Project No. 007 001 01
Document Number
TRACOR 68-1360-U

AN TTEM STORE: ITS DESIGN AND IMPLEMENTATION

AD 680249

by

T. W. Ziehe

DDC
D {Aim

JANT 3 1969
Ll i ol

-

December 1968

This document kas been opproved
for public ~wla=s cndd wriy; fts
dstribution iy unl mited

N oy
CLEARINGH OUSYE

tor tedeoa! et

[rlormad e 7 b A

] 6500 TRACCR LANE. AUSTIN, TEXAS 78721

Project No. 007 001 01
Document Number
TRACOR 68-1360-U

AN ITEM STORE: ITS DESIGN AND IMPLEMENTATION

T. W. Ziehe

December 1968

BUGIMIILY 6500 TRACOR LANE. AUSTIN, TEXAS 78721

ABSTRACT
Three types of information -- data, capabilities in
symbolic form, and knowledge -- are distinguished in an infor-

bdo

mal manner. The role of each within an information system is
sketched as the basis for a discussion of the item store. The
item store is a general-purpose formatted store which will
serve as a repository for files of inter-related items. The
tree serves as the organizing principle for files within the
store. The operational modes for the store are described as
are the techniques being used to implement these operational

modes.

——
TRAL'UR €500 TRACOR LANE. AUSTIN,

TEXAS 78B721

ACKNOWLEDGMENTS

This report and the work it represents are being
sponscred by the Information Systems Branch of the Office of

Naval Reszarch under Contract NOGOl4-67-C-0396.

iii

e hiAd

[
VP ETIMIJIT 6500 TRACOR LANE. AUSTIN, TEXAS 78721

TABLE OF CONTENTS

Section

Abstract

Acknowledgments

Preface

1. Introduction

2. Overview of the Approach
3. The Complex of Stores

4. Item Files - Contents of the Item Store
5. Item Store Operations

6. Implementation

7. Conclusion

References

iv

Pagc No.
ii

L1i

15
23
28
39
41

TRAL'UR 6500 TRACOR LANE, AUSTIN, TEXAS 78721

PREFACE

This paper represents the material presented by the
author at the colloquium, 'Integration of Computerized Biblio-
graphies and Bibliographical Systems in the Arts and Humanities,Kk"
held as part of the Thirty-first Annual Meeting of the American
Society for Information Science in Col.mbus, Ohio on October 20,
1968. Although the material covered in Section 4 was published
earlier in the report An Organizational Form for Item Management

(TRACOR Report 67-1111-U, February 1968), it is included here in

summary form for the sake of completeness.

= |
YWV THiI] 6500 TRACOR LANE. AUSTIN, TEXAS 78721

AN ITEM STORE: ITS DESIGN AND IMPLEMENTATION
1. Introduction
The computer's potential as an information handler is
being explored and exploited at an ever increasing rate. Inter-

est is being spurred by advances such as the following:

1. Impressive increases in storage capacity, speed,

and dencity.

2. The confluence of the computer and communications
technologies.

3. The development of improved techniques for data
management .

4. The rrospect of logical designs tailored to re-

quirements in individaal applications.

But in spite of these advances, application of the computer as
an information handler is often hampered by the haziness of
our concept of what "information' is and, therefore, how to

"handle'" it. This is ncZ to deny that computers have been

successfully applied to many information handling tasks where

they are currently providing useful service. However, dif-
ficulties and failures of manv kinds have been experienced as

well. A considerahle portion of some current eff-rts are, in

fact, attempts to apply lessons learred from past failures.
But the pursuit of such historical matters is not our main

interest here.

WGSOO TRACOR LANE. AUSTIN. TEXAS 78721

The interest which is the fo~us of our attention is that
¥ using the computer to handle what we often call language data
asd, in particular, bibliographic material. In such applications
"haniling" certainly includes the rote movement and arrangement
of the data. In some it also includes (1) responding to stimuli,
both the stimuli and the responses couched in natural language,
and (2) decision-making which is based on analyses of stimuli and
stored data, the analyses being of sufficient depth to produce

non-trivial responses.

The work described in this report has not yet reached
the operational stage. The reason we have not proceeded more
directly toward implementation is part of the message to be con-
veved. That reason has its roots in two experiences frequently
encountered by those who apply the computer as an information
handler. For example, consider the case of a librarian who wants
to offer a computer-based bibliographic service. The two expe-

riences are these:

1. The individual interested in offering the service
encounters questions and problems which are dis-
couraging because thev are outside his immediate
interest and perhaps competence. Questions such
as a) what techniques should be used to encode
the necessary data, b) how should the logical
relationships of the data be represented, <)
what tvpe of storage devices will bhe most effec-

tive, d) how should the capahilities of the

[28]

WGSOO TRACOR LANE. AUSTIN, TEXAS 78721
‘ system be implemented? These and similar questions

must be answered but they draw attention away from
the proper center of the librarian's interest: the

bibliography and its _.e.

2. The files of data generated for a particular ap-
plication, once in computer-usable form, suggest
. uses other than those considered when the files
were designed. Again the individual responsitle
for the application, as owner of the file, finds
himself drawn into other activities -- either by
his own interests or by pressure which others are

able to apply.

These experiences bear witness to the fact that the
boundaries of particular applications are not at all clear and
distinct. The capabilities and devices required are not unique
to the particular application. Neither are the data without
value in sther applications. These realizations have been a
prime mover in the development of large-scale, generalized svs-
tems such as the Remote File Management Svstem 17 being de-
veloped at the University of Texas at Austin and the Time
Shared Data Management System 7 being developed at the Svstem
Development Corporation. Although these and several other ef-
forts 37, 47 are achieving an exciting level of ge-erality
with respect to the data tney handle, manv difficultles remain

on the capabilityv side of these svstems: generalized capabil-

ities are lacking in efficiency; svstemic capabilities, once

e

FUVINII 6500 TRACOR LANE. AUSTIN. TEXAS 78721

developed, are difficult to shapme to the wishes and requirements
of particular users; most capabilities, but especially efficient
and reliable ones, are expensive to implement and require con-

siderable lead time.

