AD 681027

MACHINE LEARNING OF HEURISTICS

BY
DONALD ARTHUR WATERMAN

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

DECEMBER 1968 JAN 22 1969

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfield Va. 22151



BEST
AVAILABLE COPY



Machine [earning of Heuristics

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTFE ON THE GRADUATF DIVISION
OF STANFOED UNIVERSITY
IN PARTIAL FULFILLMFNT OF THE REQUIREMENTS
FOE THE DFGREE OF

DOCTOR OF PHILOSOPHY

By

Donald Arthur Waterman

December 1968



STANFORD ARTIFICIAL INTELLIGENCE REPORT December 1968
MEMO NO- AI'7,"'

ABSTRACT:

MACHINE LEARNING OF HEURISTICS

by Donald Arthur Waterman

First, a method of representing heuristics as production
rules is developed which facilitates dynamic manipulation

of the heuristics by the program embodying them. This
representation technique permits separation of the heuristics
from the program proper, provides clear identification of
individual heuristics, is compatible with generalization
schemes, and expedites the process of obtaining decisions
from the system.

Second, procedures are developed which permit a problem-
solving program employing heuristics in production rule form
to learn to improve its performance by evaluating and
modifying existing heuristics and hypothesizing new ones,
either during a special training process or during normal
program operation.

Third, the esbovementioned representation and learning techniques
are reformulated in the light of existing stimulus-response
theories of learning, and five different §S-R models of

human heuristic learning in problem-solving environments are
constructed and examined in detail. Experimental designs

for testing these information processing models are also proposed
and discussed.

Finally, the feasibility of using the aforementioned represen-
tation and learning techniques in a complex problem-solving
situation is demonstrated bLy applying these techniques to the
problem of making the bel decision in draw polker. This
application, involving the construction of a computer program,
demonstrates that few production rules or training trials are
needed to produce a thorough and effective set of heuristics
for draw poker.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).



ACKNOWLEDGMENTS

I wish to express my sincere thanks and appreciation to my principal
thesis advisor, Professor Edward A. Feigenbaum, not only for his perceptive
guidance, his intellectual inspiration, and his discerning criticisms,
but alsc for the friendly encouragement and moral support he so generously
provideds I am also grateful to Professor Gordon H. Bower for the extensive
time and effort he spent enlightening me with regard to the prsychological
aspects of my thesis topic.

In addition I am indebted to Dr. Bruce G. Buchanan, Professor D. R. Reddy,
and Professor David J. Gries for their valuable suggestions and critical
evaluations of this thesis.

I would also like to thank Mrs. Grace Mickelson and Mrs. Gail Schwartz
for their excellent job in typing and proofreading vhis report, Mrs.

Dorothy McGrath for her fine illustrations, Miss Dianna Konrad for supervising
the preparation of this report, and Miss Barbara Chiarle for reproducing

parts of this report.

iii



LANK PAGE



TABLE OF CONTENTS

Chapter Page

1. HEURISTIC PROBLEM~-SOLVING BY COMPUTER + ¢ « o o o o o o o & 1

1.1 Introduction ¢ ¢ ¢ o ¢ ¢ o o ¢ o ¢ o 6 o s s s s s s o 1

1.2 Definition of Heuristic Methods « « o « ¢ o o o s o o & 3

1l.> Historical Background =« s ¢ « s o o s o s s o o o s o 11

leb ObJectives « v ¢ ¢ o o o o o o o o o o o o o o s s 0 o o 27

3 2. REPRESENTATION OF HEURISTICS s o o o o o o o o o o ¢ o o o & 29
g 2.1 Introduction o « ¢+ ¢ o s o o o ¢ ¢ 5 o s 0 0 s s s e o s 29
2.2 Production Rules ¢ « « o o o ¢ s o o o o o o s s s s s 32

2.3 Translation of Heuristics into Production Rules . « « « 40

PROGRAM MANTIPULATION OF HEURISTICS ¢ o o o ¢ o o o o s s & & L7

L 3.1 Creation and Evaluatioc: of Heuristices .« o o o o o o« o o L7
3.2 Training Procedures « . o o s o s s s s s ¢ o o o ¢ o o 55

3«3 Learning Without Explicit Training « « « ¢ ¢ ¢ o o « & 77

4. IMPLICATIONS FOR S-R THEORIES OF LEARNING + o « o o o o & 89

q Lol INtroduction o « o o o o o o« o o o s o o o o o o o o o o 89
i L.2 An sS-R Interpretation of Production Rules « « o« o« o o 91
4,7 Proposed Experimental DeSigns =« « « o s s o s s s o o o 114

S« A SPECIFIC APPLICATION & o o« s o o2 s s s o o 5 o o o s o o s 120
S5¢1 Intorduction « o s o o ¢ o o o o o o 5 o o s o o o o o o 120
5.2 Heuristics for Draw Poker . « « o ¢ o o ¢ ¢ ¢ &+ o« « o & 122
53 Training the Poker Program « « o o o o o s o o o o o o & 133
5.4 Learning Poker Without Explicit Training .« . « « . « & 143

5.5 Discussion of Results .+ ¢ s ¢ s ¢ o o o o o o o o o o & 152

iv

-——-————-----—u
-




WO RS

Chapter

BIBLIOGRAPHY

APPENDIX
APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

6. CONCLUSIONS .

A.

B.

c.

D.

E.

F.

He.

CONTENTS (Continued)

6.1 Achievements « « « o « o o o o o o o o

6.2 Areas for Future Investigation . « «

Models of Strategy Learning

Heuristics for Draw Poker . .

Sample of Games Played During Proficiency

Test for Built-in Heuristics ¢ « o o ¢ « &

Training Trials for Manual-training Heuristics
Sample of Games Played During Proficiency

Test for Manual-training Heuristics
Sample of Games Played During Proficiency
Test for Before-Training Heuristics

Training Trials for Automatic Training

HeuristiCs ¢ o o o o o o o o o ¢ o o o o o

Sample of Games Played During Proficiency
Test for Automatic-training Heuristics

Logical Statements for Draw Poker

Treining Trials for Implicit-training

HeuristiCS ® e & & o s & * o o o e o 2 0 @

Sample of Games Played During Proficiency

Test for Implicit-training Heuristics

Page

158
158

160

169

175

182

190

195

201

205

209

217

221

226

2351

)

£~

=4

asy

Fory



A EE aam aem e 2~y cuS WS G SN O TN D U B A S o T

Figure

LIST OF ILLUSTRATIONS

1-1 Structure of a Heuristic Program for Chess

1-2

1-3

1-4

2-1

2-2

4-1

h-2

b3

5-1

5-2

Graphical Tllustration of the Criteria

or Power of Heuristics

Syntax of a Language for

A Block Diagram of the Training Procedure

o e e @ e o

for

Specifying Heuristics

Feasible Models of Strategy Learning . . .

Training Sequence and Defiuinions to Illustrate Model

Operation « « o o o o &

An Environment for Testing Models of Human Strategy Learning

Definitions of State Vector Variables and Symbolic Values
The Relationships Existing Between the Function Variables

and the Rookkeepign Variables

Built-in Heuristics « &

Possible Arrangements of Hands for the Proficiency Test

for Draw Poker . . . .

vi

e 2 o e

v vens v SRV R R !

Page

10
23
25

32
38

69
75

75
83

99
117

12k

126

127

12¢

™



s

P ITIT  S Npes tpe r

Figure

5’5 e o o o o

ILLUSTRATIONS (Continued)

5-6 Results Obtained by Applying the Proficiency Test to the

Poker Frogram Containing the Built-in Heuristics . .

5-7 Manual-training Heuristics « « « « « o ¢ o o o o o o s o o o o
5-8 Results of Applying the Proficiency Test to the Poker Program

Containing the Manual-training Heuristics
5-9 Results of Applying the Proficiency Test to the Poker Program

Containing the Before-training Heuristics

5-10 Automatic-training Heuristics

5-11 Results of Applying the Proficiency Test to the Poker Program

Containing the Automatic-Training Heuristics

5'12 e o o ¢ oo

5'13 ImpliCit-Training Heuristics e & o o o & e & o 0o o o & o o o+ o

5-14 Results of Applying the Proficiency Test to the Poker Program

Containing

6-1 ® o o o
6=2 4 o o

6'5 e o o = o

A’l « o o o o

Table
5-1 Percentage
5-2 Percentage

5-3 Summary of

the Implicit-Training Heuristics . .

Agreement
Agreement

Results .

Between

Between

vii

Trainer and Trainee

Learning Program and Axiom Set

Page

130

122

135

136

138

140

12

149

151

161
162

107

180

14

150

153

t

ey ey

foy gy by @

— —



-—'-

CHAPTER 1

HEURISTIC PROBLEM-SOLVING BY COMPUTER

1.1 INTRODUCTION

Currently much research is being done with computers in an attempt
to produce programs which exhibit intelligent behavior. This work can
be divided into two main categories, (1) artificial intelligence research,
and (2) research in the simulation of cognitive processes (Feigenbaum
and Feldman, 1963). The former is concerned with programming computers
to perform intellectual tasks, while the latter is concerned with
programming computers to simulate human cognitive processes.

The goal of artificial intelligence research is the construction
of computer programs which exhibit intelligent behavior, with the
emphasis placed on the degree of intelligence exhibited. The goal of
research in the simulation of cognitive processes, on the other hand,
is the construction of compute. programs which simulate human cognitive
behavior, with the emphasis placed on the degree to which the programs
can predict this behavior.

To illustrate the distinction between these two categories consider
the intellectual task of game playing. A researcher in artificial
intelligence would judge the merits of his game-playing program on the
basis of its skill at playing the game, the ideal program being one
capable of defeating all other players. However, a researcher in the
simulation of cognitive processes would base the evaluation of his game-
playing program on the extent to which its game decisions or "moves"
paralleled those of human players, not on how well his program played the

1

|




W TR DRRALE T AT S o A L2 ¥

game. This distinction is not a clear one, since some research efforts
can be classified as belonging to both categories. One example of this

is the NSS Chess Player (Newell, Shaw, and Simon, 1958), a program,
proficient at playing chess, which employs many human-like problem-solving
techniques.

In both the artificial intelligence area and the simulation of
cognitive processes area extensive use is made of heuristic programming,
that is, of employing heuristics in programs which solve complex problems.
The utility of most of these heuristic programs depends to a large extent
on the form or character of the heuristics employed. Thus heuristics
play an important role in the attempt to create programs which exhibit
intelligent behavior.

One of the important unsolved problems of artificial intelligence
research today is that of the learning of heuristics (Feigenbaum and
Feldman, 1963). The question is this: how can computers (and how do
people) learn new heuristic rules and methods which can be used to
facilitate decision-making in a problem-solving situation? Furthermore,
how are these new heuristics combined with existing ones to produce a
functional system capable of intelligent decision making? Solutions in
this problem area, besides permitting the construction of very powerful
problem-solving programs might also suggest what direction psychological
theories of leariiing should take. This paper will be concerned primarily
with the development of computer progroms which learn heuristics in a

problem-solving environment.

e I S Y

=3 &=

4 =

I R A

e

LA

e



1.2 DEFINITION OF HEURISTIC METHODS

In this section the concept of the heuristic will be discussed in
detail. First, the term "heuristic" will be informally defined and
contrasted with the concept of the algorithm. Next, more formal
definitions of these terms will be presented, and the implications of

these definitions examined.

Informal Definitions

A heuristic (heuristic procedure, heuristic method) is a rule-of-
thumb, strategy, trick, simplification, or any other kind of device
which drastically limits search for solutions in large problem spaces
(Feigenbaum and Feldman, 1963). A heuristic does not guarantee a solution,
rather it supplies solutions which are acceptable most of the time. On
the other hand, an algorithm (from the logician's viewpoint) is any set
of operations which can be represented by a Turing machine (Trakhtenbrot,
1963). However, when "algorithm" is contrasted with "heuristic" a
narrower definition is usually implied. In the narrow sense an algorithm
is a well-defined search procedure which is guaranteed to produce the
correct solution, given enough time. The advantage in using a heuristic
method rather than an algorithmic one is often that of reduced search time
and effort. The disadvantage is that a solution may not be found, and if one

is found it may not be optimal.

EVALUATION. The above informal definitions give a clear, intuitive picture
of what is usually meant by the term "heuristic" but are unsatisfactory
in two respects. First, these definitions lead to much confusion

concerning the nature of the differences between heuristic and algorithmic

S



methods. For example, they fail to provide the answers to the following
questions:

(1) Can a search procedure be both heuristic and algorithmic?

(2) Does a heuristic procedure necessarily imply failure on

some problems?
(3) How does one show that a given procedure is a heuristic one?
An algorithmic one?
Confusion concerning these and related questions has led to a good deal
of controversy in this area.

Second, these definitions state that a heuristic necessarily
implies reduced search time or effort in a problem area, thus denying
the existence of heuristics which do not lead to reduced search time
or effert. This constraint leads to definitions which are satisfactory
for the typical heuristic problem-solving program; i.e., one where the
heuristics are embedded in the program and can be changed only by some
external operation, such as the programmer revising portions of the code.
However, these definitions are not setisfactory for the type of program
to be described in this paper, a program which hypothesizes, evaluates,
and modifies its own heuristics. For this type of program the concept
of a "poor" (inadequate, ineffective, or useless) heuristic is needed
since the program itself must be able to determine whether : given heuristic
is a "good" or "poor" one; and thus decide whether to retain it or
discard it. It cannot be assumed that every procedure hypothesized by
this type of program will lead to reduced search time or effort, but
it would be convenient to think of all these procedures as heuristics.
This can be accomplished if the definition of the term heuristic carries

no stipulation about search time or effort but instead uses the search

L

L T = T~ i S

—

| SUSSENEY §



time or effort as one of the criteria for the "goodness" or "worth"

of the heuristic.

Formal Definitions
In this paper the terms computational rule, algorithm, and

heuristic will be taken to mean the following.

Computational Rule: any procedure determined by a set of instructions
that specify at each moment precisely and unambiguously what is
to be done next.

Algorithm: a computational rule which obtains solutions to problems,
such that there exists at least one problem domain where for
every problem in the domain this computational rule produces
the correct solution. Furthermore, the computational rule is
said to be an "algorithm for" each problem domain satisfying
the above requirement.

Heuristic: a computational rule which obtains solutions to problems,
such that there exists at least one problem domain where the
computational rule obtains one or more correct solutions but
where it is not true that the computational rule will produce
the correct solution for every problem in the domain. Further-
more, the computational rule is said to be a "heuristic for"

each problem domain satisfying the abcve requirement.

These formal definitions satisfy the two conditions that the informal
definitions failed to satisfy. That is, (1) providing a clear dis-

tinctior between heuristic and algorithmic methods, and (2) admitting
the existence of heuristics which fail to lead to reduced search time

or effort.

o



IMPLICATIONS. From the formal definitions given above it is clear that

for any computational rule, Ck, and problem domain, D, if CP produces any
correct solutions in D then it is always true that CR 1is either a
heuristic for D or an algorithm for D , but never both. However,

a computational rule may be both a heuristic and an algorithm; for example,
CR might be a heuristi: for problem domain D1 but an algorithm for
domain D2 . Also, it is possible that a computational rule could

be a heuristic for more than one problem domain.

To show that a computational rule CR is an algorithm for a problem
domain D one must

(1) show that CR produces the correct solution

for every problem in D .
To show that a computational rule CR is a heuristic for a problem domain
D oue must
(1) show that CR produces a correct solution for a least
one problem in D .
(2) show that CR fails to produce a correct solution for
at least one problem in D .
It should be noted that under these formal definitions, a heuristic
procedure does necessarily imply failure on some problems.

If one is unable to show that a particuler computational rule CR
(which produces correct solutions in problem domain D) is an algorithm
for D, and is also unable to show that CR 1is a heuristic for D then
the status of CR 1is unknown, although it is still either an algorithm
or a heuristic (but not both) for D . Since the members of this class
of computational rules are generally thought of as being heuristics,

in this paper they will, for convenience, be labeled or "hypothesized"
6



as heuristics with the urderstanding that their status is actually

unknown and may be discovered or proven at some later date.

