
Project No. 007 001 01
Docu~ment Number
TRACOR 68-1360-U

.0
,0 AN TTEM STORE: ITS DESIGN AND IMPLEMENTATION

by

T. W. Ziehe

DD C
Decernbez 1968 n7rYr F, -M

JAN1 31969.,9

This dournsint hun Nlv o pprov d
for ptLblir 10 Iri nd r! x its

C L E A N (i U

6500 TRACCR LANE. AUSTIN, TEXAS 78721

Project No. 007 001 01
Document Number
TRACOR 68-1360-U

AN ITEM STORE: ITS DESIGN AND IMPLEMENTATION

by

T. W. Ziehe

December 1968

O 6500 TRACOR LANE, AUSTIN. TEXAS 78721

ABSTRACT

Three types of information -- data, capabilities in

symbolic form, and knowledge -- are distinguished in an infor-

mal manner. The role of each within an information system is

sketched as the basis for a discussion of the item store. The

item store is a general-purpose formatted store which will

serve as a repository for files of inter-related items. The

tree serves as the organizing principle for files within the

store. The operational modes for the store are described as

are the techniques being used to implement these operational

modes.

650TRACOR LANE, AUSTIN. TEXAS 78721

ACKNOWLEDGMENTS

This report and the work it represents are being
sronscjred by the Information Systems Branch of the Office of
Naval Resaarch unl-er Contract N00014-67-C-0396.

6s00 TRrCOR LANE. AUSTIN. TEXAS 78721

TABLE OF CONTENTS

Section Pagc No.

Abstract ii

Acknowledgments Iii

Preface V

1. Introduction 1

2. Overview of the Approach 6

3. The Complex of Stores 9

4. Item Files - Contents of the Item Store 15

5. Item Stcre Operations 23

6. Implementation 28

7. Conclusion 39

References 41.

iv

U6i0JI 6500 TRACOR LANE. AUSTIN, TEXAS 78721

PREFACE

This paper represents the material presented by the

author at the colloquium, "Integration of Computerized Biblio-

graphies and Bibliographical Systems in the Arts and Humanities,"

held as part of the Thirty-first Annual Meeting of the American

Society for Information Science in Colimbus, Ohio on October 20,

1968. Although the material covered in Section 4 was published

earlier in the report An Organizational Form for Item Management

(TRACOR Report 67-llll-U, February 1968), it is included here in

summary form for the sake of completeness.

v

O6500 TRACOR LANE, AUSTIN, TEXAS 78721

AN ITEM STORE: ITS DESIGN AND IMPLEMENTATION

1. Introduction

The computer's potential as an information handler is

being explored and exploited at an ever increasing rate. Inter-

est is being spurred by advances such as the following:

1. Impressive increases in storage capacity, speed,

and density.

2. The confluence of the computer and communications

technologies.

3. The development of improved techniques for data

management.

4. The prospect of logical designs tailored to re-

quirements in individdal applications.

BuL in spite of these advances, application of the computer as

an information handler is often hampered by the haziness of

our concept of what "information" is and, therefore, how to

"handle" it. This is nc to deny that computers have been

successfully applied to many information handling tasks where

they are currently providing useful service. However, dif-

ficulties and failures of many kinds have been experienced as

well. A considerple portion of some current ef'>,rts are, in

fact, attempts to apply lessons learned from past failures.

But the pursuit of such historical matters is not our main

interest here.

&AaM'rJY1/:' 6SOO TRACOR LANE. AUSTIN. TEXAS 78721

The interest which is the fc"us of our attention is that

of using the computer to handle what we often call language data

a-id, in particular, bibliographic material. In such applications

"handling" certainly includes the rote movement and arrangement

of the data. In some it also includes (1) responding to stimuli,

both the stimuli and the responses couched in natural language,

and (2) decision-making which is based on analyses of stimuli and

stored data, the analyses being of sufficient depth to produce

non-trivial responses.

The work described in this report has not yet reached

the operational stage. The reason we have not proceeded more

directly toward implementation is part of the message to be con-

veyed. That reason has its roots in two experiences frequently

encountered by those who apply the computer as an infornation

handler. For example, consider the case of a librarian who wants

to offer a computer-based bibliographic service. The two expe-

riences are these:

1. The individual interested in offering the serv ice

encounters questions and problems which are dis-

couraging because they are outside his immediate

interest and perhaps competence. Questions such

as a) what techniques should be used to enc.,de

the necessary data, b) how should the logi,.al

relationships of the data be represented, c)

what type of storage devices will be rost effec-

tive, d) ho w should the capabilities oif the

6-5OO TRACOR LANE, AUSTIN. TEXAS 78721

system be implemented? These and similar questions

must be answered but they draw sttention away from

the proper center of the librarian's interest: the

bibliography and its _e.

2. The files of data generated for a particular ap-

plication, once in computer-usable form, suggest

uses other than those considered when the files

were designed. Again the individual responsible

for the application, as owner of the file, finds

himself drawn into other activities -- either by

his own interests or by rDressure which others are

able to apply.

These experiences bear witness to the fact that the

boundaries of particular applications are not at all clear and

distinct. The capabilities and devices required are not unique

to the particular application. Neither are the data without

value in o;ther applications. These realizations have been a

prime mover in the development of large-scale, generalized svs-

terns such as the Remote File Management System -I- being de-

veloped at the University of Texas at Austin and the Time
Shared Data Management System . being de.eloped at the System

Development Corporation. Although these and sEveral other ef-

forts "i, _4" are achieving an exciting level of ge-ieralitv

with respect to the data tnev handle, many difficulties remain

on the capability side of these systems: generalized capabil-

ities are lacking in efficiency; systemic capabilities, once

6-500 TRACOR LANE AUSTIN TEXAS 78721

developed, are difficult to shane to the wishes and requirements

of particular users; most capabilities, but especially efficient

and reliable ones, are expensive to implement and require con-

siderable lead time.

