufficiently com-
plex to illustrate the method. Shear and rotary
inertia eifects could have been included in the
examples chosen by making use of the Timo-
shenko beam element developed in Ref. 6, but
this would only have served to make the com-
putations more tedious. The method is appli-
cakle to nonuniform, nonsymmetrical beams as
well as to plates, shells, or any other structure
thnt can be reasonably subdivided into finite
elements; moreover, the method can handle a
fully populated input power spectrai density

]
. 20
> 1w
€
S w
>
2
»
¢ 100
- 0
t 3
a2 w
g w0
ad
= 20
(]
0 V4 V2 34 |
X/l —-
Fig. 9. Mean square

valiies of the displace-
ment for a cantilever
beam due to a concen-
trated load

matrix, and is completely general with respect
to geometry and material properties.

Mathematically, it can be shown that the
method converges to the exact solution as the
number of elements is increased; therefore,
any desired degree of accuracy can be obtained,
depending on computer and formulation time
expended. Care should be used when numerical
integration is used to calculate the mean square
values of the displacements or stresses. For
instance, near the natural frequencies, the in-
tegration interval to be used should be small in
order to incorporate the peaks in the output
power spectral densities correctly.
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NOTATION

The following symbols have been adopted
for use in this paper. Underlines indicate that
th2 symbol represents a matrix,

Boolean transformation matrix

1o
n

transformation matrix giving displace-
ments u in terms of v

(2]
n

damping constant

-]
n

transformation matrix giving strains in
terms of v

[o3
n

diagonal damping matrix, the nth ele-
ment of which is C_

(@]
n

damping matrix for the complete
structure

= damping matrix for the nth element

cl] =

n

grce

matrix giving stresses in terms of
strains

frequency in cycles per second

E
n

dissipation function
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= the matrix of impulse response functions
= matrix of complex response functions

= diagonal stiffness matrix, the nth ele-
ment of which is K

= stiffness matrix for the complete
structure

= stiffness matrix for the nth element
= ¢'Kk¢
= length of the beam element

= mass per unit volume; for beams, mass
per unit length

= diagonal mass matrix, the nth element
of which is M|

= mass matrix for the nth element
= ¢'u¢

= real part of input power spectral density
matrix

= internal forces
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q = normal coordinates

q' = imaginary part of input power spectral
density matrix

L]

= generalized displacements for the whole
structure

= generalized forces for the whole
structure

R = matrix of cross ccrrelation functions
for displacements r,

Ry x = matrix of cross correlation functions
I for forces R,

input power spectral density matrix

17
-
"

n
]

output power spectral density matrix

= output power spectral density matrix
- for internal forces p

16

time

kinetic energy

strain energy

nodal displacements for the nth element
frequency in radians per second
nth natural frequency
rectangular coordinates

matrix of normal modes

Ci AT

time variable

diagonal matrix

time average
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FREQUENCY ANALYSIS OF REPETITIVE BURSTS
OF RANDOM VIBRATION

W. E, Noonan
McDonnell Company
St. Louis, Missouri

An investigation was conducted to determine the applicability of using
an analog harmonic analyzer to determine the frequency spectrum of
transients or signals that consist of a series of pulses cr bursts. The
analysis was based on the application of standard Fourier techniques
for transient functions to obtain an amplitude function independent of
time. The Fourier amplitude spectrum was obtained by applying the
energy function relating time and frequency.

This investigation indicated that the harmonic analyzer must be able to
perform the functions of filtering, true squaring, and true integration.
An analyzer with these capabilities can determine the Fourier ampli-
tude spectrum of transient functions or the power spectral density of
randomly occurring pulses or bursts, The technique presented in this
paper providee an accurate, economical method for analyzing data that
previously required the use of a digital computer,

INTRODUCTION

The analysis of periodic and stationary
random functions has been extensively detailed
in the literature. Many investigations have
been conducted in the industry to develop equip-
ment capable of producing, controlling, and
analyzing periodic and continuous random data.
Frequency decomposition harmonic analysis is
commonly used for periodic functions and
power spectral density analysis of continuous
random functions. Occasionally vibration data
is encountered that does not fall into either of
the above categories. An example of such a
signal is the vibration generated by a rocket
motor or thruster that is fired intermittently
for short periods but otherwise remains inac-
tive. The purpose of this paper is to present a
method for processing such data and to de-
scribe the use of a harmonic analyzer for im-
plementation of this method.

The analysis to be described is based on
the well-known Fourier transform for mapping
transient time function into the frequency
domain [1]:
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F(f) = f fet) e 3%t ae . (1)

Application of the Fourier transform requires
the integral of the data to be absolutely conver-
gent. The integral,

J HOILR
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must be finite.

A thecretical study of the Fourier trans-
form as related to a transient function is re-
viewed, 2nd its relation to the energy and power
spectrum is shown. The analysis of data con-
sisting of short-duration bursts is described,
and the achievement of power spectral density
for the environment, using transient analysis
techniques, is demonstrated. Methods of per-
forming the Fourier transform using an analog
harmonic analyzer are presented, and the anal-
ysis of stylized pulses is included.
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FOURIER ANALYSIS
Yourier Transform — Transient Function
The Fourier transform (defined by Eq. (1))

for a transient function is obtained from the
Fourier series for periodic functiona:

- To/i
f(t) = Z LY ,rlo_ J' “f(o') e 1% g, o
av-® -7,

As 1/T, is equal to f,, Eq. (3) is rewritten,

) t 70/, - joe,o
f(t) = Z SRRLAE J foye " &,
‘To/ﬂ

@)
Now, if the period T, erows without limit,
the periodic function f(t) tends to an aperiodic

(transient) function, and Eq. (4), therefore, ap-
proaches the limiting form,

f(t) = I elet df I fo) e1* a0, (5)
where T,~, f, »df, and nf, ~f,
The Fourier integral (Eq. (5)) for transient

functions can be written as the transform pair:

F(f) = J fet) e It at (6)

\
f(t) = J F(f) et af. ™

The transform pair in Eqs. (6) and (7) can
be written in terms of angular frequency («) by
substituting 2n/w, for T, in Eq. (3). For this
case the transform pair is expressed as

F(w) = %”—J f(e) eIt at (8)
and
f(t) = J F(w) ¢*% dw. (9)

The F(f) and F(«) functions canr be written

in terms of amplitude and phase spectrums:

F(f) = |F(6)] /%D (10)

and
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F(o) = |Fw)| el (11)

The functions |F(f)| and |F(w)| are
amplitude -density functions and have the di-
mensions of amplitude/hertz and amplitude/
radian/second. The amplitude density is not a
measure of the amplitude characteristics of
f(t) because the amplitudes of the sinusoidal
in Eq. (7), F(f) df, are infinitesimal. The
amplitude density is a characteristic that shows
relative magnitude only.

Equation (6) is the relation that maps the
transient function from the time-to-frequency
domain. It is the parformance of this operation
that will be discussed using analog techniques,

The energy relation for the time ind fre-
quency function will now be discussed. Return-
ing to the periodic function, the average power
is expressed as

T/ 2 -
-fl;J f3(t) dt = Z lvimy1?.  {i3)

To/ 2 nee®
where

T,/2 - Jnuyt
V(n) = T_o IT s f(t) e dt .
°

The energy in one fundamental period is

To/2 °
J ’ f2(t) dt = T, Z vyl 2.  (18)

Tg/2 na-@

Letting the period approach infinity for the
transient functior., the energy can be expressed
as

lim [v(n)|2 T,
TO*D ne~®o
S To/2 2
. 1 J 0 -jnuot
= lim T f(t)e dt| T
To*® nece To T4/ 2 °(14)
and
; 2
T4/2 rine 2
= lim J f(t) e 0" 4t = . (15)
Tor® noma |J-1y/2 o

N T —
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Applying this to Eq. (13), the energy rela-
tion for the time and frequency transient func-
tion is expressed as

J £3(t) de = J [F(fy]? df . (16)

The above expression in terms of angular fre-
quency is

J £2(t) dt = 2nj |F(@)|? dw. (17)

As the total energy of a transient is finite,
the average power over an infinite period is
infinitesimal. The integral square of the func-
tion over an infinite interval is finite, but the
mean square over the same infinite interval is
an infinitesimal quantity.

Some discussion of the one-~sided spectrum
2] should be included. With reference to Eq.
16), it should be unoted that a negative frequency
spectrum has little physical meaning. The
spectrum |F(£)!? i8 an even function, and Eq.
(16) could be rewritten as

J £3(t) dt = 2] |F(£)|2 af . (18)
- (]

I; we let |F'(f)| = vT |F(f)|, then

J f’(t)dt:] IF'¢fyl2de.  (19)
- @ (]

The spectrum |F'(f)| is the function that
the analog analyzer is calibrated to display.

Fourier Transform and Power
Spectral Density

Certain random environments involve mul-
tiple, short-duration pulses or bursts. These
functions can be a randomly occurring repeti-
tion of the same pulse or an ensemble of statis-
tically independent random bursts with equal
power spectral densities. A pulse is defined as
a single excursion from the zero base line,
while the burst consists of a complex waveform
having a number of plus and minus excursions
from the zero base line. Both the pulse and
burst ensembles differ from the transient, as
the ensewble has finite power.

The power spectral density of the ensemble
is related by a weighting factor to the squared
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Fourier amplitude spectrum of the individual
pulse or burst, The weighting factor is the av-
erage number of occurrences par second. Ad-
ditional restraints, which depend on the sequence
of positive and negative occurrences, affect the
spectrum of the ensemble near zero frequency.
These restraiuts will be discussed in detail in

a later section,

The anzlysis of an ensemble of independent
bursts is conducted in a manner 3imilar to the
transient analysis. The squared Fourier am-
plitude spectrum is computed for each pulse or
burst, summed, and then averaged over the
time sample.

Z_:.' IFa(6)|? (20)

G(f) = —
where
G(f) = power spectrum ensemble
N = number of pulses in time T
T = length of time sample,

If it is assumed that the Fourier amplitude
spectrum is the same for each function, then
Eq. (20) can be rewritten as

&(f) = 3 IF(HI?, (21)

where N/T = weighting factor — average number
of bursts per second.

A discussion of Eq. (21), including verifi-
cation by experimental measurements, is pre-
sented in a later section,

ANALOG ANALYSIS

The analog analysis of transient data con-
sints of the basic operations of filtering, squar-
ing, and integrating. The result of these oper-
ations is the amplitude spectrum, |F(f)|, of the
Fourjer transform. The filtered output of the
transient, f,(t), can be expressed as a sum-
mation from the beginning, a, to the time, ¢,
of the input transient, f,(t), and the unit im-
pulse response of the filter, h(t):

t
fa(t) = J h(t=7) fy(7) dr. (22)

Mapping Eq. (22) from the time-to-
frequency domain results in an expression




coutaining the Fourier spectrums and the fre-
quency response function of the filter:

IFo(6)l = IRCEY [Pl . (a3)
where
1, f - Of/2 < f < f_+ Af/2
1.43]
0, elsewhere

where f_ = filter certer frequency, and Af =
filter bandwidth.

The filtered time function contains only
that part of the total energy of f,(t) in the fil-
ter's narrow frequency band. The energy of
the filtered output is the integral square of the
time function and is expressed as

J fol(t)de .

As f,(t) has nonzero values over some
finite time, T, Eq. (24) can be rewritten as:

T
J fl(t)de .
o

Returning to the time-to-frequency relation
for the energy (see Eq. (18)),

(24)
(25)

T ®
J f2(t)de = 2 j IF, ()13 df.  (26)
0 0

As the characteristics of the filter are
such that only energy in the bandpass is trans-
mitted with unity gain, the iimit of integration
can be restricted to the filter bandpass, and the
output Fourier amplitude spectrum can be re-
placed by the input spectrum:

T 1 .401/2
J f,(t)dt = 2 J IFy(£)12 of .
] 1.-81/12

@@

If the bandpass of the filter is small, so
that the amplitude spectrum of the data is as-
sumed constant within the frequency band, Eq.
(27) is rewritten as

T
j f2(t)de = 2 |[Fy(f)l? of . (28)
0

The Fourier amplitude spectrum is there-
fore shown to be
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IFy(f)l = [ﬁj f:(t)dt} . (29)
(]

The |F'(f)| spectrum defined by Eq. (19)
is expressed as

T /2
IFy(h)l = [A—'f'[ f,,’(t)dt] .
(]

Equation (30) is the function which de-
scribes the analog analyzer. The analyzer
muat perform the basic required functions of
filtering, true squaring, and true integration.
True squaring and true integration are manda-
tory operations, and it is these operations
which enable the harmonic analyzer (see Fig. 1)
to perform analog analysis of a transient. The
output of the integrator is proportional to
|[F'(fy|?. By displaying the function in loga-
rithmic format, the analyzer can easily display
the absolute value of the Fourier spectrum or
the power spectral density. The power spectral
density is obtained by normalizing the function,
IF'(£)|?, with respect to the length of the time
record, T. When analyzing an ensemble of
pulses or bursts, the function, |F'(f)|?, repre-
sents the squared Fourier transform of the en-
tire ensemble,

(30)

Trve
Dete—eni Filter L— Square f—en U

=

L Recodor | | Loy
Contrel X Y Converter
Fig. 1. Analog analyzer

The procedure for the analog analysis is to
transcribe the transient onto a magnetic tape
loop. Included on this loop is a trigger signal
for the integrator which starts the integration
function prior to the beginning of the transient.
The integrator is set to integrate all nonzero
values of the squared, filtered output. The
process is repeated as the center frequency is
stepped through the frequency range in band-
width increments. This results in a value of
the Fourier amplitude spectrum at each filter
center frequency.
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Analog Analysis — Stylized Pulses

Analog analysis was conducted on a single
pulse and on an ensemble of 54 pulses all hav-
ing positive magnitude. For the multiple-pulse
case, the time duration between the beginning of
each pulse varied linearly but was repeated
once for each incremental change. This re-
sulted in 27 different time spacings for the en-
semble of 54 pulses. The time spacing for this
ensemble varied from 32.32 to 320 ms in 12.32
ms increments. The pulse amplitude was unity,
and the pulse width was 20 ms,

The single pulse, which was analyzed on
the harmonic analyzer, is presented in Fig. 2,
The Fourier amplitude spectrum resulting from
the analog analysis is compared with a spec-
trum which is mathematically derived from the
time function. Figure 3 verifies the applicabil-
ity of the harmonic analyzer in determining
Fourier amplitude spectrums for transient time
functions.

1 Volt

0MS

Fig. 2. Analog analysis, styl-
ized pulse - time function

The power spectral density for the time-
variant ensemble was approximated using Eq.
(21). Although the time-variant ensemble is
not a random process consisting of independent
occurrences, the mathematical representation
using Eq. (21) will be shown to be valid except
at certain discrete frequencies. The discrete
frequencies are a function of the time depend-
ency between pulses,

Before discussing the applicab. lity of Eq.
(21), more generzl cases will be considered.
These cases will be based on the appiicat.un of
unit impulses, Tle first case is the randomly
occurring, Poisson-distributed unit impuises
that have equal probability of positive or nega-
tive occurrence. The autocorrelation and
power spectral density are presented in Figs.
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Fig. 3, Analog analysis, styl-
ized pulse — frequency function
Fourier amplitude spectrum

4 and § [3]. The only value for the autocorrela-
tion is at zero time displacement (v = 0). The
value at zero r is a weighted unit impulse. The
weighting factor is the average number of im-
pulse occurrences per second. Equations (31)
and (32) are expressions for the autocorrelation
and power spectral density.

R(T) = % u(r) (1)

and

(32)

-2

G(f)

where

N/T ulr)

R(r)

- 0 »r

Time Displeciment - ¢

Fig. 4. Random Poisson-
distributed unit impulses
(equal probability of pos-
itive or negative occur-
rences) - autocorrelation
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-f 0 of
Froquency - |

Fig. 5. Random Poisson-
distributed unit impulses
(equal probability of pos-
itive or negative occur-
rences) — power spectral
density

R(7) = autocorrelation
G(f) =

N/T

power spectral denslty

welghting fac! 'r — average number
of lmpulses per second

number of lmpulses In tlme rec-
ord, T

u(7) = unit impulse.

If the randomly occurring, Polsson-
distributed unit Impulses are restricted to only
posltlve occurrences, the autocorrelation and
power spectral density for this ensemble of
unit l]mp\uses (see Figs. 6 and 7) are expressed
as [3

oo e (7

<8 (3 >

The effect on the power spectrum of restricting
the ensembie to only posltive occurrences is to
Introduce a weighted unit impulse [(N/T)? u(f)]
at zero frequency. This zero frequency compo-
nent can be verified using the following expres-
sion relating the power spectrum and the Fou-
rier amplitude spectrum:

and

(34)

IF(H|?
=

G(f) = (35)

At zero frequency, the Fourier amplitude is
equal to the integral (area) of the time function.
The power spectrum at zero frequency for the
positive occurring unit impulses 18 expressed as
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Rir}
N/T wlr)

N2

i

-r 0 4T

Time Displacemenmt - r

Fig. 6, Random Poisson-
distributed unit impulses
(positive occurrence only) —
autocorrelation

N Gn
Y
N/T
1
-t 0 N
Frequancy - ¢
Fig. 7. Random Poisson-

distributed unit impulses
(positive occurrence only) --
power spectral density

IF o2 (36)
G(O) = __T_ =

If the time (T) grows without limit, Eq. (36) can
be rewritten as

N?
T.

&0) = (%)z RCEDR (37

Equation (37) corresponis to the second term
of Eq. (34). 0

The general case for the time-variant en-
semble of Fig. 10 would be positive uvnit im-
pulses occurring at the start of each square
pulse. An exact mathematical solution for this
case was not considered necessary, as general
trends established sufficient information to
verify experimental results. The autocorrela-
tion and power spectral density for this time-
variant ensemble of unit impulses are pre-
sented in Figs. 8 and 8. The autocorrelation
of this time-variant ensemble of unit impulses
is similar to the autocorrelation of the
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Fig. 8. Time-variant unit
impulses -- autocorrelation

~Nm2un | em
N/
-3 -2 -1 1 2 3
Frequency - f 3 Incnmh]

T} - 0.01232 Seconds

Fig. 9. Time-variant unit
impulses — power spectral
density

Poisson-distributed, positive impulses. The
primary difference is that the constant, (N/T)?,
in the random ensemble is replaced by a series
of weighted unit impulses, spaced periodically
in time, with weighted values ranging from 1T
to 2/T. These periodic impulses only affect
the power spectrum at zero frequency, the fun-
damental frequency, and harmonics. The fun-
damental frequency for this case is the recip-
rocal of the incremental time spacing, 1/0.01232
or 81 Hz,

At zero frequency, the power spectrum for
the time-variant case approximates the zero
frequency value for the Poisson-distributed,
positive pulses and is expressed as

N2 N 2
G(0) = T Ry (-f') u(f) . (38)

The magnitude of the power spectrum at
the fundamental frequency and the first seven
harmonics was numericaily calculated and was
found to be approximately zero. The power
spectral density of the time-variant ensemble
of unit impulses can now be expressed as
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N N\2 ff#mal
°“)=’f*(?) u<f>i'_l“ , (9

G(fy:="*. f=m8l (40)

The power spectral density of the ensemble
of square pulses (see Fig. 10) was determined,
based on linear system relations and the power
spectral density of the time-variant unit im-
pulses, It was assumed that a theoretical sys-
tem could be constructed such that the assumed
system's unit impulse response would be equal
to the individual square pulse in the time-
variant ensemble. The input-output relation
for this assumed theoretical system can be ex-
pressed as

fou(t) = | h(t-7) f(ryar,  (41)

veom

where
Theoretical System
fin(t) = » foul(t)

where h(t) = unit impulse response — square
pulse, 20-ms wide, unit amplitude.

’ 4 |
1 Volt ”m“”lm““l"““||“n“|| || ! |

| |
= 10.5 Sec. 1

Fig. 10. Analog analysis,
stylized multiple pulses —
time function

The Fourier transform of the unit impulse
response is the system function, H(f), for the
theoretical system. For this case the system
furction would correspond to the Fourier trans-
form, F(f), of the individual square pulse. In
a linear system, the output power spectral den-
sity is a function of the input power spectral
density and the system function, and is ex-
pressed as

Gy, (F) = [H(EY 2 G, (f). (42)

For the particular theoretical system de-
scribed here, the input-output power spectral
density is expressed as




o hace Ly

.

Goue(F) = IF(F3]2 G () . (43)

The three cases discussed previously, in-
volving the random and time-variart unit im-~
pulses, will now be applieq to this theoretical
system. The output of this system would be a
repetition of the 20-ms square pulses, The oc-
currence of the aquare pulses would be a func-
tion of the occurrence of the unit impulses.
The power spectral density for the output of
this theoretical system, resulting from the ap-
plication of the random and time-variant unit
impulses, can be expressed as follows:

(1) Poisson-distributed unit impulses, with
equal probability of plus or minus occurrence:

() =—:— [F(Eyl2. (44)

{2) Poisson-distributed unit impulses with
only positive occurrence:

G(f) = g [F(F)| 2 + [7':_- 1-'(0)]2 u(fy. (49

(3) Time-variant unit impulses:

N rN 2 ftmsl
G(f) = — |F(F)| 2 +|= F(0) u(f){
)= IR [T ] m=1,23,....7
(48)
G&(f)=0, f=m81. (47)

Equations {46) and (47) give the solution
for the time-variant ensemble of square pulses.
A comparison of these solutions with data ob-
tained from an analysis on a harmonic analyzer
is presented in Fig. 11. This comparison veri-
fies the suitability of the harmonic analyzer to
perform frequency analysis of pulse data.

It should be noted that the power spectral
density, presented by Eqs. (46) and (47), only
applies to the time-variant ensemble in ques-
tion. Any variation in the time spacing would

affect the magnitude of the periodic components.

The extreme case would be a constant time
spacing between pulses (perivdic pulse train).
For this case, the values at the fundamental and
harmonics would predominate, and the values
at all other frequencies would become insignifi-
cant.

Some mention should be made of the
mu'tiple-burst case. This case consists of
shurt-duration, complex waveform signals. If
the multiple-burst signal was constructed by
taking short-duration, random samples from a
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Fig. 11. Analog analysis,

stylized multiple pulses —
frequencv function

continuous, stationary random function, the
power spectral density for the burst function,
Sy(f), 18 expressed as

N
S ORE > [F()I2. (48)

where F(f) = Fourier transform of individual
burst and N = number of bursts in time record,
T,.

If it is assumed that each burst has the
same power spectral density, then the power
spectral density of the continuous function,
S.(f), would be equal to the power spectral
density of the individual burst. The relation
between the power spectral density of the con-
tinuous function and the multiple-burst function
is expressed as
[F(f)|?

t L]

T
Se(f) = e Sa(h) - (49)

where t, = burst duration.

Equation (49) is the basic operation per-
formed by analog harmonic analyzers to de-
termine power spectral density for continuous,
stationary random proce-ses.




Figure 12 presents a comparison between
the power spectral densities of continuous and
burst functions. Both functions were analyzed
on a harmonic analyzer. The burst function
was obtained from a burst vibration test and
represents the input acceleration spectrum for
a qualification test speclmen. The burst occur-
rence corresponded tc the time-variant czse
discussed previously, and the burst duration
was 20 ms. The periodic components, which
were discussed previously, were masked by the
analysis bandwidth. The sharp peak in the
burst spectrum at 900 Hz was attributed to a
structural resonance of the vibration system.
This resonance was excited by transients in-
duced into the system by the abrupt starting
and stopping of the burst signal.

CONCLUSIONS

It was shown that the analog analyzer de-
scribed in this paper determines the absolute
value squared of the Fourier transform, |{F(f)!2.
Depending on the signal to be analyzed, the am-
plitude of the Fourier transform or the power
spectrai density can be determined.

The analog techniques suggested in this
paper present an accurate and economical
method for analyzing data which previously
required the use of a digital computer. Analog
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Fig. 12, Acceleration power
cpectral density comparison
test, continuous vs burst
function

harmonic analyzers are admittedly slower than
digital computers but ax 2 less expensive when
analyzing random data that requires statistical
confidence.
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DISCUSSION

H. Saunders (G.E. Co.): What type of har-
monic analyzer did you use ?

Mr. Noonan: We used a Honeywell Model
9300, but any harmonic analyzer which had ca-
pabilities of performing filtering, true squar-
ing and true integration could be used. That
was the primary factor.

Mr. Saunders: One of the problems with a
spectral analyzer is the limited amount of con-
tinuous data available. The tape splice fre-
quency usually tends to mask some of the data.
Have you given any thought to using the digital
approach called the Cooley-Tukey method ?
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Mr. Noonan: We have used that at McDon-
neli. The only problem is that it takes such a
large volume of data or sample to describe this
tyre of function. For instance, these bursts
varied linearly with time, occurring over a
10-1/2 second period. The frequency response
went up past 2 kHz 8o, considering the sample
rate and sample duration, a very Jarge storage
capacity would be required in the digital com-
puter. This is very expensive. We could do
this on a harmonic analyzer at a lower cost.

Mr. Saunders: I did not refer to the con-
ventional or Blackman-Tukey method. I meant
the fast Fourier transform technique which is
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the Cooley-Tukey method. In fact, the shorter
amount nf time you have for a data burst, the

better results you can get using this approach.
It i® much more accurate than the analog type.

Mr. Noonan: The sample that we are look-
ing at is 10-1/2 secunds. There are the data
we want to analyze. W2 do not want to analyze
1/2 second of this. We want to analyze 10-1/2
seconds. I understand that this technique em-
ploys a method by which one can process these
data very rapidly, but I can't understand how
this can be decreased. You have 10-1/2 sec-
onds data and you have to sample at a certain
rate. That is fixed.
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Mr. Saunders: Are you considering the
10-1/2 seconds of data to be stationary anc
ergodic or nonstationary ?

Mr. Noonan: No, it is considered as a
transient. The whole approach was made using
one burst or one sample. It ended after 10-1/2
seconds and it began at zero. It was not con-
tinuous.

Mr. Saunders: I think if yoo : through
the Cooley- y approach, you i save a ot
both in computing time and in accu:racy.

*




SIMPLIFIED 2ANDOM VIBRATION COMPUTATIONS

LaVerne W. Root and Allen S, Henry
Collins Radic Cempany
Cedar Rapids, lowa

A complete set of simplified formulas for mean-square amplitude has
heen derived for those broadband random processes which satisfy two
assumptions: The process is stationzry and the spectral density of the
process may be represented by straight lir.e segments on log-log co-
ordinates. These formulas are exact and are simpler to use for both
hand and machine computations than the formulas presently available
in the literature,

Given acceleration spectral density, velocity spectral density, or dis-
placement spectral density, one car compute mean-squcre acceleration,
mean-square velocity, or mean-square displacement in terms of any of
the spectral density quantities, using the tables of formulas provided in
this paper. Also included in this paper are most of the formulas and

definitions used in discussing random vibration test spectrums.

INTRODUCTION

This paper presents formulas for the cal-
culation of the mean-square amplitudes associ-
ated with a broadband random spectrum. These
formulas are simpler to use for both hand and
machine calculations than the formulas previ-
ously presented in the literature. Though sim-
ple to use, the formulas presented herein are
exact when the random vibration spectrum is
represented by straight line segments on log-
log coordinates. Therefore, these simplified
formulas have a broad application since virtu-
ally all random vibration test spectrums are
represented by straight line segments on log-
log coordinates, and all random spectrums can
be approximated to any required degree of ac-
curacy by straight line segments on log-log
coordinates.

A convenient reference for the formulas
and definitions commonly used in discussing
random vibration spectrums is also provided in
this paper. The formulas and definitions are
given as they are used in deriving the formulas
for the mean-square amplitudes.

Tables 1 through 3 (acceleration spectral
density, velocity spectral density, and displace-
ment spectral density) give the formulas for
computing mean-square acceleration, velocity,
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and displacement in terms of the specified
spectral density. Other impertant formulas
are indicated oy numbers in the text. Appendix
A presents a numerical example that illustrates
the use of several of the formulas.
NOMENCLATURE

a acceleration (g)

A(f) acceleration spectral density
(g?/Hz)

d displacement (in.)

d double amplitude displacement
(in.)

D(f) displacement spectral density
(in.?/Hz)

f frequency (Hz)

K. number of octaves between f i
and f,,,

m db change in root-mean-sguare
amplitude

M db change in spectral density




p(t).a(t), r(t)
P(£).Q(f).R(f)

qrnl

V(f)

in

log

gener2l random functions

genera. spectral density
functions

root-mean-square amplitude of

general function
time (sec)
velocity (in./sec)

velocity spectral density
(in. 2/sec 2/Hz)

logarithms to base e

logarithms tc arbitrary base
unless base is specified

dimensionless slope
slope in db per octave

standard deviation

DERIVATION OF MEAN-SQUARE
AMPLITUDE FORMULAS

Assume that q(t)is a stationary random
process; two common parameters used to de-

gcribe the process are the mean-square

BPECTRAL CERNSITY (LOG SCALE)

amplitude, (q7), and the spectral density, Q(f)
[1]. The following is the general equation for
calculating the mean-square amplivude from
the spectral density [2]:

@ - [ en ar. §)
[
The root-mean-square amplitude, q, ., i8
given by (2]
Gas = [@D]77 2

The purpose of this paper is to derive for-
mulas for (q7) and q,_,, using Eqs. (1) and (2),
when Q(f) is represented by a set of straight
line segments on iog-log coordinates.

