

SOHE TECHNIQUES FOR ALGORI1HM OPTIMIZATION

WITH

APPLICATION TO MATRIX ARITHMETIC EXPRESSIONS

by

Robert Alan Wagner

Conputer Science Department
Carnegie-Mellon University
Pittsburght Pennsylvania

June 27, 1968 [J \) Q

Nomigee

Submit ted to the Carnegie-Mellon University
In partial fulflllaent of the requirements

for the degree of Doctor of Philosophy

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (9ir*f*6)r V<f££ff Cl-f OC'> &
and Is monitored by the Air Force Office of Scientific
Research. Distribution of this document Is unlimited.

ABSTRACT

Algorithm optimisation can be accomplished by an exhaustive search

over alternative algorithms for performing some programming task. The

resulting algorithms are optimum only with respect to a program technology

the particular set of alternatives investigated. Thus, larger program

technologies can be expected to yield better algorithms. This thesis

contributes to the production of optimum algorithms in two ways. First,

a technique ("loop-fusion") was developed for producing new algorithms

equivalent to old algrrlthms, and thus expanding program technologies.

Second, a technique ("comparison") is described which reduces the effort

required by certain exhaustive searches over 'Veil-structured" search

spaces. These techniques are applied to the production of algorithms for

evaluating matrix arithmetic expressions (MAE). (The operators, + and *,

in such arithmetic expressions are interpreted as matrix addition and

multiplication, respectively.) A method is described for producing, for

any MAE, an algorithm for its evaluation which requires fewest arrays for

holding N by N matrices, while not requiring more execution time than the

"standard" MAE evaluation algorithm. Although the algorithm-production

method used is basically an exhaustive-search over a large space of pro-

grsm alternatives for each subexpression of the given MAE, the effort

this method requires grows only linearly with the number of operators in

the given expression.

11

ACKNOWLEDGMENTS

I wish to thank my adviser, Professor Alan J. Perils, for

his efforts to aid me In this work. He suggested the specific

application of this thesis. He encouraged me to continue my

effort when all seemed hopeless. Furthermore, without his crit-

icism of the presentation, this thesis would probably be totally

unreadable. 1 also wish to thank Miss Sally Dewald, who suffered

through many pages of nearly Indecipherable handwriting to produce

these typed pages.

Ill

TABLE OF CONTENTS

TITLE PAGE 1

ABSTRACT 11

ACKNOWLEDGMENTS Ill

TABLE OF CONTENTS Iv

CHAPTER 1 1

1.1 General Problem of Program Optimization 1
1.2 A Specific Problem 3

1.3 Prior Work 12
1.4 Statement of the Problem 16

1.5 Overview of Our Approach 17

CHAPTER II 19

II. 1 Basic Definitions 19

11.2 Parse-Trees and Expressions 20

11.3 Parse-Tree Examples 21

11.4 The "n3" Elementary Algorithms 22

11.5 Loop Fusing 25

11.6 Fusion In Flow Charts: Graphic Description 29

11.7 Loop Fusion Conditions 30

11.8 Storage Savings In Loop Fusion 45

11.9 Summary of Loop Fusion Conditions 48

11.10 Algol and Flow-Chart Language 50

11.11 Algorithm Fusion (parallel connection) 50

11.12 Matrix Operation Algorithms (MQA's) 52

11.13 Shapes, the "Valences" of an MOA 56

11.14 Explicit Rule for Developing Shapes
for Arrays used In Algol Programs. 59

11.15 Parallel Connection Algorithm 60

11.16 Matrix Elementary Algorithms 64

11.17 Canonical k-MEA's 67

Iv

CHAPTER III 69

111.1 Elementary Expreeslon Parse-Tree* (EBPT'e). ••••••••69

111.2 Alg-Tree Definitions 70

111.3 Major Properties of Alg-Trees 74

111.4 Result-Array and Fringe-Set Array Storage Overlap 76

111.5 Calculating Intexnedlate 2-Array Requirements of an Alg-Tree79

111.6 The Leaves-In Algorithm • 84

111.7 Effort Estimates Motivating Search Reduction 91

CHAPTER IV 97

Introduction ••••• 97

IV. 1 The Fv-Set Comparison Theorem .102

IV. 2 Applications of the Comparison Theorem to the
Leaves-In Algorithm 109

IV.3 The Leaves-In Algorithm, with Comparison Theorem Ill

IV,4 Leaves-In Algorithm Effort Requirement 112

CHAPTER V , • .120

V.I Suoaary of Results 120

APPENDIX 1 126

1. Winograd's Matrix Multiply Algorithm 126

2. Additional Shapes Defined for Winograd's Algorithm 127

3. Variations on Winograd's Algorithm (N Even) 127

APPENDIX II 130

Leaves-In Algorithm in APL 130

External Representations 131

Detailed Examples 133

BIBLIOGRAPHY 154

CHAPTER I

1.1 Gii«r«l Probl— of Prograa OptimLzmtioa

Problems are often presented to a human programmer in «aye tfilch

allow a multitude of possible approaches to their solution. The pro-

greamer must then decide on some basis, which possible approach should

be used. Furthermore, a given "program" is, if it is at all useful,

normally destined to be a sub-progrsm of various larger programs. One

has no reason to hope that die Implementation of the sub-program is

die sams in die optimum implementation of each progrsm in tfiich it is

embedded. Thus, a program cannot actually be optimized permanently in

isolation. The programmer must optimise it for the particular context

in «hieb it is to be used.

One form of the prograa-optlmizatlon problem can be stated as

follows:

Given a prograoning task formulated as a desired

transformation or mapping of input data to output

data, find that program Which "best" Implements

die task.

A proErsm specifies the sequence of operations some processor is to

perform In order to accomplish the desired transformation. Bach

operation is itself a transformation, vdilch must be drawn from a fixed

set of possible operations, the repertoire of instructions of die

given processor. When more than one sequence of operations can be

used to accomplish a given progrsamlng .ask, such sequences are termed

equivalent, as are Che programs vhich specify them. That program is

"best" which, of all equivalent programs, minimizes some program cost

function.

Programs, in their specification of operation sequences, can be

associated with "costs" These costs need not be monetary. In general,

they represent the amount of some scarce resource used in creating, or

executing a given program. Exsnples of costs include:

(1) Programmer's time required in creating a program

(2) Processor time used in executing some program

(3) Processor nenory space required-before the progrsa

can be executed.

Costs (2) and (3) are of particular Interest. These costs describe

the performance of the final product—the program. We therefore define

a program cost function to be scam non-decreasing function of the pro-

cessor time expended, and memory space required, during die program's

execution«

In fact, a class of optimization problems can be devised, depending

on the precise description of the program cost function. For example,

one can conceive of an environment In vhlch total main memory space Is

limited. Then no program Is acceptable tfilch requires more main memory

than this amount. Among the equivalent programs which are acceptable,

some require least processor execution time. These would then be pre-

ferred. In place of a single function of memory space and execution

time, one of the variables enters the optimisation problem In a constraint,

«hlle the other amkes up the function to be optimized.

An equally valid description of the program cost function can

reverse the roles "space" and "time" played In the previous example.

That la, «e conceive of a altutatlon tfxerein constraints are placed on

the execution time of some prograsnlng task, leaving ua to choose among

the equivalent programs for this task one which uses least memory space.

Such a sltutatlon arises In certain 'VRiltl-prograsssed" computer systems,

which employ the physical memory allocation technique called "paging".

In these environments, potentially, large amounts of space are available,

at Increasing cost In "response time". It would seem desirable In such

aa environment to choose a program vhlch uses leaat apace, «hlle re-

quiring the processor time required for execution to lie below some

upper limit.

The cost functions described here all depend on the measurement of

a program's execution time and space requirements. These requirements

depend on both the program and the particular Input data with which that

program Is supplied In a given execution. In general, a program Is

written to apply to many different selections of Input data. It seems

desirable to discuss Its requirements for several such Input data

sets at once. One convenient «ay to describe prbgraa behavior for large

classes of possible Inputs Is to "paraaetrlze" that prograa's require-

ments—to express the space and time requirements In terms of certain

"characteristic numbers'* derivable from the data.

Thus far, the discussion of optimisation of programs has Implied

a search over all possible programs lAilch specify a given prograanlng

task. Unfortunately, for many programing tasks we know of no way to

characterise all prograsw Which specify that task. Nevertheless, methods

of Improving programs sre still desirable.

For certain prograamlng tasks, a number of alternative programs are

known. A search can be performed «hlch Is limited to a set of progrsms

for a prograssslng task «hi«' a are derivable In some specific ways. The

best program among those considered will be termed "optimum with respect

to some (specified) technology", or technologically optlmus. for short.

Technologically optimum programs may well yield near-optimum values for

the program criterion function. Additional Inprovements can be realized

by Increasing die number of programs derivable, that Is, by expanding

the technology.

1.2 A Specific Problem

The general problem of program optimization tends to founder on the

problem of programing task representation. As presented to a human

progrsaser, many If not most programming tasks are not well-defined. Not

only does the prograamer often have great scope in choosing solution

techniques; often he isay choose the characteristics of the solution as

well. Such freedom limits the ability of computer optimisation techniques

to derive equally satisfying results. Because the liedts of acciptablllty

of programs are vague, and Indeed only Informally stated, solutions

proposed by algorithms cannot be tested for acceptability.

Several classes of well-specified progrsnmlng tasks do exist, how-

ever. Bach "higher-level" langu«ge construct, such as the expression

In Algol, or the DO-loop of FORTRAN, specifies a programming task s<

4

what Independently of specific sequences of instruction on a specific

—chine. The seaentics, or ■saning, of instances of such constructs
thus allow more then one program to correctly specify that meaning.

Furthenore, because many instances of each constrict may be presented

to an optimization (progrem-cholce) algorithm, it is profitable to
derive such algorithms. The present work describes a method, based ulti-
mately on an exhaustive search over prograoning alternatives, for "com-

piling" or "translating*' one high-level language construct: the "matrix
arithmetic expression". Several authors have advocated die addition of
matrix arithmetic capabilities to various prograaning languages. The
matrix arithmetic expression provides a basic construction for specifying

such aridaMtic.

The ajntax of a matrix arithmetic expression can be taken to be
that of an Algol expression «hose <variableO are all <array iden-
tifier^, and vhose operators are restricted to '•*■' and •••, In these
expressions, + and * designate matrix addition and multiplication.

We can successfully cos^ile technologically-optimal programs for instances

of a sub-class of all expressions. Our eptlmisatien algorithm requires that:

(1) All variables of the expression must be N-by-N (square)
arraya;

(.2) The expression must be "fully parenthesized"; and
(3) The expression may not contain coonon subexpressions.

A fully parenthesised expression syntactically describes exactly one
decosiposition of the expression into one-operator subexpressions. Thus,

we will make no attempt to employ die associative and distributive laws
of matrix algebra to derive equivalent expressions. A coomon subexpres-

sion is a subexpression, more than one instance of which occurs in the

expression. Thus 'A+B* is a coonon subexpression of the expression

(A-») • (A+B).

We will also assume that the aatrices we deal with are "general", so
that no special space-saving storage techniques are possible.

We will describe a particular "technology" for programs which eval-

.•

uAte matrix arithmetic expressions. Fron this technology, an expanded

technology can be developed, using a technique which may well be useful
for creating new equivalents to programs for other programming tasks«
A search-procedure Is developed over the programs In the expanded matrix
arithmetic expression technology. This search-procedure accepts only

those programs irtiose time-requirement Is no greater than that required

by die "standard" technology. It searches for a program whose memory-

space requirement Is least. The search-procedure Is shown to require
complle-tlme computation resources lAlch Increase exponentially with the
number of operators In the given expression. Finally, a general tech-

nique for reducing the effort of any "structured" exhaustive search is
developed, and applied to the present search, reducing corapile-tlme effort

to linear dependence on the number of operators In the given expression.

From the (informal) semantics of matrix arithmetic expressions, it

should be clear that techniques known for "compiling" scalar expressions
are applicable to matrix arithmetic expressions. Techniques are avail-
able which "compile" arbitrarily complex scalar expressions into instances
of a small number of basic assignment statements. For example, basic
assignment statements for scalar arithmetic expressions with the syntax
of matrix arithmetic expressions are:

A4-B + C and A «-B * C.

A compilation technique based only on the syntax of the given expression

can resolve any expression into a sequence of systematic substitution

instances of the above assignments. (A systematic substitution replaces

each variable name in an assignment with new names, chosen so that the

new name for the left-side variable does not agree with the new name

of any other right-side variable. Thus,

A«-X*Y and Z ♦- Q * W

are systematic substitution Instances of A «-B * C, but

A«-A*X and Z «-Q * Z

are not.)

New variables can be chosen to hold the values of subexpressions

until diese values are input to a later assignment. Thus, the func-

tional composition of the binary addition and multiplication functions

making up the given expression can be achieved. Matrix arithmetic ex-

pressions can be compiled in exactly the way scalar expressions are

compiled, yielding sequences of systematic substitution Instances of

the (syntactically) same basic assignment statements. For each of the

basix matrix assignment statements, an algorithm can be devised. Thus,

a compilation into basic assignments serves to produce an algorithm for

computing the expression.

In the case of scalar expressions, relatively little menory space

is required to hold each Intermediate result. Accordingly, many com-

pilers make no attempt even to re-use variables used for intermediate

results.

Matrix arithmetic presents some motivation for space-optimal com-

pilation. In compiling matrix arithmetic expressions using this tech-
2

nlque, a set of N variables must be allocated to hold each Intermediate

result. Because N may veil be large, a significant amount of .emory

could be demanded by the compiler for Intermediate matrices. Accordingly,

some effort by the compiler to reduce the storage space it allocates

for the compiled program is desirable.

In the discussion of the general problem of program optimization,

it was noted that, realistically, program time and space requirements

should be parametrized. Both the time and space required for computing

matrix arithmetic expressions can be regarded as functions of N, «here

each matrix entering the expression is N-by-M. Thus, each set of varl-
2

ables capable of holding a matrix (called a 2-array) must Include N

variables. The time requirement for computing

A «-B * C

can be stated as: VT additions, and N multiplications, when one algor-

itm is used, or

3N /2 additions, and N /2 multiplications

«hen an algorithm recently discovered by S. Winograd [14] is employed.