HEURISTIC PROGRAM. A program will be considered to be a computational rule
precise enough to be executed by a computer, and a heuristic program

simply a program which contains heuristics. Thus under the formal
definitions given, a heuristic (or heuristic procedure) is just a

heuristic program containing exactly one heuristic. And convers2ly a
heuristic program is actually a heuristic for some particular problem
domain. Figure 1-1 illustrates how a heuristic program for chess (Bernstein
and Roberts, 1958) could be considered a heuristic for the problem domain

D1 while containing heuristics for domains D2 , D3 , D4 , and D5 .




heuristic in D2
(for improving
area control)

heuristic in D3
(for improving
mobility)

king defense)

heurisiic in D5
(for improving
material balance)

heuristic in D4
(for maintaining

Figure 1-1.

Heuristic Program for Chess

f

Y Y () (D

/) U

\

heuristic
in D1 (for
winning a
game of
chess)

Structure of a heuristic program for chess,
illustrating how the program is a heuristic
for domain D1 while containing heuristics for
domains D2, D3, D4, and D5.

by

e bmd e bemd e ey i

[ S



g 00 SRR o

HEURISTIC POWER. The usefulness or "power" of a heuristic (as formally
defined) is dependent on two criterias:

(1) the search time or effort involved in obtaining

a solution, and
(2) the percentage of problems in the domain which can be
correctly solved.

A very useful, good, or powerful heuristic would thus be one requiring
only a short search time to find a solution, while having the capability
of correctly solving a large percentage of the problems in the domain.
On the other hand, the usefulness of an algorithm is dependent on Jjust
one criterion, the search time or effort involved in obtaining a solution.
The percentage of problems correctly solved is not relevant since by
definition the algorithm always solves all the problems in the domain.
These criteria are demonstrated graphically in Figure 1-2 (Anonymous,
1967). Here algorithm Al , is unequivocally superior to heuristic Hl )
algorithm A2 , and heuristic H2 3 i.e., Al > Hl ; A2 ’ H2 « In the
0-3 hour range Hl > A2 > H2 , but in the 0-5 hour range A2 > Hl > H2 :
and in the 0-7 hour range A2 > H2 > H1 « This clearly illustrates how a
heuristic can prove more useful than an algorithm when the search time or
computing effort is restricted, since Hl is superior to A2 when the

computing effort is limited to 3 hours or less.




b ped e b b i e b e

"1’ Py

*SOT3STJINIY JO Jamed IO ssauUTnIIsSn
3Y3} J0J BTIIITID 3Y3 JC UOTRRIYSNTTI Tedtydern -z-1 aandiy
3J1033d Butqndwo) sanoH

L 9 S f 4

2 " 2 2

N
—

v

-
-
—

-4

pPaAToS

£1399x110)

$0S swaTqoxXd JO
a8wquasaag

00T

10

>t



1.5 HISTORICAL BACKGROUND

In the last decade a large number of computer programs employing
heuristics have been written, most of them being of a nonnumerical
nature. ©Some of the more important programs of this type will now be
briefly discussed. For this discussion it will be convenient to think
of them as being divided into two categories: (a) programs designed
primarily to demonstrate problem solving techniques, such as game playing,
theorem proving, and question answering, and (b) programs designed
primarily to demonstrate learning techniques, such as pattern recognition,

concept learning, and verbal learning.

Problem Solving Programs

LOGIC THEORIST. One of the landmarks in the development of heuristic pro-
gramming is a program written by Newell, Shaw, and Simon which attempts to
prove theorems in elementary logic. (Newell, Shaw, and Simon, 1956, 1957a,
1957b; Stefferud, 1963). This p?ogram, called the Logic Theory machine
(or LT), uses heuristic methods to discover proofs in the Russell-Whitehead
system for the propositional calculus.

Initially, the program is given a set of axioms to use and the
problem of finding a proof for a particular theorem. The program first
tries the method of substitution on the theoremj that is, LT compares
the theorem with each axiom to see if through substitution of free
variables and connectives the theorem can be made to match one of the
axioms, thereby solving the problem. If no match can be found a number
of subproblems are generated, each being the task of proving valid
a particular proposition whose validity implies the validity of the
original theorem. The method of substitution is then tried on the

11



subproblems and if no match can be found subproblems of each subproblem

are generated and the procedure is again applied to each of them.

The search continues in this fashion until a solution is found or the

program runs out of time. H

Some of the important heuristics used in LT include (1) the
heuristic technique of working backward from the theorem to be proved
toward the axioms, (2) the methods used to generate subproblems, and
(3) the heuristics for deciding which subproblem out of a group of
subproblems should be attempted first (i.e., which subproblem is easiest :
to solve) and which should not be attempted at all. The heuristics used
in LT are an integral part of the program and are thus difficult to
recognize and specify precisely.

The LT project has been criticized (Wang, 1960a) on the grounds
that there exist mechanical decision procedures for the propositional
calculus which will find the proof of any valid theorem and will find
it faster than does LT. Minsky (1961) answers this criticism by noting .
that the purpose of LT is primarily to study techniques for solving
difficult problems rather than to produce an expert theorem proving
program in the propositional calculus. The techniques used by LT can
be applied to many different problem areas, whereas Wang's decision
procedure is applicable only to the propositional calculus. This is not
meant to imply that decision or proof procedures are of little importance
in artificial intelligence; much progress has been made, for example,
in the area of proof procedures for the predicate calculus (wang, 1960b,

1961; Davis and Putnam, 1960; Davis, 1963; Robinson, Wos, and Carson,

196k4; Wos, Carson, and Robinson, 1964; Robinson, 1965; Slagle, 1967). :

12 H



: : " - s & —

-j - = .

- TN I e I e e Gee

- A T K NN

LT APPLICATIONS. The techniques used by LT have been successfully applied
to a number of different problem areas. A program for preving theorems

in plane geometry (Gelernter, 1959; Gelernter, Hansen, and Loveland,

1960) has been developed which starts with the theorem to be proved
and like LT generates subproblems in an attempt to work backward

toward one of the given axioms. Elementary symbolic integration problems

i
{

have been solved using this same general approach. (Slagle, 1961).
Here the program starts with an expression to be integrated (main problem)
and generates other expressions to be integrated (subproblems) such 1
that the solution of certain subproblems leads to the solution of the
main problem. A subproblem is solved (expression integrated) when the
expression can be made to match one of a set of standard forms whose
integrals are known. These standard forms are thus analogous to the axioms
of the Logic Theory machine.
Another example of the LT influence can be found in the area of question
answering programs. A program has been written (Black, 1964) which is
designed to answer questions put to it in advice-taker notation (McCarthy,
1959) by working backward from the question, generating subquestions, in
an attempt to match these subquestions with given statements known to be
true. Recentliy, work has been done on incorporating the LT techniques
into a general purpose program capable of constructing proofs for proposi-

tions in a number of different problem domains (Slagle and Bursky, 1968).

GENERAL PROBLEM SOLVER. Out of the Logic Theory mechine grew a more power-
ful program called the General Problem Solver (GPS), designed to simulate
human problem-solving processes (Newell, Shaw, and Simon, 1959; Newell and

Simon, 1961). This program deals with a task environment consisting of

13



e

objects and operators. The problem is usually of the form "given
an initial object A and a desired object B , find a sequence
of operators, S:Ql, ...Qk , that will transform A into B ". 1In this
formulation the problem is one of heuristic search, a process which underlies
much of the recent work in problem solving programs (Newell and Ernst,
1965). To so.ve this problem GPS has three types of goals available:

(1) Transform object A into object B,

(2) Apply operator Q to object A ,

(3) Reduce the difference D between object A and object B .
Associated with each goal is a set of methods related to achieving
goals of that type. Hence solving the problem consists of selecting an
appropriate goal, evaluating this goal in context to see if it is worth
attempting, and executing the methods associated with the goal, if the goal
deemed feasible. If the methods include achieving one or more of the
three goals just described then these are considered subgoals whose
attainment leads to the attainment of the initial goal. GPS attempts
to solve the problem of transforming A into B by generating, in a
"depth first" fashion (Newell, 1962), goals and subgoals relevant to

reducing the differences between A and B .

One of the initial applications of GPS has been to the problem
of proving theorems in the propositional calculus. For this particular
task, the objects are logic expressions, the operators are axioms or
rules for transforming one logic expression into another, and the
differences between objects which are recognized by the program include
features like the logical connectives employed or the number of occur-
rences of a variable. Besides being given the definitions of the objects,

operators, and differences, the program must also be suppl ‘ed with a

1k



—

- e O OHD I GED OGN O Y e e ey ey

Sl S

connection table which associates with each difference a set of
operators relevant to modifying that difference. Once the task
environment is so defined, GPS is ready to attempt to prove theorem A,
a logic expression in the propositional calculus, by transforming it
into a given expression B which is a known axiom in the propositional
calculus.

The important heuristics used in GPS are (1) those connected with
the methods used to try to achizve the generated subgoals, (2) heuristics
for deciding whether or not a particular subgoal is worth attempting,
and (3) the technique of planning, i.e., constructing & tree of subgoals
based on an abstracted problem space composed of simplified objects and
operators, and then using this tree as a plan of attack for the actual
problem space of complex objects and operators. Most of these heuristics
deal directly with the manipulation of objects and differences. 1In
contrast, the heuristics of LT deal with the manipulation of theorems
and axioms in the propositional calculus. It is precisely this difference
that makes GPS a "general" problem solver, that is, capable of solving
problems in any domain where the problém can be specified in terms of
objects, operators, and differences.

Besides proving theorems in logic, GPS has also been used to
solve trigonometric identities (Newell, Shaw, and Simon, 1959).

Programs employing GPS problem solving techniques have been written which
balance assembly lines (Tonge, 1961), compile computer programs (Simon,
1961, 1¢63), and simulate human behavior in the binary choice

experiment (Feldman, Tonge, and Kanter, 1963).
CHESS-PLAYING PROGRAMS. Game playing is another area which is quite

15



s

amenable to the development of heuristic programs. In this area, a large

portion of the work has been concentrated on the development of programs

for playing chess. Shannon in 1949 proposed a framework for a chess playing

program which in essence stated that (1) the chess game can be thought of
in terms of a game tree whose nodes correspond to board configurations and
whose branches correspond to the alternative lezal moves and, (2) the

best move to make from a particular node N1 (i.e., in a particular board
situation) can be determined by generating alternative moves in the tree
down to some particular depth, evaluating the board configurations at that

depth as single numerical values, and minimaxing (Slagle, 1963) these

values back up the tree to node N1 , picking from N1 the alternative move

which received the highest value (Shannon, 1950; Newell, Shaw, and
Simon, 1958).

Turing has described a program based on Shannon's proposal which,
in determining the best move, generates all possible alternative moves
down the tree until a dead position with regard to piece exchange is
reached at each branch (Turing, 1950). A group at Los Alamos has
programmed MANIAC I to play chess, also generating all possible alternative
moves but only down the tree to a fixed depth of 4 moves (Kister et al.,
1957). The program performs only a minimal evaluation of the board con-
figurations at this depth, before minimaxing to determine the best al-
ternative. A program written by Bernstein plays chess using this same
framework but generates only 7 plaucible alternatives at each node down
to a fixed depth of 4 moves, where it performs an extensive evaluation

of the board configuration before minimaxing (Bernstein and Roberts, +.958).

NSS CHESS PLAYER. Newell, Shaw, and Simon have developed a cness program

6

ey




which differs in a number of respects from the programs just described
(Newell, Shaw, and Simon, 1958). A set of goals are defined (king safety,
material balance, etc.) and alternative moves are generated which tend to
satisfy the top priority goals in the given situation. The tree is
generated until at each branch a dead position is reached with respect to
all goals, that is, until no move can be made which will drastically alter
the situation with respect to these goals. The board configuration at
each dead position is then evaluated as a list of values (one for each
goal) describing how well that configuration meets each goal, and these
lists are minimaxed back up the tree. An alternative move is chosen as
being a satisfactory one if the list associated with it through minimaxing
is greater, element by element, than a list representing the minimum
allowable values for each goal.

The important heuristics used in the chess programs just described
are (1) those concerned with the generation of alternative moves, (2)
those concerned with the depth of analysis, and (3) heuristics for the
evaluation of board configurations. Again it is difficult to recognize
and specify precisely the heuristics used by these programs, since they

tend to be interrelated and are an inseparable part of each program.

Learning Programs

PATTERN-RECOGNITION PROGRAMS. Pattern-recognition research has led to the
development of many programs which employ learning mechanisms. Much of

the initial work in pattevn recognition was based on neural network learning
techniques (Carne, 1965), the most successful example of these techniques
being Rosenblatt's perceptron (Rosenblatt, 1958, 1962; Green, 1963). The

perceptron is basically a network of randomly inter-connected neural

17



elements, each eleument being capable of "firing" or putting out a fixed
amplitude signal over its output connection lines whenever the sum ol
the signals on its input connection lines exceeds some threshold. The
network learns through reinforcement procedures, the most common type
consisting of presenting the network with a stimulus (a set of input
signals) and for each learning trial incrementing the output amplitude
of all elements which fire when the correct response (output signal) is
made.

A more sophisticated pattern-recogniticn model, Pandemonium
(Selfridge, 1959), uses a highly organized network where the elements
represent likely features of the input patterns. The model learns
by adjusting the weights associated with the connections between these
elements ..nd the possible responses. For example, if the model were
given a pettern containing feature fl and was told that the pattern
belonged in class Rl ; then the weight on the connection between

element f. and response Rl would be incremented, meaning that a

1
pattern with feature f, would then have a greater probability of being

1
classified as type Rl .« One problem with this type of model is that
the features it uses must be supplied to it by the designer, and it is
seldom clear what features will lead to efficient operation. A pattern-
recognition program has been written (Uhr and Vossler, 196l1), which
attempts to overcome this difficulty by effectively generating features
at random, evaluating them in terms of their usefulness, and discarding
those which are not useful. The program not only learns to classify

patterns by adjusting weights or coefficients on the features, but also

learns what features can be used to classify the patterns.

18

-y

==

et b ey




Gl emn G BIP G T O GBS D OGS GNP OB OB @ oW ol S e o

In the pattern-recognition programs just described the learning
consists essentially of using a reinforcement process as the basis for
generalizing by adjusting weights or coefficients. The heuristics
involved include those connected with the determination of features to use

and those concerned with the techniques used to adjust the weights.

SAMUEL'S CHECKER-PLAYING PROGRAM. One of the most successful learning
programs to date is a checker-playing program which learns to improve its
playing ability through training and game-playing experience (Samuel,

1959, 1960). This program is patterned after the framework proposed by
Shannon for the game of chess. As in the chess programs described earlier,
the checker program bases its move decision on the results of looking
ahead in the game tree to relatively dead positions, evaluating the board
configurations at these positions, and minimaxing these values back up

the tree. The value of a toard configuration is determined by calculating

i i i A + ... +
the numerical value of a linear scoring polyr.omial wlfl + w2f2 wnfn s

where the f's represent certain parameters or features of the board
configuration (such as.piece advantage, denial of occupancy, mobility,
and center control) and the w's are weights or coefficients representing
the relative importance of each parameter.

The checker program is capable of two basic types of learning,
(1) rote learning and (2) generalization learning. The rote learning
is quite elementary and consists of storing in memory all the board
positions encountered during play together with their scores based on
lookahead minimaxing. Performance improves under this learning scheme
since the program saves time when it encounters familiar board positions,

and this time can be used for searching the game tree to a greater depth.

19

v el



The generalization learning, on the other hand, is somewhat complex and

involves adjusting the coefficients of the scoring polynomial toward

their optimal values.

H

BOOK LEARNING. In one form of generalization learning the program is
"trained" by being given a large number of board positions and the associated
book moves (the moves recommended by master checker players). During this
book learning procedure the program keeps track of the parameters whose
values have a general tendency to increase as a result of the book moves

and also those whose values have a tendency to decrease. The parameters
whose values increase are considered to be important for winning the

game and their coefficients are incremented. Conversely, the parameters
whose values tend to decrease are considered unimportant and have their

coefficients decremented.

LEARNING THROUGH GAME PLAY. In another form of generali:zation learning

the program modifies the coefficients during actual play by comparing, (for
each of its moves) the backed-up score for the board position with the score
calculated directly from the scoring polynomial. It is assumed that the
backed-up score is more accurate than the direct score, hence the
coefficients of the parameters are adjusted so that the direct score will
more nearly approximate the backed-up score. Parameters which have a
general tendency to increase the difference hetween the backed-up and

the direct scores are removed from the polynomial and replaced by para-
meters from a reserve list. Thus the program can radically modify its
evaluation polynomial and can possibly learn which of a given set of

parameters are relevant to the goal of winning at checkers.

