DDC AVAILABILITY NOTICE

This document has been approved for public release and sale; its distribution is unlimited.

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
In this paper I consider the problem of diffraction in a three-dimensional space, following the basic method used by V. D. Kupradze to solve the plane problem of the diffraction of electromagnetic waves [1, 2].

§ 1. In an infinite space with electromagnetic constants \(\varepsilon_0 \), \(\mu_0 \), \(\sigma_0 \) let there be \(n \) successive non-intersecting enclosures bounded by the regular surfaces (see [1]) \(S \) \((\nu = 1, 2, \ldots, n)\). The electromagnetic constants of the media occupying the successive enclosures - the dielectric constant, magnetic permeability and conductivity coefficient - we denote, respectively, by \(\varepsilon_\nu \), \(\mu_\nu \), \(\sigma_\nu \). The region bounded by \(S \) (assuming no subsequent enclosure) we denote by \(T_{-} \), the outer boundary of the surface by \(S_1 \) and the outer infinite region by \(T_{+} \); the region included between \(S_\nu \) and \(S_{\nu+1} \) by \(T_{\nu-} \); \(T_{\nu+} \). Here, let \(T_{-} \equiv T_{+} \) and \(T_{n,n+1} \equiv T_{n} \). Moreover, let

\[
\begin{cases}
 k_{\nu}^2, & M \subset T_0 \\
 k_{\nu}^2, & M \subset T_{\nu-} \\
 \frac{\omega^2 \varepsilon_{\nu} \mu_{\nu} + \omega \mu_{\nu} \sigma_{\nu}}{c^2}, & M \subset S_{\nu}
\end{cases}
\]

where

\[
k_{j}^2 = \frac{\omega^2 \varepsilon_{j} \mu_{j} + \omega \mu_{j} \sigma_{j}}{c^2} \quad \text{Im} \ k_{j} > 0 \quad (j = 0, 1, 2, \ldots, n)
\]

The complex vectors of the electric and magnetic electromagnetic field intensity are \(\vec{E} \) and \(\vec{H} \), respectively.

The problem is formulated as follows:

Required to find \(\vec{E} \) and \(\vec{H} \) satisfying the conditions (sec [3]):
Morris D. Friedman

(1.1)

\[
\begin{align*}
1. \text{rot } \vec{E} &= \frac{\ln \sigma_t - i \omega \varepsilon_0}{c} \vec{E} + \frac{\ln \sigma - i \omega \varepsilon_0}{c} \vec{E} \\
2. \text{rot } \vec{H} &= \frac{i \omega}{c} \vec{H} \\
3. \text{div } \vec{E} &= \ln \rho_0 \\
4. \text{div } \vec{H} &= 0 \text{ in } T_{j,j+1} \\
5. (\varepsilon_0) = (\varepsilon_0)_{j+1} \\
6. (\mu_0) = (\mu_0)_{j+1} \text{ on } S_y \\
7. \vec{E} &= \exp(ikr) o(1/r) ; \quad \frac{\partial}{\partial r} - ik_0 \frac{\vec{E}}{r} = o(1/r) \\
8. \vec{H} &= \exp(ikr) o(1/r) ; \quad \frac{\partial}{\partial r} - ik_0 \frac{\vec{H}}{r} = \exp(ikr) o(1/r) \text{ at infinity}.
\end{align*}
\]

where

\[
\vec{G}_0 = \begin{cases}
0 & \text{if } \mu \subset T_0 \\
0 & \text{if } \mu \subset T_{j,j+1}
\end{cases}
\]

\(\vec{G}\) is a given vector characterizing a source which is continuously differentiable to the second order inclusively:

\[
\rho_0(\mu) = \begin{cases}
\frac{1}{c_0} \rho & \mu \subset T_0 \\
0 & \mu \subset T_{j,j+1}
\end{cases}
\]

\(\rho\) is the electric volume-charge density, also a given and continuously differentiable function; \(\omega\) and \(c\) are the oscillation frequency and the velocity of light in a vacuum; \((\varepsilon_0)_{j+1}\), \((\mu_0)_{j+1}\) and \((\varepsilon_0)_{j} - (\mu_0)_{j} - 1\) respectively, are the limit values of the tangential components of \(\vec{E}\) and \(\vec{H}\) within and without the surface \(S_y\); \(r\) is a radius-vector; \(r o(1/r) \to 0 \text{ as } r \to \infty\); \(r o(1/r)\) is bounded as \(r \to \infty\).