In general, tine and space requirements for computing a matrix

arithmetic expression are polynomials in N, For large enough Nf the
leading term of ~ polynomial in N dominates the polynomial. In the
sense that the contribution of all other terms are negligible with re-
spect to it. (The leading term of a polynomial In N Is that term In
tfilch N has the largest exponent.) Accordingly, we will approximate
time and space requirements by the leading term of their representation
as polynomials In N.

The space-requirement for a program to calculate a given matrix
arithmetic expression has several components, each corresponding to a
term In the polynomial In N. Since we have stated that certain terms
of the polynomial will be Ignored In our optimization. It seems worth-
while mentioning the program entities to which they correspond.

The leading term of the space-polynomial clearly counts the number

of 2-array8 required. The linear term in N measures the number of
1-arrays, each capable of holding a 1-by-N or N-by-1 matrix, or vector,
of values. The program Itself is represented in memory at execution
time. However, its size Is independent of N, since we will Implement

It by means of "loops". The program-size thus enters the constant
term of the space polynomial. Thus, the space requirement for a matrix
arithmetic expression's evaluation Is dominated by the number of 2-arrays
needed for that evaluation.

We will seek a technologically-mlnlmum-space program. The program-
class we search will include only programs whose time-requirement is
smaller than a time-standard, derivable from the given expression.

Two methods for computing matrix multiplication have been alluded
to. One the set of N algorithms, requires N scalar additions and
multiplications to perform a matrix multiplication; the other, the set
of N /2 algorithms, requires 3N jl additions and N jl multiplications.
Suppose all basic matrix multiplication statements in the "standard"
compilation of some expression Is Implemented by the same algorithm,
and that no element of any subexpression Is recomputed during the
expression's evaluation. Then the number of scalar additions and mul-

tlpllcatlons needed for this no-unnecessary-comput.ation inpleinentation

forms a reasonable upper bound on the time requirement of an "acceptable"

program.

We will seek a program for evaluating a given ma'rix expression

whose space-requirement is least, subject to the requirements that the

program

(1) be generatable by techniques to be presented, end

(2) requires no more time than a no-unnecessary-computatlon

sequence of one-operator basic assignments.

Programs which satisfy (2) are termed tslnlmum-connectlon-tlme

programs. We are seeking a program «hose space requirement Is least,

where we approximate a program's space requirement by the number of

2-arrays It uses. The 2-array requirements of two programs will thus be

Cdwared In the course of the search outlined. However, we can show that

certain 2-arrays are needed by any program to evaluate a given matrix

expression. These 2-arrays hold the matrices which are Input to the

expression. These variables must remain present and undisturbed through-

out the expression's evaluation. Thus, Input 2-arrays do not affect

the comparison of two programs. In effect, only non-Input 2-arrays need

be counted In the program criterion function. These non-Input 2-arrays

will be termed "Intermediate 2-arrays".

We will demonstrate an expansion of the basic compilation technology

which will introduce more "basic" matrix assignment statements. These

statements will contain more than one operator. In fact, they are de-

rived by substituting the expressions of basic assignement statements for

the variables In other assignments. Corresponding to each new assignment,

we will show how an algorithm, called a matrix elementary algorithm, (MEA),

can be constructed, having the following properties:

(1) Its time requirement Is the same as that of the sequence of

basic one-operator assignments from which Its expression

was derived;

(2) It requires only k*N Intermediate variables for Its eval-

uation. Here, k does not depend on N.

*

•ft. ■■—

These algorithm are created from sequences of basic (1-operator)

assignment algorithms by a process called "loop-fusion". Basically,

this process allows snail portions of the matrix which represents the

value of a subexpression to be computed, and then used at once In

computing s portion of the expression enclosing that subexpression.

This portion of the Intermediate result need not be retained longer.

The variables used to hold this part of the intermediate result can

then be used to hold another portion of the Intermediate result. The

fusion may thus require as few as k*N Intermediate variables.

The technique of loop fusion may permit combining two loops

which are not part of matrix arithmetic algorithms. One of the prin-

cipal results of this thesis is a set of sufficient conditions under

which two loops may fuse into one computationally equivalent loop. Any

technique for generating equivalent programs Increases the set of pro-

grams over which a technologically optimizing algorithm may search.

Thus, loop fusion holds potential for Improving programs for tasks other

than evaluation of matrix arithmetic expressions.

Loop fusion permits generation of a potentially infinite number of

matrix elementary algorithms (MEA's), However, the syntax of their

associated expressions is more restrictive than the syntax of matrix

arithmetic expressions. Not every matrix arithmetic expression can be

evaluated using a single matrix elementary algorithm. As a result,

techniques are needed for deciding Just which MEA's should be used to

evaluate each subexpression of a given matrix arithmetic expression.

The optimum decomposition of matrix arithmetic expressions into

expressions tlhich MEA's are capable of evaluating can not be dewid«d apart

from the given expression. In other worde, no one MEA is obviously

better than another, for all expressions. For exsmple, it might be

supposed that the larger the expression evaluatable by an MEA, the better

that MKA is. The intermediate variable requirements of a "large" MBA

are no worse that that of a smaller MSA. In some sense, the overhead

of computing the large expression can be apparently allocated over

more operators, reducing the per-operator storage costs. Unfortunately,

10

large-express Ion MEA's have another property which Halts their use-

fulness: every Input of an MEA must be present simultaneously. Thus,

a large-expression MEA whose Inputs are all intermediate results requires

■ore Intermediate 2-arrays to be present than a similar small-expression

MBA. Nonetheless, when a large-expression MBA's Inputs correspond

primarily to Inputs to the given expression, Its use Is desirable«

An algorithm, called the "leaves-ln algorithm", was devised for

generating all the possible decompositions of a given matrix arithmetic

expression Into MEA's. This algorithm la "efficient" in the sense that

It never re-generates an MEA used to evaluate a particular subexpression,

as the evaluation rules for other subexpressions are varied« Instead,

all possible MBA-decoaf>osltlons which can be used to evaluate a sub-

expression are retained in memory, and combined with the MEA-decomposi-

tlona for evaluating other subexpressions to generate new MEA-decomposi-
tions. Unfortunately, the "effort" (computation time) required by this

algorithm was found to grow exponentially with the number of operators

In die expression, for certain expressions. This potentially large effort

Is undesirable, since It makes the cost of obtaining a technologically

optimum program unreasonably large«

A general technique for reducing the effort required by certain

exhaustive researches was devised, and applied to the leaves-ln algorithm.

The technique la not "heuristic". In that no chance of missing an optimum

solution is Introduced by Its use« Furthermore, the technique may well

be uaaful In reducing the effort required by other exhaustive search

procedurea«

Roughly, In any exhaustive search, "states" of the search are pro-

duced. Often, not all variables In the state-vector are computed simul-

taneously. We can speak of a "partial state", which represents the

situation obtained «hen not all state variables are given values« A

partial state may lead to any of a large number of coa^lete states,

depending on the assignments made to the variables not assigned values

in the partial state. A particular set of valueu assigned to the non-

partlal-state variables will be termed a "completion".

•

n

Most of the effort In an oxhauitlve search Involves generating all

the possible completions of each partial state. Now suppose two partial

states sre known such that the same variables are fixed (to different

values) In each, and such that any completion of one Is a possible com-

pletion of the other. Thus, If A and B are partial states, and C Is a

givun "completion", if A U C (read "A completed by C") is valid, so is

BUG. Also, suppose N(S) Is the value of a state, and we seek a

state of minimum value. If for all completions C, N(A U C) > N(B U C),

then completions of partial-state A need not all be examined. For every

complete state A U C generated by any completion C, there Is a complete

state B U C generated by that same C which is better. Now, notice that

the statement

(1) VC [N(A U C) > H(B U C)]

Is a predicate on A and B which is Independent of C. If we can discover

a predicate equivalent to (1) whose evaluation does not require the

generation of all possible completions C, we can compare partial states

using It. The resulting algorithm may reduce the number of states gen-

erated tremendously.

The power of the technique described depends on several properties

of the space searched, and the variables chosen to describe states in

that space. In some searches, the comparison may lack "power"—for

example, It may only hold between Identical partial states. In other

searches, few pairs of partial states which yield true tor the value of

the comparison may ever be generated. Nonetheless, In some searches over

"well-structured" spaces, such comparisons may drastically reduce the

search effort.

In the search for the best MEA-decomposltlon of a given matrix

arithmetic expression, the comparison theorem proved quite useful.

Here, a "partial state" corresponds to a particular decomposition of

one subexpression. A "state" corresponds to a particular decomposition

of the entire £lven expression. A partial state may be completed by

any decomposition of some subexpression not part of the partial state's

12

subexpression. States arise from fusions of the MEA's used In computing

subexpressions. The evaluation rule for states depends on components

In the partial state and in the completion.

The evaluation function of an MEA depends on the set of subexpressions

«hose values are Inputs to this MBA. The number of Intermediate 2-errays

needed to compute each Input Is used to determine the number needed to

compute the MEA's result. An MEA A v*ilch Is extended by loop fusion

becomes an MEA, A U C, Whose Inputs Include all Inpute of A, as well as

additional Inputs, C. These new Inputs, adjoined to the Input sets of

two different algorithms, may completely change the relative space-effi-

ciency of the algorithms.

He were able to discover Just \Jhea two MEA-deconposltlons for evalu-

ating some subexpression were Interchangeable. By Interchangeable, we

mean that any valid completion of one Is a valid completion for the other.

Furthermore, ve were able to discover the evaluation-rule, N(S), for

MEA-decomposltlons S. Also a predicate equivalent to (1) for this eval-

uation rule was discovered. The application of this comparison predicate

to the leaves-ln algorithm reduce« the effort required to a value propor-

tional to. rather than exponential with, the number of operators In the

given expression.

1.3 Prior Work

Several aspects of the prior art should be discussed. Some re. tits

have been published relating to the general problem of program optlau a-

tlon. Also, various authors have attacked specific problems In this area.

He freely admit to being Influenced by their approaches. Some previous

work has been directed at the production of optimum compilations for

scalar-expressions, work «hose basic techniques we build on. Finally, some

work on optirnin compilations of matrix arithmetic expressions has been

published, and should be mentioned here.

One of the major forerunners of the approach we employ here seems

to have been Simon's "Heuristic Compiler" [9]. Simon's work appears to

—. . .

0 '

•

13

have «• Its goal the production of uom program to accomplish a given
programnlng task; however, he appears to have been one of the first to
describe a vide variety of programming tasks In such r way that a space
of program alternatives for their accomplishment could be visualised.

His "before-aad-after" description of procedure operations foxas such a
"state description" of programs. Indeed, he explicitly mentions the
possibility that "there will generally be many programs (not all equally
efficient or elegant) that will do the same work" [9, pg. 6]. This very
naturally suggests a search for the most elegant, or efficient.

Several authors have attacked problems In the general area of op-
timizing the compilation of specific language-constructs. Notably,
Relnwald and Soland [7,8] have discussed at length the problem of con-
verting "Decision tables" into optimal computer programs. Interestingly,

they adopt an approach based on an exhaustive search over certain pro-
gram variations. Ihey advocate use of "branch and bound" techniques for

reducing the space searched. Furthermore, they suggest that the space
of programs they search exhausts the space of all programs which can
be said to be "translations" of a given decision table. Thus, the pro-

grams they produce are claimed to be time-optimal, or space-optimal,

and they even propose means for locating optimal programs whose criterion

function is a linear combination of memory space and execution time.

Another group of problems has been attacked by Wlnograd [11« 12,13].
Wlnograd treats both problems of designing minimal-time hardware for
performing certain computer instructions, and that of designing minlmal-
operatIon-coat algorithms for performing certain operations. For the
most part, Wlnograd concerns himself with deriving theoretical lower
bounds on the "time" required for certain computer operations. In fact,
he usually also demonstrates procedures which yield near-minimal-time
operations. Although his approach Is not constructive, nevertheless
his search for theoretical lower-bounds on quantities we attempt to min-
imize la certainly relevant. Indeed one of his results (ln[14J) directly
concerns matrix multiplication. Here, he presents an algorithm for cal-
culating the dot-product of two vectors which, when applied to matrix

14

3
multiplication, reduces the number of multiplications required from n

to approximately n /2, We present a derivation of this result In

Appendix I, together with algorithms «blch Implement ltt and «hlch can

be used as "basic algorithms" fior die matrix assignment A «- B * C.

Of more direct relevance to the compilation of matrix expressions

Is an algorithm developed for space-optimal compilation of scalar

arithmetic expressions, and described by I. Nakata [5]. This algorithm

la based on an analysis of an expression Into a data-flow diagram, a

precedence-graph showing the necessary time-sequence of subexpression c<

putatlon. This structure Inspired the analysis of the leavas-ln algorithm.

Nakata's algorithm which we describe briefly here, produces a linear order

for the evaluation of subexpressions. This order, of all possible evalua-

tion orders, uses fewest intermediate variables.

Let x be a node In the parse-tree T of an expression E. Suppose

n(x) represents the mlnimwi nusber of intermediate variables needed In

computing the subexpression whose sub-tree Is rooted at x. Apply the

following algorithm to each node of T, applying It to every descendant

of a node y before y.

1. If x la a leaf of T, x's subexpression Is a variable Input

to E, and needs no algorithm for Its computation. Set n(x) ■ 0.

2. If x la not a leaf of T, let Its immediate descendants be x.

and x,. Then n(x.) and n(x2) have already been computed.

a. If n(x.) > n(x.), (1,J - 1,2), compute x.'s sub-

expression first. One cell retains the result of this

computation during the following calculation of x 's

subexpression. Set n(x) ■ n(x.), since enough cells

remain of the n(x.) - 1 to compute x., which needs

only n(x) < nixj - 1.

b. If n(x.) ■ n(x)_, then regardless of «blch subexpression

Is computed first, one cell Is required to hold Its

result. Then an additional n(x.) cells Is needed in com-

puting the other result, x's subexpression can be

MM

15

computed, using A «-A op B, into one of the cells now
holding a subexpression's result. Hence, n(x) ■ n(,x.) + 1.

The operation of this algorithm depends on the presence of elementary

operations for performing assignment statements like A «-A op B, vhere
one input variable is replaced by the assignment's result« Otherwise,

this same algorithm can be extended directly to matrix arithmetic expres-
sions. Ve show later that operations very similar to

A 4-A * B, and of course A «-A 4- B

are available for matrices A and B.