20



SIGNATURE TABLES. One difficulty with implementing learning by adjgsting
coefficients in a linear polynomial is that there exists in this procedure
an implicit assumption of independence of the parameters involved, while in
actual fact the parameters are seldom independent. Samuel (1967) has proposed
a "signature table" scheme to help overcome this problem. 1In its simplest
form this scheme consists of grouping the parameters into sets called
signature types, and for each set defining a function which when given
a value for each parameter of the set generates a number reflecting the
relative worth of that particular combination of parameter values. Each
function is defined by enumeration; that is, by a table pairing each
combination of parameter values with a number indicating their worth.
To keep the tables small the range of parameter values is restricted
to either 3, 5 or 7 values. A board position is then evaluated by evaluating
each signature table using the parameter values of that position and
adding together the numbers obtained from each table. The signature table
approach proves to be more efficient than the linear polynomial method when
book. learning is employed.

In the checker program, learning consists of generalizing by
modifying coefficients of board parameters. Among the heuristics used
are those concerned with depth of analysis, tree pruning techniques
(such as the alpha-beta procedure: Slagle, 1963; Samuel, 1967), de-
termination of parameters, specification of the evaluation function,
and the adjustment of coefficients. Heuristics which are used but are
seldom acknowledged in this type of program are those connected with
the definitions of the parameters; for example, mobility can be defined

in many ways, but one definition is likely to be more useful than the

2l

I ———— ]



others. The particular definition chosen can be considered a heuristic

for measuring the value of the parameter.

CONCEPT-LEARNING PROGRAMS. Programs have also been written which simulate

by e ey O

human learning processes. One of the important contributions in this area

| D

is a concept-learning program by Hunt (1962, 1966) which learns to distin-
guish between positive and negative instances of a concept after it is
presented with a small sampling of positive and negative instances. Hunt
represents an instance of a concept as a set of attribute values, for
example, (LARGE, RED, TRIANGULAR) is a positive instance of the concept
"large triangle", while (LARGE, RED, CIRCULAR) and (SMALL, RED, TRIANGULAR)
are negative instances. The learning process consists of growing a
decision tree whose nodes represent tests on the attribute values, such
as "is the object large?" or "is the object triangular?". The decision
tree is used to classify any given instance as being either positive or
negative by sorting the instance down the tree to a terminal node and
assigning the instance to the category associated with that terminal node.
To illustrate this process consider the sampling of positive and
negative instances given in the above example for the concept "large

triangle". The program would use these instances to grow the following tree.

22



is it large?

negative
instance

is it triangular?

negative
instance

positive
instance -

Figure 1-3.

It is clear that if a new instance, such as (LARGE, BLUE, HEXAGONAL) is
presented it will be sorted to the proper terminal node (negative, in
this case) and thus correctly identified. Another program which performs
concept learning is one written by Kochen (1960, 1961). This program,
like Hunt's, generates a decision rule for deciding whether or not a
given object belongs to a certain class, but makes no attempt to simulate
human behavior.

In the concept-learning programs the process of learning consists
of making clever generalizations based on the given information. The
important heuristics used in Hunt's program are those concerned with
the choice of attribute values to use as tests for the nodes and the

order in which the chosen values are arranged in the tree.

SIMULATION OF VERBAL LEARINNING. Another important contribution in the area
of simulation of human learning is a program called EPAM (elementary

23



perceiver and memorizer), which simulates verbal learning behavior by memor-
izing three-letter nonsense syllables presented in associate pairs or serial
lists (Feigenbaum, 1959, 1963, 1964, 1967). EPAM's task for each pair of
syllables S,R 1is to learn to produce the response R when given the
stimulus S . The program accomplishes this by growing & discrimination
net composed of nodes which are tests on the values of certain attributes
of the letters in the nonsense syllables. For example, a test at one node
might be "does the third letter of the syllable have a horizontal component?".
The various stimuli and responses are individually sorted down the net to
terminal nodes where they are stored, one per terminal node. If two
different syllables are sorted to the same terminal node a new test node
is grown at that point capable of distinguishing between the two syllables
and thus sorting them into two separate terminal nodes. In this fashion
the discrimination net is grown. A complete description (all 3 letters)
of each response is stored in the net, but for each stimulus only a
partial description (1 or 2 letters) is stored together with a cue or
partial description of the associated response.

As an illustration of this process consider the task of learning
the two pairs of syllables, RAX — JIF and JEQ — HOX. The program

would grow the following type of net.

2k



qg_,ng @

does the third letter have
a horizontal component?

does the first letter have
a curved component?

1| JIF

does the 4 HOX
second
letter have a

vertical component?

2 | JQ,H X 3| RX,J_F

Figure 1-k,

Now if EPAM is given RAX and asked for the response, it sorts RAX
down to terminal node 3, retrieves the cue J_F , sorts it down to
terminal node 1 and responds with JIF. If the test at a node cannot
be applied because of insufficient information in the cue, the cue is
sorted left or right randomly at that node. The program improves its
performance as the nurber of learning trials increases, since each
time it retrieves an incorrect response it enlarges the partial des-
cription connected with the retrieval of that response. Using this
basic scheme EPAM is able to demonstrate stimulus generalization,

25

R % |



response generalization, and retroactive inhibition.
Learning takes place in EPAM by simple association; a stimulus
is associated with a response cue in a terminal node. However, generali-
zation techniques (the growing of the discrimination net and the use of
partial descriptions) are employed which tend to minimize the amount
of information that needs to be stored and which lead to aumanlike
verbal learning behavior. The important heuristics used in EPAM are
those concerned with the implementation of the generalization techniques.
It is of interest tc note that in all of thne learning programs
discussed, learning is accomplished either through rote memorization
processes or through various generalization techniques. The implication
here is that the process of generalization must be well understood in
order to be able to construct really effective programs for performing

complex learning tasks.

26



1.4 OBJECTIVES

This paper proposes to examine the following three questions as
a first step toward the development of computer programs which learn
heuristics: (1) what is a useful way of representing heuristics in a
program?, (2) how can heuristics be modified by the program embodying
them?, and (3) what implications do these representation and modifi-
cation techniques have for theories of human learning?

Most heuristic programs (and in fact, all the preograms discussed
in section 1.3) have the heuristics "built-in"j i.e., the heuristics are
an integral part of the program and even on close inspection it is
difficult to decide exactly what heuristics are being used, what their
effects are, and how they are related to one another. When this is the
case, the entire program, in a sense, is a representation of the embodied
heuristics.

The problem encountered in using this naive method of representation
is the following. The heuristics are so entwined in the program that
it is extremely difficult to make the program itself manipulate them.
It would be desirable to have a program which during execution could
monitor the use of its own heuristics; e.g., which could obtain measures
of their values, modify them in an attempt to improve them, discard ones
which seem of little value, and add new ones to replace the discarded
ones. A program with the ability to manipulate its own heuristics could
be given, as a secondary task, the job of learning what set of heuristics
would provide optimal performance in its primary task. For instance, a
game-ylaying program with this ability could learn, during the course of

a game, how to play the game more intelligently by manipulating the

27



heuristics concerned with the strategy used in playing the game.
Psychologists have been studying the phenomenon of learning for over
three-quarters of a century, with the result that many divergent theories
or viewpoints have appeared. The majority of the work in this field
has been done on simple learning (acquisition of motor skills, discrimi-
nation learning, memorization, etc.). Some work has been done on more
complicated learning processes such as concept learning (Bruner, Gondnow,
and Austin, 1956; Hunt, 1962), but 1little has been done on the complex
processes involved in strategy learning in game-playing or problem-solving
envirorments. Thus, it would prove beneficial if artificial intelligence
techniques for representing and modifying heuristics could be applied to

a psychological theory of complex human learning.

28



CHAPTER 2

REPRESENTATION CI* HEURISTICS

2.1 INTRODUCTION

The feasibility of learning heuristics by dynamically manipulating
them in a program depends heavily upon the method used to represent the

heuristics.

REQUIREMENTS. To facilitate dynamic manipulation, the representation should

salisfy the following requirements:

1. It should permit separation of the heuristics
from the program using these heuristics.

2. It should provide for clear identification of
individual heuristics and show how these heuristics
are interrelated.

5. It chould be relatively easy to work with.

The first requirement is basic, since the program would have a
difficult time trying to manipulate heuristics that it could not even
locate. The second requirement 1s necessary because individual heuristics
need to be modified and evaluated, and when a modification occurs the
effect of this change on the whole system of heuristics must be known if
an accurate evaluation is to be made. For example, if heuristic hl
depends in some way on heuristic h2 , and h2 is modified, then
effectively hl 1is also modified. In the evaluation of this modification

it is necessary to recognize the relation between hl and h2 , since



it is possible that either hl or h2 will be rendered less effective

by the change. If the relation were unrecognized, the program might naively
proceed with the evaluation by testing the new h2 but ignoring the heur-
istic hl .

The last requirement states that the representation technique
employed should be easy to work with. By this is meant (a) that the
heuristics should be easy to modify or replace, (b) that the represen-
tation should be compatible with generalization schemes, and (c) that
it should be easy to use the heuristics to obtain a decision from the
system. The desirability of conditions (a) and (c) is clear. Condition
(b) is desirable in view of the evidence presented in Chapter 1 that
complex learning can be achieved through the use of genera.ization
techniques.

The representation method discussed in Chapter 1, where the entire
program is a large complex representation of the embodied heuristics,
is obviously inadequate. It fails to satisfy every requirement except
conditions (b) and (c) under requirement 3. This chapter will be devoted
to the exposition of a representation technique which does satisfy the

above requirements.

DEFINITIONS. A method of representing heuristics which satisfies the re-
quirements of section 2.1 will now be proposed. First, however, the follow-

ing items must be defined:

1. Heuristic Rule: a heuristic which directly specifies

an action to be taken.

30

— o= SN S



R N NN 2 N Y e sEm e e

2. Heuristic Definition: a heuristic which does not specify
an action directly, but instead de-
fines a term.

3. General Heuristic: a heuristic rule or definition which
employs terms defined by heuristic
definitions.

4., Special Heuris*ic: a heuristic rule or definition which
does not employ terms defined by heuristic

definitions.

Some examples (taken from the game of checkers) to illustrate the
above definitions are given below.

(a) If the piece advantage is "high" then 'make an even exchange'.

(General heuristic rule).

(b) If the piece advantage is greater than 3 then 'make an even

exchange'. (Special heuristic rule).

(c¢) A "high" piece advantage is one 5 or more greater than a

"low" piece advantage. (General heuristic definition).
(d) A "high" piece advantage is one equal to or greater than 4.
(Special heuristic definition).

In section 1.2 a heuristic is defined as a particular type of
computational rule, capable of obtaining solutions to problems. Consider
example (b) above from the game of checkers. This can be thought of as a
computational rule for solving the problem "what type of move should I
make to increase my chances of winning the game?" Furthermore, example
(d) can be thought of or rastated as a computational rule for solving the

problem "I:s the piece advantage in the present board rconfiguration a high

31



one?" Thus the above definitions correspond to those presented in

section 1l.2. I

2.2 PRODUCTION RULES
During execution, a program goes through a succession of states

"situation" as

as the values of its variables are changed. Consider a
the set of current values of the variables of the program and let this

set be called the state vector & of the program (McCarthy, 1962, 1965).
When a block of code is executed, the effect on the state vector may be
described by the equation &' = f(€) , where &' 1is the resulting state
vector and f(€) 1is a function which stands for the block of code. 1In

the typical heuristic program the heuristics are represented by blocks

of code, each block being a complicated, inflexible function of the program
variables. The relation between the code and the values of the program

variables is illustrated below for variables A, B, and C with values

al 0 b1 , and c1 .

COMPUTATION
BLOCK

8 = (al’bl)cl) = f(e) = f(A)B)C) = (a'l’b'l’c'l) = 6'

Figure 2-1.

22



A simple, more flexible way to express such a function is by a

set of rules, each having the form
(al’bl’{;) - (fl(ﬁ), fe(ﬁ), fi(a)) .

al , B is bl and

The above rule states that when the value of A is
C is c; , the function (or block of code) changes the values such that the
value of A becomes fl(a) , B becomes f2(6) , and C becomes fj(a)
The problem with this technique is thaﬁ it may require an excessively
large number of rules to adequately desiribe a function.

This difficulty can be eliminated by using sets of values in place
of individual values in the description of the state vector. For example,
instead of using (al,bl,cl) above to represent a particular state,
(A1,B1,Cl) can be used where Al, Bl, and C1 are sets, in this case de-
fined as Al = {al} , Bl = {bl} , and Cl = {cl} . A single description
such as (Al,Bl,Cl) can be made to represent a number of states by merely

enlarging the sets defined by Al, Bl, and C1 . Thus by using rules of

the form
(A1, B1, Cl) - (fl(ﬁ), fe(e)) fi(a))

it takes fewer rules to adequately describe a function depicting a
block of code containing heuristics.
In view of these considerations a heuristic will be represented
as a rule of the form $ - ¥ . This rule will either (a) specify
an action to be taken in situation § by the rule S - S' , where §' 1is
the situation that resui;s after the action is taken, or (b) define a

term by the rule Z - Z' , where Z 1s the term being defined and 2Z' 1is

some conbination of terms which constitutes the definition of Z .

25



| =

L

It will be useful to think of these rules as production rules which
specify how a value or string of values of variables from the state vector J

can lead to other strings.

REPRESENTATION OF HEURISTIC RULES. A heuristic rule can now be re-

presented by a production rule of the type S - S' . Here S is a situation =
defined by the state vector variables, such as the vector (Al, Bl, Cl) , .
and S' 1is the definition of the resulting situation or state vector,

such as (fl(a), fe(s), fj(a)) . Production rules of the type S = S'

will be called action rules (ac rules). C(onsequently, an action rule

states that in a situation of type S tiic values of some of the state vector
variables are changed to produce a situation of type S' . This type of
production rule is weakly analogous to the productions used in a Chomsky

type O grammar (Chomsky, 1959).

REPRESENTATION OF HEURISTIC DEFINITIONS. A heuristic definition can be
represented by a production rule of the type Z = Z2' , where Z 1is a
value of a state vector variable (such as Al ) and 2' is either
(1) a value of a state vector variable and an associated predicate, or
(2) a computational rule for combining variables of the state vector.
Case (1) will be called a bf rule (backward form) and case (2) an ff
rule (forward form). An example of case (1) is Al -~ A, A> 20,
meaning that A 1is considered a member of the set Al if the current
value of A 1is greater than 20 . An example of case (2) is XK1 x 7D,
meaning that X 1is defined by the arithmetic expression K1 x D . |
This type of production rule is weakly analogous to the productions used

in a Chomsky type 2 grammar (Chomsky, 1959). 1

3k

-w



e ol G B Swm I B N o) ol BN W AR S e omn Y e as

STATE VECTOR COMPOSITION. The state vector is subdivided into three
types of variables: bookkeeping variables, which provide a record of
past experiences; function variables, which represent arithmetic
expressions containing state vector variables; and dynamic variables,
which either directly influence the decisions of the program or change
in value as a direct result of these decisions. Only the dynamic
variables are used in the descriptions which represent the left

and right parts of the action rules.

Decision Making Using Production Rules

The production rule just describéd can be used to implement decision
making in a problem solving program. This technique will now be illustrated
for the class of problem solving programs categorized as game players. The
"intelligence" of a game playing program is measured by the appropriateness of
the decisions (or moves) it makes during the course of a game. In order to
make a decision, a program using the production rule method of heuristic
representation (1) examines the action rules to find one applicable to the
current situation, and (2) uses the rule just found to change the values of
certain dynamic variables of the state vector in such a way that the change
defines a move.

To illustrate the use of these production rules in a game-playing
situation, let the subvec* = B8 , composed of the pertinent dynamic

variables of the state vector, be the following:

B = (a: b, C)

where A, B, and C are variables with the current values a, b, and ¢
respectively. The heuristics to be used for this simple example are:

1. If A 1is an "Al" then add X to the value of B .

35

e



2. If A is an "A2" @and C is

from the value of C .

3. If B is a "Bl1" then add Y to the value of C .

be A is an "Al" when A > 25 .
5 A is an "A2" when A < 25,
6. B is a "Bl" when B> 1 .
7. B is a "B2" when B> 4 .

8. ¢ isa "Cl" when C=5.