The cure for tiiese problems lies somewhere in that vast
area known as ''computer software design and development.' Real-
izing the extent of the commitment which software implementation
carries with it, we decided to invest some time and thought ir
efforts to avoid at least some of the difficulties which are
taking their toll in current efforts. What we see after making
the investment is not a cure-all, but it is encouraging. However,
before continuing that aspect of the discussion,allow me to
briefly describe the setting in which the work is being done,
mention the background upon which it is drawing, and give credit

to our present sponsors

This work i< being done in the Semiotic Svstems Group
of the Life Sciences Research Department »f TRACOR Incorporated,
Austin, Texas. Semiotics, the theorv of signs and how thev are
used, 1s finding application in the development of machines able
to use signs for communication and control., Informallv, a
nechanical/electronic device with capabilities that enable it tno
perceive, recognize, and understand signs within a particular

frame of reference is a "semiotic svstem.'" Such a svstem may bhe
specialized to the siuns of natural languave or to signs within
some other environment, for example, that ~»f ar electronic sensing

device.

i~

[e ——

BELV UM 6500 TRACOR LANE. AUSTIN. TExas 78721

Within this context our general objective is the devzlop-
ment of theories and techniques adequate for the design and imple-
mentation of a semiotic system. In this work we are drawing in
various ways upon earlier work done at the Linguistics Research
Center of the University of Texas at Austin and the Linguistic
Rasearch Projeci of The RAND Corporation. At oresent the work
is sponsored by the Office of Naval Research, Information Systems
Branch and by TRACOR, Incorporated. It has also received suppoert

from the U. §. Army Electronics Command, Ft. Monmouth,

This discussion revolves around osne component of the
proposed system, the component we call the item store. However,
to clarify the role and function of the item store, Section ?
briefly describes thepoint .f view we are taking in the design
of the system and Section 3 describass the complex of stores within
which the item store operates. Sections 4 and 5 deal specifically
with the item store, its contents and the capcbilities being de-
signed for interacting wit: it. In Section 6 we turn from design
to implementation, describing the techniques we propose to use
in implementing the system, including the operations which activate

the item store.

/

RACOR

6300 TRACOR LANE, AUSTIN, TEXAS 7A721

?. Overview of the Approach

Picture, if you will, a particular information handling
system as an entity separate and apart from its environment, dis-
tinguished by boundaries which are expressed in terms of capabil-
ities and data. The system, thcugh distinct from its environment,
is able to act upon it, to act in response to it, and to act with-

out stimulus from or effect within its environment.

The diagram in Fig. 1 distinguishes three kinds of in-
formation in such a system. Symbolized capabilities are the
ground from which systemic activity springs. Data are the ob-
jects which enter into and emerge from that activity. The
capabilities of the system are event-like in character, whereas

data have thing-like gJualities.
CAPABILITIEE\ DATA

KNOWLEDGE

FUNCTIONING
SYSTEM

Fig. 1 Systemic Information

BB IHIIL] 6500 TRACOR LANE. AUSTIN. TExAs 78721

However, the system can do only what it knows how to
do. It can act cr react only when it knows which of its capa-
bilities to use and to what data it should apply the selected
capabilities. Therefore, the knowledge of the system, the third
type of information, is viewed as an appropriate combination of
capabilities and data. Capabilities, in and of themselves, are
not comritted to any specific data. Similarly, data are suscep-
tible to use with more than one capability. Each apart from the
other is incomplete. Only in combination do they form a basis

for systemic activity.

The knowledge of the system -- that is, capabilities
in combination with data -- is symbolized apart from both types
of components. This separation will make it possible :0 alter
the knowledge of the syster without altering capabilities or
data. This is an important advantage since much of the shaping
and adjusting required to tailor a system to a particular en-
vironment requires little or no change in capabilities or data,

only in the relationship in which they stand.

Capabilities, data, and knowledge then are the t™ree

distinct types of information symbolized. 'Item'" is simply a
term used to refer to a unit of information -- particularly in
storage -- when it is not necessary to indicate what tvpe of

information it is.

Units of each type of information are stored within

the system. Therefore, in the next section we consider the

A,
ERLTTHIIL] 6500 TRacOR LANE. AUSTIN. TEXAS 78721

complex of stores which serves as a repository for the informa-
tion. During periods of system activity, units of each type

of information enter into the activity, each fulfilling its
particular role. 1In Section 6 we return to the subject of sys-

temic activity.

TRAL'UR 6500 TRACOR LANE, AUSTIN, TEXAS 78721

3. The Complex of Stores

The five storage facilities shown in Fig. 2 form the
system's complex of stores. Each of the five components, con-
nected as shown, is able to receive items into the store, re-
tain items as long as they are useful, retrieve items for use
within system activities, and remove items from the store when

their usefulness is at an end.

PROGRAM ITEM
LIBRARY STORE
PRIMARY
STORE
BACKGROUND OVERFLOW

STORE STORE

Fig. 2 Components of the Complex of Stores

Although each of the five stores carries out the same
basic operations, two important operational differences catego-
rize them. A tormal store places hLi hest priority upon retain-
ing information for a relatively long period of time. Therefore,
a formal store, like a library or archive, uses a detailed format
into which all incoming info: ation is put; items retrieved from

the store are, of course, available in this same format. The

TRAL'UR §500 TRACGH LANE. AUSTIN, TEXAS 78721

format used formalizes the concept of a unit of information,
dictates how eacnh unit is identified, and expresses relation-

ships among the units in the store.