Caller and Perlis [4] were early advocates of the addition of

matrix arithmetic capability to compiler languages. Ihey comnent on the

potential danger of allowing a compiler to allocate large amounts of

storage for the evaluation of matrix expressions. They suggest a nianber

of elegant devices for performing various matrix manipulations. One of

particular elegance seems to be their proposal for implementation of

the matrix transpose operation. No instructions are needed at execution

time. Instead, in each algorithm compiled, the compiler interchanges

the indices in the subscript positions of each subscripted variable

which is a transposed matrix.

Caller and Perlis also present an interesting technique for com-

puting a succession of matrix products. Indeed, this technique demon-

strated the computation of subsets of the elements of a matrix result,

followed by innediate use of those elements. We generalize this notion

to that of "loop fusion", applicable to algorithms other than matrix

arithmetic algorithms, in the sequel.

Caller and Perils' algorithm for matrix multiplication:

Suppose we wish to compute A * B *...* K, a product of

matrices.

Let x represent the 1th row of matrix X.

Then we can compute

A1 * B - (A * B)1

16

without using more than one vector of storage. By extension,

only vectors of storage are needed in computing

(A * B *...* K)1

by (A * B *...* J)1 * K

By repeating this ccmputatlon of one row-vector of the

product for different rows A , the entire product can

be produced, using only one matrix to hold the result.

[Caller and Perils also show that, in the repeated products

of row-vectors with matrices needed to produce a result

row, only two vectors of storage are needed, at most.]

While die Galler-Perlis algorithm produces highly acceptable pro-

grams for computing certain expressions, it is inapplicable to others.

For example, it does not apply to: A * (B + C) * D. Were we to

compute A * (B + C), we could use an entire matrix to hold the value

of (B + C), Otherwise, the value of (B + C) would necessarily have to

be re-computed as each of the N rows of A were multiplied by (B + C).

The re-computation produces a program which is not minimum-connection-

time, and is hence unacceptable.

1.4 Statement of the Problem

We consider matrix arithmetic expressions (MAE's) (as distinct from

MEA's) whose syntax is:

<MAE> :: ■ <J1AX> I <*iAT> + <MAO

01AT> :: - <MAE> | <MAE> * <MAT>

<MAE> :: - (<MAE>) | <taatrix identified

The operators + and * signify matrix addition and multiplication respec-

tively. A <natrix identifier> is declared as an <array> [6].

We restrict the MAE's we investigate as follows:

(1) Each <DaCrlx identified is declared to have subscript

bounds of [1:N, 1:N]. Thus, each matrix must be square;

17

(2) The semantics of an ^IA©» or <MAT> which includes more

than one operator is Interpreted to be right-associative.

Thus, we assuoe that die MAE A * B * C aust be computed ast

(A * (B * C)).

(3) No <MAE> may contain more than one Instance of the same

(sub) <ttAB».

We propose to find a program which, among a certain set of programs,

cooputes any given MAE using the smallest number of intermediate 2-arrays,

subject to a restriction on the acceptability of programs;

Bach acceptable program must be a minimum-connect Ion-time program.

The set of programs we study consists of sequences of instances of

basic matrix assignment algorithms. The basic matrix assignment algor-

ithms are a potentially infinite collection of algorithms derived from

algorithms for the matrix assignments A «- B * C and A «- B + C. Because

the set of basic matrix assignment algorithms is far larger than the

collection of algorithms usually used for conpilation, the technological

space minimum we obtain using them is smaller than that obtainable using

only algorithms for A *-B * C and A <-B + C, However, we can make no

claim to have discovered either time or space optimal algorithms, for we

have no proof that we have exhausted all prograanlng possibilities in

constructing the particular set of programs studied.

1.5 Overview oi Our Approach

We first describe a technique, called "loop fusion", for creating

new programs equivalent to certain given programs. This technique pro-

duces programs which are computationally equivalent to the given programs,

and which require the same (or slightly less) execution time. Their

patterns of accessing and computing data are different, however.

Using loop-fusion, we find we can grow a potentially infinite
i

collection of algorithms for evaluating matrix expressions. These

algorithms, called MBA's, are grown from only five basic algorithms.

They each require internal intermediate variables proportional in number

18

to N.

A compilation algorithm, culled the "leaves-in" algorithm is pre-

sented next. This algorithm discovers the space-minimal deco^osition

of a given expression into MEA'P. It does so by "tailoring" MBA's to

fit each subexpression of the given expression, in all possible «ays.

While it succeeds in avoiding redundant re-decomposition of sub-branches,

it requires computational effort (time) which grows exponentially with

the number of operators in the given expression.

A general technique, called "comparison", is proposed to reduce

the conputatlonal effort of exhaustive search optimization. This tech-

nique attempts to avoid generating all possible "completions" of a par-

tially-specified search state. It does so by comparing two interchangeable

partial states in all possible completions, without actually generating

these completions. By generalizing over all completions, a predicate

independent of any completion is produced, which compares two partial

states. Certain evaluation rules for states permit derivation of an

equivalent predicate which does not mention completions, and nay hence

be evaluated by examination of only the partial states it compares.

Comparison is applied to partial states in the leaves-in algorithm.

Here, a partial state corresponds to a possible algorithm for use in

computing a single subexpression. A complete state is an algorithm for

computing the entire given expression. By eliminating many partial

states as soon as they are generated, the effort-requirement of the

leaves-in algorithm is reduced to a linear function of the number of

operators in the given expression.

•
.

CHAPTER II

II.1 Baalc Definitions

The Input set of an algorithm la the set of variables «hose con-

tents Just before the algorithm Is executed are accessed during the

algorithm's execution.

The change-set of an algorithm Is the aet of variables stored

Into during the algorithm's execution.

The result-set of an algorithm Is the set of variables which are

(1) In the change-set of the algorithm, and (2), whose contents Imne-

dlately after the algorithm's execution Is Input to some other algorithm.

The Intermediate set of an algorithm Is the set of variables In the

algorithm's change-set, and not In its result-set.

The Input a to an algorithm are the values the variables In the al-

gorlthm'a Input-set hold Just before the algorithm's execution. Similarly,

the reault of an algorithm is the set of values Its result-set holds Just

after the algorithm's execution.

The word "algorithm" here may be taken to mean "statement-sequence",

Including the sequence consisting of exactly one statement. We will

therefore use, for example, "result-set of a statement" in its sense

as defined here.

The word array is our name for the Algol [6] Subscripted varlable>.

A k-subscript array corresponds to an Algol subscripted variable having

k subscript positions.

For our purposes, a k-subscript array la a named aet of variables.

If two arrays A and B have different names, so

name (A) ^ nanie(B)

then A D B ■ ^, i.e., A and B have no variF* le in comnon. Furthermore,

if [1] and [J] are two k-tuples such that [1] / [J], then A[i] is some

particular variable, a member of A, and A[i] / A[j]. Thus, different

20

combinations of the k subscripts select different variables, all members

of the array.

A siaple algorithm is a sequence of loops and assignment statements

containing no branches outside loops.

Two simple algorithms are adjacent Just when every statement of one

precedes every statement of the other, and «hen no statements intervene

between the last statement of the first algorithm, and the first state-

ment of the second algorithm.

If A is a set, the number of elements of A will be denoted size (A).

II.2 Parse-Trees and Expressi »ns

We often find it convenient to refer to expressions by their parse-

trees. The parse-tree of an expression is a directed graph with labeled

edges. The nodes of this graph correspond to the operators and variables

in '^e expression in such a way that, if the expression is <E1X0FXE2>,

the parse-tree contains a node 1 whose name is the same as <OP>, and

whose left son is a subtree corresponding to <E1>, and whose right son

is a subtree corresponding to <E2>.

Left (right) sons are located by following the branch labeled left

(right) to the node it is Incident on. We often use "family tree" ter-

minology when dealing with trees. Other terminology used is:

"leaf" - A leaf of a tree has no descendants.

"root" - The root of a tree is a unique node
having no ancestor.

"result" - The result of a node X of a parse-
tree is the value of the
subexpression represented by the
subtree rooted at X.

Each of our parse-trees has a root, the node corresponding to its

expression's main connective. The expression this operator is a part

of is a subexpression of no larger expression. Hence, the node which

corresponds to it has no ancestor. Any given algorithm which computes

21

an expression has an associated parse-tree, that of the expression com-

puted by the elguritha. In addition, we attach to its pa.'se-tree char-
acteristics of the algorithm which will enable us to tell «hen and how
algorithms cen combine. In particular, we associate "access-characterls-
tics" with each leaf, and the algorithm's "result-characteristic" with
the root.

II.3 Parse-Tree Exeaples;

(1) Expression: (A+B*C*D) * (E-tr*((W«))

Note that we have assumed a right-associative convention where

ambiguity arises, as in B*C*D. B*C*D is taken to mean B*(C*D).

(2) Parse-tree for the above expression, fully labeled. Here L

stands for left, R for right.

R

A * E *

B * F +

■Ma>

22

(3) In parse-trees, we will omit arrow-heads on lines pointing down-

ward, so that all indicated lines will be assumed to have an arrowhead

on the end nearest the bottom of the page. Also, instead of explicit

L or R labels, we will omit them in favor of a geometrical convention.

That line drawn left-most on the page of any line directed out from a

node will be implicitly labeled L. Similarly, the right-most line di-

rected out from a node will be implicitly labeled R. These conventions

allow us to draw the above parse-tree as:

+

A
A A
A ' A

Bach line of this parse-tree is still labeled Left or Right, and directed,

but the labeling is now implicit in the geometry of the drawing of the

parse-tree.

3
\ .4 The "n " Elementary Algorithms

We present here a set of algorithms for matrix addition and multi-

plication based directly on the definition of these operations. Those
3

for matrix multiplication require n additions and multiplications, hence

the name. We realize that a tradeoff between additions and multiplications

has been achieved by Winograd which reduces the number of scalar multipli-
3 2

cations required to n /2 + n . However, our techniques are not greatly

affected by the new algorithms, as will be seen later, and we prefer the

simpler, more familiar algorithms for most examples.

The algorithms are presented here in an abbreviated Algol notation.

•

23

The abbrevlaelona we use are:

Abbreviation Algol meaning

I -»N for I:*! step 1 until N do

I -»N for I:«a atep a until N do
>a

I -*N for I:»N atep -a until a do

x -H- e x:-x4e

b begin (See Footnote 1.)

e end; (See Footnote 1.)

x 4-e x:«e

All algorithms compute C:»A op B where 'op* Is either '+' or '*'. The

subscript bounds are assumed 1;N In each subscrlpc position. Additional

vectors and elements used for temporary storage are Introduced as needed,

and are assumed to be correctly declared. Each algorithm Is accompanied

by a tree-like drawing. Its EEPT, which abstracts certain characteristics

of the algorithm. These characteristics are sufficient to determine when

elementary algorithms can be combined Into an "alg-tree". Their meaning,

names and representations are;

1. parse-tree. Represented as a tree whose nodes are operators,
or line-ends (representing variables tech of
whose names are suppressed.)

2. space-characteristic. Represented as a lower case letter sub-
script. The characteristic partially describes
the order In which elements of the Input matrices
are accessed and In which elements of the result
are computed. The letters used are chosen as
follows;

r - "row". A row at a time Is computed or accessed.
The next row may be chosen arb trarlly.

c- "column". A column at a time Is computed
or accessed. The next column may be chosen
arbitrarily.

0- "matrix". A matrix is computed before
any part Is complete, or Is accessed In computing
one part of the result.

T Since the control structure of the algorithms Is simple, we will
usually delete b and e and use Indentation to Indicate the scope associated
with matching begin-end's.

•

24

a

Algorithm 1;

I -»N

J -»N

C[I.J] «-0;

K -»N

C[I.J] +<-A[IfK] * B[KtJ];

Alaorltha 2;

J -*H

I -»N

C[I.J] ♦-O;
K -»N

C[I,J] +4-A[I,K] * B[K.J];

Algoritha 3t

I -»N

J -»M

C[I,J]<-0;

K -»M

I -»N

J -»N

C[I.J] +*-A[I,K] * B[K.J];

AlRorithm 4;

I -»N

J ->N

C[I,J] «-A[I.J] +B[I,J3;

Algorithm 5:

J -»N

I -»N

C[I,J] «-ACI.J] +B[I.J];

n

•

25

II.5 Loop Fusing

In the current section, we Intend to describe a technique «hereby

two loops which are sequential statements of a program can sometimes

fuse. The result of the fusion Is a single loop which Is computationally

equivalent to the original sequence of two loots. This fusion requires

less Intermediate storage and no more operations than the original

sequence. Thus, we can sometimes replace a sequence of loops with a

single loop which requires less Intermediate storage, and no more execu-

tion time, without changing the result of the calculation.

We will define a loop to be any program of equivalent meaning to the

following flow-chart:

JF *.

Box rÄJ Is termed the Inltlalltatlon of the loop; B Is the body of the

loop; andfp jis the predicate of the loop.

If control enters any node In a flow-chart. It does so through a line

directed toward the node. Further, control leaves a flow-chart node (If

It leaves at all) through a line leading away from that node. He will

assume that any flow-chart having exactly one entrance and one exit can

be substituted for nodes drawn as square boxes: D . Such flow-charts

may Include assignment statements, as well as branches, which ere drawn

as circles with more than one exit: CT . A branch may test any pred-

cates on program variables to decide which of Its exits control Is to

leave through; It may not, however. Include assignment statements, that

Is It may not specify that a variable of the program be stored Into.

Let U be the collection of relevant program variables. He will

Judge the effect of a flow-chart by Its effect on these variables. That

Is, two flow-charts will be termed equivalent If and only If the contents

of all variables In U after their executions are the same. If the contents

of all variables In U before their entrances agreed.

He present a series of equivalent flow-charts. Here P* Is a

26

Boolean variable not In Uy so that, in particular. It Is referenced

nowhere else in the flow-chart of which this loop is a part.

(1) " " ""• "' -' ^ ' F

(2)

p' «-P

B

(3) —HA> ^hfK/lh^—^

Where -»X.Y' * is

LB,P•

-J13—w

Flowchart 3 slaplifies the predicate P so that we may assume that the

decision to be made irtien the branch on P* is reached is pre-established,

at the time the last variable in P is assigned a value.