We shall suppose that Q(f) is represented
by N straight line segments (Fig. 1) and that
the initial and terminal points of each segment
have the coordinates (f;.Q;) and (f;,,.Q;,,);
i=1,2,...,N respectively. Since only straight
line segments are used in representing Q(f), a
general equation may be written which is ap-
plicable to each segment. In terms of the i-th
line segment, the equation is

Qf) = C,f £, < F<fy,, (a)

1

where the dimensionless slope, a,, is given by
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Fig. 1. Typical spectral density plot
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_ log (Q4,,/9;)

*i 7 Tog (F,0/10) ®
and the constant, C,, is given by
Qi Qio]
ci = “a. = = (b)
f,' T

By substituting Eq. (b) into Eq. (a) one ob-
tains

co [£YP . AR ()
«f) = @ (fi) Vi (fiol) d

Substituting Eq. (a) into Eq. (1) yields

N fien
(@) = Z f C,f hdf. ()
i=1 'l

The preceding equation shows that (q?) is
simply the sum of N individual integrals, each
extending over a single line segment; that is

N
@H= 2 @;. 6

where
i+l a
(@h,; - f c, £*1af. (@

To evaluate (q?), it suffices to derive
eg’uatlons for the evaluation of a typical term
(a”);. Note that even though the i-th line seg-
ment, as shown in Fig. 1, has a positive slope
(a; > 0), it is generally possible for the slope
of the i-th segment to be zero (o, = 0) or nega-
tive (o.i <0).

Integrating as indicated in Eq. (d) and using
Eq. (b) yields the two equivalent expressions

-5 Qiol f. i
@d; =71 [fiol' fi(f_!—) ]

i+l

Q ] fioa)*i ]
“i—*l i+1 T L

provided that o. + -1. Inthe event o, - -1,
Eqs. (b) and (d) lead to

(e)
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(;f)‘ = Qq4y flol In (fhl/fl)

. (6)
= Q f; n (f,,/6))

Formulas (e) and (6) for (q7) are those
most commonly presented in the literature
[8,4,5,6]. However, Formula (e) is time con-
suming and awkward to use in performing man-
ual calculations because it is necessary to
evaluate either (f,/f;, )" or (f,,,/f)"%.
Comyter programs using Formula (e) must
incorporate checks to assure that the magnitude
of these quantities does not exceed the allowable
range of the computer.

Formula (e) can be replaced by a much
simpler formula by noting that from Eq. (b),

(fiu/fi)ci Q141/9) - 0

By substituting (Q,,,/Q;) for (f,,,/f;) ' in
Eq. (e), one obtains the result that if o, } -1,
then

=7 1
(a); = a1 [Q;.. fion - Q4 fl] - (M

This formula, which can be used in performing
either manual or machine calculations, does
not have the disadvantages of Formula (e) as
previously cited.

As o, approaches minus one, Eqs. (7) and
(e) approach the inceterminate form (0/0) which
causes computational difficulties. Equation (6)
is modified as discussed in Appendix B for use
when a; is close cr equal to minus one. The
modified formula is given as Eq. (B-1), which
consists of averaging the two formulas given in
Eq. (68). It should be noted that Eq. (B-1) re-
duces to Eq. (6) for o, = -1 and that the error
(a; ¢ -1) from using Eq. (B-1) is considerably
less than would be obtained from using either
of the formulas from Eq. (6).

ALTERNATE FORMULAS

In many cases the slopes of the line seg-
ments represaenting a spectrum are given in
terms of decibels/octave. If 6, is the slope
expressed in decibels/octave, then there is
a simple relation between ¢, and o,. Let K,
be the number of octaves between f, and f,,,,
and It M, be the decibel change between Q,
ard 9,,,. Then
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log,, (fj.\/f;)
K; = log, (ful/fi) = L% (a)
M, = 10 log,, (Q;,,/Q,} ®)
Now 6, = W,/K,, or using Eq. (3)

= 10 (log,, 2) a; . (g

For all practical purposes Eq. (g) may be re-
placed with

6; = 3a;; (10)

therefore Eq. (7) can be rewritten in terms of
6, as J

@)= 7 [Qul fio1m @ fx]

Q%) = (11)

for 6, { -3. U 6, = -3, then Eq. (B-1) should
be used.

EXTENSION OF FORMULAS

Often one is given Q(f) corresponding to
q(t), and it is necessary to compute either (p7)
or (r7) where p(t), q(t), and r(t) are related
as follows:

P(')=;—d:v

r(t) = Jth e (b)
I P(f) and R(f) are the spectral densities
associated with p(t) and r(t) respectively, then
the following relations may be obtained from
general theory [1}:
P(f) = (2rf)? () (12)
R(f) = Q(f)/(2nf)?. (13)

Therefore, the quantities (p?), and (r7),
can be expressed in terms of Q; and a; using
Eqs (12), (18), and the simpliﬁed formulas for
(pY); and (r7); analogous to Eq. (7). That is,

@ = B ot - o i) o 43 (0

(2")2 Q; fi’ In (fnl/fi)

N,

(h)zonl f:u In(f;,,/f;), a;j=-3 (15)

"

(16)
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Successive applications of Eqs. (12) and
(13) make it possible to express the mean-
square amplitudes of higher derivatives or
multiple integrals of q(t) using the coordinate
points (f,.Q;) and the slopes q;.

DISCUSSION OF FORMULAS
AND TABLES

Given aay one of the spectral densities
A(f), V(f), and D(f) corresponding to acceler-
ation s; velocity v; and displacement (single
amplitude) d, one can co glte the mean-
square amputudes (a¥), (v1), and (d?) using
the formulas derived previously. The formulas
to be used for the mean-square amplitudes
when the acceleration srectral density is known
are given in Table 1. Tables 2 and 3 give simi-
lar formulas in terms of velocity and displace-
ment spectral densities, respectively. In ap-
plying the formulas given in the tables, the
following units must be used: (a7), g; A(f),

g2/Hz; (v, (in./sec)?; v(f), (in. /sec)?/Hz;
(d%), (in.)?; and I(f), (in.) 2/Hz.

Once the mean-square values associated
with the individual line segments have been
computed, using the formulas from the tables,
Eq. (5) is used to obtain the total mean-square
value. The root-mean-square value is obtained
using Eq. (2).

In addition to the assumption of stationarity,
if one assumes that the random process is
Gaussian with a mean value of zero, the root-
mean-square value from Eq. (2) ie the standard
deviation or q, as it i3 occasionally designated.
Frequently we are interested in q,, which is
given as

Qy, = 3qrml . (18)

In the case of displacement one may be in-

terested in the three-sigma, peak-to-peak dis-
placement, which is given by

dp-p =
{(in. double amplitude).

2d,, = 6d (19)

TS

An additional equaticn, in terms of q,_,, i8
the decibel change, m, between two levels,
which is given by




TABLE 1

Acceleration Spectral Density — g2/Hz

MEAN-SQUARE AMPLITUDE

DIMENSIONLESS SLOPE: a,

SLOPE (db/OCTAVE): 8,

Mean-square acceleration: g 2

- fag - 3. -
agtl [AZ'Z Al'l] 8. +3 [AZ'Z Al'l]
a, # -1 8,# -3
Ay fp +A 1 .
CUEAN
a, : - 8. : -3

Mean-square velocity: (in/sec)?

v

(386)° [ﬁ; A.]

5386 [4, _ ﬁ]

(Gg'l)(Z')z t, °f, o —327) F; f
ag# 1 8 #£3
(386)° [A, A,
vl A BUR
22m 2 N
ags=l 0e:=3

Mean-square displacement: (in)2

(386)° [Ig A.]

3(38612 [g _ f_.]

__ (3860 Mell]| | EAIE
(g-32e* |12 3] [Be-902m® |3
ag #£3 a, #9
@%) =
158612 (A, ol In(t, /1)
ULy o Rl
2(2w) 'zs 'ns 2
¢.'3 8.'9
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TABLE 2
Velocity Spectral Density — {in./sec)?/Hz
MEAN-SQUARE AMPLITUDE | DIMENSIONLESS SLOPE: a, | SLOPE (db/OCTAVE): 8,
Mean-square acceleration: g2
2 3 3 2 3 37
(2w) [v, =it ] 3(2¥) [vzf2 -V
(e, + 3)1(386) (8, + 91(386)
e, #-3 6, #-5s
(0% =
2 3 3
(2w)° [Vofa +Vi
Intf, /f)
(386)° [ 2 2/h
a, = - 3 0' = -9
Mean-square velocity: (In/sec)?
1 vt _3 [vafa-wf
a, +1 6,+3 |
a, p-i 0,¢-3
Wi =
222N iy
a,= -1 8' - -3

Mean-square displacement:(in)2

! [_V_,_ v
(ay-n2m? 2 N

a, ¢!

f

— 3 |_4
6, -32e? [f2 h

6, 43

ay,=|

| v, V
+ In(f,/¢)
212m? [7: 7:] 2%0

6,=3
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TABLE ¢

Displacement Spectral Density — (in.) */Hz

MEAN-SQUARE AMPLITUDE

JIMENSIONLESS SLOFE: a4

SLOPE (dh/OCTAVE): 8,

Mean-square acceleration: g2

(2')4 s .)
— _ (ogf2-0, ¢
{ ag+3)(386) (D“ '

d.‘—s

. 4
sast oo

(8 ¢+ 15X38€)"

PR R )

{386) 2

.4 L] [ ]
i2¥; (D'" *0Y )lnu,u.)

8e¢s-18

Mean-square velocity:(in/sec)?

3em”
0 Es :9 (Dz':" 0 'l')
‘

8,%-9

3 3
Daf24D, t
2m? (%) In(fy/1,)

a P} ==-3 9‘ s-9
Mean-square displacement: (inf
| 3
m (Dafa =D, f}) ﬁ {D,f,-0, 1)
ag#-l 8s#-3
(¢%)
Daf+ D, f,
— In(f/1)
a. [ | 9. 5=-3
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Occasionally one or more line segments in
a spectrum leaves the spectral density unknown
at one end point of the segment and a slope is
given instead. Equation (4) allows one to com-
pute the unknown spectral density using the fre-
quencies, the slope, and the known spectral
density.

A numerical example is included in Appen-
dix A to illustrate the use of several of the
equations which have been presented.

CONCLUSIONS

A compiete set of simplified formulas for
mean-square acceleration, velocity, and

displacement has been derived. These equations
are exact but 2:e considerably simpler to use
for both manual and Mi.cnae computation than
previously published formulas.

Additional formulas hive been included in
the paper in an attempt to have zll formulas
used in conjunction with a random vibration test
spectrum in a single document.
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Appendix A

NUMERICAL EXAMPLFE

To illustrate the use of the equations and
tables given in the body of the paper we obtain
a,,, and d__ for the spectrum given in Fig.
A-1. All of the coordinates of the end points of
the line segments are known except the spectral
density at f,. However, the slope is given as
6 db/octave. Equation (10) gives 6, = 3a; so
that a, = (6,/3)=2. Equation (4) is used to
obtain the spectrul density A, = A,(f,/i,)? =
0.0148 g2/Hz. The dimensionless slopes are
computed using Eq. (3):

a. = log (Q“|/Qi) .
V7 dog (/6

for example,

log (A,/A,) log (0.06/0.1)
“s° Tog (f,/f,) Tog (167/100)

It is convenient to tabulate the calculated
values as in Table A-1, as several steps are
involved in the computations. As spectral den-
sity is g%/Hz, we obtain the mean-square ac-
celeration and displacement formulas from
Table 1:

1
st Apar fioy “ A o F -1

@, - A £, +Af '
+
(%_i_i),n(,m/,‘), o - -1
(386\2 Aiﬁl -i a * 3
A a -\ g
iel i
@, = 386)2 /A A
(386) ( el i)
—— + —|In(f;,,/f;), 2, =3
4 3 3
2(277) fiol fl
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By carrying out the arithmetic one obtains
the entries in Table A-1, An intermediate step
giving A;f, and A,/f is performed prior to
using the preceding equations. The columns
(aT); and (d7); are totaled to give the total
mean-square amplitude as given by Eq. (5):

@)= ). @,

The root-mean-square amplitudes are obtained
using Eq. (2):

A

(12:49) “l-‘;)\
(fg,ag)
("vN)
('I-Al)
(1g.Ag)
1 $ + + t +
0 30 100 200 900 1000 200¢
FREQUENCY (Hz)
Fig. A-1. Typical acceleration spectrum
for numerical example
—\11/2
rms [(az)] = 9.8¢g.
—.11/72
rms = L(dD] 77 = 0.032 in.

The three-sigma, double amplitude dis-
placement may be obtained by using Eq. (19):

6d,,, = 0.198 in. DA.

P-p
TABLE A-1
Sample Calculations

i ay f; A L (ah),® A/EQ (F);b

1 10 0.0148 0.15 0.82 14,79 x19 -6 870x10-¢

2 0 26 0.1 2.60 7.40 5.69x10 -6 178 x10°¢

3 -1 100 0.1 10.00 2.23 0.10%x10 -6 2x10 ¢

4 ] 167 0.06 10.02 73.98 0.01x10"¢ ~0

5 -7.58 1400 0.06 84.00 11.54 ~0 ~0

6 - 2000 ¢.004 8.00 - ~0 -
a(al) = 95,97,
b3%) = 1050x10°8,
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Appendix B
EVALUATION OF INDETERMINATE FORMS

Associated with each equation for the
mean-square, there is a value, let us say C, of
the dimensionless slope o for which the equa-
tion reduces to an indeterminate (0/0) form.
Thereiore, when a = C, an alternate equation is
given. In a practical situation « may be close
to C so that the basic equation iz effect vely in-
determinate and yet the altzcnate equation is
nct exact. In these circumstances it is best to
use the alternate equation in the form given in
the tables and in Eq. (B-1) belo:':

Q f Q. f
@, = (Rl Ol ey, B9

Figure B-1 gives the error caused by using
either of the alternate forms of Eq. (8) in terms
of Ja-c|. . mure B-2 gives the error caused
by using t.. ~rnate form as given by Eq.
(B-1). It is . ar from these figures that the
use of Eq. (B-1), in instances where a is close
to ¢, will yield fairly accurate results when the
basic mean-square equation is, for practical
purposes, an indeterminate form. Figure B-2
is applicable to all alterr.ate equations given in
Tables 1, 2, and 3.

MAXIMUM ERAOR (PERCENT)
8

ta/ty m10

fa/t) m 1.8

fa/t) = 1.1

+
L] o e.2

le=C}|

Fig. B-1. Maximum error from using Eq. (6) in place of Eq. (7)

ERROR (PERCENT)
-

fo/tym2
fa/ty = 1.8

6.3 0.4 o.3

le-Cl

Fig. B-2. Error from using Eq. (B-1) in place of Eq. (7)
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CONCENTRATED MASS EFFECTS ON THE VIBRATION
OF CORNER-SUPPORTED RECTANGULAR PLATES

Richard L. Barnoski and Terry D, Schoessow*
Measurement Analysis Corporation
Los Angeles, California

For certain problems involving the shock and vibration isolation of
panel-mounted electronic equipment, the physical system can be ideal-
ized as a corner-supported, rectangular plate with a geometrically
centered, concentrated mass. This paper examines the variation of the
fundamental frequency of this idealized configuration as a function of
the plate dimensions, the boundary restraint at the corners, and the
added mass. Three rectangular plates a-e considered with aspect ra-
tios of a/b = 1.0, /b = 1,5, and a/b = 2.0, and the boundary restraints
are either simply supported or rigidly clamped. The added mass, ex-
pressed as a ratio of the plate mass, varies in discrete increments
ranging from 0 (an unloaded uniform plate) to 4. Results obtained by
analog simulation methods which have been experimentally verified are
dis;!: yed graphically in parametric form and are suitable for use by

hme oS i e o

designers.

INTRODUCTION

In the structural design of physical sys-
tems, problems which involve equipment
mounted on a stud-supported panel are fre-
quently encountered. A typical problem might
involve shock and vibration isolation of a sys-
tem in which the dynamic characteristics of the
equipment-panel configuration are important.
The fundamental modal frequency is often of
primary interest. In partial response to this
design problem, this paper considers the de-
termination of the fundamental modal frequency
of a corner-supported rectangular plate with a
geometrically centered concentrated mass.

The soluticns are obtained by analog simulation
methods and are presented in parametric form
suijtable for use by designers. The parametric
variation includes the aspect ratio of the plates,
the boundary restraint, and the added lumped
mass. Such solutions are substantiated by re-
sults of laboratory experiments.

PROBLEM DESCRIPTION

The idealized model is assumed to be a
homogeneous, thin, elastic plate of rectangular

geometry (see Fig. 1) with a lumped mass at
the geometric center. The governing equation
of motion is assumed to be of the form

DV2V2w + mw = f(x.y,t) (1)
where w is the plate deflection from its static

equilibrium position; m is the plate mass per
unit area; and

2
o= 4
dt?
3
D= Eh
12(1 - v?)
and
2 2
g2 o0, 2%
3,(2 3yz

The plate flexural rigidity D contains the Young
modulus of the material E, the plate thickness
h, and the Poisson ratio v, while the del oper-
ator V defines spatial derivatives involving
rectangular geometry.

*Mr, Schoessow is now with the Aerospace Corp., El Segundo, Calif.
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Fig. 1. Plate geometry

To calculate the desired modal frequencies,
one seeks solutions to the characteristic equa-
tion for the homogeneous form of Eq. (1), noted
as

Viw +

=0 (2)

olm

subject to the boundary conditions

v(0,0,t)W
w(0,b, t)

> - 0 @
w(a,0,t)

w(a,b,t) )

M, (0,0,t))

M__{0,b,
) W )

Iyy(a.o,t)

'yy(l.b.()}

and the mass constraints

A."(. b )_vlu Ax b ) v(a’Axbt)
Y Y Nty
. b
OJY(E.‘—.Z'

&y - akﬂ)
2") vv(z'z"z"'
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Here, M,, and W, define plate bending mo-
ments and A= refers to the mass at the center
of the plate which is distributed uniformly over
the dimensions 4x,4y, The boundary conditions
quoted by Eqs. (3) and (4) are those for simply
supported corner supports. For clamped cor-
ner supports, one requires the boundary condi-
tions of Eq. (3) znd those for the slope given by

0,(0,0,t)
Oxx(0,b, t)
0”(:.0.()

0yy(a.b.t)

METHOD OF SOLUTION

In this paper the modal frequencies are
determined by electrically simulating the plate
configuration and measuring the fundamental
resonance. The network used is a passive ana-
log simulatior: [1] which corresponds mechani-
cally to a lumped parameter representation and
mathematically to a finite-diiZerence model.
The difference grid is a uniformly spaced 9x9
mesh extending over the complete plate. Solu-
tions considering {inite difference models are
discussed in Refs. 2 and 3; solutions involving
an energy formulation are ccmmented upon in
Ref. 4.

The analog model physically consists of an
interlacing rectangular grid of Bernoulli-Euler
beams coupled by torque tubes with attached
masses at the beam intersections. It is topo-
logically similar to the physical configuration
and assumes mechanicai-electrical eguivalences
of force = current and velocity = voltage.

These networks are such that mass > capaci-
tance, flexibility = inductance, and viscous
damping = resistance. The spatiai geometry
and the required spatial differentiations are
accounted for by properiy interconnecting mul-
tiwinding transformers. Boundary conditions
are accounted for by opening or shorting the
circuit at appropriate positions so that bounda-
ries, at irregularly positioned support points,
can be treated with ease. Since mass and stiff-
ness properties are accounted ifor by the ca-
pacitors and inductors, nonuniform distributions
likewise may be treated most efficiently if first-
order difference approximations are acceptable.

#HYSICAL EXPERIMENTS

Laboratory experiments were performed
on six alurdnum plates with aspect ratios of




a/b = 1.0, a/b = 1.5, and a/b = 2.0. These
plates had thicknesses of h = 0,0625 in. and

h = 0,125 in. The corners of the plates were
clamped for the first series of experiments and
simply supported for the second series of ex-
periments. The added mass Am ranged over
the interval 0 < Am/M < 4, where M is the total
mass of the basic plate. A total of 12 sets of
data were taken for comparison with the analog
results,

The plate dimensions were 9 in. sq, 9 in.
by 13.5 in., and 8 in. by 18 in. Each plate size
was tested in *vo thicknesses: 0.0625 in. and
0.125 in. The plates were made of 6061-T6
aluminum 80 that E = 10.5x10% lb/in.?, , = 0.10
Ib/in.3 and » = 0.3. The concentrated mass
loads were applied over a 1-8q-in. area in the
centers of the plates and were secured to the
plates with dental cement.

The clamped condition was accomplished
by sandwiching the corners of the test plate be-
tween hardened aluminum blocks. The block-
plate-block sandwich was clamped to ""C" chan-
nel raiis that were bolted to a heavy concrete
foundation. This provided both zero deflection

and zero slope at the corner supports as re-
quired for clamped boundaries. This setup is
shown in Fig. 3. The fundamental frequency of
vibraiion of the panels showed a high degree of
sensitivity to the clamping force. The proce-
dure wae to "tune" the unloaded panels to the
theoretical natural frequency by adjusting the
clamping forces, then leaving these forces un-
disturbed while adding the masses to the center
of tke panel.

The test setup for the simply supported
corners was less involved and consisted of
resting plates on the points of No. 8 finishing
nails that had been driven through a predrilled
piece of 1-in. plywood (see Fig. 3). The cor-
ners of the plates were center punched where
the nail points made contict to ensure plate
contact at these locations during the experiment.
This arrangement precluded any attempt at
tuning the fundamental modal frequency of the
unloaded plate.

Figure 4 shows a block diagram of the in-
strumentation uted to measure the fundamental
mode of vibration of the plates. This instru-
mentation is listed in the Appendix. The test

Fig. 2. Test setup for clamped corners
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Fig. 3. Test setup for point-supported corners

osciliator controlled the horizontal sweep cn
the oscilloscope and the filtered output of the
accelerometer supplied the vertical signal,
The test plate was excited by gently tapping it
with a soft rubber mallet; the frequency ana-
lyzer was set on its narrowest bandwidth (6
percent) and tuned for maximum output. Thig
filtering operation eliminated all modes but the
fundamental, as well as high frequency disturb-
ances caused by striking the panel with the
mallet.

To measure precisely the frequency of the
fundamental mode of vibration, a test oscillator
was connected to the horizontal input of the os-
cilloscope. A circular Lissajous pattern then
was formed by adjusting the oscillator frequency
until it coincided with that of the panel. Since

this pattern is a function of the relative amnii-
tude and phase of the two signals, it reduces tc
a circle when the sigials are of equzl amplitude
and either 90 or 270 degrees out of phase. In
general, a lint is formed when the signals are
either in phase or 180 degrees out of phase,
and an elliptical pattern is formed with other
combinations of relative phase and amplitude.

RESULTS

The results of both the analog simulation
and experimental studies are shown by Figs. 5
and 6. These figures are families of curves
(in the aspect ratio a/b) plotted as a function of
the frequency ratio f,,/f,, vs the mass ratio
Am/M. The term f,, is the fundamertal modal

Bandpaaa
Filter

Vertical
1nput

Miciatura
Accelerometay Charga
~n Teut Amplifier
Plate
——
Taet
Oaciilator

Qacilloacope

F e - - -

Hozriaontal

1nput

Digital
Readont
Counter

Fig. 4. Test instrumentation setup
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Fig. 5. Effect of a concentrated mass on the fundamental frequency
of rectangular plates simply supported at the corrers (analog results)
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Fig. 6. Effect of a concentrated mass on the fundamental frequency
of rectangular plates rigidly clamped at the corners (analog results)
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the plate-mass configuration while membrane forces and/or large deflection phe-
is nomena are acting to stiffen the plate. Such

results cannot be accounted for by the analog

a g results as the networks are based upon

[(.'.) . (%) cps, r=8=1, (8  Bernoulli-Euler theory implicit in Eq. (1).

k. 4
T

Suppose, for example, one desires to ecti-
which is notoed as the fundamental modal fre- mate the fundamental frequency of a thin, uni-
quency of a uniform, rectangular plate simply form, aluminum plate of dimensions s = b = 10
supported at ali odges. A comparison of the in. with rigidly clamped corner supports, a
Wf‘lmm“'“n"h""cm geometrically centered mass with A= 1, and
agreement; moreover, the results for the un- a thickness h = 00625 in. From this data,
loaded plate agree almost exactly with those
shown in Ref. 3. The behavior of the plate- _ .
mass s7stem over the range of masses added W& el
for botk boundary restraints is as expected; n = 1.625%10°% 1b-sec?/in. 3
that is, the fundamental frequency decreases : ’
with an increase in Aam. 80 that

For a given aspect ratio, f,,/f,, appears Dl 1 1
to approach an asymptotic value as the ratio foe =3 ﬁ[(ﬁ)’(ﬁ)]: 119 cps.

Am/M grows larger. Such a value may be inter-
prited as that in which the distributed mass of
the plate becomes unimportant relative to the From Fig. 6 where a/b=1.0 and 4o/ -1,
added mass Aa, and the composite configura-
tion behaves dynamically as a single-degree-

Lo 3

of-freedom: system. Experimental ctudies on [P 0:3,

clamoed corner plates showed that additional and

masses (3 < AnM < 7) caused in increase in

the fundzmental frequency. This suggasts plate f,0=0.3x119 = 35.7 cps.
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Appendiz A

LiST OF TEST INSTRUMENTS

Oscilloscope: Tektronix 545, CA plug-in Accelerometer: Unholtz Dickie Mode! 2ES
Test oscillator:  Hewlett Packard 209 CD Frequency analyzer: Bruel & Kjaer 2107
Charge amplifier: Unholtz Dickie Model 11 Counter: Hewlett Packard 5216A
Series
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DISCUSSION

H. S8aunders (G.E. Co.): In the analytical
work, what method did rou use to deteriaine the
frequencies ?

Mr. Schoessow: I do not understand. We
were comparing analog computer results to ex-
perimental results.

Mr. Saunders: Have you given any thought
to getting an analytical solution and checking
with the analog results?

Mr. Schoessow: I think that is what
prompted the entire exercise. The analytical
solution just is not easily obtainable.

Mr. Saunders: No, you would have to use
the Rayleigh-Ritz or a similar method to ob-
tain the solution and even then there would be
problems.

Mr. Schoessow: Yes, it is an extremely
complex thing. Dr. Barnoski did all the analog
computer results and the theoretical analysis
that led to that point. I conducted the experi-
mental investigation, so that I personally have
not gone through all of these trials. He sald
that it was certainly much easier to do on the
analog computer. You can dial in varying
masses very easily. All of these parameters
are very easily adjustable since you have pas-
sive elements and they are all coupled with

*
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transformers. You can get a very quick simu-
lation and change parameters very easily.

Mr, Saunders: Have you given sny thought
tu using other than a constant uniform thickness
plate ?

Mr. Schoessow: I have not worked this
problem. I kmow there have been several
papers pressnted here in the last few days that
are well handled by digital approaches for
complex structures or structures that vary
over their areas.

D. Stewart (McDonnell %u
the concentrated mass uniformly r
over the plate or lumped in the middle ?

Mr, Schoessow: I am sorry I failed to
mention that, The concentrated mass was as-
sumed to be put in over one element of the
plate. We had a 9 by & in. grid so it would be
very close to attachment at a point or a very
small area. The experimental results were
also obtained by putting this over a 1-s8q-in,
area. We were using plates that were 9 by 9,
9 by 13-1/2 and 9 by 18 in.

Mr. Stewart: Are the results, then, for the
mass located at different spots on the plate ?

Mr. Schoessow: No, it is a centrally lo-
cated mass, and it is only for the fundamental
mode,

*
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VIBRATION OF ECCENTRICALLY STIFFENED PLATES

B. R. Long
Defence Research Establishment Suffield
Defence Research Board
Ralston, Alberta, Canada

Analysis of plates with eccentric stiffening involves simultaneous solution of plate bend-
ing equations, plane stress equations, beam equations, and displacement compatibility
equations. This solution does not seem possible in the general case; however, such a
solution can be obtained for the free vibratiozs dynamic behavior of stiffened rectangular
plates having one set of parallel stiffeners and having two simply supported edges or-
thogonal to the stiffener direction. This solution allows direct comparison with frequen-
cies and mode shapes obtained by other methods, such as the equivalent orthotropic plate
approach,

In this paper, displacement functions are assumed in the stiffener direction, satisfying
the simply supported boundary conditions. Application of the governing equations to each
plate segment and to each stiffener leads to a set of homogeneous equations involving un-
determined mode shape parameters. Coefficients of the equations contain the frequency
parameter w. As the determinant of these coefficients must be zero for nontrivial solu-
tions, a computer search routine is used to find values of w that cause singularities of
the determinant.

Because of the large number of variables in the analysis, general quantitative results
are not presented; however, calculated frequencies and mode shapes are shown for some
specific examples. These results are compared with those obtained by orthotropic plate
theory. Increasing stiffener eccentricity and spacing are found to increcase the discrep-
ancy between frequencies predicted by orthotropic theory and those predicted by the
beam-plate theory, with the former being larger in the examples considered.