In contrast to the formal stores, operational stores

place greater importance upon receiving, retrieving, and re-
moving items. That is to say, an operational store is oriented
to the use of its contents. The format of its contents varies,
each variation reflecting the requirements of a particular use.
Generally, the format is quite simple, although elaborately
formatted tables and lists are also used. Fig. 3 distinguishes

the formal from the operational siores in the complex of stores.

FORMAL STORES:

PROGRAM ITEM
LIBRARY STORE

OPERATIONAL STORES:

PRIMARY
STORE
BACKGROUND OVERFLOW
STORE STORE

Fig. 3 Fermal/Operational Stores

10

YFTIHIT Y 6500 tRacor LaNE, AUSTIN, TExas 78721

A second important distinction among stores is re-
flected in the terms primary and secondary. The primary store
is directly connected to the control/processing unit of the
computer. Therefore, its contents -~ units of capability, data,
and knowledge -- enter into both sides of system activity --

the instructions side as well as the data side.

The four non-primary stores of the complex are secon-
dary stores. A secondary store is connected only to the proces-
sing unit and its contents are therefore restricted to eatering
system activity on the data side. The principal activity into
which the contents of secondary stores enter is that of moving
items between the particular secondary store and the primary

store.

With these distinctions in mind, we can now describe
in more deteil the role of each store in the complex, the con-
nections among the components, and the connections between the
complex and its environment. Fig. 4 presents some of this

detail graphically.

> PRQGRAM ITEM <
LI3RARY STORE
MMNM
PRIMARY
STORE
BACKGROUND OVERFLOW
STORE STORE

SYSTEM'S ENVIRONMENT ‘l

Fig. 4 The Complex Stores

11

VI LINITY 6500 TRACOR LANE. AUSTIN, TEXAs 78721

The primary store is the operational hub of the com-
plex. Within the primary store capabilities and data are bound
together, forming units of operational knowledge. These units
of knowledge enter the computer's processing and control units,
extending system activity in appropriate ways. Since the pri-

? mary store cannot retain the whole of the system's knowledge,
items must be secured as required and retained until the space

they occupy is required for items of higher priority.

AR, ST

In addition to connections with each of the secondary
stores, the primary store is also the principal interface with
the system's environment. Information from the environment
enters the system through the processing unit and the primary

store. Information passing to the environment follows the

same path in reverse.

The background and overflow stores augment the capacity
of the primary store. The background store contains units of
capability and data, both in operational form. 1Items in the
background store are those which, for the moment, are not re-
quired in the primary store; however when a need arises they

can be returned to the primary store with little delay.

The overflow store serves a similar, yet distinct,
function. Units of data in the primary store reside in com-
partments which have a fixed capacity. When a particular opera-

tional unit of data exceeds the capacity of its compartnent,

AN
TRACUR 6500 TRACOR LANE, AUSTIN, TEXAS 78721

part of the unit is transferred to the overflow store. A
partial unit can be returned to the primary store when reeded
by exchanging the locations cf the two partial units. This
e::change or swap is represented by the two-headed arrow in

Fig. 4.

From these descriptions it should be clear that both
the background and the overflow store are extensicns of the
primary store made necessary only by limited capacity in the
nrimary store . However, from a user's point-of-view, the
three form a logical unity and should be regarded as a single

store with the characteristics of the primary store.

The role of the program library in the complex of
stores is quite like that of the program library in the typical

computer executive system. A program to be entered into the

library is written in a source language -- Fortran, Algol, as-
sembly language -- and associated with a name that distinguishes
it from other programs in the library. From this source-lan-

guage form of the program, a load-for-execution form is produced.

Typically, both forms are retained in the library.

Each program in the program librarv is the svmbolic
form of a system capability, that, under proper circumstances,
can be translated into svstem activitv. Adding new programs to
the librarv is operationally outside the svstem. This is re-

/

presented in Fig. 4 by the arrow from the environment into the

program libraryv.

13

= 7

TRACDR 6500 TRACOR LANE. AUSTIN. TEXAS 78721

In principle, the i >m store is the repository four all
formally stored information in the system. However, as just
discussed, capabilities symbolized as programs are retaired in
a separate program library, primarily to take advantage of a
vast body of existing capabilities for managing program libraries.
However, all other formally stored information resides in the
item store. This includes extensive files of systemic informa-
tion, such as systemic knowledge as defined earlier. Since sys-
tem and user files are stored in precisely :the same format, ca-
pabilities and knowledge developed for system files can also be

used with user files and vice versa.

In most instances information enters the item store
from the primary store. However, as indicated in Fig. 4, the
store can receive information directly from its environment.
This impiies rhat the intormation was collected and formatted
hv an entity external to the svstem and incornorated into the
store in much the same wav a new version of, r supnlements

to, the prograw library will he made.

Vari»us tvpes of devices can host the item store --
drums, disks, magnetic tapes. While the operational efficiency
will vary from tvpe to tvpe, the oyperational characteristics of

the store are independent ~tf device tvpe.

R i

WGSOO TRACOR LANE AUSTIN. TEXAS 78721

4. 1tem Files -- Contents of the Item Store

Given the role which the item store must fill, we now
turn to consider the design of this storage facility. That de-
sign is based upon a body of conventions that we call the orga-
nizational form. The organizational form formats the contents
of the item store and shapes all system capabilities related to
that store. These capabilities, based as they are on the orga-
nizational form, are independent of the information stored and
its logical structure. The organizational form, although flex-
ible enough to handle the varietv of intormation that must be
stored, alsc allows operational efficiency. In this section
we briefly sketch the organizational form and illustrate its
flexibilitv; this material was covered in more detail in an
earlier report "5 . Section S continues this discussion of
the organizatisnal for— with a survev of the .perations based

upon 1it.