We are attempting to emphasize the repetitious nature of a loop.

In fact, if we know that P' would be set true the first K times the

boxTpM was entered, then flow-chart 3 is equivalent to

(4) kpj [^J B.P'

K times

Thus, a loop can be regarded as a compact abbreviation for a certain

sequence of square flow-chart boxes. The "test" has no effect on the

relevant program variables. Its effect is to ensure that one can create

a flow-chart which can be executed a variable number of times.

We will summarize the effect of any square box on the variables in

U tgr a set-assignment statement. Observe that the computation performed

■

•

27

by any box assigns certain value« to SOBS of the variables of U. The

variables so changed (stored Into, or aasigned to are equivalent but

less compact terms) are some subset of U determined by the flow-chart

substituted for the box, as well as by the contents held In certain var-

iables on entry to the box. Similarly, the values stored into these

changed variables are functions of the box, and the Input values. A set

assignment statement describes this relation by listing In a slrgle assign«

ment statement the set of variables changed, the function mapping used to

compute their values, and the set of variables «hose values are used in

the computation.

Set assignment statement example:

R «- f (A)

In the above example, R Is the set of variables changed by the set-

assignment statement, f is the function used to compute their values, and

A is the set of variables input to the statement. Note that It may be

impossible to determine the membership of each of these sets of variables

without executing the flow-chart summarized by the set-assignment state-

ment at the proper time in the program. However, we can discuss relations

between these sets of variables, leaving to another problem the task of

deciding If these relations are satisfied. There will be no loss of

clarity in the sequel in using "assignment statement" to stand for either

the usually understood assignment statement, or the set-assignment state-

ment.

As a consequence of our introduction of the set-assignment statement,

and the flow-chart equivalences sketched above, we will regard a loop

as a certain sequence of set-assignment statements. We will allow the

sets of variables and the functions of these statements to differ arbi-

trarily from statement to statement of the sequence. We will write a

loop as one or wore set-assignment statements, separated by semi-colons,

and enclosed in square brackets;

[R4-f(A): S «-g(B)]

I

28

The sequence of statements this represents Is:

(R), -i} ((A),); (S), ♦-g1((B)1); (R)2 .-£2((A)2);...

The center of a loop will refer to Che statements enclosed In brackets

in the loop's abbreviation. In the above example, the loop's center is

R 4-fU); S ♦-g(B).

More generally, let X be a set of variables, and S be some particular

occurrence of a set-assignment statement, S.

Then we define (X) to be the subset of X input to S
J J

(X). to be the subset of X stored into by S .

Suppose S is a statement in loop L. To refer unambiguously to an

occurrence of S, J must indicate the occurrence's position in die sequence

of assignments resulting from L's iteration. J must also distinguish

among the possibly several statements of the loop's center. We write

J ■ (L,i,k), '«mere L is the name of the loop, i gives the number of the

statement within the center of L (which is itself a sequence of state-

ments), and k gives the iteration number of the loop.

We will denote the contents of a variable, or set of variables,

X, Just after the Kth assignment statement in some sequence as v(X,X).

In general K is a triple, (L,i,J) giving L ■ loop-name, i ■ statement-

number in loop, and J ■ Iteration number of this occurrence, to uniquely
2

identify the assignment-statement we mean.

If A and B are two sets of variables, we say v(K,A) ■ v(J,B) Just

when there is a one-one correspondence between A and B, and when v(K,a)

■ v(J,b) for each pair of corresponding variables a in A and b in B.

Also, let c(K,X) denote the contents of X Just before the Kth

assignment statement.

Triples will be identified by capital letters, and the third ele-
ment of that triple will be the lower-case letter corresponding to the
triple's identifier.

•

29

We will write (A) ■ (B) to mean

v(K,(A)K) - V(J>(B)J)

We say that two sequential loops, LI and L2, can fuse when a loop

L3 constructed from the components of Li and L2 Is computationally

equivalent to the statement sequence L1;L2. In our notation, the set-

assignment statement within the loop-brackets corresponds to the re-

peated box of the corresponding loop. In addition, various loop

Initialization Is summarized there. We symbolize the fusion L3 of

LI: [R <-f(A)] and L2: [S «-g(B)] by

L3: [R *-HA); S «-g(B)].

11,6 Fusion In Flow-Cvart8; Graphic Description

Let P', Q1 be Boolean variables not In U, so that P' occurs only

In those boxes I X.P'I and fpM which explicitly mention It.

ax Fl:

F2:. I A.P' K[~c7Ö7l-r»rPVQ7>LL

Under certain conditions, flow-chart Fl Is equivalent to flow-chart F2.

Flow-chart F2 Is Itself one loop.

30

Suppose vCj.P') is the value P* takes on Just before boxTpO Is
entered for the Jth time in flow-chart F1. Define vO.Q') similarly.

If

vO/J') - v(J,P,) for all J,

then the fusion 12 Cda be simplified:

F3:—MXEI '^^ ^ F

II.7 Loop Fusion Conditions

Let U be the (finite) set of all relevant program variables.

Let J be a triple (L,l,k) where L is a loop-nama.

1 is the statement-number in L's center, and

k is the iteration number of L.

Let v(J,X) denote the contents of X Just after set-assignment J.

Let c(J,X) denote the contents of X Just before set-assignment J.

Let (X)[J]t and (X) , mean the subset of X input to set-assignment J.

let (X)[J], and (X)T» mean the subset of X stored into by set-assignment J.

Let (X)J H (y)K mean v(J,(X)J) . v(K,(Y)K).

Let (X)J - (Y)K mean c(J,(X)J) - c(J,(Y)K).

31

froperty of Set-Asslgnmenta;

If S and S are two set-assignments «hose flow-charts are both f,

then

If and only if c(I,x) . c(J,x) for all x cCU).,

then, for all f: I terminates If and only if J terminates, and

and (Jpj - (IDJ and (U)I « (U)J

Theorem 1; If (R)., (A) , (S) and (B) are a finite collection of

finite sets of variables then statements a. and b.

are equivalent:

a. for all i and J,

(1) 00. 0 (S)1 - ^ if i < j and

(2) (A)j 0 (S)1 - ^ if i < J and

(3) (B) n (R)1 - ^ if i > J

b. for all f and g, if there exist loops LI and L2 whose

Jth set assignments are:

S[L1,1,J] - (R)j ^((A^)

8[L2,1,J] - (S)J f-g^CB)^

then there is a loop L3, constructed from LI and L2

in the same way that F2 is constructed from Fl,

and the sequence L1;L2 is computationally equivalent to L3,
written 'LI ;L2 s L3 '.

An examination of conditions (1) - (3) is appropriate to illustrate

the essential simplicity of the requirements. First, note that when

A and B are sets of variables, "A D B ■ /t" means that A and B have no

variables in common. We interpret a "variable" to be a unique memory

cell of some processor. Then, "A fl B ■ ^" means that the sets A and B

do not share storage. If A is store ' into by SI, and B is the set of

inputs to S2, this means that SI does not store into any variable input

to S2, i.e., that no result produced by SI is accessible to S2.

Condtion (1), then, can be interpreted to mean that no variable

32

stored Into by L2 la also stored Into during any later Iteration of LI.

(2) requires that no variable Input to LI on some Iteration be computed

on an earlier Iteration of L2. (3) states that no variable computed

by LI on one Iteration can be. accessed by L2 on some earlier Iteration.

Control reaches a statement S Just when S is the next statement to

be executed.

Control Is absorbed by statement S Just when control reaches S,

and never reaches any statement after reaching S.

Define

?(1,J) a "control reaches the test-statement of loop LI for the

Jth time"

[Q,] »[cCai.l.J),?') - true]

[Q2]« [cCa^.M^Q') -true]

[Q3] = Co((Ut1,J)»r*) -true]

V [cCCU.l.J)^') -true]

-ff(lf J) s P(1,J) A [Q^j A -m,J+l)

(-7(1,J) Is true If control Is "absorbed" during the Jth Iteration

of L1.)

Let [R^j «[c((L3,l,J),P') . true]

[R^ = [c((L3,l.J).Q') -true]

Then T(1,J) 5 -P(1,J) V -(Q^ V P(1,J+1)

Certain facts are easily seen from examination of flow-charts F1

and F2. These facts we call "Axioms":

Axiom 1. P(1,J) -»P(lfJ-l) A CQl]- ,, 1 - 1,2,3.

Axiom 2. [Q1]k -»VJ [0 < J < k -» [Q^] 1-1.1,3.

Axiom 3. -i^}. ->Vk [k > J A P(3,k) -»-(R^]

mm

33

1: P(1,J) - Td.J-l) A P(lfJ-l) A [QJj.,

Proof: By definition T(i,J-1) s -^(i.J-l) v -i^l.^ V P(i,J)

from prepositional calculus,

T(i,J-l) A P(i.J-l) H [-{Q^j.., V P(i.J)] A P(i,J-l),

and T(i,J-l) A P(i,J-l) A [Q^., " P(i,J) A P(i,J-l) A [Qj]^,

-V(i,J).

From the definition P(i,J) -*T(i,J-1).

By Axiom 1, P(i,J) -»P(i,J-l) A [QJ,.,,

Lemma 2: P(1,0) -»

P(i,J) s Wk [0 < k < J -4

T(i,k) A [^^3

Proof: By induction on J.

Assume P(i,0).

Then P(ifl) s T(it0) A [Q1]0 A P(i,0)

P(i,0) -»[P(i.l) s T(if0) A IQ^]

:. ?(i,}) H vk [o < k < i ->m,k) A [Ql]k].

By Lemma 1, P(i.J) s T(i,J.l) A P(i.J-l) A [Qjh^

from the induction hypothesis P(i,J-l) s Vk [0 < k < J-l -»T(i,k) A [Q1]k]

Therefore P(i.J) s T(i,J-l) A [Qi]J-1 A Vk [0 < k < J-l -»Ki.k) A iQ^l

or P(i,J) s Vk [0 < k < J -»T(i.k) A [Q13k]

34

Lemma 3: [Q^j.., A Vk [0 < k < J -»Ki.k)] -»Pd.J)

We know that

Vk [0 < k < j -»[[Qj^^ A T(l,k)]] -♦?(!,J), from Lenma 2.

Suppose CQ-]*,» Then Vk[0<k<J-» CQ^Ll» by Axiom 2.

If Vk [0 < k < J -►Td.k)], as well, then

Vk [0< k< j -»[^Jj. A T(l,k)]]t

which by Lenma 2 yields P(l,j).

Therefore, [Q1]j_1 A Vk [0 < k < J -»T(l,k)] -*?(!,J).

35

Theoren 2: If a. of Theorem 1 holds, end

If P(1,0), 1 ■ 1,2,3, and

c((Ll,l,l),x) - c((L3,l,l),x) VxeU

then, for all J,

Wk < J T(3,k) H Vk < J [T(l,k) A T(3,k)]

and

P(3,J) A T(1,J) A T(2,J) -♦

(X)J . (X^j A (Xj) - (X')^ X - A,B

and (Y)j - (Y'^ A (Y')^ A (Y)J > (V)^ Y - R,S.

Proof: Suppose P(3,J)

Then vk [0 < k < j -»T(3,k) A ^3^].

Therefore, by the Induction hypothesis,

Vk [0 < k < J -»T(1,k) A T(2,k) A [Q3]k]

Also, from the Induction hypothesis, and the fact that

P(3,J) -»P(3,J-1), we have:

Vk [0 < k < J -»[[Q3]k ■ W,^ v CQ2]k]].

.*. Wk [0 < k < J -»T(1,k) A T(2,k) A [[Q1]k V [Q2]k]].

Fron Lesna 3, and the statement above, we can deduce that

CQ1]J-1 ->P(1»J) l- 1»2

Because P(3,J) -»CQslj.!»

we have [Q1]j.1 V [Qjlj^t

giving P(1,J) or P(2,J).

Thus, If LB's test Is reached for the Jth tine, so Is either Li's or L2*s.

[Q3]J B CQl]j V CQ2]J» becftuse

ak < j: ccavj^p') . vcai,!^)^«). vau^ko.p')
- c((U,l,J),P,

.

By Leuna 3, [Q^ -»CQ^j^. «ron Axiom 2, and

CVj-1 ->P(l»^» 1-1.2

If-i[Q3]., then the theorem holds, for S[Ll,k,J] Is a

vacuous statement, vAilch accesses and changes no variables,

and always terminates.

If [«^Ij then

P(1.J)A [Q^j or P(2,J) A [Qjlj.

If CQ]]«» then SCL3»1>J] l8 non-vacuous, and Identical

In Its set-assignment flow-chart to

"S[L1,1,J].

For any x « (A) ,

because (A) fl (S)l - /< Vl< J,

and (S*). - (S) VI < J by Induction hypothesis

(A)J n (s,)1 - ^ wi< j

Therefore, c((Ll,lfJ)tx) ^ c((L3,l,J),x)

only If x c (R,)i for some 1 < J.

But (R1). - (R). and (R').^ (R). by Induction hypothesis,

so x would be assigned the same value by both S[Ll,l,j] and S[L3,1,J].

Therefore, by the properties of Identical set-assignments,

S[L3,1,J] terminates ■ S[L1,1,J] terminates,

and if we assume T(1,J), so that S[L1,1(J], then

S[L3,1,J] terminates, and

(A^j - (A)J A (A^J - (A)J and

(R*^ . (R)j A (R*)^ (R)J [line (a)]

If-11(1,J) were assumed, so that [Q,]. would be true,

this reasoning shows that *ir(3,J), for control would

be absorbed In the flow-chart of S[L3,1,J], Just as

It was In S[L1,1,J].

J /

H-CQ^j» both S[Lltl,J] and S[L3,1,J] are vacuous,

and die theorem holds«

Regardless of whether [Q.] or not. If P(3,J) A 1(1,J),

control reaches the test preceding S[L3,2,j].

Again, if -fQjlj» toth S[L2,1,J] and S[L3,2,J] are

vacuous and the theorem holds.

Otherwise, [Q^ A P(2,J).

If b c (B) ., b may have last been stored into by:

(1) 8[LT,1,1], 1> 0, or

(2) S[L2,l,k], 0 < k< J, or

(3) None of the above.

Case 1; S[Ll,1,i], i > 0.

Then b e (R)1, b / (R)k for k > i,

and b / (S) for m < J.
m

c((L2.1,J),b) - v((Ll,l.l).b).