For a given plate configuration in which only the stiffener depth is varied, it is shown
that certain frequencies are convergent, presumably because the corresponding mode

-

shapes become identical in the limit,

INTRODUCTION

Stiffened plating forms a structural ele-
ment of practical importance and has therefore
been the subject of a number of investigations;
however, exact analytical solutions have been
obtained only for highly idealized situations.
Theoretical considerations often involve treat-
ing the structure as an equivalent orthotropic
plate that reflects the combined properties of
plating and stiffeners. A primary objection to
this approach is that it probably will not be
valid for wide stiffener spacing. Other ap-
proaches involve treating an infinitely long
panel or a panel with a single stiffener.

Statically loaded, rectangular plates stiff-
cned in 2ne direction and having two opposite
edges simply supported were analyzed by Von
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Karman [1] who neglected the bending rigidity
of the plating. Investigations were carried out
by Reisener [2] and Yamaki [3] on panels of in-
finite length. Clarkson [4] studied the case of a
long rectangular panel with stiffeners in one
direction and having a single concentrated load
applied to one of the stiffeners. Smith [5]
solved the problem of a statically loaded, rec-
tangular panel with a finite number of stiffen-
ers in one direction.

Among the earliest studies of the dynamics
of stiffened plating were the investigations of
Hoppmann, Huffington, and Magness [6]; Hopp~
mann and Magness [7]; and Huffington and
Hoppmann [8]. These analyses used orthotropic
plate theory based on experimentally derived
rigidities as suggested by Hoppmann [9]. Kirk
[10] used isotropic plate mode shapes with the
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Rayleigh method 1o determine the frequencies
of panels with many stiffeners or one atiffener.
Wah [11] considered free vibrations of a rec-
tangular plate having a finite number of stiffen-
ors of zero eccentricity. Mikulag «nd McElman
[13) investigated the dynsmic behavior of &
stifiened rectangular panel by "smearing out"
the stiffener effects.

Within the limitations of small deflection
slasticity theory, the aim, in this paper, is to
develop an exact solution to the problem of free
vibrations of a stiffened rectangular plate hav-
ing two edges simply supported and having one
set of eccentric stiffeners normal to the simply
supported boundaries.

NOMENCLATURE
a,b  Plate segment dimensions
d  Half stiffener width
e, Stiffener eccentricity

f.m,5,Q  Stress resultants at edge of plate

segment
h  Stiffener depth
t Plate thickness

u,v,»  Plate«displacements
u,v,v,0 Beam displrcements
x,y.z  Plate coordinates
X,¥.2  Beam coordinates
x,.y,  Coordinaies for entire panel
A ... A, } Coefficients in plate segment dis-
B,....,B, | placement expressions

D  Plate bending rigidity
| A Stiffener bending rigidities

]  Stiffener torsional rigidity

T Time
U,v.X  Plate displacement functions
U,v,X,6  Beam displacement amplitudes
B\ Roots of characteristic equation

for X
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v Polsson's ratio
p» Plate mass per unit area

p,  Stiffener mass per unit length

«  Frequency parameter

DERIVATION OF EQUATIONS
Plate Equilibrium

A stiffened plate typical of the type to be
considered in this paper i8 shown in Fig. 1.
Each plate segment {8 assumed uniform and
isotrogpic and, for simplicity, plate segments
are assumed to be identical to each other.
Theze comments apply to the stiffeners as well.
Coordinates x, y, and z for plate elements and
X, y, and ¥ for stiffeners are shown in Fig. 1,
and corresponding displacements are denoted
by u, v, and w for plates and G, v, and # for
stiffeners. Stiffener eccentricity is defined by
e, = (h-t)/2 where h ig the stiffener depth
and t is the plating thickness. Consideration
of vertical equilibrium of plating leads to the
well-known plate equation

V4w +

w=0, (1)

oo

where , is the mass per unit plate area, D is
the plate bending rigidity, V¢ is the biharmonic
operator, and a dot infers differentiation with
respect to time. Noting that the boundaries

N

-1
Yo
b—o—ﬂ-
J Ign _L:
L 5 1 1=
I ', T v

Fig. 1. Typical stiffened plate




y = 0,b are simply supported, the free-
vibration deflections ure assumed in the form
v = X(x) sin ayei“T, where a - mn/b, and
m=1,2,....

Substitution in Eq. (1) ieads to a general
solution for X; namely,

X = Ajcosh Ax + A sinh Ax + AjcosfBx + A, sinfx
(2)
where

-

)

Since only smali deflections are considered, the
in-plane plate motions can be considered sepa-
rately from the beading. Equilibrium consider-
ations lead to the governing equations

a 2
%4»%(1-1/)%%#%(1#1/)%%:0 @)
%#%(l-v);‘—z‘;+%(l+v)%=0. (4)

when in-plane inertia effects are ignored.
Membrane displacements are assumed in the
form

U(x) sin ayei“T (5)

u
v = ¥(x) cos ayeieT, (6)

Substitution of Eqs. \'3) and (4) into Eqs. (5) and
(6) leads to general solutions for U.V as

U = B, cosh ax + Bjax cosh ax + B, sinh ax

+ B, axsinh ax (1)

¥ = (¥B;+B;) cosh ax + B, ax cosh ax
+ (B, +7B,) sinh ax + B, ax sinh ax, (8)

where v = (3-v)/(1+v) and v i8s Poisson's
ratio,

Stiffener Equilibrium

Forces applied by the plating on a stiffener
element (per unit length) are shown in Fig. 2.
Here subscripts i refer to stress resultants
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d¢f

Fig. 2. Forces on
stiffener element

along x=0 in the ith plate segment and sub-
scripts j refer to edge x=a of the jth plate
segment. The shearing stress resultants s,Q,
normal stress resultant f, and bending mo-
ment m can be calculated from the plate dis-
placements u, v, and wv. Considering moment
equilibrium in the %-7 plane force equilibrium
in the %, y, and 7 directions, four equations
are obtained involving the stiffener displace-
ments u, v, ¥, and ¢, where 6 is the torsional
displacement. From moment equilibrium

2
J %y_—f+ dQ;+ Q) + ey(f; - ;) + my-m, = 0, (9

whare J is beam torsional stiffness and 2d is
the stiffener width.

Considering forces in the x direction,

“ ds, ds,
-Ellgy—_:i+ fj-fi + d('f:;l"'f:y_,)= 0, (10)

where EI, represents the atiffener bending
stiffness in the X-y plane. Equilibrium in the
y direction requires

2~
28 2Y 4 (3,-9): 0,
d%

(11)

Consideration of forces in the z direction
leads to




d
n,ﬁop.Io(Ql Q) t e, (—d—;-- d.y)zo
(13)

where RI_ is the beam bending stiffness in the
x- !phnoandp.lsthemotmﬂenerper
unit length.

Beam displacements are assumed in a

form satisfying the simp)s support boundary
conditions, namely

r. (13)

6 = & sin ayw e“TJ

Making the appropriate substitutions into
Eqgs. (9) to (12) and writing these equations for
each of the N stiffeners leads to 4N homogene-
ous transcendental equations involving the con-
stants A.B for each plate and the constants
U.V, ... for each stiffener.

Continuity of Displacements

Considering the edge x= 0 of a plating
segment, for continuity of defiection,

Ul =T-e,8 1
- ow o
vI._°= V- e.g- dgL
'|..° =W+ ) (14
and
o] I
3!._0 J

Similarly for the edge x=- a,

u|,_.= u-elb

Vjeo = V - e.%* d:uy—:

wlyey= ¥- 8 >. {15)
and

L

L3 P J

These equations are applied to all edges of
plate segments which terminate at a stiffener.
At the right and left hand edges of the stiffened
panel, boundary conditions must be applied to
the plate deflections. Though others could be
used, boundary conditions chosen for the first

plate c2gment, are

W = 0
f|,_° =0
le-o = 0 >. (16)
and
| amo = K =
m|, e = K
0 ax x'oJ

where K is a constant describing the support
stiffness. Identical conditions apply along the
edge x - a of the last plate segment, except
that for the last condition,

ow
m'x-u = lsx_!-.' (17)

Making the appropriate substitutions in
Eqs. (14) to (17) resuits in a set of 8(N+ 1)
homogeneous equations. Thus, for a plate with
N stiffeners there are 4(aN+2) simultaneous
equations in the coefficients A,B,v, etc.

Solution for Frequencies and
Mode Shapes

Ciearly, for a nontrivial soiution, the de-
terminant of the coefficient matrix must be
zero. A crude but effective method of solving
for the natural frequencies invoives a triai and
error computer solution. Essentially, «, the
frequency parameter, is piotted against D(«),
the ¢ terminant value, and zero values of D(w)
are looked for. This can be accomplished by
plotting D(w) for successively smaller incre-
ments of » untii singuiarities of the determi-
nant have been isolated. Within these ranges,
convergence on the frequencies is facilitated by
a linear interpolation procedure. For the ex-
amples presented beiow, determinant values
were found by the standard IBM subroutine
MINV. For problems involving larger matrix
orders, a more efficient approach should be
sought, as the computer time required by this
method would become prohibitive.

To find mode shapes corresponding to par-
ticular frequencies, one of the unknown (nonzero)
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displacement parameters may be assumed ar-
bitrarily and the others found in terms of this.
Computer solution for the examples presented
below used the standard IBM subroutine SIMQ.

Examples

Natural frequencies and mode shapes were
found for three stiffened panels, each of which
had outside dimensions of 10 in. by 15 in, All
edges were t{aken as simply supported. The
panels had either one, two, or three stiffeners
uniformly spaced parallel to the short side.
Stiffeners and plating were assumed to be mild
steel (E = 30x10° psi, » = 0.3) with the plating
0.1 in. thick, Stiffeners were taken as 0.25-in.
wide and frequencies and mode shapes were
calculated for various depths of stiffener, i.e.,
for varying eccentricity. In the following sec-
tions the mode frequencies are referred to as
f,a Where m is the number of half sine waves
in the y direction and n is the number of half
sine waves in the x_ direction for an unstiffened

panel.

Figure 3 shows the frequencies f,,, f,,,

f,, and f,, for the panel with one stiffener.
Figures 4 and 5 show these same results for
panels with two and three stiffeners, respec-
tively. Frequencies corresponding to those
shown in these figures were calculated accord-
ing to the orthotropic theory of Mikulas and
McElman [12]. Figure 6 represents the dis-
crepancy in these calcuiations, expressed as a

FREQUENCY (Hz)

lOOOr
700 6,
/\/
§ooq
] —_—
3 for
¥
“w
200f 5
-
100 1 i 1 1 i

Q) 02 Q3 ¢4 03
ECCENTRICITY (in)

Fig. 3. Frequencies for
plate with one stiffener

percent of the frequency by the current method,
for the fundamental frequency of each of the

panels.

The same comparison {8 made in Fig. 7
for four natural frequencies of the plate with
two stiffeners. Figure 8 shows the variation in
the f,, mode shape in the x-z plane for the
panel with two stiffeners.

[+1] a2

1
Qa3 04 oS

ECCENTRICITY {in)

Fig. 4. Frequencies for plate with two stiffeners
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Fig. 5. Frequencies for plate
with three stiffeners
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Fig. 6. Difference in fundamental fre-
quencies found by orthotropic theory and
beam-plate theory
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CONCLUSIONS

The method outlined in this paper provides
a straightforward approach to the determination
of mode shapes and natural frequencies of a
class of stiffened plates. Because of the large
number of variables involved in the analysis, it
is impossible to present general quantitative
resuits; however, some general observations
may be made:

1. Natural frequencies of modes with nodes
at stiffener locations do not increase signifi-
cantly with stiffener eccentricity. This can
result in a frequency f,  greater than a fre-
quency f,, when i < j, For example, in Fig.

3, f,, becomes greater than f,,.

2. Certain of the natural frequencies tend
to converge as stiffener eccentricity becomes
large, as illustrated in Figs. 4 and 5.

$. Frequencies predicted by the orthotropic
theory of Mikulas and McElman [12] differ
greatly from those of the current beam-plate
theory when the stiffener spacing and eccen-
tricity are large. The same is true of mode
shapes predicted by the orthotropic theory as
these are sine funciiuns in the x, coordinate.

4. For problems involving a panel with
many stiffeners, it would be necessary to use
a more efficient method to find the natural fre-
quencies, as computer time required by the
method described would become excessive.

DISPLACEMEN?

PER CENT OF BEAM -PLATE FREQUENCY

| i ki A A J

01 02 03 04 03
ECCENTRICITY (in

Fig. 7. Difference in frequencies found
by orthotropic theory and beam-plate
theory for plate with two stiffeners

Alternatively, reasonable approximations to the
natural frequencies for this case might be ob-
tained by assuming a plate of infinite length.

's 4015

15 Xglin)

Fig. 8. Variation in f , mode shap: with
eccentricity for plate with two stiffeners
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DISCUSSION

Mr, Forkois (NRL): Your sketch showed
an integral stiffener. Will this method be ap-
plicable to bolted stiffeners, riveted stiffeners,
welded stiffeners, or solid single stiffeners? 1
think there would be some differences.

Mr. Long: Yes, I think so too. I would ex-
pect that it may be reasonable for a welded
stiffener, but certainly questionable for bolted
or riveted stiffeners.

W. Wassman (NOL): I noted that the accu-
racy decreased with the eccentricity of the
stiffeners and that the mode shapes changed
with the eccentricity of the stiffeners. This
leads me to suspect thut tiie assumed mode
shapes were leading to the loss of accuracy.
Did vou investigate the possibility of assuming
a more complex mode shape ?

Mr. Long: No. Of course, the reason one
assumes the simple supports is to get these
nice simple sine functions in the Y direction;
otherwise it is difficult to satisfy the governing
equations.
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D. Egle (Univ. of Okla.): I have a question
about the continuity conditions. You didn't men-
tion just what they were. Do you use the conti-
nuity equations in which the normals in the
plane and the normals in the beams remain
normal to the plate? Do you assume a straight
line distribution, essentially ?

Mr. Long: Yes.

Mr. Egle. There has been some similar
work on ring stiffened shells at Southwest Re-
search Institute. They found, in essence, the
same thing that you did — that tk.2 average
smeared analysis was not valid for high end
numbers or circuinferential wave numbers.
They made one interesting point which I wonder
if you have tried. The frequencies when the
rings are essentially infinitely rigid are very
similar to the frequencies ‘or a shell that is
simply supported between twe rings. Did you
compare your frequencies for large eccentrici-
ties with the frequency of a simply supported
plate, the width of which would be just the dis-
tance between two stiffeners?




oMr. Long: I have looked into this type of
thing but 1 have rot compared it te a fully simply
supported plate. I looked into simple supports
on three sides and a fixed edge on the other
which, for example, is what the two outside
panels in this example would effectively be. I

*
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locked into the case of two edges built in and
two edges simply supported which is what the
inside panel here would be. You get something
somewhere in between for the fundamental
mode shape.




CRACK DETECTION IN A STRUCTURAL BEAM
THROUGH CROSS-CORRELATION ANALYSIS

F. Baganoff
Baganoff Associates, Inc.
St. Louis, Missouri

and

D. Baganoff
Stanford University
Stanford, California

A new method fo. nondesiructive structural testing is being developed, and when per-
fected, the modai vibrations of a simple primary structure, such as a torque box, will be
monitored in response to . broadband, mechanical force input. The resulting electrical
signals, seznsed at two or more preselected points, would be cross correlated to obtain
computerized engineering curves. This study concludes that any changes due to fatigue
that are introduced into the structure will produce corresponding changes in the station-
ary process and will be reflected in the fingerprint curves, This standard fingerprint
will be stored for later comparison with test fingerprints obtained for structures with
suspected structural fatigue. Further, it is expected that in the future an average curve
obtained for a suitable number of production items may be used as a basis for qualifica~
tion testing

In a study that is to serve as a fundamenta!l building block, the modal vibrations for a
structural beam were both analyzed in the laboratory and modeled mathematically. Two
identical beams were used in the ¢ eriments, but one of the beams had a cross-sectional
crack placed in it, Mathematicall. the fissured beam was modeled, as two "lightly cou-
pled," second-order mechanical systems. The equations show that at one extreme, that
is when the fissure is almost through the beam, each pair of symmetric and nonsymmet-
ric modes about the crack approack each other in frequenry. The cross correlation of
the two response signals produces a characteristic ''beat frequency' envelope on the time
cross-correlation curve that becomes lower in frequercy and amplitude, hecause of the
influence of an exponentially decaying function, until it is aonexistent when the beam be-
comes broken in half, At the other extreme, when the fissure is very shallow, the or-
dered set of higher frequency, modal vibrations produces a time cross-correlation curve
in which the envelope peaks in a uniform manner and then decays to zero.

The experimental results confirm the uniform peak predicted for the homogeneous beam
and the predicted "beat frequency" envelopc for the damaged beam. It may be noted that
these radical departures were obtained for a very shallow crack. It will be shown that
the cross-correlation function acts as a phase detector and is very sensitive to changes
in the modal frequencies. To make these findings practical, cross-correlation functions
with long averaging times will be necessary to insure data repeatsoility.

Continued investigations in this area will deal with the repeat of this hasic experiment to
try to evaluate the coefficients and tc extend these methods to other structural shapes,
cuch as ""T'" and "H'" beams.

INTRODUCTION

This paper presents the results of research
in a new computerized method for monitoring
the structural integrity of a beam. Experimen-
tally, a homogeneous beam was excited laterally
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by a broadband point force and the resultant
modal vibrations were sensed by two sensitive
ccelerometers. Previous experiments in
other areas had <hown that the time cross-
correlation function for twe random signals
was particularly sensitive to relatively small

ot
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changes in component frequencies in the twe
signals. The parallel analytical study showed
that a computerized computaticn as this would
have to be used to detect the small charges in
tie modal frequencies of the vibrating beam as
& result of the introduction of a small cross-
sectional crack.

Both the experimental and theoretical re-
sults show that the time correlation function,
because of its nature, is an ideal computerized
output. For large time delays, this function
acts as a phase sensitive detector. The method
would be severely limited if it were not possible
to compute the correlation points using averag-
ing times in excess of 20 sec.

Although the structural beam chosen for
analysis is fairly uncommon in useful struc-
tures, it represented a formidable problem for
analytical study. The plan is to use the present
results as a building block in the eventual un-
derstanding of the prediction of changes in more
compiex structures. It is expected that for
complex structures the significance of changes
in the time correlation function will have to be
developed empirically.

Research is continuing to analytically pre-
dict the changes in the time cross-correlation
function as related tu where, alcng the beam,
the crack is located, the extent of the fissure,
and different end conditions on the beam. Fur-
ther work is planned to develop a broader un-
derstanding for more complicated structures,
such as "T" or ""B'" beam construction, or pos-
sibly a torque box configuration such as that
found in an aircraft wing. However, it is doubt-
ful that the onset of fatigue in typical built-up
aircraft structures wiil be predictable in the
time cross-correlation functions, except as
deveioped empirically.

A computerized method for continuous sur-
veillance of the structural integrity of transpor-
tation equipment has long been needed. With
the recent advances in the passenger carrying
capability of the coming commercial aircraft,
structural surveiilance of the airframe and jet
engines requires greater emphasis on the de-
velopment of this method. Other needs, such
as the structural surveillance of bridges, build-
ing structures, Naval ships, and motor vehicies
readily come to mind.

DEVELOPMENT APPROACH

Thz object of this investigation was to un-
derstand the phenomenon behind the cross-
correlation functions as they pertain to the

56

cracked beam. In addition to the two mzjor ap-
proaches, previouely mentioned, a third and
iess important approach was also taken. In the
iatter case, cross-correlation functions were
hand calcrvlated using modal response data ob-
tained with sinusoidal excitation, Throughout
this work, the comparisons are based more on
a qualitative than a quantitative nature.

Parallel experimentation on an aircraft
stabilizer indicated that, analytically, a coupied
modes approach would not be unreasonable.
The cross-correlation functions, in this case,
are approximately identical for both positive
and negative time delays, indicating that a
standing wave phenomenon probably exists.
However, the curves are not perfectly sym-
metriczl, suggesting that some traveiing wave
energy may also be present. Further, the
imaginary envelope for these functions seems
to indicate that a beating phenomenon is taking
place for this typical built-up structure.

Because of practical limitations, there are
obvious differences between the mathematical
model and the experimental setup. The mass
loading of the beam by the shaker and the two
acceierometers was found not to be a factor.

In the experimentation, it was found desirable
to use a peaked broadband force to primarily
excite the higher frequency modes. Also, utili-
zation of a two-point force input was considered
but found not to be a factor. The study proposes
to show that the bunching of the modes at the
higher frequencies causes the cross-correlation
function to beat.

MODEL

In the case of the beam that is nearly sev-
ered, the resulting two vibration systems act
almost independentiy of one another. Each
system har a fundamentai vibration mode with
a freguency «,, as the two beams are equai in
iength. The introduction of a small amount of
spring coupiing causes the two fundamental
moaes to become phase coherent, and thus, to
generate two new frequencies, o and 5, com-~
bining both systems into one. In one instance,
the phase of the coupled force tends to increace
the apparent bending stiffness so that «, be-
comes 8. Simultaneously, the component force
that is out of phase tends to reduce the apparent
bending stiffness and produce the asymmetric
modal frequency, a. The concept of coupled
modes is a very powerful analytical tooi and
permeates many brauches of science.

Relerence should be made to Fig. 1 for a
drawing of the theoretical vibrating beam. The
assumgptions made are as follows:
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Fig. 1. Theoretical beam experiment

1. Assume symmetry on the two sides
(easy algebra).

2. By placing the crack above a support,
the solution will not degenerate to nonsense
when the beam is completely severed.

3. Locate the two accelerometers at the
points marked x and y.

4. Let the shaker be placed at point x and
designate the forcing function by F(t).

5. Let x and y represent the deflections of
the beam at the two points shown.

The total deflection x(£.t) for a beam with
pinned ends can be expressed as the product of
a function relating the distance along the beam
{ and of a function expressing time as the vari-
able [1].

x(hit) = 2 gy yo(e) .

The total deflection can be approximated by the
deflection of the fundamental mode x({.t) as
the force is applied at the center of each vibrat-
ing system. If some higher mode is excited
such as that which takes place in the experi-
mentation, then x(£.t) would represent this
higher mode.

The approximate motion of the two systems
can be described by the following two coupled
equations:

X+ 2rx + wl(x+ ey) = f(t),

(1)
Yy ¢+ wlexty) =0,
where
M = effective mass of beam of length L =
1/2 true mass
K = effective spring constant = 4gE]A.?

—
]

moment of inertia of the cross section
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E = Young's modulus
aluminium: E = 11x10° psi
steel: E = 30%X10¢ psi
€ = coupling term, where 0 < ¢ << |,
that is, < -0 for a severed beam
f(t) = F(t)M
y = damping coefficient, assume ¥
small, and
mo’ =] ](/" .

Define the operator D as follows:

2

D(x):(%+27%+mo’)x. 2

Then the two equations become
D(x) + ewly = f(t),

D(y) + ewy?x = 0,

In a like manner, define the operator H as
follows:

32 3 ?
H(y) = [(ﬁ + 2}' a—t + moz) - E’wo‘] y . (3)
The two equaticns become simply

Hly(t)] = - ew f(t),
(4)
Dly(t)] = - ew? x(t).
Using standard methods, the first equation
of Eq. (4) gives the relation between the power

spectrum of the input, S, (v), and the power
spectrum of the second coordinate, S,y (@), 1.e.,

[H(iwy|? Syp(@) = - ewo’ Seg(w) . {5)

where from Eq. (3)

H(iw) = [(i0)? + 2(iw) + @?]? - eTawg.

The second equation of Eq. (4) yields
D*(iw) S, () = - ewy! S, (), (6)

where from Eq. (2)

D*(iw) = (=iw)? + Dp{-iw) + wd.




S,y(«) i8 the cross power spectrum, i.e.,
the Fourier transform oi the cross-correlation
function R, (7).

Sy (@) = f e TR (T dT .

R, (7) = ensemble meax of [x(7)y(t+7)].

From Eqgs. (5) and (6), S,,(«) can be elimi-
nated to obtain

2 D.(lw)

7
S¢p(w) . (
() THGio)] ? £6(«)

S,y(w) = - €w

D*(iw) and [H(iw)|? can be rearranged and
written as

D*(iw) = (wyd-w?) = 2iyw,

2
[H(kw) | ? =[ (g} - w:)’ P P T (8)

+ 16732 E’wo‘ wl? |

For zero damping (y- 0), the roots of the
equation [H(iw)| 2= 0 are given by

(a.)o2 -w’) =t €w

or w? = w?(lte), and w
(4 roots x2).

n
-
€
3
™
-

If amall damping (y/w, << 1) i8 assumed
then it can be expected that the new roots will
be only slightly perturbed away from the above
eight roots. Using the assumption of small
damping (y/w, << 1), the roots are given by

w=tJal ¢ 2iay , +VBT+ 218y, (9)

where @ = w, vT-¢ and £ - o, VT+ € (i.e., the
roots for zero damping).

In terms of the roots given by Eq. (9)
|H(iw)|? can be expressed as

(@?- 21na- «2y(a? s 2iya - wly

[R(iw)]?

x (BY-20B- L) (BT 2iyB - W)
or

2wl + ) (10)
x (B4 AyIET- 28T Lt

|H(lw)| 2 - (al 4 4.),20.2

or

IH(iey| 2 = [4r2a?s al- »’)2] ["V’»“’ ‘ w’-w’)z]'
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Equations (8) and (10) can be substituted
into Eq. (7) to give

€ey(@) = -€w 18 (@)

(05 - w?) - 2iw

[4y%?+ (a?- w:)’] [4y282+ (8% - w:)’] )
1y
If the definitions for « and S are used, it
can be shown by using partial fractions that Eq.
(11) can be written as

x

-1/4
Sey(®) = Sgg(@) [ T
xy ff 4ylad + (a’-w’)z

1/4 2¢y w i2epw w1
4187 + (B2-why? @XA) ()B) )’

x

where (a)(0) stands for the product of the first
two denominators. As the last iwo terms are
of the order ¥? and y respectively, while the
first two terms are of the order of unity, the
last two terms can be ignored (as small damp-
ing is agsumed) tc write

sxy(w) = [__.;1/4—._.
4yl 4 (a’-w’)‘
1/4
* —/—_2] See(«) . (12)
471/32 + (ﬁz_wl)

Assuming white noise for S;,(v), the Fou-
rier transform of S,,(~) can be performed by
using standard tables. The operation is labori-
ous unless the simplifying assumption, y/«, <<1,
is utilized. The desired result simplifies to

_B?
1 2(8)? 3
N ( 8 (g
(A?

Rey(7) -

Y
(a)?

Equation (13) represents the general solu-
tion to be compared in its present form with
the experimental curves for the undamaged
beam. Note that Eq. (13) haa two terms: one
involving the perturbed frequency 3 and the
other a. Each term has a maximum value at

Al N b RS




7=0, but R, (7) does not necessarily peak at

7 = 0 because of the minus sign preceding the
second term. The minus sign can be interpretcd
as owing to the fact that = was designated as

the asymmetric frequency, or in other words,
the beam deflections x and y are 180 degrees
out of phase. Conversely, since 3 i8 the sym-
metric frequency, the two deflections are in
phase,

If more modes than just the fundamental
mode are considered, then it is reasonable to
expect that Eq. (13) will contain more of these
terms. The principle of superposition should
apply so long as there is no damping coupling
of moder. In the synthesized cross-~correlation
curve based on modal response data, three such
terms were considered and the resvlting syn-
thesized curve gave a good approximation to the
experimentally derived curve.

Equation (13) for a large crack (¢ << 1)
can best be investigated in another form. In
this case, the 2xponential terms and the coeffi-
cients reduce to one another:

aAwo\I-t-o'vo, [3 A)o\|+&'-0:v°.

However, the small terias in the two argumnents
must be retained:

cos (A7) - cos w\THer = cos wy (1 +é)7,
t
cos (ar) - cos “o\l - €7 % COS g (‘.--2—)7.

\ ExPONEN, T
SN

P'yl'r)

-lT
2 Wy

Thus Eq. (13) becomes

2

- — 7

1 20, | ( e)
R, = — 08 w, (1+=]T1
7 gt [ %0

€
- €08 w, (I-E)T]'
or
L2
. U e-i.“—o' sin (w,7 "n(ew‘r> (14)

xy 2“‘072 u) 3 2 0 ¢

Note that this result is for small dainping

(G -, << 1) and for a deep crack (e << 1), A
svn matic plot of this cross-correlation func-
tion is shown in Fig. 2.

The ac waveform «in(«,7) of the function
can be seen to e amplituu.: modulated by the
term sin [(¢/2)c,7]. &8 ¢ becomes smaller,
the peak for the first half cycle moves furthe.
out in 7 value, In the limit, the exponentially
decaying funciion with the exponent [-(¥/2)«,7]
keeps the envelope from ever peaking, and thus,
the cross-correlation function is zero for all
values of 7. This decaying term is present
because « and / are really composed of narrow
bands of frequency components owing to the
broadband excitation. When the sensor located
on the broken section is no longer responding
to a force input, it would be expected that the
cross-correlation function would be zero for
all values of 7.

"

SIN (19, T)

DELAY, T

Fig. 2.
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EXPERIMENT

For both the homogeneous and the crached
beam, experimental cross-correlation functions
were derived in the iaboratory to be compared
with the theoretical results d:scussed previ-
ously. The physical experirients differed in a
number of respects from the theoretical model
because of practical limitations. In each case
the beams were excited laterully by a "peaked"
broadband force derived from an electro-
mechanical shaker physically mounted near
one end. Two accelerometers, one mounted on
each side of the crack, sensed the accelerations
of the beam. The resulting two random signals
were applied to & hybrid cross-correlation
computer for near real-time analysis, A photo-
graph of the experimental setup can be seen in
Fig. 3.