Iter files frm the contents of the item store. Each

file is a set of ¢ rpoinent classes; these c¢lasses determine the

contents of the t.le. Inter-relationships among the ciasses
define each file's st -ucture. Members of the file's classes ¢om-
prise its records. bPach record of the file has a structural pat-

tern that is cons' 1ined hv but not identical to the structural

paitern for tre file {tseit.

-

Fach file {n the iter store carries a name which dis-

tinguishes it from everv other file in the store. All trans-

15

TML'OR 6500 TRACOR LANE. AUSTIN. TEXAS 78721 ‘

actions with the contents of a file require the use of the file's :

name and are constrained by the file's boundaries. That is to
say, no transaction withi.. a particular file can automatically
extend into a second file. The end-of-file of the tirst will

terminate the transaction.

We have chosen the tree as the structural basis for
item files and thel. records. The tree, as an organizing prin-
ciple, offers a middle ground between lists and more general
graphs. Fig. 5 is a representation of a typical tree and will
serve as the basis for a brief review of _erminology associated

with trees.

. 1 . .
A tree s compovents are nodes and connections hetween

pairs of nodes. Fach node, except ne, has a priwary connection
t> one other node, its parent. In Fig. | encircled numbers

le

P EHIIT 6500 TRacOR LaNE AUSTIN. TEXAS 78723

represent nodes, and arrows represent connections dbetween the

nodes. The only node without a parent is the tree's root ncde.

———

lLevel is a measure of distance from the root node to another of
the tree's nodes. One unit is counted for each node encountered,
including the nodes at each terminus. Therefore, the root node
is on level one, nodes for which it is parent are on level two,

etc.

Although a node has only one parent, any number of nodes
can have a particular parent node. Such nodes are its offspring
and are always on the next lower (higher numbered) level. For

/

example, node & is the parent of 6, and nodes 7 and & are the

latter's offspring. Nodes with offspring are non-terminal nodes;

those with none are terminal. Nodes which are offspring of a

single parent are related to each other as sibling nodes.

Each nen-root node is connected to the root of its tree
by a single set of connections. That set of connections is the
path between that node and the root. All nodes along a path are
ancestors of the node at its lower terminus, thereby including
a r.ode's parent among its ancestors. For example, both 1 and
2 are ancestors of node 3. Similarly, each node for which a
particular node is an ancestor, is a descendant of that node; a
node's offspring are included among its descendants. To illus-
trate, nodes 5 through 9 are the descendants of node 4 and of

these 5, 6, and 9 are its offspring.

17

;': ;RAC”R 6500 TRACOR LANE. AUSTIN. TEXAS 78721

Each node of a tree occupies a position distinet from
the peeition of every other node. Node position can be described
in any of several ways, but shculd not be ccnfused with inter-
node relationships. Fach node of a tree stands in a definite re-
lationship with each other node of the same tree. Parent, off-
spring, sibling are examples of such relationships but many other

more distant relationships also exist.

Based on this concept of a tree, we define the struc-
ture of a file as a single tree of item classes. One class cor-
responds to each node of the tree and a particular file can, in
principle, have any number of classes. The inter-node connections
represent the pattern of class relationships as they strucuire the

file. Fig. 6 is an example of a file with nine classes.

ACCESSION ACCESSION NUMBER
NUM?ER SUBJECT HEADING
SUBJECT TITLE SPONSQOR SUB-HEADING
HEADING TITLE
AUTHOR
SUB- AFFILIATION
HEADING AUTHOR DATE ABSTRACT DATE
i ABSTRACT
AFFILIATION SPONSOR
TREE REPRESENTATION OUTLINE FORM
Fig. 6 - A Bibliographic File

18

WP MI0f 6500 TRACOR LANE. AUSTIN, TEXAS 78721

This file of bibliographic material is structured with accession
numbers at the root. All other information is positioned relative
to that. Fig. 6 also shows the same file in the more familiar
"outline'" or "indented'" format. The two forms of representation
are equivalent. Fig. 7 is a second example of a file. This file
contains text, perhaps the contents of a book on your library
shelf. It has but six classes and its structure is quite dif-

ferent from that of the bibliography.

VOLUME
TITLE
AUTHCR DATE PUBLICATION CHAPTER
TITLE
LINES OF
TEXT
Fig. 7 - A File of Textual Material

With these two examples pointing the way, Fig. 8
further illustrates structural variations which the organiza-
tional form allows. In these three separate files the re-
presentation of the classes has been simplified to focus at-
tention on the structure. Just as there is, in principle,
no limit to the number of classes in a file, so there is also
no limit to the number of levels or to the number of sibling

classes in a particular cluster.

19

UPHTMITT 500 TrRacOR LANE. AUSTIN, TEXAs 78721

| /\

VAN
.

5]

Fig. 8 -- Variations in File Structure

Representing a file as a tree of classes gives a general
wicture of its contents and its structure, a picture that is use-
ful both as a mental image and in documenting the file. However,
an item file, in reality, expresses relationships among individual
items and, therefore, involves considerably more detail than is
recorded in schematic diagrams of the type we have considered.
These details revolve around the nature of an item, the composi-
tion of item classes, and the constraints which a file's inter-

class relationships place upon the item components of its records.

The item is the basic unit of a file's contents. Each
item has one value, a single passage of encoded information. A
value is a string of binary bits, unrestricted in length, format,
encoding conventions, and meaning. Some examples of item values
dare. an integer in base two representation; an integer in base
ten; a passage of natural language text, encoded as a sequence
of fixed-length characters or bytes; a set of independent two-
position switches; an instruction, that is, a description of one

element of capability. Each value is accompanied by a measure of

20

FPIRTNIT 6500 TRACOR LANE. AUSTIN, TEXAS 73721

its length; a zero-length value, called a "null'" value, is there-
fore quite acceptable.