By virtue of (1.1), the vector \(\vec{H}\) in \(T_{j,j+1}\) \((j = 0, 1, 2, \ldots, n)\) will be sought as

\[
(2.1) \quad \vec{H} = \frac{1}{\mu_0} \text{rot } \vec{F}
\]

1. When \(k_0\) is a real constant \((1.17)\) and \((1.18)\) become:

\[
\vec{E} = o(1/r) ; \quad \frac{\partial}{\partial r} - ik_0 \vec{E} = o(1/r) ; \quad \vec{H} = o(1/r) ; \quad \frac{\partial}{\partial r} - ik_0 \vec{H} = o(1/r) .
\]
where \mathbf{F} is the vector field potential. Using (2.1) in (1.12) we obtain:

\begin{equation}
(2.2) \quad \mathbf{E} = \text{grad } \varphi + \frac{i \omega}{\epsilon} \mathbf{F} \quad \text{in } T_{j,j+1}
\end{equation}

where φ is the scalar field potential. The vector \mathbf{F}, introduced in (2.1), in determined with the accuracy of a component and is the gradient of an arbitrary function and, obviously, the potential φ is also not uniquely defined. To eliminate this indeterminateness, let us require that this condition be fulfilled (in the $T_{j,j+1}$ region):

\begin{equation}
(2.3) \quad \text{div } \mathbf{F} = \frac{\mu_0 (\ln \sigma_1 - i \epsilon \omega)}{c} \varphi = 0 \quad \text{or} \quad \text{div } \mathbf{F} = \frac{c}{i \epsilon \omega} k_3^2 \varphi
\end{equation}

Let us put \mathbf{E} and \mathbf{F} from (2.1) and (2.2) into (1.3) and let us use (2.3); we obtain:

\begin{equation}
(2.4) \quad \Delta^2 + k_x^2 \mathbf{E} = -\frac{\mu_0}{c} \mathbf{F} \quad \text{in } T_0
\end{equation}

\begin{equation}
(2.5) \quad \Delta \mathbf{E} + k_x^2 \mathbf{E} = 0 \quad \text{in } T_{j,j+1} ; \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
\end{equation}

By virtue of (2.3) and (2.2) we obtain from (1.13)

\begin{equation}
(2.6) \quad \Delta \varphi + k_x^2 \varphi = \frac{\ln \sigma_1}{\epsilon \omega} \quad \text{in } T_0
\end{equation}

\begin{equation}
(2.7) \quad \Delta \varphi + k_x^2 \varphi = 0 \quad \text{in } T_{j,j+1}
\end{equation}

Moreover, from (1.13) it is evident that in T_0

\begin{equation}
(2.8) \quad \text{div } \mathbf{E} = \frac{-\ln \sigma_1}{\ln \sigma_1 - i \epsilon \omega} \text{div } \mathbf{F}
\end{equation}

Now from (1.13) and (2.8) there results

\begin{equation}
(2.9) \quad \rho = \frac{-\epsilon \omega}{\ln \sigma_1 - i \epsilon \omega} \text{div } \mathbf{F}
\end{equation}

Let us note that (2.6) and (2.7) are consequences of (2.1) and (2.5).

In order to confirm this it is sufficient to take the divergence of (2.4)
and (2.5) and to use (2.3) and (2.9).