The cure for titese problems lies somewhere in that vast

area known as "computer software design and development." Real-

izing the extent of the commitment which software implementation

carries with it, we decided to invest some time and thought in

efforts to avoid at least some of the difficulties which are

taking their toll in current efforts. What we see after making

the investment is not a cure-all, but it is encouraging. However,

before continuing that aspect of the discussion,allow me to

briefly describe the setting in which the work is being done,

mention the background upon which it is drawing, and give credit

to our present sponsors

This work i: being d-ne in the Semiotic Systems Group

of the Life Sciences Research Department of TRACOR Incorporated,

Austin, Texas. SemioLics, the theo-rv :,f signs and how they are

used, is finding application in the development .of machines able

to use signs f)r communication and contr.AI. Informally, a

mechanical/electronic device with capabilities that enable it t..

perceive, recognize, and understand signs within a particular

frame of reference is a "5emitic system." Such a system may be

specialized to the signs of natural language or t,-) signs within

some o)ther environment, for example, that ,f an electronic sensin.

device.

-4 I

r

6500 TRACOR LANE. AUSTIN. TEXAS 78721

Within this context our general objective is the develop-

ment of theories and techniques adequate for the design and imple-

mentation of a semiotic system. In this work we are drawing in

various ways upon earlier work done at the Linguistics Research

Center of the University of Texas at Austin and the Linguistic

Research Project of The RAND Corporation. At oresent the work

is sponsored by the Office of Naval Research, Information Systems

Branch and by TRACOR, Incorporated. It has also received support

from the U. S. Army Electronics Command, Ft. Monmouth.

This discussion revolves around one component of the

proposed system, the component we call the item store. However,

to clarify the role and function of the item store, Section 2

briefly describes the point , view we are taking in the design

of the system and Section 3 describes the complex of stores within

which the item store operates. Sections 4 and 5 deal specifically

with the item store, its contents and the capabilities being de-

signed for interacting witi it, In Section 6 we turn from design

to implementation, describing the techniques we propose to Lse

in implementing the system, including the operations which activate

the item store.

5

-6500 TRACOR LANE. AUSTIN, TEXAS 78721

2.? Overview of the Approach

Picture, if you will, a particular information handling

system as an entity separate and apart from its environment, dis-

tinguished by boundaries which are expressed in terms of capabil-

ities and data. The system, th:ugh distinct from its environment,

is able to act upon it, to act in response to it, and to act with-

out stimulus from or effect within its environment.

The diagram in Fig. I distinguishes three kinds of in-

formation in such a system. Symbolized capabilities are the

ground from which systemic activity springs. Data are the ob-

jects which enter into and emerge from that activity. The

capabilities of the system are event-like in character, whereas

data have thing-like qualities.

CAPABILITIES DAtA

KNOWLEDGE

FUNCTIONING
SYSTEM

Fig. I Systemic Information

6

' * 6500 TRACOR LANE, AUSTIN. TEXAS 78721

However, the system can do only what it knows how to

do. It can act or react only when it knows which of its capa-

biliLies to use and to what data it should apply the selected

capabilities. Therefore, te knowledge of the system, the third

type of information, is viewed as an appropriate combination of

capabilities and data. Capabilities, in and of themselves, are

not committed to any specific data. Similarly, data are suscep-

tible to use with more than one capability. Each apart from the

other is incomplete. Only in combination do they form a basis

for systemic activity.

The knowledge of the system -- that is, capabilities

in combination with data -- is symbolized apart from both types

of components. This separation will make it possible ;o alter

the knowledge of the syster without altering capabilities or

data. This is an important advantage since much of the shaping

and adjusting required to tailor a system to a particular en-

vironment requires little or no change in capabilities or data,

only in the relationship in which they stand.

Capabilities, data, and knowledge then are the t'ree

distinct types of information symbolized. "Item" is simply a

term used to refer to a unit of information -- particularly in

storage -- when it is not necessary to indicate what ty'pe of

information it is.

Units of each type of information are stored within

the system. Therefore, in the next section we consider the

7

1 * 6500 TRACOR LANE, AUTIN. TEXAS 78721

complex of stores which serves as a repository for the informa-

tion. During periods o. system ictivity, units of each type

of information enter into the activity, each fulfilling its

particular role. In Section 6 we return to the subject of sys-

temic activity.

8

650060 TRACOR LANE, AUSTIN, TEXAS 78721

3. The Complex of Stores

The five storage facilities shown in Fig. 2 form the

system's complex of stores. Each of the five components, con-

nected as shown, is able to receive items into the store, re-

tain items as long as they are useful, retrieve items for use

within system activities, and remove items from the store when

their usefulneis is at an end.

PROGRAM ITEM
LIBRARY STORE

PRIMARY
ZZSTORE\

BACKGROUND OVERFLOW
STORE STORE

Fig. 2 Components of the Complex of Stores

Although each of tb five stores carries out the same

basic operations, two important operational differences catego-

rize them. A tormal store places hli hest priority upon retain-

ing information for a relatively long period of time. Therefore,

a formal store, like a library or archive, uses a detailed format

into which all incoming infoi ition is put; items retrieved from

the store are, of course, available in this same format. The

9

I W 6500 TRACGF, LANE. AUSTIN, TFXAS 78721

format used formalizes the concept of a unit of information,

dictates how each unit is identified, and expresses relation-

ships among the units in the store.

In contrast to the formal stores, operational stores

place greater importance upon receiving, retrieving, and re-

moving items. That is to say, an operational store is oriented

to the use of its contents. The format of its contents varies,

each variation reflecting the requirements of a particular use.

Generally, the format is quite simple, although elaborately

formatted tables and lists are also used. Fig. 3 distinguishes

the formal from the operational sLores in the complex of stores.