9. X increases as D increases.

10. Y increases as E decreases.

llClll

then subtract

In the prreceding heuristics, D and E are bookkeeping variables,

X and Y function variables, and A, B, and C dynamic variables.

The corresponding production rules are:
1. (Al; *, *) - (a, X+b, C)
20 (A2, *, Cl) Lo/ (a) b) C'Y)

5. (*; Bl, *) - (a) b, Y+c)

b, AL -~ A, A> 25

5. A2 - A, A< 25
6. Bl - B, B>1

T B2 - B, B> 4

8. cl - C,C=5

9. X = KlxD

10. Y - K2 - (K3 x E)

bf

bf

bf

bf

bf

ff

ff

A "*" in a subvector indicates that the variable in question may

take on any value. Hence (Al, ¥, *) describes all situations where A

has the symbolic value Al , while B and C have any values.

Also needed -

are the following production rules (one for eacnh element of the subvector):

26



‘@R WER WD TN aPs TSN W WS

11. A -~ a, a € {set of possible values of A } bf
12. B = b, b€ {set of possible values of B} bf

13. C = ¢, c € {set of possible values of C } bf

For this example, the set of possible values tor A, B, and C will be
defined as the set of natural .iumbers.

In the game, when the point is reached where the program must
make a "move" decision, the values of A, B, C, D and E will have been
set by either a previous program decision or by the non-heuristic part
of the program. The terms K1, K2, and X3 are considered to be

constants. The decision is made in two steps as follows.

A. Each element of the current program subvector

is matched against all right sides of the bf rules.

When a match occurs (the predicate is satisfied) the
corresponding left side of that bf rule is then matched
against all right =ides of bf rules, etc., until no more
matches can be found. The resulting set of symbols de-
fines a symbolic subvector. This step is somewhat analogous

to parsing (Irons, 146k4; Ingerman, 1966).

L. The symbolic subvector derived in Step A is

matched against all left sides of the action rules,

going from top to bottom, and when the first match is

found the values of the program subvector are modified

as described by the right side of the matched rule. A for-
ward search is usually necessary, through the ff rules, to

determine the new values for the program subvector variables.

27



As a concrete example let the subvector have the values a = 4, b = 5, .
c = 6, the constants have the values Kl = 1, K2 = 20, K3 = 3 , and let
the bookkeeping variables have the values D=7 and E=8 . Then _!

B = (4 5, 6) and the "parse" ¢ step A has the following form.

a b c
A B
A2 Bl B2

Figure 2-2.

Here step A is initiated by comparing a = 4 with each bf rule
predicate, the predicate being satisfied only if it contains the symbol
a and is true when a 1is set equal to 4 . Thus a =4 is found to
match rule 11 and no others. Next, A = 4 is similarly compared with all
bf rule predicates and is found to match only rule 5. Finally, A2 = 4
is compared with all bf rule predicates, and since it matches none of |
them the search terminates, leaving A2 as the final symbolic value.

Flements b and ¢ are processed in the same manner, and the symbolic

subvector that results is ((A2), (B1,B2), (C)) . This subvector
is a description of all situations in which (1) the variable A has the
symbolic value A2 , (2) the variable B has either the symbolic value
Bl or B2 , and (3) the variable C has the symbolic value C .

Step B now consists of comparing the subvector ((A2), (B1,B2), (C))
with the left side of each action rule, until a match is found. 1In

this case a match occurs at rule 3. The program subvector is then set

38




to the values specified in the right side of rule 3. Hence the new B8
equals (4, 5, (20 - (3 x 8)) +6) or (4, 5, 2) . 1In effect, the pro-
gram made the decision to change the value of the variable C to 2 .
The method just proposed for representing heuristics easily satis-
fies the first two requirements of section 2.1, since the heuristics are
separated from the program, and the individual heuristics and their inter-
relationships are clearly identified. The third requirement of section
2.1 is also satisfied, since the production rules are easy to
modify or replace, are compatible with generalization schemes (this will
be shown in Chapter 3), and are easy to use to obtain a decision from
tiie system. Standard techniques for handling production rules, such as
parsing, are seen to suggest methods which can be used to facilitate the

decision making process.

NEWELL'S SYSTEM. This is not the first attempt to use a production
system as the underlying mechanisin in a problem solving scheme.

Nowell {1900, 1u67) uses a production system to characterize the problem
solving process occuring in a human subject as he solves crypt-arithmetic

problems. Each production consiste of an expression of the form:
condition - action

and specifies the action to take when the condition in the left part
of the production is true. The prcductions are priority ordered so
that the system can uniquely determine which production to use in
situations where more than one is applicable. The production rule
system ‘ust described closely parallels Newell's system in its

general approach to decision making.

39



2.3 TRANSLATION OF HEURISTICS INTO PRODUCTION RULES

At this point it is reasonable to ask how one can go from a
heuristic stated informally, like "if the piece advantage is high make
an even exchange", to a set of representative production rules. This
transition can be accomplished through the use of an intermediate step,
that is, a formal language in which heuristics cen be expressed precisely,
and which can be automatically translated into production rules. With
such a tool, one would only have to restate the heuristic in this
intermediate rormal language in order to effect its transformetion into

production rules.

A Language For Specifying Heuristics
The syntax of a language for expressing heuristics is presented in
Figure 2-3 as a set of syntactic rules. This language will be called

LASH: language for specifying heuristics.

TERMINAL SYMBOLS. The terminal symbols in the syntactic rules include
{1) all the underlined words, (2) all non-alphabetic symbols, and (3) all
Greek letters. The terminal symbol @ stands for any ALGOL-like
identifier (Bauman et al., 196L; Ekman and Froberg, 19C5), while the
terminal symbol # stands for any ALGOL-like number.

The terminal symbol A stands for any simple arithmetic expression,
that is, any ALGOL-like expression composed of identifiers, the arith-
metic operators +, -, X, + and the delimiters ) and ( . However one
restriction is made; a single number or identifier must be enclosed in
parentheses to be recognized as an expression. Without this restriction

it would be, in some cases, impossible to determine whether a given

Lo

u M2 SE R B




terminal string was an @ , a # , ora A . Also, one extension is made;

an expression can include the function "random (a,b)", which when

executed evaluates to a number chosen at random from the range a to b .
The terminal symbol n stands for any simple Boolean expression which

is enclosed in parentheses, that is, any parenthesized ALGOL-like Boolean

expression composed of identifiers, arithmetic operators +, -, X, ¥,

relational operators > , <, =, f , and the delimiters ) and ( . Some

e) mples of @-type strings are K1, STORE, and M3J , of #-type strings

are 3, 1.5, and -12 , of A-type strings are (K1), (3), and I8 + (3 x Q) ,

and of n-type strings are (P> 4), (6 x M4 = PL-3), and (I8 + (3 x Q) < K1) .

L1



*soT3sTInaYy BuTAFTo2ds JI07 a3enBus] e Jo xBlulkg °¢-2 aInI1yg

u €¢— paxdiIng ,woje, €— 3wWBUUOT3}OR
Y €— uotrssaxdxa wo3e TUOTJETSd woje §— gpaxd
# €¢— J3qumu I3qumu uoTr38TsJ wole 44— gzpaxd
© €— wWoje cpoad «¥— Tpaad
= €—— Tuor3eIal cpaad A Tpsxd €«— Tpaad
< €¢— uorjeTal irzad €— poaad
S €— uorj3eral paad v Tpsad €— poaxd
< €— UOT}ETaI paad €— 33ed1paad 3
> €4— Uuor3eTad SWBUUOT}OE €—— 7USWS983S
# €4— uoT3eTa (3uswajeys 3STA ITNI) ¢— 3uaWIZEB3S
= 4— UOT3BT3I quaw3jeqs usyz 33801p3xd JT €— 3TnI
ue q— 13I8 3TNI ¢— SoTNI
T 44— 1JB 3TNI 3STMIBYJO SIaTNI 4— S>3TNJ
paxd1Iny 3843 yons woje 3Je ST WO} €— UOTITUTJISP UOT30€8 : 3WEUUOT]OB €—— UOTJBIBTI3P
uotssagzdxas STENDS WO38 €—— UOTATUTIIP UOT3eIBTO3D @—— SUOT;BIBTO3P
UOT3TUTJSP €— SUOTIJTUIJSP UOT3BIRTO3P ¢ SUOT3BIBTOSP €—— SUOTJRIBTOSP
SUOT3TUTJOP  UOTFTUTIIP €— SUOTITULISP SUOT]eIBTO3D ¢— 33SUOTFBIBTOP
uorssazdxs —®» woje €— udrsse S3TTI €—— T3urjnog
ud1Sse €¢— UOTI}OB SUOTJTUTISP ° SITnI €— TIUTqnoJ
uorqoe ¢ udrsse €— uorloe PUS TIUTINOIX °* 33SUOTJBJIBTOSP UTHSQ €—- SUTINOI



SIMPLE PRECEDENCE SYNTAX. The syntax presented in Figure 2-3 is a simple
precedence syntax i.e., the syntactic rules are so arranged that the
relation between any two symbols is unique. Three types of relations are
considered.

(1) The relation = holds between all adjacent symbols within
any string forming the right side of a syntactic rule.

(2) The relation < holds between the symbol immediately preceding
a reducible string and the leftmost symbol of that string.

(3) The relation © holds between the rightmost symbol of a
reducible string and the symbol immediately following that
string.

Here a reducible string is one which can be reduced through parsing
to another string of equal or smaller length. As a consequence
of this arrangement, the language defined by the syntax is a simple

precedence phrase structure language (Wirth and Weber, 1966).

The advantage in using this type of language is that there exists a
very efficient algorithm for parsin; sentences of the language (Wirth and
Weber, 1 6). This is quite important if one wants to construct a
syntax-directed compiler (Irons, 1961, 1963; Ingerman, 1966) for automat-
ically translating the language into some other form, such as a set of
machine instructions or list of rules. Thus the language is designed not
only to provide for adequate descriptions of heuristics, but also to
permit relatively siuple and efficient translation into production rules.
T™e computer program to be deseriheﬁ in this paper does not include a
compiler for translating LASH into production rules. Consequently,

translation into prcduction rules is performed by hand.

b3




STRUCTURE. The structure of the language defined in Figure 2-3 will now
be illustrated by using it to express a number of heuristics for a
hypothetical game. It will be assumed that for this game the dynamic
variables are A, B, C, D, and E , the bookkeeping variables are F and
G , the function variables are P and R , and the constants are

Kl, K2, K3, and K4 . The way in which the language can be used to

express heuristics is shown below.

begin 'MOVEL' : B « 2xB; C « D +(4xC)+P,

'MOVE2' : B « B+6; D « C+D; E « (0),

'MOVE3' : A « (5); D « (E)-
if A> 5 A B< 10 then 'MOVELl' otherwise
if A > 20 then (if B=0O then 'MOVE2' else

(if B=1 A C=CX then 'MOVE3' else 'MOVEl')) otherwise

if D=DZ then 'MOVE3' .

CX is a C such that (C+5 > P),

DZ is a D such that (D < E-20),

P equals (K1 x F) - (K2 x R),

R equais (K3 x G) + (K4t x A) end

Note that each of the three declarations, MOVEl, MOVE2, and MOVE> ,
define a change to be made in the state vector, or more precisely a change
in some of the dynamic variables of the state vector. The three rules
(see Figure 2-3 for the definition of the symbol '"rule") in the above
example specify under what conditions each of these changes in the state
vector is to be made. The four definitions contained in the example
merely define variables used in the declarations, the rules and in the
definitions themselves.

Ly

’—‘.

P o e

3=3



-y @RS 20 000 g

TRANSLATION. The heuristics in the above example translate into the

following production rules.

(Al, Bl, *, *, *) = (%, 2xb, d+(4xc)+P, *, *) ac
AL - A, A>5 bf
BL = B, B<10 bf
(A2, B2, *, *, *) = (%, b+b, *, c+d, O) ac
(A2, B3, CX, *, ¥) = (5, %, *, e, *) ac
(A2, *, *, %, *) - (%, 2xb, d+(lxc)+P, *, *) ac
A2 - A, A> 20 bf
B2 =~ B, B=O bf
B35 = B, B=l bf
(%, *, *, DZ, *) - (5, *, *, e, *) ac
CX = C,C+t5>P bf
DZ = D, D< e-20 bf
P - (KixF) - (K2xR) ff
R = (K3xG) + (KbixA) £f

Here when the value of a variable in the right side of an action
rule is a "*" it means that no change is made in the value of that

variable. Thus
(A2: B3, CX, *, *) - (5: *, *, e, *)

means that when A=A2 , B=B3 , and C=CX then A 1is changed to 5,

D is changed to the current value of E , and B, C, and E are left
unchanged in value. This notation is slightly different from (and
slightly superior to) the notation presented earlier for the representation
of heuristic rules. In the earlier notation the above rule would be

L5



written
(A2, B3, CX, *, *) - (5: b, ¢, e, e) .

It should be noted that a rule in LASH translates almost directly

into a number of action rules and bf-type heuristic definitions. Moreover,

a definition in LASH translates directly into either an ff-type or a
bf-type heuristic definition. Thus the translation of heuristics
expressed in this language into production rules is a relatively simple

task.

SPECTFYING HEURISTICS IN LASH. There is one question as yet unanswered.
How difficult is it to take heuristics stated in natural language and
restate them in this formal language? The answer is that it is quite
easy to make this transition, provided that a relevant state vector has
been established and its variables defined. For example, the heuristic
mentioned at the beginning of this section, "if the piece advantage is

high make an even exchange'", can be restated as
if PIECEADVANTAGE = HIGH then 'EVENEXCHANGE' .

Also necessary is (1) a LASH declaration defining 'EVENEXCHANGE' by
specifying the effect of an even exchange on the state vector variables,
and (2) a LASH definition defining the term HIGH. The high degree of
similarity between the heuristic stated in English and the heuristic

stated in LASH indicates how simple, sometimes even trivial, the transi-

tion from one to the other can be. Consequently the formal language serves

as a very convenient intermediate step in the process of translating

heuristics into production rules.

L L

L e

+

c——



e GESEY $ammy $aeggen $oeeey 2 wPes $2oragp) 2 OCGIp NN G O @aE U D S 0 D S = O

T

CHAPTER 3 1

PROGRAM MANIPULATION OF HEURISTICS

3.1 CREATION AND EVALUATION OF HEURISTICS

Ideally, a heuristic problem-solving-program should be able to
modify or replace its heuristics in order to improve its overall problem
solving performance. A step has been made in this direction by the
development of a game playing program which modifies coefficients in
an evaluation polynomial in order to improve performance (Samuel, 1959,
1960), and a pattern recognition program which generates, evaluates, and
modifies its operators in an attempt to improve pattern recognition ability
(Uhr and Vossler, 1961). However, these programs make no effort to
recognize, create or evaluate individual heuristics, and as a consequence
they are unable to radically modify their own heuristic configurations.

Before the manipulation of heuristics in a program can be implemented
two major problems must be faced:

(1) the problem of evaluating existing heuristics in terms

of their usefulness to the program.
(2) the problem of creating new heuristics, both by modifying
old ones and hypothesizing new ones.
To solve these problems, techniques must be devised which will enable the
program to evaluate and create heuristics during the course of its regular

problem solving activity.

Evaluation of Heuristics

Of the two problems Jjust outlined, the first one, measuring the value

b7



or usefulness of a heuristic is perhaps the more difficult. This problem
is actually an excellent example of the basic credit-assignment problem

for complex reinforcement learning systems (Minsky, 1961).

CREDIT-ASSIGNMENT PRCBLEM. The credit-assignment problem is the following.
If a large number of steps are required to complete some complex task,
then how should the credit for completing the task be distributed among
each of the individual steps? A learning system which could answer this
question would be able to reirnforce steps pertinent to completion of the
task and thus learn which steps are necessary and which are redundant or
ineffectual. A rudimentary solution to the credit-assignment problem is to
merely assign an equal amount of credit to each step involved in the successful
completion of the task. This approach, however, will lead either to very
inefficient learning or no learning at all unless the steps are relatively
independent. If the steps are highly dependent, as is the case for the
tasks to be considered in this paper, this simple approach is doomed to failure.
Minsky (1951) illustrates the dangers of underrating the credit-
assignment problem in a discussion of a program-writing prcgram by
Friedberg (1958, 1959). The Friedberg program is designed to learn,
through reinforcement, to write a test program that will perform some
simple task. Frielberg's program attempts this by (a) randomly generating
a bl-instruction test program, (b) executing this test program and eval-
uating its operation according to a predetermined criterion, and (c) using
the information concerning the success or failure of the test program to
reinforce indi.idual instructions associated with successful test programs.
Reinforcement consists of increasing the probability that particular

instructions will be generated in later trials. Friedberg's program

48



learns to solve simple problems but takes much longer than it would take
to solve the problems by pure chance alone. The mistake made, Minsky
notes, is that credit is assigned to individual instructions rather than
to functional groups of instructions such as subroutines, and this
disregard for the hierarchical nature of the problem leads to the poor

results.