' An item class

Every item belongs to an "item class.'
is a cluster of item "attributes'" and a set of items -- 'ele-
ments' of the class -- to which the attributes apply. Class at-
tributes include such information as the position of the class
within the file, the encoding type for values of class elements,
and the name of an algorithm by which the :elative order of any

two elements of the class can be determined.

The attribute clusters for the classes of a file form
the file's "map." A file's map contains all of the information
required by the system as it manages and processes the file's
records. Fig. 9 shows that a map can be represented as a tree,
the shape of which exactly matches the tree representing the
file itself. Each cluster of attributes corresponds to one node
of the map cree. 1In Fig. 9 capital letters without boxes re-

present the clusters of attributes at the nodes.

. RN

[o] (& [e] i £ ¥
The File Its Map

Fig. 9 - A File and Its Map

21

¥ 6500 TRACOR LANF AUSTIN, TEXAS 78721

Arrays of class elements form the records of a file.
Fig. 10 shows the map of a rile and four of its records. Each
record forms a tree with a class element at each node. The
structural pattern of the first record exactly matches that of
the map. Although the pattern of a record tree is constrained
by the file's map tree, the patterns do not necessarily match.
Two kinds of differ2nce are allowed: (1) an element of a class
may be omitted from a record, in which case all elements of de-
scendent classes are also absent; (2) two or more class-sibling
elements can occur as the offspring of a single parent. An
example of the first type occurs in the second record; it con-
tains no member of class D and none of class F. The third re-
cord, a single element of class A, is another example of t'is
first difference. Examples of the second type occur in record
two -- it contains two b and two e elements -- and in record

four -- it has two ¢ and two f elements.

N

D///j\\\%
N AN N
N /\ /TN |

e e d f f e

THE MAP

THE RECORDS

Fig. 10 - The Map and Records of a File

22

TRAUUR 6500 TRACOR LANE, AUSTIN, TEXAS 78721

5. 1Item Store Operations

The operations associated with any storage facility
put information int-~ it, get information previously stored there,
and remove information from it. The fact that the item store's
principal function, as a formal store, is to retain information
does not iender these operations unimport=:uc. For unless a
stora -- even a formal store -- can be used efficiently, it is

of little value.

The item store will contain system files with which
users are not directly concerned, as well as information de-
posited there by various users. The pattern of interactions,
therefore, will typically consist of several independent, con-
current streams of transactions, each arising within a partic-
ular activity centered in the primary store. Each stream will
be managed by a single control mechanism called a portal. A
portal contains information which gives continuity to a series

of transactions.

Transactions within a particular stream will always
be restricted to a stated portion of the store's contents.
"ha* portion to which the transactions have access is the item
store context for the activity. A context is either a complete
file or a stated sub-set of the records of a file. (Provisions
are also being made for user-access restrictions and user-
priority rights, but these matters are not included in this

discussion.)

PEILIHIIY 6500 TRACOR LANE. AUSTIN. TEXAS 78721

The services rendered by a portal differ markedly for
some transactions -- for example, the GET as compared with the
PUT command. For other operations the required portal services
are quite similar -- for example, the GET and GET NEXT ITEM com-
mands., Therefore, we have defined a set of operational modes,
each of which encompasses a set of operations requiring similar

portal services.

Item store operations form the connection between the
item store and the primary store. They move items between the
two stores and make preparations for such movements. Preparations
include setting a portal for a particular mode of interaction,
positioning a storage device to give access to the relevant area
of the item store, and reformatting the items moved or to be

moved.

The purpose of this report dictates against a review of
the individual operations for each mode of interaction. There-
fore, the following paragraphs simply describe each of the eight

modes of operation for the item store.

Reading. Reading is the basic operational mode. Every
portal, regardless of its mode setting, includes the facilities
required to read. Each other mode makes appropriate additions

to these facilities.

The operations of the reading mode locate items pre-
viously recorded in the item store and transcribe them into the

primary store, depositing them at a specified location. Item

(e aa]
YR IINI) T 6500 TRACOR LANE. AUSTIN. TEXAS 78721

retrieval proceeds most efficiently when items are retrieved in
the order stored. However, each item has a positional address,

making it possible to retrieve items in any order whatsoever.

Tn the read mode, items are always retrieved under
control of the map according to which the context being read
was written. Since reading an item does not alter the occur-
rence of it in th¢ item store, a particular item can be re-
read any number of times. Reading an item, in effect, produces

a second copy of it in the primary store,.

Writing. Operations of the writing mode put items
from the primary store into a context of the item store. At
tk» outset, that context contains no items. Each item written
becomes the next item of the context. That is, items are storecd
in the same order in which they are received for storage. The
map of the file being written is always used to check the stream
cf items entering the store. These checks block the entrv of
illegal item sequences. When the context being written is a new
file, the map can of course have whatever structure is required.
When the context is an extension of a file, the controlling map

must als» be the map of the file being extended.

Rewriting. Operations of the rewriting mode are com-
binations of reading and writing operations. Under tne control
of a single map, items within a specified context are read,

while, concurrently, items are written within the same context.

TRAB”R 6500 TRACOR LANFE AUSTIN TEXAS 78721

Separate position registers are associated with the reading and
writing accivities so that items read can ve rejected and not
rewritten. Similarly, items not read, but rather supplied by
the user, can be written into the context. A parameter of the
writing activity specifies whether the records being read are
preserved or whether they ire replaced by the records written.
1f they are preserved, the records written are regarded as a

new version of the context.

Version Reading. Tvpically, a context of the item

store is a set >f consecutive records. However, as we have just
seen, the rewriting mode can be used to write an alternate version
of a file or portion of it, producing thereby parallel sets of
records. Operations of the version reading mode are equipped to
handle files in which such alternate versions exist. They
function within a context of records which need not b»e consecutive

records of the file.