FORMAL STORES:

PROGRAM ITEM
LIBRARY STORE

OPERATIONAL STORES:

PRIMARY

STORE

BACKGROUND OVERFLOW
STORE STORE

Fig. 3 Formal/Operational Stores

10 .

O6500 TRACOF LANE. AUSTIN, TEXAS 78721

A second important distinction among stores is re-

flected in the terms primary and secondary. The primary store

is directly connected to the control/processing unit of the

computer. Therefore, its contents -- units of capability, data,

and knowledge -- enter into both sides of system activity --

the instructions side as well as the data side.

The four non-primary stores of the complex are secon-

dary stores. A secondary store is connected only to the proces-

sing unit and its contents are therefore restricted to eatering

system activity on the data side. The principal activity into

which the contents of secondary stores enter is that of moving

items between the particular secondary store and the primary

store.

With these dist4ictions in mind, we can now describe

in more deteil the role of each store in the complex, the con-

nections among the components, and the connections between the

complex and its environment. Fig. 4 presents some of this

detail graphically.

PROGRAM ITEM _

L13RARY STORE

PRIMARY

STORE

BACKGROUND OVERFLOW
STORE STORE

SYSTEM'S ENVIRONMENT

Fig. 4 The Complex Stores

11

I 6500 TRACOR LANE, AUSTIN, TEXAS 78721

The primary store is the operational hub of the com-

plex. Within the primary store capabilities and data are bound

together, forming units of operational knowledge. These units

of knowledge enter the computer's processing and control units,

extending system activity in appropriate ways. Since the pri-

mary store cannot retain the whole of the system's knowledge,

items must be secured as required and retained until the space

they occupy is required for items of higher priority.

In addition to connections with each of the secondary

stores, the primary store is also the principal interface with

the system's environment. Information from the environment

enters the system through the processing unit and the primary

store. Information passing to the environment follows the

same path in reverse.

The background and overflow stores augment the capacity

of the primary store. The background store contains units of

capability and data, both in operational form. items in the

background store are those which, for the moment, are not re-

quired in the primary store; however when a need arises they

can be returned to the primary store with little delay.

The overflow store serves a similar, yet distinct,

function. Units of data in the primary store reside in com-

partments which have a fixed capacity. When a particular opera-

tional unit of data exceeds the capacity of its compartriient,

12

I O6500 TRACOR LANE, AUSTIN, TEXAS 78721

part of the unit is transferred to the overflow store. A

partial unit can be returned to the primary store when needed

by exchanging the locations f the two partial units. This

e.:change or swap is represented by the two-headed arrow in

Fig. 4.

From these descriptions it should be clear that both

the background and the overflow store are extensions of the

primary store made necessary only by limited capacity in the

nrimary store . However, from a user's point-of-view, the

three form a logical unity and should be regarded as a single

store with the characteristics of the primary store.

The role of the program library in the complex of

stores is quite like that of the program library in the typical

computer executive system. A program to be entered into the

library is written in a source language -- Fortran, Algol, as-

sembly language -- and associated with a name that distinguishes

it from other programs in the library. From this source-lan-

guage form of the program, a load-for-execution form is produced.

Typically, both forms are retained in the library.

Each program in the program library is the symbolic

form of a system capability, that, under proper circumstances,

can be translated into system activity. Adding new programs t.

the library is operationally outside the system. This is re-

presented in Fig. 4 by the arrow from the environment into the

program library.

13

N6500 TRACOR LANE. AUSTIN, TEXAS 78721

In principle, the i "m store is the repository fur all

formally stored information in the system. However, as just

discussed, capabilities symbolized as programs are retained in

a separate program library, primarily to take advantage of a

vast body of existing capabilities for managing program libraries.

However, all other formally stored information resides in the

item store. This includes extensive files of systemic informa-

tion, such as systemic knowledge as defined earlier. Since sys-

tem and user files are stored in precisely :he same format, ca-

pabilitics and knowledge developed for system files can also be

used with user files anid vice versa.

In most instances information enters the item store

from the primary store. However, as indicated in Fig. 4, the

.tore can receive information directly from its environment.

This implies 'hat the inf)rmati.,n was collected and formatted

by an entity external to the system and incorn ~rated into the

store in much the same way a new version .. f,)r supplements

to, the progra:i I ibrary will e made,

Vari us tvnes)f devices can ho st the item store --

drums, disks, magnetic tapes. WhiIe the operational efficiency

will vary from type t,, type, the .Iperational characteristics of

the store are independent -f device type.

1*1

66500 TRACOR LANE AjSTIN. TEXAS 78721

4. Item Files -- Contents of the Item Store

Given the role which the item store must fill, we now

turn to consider the design of this storage facility. That de-

sign is based upon a hody of conventions that we call the orga-

nizational form. The organizational form formats the contents

of the item store and shapes all system capabilities relaLed to

that store. These capabilities, based as they are on the orga-

nizational form, are independent of the information stored and

its logical structure. The organizational fcrm, although flex-

ible enough to handle the variety of information that must be

stored, also allows operational efficiency. in this section

we briefly sketch the organizational form and illustrate its

flexibility; Zbi- r'aterial was covered in more detail in an

earlier report "5. Sect ion 5 continues this discussion of

the rganizAtional ftr-, with a survey of the _perations based

upon it.

Item files fhr-n the contents .of the item store. Each

file is a set of): ; ,ent classes- these classes determine the

co ntents of the t le. Inter-relationships among the classes

define each file's st -ucttre. Members of the file's classes c)-

pri,.e its records. Fias;h recoird oif the file has a structural pat-

tern that is cons* iined by but not identical to tie structural

pattern for te file itself.