OUTER-LEVEL PROBLEM. Evaluating or measuring the usefulness of a heuristic
in a game playing program (or any type of problem solving program) is
actually a 2-level credit-assignment problem; that is, a credit-assignment
problem within another credit-assignment problem. The outer or
top-level problem is to evaluate the effectiveness of a sequence
of decisions or "moves" and then to use this result to assign credit or
blame to the individual decisions in the sequence. The problem is difficult
because it may not be clear how to distribute the credit or blame. For
example, if the sequence is a poor one, which decisions in the sequence
should take the blame? It would be unrealistic to blame every decision
automatically , since the sequence may have been ruined by just one
or two key decisions. Conversely, if the sequence is a good one it
does not necessarily mean that every decision is good; there could be a
few poor ones present which exert very little influence on the game
situation.

In general, it is relatively easy to evaluate the effectiveness
of a long sequence of game decisions (the longer the sequence, the easier
the evaluation) but difficult to evaluate or determine the effectiveness
of any individual decision. Fven so, it must be pointed out thet the

method used to determine the value of a game decision depends to a large

kg



! BAMY

"E!ﬂ"wmm

extent on the particular game under consideration.

INNFR-LEVEL PROBLEM. The inner or lower-level credit-assignment problem is
that of using the evaluation of a game decision tc assign credit or bl.ame
to the individual heuristics which played a part in making the decision.
Again the problem is difficult because there exists no simple rule for
specifying how to distribute the credit or blame. This problem is

possibly more formidable than the higher-level problem, since the heuristics
are often highly entangled and interdependent. Assigning credit (or

blame) to a set of heuristics which have been involved in making a

good (or bad) decision entails trying to determine to what degree each
heuristic contributed to the decision. This is especially difficult when

the heuristics are very dependent on one another.

SOLUTION TO THE EVALUATION PROBLEM. Part of the solution to the problem
of evaluating heuristics lies in the method chosen to represent them. The
first step in solving the problem is obviously to separate the heuristics
from the main body of the program and to clearly define the relation-
ships existing between them. This is accomplished automatically by
representing heuristics as production rules. The ne-t step is to devise
technijues for distributing credit or blame. The heirarchical

arrangement of the production rules in the form of an ordered list suggests
the following type of analysis. When a decision is made via production
rules a symbolic subvector representing the game situation is compared

to all left parts of the 1list of action rules (production rules which
represent heuristic rules) going from top to bottom until a match

is found. The action rule which defines ths decision, that is, the one

50

L&)

-

i

L)

av
-a



HHﬁu---—-———-——v

whose left part matches the symbolic subvector, can easily be located.
After the decision is evaluated the credit or blame can then be assigned
to the action rule which defined the decision (or to the rules above it
in the list of action rules) and t> the associated heuristic definitionms.
The approach to be used here is that of esgsigning blame to action rules
leading to poor decisions by immediately modifying these rules in an
attempt to make them more effective, while ignoring action rules leading

to good or acceptable decisionms.

Creation of Heuristics

The second major problim which must be faced before the heuristics
of a program can be adequately manipulated is the problem of creating new
heuristies. The most feasible way of creating new heuristics is by
modifying existing ones. For action rules, three modification techniques
will be considered:

(1) Replacing the symbolic values in the left part of the

rule. For example, (Al, B, *) = (1, 2, *) might be
changed into (A, B3, *) = (1, 2, *) .
(2) Changing the relevancy of the elements in the left part
of the rule. For example, (Al, Bl, *) = (1, 2, *) might
be changed into (*, Bl, *) = (1, 2, *) . Here element A
is made irrelevant.
(3) Changing the heuristic definitions associated with the
left part of the rule. For example, (Al, Bl, *) - (1, 2, *)
might remain unaltered while the definition of Al is
changed; i.e., A1 = A , A <15 might become Al = A, A < 20.

These techniques will be applied to action rules which lead to

51

B R e

o g St it



TR O (N A s mmmm

decisions that are evaluated as being poor. Heuristic definitions
represented by bf-tyve rules will be modified by simply changing the
predicates in the right parts of the rules. Definitions represented hy

ff-type rules will not be modified.

INFORMATION NEEDED. In order to create useful heuristics,

either by modifying existing ones or by hypothesizing new ones, three
items of information will be used.
(1) a good or acceptable decision for the situation,

(2) the situation elements (subvector variables) relevant

to making this good decision, and

(3) the reason why the decision is being made, expressed as

an evaluation of these relevant situation elements.

To illustrate that these three items are adequate consider the example
given below. The subvector B for this example will be defined by the
dynamlic variables A, B, and C . The action rules will be

L. (A1, *, C2) = (*, =, c+3)

2. (A2, Bl, *) = (a+2, *, *)

3. (%, B2, C1) = (¥, b+l, *)

and the rules corresponding to heuristic definitions will be

b, AL~ A, A> 20
5. A2 - A, A< 20
6. Bl - B, B> 16
T B2 -B, B< 16
8. CL-¢, C>5
9. 2-C C<5
10. A =a, a € fset of natural numbers}

Se

SRy
4

L

b

[ £=SN ]

oo



11. 8 =b € {set of natural numbers}
12, C =c € {set of natural numbers}
IT the program subvector representing the game situation is considered
to be (13, 5, 7) , the symbolic subvector obiained .through parsing is
(a2, B2, Cl) . This symbolic subvector matches rule 3 above and leads
to the decision of incrementing the value of B by 1 . If it can be
determined that this was a poor decision and that
(1) a good decision is to add 6 to the value of A ,
(2) the variables relevant to this decision are A and C ,
and
(3) the decision is being made because the current value of A
classifies A as an Al and the current value of C
classifies C as a Cl,
then the production rules can be modified by (a) changing the
rules corresponding to the heuristic definitions of Al and A2 such
that they become Al = A, A> 13 and A2 ~A , A< 13, and (b) inserting
the action rule (Al, *, C1) = (a+6, *, *) Just above the action rule
which now "catches" the symbolic subvector. Changing the definitions
of Al and A2 changes the symbolic subvector to (Al, B2, Cl) which
still matches or catches on rule 3, thus the new action rule is inserted
just above rule 3, After such a modification is made the rules have
the form:
1. (A1, *, C2) = (%, *, c+3)
2. (A2, Bl, *) = (at2, *, *)
3. (A1, ¥, C1) = (a¥, *, *)

L. (%, B2, C1) =~ (¥, btl, *)

23

s by e s B s



CIRED L s A T A R P DAY €S Sriese I BT IS W B e i
it 4 SRR 1 s G pyvoneE

13.

AL = A, A>13
A2 ~ A, A< 13
BL =B, B> 6
B ~B, B<16
CL=C,C>5
@=C, C<5
A ~a, a € {set of natural numbers }
B-—b, b € {set of natural numbers }

C = c, ¢ € [set of natural numbers }

It can be seen that now in the situation (13, 5, 7) the correct

decision, "add 6 to the value of A", is made. Consequently, the

three items of information previously mentioned, i.e., a good decision,

the relevant clements, and an evaluation of these elements, permit

the creation of useful or "good" heuristics. This process is specified

in detail in the next section.

54

- b

-




Ry

-

G bud tud ton o Gad B e e e e e e Y e Bl b e e

3.2 TRAINING PROCEDURES

In the previous section it was noted éhat three items of information
are adequate for the creation of useful heuristics:

(1) a good decision for the situation,

(2) the relevant situation elements, and

(3) the reason why the decision is being mede.
When a learning program is presented with a game situation and the above

items of informaticn for the purpose of improving its performance, the

process will be called training.

BOOK LEARNING. In section 1.3 a checker-playing program which employs
an abbreviated form of training is described. Tuis technique is called
book learning (Samuel, 1959, 1967), a procedure wherein the program is
presented with game situations and the associated book-recommended moves
and is permitted to use this Yook information to correct its move:
generating apparatus. In this procedure item (1) above is given to the
program b." items (2) and (3) are not.

Book learning has proved to be a successful technique for teaching
programs to play games where minimaxing procedures can be applied. The
book information supplies the program with a good move decision while the
minimaxing procedure provides a method by which the program can determine
which situation elements (or parameters) are relevant. One way parameter
relevancy is determined in the checker progrem is by comparison of the
current parameter values for a situation with the backed-up parameter
values obtained through minimaxing on the path in the game tree corres-

ponding to the book move. The parameters whose backed-up values are

22



¥

R R

consistently greater than the current values are considered the relevant
ones, since these axe the parameters that the book moves .tend to increase.
In one version of the checker program the value or worth of any game
situation (or board configuration) is represented by a linear polynomial.
As a consequence,. when a move decision is made it is always because the
move has associated with it the largest numerical value obtained by
minimaxing evaluations of the polynomial back up the game trec. Thus

by using miuimaxing and a polynomial representation of the board value
the program is able to obtain, by itself, the information specified by

items (2) and (3) above.

TRAINING. For the general game-playing program, where the parameters
are not independent and minimexing is impossible (because not enough in-
formation is known to construct a game or decision tree) training procedures
can be used to improve performance. This training can take place in
two ways, (a) by supplying the program with a number of unrelated game
situations and the associated information needed for training, or (b)
by having a human (who is an expert at the game) monitor the decisions
of the program as it plays an actual game and give the program, when
a poor decision is made, the three items of training information.

In section 3.1 an example was presented which indicated how heuristics
in production rule form can be created or learned when the appropriste
training information is available. The use of training information

in learning heuristic rules and definitions will now be e.:amined in detail.

Learning Heuristic Rules
As illustrated in section 3.1 the training information provides the

data necessary for the construction of a new action rule; i.e., item (1)

56

o Sy oo

t—

Qi




of the training information supplies the right part of the action rule,
while items (2) and (3) supply the left part. The most elementary method
of correcting the set of action rules when they lead to a poor decision

is by (a) using the training informatior to create a new action rule

through generalization, and (b) inserting this new rule in the list of
action rules immediately above the action rule which led to the unacceptable
decision. However, this method mey not always be practical, since it
entails adding a new action rule for every training trial. Such a

technique could leed to a prohibitive number of action rules.

CORRECTION BY MODIFYING EXISTING RULES. What is needed for efficient
correction of the set of action rules is the addition of another gener=-
alization scheme to the abovementioned process. Such a scheme should
permit training information to be added to the set of action rules
without the insertion of a new rule. One way this can be accomplished

is by finding an appropriate action rule already located above the error-
causing rule end modifying it to make it general enough to catch Lhe
symbolic subvector. An appropriate rule is one which is capable of
being suitably modifiesd and which leads to the same decision as

that specified in item (1) of the training information. After such a
modification is carried out, the training information is effectively
incorporated into the set of action rules. This is true because whenever
the original training situation is re-encountered (i.e., the current
state vector is identical to the state vector of the training trial) the
system will make the decision previously specified by the training

information.

If no appropriate rules are located above the error-causing

o7



~

F

RN LT IR L TV SRS IA NIRRTy SRATECTNNIRR N PRI W e et ot IR 10 Y i e

rule but some are located below it, the following approach may be used.
The error-causing rule, if suitable, is modified sc as to pass (rather
than catch) the symbolic subvector, while the first appropriate action
rule below it is modified to catch the subvector. Also, if any rules
located between the error-causing one and the first appropriate one
catch the subvector, they are modified to pass it., This type of
modification also incorporates the training information into the set of

action rules.

RULES APPROPRIATE FOR MODIFICATION. At this point it must be made

clear whichk rules can be modified to catch the symbolic subvector,

which can be modified to pass it, and exactly how this modification process
takes place. An action rule will be considered appropriate for modifi-
cation to catch the subvector if it has the same form as the training
rule, that is, the action rule which can be created from the treaining
information. An action rule has the same form as the training rule

only if (1) their right parts are identical, (2) for each * in the
left part of the training rule there is a corresponding * in the left
pert of the action rule, and (3) the correspcuding symbolic values of
their left parts are identical, or at lezst are alike to the extent that
they are both defined by the same logical operator. Here * is

considered to always be identical to any other symbolic value.

EXAMPLE OF RULE MODIFICATION. For example, consider the rule created

from the training information to be
(A1, *, C1) = (%, b¥2, %)

and the existing production rules to be

58



!

ey UGN wEIP GO GG GID NP G0 O v v o G bow Gl bk G By B

1. (A1, %, C2) = (*, vi2, *)
z. (m, B1, *) = (%, %, &+5)

3. (A2, ¥, C3) = (%, bt2, *)

b, (A1, *, %) = (%, %, a+5)
5. AL = A, A<6
6. A2 -4, A8
7 BL ~ 3, B> 8
8. ClL=C, C>12
9. c2=-¢C, C<5
10. c3=C, C> 1b

Here rule 1 anc¢ the training rule are not of the same form becausz Cl

and C2 are not defined by the same logical operator (requirement (3)

above). Rule 2 and the training rule are not of the same form because

rule 2 has a Bl where the training rule has a * and their right parts
are different (requirements (2) and (1) above). Rule 3 anu the training
rule, however, are of the same form since they satisfy all three of the
above requirements.
An action rule can be modified to catch the symbolic subvector by
enlarging the sets defined by the symbolic values in the rule. As an !
iilustration of this generalization technique consider apain the example
just presented, and let the program subvector be (5, 3, 13) . The
symbolic subvector obtained through parsing is ((A1l, A2), (3), (C1)),
which matches or catches on rule 4., This rule leads to a pocr decision,
since it is not the decision advocated by the training information. =
Rule 3 is located above error-causing rule 4 and has the same form
as the training rule. Thus, if rule 3 is modified to catéh fhe symbolic

subvector, the training rule will effectively be incorporated into the

29




-

e — VPRI S TR

b o £ i d S NP A B R R TR W SR TN we

set of action rules. The left part of rule 3 is (A2, *, C3) , so it
can be seen that the subvector matches the left part of rule 3 with
respect to its first two elements but not with respect to its third
element C3 . If the value C3 in rule 3 is replaced by a symbolic
value representing a set large enough to inc'ude the current value of
the state vector variable C (which in this case is 13 ) the symbolic
subvector obtained through parsing will catch on rule 3. Therefore (3
is replaced by Cl , making rule 3 become (A2, *, Cl) =~ (*, b+2, *) .
The subvector now catches on rule 3, as desired, and causes the action
advocated by the training information to be taken.

An action rule can be modified to pass the symbolic subvector by
reducing the size of the sets defined by the symbolic values in the
rule. This technigue is somewhat the opposite of the generalization
method just described. In the previous example the symbolic subvector
catches on the new rule 3. To modify this rule so that it passes the
subvector it is necessary to restrict the definition of one of the sym-
bolic values in the rule such that the symbolic subvector no longer

includes this symbolic value. This can be achieved by restricting the

definition of A2 so that it no longer includes the current value of the

state vector variable A (which in this case is 5 ). Let rule 6 become

A2 =~ A, A< 5 ; then the symbolic subvector becomes ((Al), (B), (Cl1))

which fails to catch on the new rule 3, as desired.

OVERGENERALIZATION. When an action rule is modified so it will pass (or

catch) the symbolic subvector it is necessary to expand (or restrict)

the size of the sets defined by one or more of the symbolic values in the

rule. Care must be taken not to overgeneralize, that is, to change

60

e

e

LR

LR



the definitions of the symbolic values. If this happens the
training process could become unstable; that is, many redundant action
rules might be created during training.

Overgeneralization may be guarded against by specifying the maximum
allowable definition change wuich may be made. In the previous examples
Cl replacing C3 led to a change of size 2, since the predicate was
changed from C> 14 to C > 12 , and A2 had a definition change of
size 3. The maximum allowable change depends largely on the type of
game being played, and thus will be represerted &s a generalization constant
K which can be changed only by the programmer. 1In view of these con-
siderations, an action rule is appropriate or suitable for modification

only if the definition change involved is equal to or less than K .