Revision Reading. In normal reading, the roccords of

a file are read according to the nmap used when the file was written.
The operations ~f the revision mode provide for readine according

to a different map, the activity proceeding just as if the revised
pap had heen ‘n ocontrol when the tile was written. Differences
hetween the actual wmap of the {ile and the map governing the re-
vision reading activity are restricted to those that reguire no

reordering of the iter stream,

e

s
[
}
K

A

T —

.
[}
I:
.
[N
§
s
I8

1

——

TRACDR 6500 TRACODR LANE AUSTIN. TEXAS 78721

Summary Reading. During normal reading, each item 1is

processed as a distinct en’'i.y, separate from all other items in
the file. The operations >f the summary mode treat sets of re-
lated items as a single item. When such a package of items is
again written into a file of the store, the package returns to

jts normal status as a set of related items.

Merge Reading. Reading in the normal mode secures

copies of items from within a single context. The operations of
the merge mode make it possitle to read items from two or more
distinct contexts. The various streams of items are controlled
with a single map as thev are merged to form a single item
stream. In this way two or more parts of a single file -- or

tw> or more independent files -- can be read as if thev were a

single item arrav.

Sort Writing., Writing in the normal mode records

items within one prescribed context In the store. Sort writing
makes it possible to distribute iters within a singie stream
lats two or more contexts. The selection of a conte.t v a
particular item can, fHr exarple, minimize the vumber of se-

quence hreaxks within the contexts, sequence hreaks heiny detined

hvoa prescribed aleriths,

TRABDR 6500 TRACOR LANE AUSTIN TEXAS 78721

6. Implementation

We now turn from the item store -- the design of a
thing-like storage facility and operations which manage the
thing-like entities in it -~ to the matter of implementing
event-like capabilities. The question that must be answered
is: how, in wisdom, do we proceed with implementing an operable
system equipped to act in many -- in fact anm unlimited number of

-- different ways?

It must be clearly understood that the capabilities {or
managing the contents of the item store are but one part of the
body of capabilities requi *d. Other capabilities alluded to in

the previous sections are the following:

a. Mave 1toms between other pairs of stores in the
compltox,
1

b. Manave the contents of the three operatisnal

stores.

C. Pind capabilities to data, thereh 1. nping ~nerable

<nowledyc,

d. Acguire data trow the environment of the svstem,
& . Deliver data intoy the environment in a form ard

format a;propridate to the circurstances.,

She atner imporiant capabilities that have not cwen Been alluded

to ar2 the Sollowing:

TRACOR LANE. AUSTIN, TEXAS 78721

a. Capabilities for various kinds of analyses and

[a 1

ecision making such as automatic classification,

pa

rt

tarn

"

ecognition, a~d grammatical parsing.

o b. Capabilities in chat area often called data manage-
ment, especially such file operations as generating,

updating, extracting, transiorming (the structure),

c. Capabilities for guerving a fiie or data base, such

as those offered in the Remote File Management Syster.

To understate the situation, the system will contain a vast ac-
cunmulation of capabilities. FEach must be svmbolized in a form
that facilitates clear and accurate documentation. offers a maxi-
mum amourt of protection against obsolescence, and encourages
continuing capability extension and evolution by means of new
combinatiors of existing capabilities as weil as bv i plementing

new capabilities directly.

One implementation strategy we are finding useful is
the one illustrated by the item store -- capabilities are based,
to the extent possible, on ¢ body of general conventions which

cover a wide range of individual cases. Consequently, item store

cperations are based entirely on the organizational form, remain-

ing independent of particular file structures.

Two other strategies, briefliy mentioned earlier, are A

also influencing cur approach to implementation. The first is

29

oy

TRACDR 6560 TRACCR LANE. AUSTIN, TEXAS 78721

to preserve in the impiementation the distinction between capa-
bilities and knowledge, each of which is symbolized apart from
the other and both apart from data. The second :trategy is to
implement capabilities and knowledge in modules or units, each
unit distinct and detached from all others. The remaining
paragraphs of this section describe how we are applying these

two strategies.

The course we are following rests upon two basic con-
cepts -- the concept of an elemental program and the concept of
a program's environment, An elemental program is a unit of
capability, symbolized in a form which the system can translate
into action. Each elemental program is distinct from and in-
dependent of other elemental programs; neither does an elemental

program contain commitments to any specific data.

An elemental program is a program in the . -dinary
sense in that it is written in a suitable programming language,
has a name to distinguish it from other programs, and occupies
a position in the program library from which it is retrieved

when needed.

Some other conventions, not uncommon for computer pro-

grams in general, further characterize these units of capability.

30

TRHG”R 6500 TRACOR LANE. AUSTIN. TEXAS 78721

Each elemental program has a single entry point.

Each execution of an elemental program eventually
reaches a final termination point. Its execution
in a particular instance can either be successful
or a failure; but never is its execution unending
nor can its execution be interrupted "temporarily"
without, at some later time, continuing to com-

pletion.

Each execution of an elemental program, when com-
plete, leaves the program with the pocential for
action that it possessed when that execution began.
This is a way of saying that a program's potential
for action never changes from execution to execution.
In addition, some elemental programs will be re-
entrant in the sense that two or more parallel exe-
cutions of the program can proceed without any one

of them interfering with the others.

An elemental program is different from most other com-
puter programs in that it contains no explicit references to ex-
ternal entities. This does not mean that each is completely self-
sufficient. In fact, most elemental programs, in and of them-
selves, are incomplete. What we are doing, however, is document-

ing rather than filling the incompletions.