Each file in the item. store carries a name which dis-

tinguishes it fromr every other file in the store. A! trans-

15

66500 TRACOR LANE. AUSTIN. TEXAS 78721

actions with the contents of a file recuire the use of the file's f
name and are constrained by the file's boundaries. That is to

say, no transaction withi,, a particular file can automatically

extend into a second file. The end-of-file of the tirst will

terminate the transaction. I

We have chosen the tree as the structural basis for

item files and the', records. The tree, as an organizing prin-

ciple, offers a :-iddle ground between lists and more general

graphs. Fig. 5 is a representation of a typical tree and will

serve as the basis far a brief review of -erminology associated

with trees.

0

0--0

F ig. 5 A Tree

A tree's c,:mp.,-er.ts ace n,mdes and connecti,.s) etween

pairs f n.des. Fach -ode, except)ne, has a nri-ary c.onnect. cn

t., ne ther i-ode, its parent. In Fig. ,, encircled nu-Ibers

--I 6500 TRACOR LANE AUSTIN, TEXAS 76723

represent nodes, and arrows represent connections between the

nodes. The only node without a parent is the tree s root node.

Level is a measure of distance from the root node to another of

the tree's nodes. One unit is counted for each node encountered,

including the nodes at each terminus. Therefore, the root node

is on level one, nodes for which it is parent are on level two,

etc.

Although a node has only one parent, any number of nodes

can have a particular parent node. Such nodes are its offspring

and are always on the next lower (higher numbered) level. For

example, node 4 is the parent of 6, and nodes 7 and 8 are the

latter's offspring. Nodes with offspring are non-terminal nodes;

those with none are terminal. Nodes which are offspring of a

single parent are related to each other as sibling nodes.

Each non-root node is connected to the root of its tree

by a single set of connections. That set of connections is the

path between that node and the root. All nodes along a path are

ancestors of the node at its lower terminus, thereby including

a r.jde's parent among its ancestors. For example, both 1 and

2 are ancestors of node 3. Similarly, each node for which a

particular node is an ancestor, is a descendant of that node; a

node's offspring are included among its descendants. To illus-

trate, nodes 5 through 9 are the descendants of node 4 and of

these 5, 6, and 9 are its offspring.

17

* I * 6500 TR ACOR LANL., AUSTIN. TEXAS 78721

Each node of a tree occupies a position distinct from

the poition of every other node. Node position can be described

in any 3f several ways, but should not be confused with inter-

node relationships. Each node o*f a tree stands in a definite re-

lationship with each other node of the same tree. Parent, off-

spring, sibling are examples of such relationships but many other

more distant relationships also exist.

Based on this concept of a tree, we define the struc-

ture of a file as a single tree of item classes. One class cor-

responds to each node of the tree and a particular file can, in

principle, have any number of classes. The inter-node connections

represent the pattern of class relationships as they struL ire the

file. Fig. 6 is an example of a file with nine classes.

ACCESSION ACCESSION NUMBER___ NUMBER
_NUM IR SUBJECT HEADING

SUBJECT TITLE SPONSOR SUB-HEADING
HEADINGTIL~TITLE

AUTHOR

SUB- / AFFILIATION
HEADING AUTHOR DATE ABSTRACT DATE

I ABSTRACT

AFFILIATION SPONSOR

TREE REPRESENTATION OUTLINE FORM

Fig. 6 - A Bibliographic File

18

I 6500 TRACOR LANE. AUSTIN, TEXAS 78721

This file of bibliographic material is structured with accession

numbers at the root. All other information is positioned relative

to that. Fig. 6 also shows the same file in the more familiar

"outline" or "indented" format. The two forms of representation

are equivalent. Fig. 7 is a second example of a file. This file

contains text, perhaps the contents of a book on your library

shelf. It has but six classes and its structure is quite dif-

ferent from that of the bibliography.

VOLUME
TITLE

AUTHCR DATE PUBLICATION CHAPTER
TITLE

LINES OF

TEXT

Fig. 7 - A File of Textual Material

With these two examples pointing the way, Fig. 8

further illastrates structural variations which the organiza-

tional form allows. In these three separate files the re-

presentation of the classes has been simplified to focus at-

tention on the structure. Just as there is, in principle,

no limit to the number of classes in a file, so there is also

no limit to the number of levels or to the number of sibling

classes in a particular cluster.

19

66500 TRACOR LANE, AUSTIN, TEXAS 78721

FB

DC K
I A

Fig. 8 -- Variations in File Structure

Representing a file as a tree of classes gives a general

.uictuie of its contents and its structure, a picture that is use-

ful both as a mental image and in documenting the file. However,

an item file, in reality, expresses relationships among individual

items and, therefore, involves considerably more detail than is

recorded in schematic diagrams of the type we have considered.

These details revolve around the nature of an item, the composi-

tion of item classes, and the constraints which a file's inter-

class relationships place upon the item components of its records.

The item is the basic unit of a file's contents. Each

item has one value, a single passage of encoded information. A

value is a string of binary bits, unrestricted in length, format,

,encoding conventions, and meaning. Some examples of item values

are. an integer in base two representation; an integer in base

ten; a passage of natural language text, encoded as a sequence

of fixed-length characters or bytes; a set of independent two-

position switches; an instruction, that is, a description of one

element of capability. Each value is accompanied by a measure of

20

O 6500 TRACOR LANE. AUSTIN, TEXAS J3721

its length; a zero-length value, called a "null" value, is there-

fore quite acceptable.

Every item belongs to an "item class." An item class

is a cluster of item "attributes" and a set of items -- "ele-

ments" of the class -- to which the attributes apply. Class at-

tributes include such information as the position of the class

within the file, the encoding type for values of class elements,

and the name of an algorithm by which the -:elative order of any

two elements of the class can be determined.

The attribute clusters for the classes of a file form

the file's "map." A file's map contains all of the information

required by the system as it manages and processes the file's

records. Fig. 9 shows that a map can be represented as a tree,

the shape of which exactly matches the tree representing the

file itself. Each cluster of attributes corresponds to one node

of the map cree. In Fig. 9 capital letters without boxes re-

present the clusters of attributes at the nodes.