Let us put \(\mu_j = 1 \) \((j = 0, 1, 2, \ldots, n) \), then in place of the boundary conditions (1.15) and (1.16) we will have the following:

\[
(2.10) \quad 1. (i)_{0} = (i)_{0-1} \quad 2. (ii)_{0} = (ii)_{0-1}
\]

by virtue of (2.1), (2.10) is fulfilled if \(\hat{F} \) satisfies

\[
(\hat{\mathbf{\Omega}})_{0} = (\hat{\mathbf{\Omega}})_{0-1}
\]

By virtue of (2.2), (2.10) is fulfilled if we have on \(S_{\nu} \):

\[
\frac{\partial F}{\partial S} + i\omega \frac{\partial F}{\partial S} = \frac{\partial F}{\partial S} + i\omega \frac{\partial F}{\partial S}
\]

Evidently, the latter always occurs if these boundary conditions are fulfilled on \(S_{\nu} \):

\[
\frac{\partial F}{\partial S} = \frac{\partial F}{\partial S} \quad (\bar{F})_{0} = (\bar{F})_{0-1}
\]

Finally, the diffraction problem reduces to two boundary problems for the oscillation equations.

To find \(\hat{F} \) requires solving the boundary problem:

1. \(\Delta \hat{F} + k^2 \hat{F} = \frac{1}{c^2} \hat{\mathbf{\Omega}} \) in \(T_0 \)
2. \(\Delta \hat{F} + k^2 \hat{F} = 0 \) in \(T_{\nu\nu+1} \)
3. \((\hat{\mathbf{\Omega}})_{\nu} = (\hat{\mathbf{\Omega}})_{\nu-1} \) in \(S_{\nu} \)
4. \(\hat{F} = \exp(i\mathbf{k}\cdot\mathbf{r}) o(1/r) \); \(\frac{\partial \hat{F}}{\partial r} - i\mathbf{k} \cdot \hat{F} = \exp(i\mathbf{k}\cdot\mathbf{r}) o(1/r) \) at infinity.

To find \(\varphi \), the problem is solved:

1. \(\Delta \varphi + k^2 \varphi = \frac{1}{c^2} \varphi \) in \(T_0 \)
2. \(\Delta \varphi + k^2 \varphi = 0 \) in \(T_{\nu\nu+1} \)
3. \(\frac{\partial \varphi}{\partial S} = \left(\frac{\partial \varphi}{\partial S} \right)_{\nu-1} \) on \(S_{\nu} \)
4. \(\varphi = \exp(i\mathbf{k}\cdot\mathbf{r}) o(1/r) \); \(\frac{\partial \varphi}{\partial r} - i\mathbf{k} \cdot \varphi = \exp(i\mathbf{k}\cdot\mathbf{r}) o(1/r) \) at infinity.
Here \tilde{F} and φ, found from (2.11) and (2.12), must satisfy condition (2.3).

§ 3. The solutions of boundary problems (2.11) and (2.12), respectively, are expressed through solutions of the following integral equations:

(3.1) \[
\tilde{F}(u) = \frac{1}{\ln \gamma} \sum_{j=0}^{n-1} \left\{ (k^2_{j+1} - k^2_{j}) \int_{T_{j+1}} \tilde{F}(\cdot) \frac{e^{ikr(\cdot, \cdot)}}{r(\cdot, \cdot)} \, d\gamma \right\} + \tilde{F}(u)
\]

where
\[
\tilde{F}(u) = \frac{1}{c} \int_{T} \tilde{G}(u) \frac{e^{ikr(\cdot, \cdot)}}{r(\cdot, \cdot)} \, d\gamma
\]

(3.2) \[
\frac{\alpha^2(\cdot)}{1} \varphi(u) = \frac{\alpha^2(\cdot)}{1} \frac{1}{\ln \gamma} \sum_{j=0}^{n-1} \left\{ (k^2_{j+1} - k^2_{j}) \int_{T_{j+1}} \varphi(\cdot) \frac{e^{ikr(\cdot, \cdot)}}{r(\cdot, \cdot)} \, d\gamma \right\} + \varphi(u)
\]

\[
L(u) = \sum_{j=0}^{n-1} \left\{ \int_{F_n} \varphi(u) \frac{e^{ikr(\cdot, \cdot)}}{r(\cdot, \cdot)} \, ds + \frac{1}{c} \int_{G_n} \varphi(u) \frac{e^{ikr(\cdot, \cdot)}}{r(\cdot, \cdot)} \, ds \right\}
\]

\[
\kappa^2 = k^2(\cdot); \quad M \subset T_{p+1}\quad (p = 1, 2, \ldots, n)
\]

F_n and G_n are the projections of \tilde{F} and \tilde{G} on the interior normal.