6500 TRACOR LANE. AUSTIN, TEXAS 78721

The incompletions of an elemental program represent
the ways in which the program depends upon external entities.
In other words, these incompletions define the program's re-
quirements upon its environment. An appropriate environment
of an elemental program is any set of entities which, collec-
tively, satisfy these requi.ements. Fig. 11 is a representation

of an elemental program and its environment.

In this representation we see that two types of in-
completions, reflecting the two basic types of information, can
occur: incompletions related to data and incompletions related
to capabilities. Therefore, a typical environment consists of
two types of components -- blocks of data in operational format
and other programs. Actually, a distinction is made between
operational blocks of data and parameters, which are in essence
small data blocks. But the difference between the two is of

little consequence for our present purposes.

e——JELEMENTAL }—
PROGRAM §

CAPABILITIES
s e

Fig. 11 - An Elemental Program and an Environment

EE VMY 6500 TRACOR LANE. AUSTIN. TExAs 78721

An elementzl program can be executed only when associated
with an appropriate environment. Typically, more than one environ-
ment can be constructed that meets a particular program's require-
ments. This point is illustrated in Fig. 12 where a single ele-

mental program appears in two different environments -- a and b,

ENVIRONMENT b

cNVIRONMENIS a\

EPl

Fig. 12 - An Elemental Program and Multiple Environments

An elemental program cannot alter its own activity
potential nor can that potential be altered by an entity ex-
ternal to the elemental program. However, the performances
that a program deliver, in successive executions need not be
identical. Variations retlect changes in the prosram's environ-
ment. Therefore, a program can change its own performance --
or that of another program -- by altering the compositioa or
contents of its environment. If a program's range of potential
performances can be charted on a bad-to-good scale, the program's

performance can "improve' through successive executions.

As stated earlier, the association between an ele-

mental program and a particular environment is documented as a

33

sy

TRAICHR 650C TRACOR LANE. AUSTIN, TEXAS 78721

separate entity. That entity, a process prescription, is a

unit of systemic knowledge, for it binds together capabilities
and data. The requirements of an elemental program upon its
environment are documented in a two-level tree called the pro-
gram's schema. The schemata of two elemental programs, EP, and
EP?, are shown in Fig. 17. Although we have not decided in
detail how to document environmental requirements, the kind of
information that documentation must contain is quite clear.

For example EP,'s capability requirement, cry, must allow or

1
reject the use of any particular program in that position of
EPl's environment. Similarly data requirements must ailow or

ceject the use of particular blocks of data.

EPl
\ EP,
dr1 dr2 cry /'
C

P /

D1 D2 EP?
EP2
D2 D3
dr1 dr2
SCHEMATA PROCESS PRESCRIPTION
Fig. 13 - A Constructed Program

34

IPLLTMTI] 6500 TRACOR LANE. AUSTIN. TEXas 78721

Assuming that EP2 satisfies the requirements set forth
by cry and that Dl’ D2’ and D3, satisfy the various data require-
ments, the constructed program, CPl’ is well formed. The compo-
nents of a constructed program are not generally collected and
assembled into a single unity. Instead, the components are simply
named ard their inter-relationships are expressed in the process
prescription. A constructed program is executed by interpreting

its process prescription,

In Fig. 13 the constructed program CP. is completely

1
specified in that each program component has a completely speci-

fied environment. However, completeness is not required of con-

structed programs. The program CP shown in Fig. 14, has, fo:

?’
example, two incompletions. One is a data requirement, drl,
imposed by each of the two elemental programs. The other is a

capability requirement, cry .

~a
N

(@S]
N

1 1 2
d
!
An Incomplete Schema of a
Process Prescripticn Constructed Program
Fig. 14 =~ A Constructed Program and Its Schema

35

TRAL'UR 6500 TRACOR LANE, AUSTIN, TEXAS 78721

The incompletenesses of constructed programs, just as
in the case of elemental programs, are documented in program sche-
mata. And so the schema of the constructed program, CP2, has two
reference slots as shown.

Carrying thic process one step farther we see how a
constructed program is used as a component within a constructed
program., Fig. 15 provides the example. We see the schema of CP?
we were just discussing. Its form is in no way different from
the schema of an elemental program. Therefore, the conditions
which allow the formation of CP3 are precisely the same as the
conditions shown in Fig. 13 when both components were elemental
programs. There is, in fact, no reason why a constructed pro-
gram, which satisfies the requirement cry, could not have been
used in place of the elemental program EPS.

/sz
drl crl

CP2
cP,: /\
3
EF
)
/\ D, D,

dr1 dr2

Fig. 15 - A Constructed Program as a Component

of a Constructed Program

f——

TRA[:UR ©500 TRACOR LANE. AUSTIN. TEXAS 78721

This approach to the construction of executable pro-
grams has several advantages. Manv of the components comprising *I
a constructed program can be used simultaneously in several dif-
ferent programs. Since a process prescription simply names the
components of the constructed program it defines, each component

is secured only when and if needed as the program is executed.

It is important to understand: there is nothing fixed

{unchangeable) about the brundaries of elenental programs. An

array of elemental programs can at anv time be compiled into a {

single elemental program. B ¢

0Of at least equal iwportance is the fact that each pro-
gram can itself be used as a component of other pr grams. This
will facilitate the formation of higher and higher level capa-
bilities. For this, process prescriptions offer a brevitv and
an orderliness that promotes accuracy, a flexibility that aliows
adjustment to the circumstances and requirements of particular
applications, and a rule of formation that will allow automating

program production in particular situations.

