DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
THE PROBLEM OF ACTIVE IMMUNIZATION WITH COMBINED VACCINES*

The arsenal of effective measures for the specific prophylaxis of a number of infectious diseases now contains a large number of bacterial and virus preparations, the nomenclature of which increases from year to year. The use of these preparations in anti-epidemic practice, involving the relevant number of injections and the defined intervals between different types of immunization, is now presenting some insurmountable difficulties. This fact has actuated a large number of scientific workers to devote an ever-increasing volume of work to combined vaccines.

A preliminary review of the work carried out in this direction was made at a scientific conference called by the Chief Administration of the Institute of Vaccines and Sera of the Ministry of Health of the U.S.S.R., held in Moscow on 10-11 April 1958. The participants in the conference—representatives from Institutes of Vaccines and Sera and Institutes of Epidemiology, Microbiology and Hygiene—heard and discussed 29 papers, many of which were of great interest.

In his outstanding paper “The Position of Research on the Problem of Combined Vaccines”, the Chief Administrator of the Institutes of Vaccine and Sera, A. N. Meshalov, giving a history of the development of the idea of combined vaccines and describing the future investigation to be carried out in this direction, emphasized particularly the groundlessness of the concept of so-called immunological competition (more precisely, incompatibility) of antigens, a concept which has for a long time acted as a brake on the development of combined vaccination. According to the latest scientific findings, the immunological cancellation of one antigen by another on simultaneous injection is of limited importance if the proportions of the antigens in the combination satisfy certain requirements. The possibility and convenience of each combination of antigens, especially when they differ in an immunological respect, must be theoretically grounded and checked by biological experiments taking into account the characteristics of the infective agents against which the active immunization is intended, the pathogenesis of these infections and immunogenesis they provoke. The speaker also stressed that new possibilities in the production of combined vaccines had recently been discovered as a result of the development of rational methods of preparing chemically purified and concentrated antigens which can be included in the vaccine in adsorbed and deposited forms.

One of the questions on the programme of the conference was that of the development of a combined preparation against enteric infection and tetanus, the prototype of which is the multiple vaccine produced at NIISI.

Eleven papers devoted to questions of the improvement of the technology of the preparation of this product and of its separate components were given by workers of the Mechnikov Institute of Vaccines and Sera, Moscow, the Gamaleia Institute of Epidemiology and Microbiology, Academy of Medical Sciences of the U.S.S.R., the Leningrad Institute of Vaccines and Sera and the Gor’kov Institute of Epidemiology and Hygiene.

Improvement in the quality of the multiple vaccine was achieved primarily by choosing highly immunogenic strains of the original bacteria, especially Salmonella paratyphi A, Shigella flexneri and Vibrio comma. However, in spite of the definite progress made to the strain on the disc the multiple bacterium and co-work of the multiple form for the Chertkova.

In the multiple type, the adsorbing phosphate, hence, the N11 type, logical test of the Mechnikov carried out it showed, however, during the findings of the number of the single immemorial and the idea of a 2 doses.

A multiplicative use of the adsorbing adsorbing vaccine and production.

Questions to be used in the production of combined vaccines included:

1. Which antigen is preferred to stabilize the vaccine components?
2. What are the advantages of the combined preparation over the separate vaccines?

The problem of active immunization with combined vaccines

ON

a number of preparations, these prepara-

injections and low presenting of scientific

was made at le of Vaccines

on 10-11 April

Institutes of

and Hygiene-

dem of Com-

ne and Sera,
of combined

his direction,

ded immuno-

cept which

vaccination,

ation of one

e the pro-

sents. The

y when they

ected agents

these infec-

t new possi-

covered as a

and deposit

that of the
tetanus, the

chnology of

were given by

the Gamaleia

ices of the

ov Institute

primarily by

Salmonella

the definite

progress made in this direction, the selection of highly immunogenic strains of Salm. paratyphi A is not yet complete and needs further study. The same applies to the strains of V. comma (V. M. Lavrovskaia and others). Some valuable findings on the discovery of a labile antigen of particular significance in immunogenesis in Sh. flexneri were reported by V. A. Krestovnikova and co-workers. The inclusion in combined vaccines of the purified Vi antigens from Escherichia coli, Paracolo-
bactrum and Salm. typhosa, increasing the antigenicity of the typhoid fraction of the multiple vaccine, is also of undoubted importance, as shown by V. D. Gekker and co-workers. With regard to the inclusion of tetanus antigen in the composition of the multiple vaccine, the conference agreed unanimously that the most effective form for this component is purified adsorbed toxoid (N. S. Kashintseva, F. A. Cherikova and others).

In the Mechnikov Institute, Moscow, complete antigens from cultures of bacteria of the enterotoxoid group have for many years been obtained from tryp tic digests of bacterial colonies. The Gamaleia Institute gave their results on the preparation of the antigens by a water-phenol method. Each of these methods has its advantages, and further observations are needed to provide a final estimation of the productional and immunotherapeutic advantages of the preparations.

A multiple vaccine is an adsorbed preparation, and it is therefore very important to use the adsorbent giving the most complete fixation of the antigenic components and producing the least reaction. E. A. Petrosian and co-workers, who have studied the adsorbing powers of aluminium phosphate, aluminium hydroxide and calcium phosphate, concluded that aluminium hydroxide is the best of these adsorbents.