The physical approximations that had to be
made are given in the next few paragraphs. To
begin with, cross-correlation functions were
obtained and compared for the two beams, while
still structvrally intact, to check their dynamic
reaponses at the higher modal frequencies.
The mass loads on the team by the shaker and
the uccelercmeters were expected to distort
the vibration modes. Certainly, there were
~her se¢:cond-order effects, such as the static
deflection of t..e beam owing to gravity, that
were ignored in this series of experiments.
The defiection signals seen on an oscilloscope
were ouly slightly distorted probably also
owing, in some part, to the local imperfections.
The knife-edge supperts at each end performed
satisfactorily, judging from the same oscillo-
scope displays.

The fundamental mode fraquency was ex-
perimentally determined to be approximately

4.1 Hz, which is consistent with the thinneas of
the beam. Their material was aluminum 0.5 by
1.0 in. in cross section and 6 feet in langth,
The extent of the crack can only be qualitatively
defined as extending a combined distance from
each side of approximately 20 percent of the
cross-section distance. The vibration modes
of interest in these experiments are for the
abstract numbers (n = 20 through 25). The
amplitude and frequencies of the responses ob-
tained, using sinusoidal excitation, and for )oth
the damaged and undamaged beams, can be
found listed for reference in Table 1. As an-
other piece of reference information, the band-
width at the three decibel poinis was approxi-
mately 20 Hz, giving a damping coefficient (y)
of approximately 0.005. One may note that in
the theoretical discussion it was concluded that
a symmetiric mode about the fissure would de-
crease in frequency and that an asymmetric
mode would increase in frequency. By looking
at Table 1 and Fig. 4 together, these general
conclusions can be drawn.

The rim of the inertial shaker, which had a
diameter of 4.5 in., was fastened at two points
to the beam: 2.5 and 6.75 in. ‘rom the end.
Whether these locations are nodes or antinodes
for the various vibration modes can be learned
from Fig. 4, which shows the locations for the
forces, as well as for the two accelerometers
superimposed on the made shapes. The accel-
erometers were iocated 18 and 32 in. from the
end, while the crack was introduced at a dis-
tance of 25 in, from the same point.

The broadband force had three predominant
peaks with the largest one, by far, existing at
2000 Hz. The frequency response for the shaker
can be seen in Fig. 5. This spectral shape is
not unlike that found exciting a structural

Fig. 3. Cracked beam experiment




TABLE 1
Homogeneous and Cracked Beams

Homogeneous Beam Cracked Beam
n
Freq. RMS RMS Phase Freq. RMS RMS Phase
(Hz) x y °) (Hz) X % )
20 0 0 162, 2.3 0.9 0
21 1841 34 3.3 0 1788 1.8 0.9 (1]
22 1936 4.2 6.0 180 | 0 0
23 2116 3.6 4.0 0 2177 1.9 2.9 180
* 24 2345 0.5 0.4 180 2498 0.7 0.5 180
25 2540 0.5 0.3 180 2482 1.8 0.6 180
3 £ x CRACK

[ | ' 2¢

» | | : : 25
yANYA AN, ANY.A UY.A VYA
s LW W 2 RS NS %

18
BEAM LENGTH IN INGHES

Fig. 4. Theoretical mode shapes
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Fig. 5. Force frequency response
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member in a practical situation, Dlfferent
spectral shapes for the input force will produce
different cross-correlation results, but this is
of importance only analytically.

The two accelerometer signals were ap-
plied to a hybrid cross-correlation svstem and
were cross correlated as deflned by the equa-
tions [1):

T
l 4
l,,(r) = ‘I'l:.- my L j y(t) x(t+7)dt,
’ (15)
where

T
1
(rms )? = lim = x(t)?de.
x T-omTJ;

This system is shown In t*e photograph in
Fig. 6. As the force spectrum was peaked, only
a select number of modes were exclted; thus,
the incoming response signals were amplified
but not flitered any further. Should the occasion
arlse that the structural test member is excited
by a flat broadband force, then the incomlg
signals could be filtered before they are cross
correlated to see the results only for a select
number of mcdes. For this purpose, the system
has standard one-third octave and continuously
tunable constant bandwidth analog filters,

A digital time delay unlt in the system was
utilized to delay signal x(t) before x(t) y(t)
were multiplied together by a hybrid multiplier.
This unit is automatically programable in de-
lay increments In multlples of 5 usec out to a ~
maximum of 200,000 usec. The time delay

sector determined by the initial and rinal delay
settings are selectable by digital switches. An
analog-to-digital converter digitizes the incom-
ing broadband slgnal. It is then time delxyed
the appropriate amount In magnetosirictive
lines and flnally converted back to an analog
slgnal by a digital-to-analog converter.

The averaging circult located at the cutput
of the multiplier employs operational amplifi-
ers with varlous feedback networks that pro-
duce selectable averaging times of 2.5, 5, 15,
30, and 60 sec. Each computed point on the
time correlation curves ls a result of 30 sec
averaging. Generally speaking for random sig-
nals, the longer the averaging time, the greater
the repeatability of the points for repeated test
data, Data repeatability for 30 sec averaging
is within 5 percent of the reading.

In parallel with the multipliers, there are
two true rms meters that produce rms, and
mms . The product of these two quantities is
necessary, as shown in the above equation, to
produce the normalized, cross-correlation
function R, (7). The normalized function has
the advantage of being independent of the am-
plitude of the broadband force so long as its
spectral distribution is not altered. The out-
puts from the averaging networks are digitized
and the resulting digital readings are entered
into a conventional digital computer. An exten-
sive digital program corrects the data readings
for instrumentation errors and computer sys-
tem errors, and normalizes and scales the final
results to the appropriate engineering units.
The time correlation curves, shown in Fig. 7,
are a direct product of this system.

Fig. 6. Cross-correlation system
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Fig. 7. Experimental cross-correlation curves

The resulting time cross correlation ob-
tained for both the damaged and undamaged bar
are shown superimposed in Fig. 7. The nor-
malized function, which ranges from +1.0 to
-1.0, is plotted along the vertical scale. The
curves are faired lines through discrete points
because signal x(t) was delayed in time delay
increments of 40 usec. The heavy curve for
the undamaged beam is assumed to be approxi-
mately zero in magnitude below 2000 usec and
above 6800 usec. The imaginary envelope for
the ac waveform peaks around 3900 usec and
then the curve is shown to be zero above 6800

usec.

This waveform can best be understood by
considering that the cross-correlation function
for each mode, separately, would have the re-
lationship below for sinusoidal excitation [1].

R K . nmd . “2
T E ——— — w Ty,
‘Yo( ) ms, rms sin 2L SN T cos («n7)

(16)

The constant, K, will have a mean-square value
equal to the denominator, making the ratio 1.0.
The two sine terms are bounded by values of
+1.0 and are dependent upon the locations for
the two transducers {, and {,. Thus, the
function in Eq. (16) has a2 maximum at  equals
zero, but may be either a positive or negative
number. The sum of three such terms for

(n = 21, 22, and 23) will be shown to approxi-
mate the curve in Fig. 7 for the undamaged
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beam. Note that Eq. (16) with the additional
terms can be compared with Eq. (13) which was
derived for a broadband input.

The only plausible explanation for the
cross-correlation function peaking at some
other - value besides zero seems to be a re-
sult of the beating of the separate cross-
correlation functions, Then it should be possi-
ble to compute the 7, at which the maximum
occurred from other known data. The envelope
maximum for the subtraction of two cosine
functions occurs at

“net T “n _om
2 »T7
or (17)
. - 1
P2(f, - f) 7

Referring again to Table 1, the vibration modes
beginning with n = 21 are an average 140 Hz
apart in frequency. Substituting this value into
Eq. (17), 7, is calculated to be 3600 usec. This
compares favorably with the 3900 usec obtained
experimentally. The pericd for the axis cross-
ings also agrees with the average period for
the vibration modes (n = 21, 22, and 23).

The heavy dashed curve shown in Fig. 7 is
the time cross-correlation function obtained
experimentally for the damaged beam. Referring




once again to Table 1, it can be seen that the
modal frequencies for the damaged beam
changed slightly, while the amplitudes changed
substantially. In fact, vibration modes with

n = 31, 22, and 23 are replaced by vibration
modes with n = 20, 21, 23, and 25. These re-
sults were derived empirically by driving the
damaged beam with sinusoidal excitation and
recording each of the response signals read on
a true rms meier. The differences in the vi-
bration modes are difficult to predict because,
at these frequencies, they are highly dependent
on irregularities in the beam and because the
true inpat force is difficult to describe.

Bearing in mind the analytical discussion,
a number of supporting observations can be
made by looking at the dashed curve. The
peaks of the ac waveform are much more ir-
regular than for the solid curve, but an envelope
drawn for the peak maximums would itself peak
around 4000 isec and would reach a minimum
at approximately 6200 usec. Thereafter, the
envelope would grow once more, much like the
predicted theoretical curve. The axis cross-
ings are a little more frequent, suggesting a
slightly higher average frequency, «,. This is
borne out by the modal frequencies listed in
Table 1, The irregular peaks indicate a faster
beating or a wider separation of frequencies
for the modal vibrations. Vibration mode n = 20
plays a predominant role in this respect. Equa-
tion (14) in the analytical discussion implied
that the modal frequencies for a damaged beam
would not be uniformly spaced in frequency. In
contrast, for a homogeneous beam the modal
frequencies increased with n?. The irregular
curve obtained experimentally is thought to be
a dairect product of this analytical conclusion.

A further strengthening of the essential
points made in this paper can be gained by con-
structing synthesized time cross-correlation
curves from the sinusoidal, modal response
data. Understandably, all the vibration modes
up through n = 25 could not be taken into ac-
count bocaure the hand ralculations would reach
a trying state. It further could be argued that
the modes below n = 100, although small in re-
sponse because of the input spectral shape,
would only show up as a bias in R, (7) plotted
only on a = scale out to 10,000 usec. For the
remaining modes, either one or both of the re-
sponse signals was small; consequently, only
the modes between n = 20 and 25 will be con-
sidered.

The questivn of the effects on the time
correlntion function of a two-point force input
also ne:ds to be considered. Without compli-
cating matters too much, the equations for the

deflections x and y at points £, and 4,, re-
spectively, and two force inputs at 4, and 1,
can be expressed as

28

(18 = 20 4ty [Saat) + £ne (O]
re20
and (18)
28
Y3 = 1 dn(dy) [€n 0 () * &n g (D]
n=20
where
1 n‘nl;l
Yad) = sin —— T
F"l i
5n.ll(t) = mz sin T cos w t,
D o i,
Ya(ty) = sin TR
Enp () T e T ted
€n = sin cos (wt+6).
ollq [Z(wn)] 2 2L ( )

The quantities &, ¢, (t) and &, ¢ (t) are time-
response functions for harmonic 1nputs with
rms levels F,, and F,,. The familiar fre-
quency dependent quantity is 2(«,), and a phase
shift 6 is included between the two forces.

The cross correlation cf the equations in
Eq. (18) can be written

T 123

1
R'y({,‘r) =7 J Z \pn(fl)5n‘,3(t)¢:n(£,)5n‘,3(t)dt

0 n=20

T 25

1
'T J 2 ¥l fn RORNEHEANOL
[}

n=20

1
?J; z Va1 En 1 (8) 4(Ly) Fn g (0 dt

ne 20

T 23

1
* 3 f 2 (4,)5,,,1‘(0¢,,(£,)c’,,,,‘(t)dt-
0 n=70
(19)
Performing the indicated integrations, the final

expression for R,y(ll.lz.r) can be expressed
as




o

. JTpREpe———————— Y S Wbl s X

T wmld,  ond,
in s1n 2L

L
R, (£, 7) = Z 2 .
Y n=20 2"|Zn(“’n)| ?

F:, nmd F:, i,
x |cos w T = sin? —2T- *T sin? L

f nnd g nnd,
+ (cos 8 )cosw,T 1Fn,Fn2’i" 2L sin 2 ]
(20)

Equation {20) in its present form assumes
small damping (y << 1), or in other words, no
damping coupling between modes. This being
the case, Eq. (20) indicates that the response
contributions from each of the modes can be
linear}> summed. Further, it can be deduced
that R, (%,.1,.7) is an even function and that
6,, the phase shift between the force inputs,
does not cause this function to peak at some
value other than + - 0.

Using the quantities for the rms accelera-
tions found in Table 1, the two synthesized time
cross-correlation curves shown in Fig. 3 were
produced. The ac waveform for the undamaged
beam increases in amplitude very similar to
the experimental curve in Fig. 7. For the pres-
ent example, the envelope maximum occurs at
approximately 3800 usec and then begins to
diminish in size. Overlapping of the two curves

will show that the axis crossings differ some-
what, becoming more pronounced for the larger
values of 7. The sensitivity of the time corre-
lation functicn at large 7's to slight discrepan-
cies in modal frequencies is planned to be used
as an advantage in this proc-ss.

The synthesized curve for the damaged bar
compares favorably in wave shape to that pre-
dicted analytically, The envelope for the peak
maximums approximates a half sine wave with
a maximum at 3600 usec and a minimum at ap-
proximately 5200 usec. Thereafter, the enve-
lope begins to grow in amplitude again (beating

pheriomenon).

Admittedly, the comparisons between the
analytical, experimental, and synthesized
curves are more qualitative than quantitative in
nature. Yet, the evidence that the peaks in the
cross-correlation functions are a result of the
bunching of vibration modes is considered
fairly certain.

CONCLUSIONS

This paper proposes that cracks introduced
into a structural beam cause slight changes in
the frequencies and amplitudes of the modal vi-
brations. These small changes nevertheless
produce significant changes in the time cross-
correlation functions because of the beating of

- 10

| UNDAMAGED BEAM |- ::

-0/4000 |k i

..... 1 ado

Fig. 8. Synthesized cross-correlation curves
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the indivicual cross-correlation functions. At REFERENCE

this time, the location of the crack along the

beam would probably have to be deter.ained 1. 8. H. Crandall, Random Vibrations, John
empirically as, even for the simple beam, the Wiley & Sons, Inc., New York, 1958, pp.
ganalytical calculations would he oxtonsive, 187-229
DISCUSSION

R. Reed (NOL): Did you try any other ap- E. Sevin (IIT Research Institute): As I un-
proaches to the problem? Did you look into derstand it, you are cross correlating the ac-
power spectral density or something like that ? celeration responses at two arbitrarily located
Also, I do not think you mentioned nonlineari- points on the same beam. Could you comment
ties. You actually had a notch in your beam, as just briefly on the physical principle being ex-
opposed to a crack, which is, I think, a nonlin- ploited here ? I don’t really appreciate what the
earity. Did the croes spectral density indicate lag really amounts to. What you are basically
anything ? attempting to do is to run a confidence test on

the stationarity of the process at any one point.
Mr. Baganoff: Let me answer your first Why wouldn't an autocorrelation at a given point

question. Why would one go to croes-correlation really give you as much information ?
analysis rather than power spectral density

analysis? If{irmly believe that PSD data, which Mr. Baganoff: Consider two of the modal
is devoid of phase information, has its limita- vibrations. Suppose we have 2000 Hz and 2140
tions. In other words, we are only looking at Hz. The point is that you are cross correlating
amplitude fluctuations as a function of frequency both of these responses at the same time and
and I think that there is a lot of information they are 140 Hz apart. When you cross corre-
wrapped up in phase. Instrumentation wise, it late them you get a certain shaped curve, as a
is probably ten times more difficult to preserve function of tau. The lag, tau, allows the beating
phase than it is amplitude just because there is to take place between the cosine at 2000 Hz and
80 much information wrapped up in it. Regard- a cosine at 2140 Hz. Then, when you introduce
ing your second question, the nonlinearity was the tatigue or crack in the beam, the modal vi-
considered but v¢ ran this experiment and got bration at 2000 Hz no longer remains at 2000
good correlation between the analytical and ex- Hz. It may change slightly, so that the separa-
perimental approach. We want to look into tion is no longer 140 Hz. With the tau lag you
these other aspects, but this is as far as we can bring this out. You would not be able to get
have progressed. this from autocorrelation.

* * *
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A THEORETICAL MODAL STUDY FOR THE LATERAL
VIBRATIONS OF BARS HAVING VARIABLE

CROSS SECTION AND FREE END CONDITIONS®

Arthur F. Witte
Sandia Corporation
Albuquerque, New Mexico

A considerable amount of interest has been generated in determining the normal bending
modes of beams having a variable cross section and free end conditions. The practical
applications of the problem became of interest in the early 1900's when applied to the
free vibrations of a ship's hull, The problem has now become important when applicd to
the fi ld of missiles and launch vehicles.

This paper contains a theoretical method that can be used to predict the normal bending
modes of beams having variable cross section and free end conditions. The method out-
lined here works directly with the differential equation of motion

52 azy] 23y
— |EI(x) == |+ m(x) —= - 0,
ax? [ G2 ox? (*) at?

where El and m vary with x and where the bending moment and shear force are zero at
each end. The effects of rotary inertia, shear, and material damping are not considered.

The method of solving the problem is basically one of transforming the partial differen-
tial equation and the boundary conditions into a system of linear algebraic equations with
the use of finite difference approximations. The algebraic equations are written in ma-
trix form and the problem becomes cne of determining the eigenvalues and the eigen-
vectors of the matrix. However, the matrix must be inverted, Because of the free end
conditions, the matrix is multiply degenerate and cannot be inverted until two degrees of
freedom corresponding to rigid body translation and rigid body rotation are eliminated
from the system of equations. Because of these *wo degrees of freedom, normal influ-
ence coefficient methods cannot be used when free end conditions are present.

This paper details the methods used, contains an operational FORTRAN 1lI computer pro-
gram for obtaining the first two normal bending modes, and compares the predicted re-
sults with experimental results obtained from a modal study on a small, high altitude

research missile,

INTRODUCTION

Because the effects of rotary inertia,
shear, and material damping have not been
considered, the method of solution presented in
this paper is not extremely complicated. Good
engineering estimates of resonant frequencies
and corresponding mode shapes of missile sys-
tems can be obtained where the wavelength of
vibration is large compared with the lateral

dimensions of the system. Good estimates can
generally be obtained for the first two normal
bending modes.

The mathematics and computer program
are such that with a little background in numer-
ical methods of linear algebra and computer
programing one can understand, without much
difficulty, what is presented.

*This work was supported by the U.S. Atomic Energy Commission.




The method of solution can be summazrized
as follows:

1. Divide the bar into stations in such a
manner as {o accommodate the boundary condi-
tions.

3. Use finite difference approximations to
convert the partial differertial equation

a2 ?? )

and the boundary condadt!o:a

EI(x) 3_’y 0
ox? o,L
2 e N

o,L
to a set of ordinary differential equations.

3. Obtain a set of linearly dependent alge-
braic equations by assuming a solution of form

yi = Y; sin (pt+@).

4. Write two equations which describe lin-
ear relations between the displacement of points
on the baz corresponding to rigid body rotation
and translation,

5. Obtain a set of linearly independent al-
gebraic equations and write in matrix form,

6. Invert the matrix.

7. Determine the eigenvalues and corre-
sponding eigenvectors which are the natural
frequencies and corresponding mode shapes.

The method of solution described in this
paper can be used for nonuniform bars with
other end conditions; however, free-free end
conditions create some difficulty not encoun-
tered when using other boundary conditions.

Results of an experimental modal study on
a single stage Tomahawk high altitude research
vehicle are compared with predicted results
obtained using a FORTRAN II computer pro-
gram which is listed in the Appendix.

NOMENCLATURE
A  Matrix A

A A inverse
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Matrix B

B inverse

Matrix ¢

Matrix D

Modu.us of elasticity
Rigidity at stations i
Area moment of inertia
Identity matrix

Length of the bar
Bending moment at station i
Matrix P

P inverse

Matrix Q

Shear

Vector v

Vector Y

A component of ¥
Vector Z

A component of Z

An element of &

An element of B

An element of

(o]}

An element of

The jth natural frequency in cycles per
second (Hertz)

An integer variable

An integer variable

Mass per unit length of the bar at
station i

Number of stations or number of
sections

The jth natural circular frequency in
radians per second
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q Load intensity
t  Time
x  Distance along the bar from its left end
Ax  Distance between stations
y Lateral displacement of the bar
B  Dominant eigenvalue of B!
¥  Second eigenvalue of B-!
5  Third eigenvalue of B !
¢ A phase angle
¢  Density
{  Damping factor C/C_,
THE DIFFERENTIAL EQUATION
OF MOTION AND BOUNDARY
CONDITIONS
The following relationships hold for a bar,
with a continuously varying rigidity, EI, sub-

jected to a load of intensity, q, which may also
vary continuously along the length of the bar:

deflection of the elastic curve

<
"

% = slope of the elastic curve
2
I E—Xz = -M (bending moment)
dx (1)

i [EI Ei!] - -y (shear)

d2

dly . .
E] —=| = q (load iatensity).
dx?

dx?

These relationships hold provided that the bar
has a plane of symmetry and that bending oc-
curs in that plane,

The principle of d'Alembert can be applied
to a vibrating bar, and the load intensity, q,
which varies along the length of the bar will be
the reversed effective force given by

q=-m— . ()
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The quantity m is the mass per unit length of
the bar, which may vary continuously along the
length of the bar. The expression for the re-
versed effective force i3 substituted into Eq. (1)
and the equation for the lateral vibrations of a
nonuniform bar becomes

32 3y dy (3)
Bx_’ [El(x) ?] + m(x) -a? = 0.

As y is now a function of both x and t, the
equations in Eq. (1) become partial differential
equations.

If the wavelength of the vibration is large
compared with the lateral dimensions of the
tar, the effects of rotary inertia and shear are
considered negligible. Thus, for the lower
modes of vibration of a bar whose lateral di-
mensions are small compared with its length,
the effects of rotary inertia and shear may be
neglected, and Eq. (3) adequately describes the
motion of the bar if material damping is also
neglected.

As a free-free bar is neither supported
nor restrained at either end, the boundary con-
ditions for each end are as follows:

1. The bending moment EI(3%/3x?) is
zero.

2. The shear force (3/3x) [EI(3% 2x?)] is
zero.,

DETERMINATION OfF THE FIRST
NORMAL MODE

Consider the nonuniform bar of lengthL
shown in Fig. 1. The bar is divided into n sec-
tions Ax in length where

Ax :%. (4)

The particular method of dividing the bar into
sections is used to accommodate the boundary
cenditions.

As the deflection of a vibrating bar is a
function of both x and t, the expression for the
bending moment from Eq. (1) can be written as

2
Ix?

This expression is put into Eq. (3) and the fol-
lowing equation of motion is obtained:




ref-i fN f:Net

Fig. 1. Bar having a variable cross
section and free end conditions

3(-M)
ox?

M.

at?

(6)

+m

If one assumes that the dependent variables
y and M of Egs. (5) and (6) can be adequately
represented by second order polynomials in x,*
the following finite difference approximations

for the first and second derivatives can be used:

Ay YT Yea T
-B_x-l' - 20x !
u CUpey T Yy L
a’(IHI/Z Ax (7)
and
azu Urey 2ur u Uroy
FXT = B (Ax)’ J
The quantity u is counsidered the dependent
variable.
The appraximation
2 Lot Y (8)
Yrer,2 = — 73—

will also be used when dealing with the bound-
ary conditions. These approximations become
more accurate as the number of sections into

which the bar is divided is increased.

*This condition n. , be considered fulfilled
provided the dependent variables may be ade-
quately represented by a second order polyno-
mial betweenatleast three consecutive stations,
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The second order difference approxima-
tions for [02(~M)] /(3x?) and (*2y/3x?) are sub-
stituted into Eqs. (5) and (6), resulting in the
following ordinary differential equation for
each station:

(N - N, tNLy ) d’yr
tm, o —— -0 (r=1,23,..., n),
(Ax)? de?
(9)
where
(yr-l-zyr’ynl)
M :=-El, ——m———— (r=1,2,3,...,n).
(hx)?

(10)

The boundary conditions for the bar shown
in Fig. 1 are

) oM
Myz = 0. v'7=WL "0
/2
and
M
Miv12° 0, vnu‘/zzg |2- °
n+1/

The boundary conditions can be written in
finite difference form as

. M, + N,
Kyg:—5—=0
3 M, - M
Vl 7 ° l = 1 0 =0
Ix 1,2 Ax
and
"n’ “n’l
Mav1/2 2 =
v oM _ -nOI -n 0
nel/2 ox ne 2 Ax -
Therefore
My = M, - M =M, =0. (11)

Equations (9), (10), and (11) are now used to
form a set of ordinary differential equations
that represent the original partial differential
equation. These equations are of the form




T(My - 2M, + My) dly,

m,—— =0
(Ax)? dt?
-(My = M, + Ny) dly,
—_ iy, — =z 0
(Axy? de?
(M, - M, + M) dly,
m, =0
(&x)? dt?
.................... (12)
(Nioy - 3, + NGyy) d?y; 0
(Ox)? PTER
My = M + N) N dzyn-l 0
(&x)? nel gy ?
(M - MM \ dly, .
(Ax)? " de?
where
M, = 0
M, -0
(Yy- 2y, + y3)
N, - -EI, Y.
(Y2~ 2y3 + yy)
"J - 'EXJ 2 k} 4
(Ox)?
................. (13)
s o ,o1 = W5 * Yieg)
1 1 (Ax)z
(yn-l - 2}'"_1 + yn)
"n-l = -Exn-l (Ax)1
N, =0
Mooy = 0

When a bar vibrates with one of its ratural
modes, the deflection of any point on the elastic
curve varies harmonically with time, and a so-
lution of the form

y; = Y, sin (pt+ o) (14)
may be assumed for Eqs. (12) and (13). The
quantity, p, is defined as the natural circular

frequency of the vibrating bar. The equations
in Eq. (13) may now be substituted into the

T1

equations in Eq. (12) and the solution,
Y; sin (pt+9),

put into the resulting equations. A set of n lin-
ear algebraic equations can be obtained if one
divides through each resulting equation by

sin (pt +®) The n linear algebraic equations
are

EI, 2T, El,
7 Y, - T Yot 7
(bx) (&x) (Ax)

Y; = mlp’Yl

-%1, (4EI, + E1 ) L, EL)
(o) ! (a0t 7 (o)t °
El, ,
+ Y Y, m,p°Y,
EI, ., 2(EI,_, +EI;) (15)
(dx)s i @t

(EI; ¢+ 4EI; +EI,,)) 2(EI; +EI;, )

() ! (at i
EI.
i+l
ey Yieg = mp?Y;
Exn-l ZExn-l Exn-l
(T)‘ ne2 " (Ax)* Yoo t (dx)* Yr\:“"l'\p?Yl'\'

It should be noted that the general expres-
sion

ie1 2(EL;_, +EY;) v
(axyt e T
N (Eli-l+4Eli+EIi”) o - 2(Eli~'EI“l)
(8x)* ‘ (0x)* it
EI.
i+l
Y Yiop = mply;

will uold for all stations provided the quantities
El,, EI,, EI, and EI_,, are made zero.

The equations in Eq. (15) involve n equa-
tions and n + 1 unknowns. The algebraic equa-
tion for each station can be divided through by
the mass per unit length, m, at that station and
a set of equations of the following form will be
obtained:

o ey i

- s

v

»7

8 s
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The equations in Eq. (15) can be written in
matrix form as

8 ,8 ,8, ;0 (1} 0 0....0
8, ,8, ,8, ;8, ,0 0 0....0

a8, ,a; ;a8; ;a; ,a; .0 0....0

o 8, , 8, ;8, ,8,,8,,0...0
O....iviiiinnnn 0 B nh-28, n-1 85
Y, Y,
Y, Y,
X Y" = pz Y" (16)
Y, Y,
Y, Y,
or
AY = p?¥. (17

The problem becomes one of finding the eigen-
values p? and the corresponding eigenvectors
¥ of the matrix A.

An iterative method of determining the
largest eigenvalue of A can be used provided
the eigenvalue is real and unrepeated [1).
However, as the lowest natural frequency is of
primary concern, Eq. (17) can be premultiplied
by A-'. Thus, A-'AY =p*A"'Y. But,A'A:=T
where T is an identity matrix,

1 v o 0
7-10 1 0 0
0o 0 o 1

The equation may now be written as A-'Y - Y
where 8 := 1/p?. The problem is then one of
determining the largest eigenvalue 8 of A-',
However, the inverse of the syuare matrix X
can only be computed provided the matrix A is
nonsingular, i.e., provided the determinant of A
is not zero [2].

A free-free bar is capable of pure rotation,
translation, or a combination of the two with a
zero natural frequency, and p?:- 0.

Equation (17) can be rewritten as
A-p21H)Y = 0.

For nontrivial solutions of Y,
(R -92T)| = @,

if p2=0, then |A| - 0; the matrix A is singular
and cannot be inverted. The singularity of A
may be verified by the tedious expansion of the
determinant of A. The rows of A are linearly
connected by two relationships making A mul-
tiply degenerate.

Two more equations can be written that
describe the linear relations between the dis-
placements of points on the bar.