Learning Heuristic Definitions

It has been shown how the three items of training information supply
the data necessary for the creation and modification of heuristic rules
represented as action rules. This training information also provides the
necessary data for creating or learning heuristic definitions represented
as bf rules. The techniques whicn can be used to learn heuristic

definitions will now be described.

PARTITIONING. A simple bf rule consists of a production rule and an

associated simple predicate, such as
41 - A, A> 10

This rule states that if the value of the state vector variable A 1is
greater than 10 , then the state vector variable A may take on the

symbolic value Al . The symbolic values a state vector variable may

61




L RIS Ty £ ey "

take partition the set of possible values for that variable into subsets.
Two types of partitioning procedures will be considered, (1) mutually
exclusive (and exhaustive) partitioning, and (2) overlapping (and
non-exhaustive) partitioning. An example of mutually exclusive partition-

ing for the state vector variable A is

Al = A, A> 10

A2 ~ A, A< 10

where the set being partitioned is Jjust the set of natural numbers. Here
any value of the state vector variable A permits A to take one and

only one symbolic value. An example of overlapping partitioning is

Al = A, A> 10

A2~ A, A> L

Here a particular value of the state vector variable A may permit A to

take zero, one, or a number of symbolic values.

EXCLUSIVE VS OVERLAPPING VARIABLES. In the learning procedure ebout to
be outlined a state vector variable will be considered one of two types:
either an exclusive variable with symbolic values defined by mutually
exclusive definitions, or an overlapping variable with symbolic values
defined by overlapping definitions. Item 3 of the training information
provides a reason why the proposed decision is being advocated. When
an exclusive state vector variable is being referred to in item 3, the
symbolic value associated with the current numerical value of the
variable must be given. Let A , for example, be an exclusive state

vector variable with a value of 8 . Then item 3 might state that the

62

ey @9

e

-



proposed decision is being advocated because " A is an A2 ". When an

overlapping state vector variable is being referred to in item 3, a

magnitude indication associated with the current numerical value of the
variable must be given. Let A , for example, be an overlapping state
vector variable with a value of 20 . Then item 3 might state that the

prorcsed decision is being advocated because " A 1is large" or because

" A is small".

LEARNING EXCLUSIVE DEFINITIONS. The procedure for learning the definitions

g S

ArY

of the symbolic values of an exclusive state vector variable merely con-

sists of partitioning the given range into the number of desired subsets

iy R
e ¥ I

and then using the data of item 3 from each training trial to shift the
boundary lines whenever the newly acquired information so permits. An
example will clarify this procedure. Let A be an exclusive state

vector variable with the three subsets or possible symbolic values Al ,
A2 , and A3 , and iet the range of A be the positive integers from

1 to 60 . Initially A 1is partitioned into the specified number of
subsets by estimating or guessing the boundary locations. Let the initial
estimate of the boundaries partition A as follows:

Al A2 A3
1 2
2021 40741 60

’J-

Thus the initial bf rules are

Al» A, A< 20
A2+ A>20A A< kO

A3+ A, A> L0

63



PSRRI A RN w1

The effect of 4 hypothetical training trials on the partitioning is

shown below.

‘§ Trial Information New Boundaries
1Lo A= 1%, A has the Al A2 A3
L 4 [l
value associated with ) T3 50 51 63

the middle subsets
i.e., A 1is an A2 .

2. A=7,A isan Al Al A2 A3
' s 1315 M 5] 50
3. A=3, A is an A3 Al A2 A3
5 3% 29730 0
L, A=11, A is an A2 Al A2 A3
L N N }
T 10 11 2930 60

The bf rules learned are:

AL+ A, A< 10
A2 4 A, A>10AAZL29

A3+ A, A> 29

LEARNING OVERLAPPING DEFINITIONS. The procedure for learning the definitions

of the symbolic values of an overlapping state vector variable is quite

elementary. It consists of using the magnitude indication of item 3 to-

gether with the current numerical value of the state vector variable to
define a particular subset of the range. If the variable is classified
&s "large" the current numerical value of the variable and all values

above it are defined as a subset. Conve:'sely, if the classification is

"small" the current value and all below it are defined as a subset. Con-

sider the following example for the overlapping state vector variable B

6k

-e

-

we

ay

-e



with a range from 1 to 60 . Initially, there are no bf rules for B ,

and +the range is unpartitioned as follows:

B

T 60

The effect of 4 hypothetical training trials is shown below.

Trial Information New Boundaries
1. B=8, B is small . 42-1-' -—
1 89 60
2 B=30, B is large ’ & &’ £
1 89 29 30 60
3. B=51,B is large . ‘—BH ‘llf_. .Il}-’g
1 89 29 30 50 51 60
L, B=28, B is large . GM Iﬂ’ LB—b-L
1 B89 27 28 50 51 60

Note that on trial 4 instead of defining a new subset B4 , where

B> 27 , the existing subset B2 was enlarged. This type of generalization
will be performed whenever it can be accomplished without enlarging beyond
some maximum amount KK , a constant which depends on the game being

learned. The bf rules learned are:

BlL+ B, B<9
B2+ B, B> 27

B> -+ B, B> 50

Training Procedure Outline

The entire training procedure for learning heuristics represented

as production rules will now be briefly outlined. This outline, shown

65

e s S



R SR o

below, lists the steps involved in a single training trial.

1.

a.

b.

Parse the program subvector to obtain the symbolic subvector.
Drop the symbolic subvector through the action rules to
obtain a decision.

If the trainer indicates that the declision was acceptable
then stop, otherwise go to step 2.

Obtain the training information from the trainer.

Construct an action rule (to be called the training rule)
from this information.

Use item (3) of the training information to change or create
bf rules which represent heuristic definitions. If this
changes the symbolic subvector then go to step 3, otherwise
go to step 4.

Drop the new symbolic subvector through the action rules to
obtain a decision.

If the decision is the one advocated by item (1) of the
training information then stop, otherwise go to step k.
Locate the action rule responsible for the unacceptable
decision made in step 3 (or in step 1 if step 3 was skipped).
This action rule will be called the error-causing rule.
Search the action rules above the error-causing rule for a
rule which has the same form as the training rule and is
suitable for modification to catch the symbolic subvector.
This rule will be called the target rule.

If such & rule is found modify it to catch the symbolic

subvector and go to step 3, otherwise go to step 6.

66

ool |

by B

$—4



6. a. Search the action rules below the error-causing rule for a
rule which has the same form as the training rule and is

suitable for modification to catch the symbolic subvector.

This rule will be called the target rule.

b. If (1) such a rule is found, (2) the error-causing rule is
suitable for modification to pass the symbolic subvector,
and (3) the rules hetween the error-causing rule and the
target rule either pass the symbolic subvector or are suit-
able for modification to pass it then modify the target rule
to catch the subvector, the error-causing rule to pass the
subivector, and the rules between these two to pass the
subvector and go to step 3, otherwise go to step 7.

7. a. Place the training rule immediately above the error-causing

rule in the list of action rules and stop.

These steps are illustrated by the block diagram given in figure 3-1.
To see exactly how these steps are applied consider the following example,
where the dynamic subvector variables are A, B, and C . Here A 1is
an exclusive variable, while B and C are overlapping variables. The
initial set of production rules for this example is shown below.

1. (A2, Bl, *) 4 (atl, *, ¥)

2. (AL, %, C1l) + (%, b+2, *)

3. (%, ¥, ¥) 4 (random)

L, Al 4+ A, A< 20
5. A2 4 A, A> 20
6. BL+ B, B>3
7. Cl+C, C>9

67



ki e (g

The word random in the right part of rule 3 means that if the symbolic
subvector catches on this rule, a decision will be chosen at random from
the set of possible decisions. During training "random" is assumed to
always lead to an unacceptable decision since this accelerates the training

process.

INSERTING A NEW ACTION RULE. Let the program subvector at the beginning
of trial 1 be (18, 2, 11) . This parses to the symbolic subvector

(Al, B, Cl) which catches on rule 2 and lzads to the decision of in-
crementing B by 2 . Assume that this decision is unacceptable and

that the training information is:

68

=

{.

1

o

L

-e



Obtuin a
decision

Obtain
training
information

!

Create training
rule and modify
heuristic definitions

Has
the symbolic
subvector
haied

no

' Locate the

Obtain a
decision

latest error-
causing rule

come tarpget
ule above the error-
causing rule be modified
Lc catch the
subvector?

the ection
ules be modified so
a targe* rule below the
errcr-causing rule will
catch the
subvector?

Modify the

target
rule
Modify the
es
- action
rules

Insert the training
rule Jjust above

Figure 3-1.

the error-causing
rule

A block diagram of the training procedure.

69

STOP

AR BNy

R !

oo AR



(1) a good decision is "add 3 to the value of C ".

(2) the relevant variables are A and B .

(3) the decision is being mad: because " A is an A2 " and
"B is small".

The training rule (constructed from the training information) is
(A2, B2, *) = (%, ¥, c+3)
and the bf rules changed ov created (on the basis of item (3) above) are

AL+ A, A<18
A2+ A, A> 18

B2+ B, B<3.

These bf rules change the symbolic subvector to (A2, B2, Cl) which
catches on rule 3. Thus the error-causing rule is rule 3. No action
rules above or below the error-causing rule have the same form as the
training rule, so the training rule is inserted into the list of action
rules immediately above error-causing rule 5. The new set of rules is
shown below. Here, when the program subvector is (18, 2, 11) the
desired decision, "add 3 to the value of C ", is made.

1. (A2, Bl, *) 4 (atl, *, %)

2. (AL, %, Cl) + (¥, b+2, *)

3. (A2, B2, *) =+ (*, ¥, c+3)

L

. (*, *, ¥) =+ (random)

5. Al+ A A<18
6. A2+ A, A> 18

70

€1 g
’

[ o2
- v

=

|

=1

-p

-e

-



bed = e e e e bl ey by b ed b e e e e oy Gw 6w

8. B2+ B,B<3

MODIFYING A RULE ABOVE THE ERROR-CAUSING RULE. Let the program
subvector at the beginning of training trial £ be (12, 1, 7) . This
parses to the symbolic subvector (Al, B2, C) which catches on rule &
and leads to a random decision. Assume that this decision is unacceptable
and that the training information is:

(1) a good decision is to "add 2 to the value of B ".

(2) the relevant variables are A and C .

(3) the decision is being made because " A is an Al " and

" C 4is large'".

The training rule (constructed from the training information) is
(AL, *, C2) + (¥*, b+2, *)
and the bf rule created (on the basis of item (3) above) is
s Cy C ENE R

This bf rule changes the symbolic subvector to (Al, B2, C2) which still
catches on rule 4. Thus the error-causing rule is rule 4. Rule 2,
above the error-causing rule, has the same form as the training rule and
is suitable for modification to catch the symbolic subvector if K 2> 3 .
Let K= 3, then rule 2 is modified by replacing Cl with C2 . The
new set of rules is shown below. Here, when the program subvector is
(12, 1, 7) the desired decision, "add 2 to the value of B ", is made.
1. (A2, Bl, *) =+ (atl, *, *)
2. (A1, *, C2) 4 (¥, vi2, *)

71




l 1l TRt - Nt

. (A2) B2, *) — 4 (*’ *, C+3)

B
4. (%, *, *) 4+ (random)

2. Al + A, A<18
6. A2 + A > 18

1. BlL+B,B>3
8. B2+ B, B<3
9. CL+C, C>9

10. c2a+C,C>6

MODIFYING A RULE BELOW THE ERROR-CAUSING RULE. Let the program subvector

at the beginning of training trial 3 be

(21, 4, 15) . This parses to

the symbolic subvector ((A2), (Bl), (C1,C2)) which catches on rule 1

and leads to the decision of incrementing A by 1 . Assume that this

decision is unacceptable and that the training information is:

(i) a good decision is to "add 3 to the value of C ".

(2) the relevant variables are A and B .

(3) the decision is being made because " A is an A2 " and

"B is small".

The training rule (constructed from the training information) is

(A2) B3, *) - (*) *, C+5)

and the bf rule created (on the basis of item (3) above) is

B5+ B, B 5.

This bf rule changes the symbolic subvector to ({A2), (B1,B3), (C1,C2))

which still catcnes on rule 1, making it the error-causing rule. Rule 3

below the error-causing rule has the same form as the training rule and

72

-u

—4



is suitable for modification to catch the symbolic subvector. Further-
more, the error-causing rule is suitable for modification to pass the
subvector. Thus rule 3 is modified by replacing B2 with B3 , and rule

1l is modified by changing the definition of Bl to
Bl + B, B> 4 .

The new set of rules is shown below. Here, when the program subvector
is (21, 4, 15) the desired decision, "add 3 to the value of C ",
is made.

1. (a2, Bl, *¥) + (a+l, *, *)

2. (AL, *, C2) + (¥, b+2, ¥)

5. (K2, B3, *¥) + (¥, ¥, c+3)

4. (%, ¥, *) < (random)

B Al » A, A< 18
A2 + A, A > 18

7. Bl -+ B, B> L

8. B2+ B, B<3

9 B+ B, B<5

10. Cl+C,C>9

11. c2+C, C>6

CONVERGENCE. The effectiveness of these modification techniques can

be tested by using a program, rather than a human, as a trainer. The
training program must contain a complete set of game heuristics in produc-
tion rule form and must monitor the learning program, which initially
contains no heuristics. Whenever the learning program makes a decision

which conflicts with the one made by the training program, it will be

(¥

-y



o

told by the training program the correct decision, the relevant variables,
and why the decision was made. The training program's decisions are
considered to be the correct decisions. If the modification techniques
used were perfect for use in the task environment under consideration,
the learning program would eventually grow a set of production rules
leading to exactly the same decisions as the training program rules.

Poor modification techniques would create a learning program which rarely
made the same decision as the training program. Thus the speed and
degree of convergence obtainable between the decisions generated

by the learning program and those generated by the trainer can be used

as a measure of the effectiveness of the modification and generalization

procedures.

Applicability of Training Process

A pertinent question at this point is the following. Using the
modification and generalization techniques just described what features
of the task environment affect the speed and the degree of convergence
obtainable between the decisions generated by the learning program
and those generated by the training program? For the learning procedures
even to be applicable each subvector variable must be considered to
have a range consisting of a set of integer values. When this condition
is satisfied convergence can be obtained, however the speed and degree
of convergence depend upon the properties of the "decision space"

utilized by the trainer.

DECISION SPACE. The decision space of the trainer is considered to be

an n-dimensional space which has a dimension corresponding to each of

T4

e e



g—y ; »

the n variablas in the subvector. Thus each point in this space
represents a game situation, and the entire space represents the set |
of all possible game situations.
The trainer is assumed to know the correct decision to make in '
every game situation, i.e., it has a decision associated with each point
in its decision space. For example, let B = (P, B) where P and B
each have a range from 1 to 9 and where decisions dl’ d2, d3, and
dh may be made. Then the decision space for the trainer could have the

form shown below.

B S
13 a T T T a ey
1% % B
4 ' ’, 7=
2 ;del\ '\\d;« ";: L
~=Ivessl ' Figure %-2.
3414, d vad, d
2. %2 A% G
s IV s ] 1
21 40 G2 9y 9y
[] \-. _--__::— - - :\-\\ ]
1 :\dl a, d; A g
0 Y r r Y -

The degree to which identical decisions tend to form groups will be
called the clustering effect, indicated by the dotted lines in the
above figure. 1In this example there is a high degree of clustering.
An example of minimal clustering is shown below.

B &

Figure 3-3.
2t d2 d' d2 d5 d2
11 dl dh dl dh di,
N S S S
75



=y

SPEED OF CONVERGENCE. It can now be seen that the speed of convergence
depends on the degree of clustering inherent in the decision space of

the trainer. If there is a high degree of clustering then convergence will
be rapid, that is, the learning system will be able to accurately

imitate the training program after learning only a small number of action
rules. If, however, there is a low degree of clustering, convergence

will be slow. For example, with minimal clustering the system will not
converge until it has acquired one action rule for each game situation

in the entire decision space.

DEGREE OF CONVERGENCE. The degree of convergence obtainable from

the learning system, on the other hand, depends on the degree of
consistency exhibited by the trainer during the training process. If
the trainer is very consistent in its task of supplying decisions when
presented with game situations (i.e., the arrangement of decisions in
its decision space is very stable) a high degree of convergence is

possible.