Then b / (R). for k > i, and b / (S) for m < J.
K m

Hence b / (R1). for J > k > i, and b / (S') for m < J.
k ^ m

Since b c (R)1 Abe (B)., 1 must be < J,

for (R)1 0 (B)J - jf If 1 > J.

(R*). B (R) , for 1 < J, by Induction hypothesis,

and line (a) above.

Therefore, since i < J, and b / (R1). for J > k v i ,

and b / (S*) for m < J, m

in particular b / (S1) for J > m > i.

Hence, c((L3,2,J),b) - v((L3,l,i),b)

. v((Ll,l,i),b) - c((L2.1,J),b).

38

Case 2: b last stored Into by S[L2,1,k], 0 < k < J:

Then b « (S)k, 0 < k < J, and

c((L2fl,j)fb) - v((L2,l.k).b),

and b e (S). and b / (S) for J > m > k.

By Induction hypothesis, then,

b c (S'). snd b / (S») for J > m > k.
k D '

c((U,2,J).b) . v((L3,2,k),L) If

(«) k < jt

and(b) ^m, k < m < J such that b « (S*) ,

and(c) ^1, k < i < j such that b c (R*)..

(a) and (b) have been shown.

Since (S)k fl (R)1 - jrf If 1 > k

fa» J > *• > k such that b e (R)l ■ (.fL1)^ hence (c).

Since k < J, by Induction hypothesis

(S)k« (S'^ so

€((13.2^)^) . v((U,2,k),b> - v((L2,l,k),b)

- c((L2,l,J),b)

Case 3: Neither 1 nor 2 hold.

Then b / (R)1, 0 < 1, and

b / (S)k, 0 < k < J.

Then, since c((Ll,l,l),b) • c((U,l,l),b),

and c((L2,l,J),b) . c((Ll,l,l),b),

and c((L3,2,J),b) . c((L3,l,l),b),

then c((L2,l,J),b) . c((U,2,J),b).

39

Therefore, Vb c (B)

c((L2,ltJ),b) - c((L3,2tJ),b) and

hence: S[L2tl,J] teminates If and only if

S[L3(2tJ] terminates.

If we assume -7(2,J), then S[L2,1,J] and

hence S[L3,2,J] do not terminate, so

-ffO.J).

If we assume T(2,J), then

(B)J - (B^j A (B)J - (B^j

A (S)J - (S'^ A (S)J
fi (S^j

by the properties of set-assignments.

We have shown that

P(3,J) -*[T(1,J) A T(2,J) -»

Wj - (X^j A (X)j - (X'^, X . A,B

Wj - (Y^j A (Y)j ■ (Y')^ Y . R,S

A T(3,J)]

and that

P(3,J) -»[-»r(l,J) V-iT(2,J) -»-fl:(3,J)].

Therefore P(3,J) -►[T(3,J) ■ T(1,J) A T(2,J)].

By the Induction hypothesis, assuming P(3,J),

V(k < J)T(3,k) ■ W(k < J)[T(1,k) A T(2,k)],

V(k < J)T(3,k) A T(3tJ) m V(k < J)[T(l,k) A T(2,k)] A

[T(1,J) A T(2,J)],

or P(3tJ) -»¥(k < J)T(3,k) s W(k < J)[T(l,k) A T(2,k)].

If H?(3,J), then ak 0 < k < J A [Hr(3,k) V -i[Q3]k].

by the Induction assumption, this is equivalent to:

40

ak 0 < k< J A KT(1tk) A T(2,k)] v [-.[Q,],, A nC^yi

If Vk[0 < k < J -»T(l,k) A T(2,k)], then, since

-?(3>J) -»T(3tJ) by Its definition,

Vk 0 < k < J T(3,k) by the Induction hypothesis and T(3,J).

Also,Vfc[0 < k < J -»T(l,k) A T(2,k)].

Therefore, ak 0 < k < J : -»CQ1]k A -iCPj^«

.•.HP(1,J) A-*(2,J)

From the definition, then

TO.J) A T(2,J),

so V(k < J)T(3,k) s W(k < J)[T(l,k) A T(2,k)]

If ak 0 < k < J A -^T(1,k)A T(2,k)],

by the Induction hypothesis

ak 0 < k < J A -ir(3,k)

and hence

W(k < J) T(3,k) and V(k < J) [1(1 ,k) A T(2,k)]

are both false.

Therefore, we can assert

W(k < J) T(3,k) a V(k < J) [T(l,k) A T(2,k)].

41

Proof of Theorem It

Part 1: a Implies b.

We must show that, given Identical Initial conditions,

(1) L1;L2 terminates if and only if L3 terminates

(2) If L3 (or L1;L2) terminates, then the results

computed are Identical.

We have shown, in Theorem 2, that for all J,

W(k < J)T(3,k) s W(k < J)[T(l,k) A T(2,k)]

or WJ T(3,J) s VJ [T(1,J) A T(2,J)].

L1;L2 terminate if and only if

aj1.J2 : "TCQ^JT A -fQ2]J2 A V(k < J1)T(1,J) A V(k < j2)T(2,J)

Suppose L1;L2 terminates.

Then 3J1,J2 : -iCQ^^ A -£Q2]J2 A V(k < Jl)T(l,k) A W(k < J2)T(2,k).

Let J -max(Jl,J2).

Clearly, V(k > Jl) -iP(l,k)t and hence T(l,k),

Similarly, V(k > J2) -f(2,k), and hence T(2,k).

Therefore, V(k < J)[T(l,k) A T(2,k)]

Suppose -*(3,J). Then a(k < J) : -i[Q3]k,

for V(k < J)T(3,k).

Therefore L3 terminates

Suppose P(3,J). Then Jl < J A J2 < J,

so P(3,J1) A P(3,J2).

Hence -T[R1]J1 A -i[R2]j2.

Hence -fR^j A -I[R2]J.

Thus, -i[Q3]., so L3 terminates.

42

Suppose L3 terminates.

Then aj : -i^l. A V(k < J)T(3,k) A P(3tj)

Hence aj : -i*}l* A -il^^ A V(k < J)[T(l,k) A T(2,k)] A P(3,J).

/.aj : -iCQ^j A ^Jj A y(k < J)[T(l,k) A T(2,k)]

Thus, L1;L2 terminates.

Hence L3 terminates If and only If L1;L2 terminates.

If L3, say, terminates,

aj : V(k < JH-^j A TO,k)]

hence V(k < J)P(3>k).

Then by theorem 2, Vk < J,

(R)k a (R1^

end (S)k« (S')k

so the results at the time they are computed are identical.

It is conceivable however that a result computed as part of

(S)1 would be destroyed, in L3, by statement SLL3V1(J] for

This could only happen if J > 1 and

a possibility denied by (a) of Theorem 1, which we are

assuming, and Xheorem 2.

If a result of (R*). were destroyed by some later

Iteration of L3, then

(a) If by (R()., J > 1, the same result would have been

stored by LI.

(b) If by (S*)., J > 1, the same result would have been

stored by L2.

We conclude that L1;L2 = L3.

43

Proof of Theorem 1. Part 2: b implies a.

We will shew that -ß Implies Hb,

Consider any finite collection of variable-sets

(A)J,(B)j,(R)j end (S)^

By using additional variables as loop control elements, we

can create loops LI and LZ vhose Jth set-assignments are

«nd (S) <-g ((B)) respectively,

vAiere the control variables are designated not part of the

set of "relevant" variables, U.

Mow, f. and g can be extremely sophls tier ted transfor-

mations, capable of testing their inputs for consistency. In

fact, we can assume that if f , or g , ever accesses a variable

v^ose contents differs from that supplied f or g on die Jth

iteration of LI or L2, the function produces an "error reaction".

Such an error reaction night take the form of a propagation

of the error, by changing ehe contents of at least one variable

44

in every set (A) ,(B) f(R) and (S) . (Once some variables'
J Ü J J

value differs, f. is not constrained to store only into variables

of OOj.)

Thus, if

(2) for any x in (A) or (B) ,

c((Li,l,J),x) / c((L3,i,J),x),

the result computed by L3 will differ from that computed by

L1;L2, We will show that, if al or a2 or a3 do not hold,

then some loops Li and L2 exist f jr which L1;L2 does not com-

pute the save result as L3.

Case: Suppose (R). fl (S) / 0 for some 1 < J.

Then seme x exists,

x c (R). A x c(S)1 for some i< J.

After the sequence L1;L2, x's final value was computed

by S[L2,l,i].

After the loop L3, x's final value was computed by

S[L3,1,Jj. f and g. can certainly be chosen which

ensure that these values differ.

Case; Suppose (A), fl (S). / $ for some i < J.

Then some value input to S[L1,1,J] is computed by

S[L3,2,1] on some iteration 1 before j. Thus, for

some x c (A) c((Ll,l,J),x) / c((U,l,J),x), and

Case;

hence L1;L2 f? L3.

Suppose (B) fl (R^ / ^ for some 1 < J.

Then there is x e (R). A x e (B) for 1 > J.

In the L1;L2 sequence,

c((L2,l,J),x) - v((Ll,V).x)

In L3, c((Uf2,J),x) / v((U,l,l),x),

for iteration i of 13 follows iteration J.

Therefore, L1;L2 ff L3.

45

II.8 Storage Savings in Loop Fusion

Once we have established the conditions under which two loops can

fuse, without changing their effect, there remains the question of the

storage-saving that results. He will concentrate on the intermediate

storage.

Let Li, L2, and L3 be as before.

Define B » U (B) , R = IJ(R)

Recall that the size(A), where A is a set, is defined to be the

number of members of A.

Then T = B (1 R is the set of variables used to comnunicate results

from LI to L2.

We define T to be the irtermediate storage set.

We will suppose that R is not input to any statement

following L1;L2.

On the kth iteration of L3, certain variables must be in existence

simultaneously. Those which are intermediate, that is members of T, are

those which

(1) are computed in (R). for i < k

(since for i > k, they have rot yet been computed and need

not be present) and

(2) are accessed by some (B) or (A) for J > k

(since if all such j's are J <k, then the variable

has already been used, and won't be needed again.)

This set is Tk= p(1 y kt|i) tiOL)i fl Wj] U [(R)1 fl (B^ 0 (A)^]

Where P(i,j,k,m) isi<k<JAi<m<kr

Here, (R). fl (A) contains those variables computed in (R). and accessed

in (A).. Some of them may not be in T. (R) fl (A) fl B gives the set

in T. For m > k (R). fl (B) 3 (R), fl (B) n (A) ., so these are included
■- 1 i m j

in the first term of 1^. This leaves (R)1 fl (A) fl (B)^ for i < k A m < k.

■

46

Since, in order to fuse, (R). D (B) - /i when i < m, we get

(R), D (A). PI (B) for i <m< k.

If we add two assumptions to those necessary for loop fusion, we

can reduce the intermediate storage requirement still further:

Suppose (R)1 D (B) » /(if i |* j

and (R)1 fl (A)j 0 (B)1 . ^ if i < J

Then, the intermediate storage set on the kth iteration becomes

T,k- (R>k n (B>k

and, since successive T^'s can share the same storage,

only mgx (8ize((R)k fl (B)k))

variables are needed for intermediate results.

There is a second advantage to the assumption

(R)1 0 (B)J - ^ if i ^ J .

This assumption allows the two loops to be tested separately for their

fusion characteristics.

Let (T)t -in (B)1

^T)1 » T fl (R)1

Theorem: (R). D (B) = /I if i / J is equivalent to

C<T)i - (l)t «nd (T)1 0 (T)j - ^ if i / J.]

Proof: Assume (R)1 n (B) » ^ if i ^ J.

(i)k - T n (B)k - R n B n (B)k » R n (B)k

(T)k -TO (R)k - B 0 R fl (R)k - B fl (R)k

But R n (?>)k - (R)k n (B)k - B n (R)k as a

consequence of the hypothesis.

Therefore (T) = (T)k .

47

If (R)1 0 (B)J - ^ If 1 / J,

since (^j c (B)j#

and (T)1 - (T)1 c (R)^

therefore (T) fl (T)1 c (B) 0 (R)1 C ^ if 1 ^ J.

Assume (T)1 . (T)1 and (T)1 D (T) - ^ If 1 ^ J.

Then (T) -TO (B) - R 0 B 0 (B) - R 0 (B)

and (T)1 . (T)l -TO (R)1 - B 0 (R)1

When (Dj D (T)1 - ^

/I - [R n (B)^ n [B n (R)1] - (B)J n (R)1

Since (B) c B and (R) C R.

Hence (B) fl (R)l - ^ If 1 ^ J,

48

II.9 Suamrv of Loop Fusion Conditions

We have described a set of conditions which guarantee that two loops,

LI and L2 can fuse to yield one loop, computationally equivalent to the

sequence LI; L2. A slight strengthening of these conditions results in

a fusion which uses less intermediate storage.

Let LI; L2 be

LI: [R <-f(A)]

L2: [S «-g(B)]

Then there is a loop

L3: [R* t-Hk'); S' f-gCB')]

constructed by fusing the flowcharts of Li and L2 in such a way that

statements of LI alternate with statements of L2.

If
(1) (R)J 0 (S)1 - ^ if i< J

(2) (R)J fl (B)1 - ^ if 1 > J

(3) (S)J fl (A)1 - ^ if 1 > J

all hold, then

LI; L2 is computationally equivalent to L3.

If initial conditions agree, so that

c((Ll,l,l),v) - c((L3,I,l),v) for all v in A u B,

then finally for all j

(X)J - (X^j , X c {A,B,R,S)

(Y)J - (Y'^ , Y « {A,B}

(Z)j s (Z^j . Zc {R.S)

If the storage conditions

(T) (R)J fl (S)1 - ^ if i< J (same as (1))

(2») (R)J fl (B)1 - ^ if 1 / J

(3«) (S)J fl (A)1 - ^ if 1 > J (same as (3))

(V) (R)1 0 (B)1 0 (A)J - ^ if 1 < J

49

all hold, then the storage need for communication fron LI to L2,

T = U [(B). n (R).]
L.J J

becomes

T' = n^x [(B1^ 0 (R'^] in L3

(Here "max" of a series of sets selects that set which contains most

members.)