The volume integrals in (3.1) and (3.2), taken over the infinite region T_e, exist since \tilde{G} and \tilde{F} are bounded and $\ln k_e > 0$. For real k_e, \tilde{G} and \tilde{F} must satisfy some existence condition of the integrals over T_e.

(3.1) and (3.2) represent, respectively, the ordinary and loaded Fredholm integral equation of the second kind (as is known, Fredholm theory applies to the latter).
These equations are completely analogous to the equations of V. D. Kupradze which were constructed in [1,2] for electric and magnetic vectors.

The integral equations (3.1) and (3.2) were studied completely also, as was done by V. D. Kupradze (see [1] ch. 3), for the plane diffraction problem. Condition (2.3) remains to be satisfied.

Let us introduce the vector

\[\text{grad } \mathbf{\lambda} = \sum_{j=0}^{n-1} (k_j^2 - k_{j+1}^2) \int_{S_{j+1}} \frac{\mathbf{e}^{ikr(\nu,\lambda)}}{r(\nu,\lambda)} \, ds_N \]

where \(\mathbf{e}_N(\nu) \) is the direction of the interior normal at the point \(\nu \in S_{j+1} \). \(\mathbf{e}(\nu) \) is the solution of (3.2), and we form the vector

\[\mathbf{F}_1(\nu) = \mathbf{f}(\nu) + \text{grad } \mathbf{\lambda} \] (3.3)

The vector (3.3), obviously, satisfies (2.11), hence we have from (3.3):

\[\text{div } \mathbf{F}_1(\nu) = \frac{1}{4\pi} \sum_{j=0}^{n-1} (k_j^2 - k_{j+1}^2) \left\{ \int_{T_{j+1}} \text{div } \mathbf{f}(\nu) \frac{e^{ikr(\nu,\lambda)}}{r(\nu,\lambda)} \, ds_N \right\} \]

\[+ \sum_{j=0}^{n-1} \left(k_j^2 - k_{j+1}^2 \right) \int_{S_{j+1}} \mathbf{g}_n(\nu) \frac{e^{ikr(\nu,\lambda)}}{r(\nu,\lambda)} \, ds_N \]

\[- \frac{1}{c} \int_{S_{j+1}} \mathbf{g}_n(\nu) \frac{e^{ikr(\nu,\lambda)}}{r(\nu,\lambda)} \, ds_N \]

Subtracting (3.2) from (3.4), we obtain:

\[\text{div } \mathbf{F}_1(\nu) = \frac{1}{4\pi} \sum_{j=0}^{n-1} (k_j^2 - k_{j+1}^2) \int_{T_{j+1}} \left[\text{div } \mathbf{f} - \frac{c^2}{4\pi} \mathbf{e}^{2ikr(\nu,\lambda)} \right] \mathbf{e}^{ikr(\nu,\lambda)} \frac{1}{r(\nu,\lambda)} \, ds_N \] (3.5)
Morris D. Friedman

If in particular, we fulfill the condition:

\[\int_{T_{j+1}} \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \frac{\partial}{\partial r_\beta} \left(\frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \right) \cos(r_{\gamma} r_{\delta}) d_\gamma d_\delta = 0 \quad (j=0,1, \ldots, n-1) \]

where \(U \subset S \), then (3.5) becomes

\[\text{div} \mathbf{F}_j (W) - \frac{c}{4 \omega^2} \Phi (W) = \frac{1}{4 \pi} \sum_{j=0}^{n-1} (k_j^2 - \omega^2) \int_{S_{j+1}} \text{div} \mathbf{F}_j (W) - \frac{c}{4 \omega^2} \Phi (W) \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, ds \]

From which follows (see [1]):

\[\text{div} \mathbf{F}_j (W) = \frac{c}{4 \omega^2} (W) \Phi (W) = 0 \quad \text{or} \quad \text{div} \mathbf{F}_j (W) = \frac{c}{4 \omega^2} (W) \Phi (W) \]

i.e., (2.3).