Consider the vibrating bar, shown in Fig.1,
divided into n segments Ax in length. As an
approximation, the centers of mass of the ele-
ments will be considered to be at stations
r=1,2,3,...,n, Again d'Alembert's principle
can be applied to the vibrating bar; and the
intertial force m,ax(d%,/dt?) can be considered
to be acting on each element through its center
of mass. This approximation becomes more
accurate as the number of segments into which
the bar is divided is increased. As the bar is
not supported or constrained in any manner in
the plane of vibration, only the following iner-
tial forces act on the bar:

il

The fcllowing equations can be written

ZFy=0

and

Zu,_,,,: 0.

These equations can be written as
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n d2
JF, = m, Ax iy (18)
50 de?
and
n dlyi
Z"r-l/z o m;8x o x; =0, (19)
where
(2i-1)
i = 2 Ax

It should be noted here that the effects of
rotary inertia of the elements have again been
neglected in writing Eq. (19). The assumed so-
lution y, - Y, sin (pt + ¢) can be substituted
into Eqs. (18) and (19) and the following equa-
tions result:

-p? sin (pt +¢) Ax Z mY, =0

i=l
and
2 n
-p?sin (pt+0) S V" @i-nymy, - 0.

For the nontrivial solution of o, the above
equations can be written as

i mY, =0

and
2 Qi-1)ymyY, = 0.
iml
Thus
mY, +m¥,tmy¥, 4 .. tmY = 0 (20)
and

"

mY, +3n Y, +5mY¥, 4.+ (2n=-1) mY,
Equation (20) may also be obtained by add-
ing the n expressions of Eq. (15).

By means of Egs. (20) and (21) one can
eliminate two degrees of freedom in such a
manner that p?= 0 is no longer a root of the
frequency equation. The linearly dependent
equations in Eq. (15) may be made linearly

0. (21)

independent by substituting Eqs. (20) and (21)
for two of the original equations, let us say the
first two. Terms involving Y, and Y, may be
eliminated from the new set of linearly inde-
pendent algebraic equations and a new vector
equation of the form

by y by, ... by, Y, Y,
b,y by, L PPN Y, = p? Y,
bn-z 1 bn-z 2 ° bn-l ne=2 yn yn

can be written. This vector equation can be
written as

BY' = p2¥". (22)

Note that the matrix B i8 now the new matrix of
order (n-2) by (n-2) and Y'is a vector the
components of which are v,.v,, ....Y,.

The inverse of the square matrix B can
now be computed, and Eq. (22) premultiplied by
B''. The resulting equation i8 B- ! BY' = p?B-'V'
which yields

BT - AT (23)

where 8 = 1/p2. The matrix B! will be de-
noted by

n-2
Bl - b; b; 2 b2 n-2
booz 1 baoz 2 oo Buizaag

The dominant eigenvalue of the matrix B! can
be computed by choosing some initial arbitrary
vector Y;, let us say

o o

[

This vector is premultiplied by B-' and a
scalar quantity 8 is extracted fron. the new
vector Y; in such a way as to reduce the last
component of Y; to unity. In this manner the
following sequence can be computed:




Y =57,

B Y- 4,7,

B! ¥, =801

If ¥; approaches a limit ¥’ the sequence will
approach a limit and

20 JRR

The scalar 5, will also approach a limit 8
which in general is the dominant eigenvalue of
the matrix B-! and ¥’ is the corresponding
eigenvector [3]. The first naturel frequency
can be obtained by ucing p, = VI/B rps or

f, = p,/2» Hz. The corresponding mode shape
is given by

Y
Y
' Y, 2
7|= Yy a] =
Y, s
¥ ;
Yln

The values of Y, , and Y, ; can be obtained
with the use of Eqs. (20) and (21). The quantity
Y; , can be eliminated between the two equa-
tions and an equation for Y; , cin be written as

m
v,,:-lz’(i-l)-_—:v“. (24)
After the value of Y, , has been calculated,
Y, canbeobtalnec{gnng
n ni
v,,:-z-_—lv“. (25)

ie2

*Note that hereafter the mode shape correspond-
ing to the jth natural frequency will be denoted
as

" 1
Y Y,
Yo=Y, =| Yis
Y :
.

T4

DETERMINATION OF THE SECOND
NORMAL MODE AND THE
MODES NEXT IN LINE

As the iterative process previously de-
scribed can only be used to obtain the dominant
eigenvalue and corresponding eigenvector of
the matrix B-!, a new method of calculating
the eigenvalue and corresponding eigenvector
next in line must be used.

A similarity transformation will be used to
construct a matrix which is similar to the ma-
trix B-!. From this similar matrix the second
eigenvector can be obtained as well as the cor-

responding eigenvalue [4].

A similarity transformation can be used to
obtain a reduced matrix C from the original
matrix B-', both of which have identical eigen-
values.

The eigenvector ¥; corresponding to the
first eigenvalue 5 can be used to construct a
square matrix of the form

and its inverse

Let

Q=PF'B'P.

The matrix Q is similar to B"' and has identi-
cal eigenvalues [5]. The following expression

is obtained by performing the matrix multipli-
cation P-'B-'P:




F!E!P-
bl bl
8 112 1 n-2
Y, 1
' Yll 0 ' 14,
0 b, Y, b 3 b3 -2 ‘f—’bl n-2

b! b’
8 ==X .. .. mct]
Yl 3 1
Q= |o [
0

Consider the equation
0Z-=-,2Z (26)

where 7 is the eigenvalue of Q and Z the cor-
responding eigenvector. The equation may be
rewritten as (Q-,I)Z = 0.

For nontrivial solutions of Z,

@ -l =0

where

1@-2D)] = (B-» I(C-»)l = 0.

Thus if 34y, then |(C-»I)| = 0. One can now
write the following expression:

CZ' = yZ' (27)
where Z' is a vector the components of which
are Z,,2,,.... 2, _,.

C-:

(38)

The iterative procedure for determining
the dominant eigenvalue and the corresponding

75

eigenvector previously described can be per-
formed on the matrix € to yield the dominant
-eigenvalue v and the corresponding eigen-
vector 7',

The value of Z, must now be computed.
Equation (26) can be rewritten as

bi , b; o b} n.a
,82‘4'?1—32,#?:2’4' +-vrzn_’

(3 5

., (;) . o

From this equation, one can write

b;l b;)
ﬂzl+Tl—;Z,+Y—l—’Z,+

Therefore

i by ,Z,+ by Zy+ ...

2 * b neaZna (30)
LT (7'5)Y| 3

and

The eigenvalue y and the corresponding
eigenvector Z of the matrix § have been oh-
tained. Determination of the eigenvectior of the
similar matrix B-' is now required.

Consider the equation

B'Y; =0V, (31)
and Eq. (26), which can be written as
P'B'PZ- 2. (32)
Premultiplying Eq. (33) by P, one obtains
PP-'B'P2:- yP2




which is

BPZ:- yPZ. (33)
Therefore
¥, - P2 (34)
or
/Ya n\ Y, s 2,
L Y, 62, + 2,
= (35)
Y, Y, 52,+ 2
Y, Y, .2+ 2,

The second natural frequency can be obtained
by using p, = VI/¥ rpsor f, = p,/2n Hz.

The values of Y, , and Y, , may be ob-
tained by using Eqgs. (h) and (25), respectively.
The mode shape then becomes

YI 1

Y; ! YI 2

¥, Yaa| - |y,
Y,

\Yan

The procedure previously described can
again be used to obtain a third reduced matrix
from which the third natural frequency and
corresponding mode shape can be obtained.
Again, a fourth reduced matrix can be obtained.
The error in calculated frequencies and mode
shapes becomes greater the further the original
matrix is reduced. The amount of error can be
reduced by originally using a greater number
of stations.

THE COMPUTER PROGRAM

The program, listed in the Appendix, is
written in FORTRAN II for the CDC-3600 Digi-
tal Computer for calculating the first and sec-
ond natural frequencies and the corresponding
mode shapes of uniform and nonuniform bars
with free end conditions. The program utilizes
the methods described previously and is capa-
ble of handling a bar divided into as many as
one hundred stations.

The input data required by the program are
as follows:

1. The number of stations n into which the
bar is divided.

2. The length of the bar L in inches.

3. The ri?dity of the bar EI at each sta-
tion, in lb, in,

4. The mass per unit length of the bar m at
each station, in Ib, sec? per in,?

As shown in Fig. 1, the first station, r=1,
must be (Ax)/2 from the end of the bar, the
second station r=2, at 3/2 Ax, etc. Thus the
nth station, - - n, must be located at [(2n-1)/2)Ax
from the end of the bar.

The output of the program is:

1. The data, L, n, and E1 at each station,
and m at each station.

2. The first and second natural circular
frequencies, p, and ¢,, in radians per second.

3. The first and second natural frequencies,
f, and ¢,, in Hertz,

4. The mode shapes corrzsponding to the
first and second naw.:2! frequencies.

5. The number of iterations required for
the recursion process previously described to
converge to the dominant eigenvalues, 5 and .

The program is written so that the com-
puter using the given data can form an (n-2)
by (n-2) array which is matrix 8. This array
ts t)ormed with the use of Eqs. (15), (20), and

21).

The matrix B 18 inverted by using a coop-
erative subroutine subprogram that is )isted
after the main program.

The dominant eigenvalue 8 of B-! and the
corresponding eigenvector ¥; are determined
by the iterative process previously described.
An initial vector i3 assumed that has the nu-
merical value of all its components, except the
last, equal to zero. The last component of the
assumed initial vector is unity.

During the iterative procedure, the scalar
quantity 5 is extracted from the vector Y; in
such a manner as to reduce the last component
of ¥; to unity. It should be note here that the
mode shape Y, always has the last component
eoqual to unity. The test for convergence of the
iterative process is made on the eigenvalue 8.

AN TN 7P
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The numerical values of Y, , and Y, ; are
then computed with the use of Eqs. (24) and (25),
respectively.

The reduced (n-3) by (n-3) matrix T is
formed with the use of the following expression
developed from Eq. (28):

Cij = bierjor !“T“—;‘J byin (36)
where
i=1,213 ....,n-3
j=1,23, ...,n-3.

Again the iterative procedure previously
described is used to determine the dominant
eigenvalue ¥ of the matrix C, the value of p,,
and the corresponding eigenvector Z‘. The
numerical value of z, is then calculated with
the use of Eq. (30). A linear transformation,
Eq. (35), is then made on Z to determine Y;.
Values of Y,, and Y, , are again calculated
with the use of Egs. (24) and (25), respectively.
The mode shape Y,, corresponding to the sec-
ond natural frequency, is formed in such a
manner that the last component is unity.

It should be noted that comment cards hove
been liberally distributed throughout the pro-
gram for definition of nomenclature and to
facilitate understanding of the procedures used.

The input data deck takes the following
form:

1. The first card of the deck has the num-
ber of stations punched in the first three col-
umns. The number of stations is an integer
number and the input format is I3.

2. The second card has the bar length
punched in the first nine columns. The input
format is F9.4,

3. The next group of cards contains EI
data. Data for up to five stations can be punched
in the first 60 columns of a card. The input
format is E12.5. Data for up to 100 stations
can be read into the computer. Note that values
of EI for the first and last stations must be
read as zero, 0.00000E 00.

4. The last group of cards in the data deck
contains mass distribution data. Again, data
for up to five statious can be punched in the
first 60 columns of a card. The input format is
E12.5. Data for up to 100 stations can be read
into the computer.

P B IR mm.“!

MODAL STUDY OF SINGLE-STAGE
TOMAHAWK HIGH ALTITUDE
RESEARCH VEHICLE

The previously outlined procedure and
computer program were used to predict the
first two bending modes of a single-stage
Tomahawk High Altitude Research Vehicle,

The EI and mass distribution curves for this
vehicle are shown in Figs. 2 and 3, respectively.

An experimental modal study was also per-
formed on the vehicle. The test vehicle was
supported in a free-free configuration using a
low frequency suspension system of 3/4-in.
shock cord. The effect of the supports and
their location on the free end conditions of the
test vehicle was of some concern at the start of
the study. It was later determined, by changing
the locations of the supports several times,
that the support locations had no perceptible
effects on the test results. Ten accelerometers
were placed along the length and on the outside
surface of the test vehicle to define the mode
shapes. A small exciter weighing less than
2 lb, with a force output of approximately 1 Ib,
was rigidly attached to one end of the test vehi-
cle. The exciter served as a zero impedance
source that did not effect the dynamic charac-
teristics of the test vehicle. Bending modes
were easily identified because the small shaker
supplied only enough energy to excite the nor-
mal bending modes. Inherent mechanical filter-
ing of the system yielded clean acceleration
signals 90 degrees out of phase with the input
force. The resulting predicted and experimen-
tally determined first and second bending modes
for the test vehicle are shown in Figs. 4 and 5.
Damping factors, [ - (C/C.,), were determined
for the first and second modes, using the
method of logarithmic decrement [6]. Values
of ¢ for the first and second modes were de-
termined to be 9.6x10-* and 19.1x10*, re-
spectively. The errors in the predicted fre-
quencies for the first and second modes, as
compared with the experimentally obtained
values, were 8.9 percent and 12.9 percent for
the first and second modes, respectively.

CONCLUSIONS

Errors in th: predicted modes depend on
the following par:iimeters:
1. The shape of the EI curve.

2. The shape of the mass distribution
curve,

3. The number of stations into which the
bar is divided.
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4. The mode in question.
5. The effect of material damping.

The number of stations or sections which
should be used i8 dependent on the EI curve,
the mass distribution curve, and the mode in
question. EI and mass distribution curves
with severe fluctuations require a large number
of stations to reduce the calculated error.
Higher modes require a larger number of sta-
tions than lower modes. This can be verified

by calculating the bending modes of a uniform
bar using several values of n.

The theoretical methods and computer pro-
gram outlined in this paper can provide good
engineering estimates of at least the first two
bending modes for small, relatively "uncompli-
cated" missile systems or free-flight bodies
where the lateral dimensions are small com-
pared with the length (a ratio of 1:10 can be
used as a "rule of thumb").
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Appendix
PROGRAM LISTING

PRIGRAM DARVIBF

T TTTTATPROARAM FOR DETERMINING THE FIRXT AMD SECOND NATURAL FREGUENCIES

¢ aNN THE CORRESPNNDING MODE SWAPES FOR THE LATERAL VIRRATIONS
c #F A NON UNIFO%M FREE~FREE BAR
TTTe T DEFINITION OF NOMENCLAT!RE
T T R, "~ MATRIX B '
c RETA NOMIMANT EIGENVALUE OF “ATRIX B INVERSE
c L18 LENGTH OF BaR (IN,)
c LLTS B MASS PER UNIT LENGTH OF TME BAR AT STATION 1
¢ (LBF SECXSEG/IN,XIN,)
¢ ct1,) . MAYRIXYC .. . . S
TTTUCTT BNy RIGIDITY NF THE BAR AT STATION 1 (LBF IN,XIN,)
c Fl1) FIRST NATURAL FREQUENCY (CYC/SEC)
¢ F(?) SECNND NATURAL FREQUENCY (CYC/SEC)
c AWM, NOMINANT EIRENVALUE OF ATRIX C .
¢ H DELTA X, DISTANCE BETWEEN STATIONS (IN,)
c 1T€R NUMAER OF [TERATIDNS RFAUIRFD TO CONVERGE TO THE
N A "7 DOMINANT ET1GENVALUES
c w NUMRER OF STATIONS
c LR FIRST NATURAL CIRCULAR FREQIENCY (RAD/SEC)
c P(2) QECNNN NATURAL CIRCULAR FRENUENCY (RAD/SEC)
c (1 DISTAMCE FROM LEFT END OF BAR TO STATION [ (1IN,)
c i, ) EIGFNVECTNR OF MATRIX B, NR MANE SHAPE
c 7¢1,J) " EIGFNVECTOR OF MATRIX €
c REMARKS
c M vUsT NOT EXCEED 109
T€ ET(1) amD E1UN) ARE READ INTO THE PROGRAM AS ZERQ
€ SYATFMENY 29 AND PREGEEDING STATEMENT ARE FOO 43 DATA NANLY
c START OF PROGRAM

DIVEMSION Flegege), BM(100)s PC100, 1000, Y(2, 100), Algon), IROWCY

999 REaD INPUY taAPE 5, S, ™
8 F0QmAT(I3)

C CLFAR ARRAVS

Flt~e1) 8 n,n
n1al = 1, N
LLIR SN FY]
FI()y = O,nN

<
-
N3
-
—
-~
.- o
[ -X-]

201, 1) .

7¢(2, 1) = 0
A(1) 3 0,0
no 10 J s 1, N

10 2(1, J) =0,00

C ENTFR DaTA

REAN INPLT TAPE 8, 2n, R, (FItI), I 8 ¢, V)
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2n FORMAT (F9,4 / (5E12.%))
~ READ INPLY TAPF 5, 25, (RM(Iy, | = 1, N)
25 FORMAT (5E812,5)

€ CALCULATE DELTA X

———e e

AN = N
H 3 RAL/CA

€ LNAD THE ARRAY A(1,J)

no 30l = 1,N
204, 1) = BM(I) 7 RM(y)
Al o |
He x HeHeHeNW
In a(d, 1) = (Al « 1,) « BM(]Y /7 BM(2)
DO 49 1 = 3, N
R(1, 122) s Fl(l=1) /7 ( Ha « BM(]))
Aft, 1e1 ) = <2, o (FIC(leg) o FICI)) /7 ( K4 o BM(1))

TTEATROL,TY % (Fleie1) o &, » EIC1) ¢ EIC(te1)) /7 ( H4 o AM(I))

M e N -
no %n 1 = 3, M
Sp (), Ie1) 3 <2, «(FI(1) o EI(le1)) 7 ( Ha « BM(I]))
LeN=2
00 64 1 =3, L N
60 a(f, Je2) = £1(1e1) / ¢ H& « BM(]))

C ELIMINGTS TERMS INVALVING Y(I,1)

O 701 32, N
R, 1) 3 By, 1) « B(3, 1)
76 RCY, 1) = W(3, 1)e B(1, 1)

ELIMINATE TERMS INVOLVING Y(1,2)
ngo an I = 3, N
ACT) = B(2,1) » 9¢3,2)
R(I, 1) = R(3, 1) « ALY
A(2,1) = B(2, 1) « R(4,2)
8n 9(4,]) 3 B(4,1) = RC2, )
(PPEQ LEFT JUSTIFY THE RFDUCFN MATRIX R FOR INVERSION SUBRAUTINE
no 94 1 = 3, N
DO 99 4 2 3, N
99 R([e?, J=2) = B(I,N
INVERT THE MATRIX B USING THE SURROUTINE MaTiINY
CALL MATINV ¢ B,L, 100, ARRA, 0, IC:L, IR0W, IT3, DEYERM)

NETERMINE THE DAMIMANT EIGFNVALUR RETA OF THFE MATRIX B AND THE
CORRESPONDING EIRENVECTOR Y(9,J) ANN CALNULATE P(31)

18n STARF = 9,0
1TeR = 0

ASSUME AN ARAITRARY INITIAL VECTOR, Y(1,1) WGUDSE LAST COMPANENT 1S
IN]TY

Y(1,v) = 1,9

19n DO 200 | = ¢, L
r0 290 J = 3, L

20n v(?2, 1e2) = ¥(2, 1e2) ¢ R(1,J) = Y(1, Je?)
ITER = [TER o 3

FXTRACY A SCALAR AUANTITY, HFTA, AS TO QFNIHCF THF | AST FONPANFNT AF
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c v(g, 1) YO uUNITY

TTUREYA e Yi2,m T
N0 240 1 » 3, N - ] o

210 Y(2,1) % 0,p

- G _JESY BETA FOR CONVERQENCE
YESY s ABSF ¢ BETA - STORE )

¥ §YoRe = BETA

IF ¢ TFST =~ 1, 0E~1Y ) 21%, 1%, 190

C_THE FIRSY NATURAL CIRCULAR FREQUENCY P(1) IS THE SOUARE ROnT OF
¢ 1 7 MEYA (RAD /7 SEC)

ETTTTTTTT{R TR s SORYFTU ABSF( 1,0 7 BETA )
' C CALCULATE YHE VALUES OF Y(1,2) AND Y(i,1) )
WmmEmm——— 30 FD 230 83, N T T T

Al o |

D0 240 ) s 2, N R
240 Y{1.,4) 8 Y(1,1) e (BM(I) /7 BM(1)) » Y(3,1)

BT CAICULATE VALUES OF X FOR EACH STATION

MY YRR, T T s e

. 00 2%0 | s 2,N o S
el ¢ ]

290 X(I) ® X(1) o (Bl = 3,3 e M

CALCULATE YHE VALUE OF YHE FIRSY NATURAL FREQUENCY F(1) (CYC/SEC)

F(q) ®» PegY 7 (2, » 3,141%9)

_. C_WRITE OUY DATA e e e e

. WRITE OUTPUY TAPE 6, 300, BL: No 1, ELCIY o Jo BM(1), 1 s _3eM) . .
300 FORMAT (1KW1, $7x, SH DATA /19X, 17W RAR LENGTH, BL s , F10.4, 24X,

n 1 24nW NU*!%s_anmm_u_L_iLu__mdnv_emmtw_;_
$1ACW STATION, 21X,42M MASS PER UNIT LENGTH, BM, AT EACN STATION / ¢

n- 3253, M El, 12, 2H 9. E12,5, 10H LBF INXIN, 23X, 3JH BN, 12, 2W. =8, =

4E12,5, 18W L9F SECXSEC/INXIN))

C WRITE OUY ANSWERS

WRITE OUTPUY TAPE 6, 310, P(1),F (1), (1., X(D),1,Y (1, 1) sls1,N)

. 310 FORMAT (¢ S3¥, AH_ANSWERS // 49X, 22 FUNDAMENTAL FREQUENGY
17/ 36X, 4N ple,F10,4, 8N RAD/SEC, 3X, 4H F19,F10.,4, 8N CYC/SEC
. R¢/. 94Xy 1A% _MODE SHAPE /€42X, 2W X,12, 20 9,FP10,5, 3IW INe &X, .

3 2w Yl'?. 2N s,F10,%))

A WR oute 2 J7€R e
320 FORMAT (/7 4qX, 27w THE NUMBER OF I[TERATIONS s, [6)
» - .

P e ¢ RE_OumITTED AND _YHE COMPUTER SENT MACK TO STATEMENT 999

» C LOAD YME MATRIX €

B o Aho XL ® Ned e e - o e e
DO 700 I = 1, KL

- DO 280 4 ® 1, KL e

ClTad) 8 B(led,Je1) = (Y(1s103) 7 Y(1,3)) o B(1,Je1)
78n CONTINUE
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C NETERMINE THE DOMINANY ETGFNVALUE GAMMA NF THE MATRIX € AND THE
e TORRPSPONOING EJRENVEETOR 2(3,J) AND CALCULATE P(2)

STRRF = 0,9
ITER = ¢

C ASGUME AN ARBITRARY INITIAL VECTOR, 7(1,1), WHNSF LAST COMPONENT 18 I
c ONTTY :

7(1, N=2) 2z 9,0
720 CONTINUE

nO 740 1 = 1, ki

PO 749 J & g, ¥

7(9, Ie1) = 202, 1e1) ¢ A(1,J) » 2(1, Jet)
76n CONTINUF

ITER = ITER o1

T FXTRACY A SCALAR QUANTITY, GAMMA, AS TO RENUCE THE LASY COMPONENT 0F
C 7¢(1s Iy TO UNITY

GAVMA & 2(2, KNe2)

no 780 1 s 3,

704,1) 3 2(2,1) 7 72(2,Me2)
782 7(2, 1) = 0,0 '

C YEST GAMMA FOR CONVERGENCE

TEST = ARSF ( GAMMA e STORE )
STRRF = GAMMA

TTTTOOT T TIF CTESY - 4,tF-43 ) 790, 720,720

W e

[ J

€ YHE SECONUD NATURAL CTRCULAR FREQUENCY P(2) 1S THE SQUARE RAAT
C  OF 1/GAMMA  (RAD/SFC)

790 P(3) = SCRYF( ABSF( 1,0 / GAMMA ))

Pem o m

___Man SU¥ s 0,0

PO 820 1= 2,
) /7 Y1, D

n

LR .

A2n SUV & SUM o AEl,0) » 241,
7(1,1) 3 SUM /(GAMMA o

1§
BFTA)
CALCHLATF THF VALUES OF v(2.1)

nO B25 1 x g, N

~__P2s v(2,1) = 0,

Y(2,3) = Y(1,3) « 7(1,1)
.. hoay 1 =4, N
R3In v(2,1) = YO2,1) » 7 (1,1) 2(1,1e2)
_ho a1 = 3, n
R3S Y(2,1) = Y(2,1) 7 Y(2,N)
... Mo B4p ! =3, N
Al =
Rdp v(2,2) ® Y(2,2) « (Al = 3,) « (BM(T) / Bu(2)) ¢ Y(2,1)
PO 860 I = 2, N
Abp Y(2,9)% Y(2,1)= ( QM(]) » BM(4)) & v(2,1)

CALCULATE THE VALUE OF THE SECANO NATURAL FREQUENCY F(2) (CYC/SEC)

N

o EU2) mPC2) 7 (2,9 ¢ 3,14159)

-C_YRITE OUT ANSWERS

WRITE QUTPUT TapPE 4, 880, P(2),F(2Y, (1, X{1),1,Y(2.1).181,.N)
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FORMAT ( 7 49x, 28H SECOND NATURAL FREBUENCY T
/ 38X, 4H p2s ,Fyp,4, OH RAD/SEC, 3¥, 44 F2e,f4p.4, BH CYC/SEC

%II BaX, 116 MODE SHAPE /(42X, 2H X,12, 24 8,F10,5, 3H IN, 4X,

900

3 eu Vllz;’2ﬂ 8,

&M Yy L F10.,5))
WRiTE QUTPUT TAPE 6, 900, ITER
FORMAT ( / 44x. 27H THE NUMBER OF ITERATIONS = , 16)

—..C B0 BACK YO START OF PROGRAM,

60 Y0 999
ENE '
SUSRNUTINE MATINV{ A, N, NMAX, B, M, PIVAT, IPIVOT, INPEX, DETFRM)

c
in

T
2n

T

£ _MATRIx INVERSION WITH ACCOMPANYING SOLUTINN OF LINEAR EQuATIONS

_DIVENSION IPIVOTIN), ACNMAX,NMAX), BONMAY,4), INDEX(N,?), PIVOT(N)

INITIALI2AT ON

NETERM & 1,q

TO 20 J= 1, A

1PtveT(J) = ¢ )
Ho 880 I = g, N N

X2a

c

— 11,1
340

R L1
h1 1]
——1.1,
370

SEARCH FOR P1vOY ELEMENT

fiAMAX ¥ 0,0

N0 105 U s g, N

1 YF ¢ IPIVOY(J) o 1) 6D, 105, 60

DO 4p0 K 8 ¢, N

{F (1PlvoT(x} = 1) 89, 100, 740

IF (ABSF(AMAY) o ABSF(A(J,X))) 85, 1np, 100
1Rew s J .

1CeLIM s K

AMAX 8 A(J,K)

CONT {NUE

CONTINUE

IPIYATCICOLYY) & IPIVOTC(ICOLUM) o 1

INTERCHANGE ROWS TO PUT PIVOY ELEME T NN DIAGOMAL

IF _CIROW = 1COLUM) 14p, 26D, 14)
NETERM 8 «NETERM

N0 200 L = 2, W

SWAP 8 A(IROMW,L)

ACIROW, L)Y s aC]COLUM, L)
ACICNHLUM, L) s SWaP

1F (™) 269, 26p, 290

‘PO PSO L s g, M

SWaP s B(IRgwW, L)

RUIRAW, L) s B(ICOLUM, L)
RCICALUM, L) s SWaP

INREX(]l, 1) = IRNW

INFEX(], 2) = 1COLUM
PIVOT(i) = ACICOLUM, 1COLUM)
PETERM = DETERM e PIVOT(I])

DIVINE PIVNT ROw BY PIVOT ELEMFENT

A(ICOLUM, [COLUM) = 1,0

00 380 L = g4, N

ACICOLUM, L)y s ACICOLUM, L)/ PIVOTC(])
IF (M) 380, 380, 360

O 3vp L = g, ™

REICOLUM, L)y s BLICOLUM, L) 7 PIVOTCED)

e ——————
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¢ RERUCE NON-piVOTY ROWS

' 380 H0 38T LY e 1, N
39y 1F (L1 - ICOLUM) 4ng, 5350, 400
! 400 T o allL, TEOLUM)

429 ACL2, 1COLUMY = 0,0 . —
2 n S0 L =g, N

o830 ACL1L, L) ® ACLL, L) o ACICOLUM,LY » ¥
CTTTTTTTTAYaTIF (M) 590, 880, 460
46np N0 %p0 L ®# g, M0
! ¥0o A(LT, CY ®B(LL, Ly » BCTCOLUM, L) ¢ 7
855 CONT{NUE

C INTERCHANGE COLuvs =

609 DO 740 1 = 4, N
i} 6in L = N o1 o]

_ 62p IF CINDEX(L,4) e INDEX(L,2)) 630, 7ir, 639 __ _ _
! &30 JROW & INDEX(L,1)

64p JCALYM ® INDEX(L,2)
W00 Y05 R e g, N

66n SWAP ® A(K, JROW)
W Y0 Al "JROWT 3 A(X, JCOLUM)

70n A(k, JCOLUM) = SWAP
".—_—’u—m l UE

780 CONTINUE i
p=mm e Ydn FEYORN ~ ~~

750 END
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DISCUSSION

D. Egle (Univ. of Okla.): There is one
point on which T would Tike to disagree. I do
not think it affects anything you did, it is just a
statement. You said that if you worked this
system of equations straightforwardly to get
the eigenvalue, the highest eigenvalue would be
infinite. That is not so because you have a
finite matrix and the largest eigenvalue will be
finite. In theory, anyway, you could start from
the highest and work down.