11.10 Algol and Flow-Chart Language

We have Introduced a flow-chart language to clarify the meaning

of certain programs-parts. However, we consider any programming-language

construct having the same meaning as one of these terms to be the "same"

as that term. In particular, we will often refer to restricted forms

of certain programming constructs in Algol.

Algol of course contains "assignment statements". Suitably restricted

versions of these, which store into only one relevant program variable,

agree with our (unstated previously) concept of an "assignment statement".

Furthermore, certain Algol FOR-statements agree with our definition

of "loop". An Algol FOR statement whose FOR-clause specifies no GOTO's

and whose body, S, specifies no GOTO'■ which lead outside S satisfies

our definition of loop. (A GOTO may be specified implicitly, as part

of a procedure body which la called in the text, or explicitly in the

text. Both are excluded.)

11.11 Algorithm Fusion (parallel connection)

We wish to describe how two algorithms, which occur in sequence,

can fuse to reduce the storage needed for conminicatlon from ehe first

to the second. We will base our analysis on the properties which allow

loops to fuse. Here, we taust isolate the loops in the two algorithms

which can fuse to save storage. If these loops are separated by one or

more statements, they must be rearranged, preserving computational

equivalence, to make them adjacent.

Let SI and S2 be adjacent simple algorithms. Let R be a set of

variables which is the result-set of SI, and an input-set to 32.

Under certain circumstances, SI and S2 can combine, or parallel connect,

allowing R, the storage used to communicate between SI and S2, to be

reduced in size.

Conditions:

(1) The result computed by SI into R is input to no statement

sequence other than S2;

(2) There is a loop, Ll, of SI which encloses all statements

of SI which store into R;

51

(3) There is a loop, L2, of S2 which encloses all statements

of S2 which access the values stored In R by Ll.

Let (R) be the set of elements of R which are stored Into during the

Jth Iteration of Ll. Let (R) be the set of elements of R which are Input

during the Jth Iteration of L2.

Further conditions;

(A) (R) . = (R). for all J such that there is a Jth iteration of

Ll and of L2.

(5) (R)J D (R)1 = J^ if 1 ^ J

(6) Si's change-set is disjoint from each input to SI, and from

the change-set, S, of S2.

(7) No variable stored into by S2 is accessed by SI.

Theorem: If conditions 1-7 above are uiet, there exists a single algor-

ithm S3 computationally equivalent to the sequence S1;S2.

Furthermore, R may be replaced by a smaller set V of variables,

where size(V) ■ max [size((R))].

Proof: Conditions (1), (4)-(7) imply that Ll and L2 may fuse if they

are adjacent. If Ll and L2 fuse, then these same conditions

allow R to be reduced in size to V, where size(V) is as

above. We must show that Ll and L2 can be made to be adja-

cent.

In the statement sequence S1;S2, suppose there are

statements SO following Ll in SI. Since, by (2), Ll is the

only statement in 31 which stores into R, SO does not store

into R. Since R is the only input to 53 which is computed

by SI, and since no variable accessed by Si is stored into by

S2, SO can follow 52 without affecting the computation. Now,

suppose there are statements S4 of S2, which precede L2 in

S2. Since all accesses of R He in L2, S4 cannot access R.

Since S2 does not store into any variable accessed by SI,

52

neither does SA. Further, S4 cannot depend on any result

cooputed by 81, for It does not depend on R'e coateate,

and, elnce R !• Sl'e result-eec, it does not depend on eny

other variable's contents cooputed by 81. Therefore, 84 can

be Boved to precede 81 without changing the coaputational

effect. The result of these moves Is a ttateaent sequence

In whlrh no statssMnts intervene between Li end L2. Li and

L2 can then fuse, tnd the reeult follows.

11.12 Itotrix Operation Alaoritfasw (MOA's)

The results of die previous section can be applied to the specific

algoritfass uhich are used in Computing matrix arithmetic expressions.

A matrix operation alaorithm (MOA) is a simple algorithm which

computes an associated matrix assinmsnt statement. S3mtactically, a

matrix assignment statement Is written "V««", «here V is a matrix iden-

tifier, and B is a matrix arithmetic expression. Semantically, this

matrix assignment statement comnands the replacement of die contents of

the array named V with die value of the matrix arithmetic expression, B.

The value of B is computed from the contents its variables hold lanedl-

ately before the statement is executed. The result-set of the MOA is

the array V; the input-set is die union of the arrays «hose names appear

in B. A copy of an MOA Is a systematic substitution Instance of the MOA.

A substitution instance of en MOA results from substituting new arrays

for the arrays referenced by the MOA. Suppose an MOA, B, computes die

matrix assignment statement "V*BH. A substitution, 8, «hich changes

array Z to 8(Z), is systematic if and only if, for all arrays R «hose

name occurs in B, if name(R) - name(V) then naae(8(R)) ■ naae(S(V))

and if name(R) ^ name(V) then name(8(R)) / name(8(V)). The earns sub-

stitution may then be applied to the MOA's matrix asnlgmaent statement,

to yield the new MOA's associated matrix assignment statement.

For example,

A«-8*C, A«-B*B, A*0*B are all copies of X*V*Z. However, A*A*C ie not

a copy of 3Wf*Z, for since X Is the variable stored into, end Z^Y, the

new names for these variables, S(X) and S(Y) must not agree.

•

53

A •übttltution which !• not «yateaMtlc cannot In general ba applied

to an MOA without changing the HOA's aaalgnaent stateaent radically. For

exa^)l«(suppoee the (not syateaatic) aubatltutlon

A replaced by A

C replaced by A

B replaced by B

la applied to Algorltha 1 of the n algorithaa.

The algorithn bacoaeat

I -»I

J -»N

A[ItJ] «-0

K -»M

A[I,J] +<-A[IiK] * B[K,J]

Ihla algorithn aoat definitely falle to coa^ute

A «-A * B,

for aoae aleawnt of each row of A la eat to aaro before it can be

acceaaed. Praclaely what it coaputca la not clear, but it certainly
doaa not coapute the value of A * B, and atore thia value in A, aa
the aaalgnaent atateaent A «-A * B requirea.

An algoritha to coapute any aatrlx arithmetic expreaalon can ba

conatrueted fro« coplea of the MOA*a In a aultably choaen baaic aet of

MOA'a. An axMple of a baaic aet of MQA'a la any aat containing MOA'a
to coapute the aatrlx aaaigment atataaanta

A«-B4>CMlA«-B*C

Suppoee we are given a aat of MOA'a containing MOA'a that coapute

A4-B-fCaadA4-B*C.

We can uaa aaquancaa of coplea of theae MQA'a to coapute the value of

any aatrlx aritfaaetlc expreaalon, B.

54

Proof; by induction on the number of operators In the expression E.

If E Is a matrix identifier, V,

then the value of E is defined to be the contents of V. But

the null sequence of MOA-copies computes Just this, in V.

If E is of the form V op V , where V and V are matrix identifiers,

and op is + or *, then the single MOA-copy which computes

Z *-V. op V computes the value of E into Z. Z must be

chosen to differ in name from both V. end V .

If E is of the form E. op E«, where E. and E» are expressions

containing at least one operator, and op ia -f or *, then

E. end E. can eech be computed, into any preacribed arrays

X. and X., by sequences of MOA-copies C. end C . Choose

X. different from any array occurring in C_, and write

the sequence "C.; C ; op X ", where Z differs from X

and from X?. This sequence computes the value of E

into Z.

Let ua call thia technique C0MP1.

The sequence of MOA*s produced by CGMP1 for a given expression E

requires several arrays to hold values of subexpressions of E. The

semantics of the expression prevents these intermediate values from

ever being input to another statement in the program. In fact, the

reault produced by each MOA in the sequence, if it is not the final

MOA's result, is input to only one other MOA. The sequence elso has

the property that, if the expression E contains no conaaon subexpressions,

no subexpression of E is ever computed more than once. Thus, thia tech-

nique producea a minimum-connect ion-time MOA to compute any matrix

arithmetic expression.

Refinements of C0HP1 for tranalating matrix arithmetic expres-

sions into sequences of MOA-copies can be derived, which reduce the

- . ■ . •

•

55

number of arrays usad In producing tha ax res« Ion'a value. Notlca that

the technique given requires that certain arrays mutt be chosen to be

different from others used In certain MDA's. Thus notlca tha constraint

on Xj Imposed In C0MP1. This prevents one algorithm's result-sat from

being stored Into during the course of another, before that result-set

Is accessed by the algorithm which must receive Its contents. However,

It forces arrays not needed to hold the value of the expression to be

used to carry these Intermediate results. Some of these Intermediate

arrays can be eliminated.

At least two techniques for refining C0MP1 exist. One can, using

only tha two given MOA-asslgnsmnts, reduce the number of Intermediate

arrays usad, by re-ordering the sequence of execution of the component

MDA's. This technique works by changing the statements over which a

given Intermediate array must remain Intact, end hence, be e distinct,

non-usable storage erea. The maximum number of such distinct Intermediate

arrays occurring In en expression's translation Is the number of arrays

needed to compute thet expression. This number cen be minimised. Alter-

natively, one cen develop new algorithms, capable of computing expressions

with more operators. It these algorithms thaosalvas each need so little

temporary storage (say, a factor of N lass than an array) that It can be

discounted, the "larger" the expressions which can be computed using

only one array to hold results. Both techniques can be employed together,

es well.

From certain sequences of two adjacent simple algorithms, we cen

reduce the storage needed for their communication to the amount needed

during one of their outer loop iterations. Suppose that we have trans-

lated some expression, using C0MP1. The resulting sequence of MDA's has

many pairs of communicating adjacent MDA's, each pair using sn array

for connunication. This suggests the use of algorithm parallel connec-

tion, to produce e collection of algorithms for the basic set which

compute expressions hevlng more then one operetor, and yet need e negli-

gible amount of Intermediate storage.

56

J

II. 13 Sh«p«». th« "Valenc«!" of an MOA

A convenient sunmery of the combining properties of MOA's can be

devised. Pint, note that the verleblee uaed for comnunlcatlon between

two elgorlthaM ere, in the caae of MOA'a, organized into arrays. Fur-

thermore, C0MP1 shows that we cen freely choose theae arreya. In fact,

we could choose a dlatinct array for each pair of comunlcatlng MOA* a

in the sequence C0HP1 produces. Mote elao, that once en array of the

sequence ia acceaaed by an MOA, ita contents ia not needed by any other

MOA. Theae cooaideretiona, checked egainat the requirementa which allow

two algorithms to parallel-connect, rapidly reduce the potentially

unaatlsfled conditions.

Of the conditions allowing two algorithms to parallel-connect, only

e few are possibly unsatiafied in an appropriate sequence of MOA*a. Since

any coamunicating atorage in auch a aequence takes the for« of an array,

it seems natural to inveatigate the remaining requirements by character-

ising each array uaed to hold inputa or reaulta of an MOA.

Let ue define, for each array X of an MOA which occura in a loop L

of the MOA, the element-aeta of that array. (X) will repreaent the
————^— i., j

subset of vsriablea of array X input to L during L's Jth iteration.

Similarly, (X) will repreaent the aubaet of X atored into during L'a

jth iteration. Por any array X, theae seta repreaent a subset of X'a

varlablea selected by a certain aubaet of the possible aubacript com-

binatlona by which elementa of X are aalected. Let the collection of

aubacripta in (X). . be [x]T . and similarly let (x). select (X). ..

Mov define the ahape associated with an array X to be the aequence

of aubacript-aeta [x]t . or fx)f . according ea X ia input to or atored

into during a a in» la outermost loop L of the algorithm. If X occura in

more than one outermost loop of the algorithm, let ita ahape be defined

to be 0. Furthermore, if WL 0 WL l / (Mor (x) fl [j)L . J ft

for some 1 / J, let X'a ahape be 0.

The ahape ci !■ assigned to an array to prevent fusion at thia array

with other MOA*a. Assignment of 0 to en array in effect demands the

preaence of an entire array to hold values during a computation. When-

—r—

•

•

~.

57

ever It is difficult to assign a "coobinsble" (non-O) shape to sc

array, 0 may be assigned, without altering the correctness of the al-

gorlthin resulting front parallel-connect ion at that array.

Hie concept of "shape" is our promised useful sunmary of an

algorithm's parallel-connection property. In some sense, it corresponds

to a chemist's "valence"; we state that MOA B can parallel connect to

MOA C at input X of C if the shape of the result-array of B and the shape

of X in C match. Two shapes smtch if neither are 0, and if they are

equal, element-set by element-set, for the first K element-sets of the

sequences where K is defined as the largest number J such that iteration

J of either loop exists. We call the shape associated with an input array

X of an MOA C, the access-characteristic of X in C. The shape associated

with the result-array of an algorithm C is called the reiult-characteris.

tic of C. The algorithm resulting from the parallel connection is

called the fusion of A to input X of B.

We can simplify shape-comparisons considerably by assigning descrip-

tive names to the most connonly occurring shapes. The table below lists

these names, together with a one-letter abbreviation for each, defining

them in terms of the subscripts their Jth element-set is selected by:

r - row. All [J,i] such that 1 < i < N

c - column. All [i,J] such that 1 < i < N

0-0* No subscript set corresponds. Given to "unfuseable"

arrays.

The», em; If the result-characteristic of MOA A matches die access

characteristic of input X of MOA B, and if A's change-set is

disjoint from each of A's input-sets, and if B's result array

is disjoint from X, then there exists an algorithm C such that

(1) C computes a matrix asiignment statement derived

by substituting the expression of a substitution

of A's associated matrix assignment statement for

each occurrence of X in B's matrix assignment

statement.

.

58

(2) C is constructed •• the sequence S(A); S(B), with

S(A) parallel connected to input X of B. S(A) It

a sytteaatlc substitution of A, such that A's

rssult becones X in 8(A). X in B remains X in

8(B), but B's change-set is chosen differently

fro« any variable A.

oof I The sequence 8(A); 8(B) cooputes in 8(8)^ result-set, the

required aatrix asslgnawnt stateasnt. We «ill take this as the

result of C. We can therefore assuae that no value cooputed

into variables not in the result-set of B is input to any

later stateaent in the prograa, by the definition of result-

set. It rcaalns to show that 8(A); 8(B), a sequence of two

adjacent sia^lc algorithas, can fuse.

We obeerve thatt

(1) the result coaputed by 8(A) into X ia input to no

stateaent-sequence other then 8(B), by our defin-

ition of die result-set of the sequence.