Hence, the modern multiple vaccine is in many ways different from the old NIISI type, and is a much improved preparation. An epidemiological and immunological test of one of the variations of the improved NIISI multiple vaccines from the Mechnikov Institute of Vaccines and Sera, Moscow (multiple vaccine No. 2) carried out in 1956-57 and involving 16,419 persons (A. B. Kheifets and co-workers) showed, however, that the effectiveness of the preparation was only moderate during the first 6 months and low at later periods after a single inoculation. These findings on the temporary degree of immunity produced after a single inoculation, and the experimental observations of Gorokhovnikova, who studied the significance of the number of inoculations on immunization with multiple vaccine, show that a single immunization, even with remote (after 1 year) revaccination, cannot ensure a stable and sufficiently strong immunity, which means that, without abandoning the idea of a single inoculation, we must at present recommend immunization with 2 doses.

In anti-epidemic practice, corpuscular vaccines are being used and will continue to be used for some time as well as chemical vaccines, and for this reason the question of combined corpuscular vaccines and their perfection is also important. It was the subject of 3 papers given at the conference (A. V. Ponomarev and co-workers, N. G. Klineva and co-workers, I. G. Vasil'eva). Results were described which indicated the superiority of acetone and alcohol vaccines, in which the Vi antigen is preserved. Freeze-drying of the preparations was recommended in order to stabilize their immunizing activity. It was shown at the Leningrad Institute of Vaccines and Sera that of the components of a combined vaccine including typhoid, paratyphoid, dysentery and cholera antigens the Salm. paratyphi A and Sh. sonnei components were only weakly immunogenic.

Questions of immunization with combined toxoids and also with toxoids combined with a multiple vaccine formed the subject of 7 very interesting papers.
At the Gamaleia Institute (G. V. Vygodchikov and others) a detailed experimental study was made of a purified and adsorbed triple toxoid (Clostridium tetani and 2 of the organisms causing gas gangrene, Cl. perfringens and Cl. oedematus), and also of a pentatoxoid (the same components, plus Cl. botulinum toxoids), in combination with a chemical multiple vaccine against enteric infections. At the Leningrad Institute of Vaccines and Sera (A. V. Poromarev and others) a similar multiple antigen preparation was studied, taking the form of a tetra toxoid (Cl. tetani and 3 gas gangrene organisms—Cl. perfringens, Cl. oedematus and Cl. septicum) in combination with a pentavaccine against enteric infections, prepared from complete bacterial antigens. These combined vaccines against wound and enteric infections had a marked immunological effect. This offers good prospects for their use in case of necessity.

A. N. Ugleva and co-workers, of the Leningrad Institute of Vaccines and Sera, studied a tetravaccine against tetanus and gas gangrene organisms and showed the effectiveness of double immunization with the preparation with an interval of 30 days. After the second inoculation the blood antitoxin titres rose 41-8½ times higher than after a single inoculation.

Some precise, well-documented results of a test of purified concentrated, aluminium hydroxide adsorbed double toxoid of Cl. perfringens and Cl. oedematus in 98 volunteers were given in a paper by G. P. Cherkas (Khar'kov Institute of Vaccines and Sera). After 3 doses of this preparation of 0.5, 1 and 1 ml with intervals of 21 days and 90 days the inoculated persons showed high antitoxin titres (up to 4-6 units for Cl. perfringens and 5-5-8 units for Cl. oedematus), increasing still further after late revaccination (up to 8 and 15 units respectively). Serum from immunized persons had a good protective effect in white mice affected by gas gangrene.

B. G. Trukhmanov (Tomsk Institute of Vaccines and Sera) showed the theoretical possibility of immunization with a preparation containing 13 or more components of different nature and origin, which he called “multi-antigenic”.

Much interest was aroused among the delegates at the conference by a paper by N. P. Efimova and co-workers, of the Perm Institute of Vaccines and Sera, who succeeded in preparing a polyvalent gas gangrene antiserum on a production scale by immunizing horses with combined depot antigens consisting of Cl. perfringens, Cl. oedematus and Cl. septicum toxoids.

The last portion of the work of the conference was devoted to the very important question of live combined vaccines, discussed here for the first time. The components of the latter were vaccine preparations of brucellosis, tularaemia, plague and anthrax bacilli.

The results of an experimental study in animals and of limited human experiments (E. A. Gubina and others, B. P. Uzbekova, M. F. Shmuter and others) with a combined brucellosis and tularaemia vaccine, which on dermal scarification showed a benign inoculation reaction and gave rise to a satisfactory immune response, show that there are good prospects for the practical application of this type of combined vaccine and that there is a basis for carrying out more extensive vaccination experiments with it in foci of infection with brucellosis and tularaemia.

E. I. Klets and co-workers, of the Irkutsk Anti-plague Institute, obtained completely satisfactory results in their experiments on the estimation of the reactions and immunological changes in animals during a study of a combined plague, tularaemia and brucellosis vaccine, which is evidence of the complete compatibility of its components.
An attempt at simultaneous inoculation of an STI anthrax vaccine and a live brucellosis vaccine gave unsatisfactory results in an experiment carried out by V. S. Antadze and co-workers (Tiflis Institute of Vaccines and Sera), as did combined vaccination against anthrax, tularaemia and brucellosis in an experiment carried out by N. D. Anina-Radchenko (Odessa Institute of Epidemiology and Microbiology). The anthrax component in this form of combined vaccination inhibited immunogenesis, i.e. it was incompatible with the other antigens in the vaccine.

Such are the main features of the first stage in the study of combined vaccination with bacterial and toxoid preparations. A number of valuable suggestions arising from the papers given at the conference call for more precision in the production of the preparations (a limited number of components, in the correct dosage) and schedules for their use in practice.

Unfortunately, no papers on the combined use of virus preparations were given at the conference except for 1 paper (by S. A. Ananian and G. I. Medvedeva) on the compatibility of the components of a combined live vaccine against yellow fever, sandfly fever and smallpox.

The development of combined virus, virus–rickettsial and virus–bacterial vaccines, together with further work on the problem of bacterial and toxoid combined vaccines, should be considered the next problem facing microbiologists, virologists and epidemiologists.