76

“s



o e I s o s

(e onmg ams . ] o [ . O e Gaes omme eaae

5.5 LEARNING WITHOUT EXPLICIT TRAINING }

In section 3.2 it was shown how heuristics in the form of production %
rules can be learned when the following information is available for
each move or game decision made by the program:

(1) a good decision for the situation,

(2) the relevant situation elements, and

(3) the reason why the decision is being made.

Training is one way to provide the program with this information, but
this technique requires the presence and participation of a trainer. Since
humans can learn to play games without explicit training, developing pro-
grams which also can learn without expaicit training seems a reasonable
goal. This can be attained if the projiram itself can be made to generate
the training information, either through logical deduction or hypothesis
formation. Once the training information is generated the program can
proceed as outlined in the previous section and in a sense train itself.
One difficulty is that some mechanism must be included for testing the
hypotheses formed and for eliminating useless ones. Further, this
mechanism must be compatible with the generalization techniques used in
the training process. A procedure will now be described which enables
the program to generate the training information during the normal

course of play and thus learn heuristics without'explicit training.

AXTOMATIZATION. The fundamental problem at this point is: how can the program
hypothesize reasonable heuristic rules without explicit training? The

chance of finding a reasonable or useful heuristic by creating heuristic

rules at random seems rather remote. A novel way to attack the problem

is to formalize or axiomatize (McCarthy, 195C) the following for the

7



= = A g b

game under consideration:

(1) the rules of the game,

(2) statements (or "axioms") about the game,

(3) general statements about techniques used in game playing.
The result is a set of logical statements or premises, from which new
statements can be deduced using rules cf deductive inference. These new
statements can then be used as the basis for creating new heuristic rules.

This technique of logical deduction can be used by the program to
obtain item (1) of the training information, that is, a good decision
for the given game situation. This process entails (a) making a
decision in a situation S , (b) noting the effect on S of the sub-
sequent decision by the opponent, and (c) using the information about §
and the change in S together with the set of logical statements to
deduce what the original decision should have been. It was noted in
section 5.1 that the longer the sequence of decisions, the easier it
is to evaluate the sequence as being good or bad. This technique of using
logical deduction permits the evaluation of a decision sequence of the
worst type, a sequence of length one. An example of this technique
applied to a particular game, as well as a complete set of logical

statements for th: game, is presented in chapter 5.

DECISION MATRIX. Item (3) of the training information can be obtained
from a decision matrix which is game dependent and is given to the program
before learning starts. Each row of the matrix stands for a game
decision or class of decisions and each column for a subvector variable.
Each entry Eij in the matrix indicates why the variable Jj 1is relevant,

if when th2 decision i is made it is in fact relgvant. For example,

78

e BEN ]



>

if the rrogram can determine that decision i 1is good and variable

J 1is relevant, and entry E is the term "large" then it knows that

1
decision i was made because variable J is large. An underlying
assumption here is that when a variable is relevant for a particular
decision or class of decisions it is always relevant for the same reason.
The types of reasons under consideration are simply (a) the category
the current value of the variable belongs to (for exclusive variables),
and (b) the magnitude indication associated with the current value
of the variable (for overlappiang variables).

A linear polynomial used to determine a move decision is somewhat
analogous to a decision matrix with just one row but with one column
for cach parameter of the polynomial. The entries in the matrix would
all be the term "large", since whenever a decision is picked it is
always because the relevant parameters are large and thus increase the
value of the polynomial. Another heuristic program which is supplied
with informaticn in matrix form is GPS (Newell, Shaw, and Simon, 1959).

This program relies on a connection table to provide information about

the operators relevant to reducing certain differences.

HYPOTHESIS FORMATION. I*em (2) of the training information can be obtained
through the generation and testing of hypotheses concerning the relevancy
of subvector variables. Again the problem of generating useful or
reasonable hypotheses arises. This problem can be solved for the special
case of relevancy hypotheses in the following manner. Let the initial
hypotheses in every case be that all subvector variables are relevant;

this means that the left parts of the training rules constructed from the

3 items of training information will initially contain no * 's. Testing

79




will consist of noting whether or not a particular training rule (placed ]
in the set of action rules by step 7 of the training procedure) catches I
the symbolic subvector when the action advocated by the rule is determined
to be the correct decision. If the rule does not catch the subvector, i
the hypothesis for that rule concerning the relevancy of the variables
is changed by making some of the variables in the left part of the rule
irrelevant. This makes the rule more general since it then applies to
a greater variety of situations.

This technique can be easily incorporated into the training procedure
as follows. If it is desired to modify an hypothesized action rule to
catch the subvector and the rule cannot be suitably modified by replacing
symbolic values then the following action is taken. The left part of
the rule is modified by making a minimum number of variables irrelevant
while still increasing the generality enough so the rule can catch the
symbolic subvector. Of course some limit must be imposed on the degree
of generality which may be obtained, otherwise the hypothesized action
rules would eventually contain all * 's in their left parts. Let N stand
for the minimum allowable number of variables which must remain relevant °
in the left part of an action rule. Then, when an hypothesized action
rule has only N symbolic values which are not * 's in its left part it
cannot be modified by reducing the number of its relevant variables.
The value of N depends on the number of subvector variables used and the

particular game under consideration.

Revised Training Procedure

The technique just described can be merged with the training
procedure outline in section 3.2 by making a few minor changes. This ' 1

revised training procedure outline is shown below. H

80



| 2 ‘_—*

-y

— e ey

Parse the program subvector to obtain the symbolic sub-
vector.

Drop the symbolic subvector through the action rules to
obtain a decision.

If the trainer indicates that the decision was acceptable
then stop, otherwise go to step 2.

Obtain the training information from the trainer.
Construct an action rule (to be called the training
rule) from this information.

Use item (3) of the training information to change or
create bf rules which represent heuristic definintions.
If this changes the symbolic subvector then go to

step 3, otherwise go to step k.

. Drop the new symboli: subvector through the action rules

to obtain a decision.

If the decision is the one advocated by item (1) of the
training information then stop, otherwise go to step k.
Locate the action rule responsible for the unacceptable
decision made in step 3 (or in step 1 if step 3 was
skipped). This action rule will be called the error-
causing rule.

Search the action rules above the error-causing rule for
a non-hypothesized rule which has the same form as the
training rule and is suitable for modification to catch
the symbolic subvector. This rule will be called the

target rule.

81



I

S ST g s ek T e w—

b.
€. a
b.
T. a.

If such a rule is found use the training generalization
techniques to modify it to catch the symbolic subvector
and go to step 3, otherwise search the action rules above
the error-causing rule for an hypothesized action rule
leading to the decision advocated by the training infor-
mation. If such a rule is found, modify it to catch the
subvector by making a minimum number of variables irrele-
vant if this can be done and still leave N variables
relevant and go to step 3; if no action rules suitable
for this type of modification can te found above the
error-causing rule then go to step 6.

Search the action rules below the error-causing rule for
a non-hypothesized rule which has the same form as the
training rule and is suitable for modification to catch
the symbolic subvector. This rule will be called the
target rule.

If (1) such a rule if found, (2) the error-causing rule
is suitable for modification to pass the symbolic sub-
vector, and (5) the rules between the error-causing rule
and the target rule either pass the symbolic subvector
or are suitable for modification to pass it then use the
training generalization techniques to modify the target
rule to catch the subvector, the error-causing rule to

pass the subvector and go to step 3, otherwise go to

step 7.

Place the training rule immediately above the error-causing

rule in the list of action rules and stop.

82



e p——— e e

£ L

Sl

‘_ — —— et ST A

An example of the operation of the revised training procedure will
now be given for a state vector composed of overlapping variables A, B,
and C . It will be assumed that K=3 , N = 1 , and the decision matrix

is:

d1 d2 d3
A | large large small
B | small large small
C | small small large
Figure 3-k4.

where d1 stands for "add 1 to the value of A ", d2 stands for "add

2 to the value of B " and d5 stands for "add 3 to the value of C ".
The initial set of production rules for this example is shown below.

1. (Al, %, C1) » (%, %, c+3)

2. (%, *, ¥) =+ (random)

3. Al » A, A> 10

L, Cl"C’C<15

INSERTING AN HYPOUTHESIZED ACTION RULE. Let the program subvector be

(15, 12, 2) . This parses to (Al, B, Cl1) which catches on rule 1 and
leads to the decision of incrementing C by 3 . The opponent now

makes a decision and the program uses the information about the resulting
game situation to logically deduce what its own decision should have been.
Assume that the program deduces that a good decision would have been

"add 2 to the value of B ". The training rule is then

83




(A2, BiL, C2) » (%, b+2, *)

- w0 N

and the bf rules changed or created are

A2 » A, A> 14
Bl-+ B, B> 11

c2-+4¢,C<3

Since no rules in the set of action rules lead to the correct derision
the training rule is inserted above the error-causing rule (rule 1) as
spetified in step 7 of the revised training procedure outline. In this
case the training rule is an hypothesized rule and is marked in some way
so the program can distinguish it from action rules which were not
hypothesized. The new set of rules is shown below. Here, when the
program subvector is (15, 12, 2) the desired decision, "add 2 to the
value of B " is made.

1. (A2, Bl, C2) + (*, v+2, *) hypothesized

2. (A1, *, C1) - (%, *, c+3)
3, (%, *, *) -+ (random)

L. AL+ A, A> 10
5 A2 4 A, A> 1k
6. BL+ B, B> 11
7 CL+C, C<15
8. C2+4C,C<3

MODIFYING AN EXISTING HYPOTHESIZED RULE. Let the program subvector
at the time of the program's next move decision be (18, 13, 1k4) .

This parses to ((Al, A2), (Bl), (Cl)) which catches on rule @ and

o ]



—

leads to the decision of incrementing C by 3 . The opponent now

make a decision, and the program logically deduces what its own
decision should have been. Assume that the program deduces that a
good decision would have been "add 2 to the value of B ". The

training rule is then
(A2, Bl, Cl) = (*, b+2, *)

and no bf rules are changed or created. Rule 1 which leads to the
correct decision and is above the error-causing rule cannot be modified
to catch the subvector by replacing symbolic values since K 1is too
small. However, this rule is an hypothesized one and can therefore be
modified by making variables irrelavant. In this case only the variable

C must be considered irrelevant, so rule 1 becomes
(A2, B1, *) - (*: b+2)*) .

The new set of rules is shown below.

1. (A2, Bi, *) » (¥, b+2, *) hypothesized

2. (AL, *, C1) » (¥, *, c+3)
3, (%, ¥, *) o (random)

4. Al + A, A> 10
5. A2 4 4, A> 1k
6. Bl - B, B> 11
7. CL+C, C<15

Here when the program subvector is (18, 13, 14) the desired decision,

"add 2 to the value of B " is made.

COMBINING TRAINING AND HYPOTHESIS FORMATION. The system just described

o=
35



can learn heuristics in a variety of ways. It can learn through
(1) training alone: here the action rules are non-hypothesized,
since they are all based on information obtained from a
trainer,
(2) hypothesis formation alone: here the action rules are all
hypothesized, or
(3) training and hypothesis formation combined: here the action
rules are a mixture of hypothesized and non-hypothesized
rules.
In any case the program starts with no heuristic definitions and just one
heuristic rule, (%, *, *) + (random) , which tells it to initially make
decisions at random. Training and hypothesis formation may be combined
by first giving the program a number of explicit training trials and
then letting it learn through hypothesis formation during actual game
play. In this situation the hypothesized action rules must be distinguished
from the non-hypothesized ones since the two types of rules require
different generalization techniques. However, when an hypothesized rule
is generalized to the extent of having only N variables remaining in its

left part it can be given the status of a non-hypothesized rule.

Creation of Redundant Action Rules

The use of hypothesized action rules increases the possibility of
accidentally creating redundant action rules. These are rules which can
be removed from the list of action rules without in any way affecting

the decisions made by the system.

TYPES OF REDUNDANCIES. Two types of redundancies will be considered:

86

o ey bl ey

Gk O ez BN  m Gk nm Gam Sam g



(a) subordinate redundancy, where a rule in the ordered list
causes a rule below it to be redundant, and (b) superordinate redundancy,
where a rule in the ordered list causes a rule above it to be redundant.
To illustrate, let rule i be above rule j in the list of action
rules. Then rule i makes rule Jj a subordinate redundant rule if i
keeps j from ever catching a symbolic subvector, by itself catching all
generated subvectors that could otherwise be caught by j . This situation
occurs when each symbolic value in the left part of rule i defines a
set which includes the set defined by the corresponding symbolic value
of rule | .

Conversely, rule i is a superordinate redundant rule if every
symbolic subvector caught by 1 would be caught by another rule below
i leading to the same decision as 1 if rule i were removed. This
situation occurs when each symbolic value in the left part of a lower
rule | defines a set which includes the set defined by the correspond-
ing symbolic value of rule i , and rule i , rule J , and all rules

between 1 and j lead to the same decision.

EXAMPLE. As an example, consider the set of production rules shown
below, where the state vector contains overlapping variables A, B, and

C , and 3 different decisions are denoted by dl, d2, and d5 o
1. (A1, Bl, *) = d;

2. (A2, B2, Cl1) » d,

3. (%, B2, C2) ~ d,

L. (%, Bl, *) - d5

Do AL+ A, A> 5
6. A2+ A, A> 10

87



T. Bl+ B, B9 A

8. B2+ B, B< &4
9. CL+C, C> 15 -
10. c2+4C, C<7

Here rule 1 makes rule 2 a subordinate redundant rule, and rule 4 makes

rule 3 a superordinate redundant rule. As a consequence, the set of 2
production rules shown below, with action rules 2 and 3 removed, is

exactly equivalent to the original set.

1. (Al, Bl, *) 4 d

1l
2. (*’ Bl) *) - d5
3 Al + A, A> 5
L, Bl+ B, B<Y

Note that the removal of action rules 2 and 3 made bf rules 6, 8, 9, and

10 superfluou. and thus led to their removal also.

REDUNDANCY CHECKS. In a learning system of the type proposed in this

section redundancy checks should be made periodically to keep the action

-3

rule list from becoming too long. However, the danger in removing
redundancies before learning is completed is that rules may be removed
which later would have been generalized upon and made non-redundant. -
Premature removal of this type will tend to slow down the learning process.

Thus both the length of the action rule list and the speed of convergence

of the learning system must be considered when determining how often

redundancy checks should be made.

88 !



CHAPTER 4

IMPLICATIONS FOR S-R THEORIES OF LEARNING

4,1. INTRODUCTION

In psychology, learning theories fall into two major categories,
stimulus-response (S-R) theories and cognitive theories (Hilgard and
Bower, 1966). The stimulus response theories view learning as the
acquisition of stimulus-response chains or "habits". Organisms are
assumed to merely learn responses, and to resort to trial and error when
confronted with a novel problem for which no response has been learned.
Cognitive theories on the other hand, view learning as the acquisition
of memories or expectations in the form of cognitive structures.
Organisms are assumed to learn facts, and to employ "insight" based on
the understanding of the essential relationships involved when .onfronted
with a novel problem.

In both categories, model building has proved to be a useful
technique for describing data and predicting experimental results.
Mathematical models of learning (Bush and Mosteller, 1955; Estes, 1959)
have been constructed which are simple, concise descriptions of quanti-
tative data, many capable of yielding quite accurate numerical pre-
dictions. As Bower (1966) points out, most of the theoretical work in
mathematical learning theory has been in the area of "stimulus-response
associationism", although cognitive theories can be and often are
expressed in mathematical form.

More recently, information-processing models of human behavior

and intelligence have emerged (Feigenbaum, 1959; Feldman, 1959; Newell

89



and Simon, 1961; Hunt, 1962; Simon and Kotovsky, 1963; Reitman, 1965).
This type of model, in the form of a computer program, can be regarded
as a theory of the psychological processes underlying the behavior being
simulated. The information-processing model is a precise, unambiguous
statement of the theory and is well suited for generating explicit
predictions.

Up to now S-R theories have been used to explain many types of
simple learning, but not processes as complex as strategy or heuristic
learning. The information-processing system described in Chapter 2 and
3 suggests & number of approaches to the problem of constructing S-R
theories or models of human strategy learning in game-playing or problem-
solving environments. Some of the possible approaches to this problem

will now be examined and evaluated.