(2) The result-shape of A, and hence of 8(A) does not

equal 0. Therefore, there Is a single outeiaost

loop LI of 8(A) which encloses all stateaents of

8(A) which atore Into X.

(3) Slailarly, the access-shepe of X in B, and hence in

8(B), does not equal 0. Hence there ia a single

outeraost loop L2 of 8(B) which encloses all state-

its which access X in 8(B).

Let (X). stand for the subset of variables of X

stored into during Li's Jth iteration, and (X)

be the subset of X input during the Jth iteration

of L2.

(4) The result-shape of A equals the access-shape of X

in B, because the non-O shapes match. Hence, the

- -

59

•ubicrlpt-Mti [X] ■ [X] for all j < K. But

applying Identical tubacrlpca to the MM «rrey, X,

.elect« Identical variable!. Hence (X) ■ (X) for

all J < K. Than (X) ■ (X) for all j auch that

there is a Jth iteration in LI and L2.

(5) (X) 0 (X)1 - ^ if i ^ jv for it thie weren't eo.

the raeult-characteristic of A would be 0.

(6) SOO'H change-sat is disjoint fron each of S(A)'s

input-sets by essuaption. S(A)'s changa«set is

disjoint fro« SdO's change-set by construction of

the substitutions.

(7) «(B)'« change-sat is disjoint from any variable in

S(A), so no variable stored into by S(B) can be

accessed, by S(A).

(8) No variable stored into by 8<A) is input to any

stataaent other than S(B), by our definition of

the sequences result-set to include only variables

in SWs result-set.

Thus, all the hypotheses of the parallel-connection theorea are satisfied.

11.14 Explicit Rule for Developing Shapes for Arrays used in Algol Prograsw

In general, a shape cannot be calculated for each array occurring in

an HOA. The difficulty arises because the eleaent-sets which constitute

the shape nay depend on values coarputed during the algoritha. In general,

because we cannot predict these values, we cannot decide the neabership

of the eleaent-sets.

The Algol programs we use as illustrations, however, all reference

eleaent-sets in a particularly simple way. Their loops are thoroughly

predicable FOR-statements, for which the value of the FOR-statement's

index at the start of the loop's Jth iteration is easily calculable.

These indices are the only variables appearing in array subscripts.

60

Furthenore, no conditional scatenents occur to skip stateoents, leaving

variabl«« unreferenced, «van though their subscrlpt-coablnatlon appar-
ently appears. For these loops, we can, and do, calculate shapes.

11.13 Parallel Connection AUorltha

Suppose we are given two Algol simple algorlthns A and B such that
A's result Is Input to B. Suppose that A's result-characteristic and
B'e access-characteristic aatch. Then A and B may be parallel-connected.

Hare, ve make explicit how.

First, sat down A immediately preceding B. A's result-characteristic

la a non-O shape. Therefore, there exists an outermost loop, LI, of A,
enclosing all statements of A which change A's result. Similarly, an

outermost loop of B, L2, exists, enclosing all accesses of A's result.
Hove any Intervening statements out from between LI and L2, moving those
statements of A after B and those of B before A. Fuse Li and L2, by

delating L2's controlling for-clause, and the now-adjacent end-begin
pair vhich enclosed It. Bap lace the for-clause with statements to ensure
that Li's Index Is stepped In exactly the way It was stepped by L2's for-
clause. Row, substitute an intermeJiate variable name for A's result
throughout the combined algorithms.

This technique of fusing two Algol loops falls to account for
poesiblc "conflicts'* of Indexes. Semantically, an Algol FOR-loop's
controlled variable, or index, takes on an "undefined" value after the
FOR-llst Is exhausted. Ha can take this to mean that this value smy not
be Input to any statement In the program. Therefore, we may substitute
a new variable for the FOR-statement's Index, without changing the
■earning of that FOR-statement. He use this property to avoid such con-
flicts.

Suppose II Is LI's Index, and LI and L2 are to fuse. If, In L2,

II Is stored Into, ws say a "conflict on II" exists. To avoid It, ws

simply substitute for II a variable not occurring In LI or L2.

We have been somswhat vague in describing how we Insure that L2's

—— —

-1
•

61

indMi it «Capped «xftctly th« MM* my 12*• FOR-CUUM «tapped It.
la tßnmrml, this c«n b« accoapllahtd by •ubttitutlng an appropriate
aaquaaca of conditional atataaanta and aaalgnaanto. The Algol report [6]
atiffaata auch aaquancaa for each FCR-liit alaaeat-typa. By N«xpaadlngH

tha POt-clauaa into the aiaplar at«t«Mita it abbravlataa, and then
radataraining tha statement the loop's exit la to reach, L2>t Index eaa
be atapped.

la certain loop-fualoaa, a alaplar approach can be need. Suppoae

that LI and L2 are to fuae, and that each iterates the Mm» nuaber of
tlaea. Suppose alao that II la Li's Index and 12 la L2's.

Suppose that the first statement In the Algol text of each loop's
body la given the niasber "1", and the last In loop LI'a text Is nuabered Kl.

If there la a function F auch that P(v((L1,K1, j)vI1)) - c((L2t1(j)(I2)
for all J then stateawnts to coapute 12 fro« 11's current value directly

■ay replace 12's Iterative cosqratatlon. These statements any be placed

Juat before the flrat atatasant of L2's body In tha fusion. If no state-

ment of L2 stores Into 12 (the usual case), then F(I1) any replace each
occurrence of 12. [In many cases, such an F exists—the Identity function.]

.

62

Example 1

a:

b:

I -♦N A: r

J -*N B: 0

C[I,J] *.Q C: r

K -»N

C(I,J] + -A[IfK]* B[K.J]

I -»N D. r

J -»N B: n
A[I.J] «-0 A: r

K -»N

A[I.J] + 4-D[I.K]* B[K,J]

He can reduce A from a 2-array to a 1 array:

b: I -»N

J -»N

A[I,J] »-0

K -»N

A[I,J] + «-DCI.K] * E[K,J]

Fusion begun:

delete the second

for clause.

(I -N)

J -»N

C[I,J] *-0

K -»N

C[I,J] + ^A[I,K] * B[K,J]

*--.^. \mtnm

63

Reduce the size of A to a row by esalgnlng the Ith element of the

Jth row to U[I]; I.e., substitute U[x] for A[y,x] wherever A occurs:

I -»N

J ->N

U[J] «- 0

K -»N

Ü[J] +4-D[I,K] * E[K,J]

J -*N

C[I,J] <-0

K -»N

C[I,J] + ♦-Ü[K] * B[KtJ]

Space characteristics; D; r

E: 0

B: 0

C: r

Example 2:

b. J -»N D: 0

I -» N E: c

A[I,J] «-0 A: c
• ■

K -»N

A[I,J] + ♦DCI.K] * E[K.J]

a, I -»N At c

J -»N B: r

C[I,J] <-0 £: Q

K -»N

J -»N

I -»N

C[IfJ] + «-A[I,K] * B[Kf J]

J Is the index of b, K that of a. Simple replacement

conditions are met. An F(J) which can replace K through-

out a, is 'J'. A name conflict arises, so choose Jl for

both J In b and K in a. Let U|.x] - A[xty].

63 b

and upon fusing, we get:

I -»N D: Q

J -*N E: c

C[I,J] <-0 B: r

Jl -»N C: n

I -»N

U[I] i-0

K ->N

U[I] +<-D[I,K] * E[K,J1]

J -»M

I ->N

C[I,J] + «-U[I] * B[J1,J]

6A

11,16 Matrix Elenentary Algorithms

Let us define the matrix elementary •Igorlthn of aite k (k-MEA's)

to be a subset of the MOA's satisfying certain constraints:

(1) There Is a single loop in each «Igorlthn, called its

main loop, «hose input-set Includes each variable input

to the algorithm, and which stores into each variable

of the algorithm's result-set,

(2) All arrays of the algorithm assigned non-0 shape
3

are k-arrays, i.e., have sizes of N**k.

(3) Bach non-0 shape associated with an array of the algorithm

consists of 1*N equal-sized element sets. Here, J nay

differ depending on the shape, but nay not depend on N.

Hence, each element-set of a non-43 shape of a k-KEA hae

size proportional to N**(k-1)

(4) Each k-MEA uses no more than L*N**(k-1) intermediate

variables. Here, L does not depend on N,

Some consequences of our definition of k-MEA follow:

Theorem 1; If two k-MEA*s fuse, the result is a k-MEA.

Theorem 2; The Inputs to a k-MEA must all be present slmaltap.-c^sly

at son» Instant in tine.

Theorem 3; If two k-MEA*s fuse, any input to either except the result

of the first becomes an input to the fusion.

3
We will use the FORTRAN notation ** for exponentiation and

* for multiplication

65

Proof of Theorem 1: Suppose A and B are k-MEA's, and C Is the fusion

of A to Input X of B. Then C Is a simple algorithm,

since the Initial step of the fusion process merely

lists the statements of A before those of B. The

sequence of two simple algorithms Is Itself a sim-

ple algorithm. We must shovr that C Is a k-MEA,

We first need to show that C contains one loop,

which stores Into each variable of the result of

C, and accesses each variable of each Input-set of C.

(1) The result-set of C is defined to be the result

set of a substitution of B, B, and hence ^(B)

are MEA's, and therefore there is a loop, L2,

which stores Into each element of SCB^s

result-set. Furthermore, L2 accesses each

variable Input to S(B). In particular, X

Is an Input to L2. But X's access character-

istic Is not fl, since A can fuse to X of B.

Therefore, X must be Input only to L2, and hence

L2 Is the loop of S(B) which fuses with some

loop of S(A). Also, A's result-characteristic

Is not Q, and A Is an MEA. Similarly, there

Is a loop LI of S(A) to which each Input of A

Is Input, and which must be the loop which fuses

with L2. The fused loop, L, has, as Inputs,

all Inputs to S(A) and to S(B) (except X).

The Inputs to L thus Include all the Inputs to

C. Furthermore, L stores Into each variable In

C's result-set, for It stores Into B's result-

set. Therefore, L satisfies the definition of

a k-MEA's main loop.

(2) All arrays of the original k-MEA's were k-arrays.

Hence all arrays of the fusion, a subset of the

arrays of the original k-MEA's, are k-arrays.

66

(3) Each shape associated with an array of B

or of A other than X Is still the same,

since loop-fusion does not change the

element-sets of inputs or result-sets.

Therefore, each array has a shape con-

sisting of J*N equal-sized element-sets,

since it did so in the original k-MEA's.

(4) Let A and B be the k-MEA's which fuse to

form C. Then A used no more than J1*N**(k-1)

intermediate variablen, B no more than

J2*N**(k-l). C uses, at most, all inter-

mediate variables of A and of B, plus those

variables used to hold X, which is inter-

mediate in C. But the fusion reduces the

number of variables needed for X to one

element-set of X, or j3*N**(k-1) variables,

by property (3) of a k-HEA, and the fact that,

since A parallel connects to B at X, X must

have a non-O shape in A and In B. Thus, C

uses at most (Jl + Ji + J3) * N**(k-1)

intermediate variables, where Ji do not

depend on N,

Proof of Theorem 2t The inputs to a k-MEA must all be present simul-

taneously Just before the algorithm's execution,

for they are all inputs to the same loop of the

k-MEA. By definition of "input", the contents of

each variable Just before the loop is executed is

accessed by this loop. But then all variables

to the loop must have been in existence simultan-

eously Just before the loop executed. These inputs

are precisely the inputs to the k-MEA, by definition

of k-MEA.

PI "I! I H I I

67

Proof of Theorem 3; The Inputs to the main loop of the first algorithm

ars clearly inputs to the main loop of the fusion,

because if they were accessed by the first's main

loop, they are now accessed by the fusion's main

loop. Similar reasoning holds for each variable

Input to the second's main loop. However, some of

those variables are now not in existence before the

fusion, since In the sequence they were results of

the first k-MEA. Hence, all Input variables to either

MEA except the result of the first k-MEA become

variables of the fusion.

IJ>17 Canonical k-MEA's

A canonical k-MEA Is a k-MEA which computes a matrix assignment

statement satisfying:

Ho Identifier appearing In the expression (right-side)

of the assignment agrees In name vlth the left-side

variable of the statement.

Equlvalently, the result-set of a canonical k-MEA Is disjoint from

each of Its Input-sets.

Theorem: If the result-characteristic of a canonical k-MEA A matches

the access-characteristic of input X of canonical k-MEA B,

then A may parallel-connect to Input X of B to form a

fusion C which Is Itself a canonical k-MEA.

Proof; A and B are MOA's satisfying the hypothesis of the theorem

of Section 13. Therefore, they may fuse to form an MOA.

This MOA Is a k-MEA, by Theorem 1 of Section 16. The fusion

k-MEA computes a matrix assignment statement whose expression

results from substituting a systematic substitution Instance

of A's expression for each occurrence of X In B. B Is canon-

ical, so that no Input-array of B has the same name as B's

result-array. The substitution Instance of A can be so chosen

68

to arrange that no input array of A is given die same name

as B's result-array. But then C is canonical.

Ml

.

Chapter III

In this chapter, we apply the results of Chapter II to matrix

arithmetic expressions. Our goal la an algorithm which compiles

these expressions Into canonical Z-MEA's, choosing a compilation which

uses fewest 2~arrays. We will, throughout this chapter, use "array"

to abbreviate 2-array, and "MSA" to abbreviate 2-MEA.

III.l Elementary Expression Parse-Trees (BEPT's)

In order to study the possible compilations of an expression

into MEA's, It is convenient to examine parse-trees, both of the

expression, and of the available primitive MEA's. The significance

of a parse-tree in expression compilation stems from the fact that,

for the expressions we deal with, a parse-tree is a data-flow diagram

for the expression. That is, if x and y are nodes of a parse-tree,

and y is x's father, then x cannot be evaluated after y, for x's re-

sult is an input to the computation which yields y's result, [x can,

however, be calculated in pieces, at the same time parts of y are being

calculated.] The parse-tree, or its generalization the data-flow

diagram gives a partial ordering of the times of calculation of the

expressions rooted at each parse-tree node. It is therefore extremely

useful In displaying all possible valid linear orderings of those

computations.