In the general case, we consider the system:

\[\mathbf{F} (W) = \frac{1}{4 \pi} \sum_{j=0}^{n-1} (k_j^2 - \omega^2) \int_{T_{j+1}} \mathbf{F} (W) \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, dr_\beta + \frac{c}{4 \omega^2} (W) \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \int_{S_{j+1}} \Phi (W) \mathbf{F} (W) \, ds \]

\[\mathbf{F} (W) = \frac{1}{4 \pi} \sum_{j=0}^{n-1} (k_j^2 - \omega^2) \int_{T_{j+1}} \left[\int_{S_{j+1}} \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, ds \right] \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, dr_\beta + \frac{c}{4 \omega^2} (W) \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \int_{S_{j+1}} \Phi (W) \mathbf{F} (W) \, ds \]

(3.6)

\[\frac{c}{4 \omega^2} (W) \Phi (W) = \frac{c}{4 \pi} \sum_{j=0}^{n-1} (k_j^2 - \omega^2) \left\{ \int_{T_{j+1}} \Phi (W) \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, dr_\beta + \int_{S_{j+1}} \Phi (W) \, ds \right\} \]

\[+ \int_{S_{j+1}} \Phi (W) \frac{d \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}}}{dr_\beta} \, ds + \frac{1}{c} \int_{S_{j+1}} \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, ds \]

where

\[\mathbf{F} (W) = \frac{1}{c} \int_{T_\alpha} G (W) \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, dr_\beta \]

\[L (W) = \frac{1}{c} \sum_{j=0}^{n-1} \int_{S_{j+1}} G (W) \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, ds + \frac{1}{c} \int_{T_\alpha} \frac{\text{ikr} e^{i k r_\alpha}}{r_{\beta}} \, dr_\beta \]
The functions \(F \) and \(\Phi \), determined from (3.6), satisfy (2.11), (2.12) and (2.3). Therefore, (3.6) and (1.1) are mutually equivalent.

In particular, the homogeneous problem (1.1) is equivalent to the corresponding homogeneous system of integral equations (3.6).

4. Let us study the system (3.6). For simplicity, let us consider the case \(n = 1 \):

\[
\begin{align*}
F(K) & = \frac{(k_1^2 - k_2^2)}{4\pi} \int_{\Gamma_1} F(\tau) \frac{e^{ik_1 r(\tau, K)}}{r(\tau, K)} d\tau_N \\
& \quad + \frac{c(k_1^2 - k_2^2)}{4\pi} \int_{S_1} \Phi(N) \frac{e^{ik_1 r(\tau, N)}}{r(\tau, N)} ds_N + \frac{L(N)}{\lambda}.
\end{align*}
\]

\[\text{(h.1)}\]

Let \(K \subset \Gamma_1 \); let us introduce the notation:

\[
\begin{align*}
\Phi_1(\nu) & = f_x(\nu); \quad \Phi_2(\nu) = f_y(\nu); \quad \Phi_3(\nu) = f_z(\nu); \quad \Phi_4(\nu) = \Phi(\nu) \\
\Psi_1(\nu) & = f_x(\nu); \quad \Psi_2(\nu) = f_y(\nu); \quad \Psi_3(\nu) = f_z(\nu); \quad \Psi_4(\nu) = L(\nu)
\end{align*}
\]

\[\lambda = \frac{k_1^2 - k_2^2}{4\pi}; \quad \Lambda_{\alpha \beta}(\nu, \nu') = \begin{cases} -\exp\left(\frac{ik_2 r(\nu, \nu')}{r(\nu', N)}\right) & \text{for } \alpha = \beta \\
0 & \text{for } \alpha \neq \beta (\alpha, \beta = 1, 2, 3, 4)
\end{cases}\]