90



-

4,2, AN S-R INTERPRETATION OF PRODUCTION RULES

A production rule defining the change to make in the state vector

€ of a program has the form:
(A1, B1, C1) + (1,(8), £ (€), f3(8)) ’

where Al, Bl, and C1 are symbolic representations of the current values
of the subvector, and fl(a), f2(8) and f3(€) are functions or arith-
metic expressions defining the new values for the subvector. It will

be recalled that the subvector is the set of program variables which

may influence or be affected by the decisions of the program. Another
way to interpret the subvector is to consider it a description of a
particular game situation, where each element of the subvector is a
value of a pertinent attribute of the situation. The production rule

shown above can thus be thought of as a situation-action pair
S+A

which effectively means "in situation S take action A". Under this
interpretation, strategy learning simply consists of the acquisition

of S-A pairs.

S-R Models of Strategy Learning

Models of human strategy learning in a game-playing environment
will now be proposed. These models learn by being presented with a
series of game situations, the corresponding actions to take in each
situation, and the reason why each action is taken. A situaticn des-
cription consists of a list of all pertinent aspects of the situation,

each aspect being called a situation (or stimulus) element.

91



CONSTRAINTS. All the models under consideration are based on certain
constraints about how strategy learning can actually take place. The
constraints thus postulated are the following:

l. Association: the stimulus elements of a situation become
associated with or connected to the correct action to take in
that situation.

2. One-trial learning: the stimulus elements are connected com-
pletely to an action after one training trial.

3. Dependent elements: a situation description is a pattern of
dependent stimulus elements, i.e., the pattern, rather than
the individual elements, becomes connected to the action.

L. Interference: the only way that forgetting can occur is through
interterence, that is, by replacing the action part, A , of
an S-A connection with a new action A' .

5. Consistent training: the situation-action pairs presented to
the model will not contain conflicting information, such as
the same situation paired with two or more different actions.
Th2 effect of this constraint is that interference (and hence
forgetting) will not occur.

Association, one-trial learning, and interference arc postulated
because they provide the models with a basic structure that is
relatively simple. Dependent elements must be postulated, since in
a game-playing situation the stimulus elements are quite highly inter-
dependent. Consistent training is postulated so that complications

due to forgetting may be neglected.

92



ACTUAL ELEMENTS. In a game-playing situation the pattern of stimulus
elements that describes the situation at a particuler time is composed
of the values of the pertinent attributes of the situation. It is
assumed that these values can be represented as integers. For example,
consider a game with attributes H, P, and B, each having values
from 1 to 10 . Then a typical situation description (pattern of
stimulus elements) might be 2,9,5 meaning that this situation is
defined by H having a value of 2, P a valueof 9, and B a
value of 5 . An asterisk as an attribute value indicates that the
attribute moy teke on any value. Hence 6,%,4 represents a class of
situations where H has the value 6 , P any value from 1 to 10 ,
and B the value 4 . These integer stimulus elements are called

"actual" elements.

ABSTRACT ELEMENTS. Another type of element to be considered is the
symbolic stimulus element, such as hl , pl , or bl , where each
symbol represents any element from a particular subset of integers.
Thus hl,pl,bl is a description of a class of situations. These
symbolic stimulus elements are called 'abstract' elements and are
defined by partitioning the ranges of the attributes either into
mutually exclusive and exhaustive subsets or into overlapping subsets.
An example of the former type of partitioning for H is "hl: H < 6
and h2: H> 6". An example of the latter type is "hl: H< 7 and

h2: H> 3",

STORAGE. TIr a pattern of stimulus elements S 1is presented to a

model and the model fails to predict the correct action A , the model

95



is told the correct action, and the S-A ccnnection is stored in a -
list. The storage process may consist of simply placing the new
connection at the end of the previously learned connection list. If
exclusive abstract elements are used, storage may consist of also
growing a decision tree from the previously learned S-A connections.
Furthermore, when overlapping abstract elements are present, storage -
may consist of the following steps.
(1) The definitions of the abstract elements are changed such :
that the new S-A connection is effectively placed in the
previously learned connection list.
(2) 1If step (1) is not possible, the new S-A connection is
added to the previously learned list by placing it immediately

above the connection which led to the last error.

RETRIEVAL. When a model is given a situation description § , it
must predict what action to take. It is assumed that this prediction
is based in some way on the result of a retrieval process. The most
elementary process consists of matching S against every situation
description stored and if a perfect match is found retrieving the
associated action. If no match is found an action is picked at random <
for output.
A more complicated process consists of comparing S to every
situation description stored and choosing as the prediction the action
associated with the description that is closest to S . Here closeness
is defined as the distance between two descriptions, where a description, i

for n attributes, is thought of as a point in n-dimensional space.

Ok



by un oow onp OER U TN SN B GBS SEN G GBS O B B WS e o

A third possible process consists of filtering S down a decision
tree or discrimination net grown from previously learned S-A connections.
The action associated with the terminal node finally reached by S 1is

then used as the prediction.

DEGREES GOF FTEEDOM. The preceding remarks concerning methods of

representation, storage, and retrieval for the models will now be

summarized. The models are permitted the following degrees of freedom:
1. Situation Representation

a. Actual Elements (example: 9,4,7)

b. Abstract Elements (example: hl,p2,b3)

(1) Mutually exclusive definitions (example: hl: H< 5,
h2: H> 5)
(2) Overlapping definitions (example: hl: H> 7,
h2: H < 15)
2. Storage Mechanism (storage of an S-A connection)

a. Simple Placement: the connection is added to the end
of the connection list already learned.

b. Induction: a decision tree is grown based on the current
list of learned S-A connections.

c. Complex Placement: definitions of abstract elements are
changed, if possible, to effectively place the connection
in the learned list. Otherwise the connection is added
just above the connection that led to the last error.

3., Retrieval Mechanism (retrieval of an A when given an §8)

a. Simple Search: the S 1is compared to all descriptions

in the learned connection list, and if an exact match is

95




found the corresponding A 1is retrieved, otherwise an
A 1is picked at random.

b. Stimulus Generalization: the S 1is compared to all
descriptions in the learned connection list, and for
the best match (defined by closeness in n-dimensional
space) the corresponding A 1is used.

¢c. Tree-sorting: the S 1is sorted down a decision tree to

a teminal node, and the A at that node is used.

FEASIBLE MODELS. Allowing the preceding degrees of freedom should

permit the construction of 3 X 3 X 3 or 27 different models. Actually
only 10 of these models are feasible due to certair incompatibilities
which exist between the proposed methods of representation, storage

and retrieval. In the diagram shown below each square represents one

of the 27 hyrothetical models. The X's indicate which of these

are the 10 feasible models.



ey e eoss o 000 o2 0B D OGN OEF OGN O GNP OEP OBF O OB OEw O

Actual Abstract Abstract
Elements Elements Elements
(exclusive (overlapping
definitions) definitions)

Simple
Placement <::> X .

Induction FEL 20

Search

Complex

Placement

Simple
Placement <}E> X o

. Stimulus

foduction Generalization
Complex X
Placement

Simple

Placement

Induction X (::) Tree-sorting

Complex

Placement

Figure 4-1.

Four of these models, indicated by the circles in Figure U4-1, will be
described in this chapter and their operation illustrated by the train-

ing sequence given in Figure 4-2,

TRAINING, Training consists of supplying the models with training
information after each error. This training information consists of

(1) the correct decision, (2) the elements relevant to making the correct
decision, and (3) the reason why the decision is being advocated, express-

ed in terms of an evaluation of each relevant element. If a model uses



actual elements, item (3) is not required since there are no definitions
to learn. If a model uses abstract elements, item (3) is necessary,

end the model is assumed to learn the definitions of these elements using
the procedure outlined in section 3.2. Figure 4-2 gives the definitions
the models would learn if this procedure were applied to the training
sequence shown. Model operation will be illustrated as though the models
are given these definitions, in order to simplify the examples presented.
However, in an actual experimental design the models would be required

to learn the definitions.



Range of Actual Values:

Mutually Exclusive
Definitions:

Overlapping Definitions:

Training Sequence:

H(1-50)

h1(1>25)
h2(10<HL25)
h3(H<10)

hl(H<16)
h2(H<5)
h3 (1>36)

situation correct relevant
description decision elements

1. 15,21,6 A3
4,28,3 Al
15,8,h A2

L, 37,4,9 Al

5. 12,9, 10 Al

6. l,h2,l7 Al

o 12,5,5 A2

Figure 4-2.

H,P,B

H,P,B

P(1-60)

pl(P>9)
p2(F<9)

p1(P>20)
p2(F<9)

Ieason
H is "h2" or "small",
or "large", B is "b2"
H is "h3" or "small"

H is "n2" or "small",
or "small", B is "b2"

H is "hl" or "large",
or "small"

H is "h3" or "small",
or "large"

H is "h3" or "small"

H is "h2" or "small",
or "small", B is "p2"

Training sequence and def'initions
to illustrate model operation.

99

B(1-10)

b1(B>T)
b2(B<T7)

b1(B<7)
b2(B>9)

P is "pl"
or "small"

P is "p2"
or "small"
P is "p2"

B is "bl"

P is "p2"
or "small"




A Simple Model

The first model to be described is defined as having the following
characteristics:

(1) actual elements,

(2) simple placement,

(3) simple search.
This is called a Simple Model and is the most elementary one which can
be constructed within the framework Just proposed. Its operation will
be illustrated for the first five trials of the training sequence shown

in Figure L-2.

PREDICTION. When the model is given & situation description § and is
asked to predict A 1t matches S against all left sides of the
connections in the learned list going from top to bottom until an
exact match is found. The right side of the connection whose left side
exactly matches S 1is then used as the prediction. If the prediction
is wrong, & new connection, formed from S and the correct action, is
added to the bottom of the list of learned connections.

The model is assumed to initially consist of a single S-A

connection of the form
LIS {action picked at random}

which catches 8ll situation descriptions and leads to an action being
picked at random from the set of possible actions. Since the model
learns through training what actions are possible, on the first trial

the known set of possible actions is empty and no prediction is made.

100



OPERATION. The operation of the Simple model for the first five training

trials is depicted below.

Learned S-A
S Connections Predicted A Correct A
1. 15,21,6  *,%,* = {] none A3
2. k,28,3 15,21,6 = A3 A3 AL
* %%+ {A3} (from last
connection)
3, 13,8,k 15,21,6 = A3 Al A2
b, % 4 AL (from last
* % % o {A3 AL} connection)
L. 37,4,9 15,21,6 =+ A3 A3 Al
L ®, % 4 AL (from last
13,8,k = A2 connection)
*, %% o {A2,A3, AL}
5. 12,9,10 15,21,6 % A3 ' A2 Al
Lox,% = AL (from last
13,8,4 = A2 connection)
37,4, <+ AL

*,% % 4 {A1,A2, A3, AL}

EVALUATION OF THE MODEL. Because of the wide range of values of the
three attributes, the probability of finding an exact match for S

among the learned connections is quite small, especially if the situation
descriptions are chosen at random. Hence the model does little more

than make a random guess when presented with an A and asked for a
prediction. This model is clearly too simple to serve as a useful theory

of human strategy learning.

A Stimulus Generalization Model
The second model to be described is called the Stimulus Generaliza-

tion model and is defined as having the following characteristics:

101




(1) actual elements,
(2) simple placement,
(3) stimulus generalization.
The operation of this model will be illustrated for the entire training

sequence given in Figure L 2.

PREDICTION. The model makes a prediction, when given a situastion
description S , be comparing S to every situation description stored
in the learned connection list and choosing as the prediction the action
associated with the description that comes closest to matching S .
Closeness is defined as the distance between two descriptions when each
description, for n attributes, is interpreted as a point in n-dimensional
space. However, descriptions containing one or more *'s must be thought
of as hyperplanes in the n-dimensionsl space. For example, if n=3
then 15,21,6 represents a point, 15,%,6 a line, and 15,%,% a

plane in 3-dimensional space. If the prediction made by the model is
wrong, 8 new counection composed of S and the correct action is added
to the end of the learned connection list. No prediction is r.le on

the first trial since at this point the connection list is empty.

OPERATION. The operation of the Stimulus Generslization model for the

training sequence of Figure 4-2 is shown below.

102

=

[ =

-e



Learned Distance Between
S S-A Connections S and Connection Predicted A Correct A
1. 15,21,6 none none none A3
2. L,28,3 15,21,6 » A3 13.4 A3 A4
3. 13,84 15,21,6 + A% 13.3 A4 A2
L, *,% 4 A4 9.0
b, 37,L,9  15,21,6 + A3 28.0 A2 AL
b, *,% 4 Al 33,0
13,8,4 = A2 24 .8
5. 12,9,10 15,21,6 - A3 13.0 A2 A4
L, *,% 4 AL 8.0
13,8,4 = A2 6.2
37,4,% =+ Al 25.5
6. 1,42,17 15,21,6 + A3 27.6 Al Al
b, % % 4 Ay 3.0
13,8,L =+ A2 38.4
37,k,% =+ Al 22.3
12,%,10 + Ak 13.1
7. 12,5,5 15,21,6 = A3 16.3 A2 A2
L, *,% < Al 8.0
13,8,4 -+ A2 3.3
3T,4,% =+ AL 25.0
12,%,10 + Al 5.0

The model always chooses an A such that the distance between S
and the lef't side of the connection containing A is minimized. In
trial 5, for instance, action A2 is predicted by the model because the
distance d between S (12,9,10) and the situation description of the
third connection (13,8,4) is the smallest. This calculation is

illustrated below.

2 2 2
d £\/r(;l-x2) + (yl-yz) + (zl-z2

=‘\/(l2-13)2 + (9-8)2 + (10-1;)2 = 6.2

103



A "*" is considered to be an exact match for any value when the above ¢

formula is used to calculate d .

EVALUATION OF THE MODEL. This model is clearly superior to the Simple

model since the closest match to S 1is always found, and thus the model

need not resort to random predictions. However, this model does have

its weak points. First, the type of comparison procedure suggested for

retrieval is quite involved, and it is difficult to imagine humans 1
actually performing such mathematically-oriented calculations when placed

in such a training situation. Second, in the early stages of training

virtually every training trial adds a new S-A connection to the learned

list. Since the input S must always be compared with every connection

on this list, the time needed to retrieve a response (i.c., the latency)

sharply increases as the number of reinforced trials increases.

An Induction Model

The third model to be described is the Induction model, which is
defined as having the following characteristics:

(1) abstract elements with mutually exclusive definitions,

(2) induction,

(3) tree-sorting.
The training sequence and definitions in Figure k-2 will be used to

illustrate the operation of this model.

PREDICTION. The Induction model makes a prediction by sorting the given
S to a terminal node in a decision tree previously grown using the
current list of learned S-A connections. The action associated with

that terminal node is used as the prediction. If the prediction is

101 l



wrong, the connection formed by S and the correct action is added to
the learned S-A connection list, and a new tree is grown.

The generalization technique used to grow the tree is an extension
of the technique used by Hunt (1962,1966) for growing concept trees,
that is, trees for distinguishing between positive and negative instances
of a concept. The decision tree partitions the universe of situations
into m sets, one for each possible action that may be taken. Each
situation element is considered to be an attribute of the situation,
and the tests made at the nodes of the decision tree are tests on the
possible values of these attributes. The tree-growing technique is

summarized in Appendix A, Part I.

OPERATION. The operation of the Induction model for the training sequence
in Figure 4-2 will now be illustrated. No prediction is mede on the

first trial since at this point no decision tree exists.

Learned Tree used to
S S-A Connections produce a prediction Predicted A Correct A
15,21,6
h2,pl,b2 none none none A%
4,28,3 h2,pl,b2 + A3 A3 A3 Al
h3,pl,b2
13,8,k h2,pl,b2 + A3 + \h2?) A3 A2

h2,p2,b2 h3,%,% 4 Al

A3 Ak

105
e



—

Prm—— = — ——

Learned Tree used to

S S-A Connections produce a prediction Predicted A Correct A
4. 37,4,9 h2,pl,b2 + A3 @
hl,p2,bl  h3,*,% = Ak * N A2 Al
h2,pe,b2 + A2 AL ( p1?
+ -—
A3 | | A2
5. 12,9,10  h2,pl,b2 < A3 A2 Al
h2,p2,b1 h3,%,% < AL
h2,p2,b2 + A2 hl?)
hl,p2,* = Al s —~
h3?
Al +
pl?
Al + -
A2
A3
6. 1,42,17  h2,pl,b2 + A3 x1% A4 A4
h3,pl,bl  h3,%,% = Al + —
h2,p2,t2 + A2 A h2?
hl,p2,% = Al + -
h2,%,bl = A4
A4
bl?
+ -
AL pl?<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>