A A

LE cB C

[E]FE]FFJD E F

The File Its Map

Fig. 9 - A File and Its Map

21

6500 TRALOR LANF AUSTIN. TEXAS 78721

Arrays of class elements form the records of a file.

Fig. 10 shows the mnD of a file and four of its records. Each

record forms a tree with a class element at each node. The

structural pattern of the first record exactly matches that of

the map. Although the pattern of a record tree is constrained

by the file's map tree, the patterns do not necessarily match.

Two kinds of diffe-?nce are allowed: (1) an element of a class

may be. omitted from a record, in wJhich case all elements of de-

scendent classes are also absent; (2) two or more class-sibling

elements can occur as the offspring of a single parent. An

example of the first type occurs in the second record; it con-

tains no member of class D and none of class F. The third re-

cord, a single element of class A, is another example of t'lis

first difference. Examples of the second type occur in record

two -- it contains two b and two e elements -- and in re,-ord

four -_ it has two c and two f elements,

A

THE MAP B 1
~/N

D E F

a a a a

b c b b c c c/I\\ /\ /1\ ---
d e f e e d f f e

THE RECORDS

Fig. 10 - The Map and Records of a File

22

6O6500 TRACOR LANE, AUSTIN, TEXAS 78721

5. Item Store Operations

The operations associated with any storage facility

put information int- it, get information previously stored there,

and remove information from it. The fact that the item store's

principal function, as a formal store, is to retain information

does not sender these operations unimport:.c. For unless a

store -- even a formal store -- can be used efficiently, it is

of little value.

The item store will contain system files with which

users are not directly concerned, as well as information de-

posited there by various users. The pattern of interactions,

therefore, will typically consist of several independent, con-

current streams of transactions, each arising within a partic-

ular activity centered inthe primary store. Each stream will

be managed by a single control mechanism called a portal. A

portal contains information which gives continuity to a series

of transactions.

Transactions within a particular stream will always

be restricted to a statpd portion of the store's contents.

Pha' portion to which the transactions have access is the item

store context for the activity. A context is either a complete

file or a stated sub-set of the records of a file. (Provisions

are also being made for user-access restrictions and user-

priority rights, but these matters are not included in this

discussion.)

23

6500 TRACOR LANE, AUSTIN. TEXAS 78721

The services rendered by a portal differ markedly for

some transactions -- for example, the GET as compared with the

PUT command. For other operations the required portal services

are quite similar -- for example, the GET and GET NEXT ITEM com-

mands, Therefore, we have defined a set of operational modes,

each of which encompasses a set of operations requiring similar

portal services.

Item store operations form the connection between the

item store and the primary store. They move items between the

two stores and make preparations for such movements. Preparations

include setting a portal for a particular mode of interaction,

positioning a storage device to give access to the relevant area

of the item store, and reformaLting the items moved or to be

moved.

The purpose of this report dictates against a review of

the individual operations for each mode of interaction. There-

fore, the following paragraphs simply describe each of the eight

modes of operation for the item store.

Reading. Reading is the basic operational mode. Every

portal, regardless of its mode setting, includes the facilities

required to read. Each other mode makes appropriate additions

to these facilities.

The operations of the reading mode locate items pre-

viously recorded in the item store and transcribe them into the

primary store, depositing them at a specified location. Item

24

~ OO TRACOR LANE, AUSTIN. TEXAS 78721

retrieval proceeds most efficiently when items are retrieved in

the order stored. However, each item has a positional address,

making it possible to retrieve items in any order whatsoever.

Tn the read mode, items are always retrieved under

control of the map according to which the context being read

was written. Since reading an item does not alter the occur-

rence of it in thc item store, a particular item can be re-

read any number of times. Reading an item, in effect, produces

a second copy of it in the primary store.

Writing. Operations of the writing mode put items

from the primary store into a context of the item store. At

the outset, that context contains no items. Each item written

becomes the next item of the context. That is, items are store('

in the same order in which they are received for storage. The

map of the file being written is always used to check the stream

of items entering the store. These checks block the entry of

illegal item sequences. When the context being written is a iew

file, the map can of course have whatever structure is required.

When the context is an extension of a file, the co)ntrolling trap

must als ',e the map of the file being extended.

Rewriting. Operations of the rewriting mode are co m-

binations of reading and writing)perations. Under the -ontrl

of a single map, items within a specified context are rcad,

while, coincurrentlv, items are written within the same context.

25

" p .I6500 TRACOR LANE" AUSTIN TEXAS 78721

Separate position registers are associated with the reading and

writing activities so that items read can De rejected and not

rewritten. Similarly, items not read, but rather supplied by

the user, can be written into the context. A parameter of the

writing activity specifies whether the records being read are

preserved or whether they qre replaced by the records written.

If they are preserved, the records written are regarded as a

new version of the context.

Version Reading. Typically, a context of the item

st-re is a set)f consecutive records. However, as we have just

seen, the rewriting mode can be used to write an alternate version

of a file or portion o)f it, producing thereby parallel sets of

records. Operations of the version reading mode are equipped to

handle files in which such alternate versions exist. They

function within a c)ntext of reords which need not)e c)nsecutive

records .,f the file.

Revision Reading. In normal reading, the r--.cds of

a file are read accordin4 to the -'ap used wien the tile was written.

T he o erations f the rev isi on .ode pro'.:ide ftor reading according

to a differe,,t Tap, the activity proceedina if te revised

-ra 1-:1d been *n c. ntr~l when te file was written. Differences

etwee r the actual :,ap of the i'le and the 7:ap governing the re-

vision reading act ivit\ are restriQcted to, th se that require no

re.rderi: c -.f the ite7, strea:.