To elabnrate that last point, the syvstem can, without
difficulty, be equipped to cowpose new process prescriptiong.,
Such prescriptions, it formed in r-osponse to needs which (he svs-
tem itsel{ recopnizes, would serve to puide the svster's reactim
to such needs. Of course, the kev £ this matter is equipning

the svsterm t»> sense siygnificant needs and to develp appropriate

respanses to them,

Tmm 6500 TRACOR LANE AUSTIN TEXAS T7R721

Process prescriptions will be stored as a file in the
item store. Fig. 16 suggests the contents and a structure for
such a file. Handling process prescriptions in this way -- as
data -- keceps them independent of the operational capabilities
and charactevistics of particular hardware/software systems.
This independence is especially important for systems that re-
quire a long-term, evolutionaryv development, as well as for
svstems that have a l.ng-term life-expectancv or wide-spread ap-

nlicability.

i PROGRAM
i NAME
DAT -\ TARAMETY S CAPABILITY
QUIREMENTS REQUIREMENTS
Fig., 16 - &y File of Process Prescriptions

—

TRAC”R 6500 TRACOR LANE AUSTIN TEXAS 78721

7. Conclusion

In Section ? we distinguished three types or informa-
tion -- data, capabilities, and knswledge. Each type of informa-
tion makes a cistirctly different contribution within the s-stem;
only in cHombination do we have operacle svstemic knowledge. Other
sections described the conventions we are developing for svmbol-

izing, storing, and using unite of informalion of each tvpe.

The item store, discussed at some length, provides a
long-term repository for anv information, but in particular for
data and svstemic knowledge. We believe that in the item store
we dare naking adequate provision for permanentiv useful files
bf data in computer form. Such permanent files -- not neces:arilv
unchanging, but permanent nevertheless -- are here to stav ard
will plav a central role in manv information handling applications.
A facility devoted to their maintenance, development, and reten-

tion will he escential.,

this does not denv the necessity for and importance of

tor data -- tormats which reflect a particular

,
3
v
-
o
z
ot
d
=z
-
4
r-
:
.
~
[y
§
ot
'y
-

use to which the data is put, The Reaote File Manazement Svstem

serves as a voxd exarole of this »oin data, as stored in the

ey 1

REMS tables, reflect the purpoase of the RFMS svstem which is use
wothe data inoa particular wav., In contrast, the purnose which

the iterm store format reflects s preservation of the data.

bRV

TRAGOR 6530 TRACOR LANE AUSTIN TEXAS 78721

Finally, i{f files of permanently useful data exist, it
follows that bodies »f permanentlv useful capabilities are also
required. But with the technigues now uced to implement capabil-
ities, we find that all capabilities put into operable form are,
atfter a longer or shorter period »f time, discarded in favor of
newly implemented -- but nost necessarily new -- capat:ilitie-.
Furthermore, s stems with the capabilitv range we are considering --
not unlike the range found in some »f the svstems under development
and on the drawing boards todav -- are proving to be extremelv dif-
ficult to implement using conventional programming tecihniques.
Elemental proprams an”’ process prescriptions will, we believe,
make ~apabilities, once ioplemented, more permanent and move use-

ul,

-,

Fof 6500 TRACOR ILANE. AUSTIN, TEXAS 78721

REFERENCES

Dale, Alfred G., The Remote File Management System: Some
Academic Applications, Department of Computer Sciences,
The University of Texas at Austin, October, 1%68.

Vorhaus, A. H., and R. D. Wills, The Time-Shared Data
Manageuent System: A New Approach to Data Management,
SP-2447, System Development Corporation, Santa Monica,
California, February 1967.

Reliability Central Automatic Data Processing Subsystem,
Vol. T and Vel. 1I, Auerbach Corporation, September 1966,
AD-489-666 and AD-489-667.

The Galton Institute's Imprint, -he Galton Institute,
Bevertly Hills, California, October 1968.

Ziehe, T. W., An Organizational Form for Item Management,
TRACOR Report (7-1111-U, TRACOR, Incorporated, February
1968.

41

Unciassified
Sccurity Claswmficelion

LOCAUMENT CONTROL DATA-R & D

(Pdcurity clasatiization of 1tls, tndy ¢! 2batres and indexing awivlai'on mus be snitred whien the Lresall repset 's classilied,
e o—n
1 CRIGINATING AT TIVI T~ (Corparets auther) T2, REFL™T SEC % Ty L ASSILICATION

TRACOR, Inc. : s s
,“EO”’ {nc Unclassified
£5300 Tracor Lane o wRoun —
Austin, Texas 78731

3 REPORY TITLE

1
L

An Item Store: Its Design and Implementetion

4 DESCRIPTIVE NOTES (Type ol repor? and inclueive detca)

8. AUTHOR(S) (First nese, middie Initial, 1ani neme)

Theodore W. Ziehe

§. REPORY DATE 78, TOTAL KO OF PAGES 7b. NO. OF REFS
December 1968 48 5

4. CONTRACT OR GRANT NC. . ORIGINATOR'S REFORT MUMBE R(S)
WNQ0014-67-C-0396 TRACOR 68-1360-U

NR 048-239

b, DTHER REPQRT NOIZ) (Any cither numbers that may be aseigned
thin report)

d.

10. DISTRIBUTION BTATEMENT

Distribution of the dcocument is unlimited.

11. SURPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Washington, D. C. 20360

13, ABSTRACT

Three types of information -- data, capabilities in symbolic
form, and knowledge -- are distinguished in an informal manner.
The role of each within an information sys*tem is sketched as
the basis for a discussion of the item store. The item store
is a general-purpose formatted store which will serve as a re-
pository for files of inter-related items. The tree cerves

as the organizing principle for files within the store. The
operational modes for the store are described as are the tech-
niques being used to implement these operational modes.

DD 21473 Unclassified

Secunty Clessification

Unclassified

Security Classification

XEY WORODS

LINK A LiINK B

LINK

~

ROLEK

wT ROL & wT

woLa@

Information Management
Information Storage and Retrieval
Item Management

Data Management

Trees

Data Structures

Semiotics

Unclassified

Security Claseification