\[
\begin{align*}
B_{11}(\nu, \nu') & = 0; \quad B_{12}(\nu, \nu') = 0; \quad B_{13}(\nu, \nu') = 0; \quad B_{14}(\nu, \nu') = \frac{c \cos(n, \nu')}{\Lambda_{11}(\nu, N)} \frac{e^{ik_2 r(\nu, \nu')}}{r(\nu, N)} \\
B_{22}(\nu, \nu') & = 0; \quad B_{23}(\nu, \nu') = 0; \quad B_{24}(\nu, \nu') = \frac{c \cos(n, \nu')}{\Lambda_{22}(\nu, N)} \frac{e^{ik_2 r(\nu, \nu')}}{r(\nu, N)} \\
B_{33}(\nu, \nu') & = 0; \quad B_{34}(\nu, \nu') = 0; \quad B_{34}(\nu, \nu') = \frac{c \cos(n, \nu')}{\Lambda_{33}(\nu, N)} \frac{e^{ik_2 r(\nu, \nu')}}{r(\nu, N)} \\
B_{44}(\nu, \nu') & = 0
\end{align*}
\]
Morris D. Friedman.

Given functions ξ, η, and φ, the expressions are:

\[
\kappa_i(\xi, \eta) = \frac{1}{c_i} \cos(\xi) \frac{\partial \varphi}{\partial \eta^i} \quad \psi_i(\xi, \eta) = \frac{b_i}{\kappa_i} \cos(\eta) \frac{\partial \varphi}{\partial \xi^i}
\]

In the sequel we will denote the set of functions $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$ by the vector $\mathbf{\Phi}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$.

Similarly, $\mathbf{\Phi}^T(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$ is a vector with components $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$. Let $A(\mathbf{x}, \mathbf{y})$ be the matrix

\[
A(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} 11 & 0 & 0 & 0 \\ 0 & k_{22} & 0 & 0 \\ 0 & 0 & k_{33} & 0 \\ 0 & 0 & 0 & h_{44} \end{bmatrix}
\]

and $B(\mathbf{y}, \mathbf{z})$

\[
B(\mathbf{y}, \mathbf{z}) = \begin{bmatrix} 0 & 0 & 0 & 0 & 3_{11} \\ 0 & 0 & 0 & 0 & B_{22} \\ 0 & 0 & 0 & 0 & B_{33} \\ 0 & 0 & 0 & 0 & B_{44} \end{bmatrix}
\]

Then (4.1) can be written

\[
(4.2) \quad \mathbf{\Phi}(\mathbf{z}) + \lambda \int_{\mathbf{T}_1} A(\mathbf{z}, \mathbf{y}) \mathbf{\Phi}(\mathbf{y}) d\mathbf{y} + \lambda \int_{\mathbf{S}_1} B(\mathbf{z}, \mathbf{y}) \mathbf{\Phi}(\mathbf{y}) d\mathbf{y} = \mathbf{\Phi}(\mathbf{z})
\]

Equation (4.2) is a loaded Fredholm equation of the second kind.

This can be written in the usual form if we introduce a new kernel and new differential.

Let us put $(\mathbf{y} \in \mathbf{T}_1 + \mathbf{S}_1)$

\[
\kappa(\mathbf{y}, \mathbf{z}) = \begin{cases} A(\mathbf{y}, \mathbf{z}) & \text{if } \mathbf{y} \in \mathbf{T}_1 \\ B(\mathbf{y}, \mathbf{z}) & \text{if } \mathbf{y} \in \mathbf{S}_1 \end{cases}
\]
Then (4.2) becomes

\[(4.3) \quad \mathbf{\Phi}(\mathbf{u}) + \lambda \int_{T_1} \kappa(\mathbf{u}, \mathbf{x}) \mathbf{\Phi}(\mathbf{x}) \, d\mathbf{x} = \mathbf{\Psi}(\mathbf{u}) \]

As is known, Fredholm theory is applicable to (4.3) (see V. I. Smirnov [4,7]).

The proof of the uniqueness theorem for (1.1) is given in [4,7]. Therefore, by virtue of the equivalence, the homogeneous system (4.3):

\[(4.3) \quad \mathbf{\Phi}(\mathbf{u}) + \lambda \int_{T_1} \kappa(\mathbf{u}, \mathbf{x}) \mathbf{\Phi}(\mathbf{x}) \, d\mathbf{x} = 0 \]

has only a trivial solution. This means that (1.1) is solvable for any right side and the existence theorem is proved.

Tbilisi Inst of Eng. July, 1953

References

1. V. D. Kupradze: Boundary problems of oscillation theory and integral equations. Moscow, Gostekhizdat, 1950