65G0 TRACOR LANE AUSTIN TEXAS 78721

Summary Reading. During normal reading, each item is

processed as a distinct en' i-_, separate from all other items in

the file. The operations Df the summary mode treat sets of re-

lated items as a single item. When such a package of items is

again written into a file of the store, the package returns to

its normal status as a set of related items.

Merge Reading. Reading in the normal mode secures

copies of items from within a single context. The operations of

the merge mode make it possible to read items from two or more

distinct contexts. The various streams of items are controlled

with a single map as they are merged to form a single item

stream. in this way two or more parts of a single file -- or

two or more independent files -- can be read as if they were a

single item array.

So-rt Writing . Writing in the n riral mode rec ords

items within one ;rc scribed context in) the store. S.:rt writin

makes it possible t., distrihute iters within a singie stream

i'nt. tw,) or mtore contexts. The selection of a conte.,t f-ir i

artLicular item can, f r example, minimize the number . i se-

quence breaks witVi n the c,>ntexts, sequence breaks bei ,. defi-!ed

ny a prescrihed al~r i thin.

6500O TRACOR LANE AUSTIN TEXAS 78721

6. ImplIement at ion

We now turn fro)m the item store -- the design of a

thing-like storage facility and operations which manage the

thing-like entities in it -- to the matter of implementing

event-like capabilities. The question that tmust be answered

is: how, in wisdom, do we proceed with implementing an operable

system equipped to act in: many - - in fact an unlimitedl number of

-- different ways?

It must be clearly understood that the capabilitie~s for

managing the contents of the item store are but one part of the

body of capabilities requi Ad. Other capabilities alluded to in

the previous sections arE the foil -wing:

a. >!.ove items b-.etweeni other ;-airs of stores in the

c ompIN

N avna~e the contents 1of the three opc rat i.,na,

s tor es.

C. 12--d :apniiitie~s to data, t-rek. G. T:12P -vprahl

know1 ed.WC

d. Acc.,ui re data Crow' the environent of He Svstem.

C. Deliver data ino. the onvi rotneo W2 i form amo

Siz-,ce ot~icr imp~ rt lt canab il1it ies that have rt er een all uJ&_

to~ ara the

I 6500 TRACOR LANE. AUSTIN. TEXAS 7.721

a. Capabilities for various kinds of analyses and

decision making such as automatic classification,

pattern recognition, a.d grammatical parsing

b. Capabilities in chat area often called data manage-

ment, especially such file operations as generating,

u•dating, extracting, transforming (the structure),

sorting, and merging.

c. Capabilities for querying a. file or data base, such

as those offered in the Remote File Management System.

To understate the situation, the system will contain a vast ac-

cunmnulation of capabilities. Each must be symbolized in a form

that facilitates clear and accurate documentation, offers a maxi-

mum amount of protection against obsolescence, and encourages

continuing capability extension and evolution by means of new

combinations of existing capabilities as well as by >.,plementing

new capabilities directly.

One implementation strategy we are finding oseft ' is

the one illustrated by the item store - c.pabilities are based,

to the extent possible, on c body of general conventions which

cover a wide range of individual cases. Consequently, item store

operations are based entirely on the organizational form, remain-

ing independent of particular file structure-.

Two other stritegies, I-rieflY mentioned earlier, are

also influencing our approach to implementation. The first: is

29

I 6500 TRACOR LANE AUSTIN. TEXAS 78721

to preserve in the implementation the distinction between capa-

bilities and knowledge, eaich of which is symbolized apart from

the otner and both apart from data. The second ;trategy is to

implement capabilities and knowledge in modules or units, each

unit distinct and detached from all others. The remaining

paragraphs of this section describe how we are applying these

two strategies.

The course we are following rests upon two basic con-

cepts -- the concept of an elemental program and the concept of

a program's environment. An eler2.ental program is a unit of

capability, symbolized in a form which the system can translate

into action. Each elemental program is distinct from and in-

dependent of other elemental programs; neither does an elemental

prograir. contain commitments to any specific data.

An elemental program is a program in the fdinary

sense in that it is written in a suitable programming language,

has a name to distinguish it from other programs, and occupies

a position in the program library from which it is retrieved

when needed.

Some other conventions, not uncommon for computer pro-

grams in general, further characterize these units of capability.

30

6500 TRACOR LANE, AUSTIN. TEXAS 78721

a. Each elemental program has a single entry point.

b. Each execution of an elemental program eventually

reaches a final termination point. Its execution

in a particular instance can either be successful

or a failure; but never is its execution unending

nor can its execution be interrupted "temporarily"

without, at some later time, continuing to com-

pletion.

c. Each execution of an elemental program, when com-

plete, leaves the program with the poLential for

action that it possessed when that execution began.

This is a way of saying that a program'% potential

for action never changes from execution to execution.

In addition, some elemental programs will be re-

entrant in the sense that two or more parallel exe-

cutions of the program can proceed without any one

of them interfering with the others.

An elemental program is different from most other com-

purer programs in that it contains no explicit references to ex-

ternal entities. This does not mean that each is completely self-

sufficient. In fact, most elemental programs, in and of them-

selves, are incomplete. What we are doing, however, is document-

ing rather than filling the incompletions.

i3

6500 TRACOR LANE, AUSTIN. TEXAS 78721

The incompletions of an elemental program represent

the ways in which the program depends upon external entities.

In other words, these incompletions define the program's re-

quirements upon its environment. An appropriate environment

of an elemental program is any set of entities which, collec-

tively, satisfy these requi.ements. Fig. 11 is a representation

of an elemental program and its environment.

In this representation we see that two types of in-

completions, reflecting the two basic types of information, can

occur: incompletions related to data and incompletions related

to capabilities. Therefore, a typical environment consists of

two types of components -- blocks of data in operational format

and other programs. Actually, a distinction is made between

operational blocks of data and parameters, which are in essence

small data blocks. But the difference between the two is of

little consequence for our present purposes.