Mr. Witte: That is right. We use a finite
difference approximation and hence the largest
eigenvalue has no meaning at all. We want to
get down to the lowest eigenvalue where the
accuracy is.

H. Saunders (G. E. Co.): Your explanation
of the Tinlte difference was good. But I think
one of the better ways of doing it, if you take a

*
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finite element approach, is to take sections and
average them. You would probably get much
better results for the frequency and mode
shapes. Also, you have neglected a rotary in-
ertia and shear deformation. At the higher
frequencies that becomes impurtant., Have you
given any consideration to using the rotary
inertia and shear deformation in your analysis?

Mr. Witte: Yes. It is a very complicated
problem; that's why we stick to something sim-
ple. But I did do some work in averaging out,
The frequencies came fairly close but the mode
shapes did not. I found that there was consid-
erable difference in averaging all these and
obtaining the mode shape.

Mr. Saunders: Yes, that is using finite
differénces. I you try to use a finite element
1 believe the mode shapes would come out much
better

*




o

PIPTTIAL (3 g T o

SATURN V COMPONENT VIBRATION TESTS
USING SEGMENTED SHELL SPECIMENS

Chintsun Hwang
Northrop Corporation, Norair Division
Hawthorne, California

and

Charles E. Lifer
NASA, Marshall Space Flight Center
Huntsville, Alabama

This paper describes an analytical and experimental program to de-
velop and verify techniques for designing segmented shell specimens to
be used in component vibration tests, The purpose of the program was
to develop segmented shell test specimens of reasonable size that re-
tain, as much as feasible, the dynamic characteristics of the complete
shell structure. The analytical phase consisted of the development of a
general shell analysis program in which the impedances of the ring
stiffeners were considered. A finite difference computer program was
applied to the modal analysis of the segmented 3hell specimen. The
experimental phase included the evaluation of localized flexible sup-
ports, the development of Saturn V structure dynamic scale models,
vibration tests of the complete and segmented shell models, and the
vibration test of a full-scale segmented Saturn V shell specimen with

mounted components.

INTRODUCTION

The shell structure in the various stages
of the Saturn V system are large, massive, and
intricate. To conduct vibration tests of the
components that are 1aounted on the shell
structure, correspondingly large and expensive
facilities are needed. The conventional ap-
proach to the development and qualification
vibration testing of equipment and subsystems,
in which the item is attached to a rigid fixture
and tied as directly as possible to an exciter,
in most cases results in a poor reproduction of
service loads and stresses. This is especially
true for shell-structure mounted components
(electronics packages) in which the impedance
characteristics are not too greatly different
from those of the mounting shell structure. A
study was conducted by the Marshall Space
Flight Center and Northrop Norair to develop
techniques for designing relatively simple test
fixtures which closely reproduce the significant
response characteristics of the shell structure
in the vibration test of components. The tech-
niques could be used by a dynamicist to derive
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(from component and structural design infor-
mation) the appropriate dimensions and bound-
ary restraints for a loca' section of shell
structure, to which the component was attached
during the test. By simple variation in fixity
and attached masses, the same fixture could be
used for tests of several items.

Vibration tests on equipment or systems
mounted on shell structure segments are gen-
erally of two types, based on the method of ex-
citation. In one case, the exciter is connected to
a fixture which attaches to the boundaries of
the shell segment, and test levels are controlled
at the boundary or at some selected point on
the specimen. In the other case, the exciter is
connected to a selected point, or points, on the
specinien, and the boundaries of the specimen
are restraiicd by a passive fixture; test levels
are controlled av the exciter attachment point
or at some selected point on the specimen.

Test level cont:ol may be through acceleration,
displacement, or force measurement.

The teckiiques described in this paper are
applicable to beth of the above cases, assuming




that the exciter capabilities and specimen
strength capabilities are not limiting factors.
When very high test levels or unusually mas-
sive test specimens are involved, these limita-
tions must be considered in the selection of the

test approach.

The test design procedure involved a num-
ber of steps, starting with the analytical and
experimental modal analysis of the complete
and uncut shell structure. The analysis was
followed by shell segmentation and edge condi-
tion evaluation. A parallel program evaluated
the dynamic characteristics of the flexible sup-
vort. to be applied to the segmented shell.
After the test configuration was determined,

a finite difference computer program was used
to predict the modal data of the flexibly sup-
ported and segmented shell structure. The
muccansfnl vibration test of a full scale SaturnV
shell specimen concluded the procedure. In the
following paragraphs, the important features of
the test technigue are described.

SHELL STRUCTURE ANALYSIS
PROGRAMS

Two analytical programs were developed to
predict and evaluate the shell dynau.ic behavior.
For a complete shell of revolution, eight simul-
taneous linear differential equations are used
in the standard manner [1]). Corresponding to a
specific harmonic number, n, the dependent
variables are the four displacement components
(¥neun. vy, 8,) and the four stress components
(Qn:NgnoNy .My, ). The stress components rep-
resent the transverse shear, the meridian
membrane stress, the modified in-plane shear
stress, and the bending along the meridian di-
rection, respectively. The equations are inte-
grated numerically in a segment-wise manner
to minimize the accumulated errors. To ac-
commodate the dynamic impedances of the ring
stiffeners, the shell meridian is divided into
segments in such 2 manner that all the stiffen-
ers are located at the terminals of the segments.
During the numerical integration process, the

.063 DIAMETER RIVETS 108 PER
ROW EQUALLY SPACED
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Fig. 1. Saturn V instrument unit scale model design drawing
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four stress variables are modified, as shown
below, when a ring stiffener is encountered.

8, V1 [zi@ 2 2,3@) 2,4 ]
ONgq Z,5(0) Zyy(w) Zy4(w)
on, |~ Zy3(w)  Zye(w)
ANy, (symmetric) Z, ()

wn

un

. .

By

where the left side column matrix indicates the
increments in shell stresses owing to ring im-
pedance components Z,,(v), Z,,(v), etc., cor-
responding to a circumferential harmonic
number, n. The above formulation is mecha-
nized in a computer program which has yielded
consistently satisfactory modal information.
Typical analytical data derived from a one-
tenth scale Saturn V instrument unit shell
structure {Fig. 1) are plotted in Fig. 2, together
with the sinusoidal vibration test data.

For segmented shells with flexible point
supports and attached masses, a finite difference

computer program was developed to generate
the modal data. In this program, the segmented
shell middle surface is divided into a grld pat-
tern. A matrix equation is established, based
on the shell dynamic equation and the boundary
conditions of the shell specimen, considering
the impedances of eccentrically located string-
ers and stiffeners. The matrix equation is re-
duced to an eigenvalue formulation in which the
displacements at the grid points form the com-
ponents of the eigenvector. The basic matrix
formulation for this program is shown in Fig. 3.
For a typical segmented shell (Fig. 4), the
modal displacement data obtained by this pro-
gram are plotted in Fig. 5.

The experimental program was divided
into three major tasks: Modal and impedance
surveys of shell structures, fixture parameter
selection and evaluation, and segmented shell
design and tests. The first two tasks were ex-
ploratory and preparatory in nature; the knowl-
edge gained in the process was used in the final
segmented shell design. The remainder of this
paper describes the highlights of the experi-
mental program.

MODAL AND IMPEDANCE SURVEYS
OF SHELL STRUCTURES

To obtain Saturn V shell modai and imped-
ance data and to check the validity of the ana-
lytical results, a number of one-tenth scale
models were designed and fabricated. The
shell structures chosen were those in which
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Fig. 2. Experimental and analytical deformation data
along the meridian of the instrument unit scale model
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Fig. 3. Formulation of the coefficient matrix
for the finite difference computer program

Fig. 4. Test setup of the instrument
unit segmented model
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Fig. 5. Typical analytical modal pattern representing
a quarter of the instrument unit panel

components were attached. Shell models of the
Saturn V instrument unit and the S-II thrust
cone structure are typical examples which are
illustrated in Figs. 1 and 6. In designing the
shell models, all the ring stiffeners were
scaled down, based on dynamic similarity re-
lations. The longitudinal stiffeners were not
incorporated in the design. Their stiffness
contribution was merged with the skin stiffness

in choosing a proper shell model skin thickness.

The shell models were subjected to vibra-
tion tests to acquire the modal and impedance
data for shell segmentation purposes. The data
recorded included the response amplitude vs
frequency, the impedance vs frequency, and
detailed mode shapes corresponding to natural
frequencies. Typical driving point impedance
data is shown in Fig. 7 for the Saturn V instru-
ment unit scale model (Fig. 1). Typical shell
response data is shown in Fig. 8 for the S-II
thrust cone shell structure model (Fig. 6).

TECHNIQUES OF FIXTURE
PARAMETER SELECTION

Various types of flexible supports were
fabricated and tested to evaluate their dynamic
characteristics. Dashpot type dampers were
tested and found ineffective in controlling the
vibration amplitudes. For support evaluation
purposes, a solid aluminum rectangular plate
was used and tested. The use of a rectangular
plate facilitated the dynamic analysis so that
the flexible supports could be evaluated convea-
iently. Experimental modes of the rectangular

plate obtained during the support fixture evalu-
ation phase are shown in Figs. 9 and 10. To
predict and evaluate the experimental modal
data, a simplified version of the finite differ-
ence computer program described previously
was used to generate the analytical modes of
the plate. The analytical technigque facilitated
the choice of support design parameters. It
also served to interpret the main features and
peculiarities of the plate dynamic behavior; for
instance, the cantilever type vibrations of the
unsupported corners of the rectangular plate
(Fig. 9) were evaluated and controlled through
the use of the finite difference computer pro-
gram.

Based on the analytical and experimental
modal data, a part of the component mounted
shell was selected as the segmented specimen.
The lines of segmentation were determined,
based on the local displacements and shell
stresses. These lines were usually located a
fraction of a half of a wavelength away from
the nodal lines of some major mode or modes.

A major criterion in shell segmentation
was to retain as many as possible of the major
vibration modes of the uncut shell structure.
For this purpose, proper flexible supports were
used at aelected points along the edge of the
shell. Weights of appropriate mass and mass
inertia were attached to the edges to replace
the edge stresses existing in the original uncut
shell and to retain the modal patterns. Because
of practical limitations in the degree of com-
plexity of the supporting fixtures, it was not
feasible to duplicate all the natural modes of
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(a) Intermediate supports
on shorter sides, 126 Hz

Fig. 16. (

the complete shell structure. The design crite-
rion then was to retain the more significant
modes in the segmented configuration. In some
cases, it was found desirable to use different
flexible supports for various frequency ranges.
For different frequency ranges, the support and
attached edge mass configuration may be modi-
fied to obtain a better match in the impedances
between the complete and segmented shells; for
instance, increasing the attached masses tends
to tune down the frequencies of the natural
modes of the segmented shell. The design con-
figuration reached in this manner was further
checked by an analytical investigation. A typi-
cal example of the analytical data was shown
previously in Fig. 5.

A fixture design of the segmented and flex~
ibly supported instrument unit shell model with
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(b) Intermediate supports
on shorter sides, 291 Hz

ner-supported plate

simulated component attachments is shown in
Fig. 11, A photograph of the same structure
was shown in Fig. 4, as mentioned previously.
The corresponding impedance plot for the shell
segment is shown as the dotted curve on Fig.
12. Note that the plot is for a full size shell
specimen, as proper adjustments have been
made for the impedance and the frequency ac-
cording to scaling relations.

FULL SCALE SATURN V
SHELL TEST

The shell segmentation technique was ap-
plied to the Saturn V instrument unit prototype
(full-scale) structure. Vibration tests were
successfully conducted on the full-scale seg-
mented shell structure, with mounted components
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making use of the scale model data acquired
previously. The test setup is shown in Figs.
13 a=d 4,

During the tests, accelerometers were
mounted at a number of locations to monitor
the vibration amplitudes. The vibration input
was controlled go that the monitored accelera-
tion level followed the NASA specification as a
function of the excitation frequency. The driv-
ing point impedance data recorded during the
test are plotted as a soiid curve in Fig. 12, As
the figure also shows the adjusted impedance
data of the segmented scale model, a compari-
sor of the two curve= gives some indication as
to the errors introduced in dynamic scaling of
shell models.

CONCLUSIONS

The work described in this paper estab-
lished the feasibility of and some guide rules
for performing component qualification tests on
segmented Saturn V shell structures. T..s ap-
plication should result in a redu-“or of hard-
ware failures because of unrealistic test condi-
tions, and should eventually reduce the system
weight. The increased cost of test fixtures
should be mcre than offset by the reduction in
redesign and retesting costs.
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Fig. 13. Vibration jig for the Saturn V
instrument unit shell segment

Fig. 14. Closeup of the Saturn V instrument
unit shell segment with flexible supports
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DISCUSSION

F. Smith (Martin Marietta Corp.): I think
the work you have done is very interestirg.
When you were exciting the full-gcale speci-
men, were you attempting to simulate the re-
sponse of the full shell to an acoustic driving
function? In other words, was your shaker
really attempting to simulate a point input?

Mr. Hwang: No, we were using a single
frequency sweep. The spectrum amplitude at
each frequency is in accord with the accelera-
tion level specified by NASA.

Mr. Smith: Let me ask the question in
reverse. Have you any relation between the
response of the specimen owing to the shaker
and what the response would be with acoustics,
let us say during the launch phase ?
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Mr. Hwang: No, we do not have that. What
we are given is the acceleration level which
should be obtained at a certain point on the shell
structure. That was used as a monitor or con-
trol point for the test.

Mr. Smith: Were you doing this in more
than one axis?

Mr. H : In the thrust cone it was done
in quite a numEer of axes or directions normal
to the conical shell structure and also in the
thrust direction of the thrust cone.

Mr. Smith: So your test specimen really
did nof sImulate three-axis response?

Mr. Hwang: No, it did not.

*




AN APPLICATION OF FLOWGRAPHS TO
THE FREE VIBRATION OF STRUCTURES
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This paper presents the application of linear flowgraphs to the free vibration
analysis of structural systems. It is shown that the basic structural flow-
graph can be.formulated directly from an examinaticn of the physical system
under consideration, These flowgraphs are essentiaily independent of the
type of loading, and the displacements at discrete poiats are represented by
dependent nodes. In general, the dependent variables are vectors and the
graph is referred to as a matrix flowgraph.

Following a brief discussion of the mathematical operations associated wit:
flowgraphs, it is shown that the basic structural flowgraph can be easily
transformed into the natural frequency flowgraph. In this latter graph, the
branch transmission factors are in terms of both the stiffness properties of
the members and the frequency of vibration. General expressions for the
branch transmission matrices factors are derived by employing finite ele-
ment techniques.

By employing the graph determinant, the values of the natural frequencies
can be readily computed with a digital computer. Finally, a further simple
transformation yields the eigenvector graph which is used to establish the
elements of the eigenvector associated with each natural frequency.

INTRODUCTION Perhaps the most important technique de-
veloped for static sysiems analysis, using flow-
graphs, is the concept of superimposing
building-block flowgraphs to form the complete
graph. This procedure is extended here to the
case of the free vibration of discrete mass sys-
tems such as shear buildings, and continuous
systems such as plane frames, As will be
shown, the nodes of the flowgraph for discrete
systems are the displacements of the masses,
whereas for continuous systems, they are the
displacements of the joints., In the latter case,
the mathematical properties of the flowgraph
are defined by the end properties of structural
components derived from a finite element
method [4]).

A systems-analysis approach to the formu-
lation of the natural frequency equation and the
determination of the eigenvectors for certain
linear structural systems is presented in this
paper. Developments in topology and systems
analysis have revealed the existence of an iso-
morphism between oriented linear fiowgraphs
and structural systems [1]. These structural
graphs have been used previously to a limited
extent in studying the static and dynamic re-
sponse of systems [2,3]. As a result of the
work that has been done on static systems, it
has become apparent that flowgraphs have spe-
cific advantages, particularly in seeking a
better understanding of the design process.

29




e —— e

A brief discussion about flowgraphs in gen-
eral precedes the examination of their applica-
tion to free vibration problems.

MATRIX AND SCALAR FLOWGRAPHS

In general, a flowgraph is a schematic
representation of the interrelationships between
the input to a system and the consequent behav-
for of the system. These same relationships
can be expressed by simultaneous equations -+
not with the same clarity or ease of formulation.
One advantage of flowgraphs is that their form
can be deduced directly from the topology of the
system under consideration. The fundamental
concepts and mathematical operations associ-
ated with oriented linear structural flowgraphs
are as foliows [3].

A flowgraph consists of a network of di-
rected branches connected to nodes in a man-
ner that reflects the geometry of the system.
To illustrate, Fig. 1 shows an oriented flow-
graph. The variables that motivate a system
are denoted by source unodes and represent in-
dependent inputs into the system. The depend-
ent variables that represent the resultant be-
havior of the system are denoted by dependent
nodes. In the figure the source nodes are
lettered a, b, and c while the dependent nodes
are numbered 1, 2, and 3.

These nodes are connected by directed
lines or branches having associated transmis-
sion factors that relate the independent and
dependent variables. In the case of structural

Fig. 1. Oriented
flowgraph example
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systems, these reflect the elastic properties
of the components,

Generally, the variables are represented
by vectors and the graph is referred to as a
matrix flowgraph. The transmission factors
for these graphs are then square matrices. In
the special case where each node represents
a single variable, the graph is referred toas a
scalar graph, and the transmission factors are
scalars. In this paper, matrices and vectors
will be designated by the use of parentheses,
i.e., (t)y,, while scalars will be designated
without them, i.e., t,,.

The branches entering any node can be
used to obtain the corresponding equation re-
lating that variable to the others. For example,
the dependent variable (x), in Fig. 1 is related
to the other variables by the expression

(x)g = (£),(r)g + (t)g(%)y- (1)

The variable (x), does not appear in this ex-
pression because there is no branch from that
node.

Although of interest, equations of this form
are not of any particular value because the
flowgraph provides the same information picto-
rially. The more important equations are the
solution equations that can be obtained from the
flowgraph. These provide the solution of each
dependent variable in terms of the independent
inputs and the transmission factors.

To date, practical solution algorithms for
multiple-connected matrix graphs have not -
been developed, although Kirchgessner [6] and
Enger [7] have presented useful algorithms for
series matrix graphs. As the examples to be
considered in detail in this paper involve scalar
flowgraphs, the solution algorithm for matrix
graphs is reduced to the algorithm for scalar
graphs presented by Mason [8,9]. Before con-
sidering his loop rule, the following further
definitions are required.

A forward path is defined as any path orig-
inating at a source node and terminating at an
interior node. Such a path can include any par-
ticular node only once. The associated forward
transmittance, T, is the product of the trans-
mission factors of the branches that constitute
the path. Considering the figure, one of the two
forward paths from the source node, =, to the
dependent node, 2, is given by the path
{(a-1-3-2). The corresponding forward
transmittance is

Taz = tyt gty,. @
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A loop is a series of branches that origi-
nate and terminate at the same node without
encountering any particular node more than
once. The product of the transmission factors
of all the branches in the loop is defined as the
loop transmittance, L. For example, in Fig. 1,
there are three loops (1-2-1), (2-3-2), and
(1-3-2-1). The corresponding loop trans-

mittances are (t,,t,,), (t;,t,,), and (t ,t ,t,, ).

It is noted that loops cannot include source
nodes,

The multiplication of scalar quantities is
commutative and therefore the ovder of multi-
plication for loop transmittances and forward
transmittances is immaterial. However, the
noncommutative nature of matrix multiplication
must be satisfied in arriving at solution algo-
rithms for matrix graphs. This fact is respon-
sible for their considerably more complex form.

The scalar graph determinant is defined as
b=1-3L,+3LL,-3LLL, ... (3)

in which L, represents all the loops in the sys-
tem, all the pairs of nontouching loops,
aﬁ the triplets of nontouching loops, etc.
Tgre algebraic sign is positive for an even num-
ber of loop products and negative for an odd
number of loop products. Again considering
the example, the graph determinant is

A=1-(Ly g0t it L)

=1 tty, - gty -ttty . (4)
The path determinant is a quantity associ-
ated with a forward path. It is obtained from
the graph determinant by striking out all terms
containing transmittances of loops that touch
the path. For the forward path from the source
node, a, to the dependent node, 2, the path de-

terminant is

faY

aete3-2 7 V7L g-Loig L,y =1 (5)

because this forward path touches all possible
loops. On the other hand, the path determinant

for the forward path from source node, a, {0
the dependent node, 1, is

Baop=1- Y R PRSI S P
S 1oLy = 1= tysty, (6)

as the loop (2 -3 - 2) does not touch this forward
path.
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Mason's 1oop rule states that the output,
q» at some specified dependent node, q, in
terms of a unit input at the source node, p, is
equal to the sumoftheproductsottheforwud
transmittances, T q, and their corresponding
path determlnanta, pq» divided by the graph
determinant, o. Thus

ZT
Gp..=+A‘"'~ m

Considering all the inputs to source nodes, the
final value of the dependent variable, x_, i

given by

i Zr ZTN B @)
xq S —A- .

Thus each of the dependent variables can b»
solved individually by considering the scalar
flowgraph only.

NATURAL FREQUENCY FLOWGRAPHS
FOR DISCRETE SYSTEMS

In this section, a basic floweraph ig devel-
oped that can be used to represent a system
made up of discrete masses and springs. It
will be shown that this flowgraph is only a fusc-
tion of the geometry of the system. From this
basic flowgraph, the natural frequency graph
can be formulated and used to determine the
natural frequencies of the system.

Consider the generalized three-mass sys-
tem shown in Fig. 2. Let the displacements
associated with mass m; be given by the vector
(u); where

() = fu | - (9)

Assuming that these displacements are the de-
pendent variables for the system, they can be
represented by nodes of a flowgraph. From
the connectivity of the masses in Fig. 2, it is
apparent that the flowgraph in Fig. 3 does rep-
resent this system. The dependent nodes de-
note the dependent variables that, in this for-
mulation, are the displacements of the masses.
Any external static or dynamic loads applied to
the masses would be denoted by inputs to the
flowgraph at the source nodes. However, for
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Fig. 3. Basic flowgraph for
three-mass example system
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Fig. 4. Natural frequency graph
for three-mass example system

free vibration, as there are no external actions,
these source nodes can be deleted. The result-
ant graph is shown in Fig. 4 and is referred to
as the natural frequency {lowgraph. In this
graph, the dependent variables are the ampli-
tudes. Having established the torm of the graph,
the next step is to derive the transmission
factors.

The stiffness of the n springs connecting
to mass m; are represented by an unassembled
stifiness matrix, (K;)_, where a denotes mem-
ber axis. This is an (nx n) diagonal matrix
baving elements S,. j =1,.... n, where S de-
notes spring stiffness. From basics, the direct,
nodal, stiffness matrix, (K),;, in system co-
ordinates is given by

(K)gg = (Ry(K)Q(R)T (10)
where
%1 %y, %in
(Ry) = |a;, a,, Qan
231 %y, %3n

= rotation matrix for node i.

The columns of (R,) are the direction cosines
relating the spring axis to the system ccordi-

nates, assuming that the near end of the spring
isat m;.

Letting spring q connect the two masses,
m; and m;, then the cross, nodal, stiffness ma-
trix, (K);;, in system coordinates is given by

(K)”=-Sq 39 [“lq Q39 a,q]

3q
al a,.a a,.a
1q 19%2¢  %19%3q
d 11
s - a, & a a
Sq [ %14%1q 1q a?sq| - 1D
a, & a a a’
3q 1q 3q 2q i1q
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It follows that for free vibration, the dy-
namic equilibrium of the forces acting on mass

m, i8 given by:
(M) () + (K, (u); + ; (K)gj(w); = 0 (13)

where (M); is a diagonal matrix having ele-
ments equal {0 m,.

For small displacements it is assumed that
the displacements can be expressed by the
product [10]:

u, a, sin pt
u,| = [ a; sinpt (13)
uy a, sin pt N

i

where p is the frequency of vibration in radians
per second. Supstituting this relationship into
Eq. (12) yields

~pI(M),(0); + (K); (n), + Zj: (K)y;(n); = O

or (14)

'
e

[(K)“ - P:(")i] (a); ¢ ; (K)g ()5 =

For the usual case, the first matrix term is
nonsingular. Then the amplitudes, (a),, can
be expressed by the relationship

(2); = - [(K)“ = P:(")l]-l E (x)“(l)j . (15)
)

Thus a general expression for the branch trans-
mission factors for the natural frequency flow-

graph is
(t);1 = - [(l)“ = :>‘(M)‘]'l (K)yj - (16)

Both the form of the natural frequency
graph and the branch transmission factors can
thus be derived directly from the physical sys-
tem. As there are no inputs to the system, it
can be shown that for a nontrivial solution for
the natural frequencies, the graph determinant
equals zero.

For series matrix graphs, the algorithm de-
vised by Enger[2]is readily applicable. For the
two-loop series matrix graph in Fig. 4, the graph
determinant with respect to node 2 is given by
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A= 1= (£)5,(t); = (t),5(t)s,l =0 (17)

where (t);; is given by the preceding equatioa.
In general, Eq. (17) is easily solved by using
proaressively increasing values for p” and then
selecting those for which the graph determinant
is zero.

For plane systems, the preceding develop-
ment is equally valid. In this case the depend-
ent variables are vectors having two elements
and the transmission factors are (2x2) ma-
trices. Finally, for one-dimensional systems,
the matrix graph reduces to a scalar graph.

To illustrate the application of flowgraphs
to the determination of the natural frequency of

discrete systems, consider the mass-spring
system shown in Fig. 5(a). The corresponding
natural frequency flowgraph is shown in Fig.
5(b).

Using Eq. (16), the branch tranamission
factors are obtained directly from the physical
system shown in Fig. 5(a).

<
S,

~(Sy+8,-mp?) (-8, — 2
(:* 3 m,p) ( :) s:*s’-l,p:

tia

Sa
$,+8;-mp’

-
-
]

= ~(8,+8,-mph) '(-8,) =

S,

-1 ‘
23 = = (S; -~ myp?)  (-8,) = S,_--;i

Sy

tyy = ~(Sy+Sy-mpl) (-§,) = — >
32 = ~(S;+ §;-mp?) (-8,) S:is,--’p:J

(18)

The scalar graph daterminant given by Eq. (3)
can be formulated directly and equated to zero,
Thus

A= 1= t)ty; = tyyty,= 0.
Although for this relatively simple example,
the graph determinant can be expanded to yield

the usual frequency equation, normally it is prob-

ably easier to evaluate the equation for succes-
sively larger values of p?.

For shear buildings, with the mass assumed
to be concentrated at the floor levels as suown
in Fig. 5(c), the preceding apgroach can be ap-
plied directly, as these constitute discrete
systems [ll]y.
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Fig. 5. Example three-mase system

EBIGENVECTOR FLOWGRAPHS
FOR DISCRETE SYSTEMS

For systems represented by scalar flow-
graphs, the eigenvectors for each ratural fre-
quency can be obtained from an eigenvector

. One of the dependent nodes is
selectad to be transformed into a source node
by deleting incoming branches. It is assumed
here that the input to this source node is unity,
i.e., the amplitude of the corresponding mass
is unity. Using an eigenvector graph, the am-
plitudes of all other masses can be computed

using Masoa's loop rule as discussed previously,

These computations are illustrated for the
one-dimensional, three-mass system shown in
Fig. 5(a). The natural frequency graph for the
system is reproduced in Fig. 6(a), and two of
the possible eigenvector graphs are shown in
Fi s. 6(b) and 6(c). As seen, node 1 has been
transformed into a source node by removing
the incoming branch, 2-1.

The values of the relative amplitudes, a,
and a,, are then given by

; (1) t,,

l’ = A.
(1) ty,t,
a, = T—
where
4, = graph determinant for eigenvector
graph

= 1-t,,t,,.
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Fig. 6 Free vibration flowgraphs
for three-mass system

It is noted that for this particular case it would
have been simpler if node 2 had been trans-
formed into the source node as shown in Fig.

6(c).

NATURAL FREQUENCY FLOWGRAPHS
FOR PLANE FRAMES

In the preceding examples, each node of
the flowgraph reprecent~d the displacements
associated with one of the masses, and the
springs were assumed to be weghtless. Now
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consider a system composed of axial-bending
members connected to form a plane frame.
Associated with each member, i, is a uniform
distributed mass, m;. In this type of system,
flowgraphs are formulated for which the depend-
ent nodes represent the displacements at dia-
crete points. It is shown that the branch trans-
mission factors, in general, include dynamic
stiffness factors and that the natural frequencies
for the system can be computed in a manner
similar to that noted in the preceding section.

To illustrate the form of the flowgraphs
for a plane frame, consider the structure in

Fig. 1(a).