PROGRAM

CAPABILITIESm --

Fig. 11 - An Elemental Program and an Environment

32

6500 TRACOR LANE. AUSTIN, TEXAS 78721

An elementol program can be executed only when associated

with an appropriate environment. Typically, more than one environ-

ment can be constructed that meets a particular program's require-

ments. This point is illustrated in Fig. 12 where a single ele-

mental program appears in two different environments -- a and b.

D LVIRNME: aENVIRONMENTb

EP

Fig. 12 - An Elemental Program and Multiple Environments

An elemental program cannot alter its own activity

potential nor can that potential be altered by an entity ex-

ternal to the elemental program. However, the performances

that a program deliveri in successive executions need not be

idencical. Variations ret lect changes in the program's environ-

ment. Therefore, a program can change its own performance --

or that of another program -- by altering the compositioi or

contents of its environment. If a program's range of potential

performances can be charted on a bad-to-good scale, the program's

performance can "improve" through successive executions.

As stated earlier, the association between an ele-

mental program and a particular environment is documented as a

33

I * 650C TRACOR LANE, AUSTIN, TEXAS 78721

separate entity. That entity, a process prescription, is a

unit of systemic knowledge, for it binds together capabilities

and data. The requirements of an elemental program upon its

environment are documented in a two-level tree called the pro-

gram's schema. The schemata of two elemental programs, EP and

EP are shown in Fig. 13. Although we have not decided in

detail how to document environmental requirements, the kind of

information that documentation must contain is quite clear.

For example EPI's capability requirement, crl, must allow or

reject the use of any particular program in that position of

EP 's environment. Similarly data requirements must allow or

eject the use of particular blocks of data.

EP1

dr, dr2 crl

CP

DI D 2 EP 2

E P2

/\D
2D3

dr 1 dr

SCHEMATA PROCESS PRESCRIPTION

Fig. 13 - A Constructed Program

34

6500 TRACOR LANE, AUSTIN, TEXAS 78721

Assuming that EP2 satisfies the requirements set forth

by crI and that DI, D2, and D satisfy the various data require-

ments, the constructed program, CPI, is well formed. The compo-

nents of a constructed program are not generally collected and

assembled into a single unity. Instead, the components are simply

named and their inter-relationships are expressed in the process

prescription. A constructed program is executed by interpreting

its process prescription.

In Fig. 13 the constructed program CP is completely

specified in that each program component has a completely speci-

fied environment. However, completeness is not required of con-

structed programs. The program CP2, shown in Fig. 14, has, fo;

example, two incompletions. One is a data requirement, drl,

imposed by each of the two elemental programs. The other is a

capability requirement, cr V

CP 2 EP 3CP2

dr cr1 EP4 drl cr2

drI

An incomplete Schema of a

Process Prescription Constructed Program

Fig. 14 - A Constructed Program and Its Schema

35

i5 00 TRACOR LANE, AUSTIN. TEXAS 78721

The incompletenesses of constructed programs, just as

in the case of elemental programs, are documented in program sche-

mrata. And so the schema of the constructed program, GP 2, has two

reference slots as shown.

Carrying thic process one step farther we see how a

constructed program is used as a component within a constructed

program. Fig. 15 provides the example. We see the schema of CP 2
we were just discussing. Its form is in no way different from

the schema of an elemental program. Therefore, the conditions

which allow the formation of CP 3 are precisely the same as the

conditions shown in Fig. 13 when both components were elemental

programs. There is, in fact, no reason why a constructed pro-

gram, which satisfies the requirement cr1 , could not have been

used in place of the elemental program EP 5.

dr cr1

CP3
3. EP5

EP5

D DI

dr dr
1 2

Fig. 15 - A Constructed Program as a Component

of a Constructed Program

.36

IY500 TRACOR LANE AUSTIN. TEXAS 7 721

This approach to the construction of executable pro-

grams has several advantages. Manv o) the components comprising

a constructed program can be used simultaneously in several dif-

ferent programs. Since a process prescription simply names the

components of the constructed program it defines, each component

is secured only when and if needed as the program is executed.

It is important to understand: there is nothing fixed

(unchangeable) about the boundaries of eleoental programs. An

array of elemental programs can at ayv time be compiled into a

single elemental program.

Of at least equal importance is the fact that each pro-

gram can itself be used as a component o)f o1ther or zrams. This

will facilitate the formation of higher and higher level capa-

bilities. For this, process prescriptions offer a brevity an

an orderliness that promotes accuracy, a flexibility that ali.ws

adjustment to the circumstances and requirements f particuliar

applicat ions, and a rule)f fornmation that will all ow automtin

program production in :articular situations.

To e la orate that last oint, the system can, wi t}hout

di fficu I ty e equi p)ed to compose new 1 r cess prescript ions

Such prescriptions, if formed in r 'ponse to) needs which Lw -,s-

ten' itself recogni;-es, would serve to uide ttl svstem,'s reoc'Li t,,

to such needs. Ot course, the key t) this .'atter is equin:i

the svstemn t, sense sinificant needs and to devel -p appronpriate

responses to the:.

&K7,0106500 TRACOR LANE AUITlN 'TFA, 78721

Process prescriptio ns will he stored as a file in the

item store. Fig. 16 suggests the contents and a structure fo)r

such a file. Han-dling process prescriptions i:-, tnis way -- as

data -- k-eps them independent Dof the operational capabilities

and charactek-istics of particular hardware/so-ftware systems.

This independence is especially iportant for systems that re-

quire a long-term, ev~lutionarv development, as well as for

systems that have a l-ng-ter-7 life-expectancy or wide-spread ap-

PR OGI R AN>

DATA P.\\F t .SCAPABILI PY
'RE (V'!R EMENT S R FQ LI R EMEfN TS

F i 16 F ile j)f Pr -cess~Pccit

6500 rRACOR LANE AUSTIr- TEXAS 78721

7. Conclusion

In Section ? we distinguished three types of informa-

tion -- data, capabilities, and knoDwledge. Each type of informa-

tion makes a cis"inctlv different contribution within the s-stem;

onl1Y in c mb ination do- we have oPera.ole systemic knowledge. Othler

sections described the conventions we are developing for symbol-

izing, storing, and using unitz of inforia'-Ion of each type.

The item sto)re, discussed at so-me length, provides a

lo)ng-term repository f-)r anv information, but in, particular ftor

data and svstemlc knowledge. ' %'e believe that in the item. sto)re

we are n. kin . adequate provisio)n fo)r permanentiv useful files

data in computer ftorm. Such permanent files not neces.oari 1Y

unchangingi, but permane-t neverthe less - - are here to- s LaY a-d

wil11 play- a centralI rol1e ini -,anv intormation, h -andl ini, appi ications.

A fac iitvr devo)ted to) tih-eir mairntenance , deve i, onm1,ent , and reteti-

t ion: will heesetil

ilis does not) deny the necessitv to)r and i-mportance)t

-)eraLti)"I fr:-ats to)r ;IAta -- to)rn-ats w-ien retlect aIati~d

u!se tL ' t~ datai is ut. The-rmote Ii IcMa na .,etmv! it SY> c

serves asa C~a le xfm Ic itYs ;)no t d ata-, as sto)red in n

RV>Stab reftlect the ...os l t!re K17MS system " .c s use

r th doo a articu or ax' InContrast , the nurnose .

the te st~i ~rnt rflets s orserat n o nedot a

G S -0 T R AOR LANE AUSTIN TFXA' , 78'.'

Finally, if files o)f permanentlV useful data exist , it

f -lIlows that bodies o)f p~ermanentlv iusetui capabilities are also

required. But with th-. tec'hroiqjues now used to implement capab)il-

ities, we find that all capa'hil ities put into operable form are,

after a longer or sho)rter perio)d -f time, discarded in favor of
newly; implemented -- hut no~t necessarily new -- capair~iliti-.

Furthermo)re, s .stem.,s with the capahil itv range we are considering -

not unlike the rang e found in some If the systems under ieve lopm~entI

and o)n the drawin4 hboards todav -- are proving to I-e extremelv dif-

f icul t to imrplement us in,, c inventi~onal 1 ro gramming tchius

V lcmnta 1nro~a r a pro)cess -ore scr lotions will , we bLe Iie e,

make -apahi lit ies , once imp le-en-t' A, ,-oe ;oermanent and mo.Ire use-

650C TRACOR LANE. AUS
T

tN, TEXAS 78721

REFERENCES

1. Dale, Alfred Go, The Remote File Management System: Some
Academic Applications, Department of Computer Sciences,
The University of Texas at Austin, October, 1968.

2. Vorhaus, A. H., and R. D. Wills, The Time-Shared Data
Manageient System: A New Approach to Data Management,
SP-2447, System Development Corporation, Santa Monica,
California, February 1967.

3. Reliability Central Automatic Data Processing Subsystem,
Vol. I and Vol. I1, Auerbach Corporation, September 1966,
AD-489-666 and AD-489-667.

4. The Galton Institute's Imprint, -he Galton Institute,
Beverly Hills, California, October 1968.

5. Ziehe, T. W., An Organizational Form for Item Management,
TRACOR Report 07-11I-U, TRACOR, Incorporated, February
1968.

41

IUnc !ass if iEd
SCurit Clageajcsaon

rDOCUM1ENT CONITROL DATA - R &
I~w ? I~jAA4ifth &II- rf ?Ift/r .. r "d 4 b~r ad Iftdosing ~~,~ n. he *nt,.d X-.. th -- 11 -po I .~IId

I ORIGINA1INC. ACIV Tv-(Cor. '16 e thw) il- .E F_.IsT St C r I--tAt 5 ICA T10,

TRAMOP, Inc. 1.ncl-assi~ied __

6-500 Tracor Lana?
Austin, Texas 787311 -__ £ -__

3 REPORT TILX

An Item Store: its Design and Implementaition

4 DESCRIPTIVE NOTES (
7

)'pe oirporl and tniortl des)

S. ALITHONIS) (First ,,eINS, aile 1.1tiol, 1eaF"nee)

Theodore W. Ziehe

4. RCPORT DATE 0 OA OO AK O FRF

December 1968 48___5
IMI. CONTRACT OR GRANT NO. Do RGINATOR'S REPORT INU&AERIS)

N00014-67-C-0396 6-16U
h. PROJECT NO TAO 816-

NR 048-239 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

C. b. O TH ER R!rPOP T NOM (Anty .odtt IxIIIber* tcp mnay b.e eslaned

this reporf.)

d.

10. DISTRJOUTION STATEMENT

Distribution of the document is unlimited.

11. SUPPLEMENTARY NO0TES I2. OPONS5ORING MILITARY ACTIVITY

Office of Naval Research
Washington, D. C. 20360

Three types of information -- data, capabilities in symbolic
form, and knowledge -- are distinguished in an informal manner.
The role of each within an information svs~em is sketched as
the basis for a discussion of the item stire. The item store
is a general-purpose formatted store which will serve as a ::e-
pository for files of inter-related items. The tree serves
as the organizing principle for files within the store. The
operational modes for the store are described as are the tech-
niques being used to implement these iperational modes.

DD FN0VL61473 Unclassified
SaCunty 'clam-ification

Unclassified
Socurity Classification I4 LINK A LINK S LINK ~

ROLE WT ROL!_ OT _SOLE WT

information Management
Information Storage and Retrieval
Item Management
Data Management
Trees
Data Structures
Semiotics

Unclassified
SOCUIity Class11ificaition