At each joint of a plane frame there are
three possible displacements denoted by

(u); = fuy

u
6d5

Thus the matrix flowgraph for the structure in
Fig. 7(a) is as shown in Fig. 7(b). As joints 7
and 8 are fixed supports, they are excluded from
the flowgraph. Inputs to the system in the form
of either static or dynamic loads would be ap-
olied at the source nodes shown. In the case of
free vibration, as there are no external loads,
these source nodes are omitted and the result-
ant graph is referred to as a natural frequency
flowgraph.

An alternate matrix flowgraph for this
structure is shown in Fig. T(c). In this formu-
lation, the displacements for an entire level
are represented by a single vector such that

-U‘J
uy,
(u), Ys,

(u), = = , etc.
(u)1 ux’
uy,
[ Yo,

The branch transmission factors ave now (6x8)
matrices.

To derive expressions for the branch
transmission factors for the flowgraph in Fig.
7(b), a member i8 considered as shown in
Fig. 8. The member axes are (x' -y’') while
the system axes are (x-y). In the figure the
near end is denoted by a and the far end by 8.
These subscripts also imply actions and dis-
placements with respect to the member axis.
The actions shown are the forces owing to dis-
placements of the ends given by

u.: ul:
(U)g = Juyr and  (u)s = uye
u, ug

-]

The relationship between these displacements
and the end actions (b), has been summarized
by Ariaratnam [12] as follows:

- 4 CEA o -
b, T%h o 0 uyr
EI El
b, = 0 =% —% Uy’
L? L?
b 0 EI ¢> EI
2 e i 'ERATY %5 || ue |a
[ -EA 7 )
T ¥, 0 0 uy
-EI EI . 19
+ 0 L ¢‘ l—:; ¢’ uy ( )
-EI EI
0 Ti% T | v
- JL 48
where

Yy = 4 cot u

Y, = U cosec u

in A sinh A
- A2 (_m—)
1 \l - cos A cosh A
d,_)\,(cosh)\-cosk)
d 1 - cos A cosh X

o _)\(sinkcoshk-cos)\sinhk)
& 1 - cos A cosh A

¢‘:

(sinh)\-sin)\
1 - cos A cosh A
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Fig. 7. Illustrative plane frame and flowgraphs

()

¢ =A,(linxco.hx+colhsinh>\) "

U 1 - cos A cosh A A=L(1)

El
b = A3 ( sinh A + sin A ) It is noted that when p equals zero, these dy-
L 1 - cos A cosh A namic stiffness factors reduce to the usual
static ones. Equation (19) can be written simply
ap? /1 as
k=1 (ﬁ) (b)y = (K)aq (u), + (K)gp(u)y-  (20)

Fig. 8., Typical prismatic plane member
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Thus the member end actions and the displace-
ments are related by member stiffness ma-
trices that include the frequency of vibration.

The stiffaess of the n members framing
into joint i are represenied by an unassembled
stiffness matrix, (K,),, where = denotes mem-
ber axes. This is a diagonal matrix having
matrix subelements (k),, as shown in Eq. (18).
From basics, the direct nodal stiffness matrix,
(X);,, in system coordinates is given by

(K)y; = (R (KL (RDT (21)

where

(R,) = [m“ (Ta - - - ('r)..,]

and

cos 8 ~sin 8 0

(T = | sin 6 cos8 O

0 0 L]

Assuming that member q connects the two
joints, i and j, then the crons nodal stiffness
matrix, (K);;, in system cocszinates is given
by

T

(K)yj = (Ti; (K)ap(T)y; (22)

where (K),, i8 given in Eq. (19) and is with re-
spect to member q.

It follows that for free vibration the dy-
namic equilibrium of the forces acting 2¢ joint i

is given by

(K); (u); + ; (K)(u); = 0. (23)

Again, for the usual case, the first matrix term
is nonsingular and the displacements, (u);,
can be expressed by

Wy = - L@y @)

Thus a general expression for the branch trans-
mission factors for the natural frequency flow-
graph for plane frames with axial-bending
members is given by

()3 = =) (B - (25)
Both the form of the natural frequency
graph and the branch transmission factors have
been derived directly from the physical system.
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As there are no inputs to the system, it can be
shown that for a nontrivial solution for the
natural frequencies, the graph detorminant
equals zero.

To illustrate the application of flowgraphs
to the determination of the free vibration of
systems with distributed mass, consider the
two-span continuous beam in Fig. 9(a). The
natural frequency flowgraph is shown in Fig.
9(b) and an eigenvector graph in Fig. 9(c). For
simplicity of presentation, consider transverse
vibration only. As there is then only one dis-
placement at each joint, the general matrix
flowgraph reduces to a scalar one for this ex-
ample. Using Eq. (25), the transmission fac-
tors are

-

o @), B el (e,

L

. (26)

o (e, B @)

The scalar graph determinant can be formu-
lated directly from the flowgraph and equated
to zero. Thus

B= 1=t ,ty = tyt =0, ty)]
B ,I_,m L ,I ,m
) l'; a’"a’'"a b’"b’ b 3
member & #2 member b
L L I 1.5L l
[ 1 1
t2g t23
(o <_‘__>o<:>o
u u u
L) t21 % tsg %
t23
() \‘/_.\o
u u, =1.00
0, sy o, Yoy

Fig. 9. Example beam
vibration flowgraphs
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As for discrete systems, the expression for the
graph doterminant can be expanded to yield the
usual frequency equation. However, it is prob-
ably simpler for most continuous structures to
evaluate the equation for successively large-
values of p?. The eigenvector flowgraph shown
in Fig. 9(c) can be solved using Mason's loop
rule as shown in the preceding section.

CONCLUSIONS

An impoortant characteristic of flowgraphs
is tiwat they can be formulated directly from the
phynical system under consideration. The con-
sequent interrelaiionships are seen from the
resultant loops and branches. In the case of
linear structural systems, the nodes of the
basic structural flowgraph represent the de-
pendent disgls:cmsnts of discrete points and
thus, in general, the variables are v~ctor quan-
tities,

Following a brief discussion of the mathe-
matical operaticne associated with flowgraphs,
it is shown that the basic structural ilowgraph
can be readily transformed into the natural
frequency graph. In this latter graph, the
branch transmission factors are in terms of
both the member stiffnesses and the frequency

of vibration, Using the graph determinant, the
natural frequencies can be computed using a
digital computer. Firally, a further simple
transformation yields the eigenvector flowgraph
which can be utilized to determine the elements
of the eigenvector for each natural frequency

This paper has demonstrated the feasibility
of flowgraphs in the determination of the natural
frequencies and eigenvectors of discrete and of
coatinuous mass systems. It is concluded that
this approach can be used effectively in the
study of free vibration of structures.

It is hoped that this naper will provide new
insights into the use of flowgraphs in correlat-
ing the physical system to its mathematical
model. Flowgraphs have the advantage that the
solution of the dependent variables is direct
and does not involve mathematical sotution
processes that lead to the loss of the physical
parameters,
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DUAL SPECIFICATIONS IN VIBRATION TESTING®

Walter B, Murfin
Sandia Corporation
Albuquerque, New Mexico

A method of specifying vibration test inputs
using both force and motion is shown to be su-
perior to specification of either input alone.

INTRODUCTION

Vibration test levels may be given in two
ways: by specifying an input motion or by
specifying an input force.

Because motion (i.e., acceleration) is the
quanticty most ofter measured in the field, it
might seem more logical to specify motion,
However, such a specification is grossly over-
conservative. Not only is the svstem drastically
overdriven at some frequencies, but the wrong
frequencies are emphasized. The specificatior
of force is more logical, bat the attainment of a
realistic level is attended by great difficulties.
Force is virtnally unmeasurable under field
conditions. Also, as shown by Otts [1], force-
controlled vibration tests require the use of a
"foundation mass''; realistic choice of this
mass is generally impossible.

Many papers have been published suggest-
ing exotic mecharical impedance methods for
determining the proper test level. These meth-
ods are generally completely impracticable and
are usually ignored.

DETERMINATION OF FORCE
FROM MEASURED MOTION

If it is known that most of the vibration of
the system results from input forces applied at
a single, well-defined point, it is possible to
compute appropriate forces from field-motion
measurements und a laboratory measurement.

It is convenient to introduce the concept of
driving point apparent weight. This is the ratio

of vibratory input force to vibratory input ac-
celeration as a function of frequency, i.e.,

W () = [F(w)]/{X(w)], where F is the force in
pounds, x is the acceleration in g units, and »
is the circular frequency.

The apparent weight is then given in pounds.

Apparent weight is related to mechanical im-
pedance [2] by a factor of jw, where j = v-T.
Although apparent weight is actually a complex
quantity, only the absolute value is required
kere.

If field vibrations were known at discrete
frequencies, it would be a simple matter to
compute the forces, i.e., F'(w) = W (w)j(w),
where the y are measured field accelerations,
and the F'{w) are the computed field forces.

The field vibrations are measured, usually
over a frequency interval for instance, as given
hy the Vibran [3,4] system. Although a certain
level is reported for a frequency band, it must
not be supposed that this vibration is uniform
over the bandwidth. In fact, it will be obvious
that if force is uniform over the band, almost
all the vibration will take place at that frequency
within the band where the apparent weight is a
minimum,

One can choose an "average' value of ap-
parent weight within a frequency band which is
strongly biased toward the minimum value,
Then the "average' force within 2 frequency
band is F = W,j, where ¥, is the "average"
apparent weight. The method of choosing the
average value is open to debate. The method
used here is W, = W, + 0.1 (Wo oo - ¥oi0),
where W, and ¥ _  are the minimum and

*This work was supported by the U.S, Atomic Enerqy Commission.
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Fig. 1. Measured field vibration

maximum values of the apparent weight within
the band.

Ezample

Analysis of many Vibran records of field
measureme:ts on a system showed that field
vibrations were less than the levels shown in
Fig. 1. Apparent weight of the same system
was measured in the laboratory; the results
are shown in Fig. 2. The product of measured
vibration and average apparent weight is shown
in Fig. 3. It wiil be seen that, although both
field vibration amplitudes and apparent weight
are fluctuating functions of frequency, the com-
puted field forces are much smoother functions.
This result is intuitively satisfying.

Combined Specifications

The requirement for foundation mass can
be obviated by a simple limiting procedure. It
is known that accelerations measured in the
field will not exceed the levels shown in Fig. 1.
It has been computed that force levels will not
exceed those shown in Fig. 3. It is relatively
simple to combine this information into a single
test. The computed force of Fig. 3 is used as
an input; however, the input acceleration is
never allowed to exceed that of Fig. 1. At any
frequency at which input accelerations would
tend to exceed this limit, the force is suitably
reduced so that the limit is not exceeded. It is
exactly equivalent if acceleration ie the speci-
fied input, and the force is limited.
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Fig. 2. Measured apparent weight

Both the force and vibration envelopes
shown are rather complex, and it was not known
that the measured field environment was the
most severe that could ever be encountered.
Therefore, for both conservatism and simplic-
ity, the actual test specifications were as shown
in Figs. 4 and 5. While this test is conserva-
tive, it is conservative by design and by a
known amount. This is certainly preferable
to the blind conservatism involved in motion
specification.




B\v/_}&

SOLID LINE: BAND AVERAGE
DASMED LINE FARED WALUES

200 400 60U 000 2000

FREQUENCY (2}

zwo:mﬁ
E \
g \
N
. \
1000 - \
\
\
6 20 40 0 80
Fig. 3.

The results of this test were as shown in
Figs. 6 and 7. It will be seen that at some fre-
quency within each Vibran band (shown by heavy
vertical lines), the amplitudes are as high as
those shown in Fig. 4, and none are higher.

Random Testing

While the method is most easily applied to
swept sinusoidal vibrations, it can also be used
in random vibration testing. However, real-
time limiting is very difficult in the random
test. An alternative would be to shape the input,
by suitable filters, in a preliminary low-level
test. This can be done as part of the equaliza-
tion procedure. It is hoped that the system is
sufficiently linear to obtain the same shaping in
the actual high-level test. If the system is

Computed field forces

known to be very nonlinear, the method is more
difficult to apply. (However, this is also true of
the usual equalization procedure.)

RECOMMENDATIONS

To improve the method of specifying levels
for vibration tests, one should have an extensive
file of input forces computed for a wide variety
of use and handling conditions. Normally, one
has an adequate file of measured accelerations.
In addition, there is a need for apparent weights
of the structures on which these accelerations
were measured, and, as pointed out by Foley [4],
a rational method of averaging is required.

The following course of action is recom-
mended to obtain the file of computed field forces:
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Specified input force
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1. Design "universal' fixtures which could
be used to measure apparent weights of many
systems of the same general type.

2. Meagure the apparent weight of all sys-
tems for which reliable field vibration data are
available.

3. Compute field force inputs.

4. Compute average and peak force input
envelopes.
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Fig. 7. Input acceleration

Such 2 program can be of great value for all
future systems.

CONCLUSIONS

Vibration tests in which a force input and
an acceleration limit are specified have many
advantages over those involving specification of
either force or motion inputs. The method is
feasible and only requires z knowiadge of the
system apparent weight in addition to the usual
field data.




REFERENCES

1. J.V, Otts, Force Controiied Vibration
Testing, Sandia Corp., SCTM-65-31, Feb.
1965

2, C. M. Harris and C. E. Crede, Shock and
Vibration Handbook, 1, Ch, 10 (McGrzwv-
Hill), 1961

DISCUSSION

C. Smith (Bell Aerosystems Co.}: Iama
bit worried when you say that probably what you
get in the end does not depend upon the founda-
tion. Is it correct that the apparent field forces
do not, in fact, depend on what the piece of
equipment is attached to?

Mr. Murfin: Yes, but every foundation is
different. What you want to do is give it the
peaks that any foundation would give it, not the
peaks that a particular foundation would give it.

Mr. Smith: Those peaks themselves are
going to depend upon the foundation, are they
not ?

Mr, Murfin: They are dependent on the
foundation, but if you want tc demonstrate con-
servatively that the equipment that you are
testing can survive any environment on any
foundation, you want to require it to hit all the
peaks of which it is ccpable, not simply those
which would be transmitted by a2 particular
foundation.

Mr. Smith: Would not a very low impedance
foundation be effectively limited to an ability to
input smail forces, but a high impedance foun-
dation be able to put in high input forces? I
still cannot see why you apparently can com-
pletely disconnect the consideration of the two.

Mr. Murfin: Right. Forget about the foun-
dation. You have a force that is being put in
and whether it is being put iu by a foundation or
a chaker does not matter. If the equipment be-
ing iested wants to respond to that force at a
particular frequency it will, Do not put it on a
foundation that may obscure that peak. Do rot
put it on a foundation that may put in a spuricus
peak that could not really be there.
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3. J.T. Foley, "Preliminary Analysis of Pata
Obtained in the Joint Army/AEC/Sandia
Test of Truck Transport Ervironment,”
Shock and Vibration Bull., 35, Feb. 1966

4. J.T. Foley, "An Environmertal Research
Study," IES Proc., Apr. 1967

Mr. Smith: I still feel the two have to be
connected. It seeme to me that your system
dynamics is somehcw being considered inde-
pendently of total dynamics. I feel this is a
dangerous move,

Mr. Murfin: Ko, on the contrary, it is a
dangerous move to attempt to measure a foun-
dation that you can never measure cxzactly, and
that will not be the same from day to day, and
to assume that that foundation is putting the
forces into the equipment.

Mr. Smith: But, if you do know enough
about the foundation to which the equipment will
be attached, the test specifications that vou
would like would be different on different
foundations.

Mr. Murfin: They certainly would, but on
the other hand, what you probably want is a test
specification valid for an, fourdation, is it not?

Mr. Smith: I would not be that ambitious.

Mr. Murfin: I do not think that if a particu-
lar one i3 measured you can say that the equip-
ment i8 always going to be cn exactly that one.

Mr. Smith: I think I am getting my point
across, nevertheless. You cannot be satisfied
without some consideration f the forndation
dynamics.

Mr. Murfin. Believe me, the foundation
has nothing to do with it. There is so much
force that it dves not matter what is on the
other side of the force — it will create the same
response.

*
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SUBSTITUTE ACOUSTIC TESTS

Terry D, Scharton and Thomas M. Yang
Bolt, Beranek, and Newman, Inc.
Van Nuys, California

Experimental and analytical studies of idealized structuies are pre-
sented to illustrate the use of multipoint mechanical excitation as a
substitute for full-scale acoustic tests of large aerospace structures,
The development of small vibration test fixtures that simulate the im-
pedance of aerospace mounting structures is also discussed.

INTRODUCTION

In the environmental checkout of aero-
space structures, components, and complete
systems, it is becoming common practice to
require full-scale prototype acoustical tests.
These tests are justified by the argument that
they can uncover effects that may not be zeen
in simplified analyses or less complete low-
level tests. The usual approach in full-scale
acoustical testing is to attempt to simulate the
excitation by requiring th..t the pressure spec-
trum over some region of the test items is the
same as that expected in the service environ-
ment. To fulfill this requirement, test facilities
generating hundreds of kilowatts of acoustical
power are being built. Because of the iarge
costs of these highly specialized facilities, it
appears worthwhile to examine the possibility
of finding « more efficient substitute for fuli-
scale acoustical tests. The results of an early
study of acoustic and multishaker excitation of
an electronic component box indicate that the
concept of substitute acoustic tests deserves
further attention [1].

The possibility of performing realistic
substitute acoustical tests arises primarily as
the result of recent advances in our ability to
predict the vibration response of aerospace
structures to acoustic and aerodynamic excita-
tion fields, and recently developed concepts for
utiliziig multimodal vibration test fixtures that
realistically simulate the impedance and vibra-
tion ervironment of aerospace mounting struc-
tures in the acoustic freauency range.

In "Spacecraft Model Experiments' (be-
low) the results of acoustical and mechanical
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excitation experiments involving a mcdel space-
craft are presented to illustrate the accuracy
with wiich the power that is transferred from
an acoustic field to a vikrating structure caa be
analytically predicted, and to investigate the use
of mechanical shakers to simulate acoustically
induced power flow. Tests of a cylindrical
structure are discussed in "Cylinder Experi-
ments’ (below) to show ihe feasibility of utilizing
mechanical shakers to simulate the acoustically
induced vibration environment on aerospace
structures, such as a spacecraft shroud or the
skin of a launch vehicle. "Impedance Simulatica
Tests' (below)} discusses the development of
small, multimodal, vibration tes\ fixtures that
simulate the impedance of typical aerospace
mounting structures.

SPACECRAFT MODEL EXP£RIMENTS

One method of performing a substitute
acoustic test involves simulation of the power
flow between an acoustic (or aerodynamic)
pressure field and the vibrating structure.
Consider, for example, the problem of testing
a spacecraft that is excited inflight by the sound
field inside the spacecraft shroud. Assuming
that the pressure levels inside the shroud are
known from previous measurements, we can
calculate the power transferred to the important
receiving elements of the spacecraft, such as
the solar panels, the adapter, etc. The sub-
stitute acoustic test can then be performed by
attaching a number of mechanical shakers to
these receiving elements, and adjusting the
power input to the calculated vaiues.
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Substitute acoustic testas based on the con-
cept of simulating input power offer two advan-
tages: the pywer transferred from an acoustic
field to a vibrating structure can be calcuvlated
quitc cacily and reliably (2,3] and therefore low
level acoustic tests or scaling techniques are
6ot required to implement the concept, and cal-
culstion of the input power does not require a
knowledge of the damping < the vibrating struc-
ture. However, tests based on the coancept of
simulating calculated input power are obvicusly
not as sccurate a3 teats besed on the concept of
aimulating the measursd respoase.

A 3eries of tests was conducted utilizing
the mc<lel apacecraft shown in Fig. 1. In the
first test, the spacecraft was excited with a
reverberant sound {ield witL octave bansds of
random noise; tae resulting apace-average ac-
celeration response of the solar panels, control
box, and adapter are shown by the solid lines in
Fig. 2.

The solar panels and adapter woula appear
to be the most {mportant receivers of acoustic
power. As the solar panels are unbaffled, their
response i8 yoverned by mass law and the power
input can be calculated from Eq. (1),

(1)

. 4A?
P—Mw

2
<p )l.t R

where A i8 the punel area, N is the panel mass,
« is the excitation frequency, and <-*>  is
the snace-time average mean-squar: pressure
in the reverberant field.

The response of the adapter to the snund
field is complicated by its curvature, but the

@ Shoker Locations
in Mechenical Test
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input pc wer at frequencies below the ring fre-
¢nency of 2000 He (the ring frequency of a cyl-
inder is given by f, = c,/nd, where ¢, is the
speed of sound and d is the diameter of the
cylindrical shell) is givcr. by the following
equation:

2, AN
P - _0___._‘ (F'2>r , (2)
uo? Tt

where c, is the speed of sound, and N, i8 the
modal density of acoustically fast reodes in the
adapter [4,5).

In the second test with the model spacecraft,
twot mechanical shakers were attached to the
solar panels and one shaker was attached to the
adapter as shown in Fig. 1. Accelerometers
mounted at the shaker “ttachment points were
used to control the power inputs according to
the values calculated from Eqgs. (1) and (2).

The powoer input to ar infinite plate from a
mechanical shaker i given in terms of the ai-
tachment point acceleration <a?>, by

2ph’cy <als
—— <a

\/-3— w?

P- (3)

where - is the densitv, h is the thickness, and
cp i8 the speed of sound in the plate. In calcu-
lating, it i3 assumed that Eq. (3) is valid for the
solar panels and the adanter (this assumption
is valid at high frequencies where the vibration
wavelength i8 short compared to the structural
dimensions), and Eq. (3) is corbined with Eq.

Soacecraft
COI’\'N‘;‘ [-__‘—'—‘
Box
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L

e

Fig. I. Simplified view of the mo el spacecraft
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Responses of spacecraft eirments in acoustical

and mechanical excitation experiments

(1) and Eq. (2) to obtain the desired relation-
ships between acoustic pressure level and
acceleration level at the attachrnent points.

The responses of the model spacecraft
adapter, control box, and adapter are shown in
Fig. 2 by the dashed lines. Notice that the re-
sponses of the solar nanels and adapter are
very similar in the acoustic and mechanical
excitation experiments. However, the space-
craft control box response is considerably
higher in the acoustic excitation experiment
than in the mechanical excitation experiment,
indicating that the control box is excited di-
rectly by the acoustic field rather than by
mechaniccl coupling with the solar panels or
the adapter in the acoustic excitation experiment.

The results of the spacecraft model ex-
periments indicate that substitute acoustic
tests based on power input simulation are
feasible, provided that the shakera can be
attached directly to each structural element in
which the response is governed by direct
acoustic excitation.

CYLINDER EXPERIMENTS

For many aerospace structures, an imag-
inary envelope of external structure can be

defined that responds directly to the acoustic
or aerodynamic environment and subsequently
transmits noise and vibration to the interior
portions of the system; the shroud of a space-
craft or the skin of a launch vehicle are typical
examples. In these cases, substitute acoustic
tests can be performed by using mechanical
shakers to simulate the desired vibration re-
sponse of the envelope structure. The actual
enveiope vibration environnient can be estimated
by a combination of analytical methods, empiri-
cal scaling from existing data, and low-level
acoustic tests.

Simulation of envelope response eiiminates
one of the problems associated with acoustic
testing. It is well known that acoustical and
aercdynamic environments with the same meas-
ured pressure spectra Jdo not generally induce
the same vibration response [6,7). Thus, the
use of acoustic tests to simulate aerodynamic
environments can be very misieading if the
pressure spectrum ig simulated. It is more ap-
propriate to simulate the response environment.

One may also question the validity of simu-
lating the envelope response and ask whether
the noise radiated by the eavelope and the vi-
bration transmission from the envelope to in-
ternal structure depends strongly on the nature
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of the source used to excite the envelope vibra-
tion. For example, it can be argued that ba-
causde of the wavelength matching of the exciting
and radiatsd scoustic waves, in certain fre-
quency ranges a structure excited acouatically
will radiat: scund more efficiently than a
structure excited mechanically.

To lavestigate the validity of simulating
envelope vibration response two series of
experiments have been conducted with the
sealed cylindrical siructure shown in Fig. 3.

Inn the {irst series, the noisec radisted from the
hollow cylinder to the interior acoustic field

in acoustica® and mechanicai excitation tests
was investigated; in the second series, we in-
vestigated the vibration transmitted {rom the
cylinder to the instrument box attached tc the
cylinder wes investigated. The sealed cylinder
was placed in a reverberant sound fieid in the
acoustic excitation tests, as shown in Fig. 3(a),
and in the mechanical excitation tests two
shakers were attached to the cylinder as ghown
in Fig. 3(b). In both the acoustic and meckan:-
cal excitation tesis, the octave-band, random-
noise excitation level was adjusted to estabiish
a space-time average mean-square acceleration
of 1 g on the cylinder.

The results of the first series of tests are
given in Fig. 4, which shows the interior acous-
tic pressure levels for a given cylinder accei-
eration ievel in both acoustic and mechanical

Irternal Acoustic Spoce
Cyllnder Skin

‘s N

Shaker

. !

N— e’

(o) Acoustic Test
on Cylinder

-

excitation tests. Tests were conducted both
with and without an acoustic liner inside the
cylinder. The measured internal ioss factor of
the interior acoustic space was n, » 2 X 10-2
with the liner and 7, = 2 X 103 without the
liner. The data obtained, both with and without
the liner, indicate that the interior acoustic
pressure levels are approximateiy 3 db higher
in the acoustic excitation tests than in the me-
chanical excitation tests.

The ratio of the interior acoustic pzessure
fevele to the cylinder vibration ievels can be
calaristed utilizing statistical energy analysis
teckaiques [3]. At frequencies below the ring
freguency {f, = 4000 Hz for the test cylinder),
the acouatic radiation is governed by resonant
viLration modes of the cyiinder, and the calcu-
lated pressure-acceleration ratio is the same
for acoustic and mechanical excitation. For
frequercies iess than 40060 Hz, the pressure-
acceleration ratio is given by

<a® h (MY, 3 M

2
Pen R Potcg’ A 1 1 (N-f>
i

4)

where p, is the acoustic density, ¢, the acous-
tic speed of sound, V, the acoustic volume, and
n, the internal loss factor of the interior acous-
tic space, A the cylinder interior surface area,
and (N,./N) the ratio of modal density of acous-
tically fast cylinder vibration modes to the total

— —ﬁ
Instrument Box |

]

____

) Mechanical Test
an Cylinder

N—

(c) Cutaway View of
Instrument Box
Attached to Cylinder

Fig. 3. Acoustic and mechanical tests on cylinder
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Fig. 4. Sound pressures generated inside a
cylinder excited acoustically and mechanically

modal denslty of the cylinder [4]. The values of
the pressure-acceleration ratio calculated from
Eq. (4) are also shown in Fig. 4. The calzulated
values agree reasonably well with the values
measured in acousetlc and mechanical excitatlon
experiments and predict measured 10-db differ-
ence in the interior acoustic levels with and
without the liner.

The calculated ratio for the 8006-Hz octave
band ls obtained by considering radiation from
the acoustically slow resonant vibration modes.
That the measured interior pressure levels
exceed the calculaied levels in the 8000-Hz band
indicates that above the ring frequency (but
pelow the coincidence frequency) the nonresonant
cylinder vibratic~ modes govern the radiation.
The sound radiated by the nonresonant cylinder
motion depends ci the details of the excitation;
however, preliminary calculations indicate that
the sound radiated is approximately the same
for reverbera..t acoustic excitation and pownt
mechanical excltatlon. Above the acoustic
coincidence frequency (f_ - V3 c;’/ncsh where
h i8 the cylinder thickness} of 16,000 Hz for
the test cylinder, theoretical and experimental
resulis indicate that the resonant cylinder mo-
tion again governs the radiation and the details
of the excitation are not important.

The results of the second serles of experi-
ments (see Flg. 5) show that the acceleratlon
transfer functlon from the cylinder to an in-
strument box, attached !o the cylinder wilth
four studs. 1s essentially the same in acoustlc
and mechanical excltation tests. The accelera-
tion transfer function (deflred as the ratio of
the space-time mean-square cylinder accelera-
tion to the space-time mean-square box accel-
eration) can also be calculaied [8] using the
following statlstical energy analysls techniques:

(5)

2 2 2
(Ab>t,s "'chc (fr Tbe

Al> , rphd N/ The b T

where the subscript b indicates the box and ¢
the cylinder, n, is the measured internal loss
factor of the box, and 7, is the coupling loss
factor from the box to the cylinder given by [8]

RA(Z)

Mhe = - ' 8)
© oy e zozgM ] (

where Z_ i8 the point force impedance of the
cylinder, z, is the point force impedance of the
box. and M, is the mass of the box. In our
eva'iation of Eq. (6), we have used the
equlvalent infinite plate impedances given by
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Z = 4phicy VT . (7)

The calculated values of the acceleration
transfer function are also shown in Fig. 5.
They agree very weli with the values measured
in the acoustic and mechanical excitation tests,
except in the 1000-Hz octave band.

The results of these tests indicate that
substitute acoustic testing based on simuiating
the vibration response of envelope structure
gives realistic results for the noise radiated
to the interior and for the vibration transmitted
to skin-mounted equipment. In the case of large
launch vehicles or spacecraft, however, it may
be very costly and difficult to perform substi-
tute acoustic tests using a large envelope sec-
tion of structure; so we turn now to the problem
of developing small vibration test fixtures for
pericrming substitute acoustic tests of skin-
mounted components.

IMPEDANCE SIMULATION TESTS

Acoustic testing has been advocated as a
means of overcoming the problems associated
with conventional vibration test fixtures in the
high-frequency range [9]. In conventional
vibration tests of large components, fixture

resonances inevitably eccur within the frequency

range of interest. These fixture resonances
frustrate excitation and control problems and
often render the high-frequency vibration data

essentially useless, In addition, the use of rigid

test fixtures often results in severe overtesting
of instrument packages which in practice are
attached to lightweight, acoustically susceptible
structures and are subjected to a structurally
reverberant vibration environment.

To avoid the problems associated with con-
ventional vibration test fixtures and the ineffi-
ciencies associated with large-scale acoustic
and multishaker testing, we are currently in-
vestigating the concept of utilizing light, flexi-
ble, multimodal vibration test fixtures that
closely simulate the impedance of typical aero-
space mounting configurations [10,11]. These
fixtures have many ressnances in any specific
measurement bandwidth and result in a rever-
berant vibration field which is quite uniform
over the fixture.

Theoretica: considerations indicate that if
the point impedance of the fixture simulates the
point impedance of an actual mounting struc-
ture, then a 1~alistic substitute acoustic test
can be perforn.cd by using A number of small
shakers to estaslish the inflight reverberant
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vibration environment o the fixture. That is,

if the space-average vibration of the fixture is
adjusted to thz space-average vibration level of
a flight mounting structure, then the power flow
into any test component attached to the {ixture
will be the same as the power flow under inflight
conditions.

The technique for simulating the impedance
of multimodal r:.ounting structures, such as a
spacecraft shroud or a vehicle skin, is illus-
trated in Fig. 6 which qualitatively shows the
force admittance (reciprocal of impedance) of a
finite plate. The real part of the admittance
fluctuates with a peak-to-valley amplitude given
by 1/M.n where M is the mass of the plate and »
is the damping loss factor. The average fre-
quency separation between peaks is given by
tile modal separation $(w) = 2vhc,/A’3 A Where h
is the plate thickness and A is the plate area.
The spatial, frequency average of the real part
of the admittance 1s equal to the admittance of
an equivalent infinite plate, v,, and is given by
the reciprocal of the right-hand side of Eq. (7),
and the spatial, frequency average of the imagi-
nary part of the admittance is equal to zero.
Thus the admittance of a finite plate is quali-
tatively described by the peak-to-valley ampli-
tude, the modal separation, and the equivalent
infinite plate admittance.

To illustrate the simulation of impedance,
we have developed a small multimodal plate

Rea! Port of Point
Force Admittonc

Imoginary Port of Point
Force Admittonce

(see Fig. 7) which simulates the impedance of a
large plate. The plate shown in Fig. 7 i8 6-in.
square with 1-in. diameter coils of wire mesh
attached to each edge. This sma!l plate is de-
signed to simulate the impedance of a 27- by
46-in. plate of the same thickness.

We have performed a series of experi-
ments to evaluate the impedance simulation
technique. In the first experiment, a 27- by
46-in. aluminum plate of 1/16-in. thickness
was subjected to sine-sweep excitation of 20 to
20,000 Bz. The acceleration response meas-
ured approximately 2 in. from the shaker
attachment point is shown in Fig. 8(a). The
response shows approximatsly 80 resonance
peaks below 1000 Hz, which agrees quite well
with the theoretical modal separation of 10 Hz.

In the second experiment, the sine-sweep
test was repeated for a small 6- by 6-in. plate
that was cut from the original plate, and the
results are shown in Fig. 8(b). The modzl
separation of the small plate (approximately
one mode every 250 Hz, which is again quite
close to the theoretical value of 300 Hz) is
much less than the modal density of the large
plate, The peak-to-valley amplitude of the re-
sponse is also larger than for the large plate.

In the third experiment, the sine-sweep
test was repeated for the 6- by 6-in. plate,
modified as shown in Fig. 7, and the results

-
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Fig. 6. Point force admittance of a finite plate
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Fig. 7. Modification of a small plate
to simulate a large plate impedance

are shown in Fig. 8{c). The modal separation
ard peak-to-valley amplitude of the modified
6- bty 6-in. plate are very similar to those for
the 27- by 46-in, plate. As the thickness and
speed of sound in the modified plate are identi-
cal to the large plate parameters, the infinite
plate impedances given by Eq. (7) are the same
for each plate. It therefore folluws that the
point force impedance of the modified plate
qualitatively simulates the point force imped-
ance of the large plate. This example iUus-
trates that in the high-frequency regime, small
fixtures can be designed to simulate the point

impedance of a large aerospace mounting
structure.

CONCLUSIONS

We have conducted a number of experi-
ments and performed analyses to investigate
the feasibility of using multishaker mechanical
excitation tests as a substitute for high-level
acoustic tests. The results of the investigation
indicate that:

1. The power input from an acoustic field
to an aerospace structure can be calculated and
simulated with reasonable accuracy by attach-
ing small shakers to each structural element
that receives significant power from the zcus-
tic fie 1d.

2. If an acoustically induced vibration en-
vironment on envelope structures, suck 28 a
spacecrait shroud or a vehicle skin, is simu-
lated with small shakers, the acoustic radiation
and the vibration transmission associated with
the envelope structure will also be adequately
simulated.

3. Small multimodal fixtures for perform-
ing vibration tests of aerospace components
can be designed to simulate accurately the high-
frequency impedance and vibration character-
istics of large vehicle sections.

;
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Fig. 8(a). Sine-sweep response of a 27-
by 46- by 1/16-1n. aluminum plate
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Fig. 8(b). Sine-sweep response of a
6- by 6- by 1/16-in. aluminum plate
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Fig. 8(c)
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Sine-sweep response of the 6- by 6- by 1/16-11:. plate
with boundary attachments to enrich modes
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SIMPLIFIED METHOD Of CALCULATING
NATURAL FREQUENCIES AND NORMAL
MODES OF VIBRATION FOR SHIPS

Hassan B. Al1 and Herbert F. Alma
Naval Ship Research and Development Center
Washington, D.C.

Methods currently used at the Naval Ship Research and Development Center
(NSRDC) to calculate the natural frequencies and normal modes of vibration of
ships use a lumped parameter approach based on a nonuniform free-free beam
theory. The nonuniform beam theory considers elastic flexural and longitudinal
deformationr, including shear and torsion. Coupling between either vertical or
athwartship flexural modes and torsional modes is also considered. The ship is
divided 1nto 20 secticns of equal length. The total mass of a Jection is considered
a point mass coacentrated at the center of the section. The elastic properties are
assigned to massless elastic members joining these mass points.

The evaluation of parameters requires not only time consuming calculations but
also detailed ship section plans. The latter means that the ship is already in a
stage of development where the results of the calculation of natural frequencies,
normal modes, and vibration levels are of limited use to the designer. If the dy-
namic characteristics of the ship could be presented to the Naval Architect in the
conceptual preliminary design stage, this would constitute a significant guide, as it
would enable the designer Lv inodify his design, if necessary.

With these cousiderations in mind, a .nplified method was investigated., Using
parameters calculated for only the ceater and quarter sections of the ship, curves
were drawn over the whole ship length through these hull points, in a reasonable
way, based on curves obtained from detailed calculations for a similar ship, The
mass and stiffness parameters for the remaining 17 sections were obtained using
values from the resulting curves,

The method was applied to a destroyer for vertical and horizontal vibration.
Curves and tables are shown for the values obtained from the detailed and simpli~
fied 1aethoas. The results of the simplified method compare favorably with those
of the conventional detailed method, the average percentage error in the calculated
frequencies being 3.5 percent,

1t is planned to check the accuracy of a more simplified method, namely, using only
the center section parameters, and apply it to several ships for which detailed cal-
culatiors and measurements are availahle.

INTRCDUCTION

The ability to predict the dynamic response
and the vibration characteristics of a ship's
hull is an important input for the designer. It
will enable him to prevent failure or malfunc-
tion of delicate instruments and to evaluate
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vibration levels of shipboard machinery and
equipment owing to resonance of a forcing fre-
quencv with a natural frequency of the hull.
Calculations of hull vibration characteristics
have therefore been requested for a consider-
able time during the construction of new ship
classes,
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MATHEMALICAL MODEL USED FOR
PARAMEITER CALCULATIOKS

A {ree-free beam provides a basis for an
understanding of the essential vibratory char-
acteristics of a ship's hull at low frequencies.
Calculations of lateral hull vibrations are,
therefore, based on the Timoshenko equation
for the free lateral vibration of a prismatic
bar [1};

The differential equation for torsional vi-
brations about the longitudinal axis is

32¢ 32¢ _
e T
where
El = bending rigidity

1, = rotary inertia
u = mass per vait length
KAG = shear rigidity
y = lateral deflectioa
x = distiance from one end
t = time
GJ = torsional rigidity

¢ = single amplitude in rotation about
the iongitudinal axis.

The coefficients expressed in these equa-
tions vary over the hull iength, and cannot be
expressed as continuous functions. Therefore,
a numerical method must be applied, using
finite -difference equations. For this purpose
the ship is divided into a number of sections,
the ends of which are called stations. For each
section the mass is calculated and assumed to
be iumped in the center of the section, which is
called the half station. Shear, bending, and
torsional stiffnesses are then calculated for
each section. The finite difference method,
with special cquations for end conditions, is
described in Ref. 2.

The number of stations used in calculations
by different authors varies. NSRDC uses 20
equally spaced sections.

The parameters used for each section are
obtained from tedious hand caiculations requir-
ing detailed ship section drawings that give
weight distyibution, inertia sections, body plans,
lines, and moided offsets.

SIMPLIFIED METHOD OF
PARAMETER CALCULATIONS

Calculations of parameter values for 20
stations is cumbersome and time consuming.
Moreover, some of the required data are only
available at 2 time when the ship design is al-
ready in a final stage of development, and are
therefore only of limited value. Clearly, it
would be preferable if the dynamic character-
istics of the ship could be presented to the de-
signer in the preliminary design stage. This
would enable him to modify his design, if
necessary,

With this consideration in mind, a simpli-
fied method was investigated. The parameters
derived for digital computation of natural fre-
quencies and mode shapes were calculated oniy
for the center and the two quarter sections of
the ship, for which early design plans arc gen-
erally available. The three points are then
connected by straight lines, the slopes being
adjusted at the end sections to correspond to
curves obtained for the respective parameters
of similar ships. The parameters of the other
17 stations, or half statione, are scaled from
these curves to obtain all parameters needed
for a 20-mass system.

This simplified method was applied to a
ship for which detailed calculations and meas-
urements were available,

CONCLUSIONS
The motion equations of the hull, on which

computations are based, and the parameters
required for each station are as follows.

d‘ L} d-
B Y-, d’y =y
dn BE dx? dt? dt?
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where

El = bending rigidity of the hull

1,, = rotary inertia of the hull per unit
length

u = mass per unit length
KAG = shear rigidity of the hull
GJ = torsional rigidity of the hull

¢ = single amnplitude in reotation about
the longitudinal axis

1,, = mass moment of inertia of the hull
per urit length about the longitudinal
axis,

Figure 1 shows distribution of the weights
and the total masses {including the so-called
virtual mass of the surrounding water). The
three calculated points are marked with circles,
and the assumed distribution is shown in dotted
curves,

Figure 2 shows the two curves for the
moment of ‘nertia distribution about the vertical
and horizontal axes, and Fig. 3 shows the shear
area curves for vertical and horizontal vibra-
tion parameters.

Despite differences in mass and stiffness
parameters, results of the simplified method
compare favorably with those of the conventional
method, 2 well as with measurements.

Figure 4 shows the small differences in
mode shapes and frequencies obtained for the
first fcur vertical modes. Differences for hori-
zontal vibration calculations, not shown, are
similarly small,

Table 1 is a tabulation of measured verti-
cal natural frequencies and values obtained
from detailed and simplified calculations. This
shows that the simplified method may be con-
fidently employed in the preliminary design
stage.

TABLE 1
Measured and Calculated
Vertical Hull Resonances

Calculated
Mode Measured
Detailed | Simplified
First 1.3 1.35 1.3
Second 3.0 2.88 2.82
Third 4.6 4.72 4.3
Fourth 6.5 8.71 6.5
Fifth 8.2 §.50 8.35

Studies are in progress to determine
whether the method can be further simplified
by calculating the center section parameters
only and fairing the parameter curve to one of
similar ship dimensions.

Further details, including figures and
tables for horizontal vibration calculations, can
be found in Ref. 3.
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DISCUSSION

M. Pakstys (General Dynamics/Electric
Boat): I noticed that your comparison between
the experimental and the simglified method was
better than that between the experimental and
the full method. How do you explain that ?

Mr. Ali: I canaot offer a sclentific ar:swer
and I doubt if thers i8 any significanc~ to it. It
is probably just a coincidence.
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J. Weber {General Dynamics/Convair):
How can you measure the natural frequencies
of a ships kull?

Mr, Ali: It is standard procedure. Nor-
mally, we perform a spectral analysis of re-
corded data from accelerometers, and from
this we get the various frequencies. This has
been done for several years, I understand.

Mr. Smith (Bell Aerosystems Co.): What
sort of fundamental propeller frequency are you
talking about, and what order of harmonics are
you trying to avoid? I noticed your fourth fre-
quency was about 6 Hz. Obviously, your luck
runs out when the approximations to the mass
and stiffness distributions are inadequate to
calculate modes of an order sufficiently high to
be within the order of propeller harmonics that
you are trying to avoid. Could you relate pro-
peller harmonics and their frequencies to the

* *

modal number that you would have to know to
avoid coincidence with these frequencies ?

Mr. Ali: Anything beyond the fourth mode
is of academic interest only, We are not par-
ticularly interested in the higher harmonics
because we cannot measure them. Essentially,
if thir method is accurate for the {irst three or
four raodes, we are quite happy.

Mr. Noonan (NSRDC): The principal fre-
quencies with which we would be concerned
would be the fundamental blade frequencies and,
on occasion, the shaft frequency. A particular
example of difficulties along this line was the
earlier class of destroyers that had a fundamen-
tal torsional mode of the hull at approximately
300 rpm of the shaft, and that was excited by
unbalance in the propulsion system. No matter
how much effort went into attempts to balance
that, it was virtually impossible to have a vehi-
cle which was satisfactory to the ship because
that particular mode was so sensitive.

*
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RESPONSE SPECTKA FOR SWEEPING
SINUSO!DAL EXCITATIONS

Donald L.. Cronin
TRW Systems Group
Redondo Beach, California

The amplification spectrum for a laboratory sinusoidal sweep test is
often described as flat, with an amplitude equal to Q, the system quality
factor. Thie description fails to account for two factors: (a) there is
attenuation of system peak response as a consequence of sweeping, and
{b) the spectrum approaches flatness only between the lower-frequency

limit and upper-freque cy limit of the sweep.

In this paper an approximate analytical description is derived for the
amplification spectrum of a sweeping sinusoidal excitation which takes
into account peak attenuation owing to sweeping and response outside
the range of the sweep. The dependence of the spectrum upon sweep
rate and systemn damping is discussed, and the results are extended to
sinusoidal sweep tests wherein input acceleration levels are varied in
discrete steps during the course of the test,

INTRODUCTION

Many environmental tests employ a slowly
sweeping sinusoidal excitation. In these tests
the excitation is started at some prescribed
lower-frequency limit and is increased to some
prescribed higher-frequency limit. The exci-
tation frequency during testing depends expo-
nentially on time, and the characteristic sweep
parameter is the octave sweep rate, or the rate
at which the excitation frequency is doubled.
The tests generally consist of a collection of
discrete frequency domains wherein the level
of the excitation is controlled to provide shaker
motion that has constant amplitude for displace-
ment, velecity, or acceleration. Tests finding
wide application consist, for the most part, of
one or more constant acceleration domains.
Tests falling into this category are discussed
in the following paragraphs.

A convenient tool for visualizing the effect
of an excitation is the response specirum —a
plot of the maximum response of a simple lin-
ear oscillator to the excitation in question as a
function of oscillator frequency. An accelera-
tion response spectrum or, more simply, an
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amplification spectrum for a constant acceler-
ation sweeping excitation is generally described
as being flat, with an amplitude equal to Q.

The spectrum for an undamped system is usu-
ally not defined.

This simplified view of the response spec-
trum fails to take into account two factors.

1. There is attenuation > system peak re-
sponse, i.e., full resonant response is not al-
ways reached in testing owing to the effect of
sweeping.

2. Relative flatness describes the spectrum
only over the range of the sweep, i.e., only be-
tween the lower-frequency limit and upper-
frequency limit of the sweep. It provides no
information on the responses of systems having
resonances outside the range of the sweep.

These two factors are discussed and ana-
lyzed separately in this paper. Results of anal-
ysis are then combined to provide a potentially
useful and more accurate description, than
heretofore available, of system res onse to
sweeping excitations,




NOMENCLATURE

A Amplification — ratio of response
acceleration to input 2cceleration

a,.x Maximum oscillator acceleration
B, Input acceleration levels (i = 1,2,3)

F Frequency as it pertains to the
input (hertz)

F Time rate of change of input fre-
quency (Hz/sec)

f Frequency as it pertains to the
oscillator (hertz)

Q Quality factor (Q = 1/2{)

8 Octave sweep rate (octaves per
minute)

{ Fraction of critical damping
n  Sweep parameter
+ Time required for excitation {re-
quency to double (r = 1/8).
PEAK ATTENUATION
It has been widely recognized that peak re-

sponse during a sine sweep test may be attenu-
ated because the excitation, in passing through

resonance, provides the system with insufficient
time to reach steady-state response. Analyses
of this effect [1-3] have lacked generality owing
to the fact that peak attenuation depends on
several variables. These variables include
system frequency, system damping, the rate of
sweeping, and the method of sweeping, e.g.,
excitation frequency depending linearly on time,
excitation frequency depending exponentially on
time, etc.

During a recent study [4] consisting of
analysis and analog computation, it was discov-
ered that, to a good order of approximation,
peak attenuation does not depend on the manner
in which the sweeping takes place, nor on the
direction of sweeping, i.e., on whether the ex-
citation frequency increases or decreases in
time. It was discovered, moreover, that peak
attenuation, again to a good order of approxi-
mation, depends upon a single parameter which
combines system damping, system natural fre-
quency, and the absolute value of the time rate
of change of excitation frequency as the excita-
tion passes through system resonance:

ﬂf' (1)
f

Figure 1, adapted from Ref, 4, illustrates
the fractional reduction of peak response as a
function of the parameter n.

n

A fairly simple function may be fitted to
the curve of Fig. 1 to provide a reasonable de-
scription of peak attenuation owing to sweeping:

(relative %o steady-stote )

PEAK  REDWCTION

pranl

L

1 111l

] [

Fig. 1. Fraction of steady-state response
attained by a mechanical oscillator as a
function of the sweep parameter 7
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As resonant response produces an amplifi-
cation of Q, the system quality factor, the am-
plification produced by a sine sweep test will
be given by

G=1- exp(-2.867"% 443y,

A~ QG
(3)
A Q1 - exp(-2.86 "0 443%)

When the excitation frequency depends ex-
ponentially on time, that is, when the sweep is
logarithmic, the sweep parameter, n, may be
written in terms of the octave sweep rate. For
logarithmic sweeping, the frequency at any time
is given by

at
F=Fye ,

()

and the time, 7, required for the frequency to
double is obtained as follows:

utl

F,=Fy e
a(t,+r)

F,= 2F, = Fy e

2: e.lY

Thus 7 = [(ln 2)/a], anu the octave sweep rate
is 8 = (1/7) = {a/(1n2)] . The frequency-time
relation may then be written

F = F, exp (8 In 2t/60) , (5)
wherein the octave sweep rate is given in oc-
taves per minute and time is expressed in

seconds. The time rate of change of excitation
frequency i8 then

pof ;’; 2 F, exp (8 ln 2t/60)
(6)
. B 1ln 2
5 F
F* %0

When the excitation passes through system
resonsnce, excitation frequency ¥ becomes
equal to resonant frequency f. The time rate
of change of excitation frequency during the
passage through system resonance is then

B1In2

= ()

Flp-f =

Subatitution of Eq. (7) into Eq. (1) produces
the sweep parameter germane to logarithmic
sweep testing:
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In 2 Q%8|
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When Eq. (8) is substituted into Eq. (3), an
aoproximate analytical expression 18 procuced
for the amplification spectrum of a constaat
acceleration, logarithmic sine sweep test:

A~ Q {1 - o [_20.75 (wlol)-o.us]}' )

This expression i8 approximate because of
its empirical origin and because it ignores the
effects of starting transients on the spectrum,
although starting transients will not be a par-
ticularly significant matter in a test involving
several thousand stress reversals. Equation (9)
also constitutes an incomplete picture of the
requisite amplification spectrum, in that it de-
scribe 3 response behavior only for systems
having resonances within the range of the sweep,
i.e., for the frequency range between the lower-
frequency limit of the sweep and upper-
frequency limit of the sweep. Response outside
the range of the sweep will be discussed in the
next section.

In Fig. 2 the dependence of the amplifica-
tion spectrum upon octave sweep ra'e is illus-
trated for a Q of 25. It is seen, for example,
that for a sweep ranging from 5 to 1000 Hz at
4 8, a system having a resonance at 10 Hz will
respond to a level of about 20 times the input
level, or to about 80 percent of full resonant
response.

In Fig. 3, the dependence of amplification
spectrum on system damping is illustrated in a
normalized plot for a sweep rate of 4.

The spectrum for an undamped system will
always be defined for nonzero sweep rates, as
an undamped system requires an infinite time
to build up to an unbounded response. For slow
sweep rates, Lewis [5] noted that undamped
system response may be approximated (in the
present notation) by

Ax 367 /‘— , (10)
[Fl
which, for logarithmic sweeping, may be
written
Ax 34l e (11)

|8
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Fig. 2. Amplification spectra for several
sweep rates and for a Q of 25

RESPONSE OUTSIDE THE The ampliflcation for a system having a
SWEEP RANGE resonance higher than the higher-frequency
limit of the sweep will be approximately
To complete the deflnitlon of the response

spectrum, it is necessary to descrlbe how 8sys- §2

tems having resonances outside the range of WD e —— ¢ a3
the sweep respond, e.g., how a system having a \&, - 2); : _f_f_,_ J
5-Hz resonance responds to an excitation 2

sweeping from 10 Hz to 1000 Hz at 4 8.

If peak attenuation owing to sweeping i8 where F, is the upper-frequency limit of the

lgnored momentarily, the amplification for a sweep.

system having a resonance lower than the

lower-frequency limit of the sweep will be ap- The application of Egs. (12) and (13) to the
proximated by present situation may be justified by physical

argument. If, for example, the sweeping exci-
ation i8 initiated at some low frequency, F,, a

| f? , system having a resonance at f < F, will re-
2 f2F} (12) spond to a level approximating the steady-state
£ - F,’) 0 — response level for a sinusoidal input having a
Q . frequency F, (given by Eq. (12)). As the sweep
where f is the system resz:ant frequency and progresses up the frequency scale, the response
where F, is the lower-frequency limit of the of the system having a natural frequency, f,
sweep. will become smaller and smaller. The initial
|
A
A
T 4 8=t
el
1 - § =15
L =5
1 0.
NI RS !
} » » L J

FREQUERCY (m1)

Fig. 3. Amplification spectra for several
values of Q and for a sweep rate of 45
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level will then envelope all subsequent response
peaks. Equation (12) therefore approximates
the maximum response of the given oscillator
to the specified input.

If, on the other hand, a system having a
resonance at f > F, is influenced by the same
sweeping excitation, the response will grow
larger and larger as the sweep progresses up
the frequency scale. The terminal value of the
response (approximated by Eq. (13)) will envel-
ope all previous response peaks and thus will
be the maximum response for this oscillator.
If peak reduction owing to sweeping i3 ignored,
the amplification spectrum for the entire fre-
quency range will appear as sketched in Fig. 4.

ke (12)

Ee.(13)

k H Freq.

Fig. 4. Amplification spectrum for
a constant acceleration sweep test

The notion of these approximations may be
applied to tests made up of a collectior of fre-
quency domains wherein the level of the excita-
tion is held at one or another constant accelera-
tion levei.

An exampie of this type of test is iisted in
Table 1,

TABLE 1
Representative Multilevel Test
Range B Level

f <F, 0
F,<f<F, B,
F, < f <F, B,
F, < f <F, B,
F, < f 0

B, < B, < B,
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The test may be considered to be the sum
of three constituent tests, each having an am-
plification spectrum as shown in Fig. 4. Maxi-
mum response vs frequency for each test may
be plctted on a common set of axes (see Fig. 5).

&8
"""" »
: i
. N ] '
r M \
[l w i\ /N
A B e el B
3 k 4 Frog.
Fig. 5. Common plot for maxirnum respcase

to constituent tests listed in Table 1

The maximum response plot for the entire
test will, by definition, envelope the three con-
stituent tests (see Fig. 6).

k fy ky k Free.

Fig. 6. Maximum response icr
test described in Table 1

In Fig. 6, the description of the maximuimn
response plot is defined in terms of input levels
muitiplying Q or Egs. (12) and (13).

CONCLUSIONS

In view of the work presented, approximate
expressions may be formulated to describe re-
spon . spectra for constant acceleration
sweeping sinusoidzl tests. These expressions
will take into account peak reduction owing to
sweeping and response of systems having reso-
nances outside the range of the sweep.




TABLE 2
Analytic Description of Maximum Response
Plot 8hown in Figs. 5 and 8

Range Applicable Equation

f<F, B, X Eq. (12)

Fiocfceh the greater of B,Q and
B, XEq. (12) with F, = F,
F,<f <F, the greater of B,Q and

B, X Eq. (12) with F, - F,
F,<f<F, By Q

F o< f B, X Eq. (13) wit., F, = F,

For a simple test embodying one accelera-
tion level, the amplification spectrum for fre-
quencies within the range of the sweep wi'l be
given by Eq. (9).

For frequencies lower than the lower-
frequency limit of the sweep, the amplification
spectrum may be approximated by combining
Eqgs. (8) and (12).

- f2 {l- exp[-20.75 (%{?})]} ‘
e 2

For frequencies higher than the upper-
frequency limit of the sweep, the amplification
spectrum may be approximated by combining
Eqs. (9) and (13), i.e.,

oo o oo (52

AN J - (13a)

e

The generalization to a plot of maximum
oscillator response vs frequency for tests em-
bodying several constant acceleration levels
proceeds from the work presented in the last
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section with Eq. (8) replacing Q, and Eqs. (12a)
and (13a) replacing (12) and (13) in Table 1,

A parenthetical statement regarding Fig. §
may be of interest here. When a sine sweep
test L.as step changes in level, certain systems
are excited to high levels at their rescnant fre-
quency, and are also excited to high levels at
some frequency other than resonance. An ex-
ample may be cited using the Atlas Agena
spacecraft flight accepia..ce test (Y-Y) found in
Table XX of Ref. 6. The test includes a 2-g
input sweeping from 250 to 400 Hz, and a 5-g
input sweeping from 400 to 2000 Hz. A system
having a resonance at 375 Hz and Q of 10 will
be tested to approximately 20g by the 2-g input.
According to Eq. (12), this system will be tested
to about 28 g by the 5-g input sweeping up from
400 Hz. Figure 7 illustrates the amplitude of
response for this system.

Froq.(M2)

Fig. 7. Amplitude of response plot
for a 375-Hz oscillator

It is seen in Figs. 5 and 7, that one portion
of such a test may produce response levels
which envelope resonant response levels pro-
duced by another portion of the test.
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DISCUSSION

Mr. Smith (Bell Aerosysiems Co.): We got
tangled on this sweep rate problem quite a num-
ber of years ago. I would like to bring to your
attention a couple of papers that we found did
not agree with the Lewis reference that you
quoted. We looked into these, because we were
not happy with Lewis's results. One was by a
fellow named Hok — I think it was in the Journal
of Applied Mathematics in 1948 — and Reed had
an article in the Journal of Aerospace Sciences,
in about 1959. For some time we have been
using a little nomograph which relates permis-
sible sweep rate to system natural frequency
and system damping. I have never yet found a
case where we had a problem with the normal
sort of test specification for bands per octave
per minute sweep rate., We felt that what Hok
had done was not in agreement with what Lewis
had done, and we felt that Hok’s work was more
nearly correct.

Mr. Cronin: It is hard to criticize Lewis.
His work predated the digital computer. He
performed an analysis that he integrated nu-
merically. I find it difficult to helieve that he
would make a mistake. Perhaps the format was
not acceptable to you.

Mr. Smith: Hok's work also pretty much
predated computers. He actually solved the
response of a system. His results are in terms
of Fresnel functions. Then he carried out an
analog experiment on a simple electrical oscil-
lator in which he swept the frequency. He com-
pared his theoretical and experimental results
and got extremely gocd agreement.

Mr. Cronin: The results I have presented
here today have been checked against many ot’.er
results. The one equation I gave for the fraction
of maximum response obtained can be used to
evalua‘: a sweep test to determine if it is, in-
deed, acceptable. Just pick the lowest important
frequency and the lowest damping ratio or the
highest Q and plug it in. If you get something
less than 99 percent or 95 percent you know the
sweep rate, or whatever your criterion might
be, should be reduced. People who work on
structures having very low frequencies do see
these effects creeping in. I have seen actual
records where these effects show up.

Mr. Smith: I am a little unhappy because I
think the criteria that we are using differ from
the criteria that you are using. I would like to
exchange information.

]
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