Each canonical MEA can be abbreviated by a tree diagram. The

structure of this diagram is a parse-tree of the expression the MEA

computes. The names of the input arrays, and the result are suppressed,

since systematic renamLigi.' of these variables yield computationally

equivalent algorithms. However, we associate with each leaf of the

tree, and with the root, shapes—the access-characteristic and result-

characteristic of the algorithm abbreviated. The diagram, called an

elementary expression parse-tree (EEPT) conveniently summarizes the

fusion and computation behavior of the algorithm it abbreviates.

Using EEPT's as building blocks, we can device a technique for

mmmmam

70

producing a large collection of canonical MBA's. Suppose EEPT-I's

result-characteristic matches the access-characteristic of a leaf L

of EEPT-2. Construct the tree diagram which results from attaching

EEPT-1 to L. This tree is the parse-tree of an expression composed of

the expressions of EEPT-1 and EEPT-2, Furthermore, this new expression

abbreviates an algorithm which is itself a canonical MBA.

To construct the canonical MEA abbreviated by the Joining of two

EEPT's, we can proceed as follows:

1. Write EEPT-I's algorithm. A, immediately before BBPT-l's

algorithm, B.

2. Rename the matrices used in A and in B so that A's result-

matrix agrees with the input-matrix of B associated with

the leaf L of EEPT-2 whose access-characteristic matched

the result-characteristic of EEPT-1, and so that the name

of B's result-array does not agree with the name of any

array input to A, or to B.

3. Fuse A and B. This fusion can be accomplished, because

A's result-characteristic agrees with B's access-charact-

eristic at the connon connunicatlng array.

HI.2 Alg-Tree PtiialUoM
Let us assume that we are given:

I. An expression's parse-tree, E.

2fl A collection of EEPT's, e.,...,e .

Each EEPT represents an algorithm-class, any one of whose members

can compute the subexpression described by the EEPT's parse-tree. We

wish to assign to each intermediate node of E a method drawn from these

algorithms for computing that node from its descendants. Thus, we

want a correspondence set up between each intermediate node of E and a

unique intermediate node of a unique e .

Definition: We say that an elementary expression tree "e" matches

Eat z if and only if

71

1. For each node a of e there exists one and only

one node x of E(Its corresponding node.

2. If a, B are nodes of e Joined by a line froa a

to B labeled 1, then so are their corresponding

nodes In E.

3. If or Is an intermediate node of e, then its

operator-symbol matches the operator-symbol of

Its corresponding node x in B.

4. The root-node of e corresponds to z.

If e matches B at x, then the set of nodes of B corresponding to leaves

of e are termed the fringe-set of e at x. He «111 often identify the

fringe-set by listing the set of its node-names. Associated with each

line Incident on a member of a fringe-set of e at x is the corresponding

line of e. These terminal lines of e have an access-shape characteristic

which is thereby associated with lines of B. The access-shape associated

with line L Is termed the line-shape(L). If only one line L is incident

on a node x, we define leaf-shape(x) ■ line-shape(L). Also, the root

of e Is assoiated with a shape attribute, called the root-shape of e.

Definition of an alg-tree:

An alg-tree of a node x in B is an assignment of elementary

expression parse trees [EEPT] e. to certain nodes of E. The

assignment satisfies the following construction property:

1. An EEPT which matches E at x is an alg-tree of x in E.

2. If T is an slg-tree of x in E, then if e is an EEPT

"parallel attachable" to T at some node y of S, then

T extended to the nodes matched by e is also an alg-

tree of x in E.

The nodes in an alg-tree T are the nodes of B assigned EEPT-nodes

by T. The root of an alg-tree T is that node in T having no ancestor

node in T. The fringe-set of an alg-tree T is that set of nodes which

72

hav« no lamedlate descendants In T. The connection-aet of an alg-

trce T consists of that set of nodes of T which corresponds to the

root of some EEPT assigned by T to E.

Definition of parallel-attachable:

An EEPT e is parallel-attachable to an aIg-tree, T, in

E at a node y if and only if;

1. y is in the fringe-set of T

2. e Matches E at y

3. The line-shape, s , assigned by T to each line i

incident on y equals e's root-shape.

4. Every line incident on y comes fron a node iu T.

The above de' nitions allow E the possibility of being a re-entrant

tree, one in which a given subtree nay have several ancestors. This

corresponds to a generalization of a parse-tree to a dnt*-flow diagram

for expressions with connon subexpression.

Example: An expression with common subexpressions, such a8(A + E*C)*

(B * C + D) would be represented as:

^

Suppose e is an EEPT which abbreviates an algorithm e. Let t

match E at x, so that x.,...^ are the nodes of E matching leaves of

a. Let the result of a node x be die value of the expression whose parse-

tree is rooted at x. If the results of each x. are stored in arrays

X., executing a suitable version of e produces the result of x. We say

that the EEPT can compute the result of the node its root matches.

Associated with each alg-tree A is a canonical MBA A whose parse-

tree matches the portion of E in A. If the results of each node in

the fringe-set of A is available to A, A can compute the result of the

73

root of A. A Is constructed from the algorithms abbreviated by the

EEPT's assigned In A. One way of constructing such an associated al-

gorithm proceeds In parallel with the construction of A:

(1) Suppose A is an EEPT e which matches E af. x. Then let

A be e's canonical MEA.

(2) Suppose A is an alg-tree T of x, parallel-attached to

an EEPT e at y. Then construct A from T, T'S canonical

MEA, and et e's canonical MEAf as follows:

1. Systematically substitute a new matrix name, Z for

e'a result-matrix, and for the input £ of T cor-

responding to y. Here, Z is a name not jccurring

in T or e,

2. Write the substituted e before the substituted T

3. Parallel connect e to T, yielding a canonical MEA.

The inputs to the resulting algorithm Include all inputs

to T and to e.

Steps 1 and 2 can always be accomplished. Step 3 can

also be accomplished, for if A assigns e to match y, the

root-shape of e must agree with the leaf-shape of y in T.

But the root-shape of e is the result-characteristic of

£ and the leaf-shape of y in T is the access-characteristic

of jr in T. The result of y is needed only as an input to

T, since all lines in E incident on y are in T. Therefore,

Z as computed by e need be input only to T. Therefore, once

£ and T have been placed in sequence, they can parallel-

connect.

To show that the algorithm produced indeed computes the proper

result, observe that if A 1". e, we have already demonstrated the result.

Suppose then that A is the fusion of e with input £ of T. A Is then

computationally equivalent to e;T. But Immediately after e is executed

in this sequence, all of T's Inputs are available. Since T is T's

associated algorithm, T computes the result of the root of A.

74

111,3 Major Properties of Alg-Trees

Alg-trees are Interesting primarily because they explore the

mechanism by which canonical MEA's may be constructed to fit a given

expression-part. This growth-mechanism Is Itself Important In growing

alg-trees efficiently. Thus, the first of the three major alg-tree

properties concerns only the growth-mechanism—the EEPT's, not their

algorithms. The two additional properties we discuss are primarily

properties of the algorithms which can be grown In parallel with alg-

trees, the "associated alg-tree algorithms" (AATA).

Property 1

Let G(Sfx) be the set of all alg-trees of x whose root's shape Is

S. Let H(y,S,x) be the set of alg-trees of y which Include x In their

connect Ion-set, and such that the root-shape of the EEPT they assign

to x Is S.

Then: For all U c G(t>,x), there Is T c H(y,S,x) such that U Is

a sub-alg-tree of T. For all T c H(y,S,x), there Is

U c G(S,x) such that U Is a sub-alg-tree of T.

In other words, the set of subtrees of members of

H(y,S,x) rooted at x and with root-shape S equals

G(S,x), the set of all alg-trees of x with root-

shape S.

We will use this result In growing the alg-trees rooted at y from

G(S,x). Every alg-tree of x with root-shape S can be "extended upward"

by parallel-attaching It to any EEPT A which matches some ancestor-

node y of x such that x lies In A's fringe-set, and such that x's leaf-

shape In A Is S. These extensions ultimately create all alg-trees

rooted at y.

Proof: Each member T of H(y,S,x) contains a sub-alg-tree (which

may be null. If x Is In T's fringe-set) which Is rooted

at x with root-shape S. Clearly this Is a member of G(S,x).

Furthermore, this sub-alg-tree may be replaced by any mem-

ber of G(S,x), each replacement yielding an alg-tree rooted

at y, a member of H(y,S,x).

75

The remaining major properties of alg-trees concern, In reality, AATA's,

Property 2 Each AAXA Is a canonical MEA.

Two consequences of Property 2 are:

a. Each AATA requires only k*N Intermediate variables,

since it is a 2-MEA. Thus, the storage

internal to an AATA does not enter the leading

term of the polynomial in N which counts the number

of memory cells (variables) needed by the program.

b. If the AATA of an alg-tree T of x is used to com-

pute x's result, then the result of every node in

the fringe-set of T must be computed, and be present,

before T's AATA can execute.

Proof: The fringe-set of T lists the limits of the

fusion making up T's AATA. The results of

these nodes are inputs to T's AATA, and must

therefore be present simultaneously Just

before the AATA's execution, since each AATA

is an MEA.

Property 3 A non-canonical MEA can be produced from certain canonical

MEA's which are AATA's of alg-trees. By a "non-canonical"

MEA, we mean one whose result-set may be assigned the same

variables as one of the MEA's input-sets. For example,

from the canonical MEA to compute

A f-B * C

we can produce non-canonical MEA's which compute

A «- B * C and A «- B * A.

Such non-canonical MEA's allow us to re-use Intermediate

variables immediately, thus avoiding the need to provide

an additional distinct array to hold the result of an MEA.

>

76

Theorem: If the result-characteristic of an MEA, A, matches the

access-characteristic of an Input I of A, then the result

set of A may be chosen to be I's Input-set. The MEA which

results from this transformation requires one "move" opera*

tlon for each element of I's Input set. In addition to the

operations needed by A.

Proof: Suppose A's result-characteristic matches the access-characteristic

of an Input I of A. Then, each element-set of the result-set

computed during a single iteration J of A's main loop equals

(In subscript sets) the set of elements of I accessed

during Iteration J. Set A's result-array equal to I's Input

array. Include Instructions In A's main loop to perform

U - (I)

Just before the body of A's main loop. Within the body of

A's main loop, refer to the copy of (I) In U whenever the

contents of a variable In (I) is accessed. A's result,

now (I)., Is computed Into the same variables in (I), by

this resulting algorithm. Because the shapes of A's result and

I "match", neither is 0, and since (I). D (I)1 - |l If

1 / J, no variables in (I), will be accessed on any

Iteration other than the Jth; Because (I). - (I)., no

variable is stored into during Iteration J vhich is not in

(I)., and hence copied into U.

III.4 Result-Array and Fringe-Set Array Storage Overlap

At the end of the preceding section we presented a demonstration

that, if the root-shape of an alg-tree matches a leaf-shape, and if

an Intermediate array was assigned to that leaf, then that same array

can be used to hold the result. Our demonstration involved copying

the set (R) into intermediate storage Just before computing (R).. It

appears that this"move" or copy operation is only a bookkeeping con-

venience, and that at no cost in intermediate storage it can be eliminated.

77

An example follows;

Suppose we wish to compute

X 4-X * B

where X and B are 2-arrays, and X is interned late. We can compute

X (final) with only one 1 * N array of storage and no copy as follows:

Instead of X, allocate Y, an (N+1) * N array, and compute X

(initially) in the first N rows of Y, ie.

X[I,J] - Y[I,J]

This leaves Y[N-Ht J] empty.

3
Now substitute into algorithm 1 (see "the n basic algorithms") as

follows:

for C[I,J] substitute Y[I-HV J]

for A[I,J] substitute Y[I,J]

Also, reverse the sequence of values computed by the outer loop.

The result is:

Case: X[I,J] - Y[I,J] 1 < I, J < N

i :,' H

J -»N

Y[I+1,J] 4-0;

K -»N

Y[I+ltJ]+ «-YCI.K] * B[KtJ];

X (final) is computed by this algorithm in the last N rows of Y.

This suggests another case, differing in X's initial position in Y.

Here we again use algorithm 1, this time substituting

Y[I,J] for C[I,J]

Y[I+1,J] for A[ItJ]

and running the outer loop in normal order.

78

Case: Y[I+1,J] « X[I,J]

I -»N

J -»N !

Y[I.J] «-0

K ->N

Y[I,J] + «-YCI+l.K] * C[K,J]

Virtually the same construction may be used In the outer loop of

any canonical MEA whose result-characteristic matches one of its access-

characteristics. The direction of the main loop is determined by the

"position" of the input which is to be overstored in its larger inter-

mediate array.

Similar constructions can he used to overstore an input whose

access-shape is "c". However, the array in which the input to such an

algoritho. is stored must be allocated somewhat differently; N * (N+1)

rather than (N+1) * N, allowing an extra column. Consideration of the

N * (N+1) arrays (extra-colunn arrays), and c-&ccess algorithms with

input matrices stored in extra-row arrays indicates a proliferation of

cases. One simple solution would simply allocate each intermediate

array to be (N+1) * (N+1). This results in only four possible locations

for the (1,1) element of a matrix stored in such an array, T:

[T[1,1] . T[1,2] . T[2,1] and T[2.2]]

The appropriate r-access and c-access algorithms can easily be calculated

in each of these cases.

A similar const.uctlon applies to any shape of an algorithm such that;

(1) A^ additional element-set of variables may be allocated as

an extension of the sequence of element-sets which make up

the shape, and

(2) The elemeuc-sets of the shape may be computed (and accessed)

in reverse order without changing the result of the algorithm.

When these conditions are satisfied for some shape S, then any canonical

MEA whose result-shape equals S may overstore any of the MEA's input-arrays
i

whose access-shape also equals S.

i

79

III.5 Calculating Intermediate 2-Array Requirements of «n Alg-Tree

One of the properties of alg-trees suggests that, in some cases,

a "large" algorithm with many inputs to the same outer loop may require

more space than the equivalent "smaller" (fever input) algorithms.

This is the "parallelism" inherent in parallel attachment, namely,

that all inputs to an alg-tree must exist simultaneously. Given the

set of inputs to an algorithm, the results at each node of the algorithm's

fringe-set, we must determine the number of arrays needed to evaluate

all members of the fringe-set and which must be simultaneously present.

Suppose we are given a fringe-sist, each node 1 in it requiring

n(l) arrays for its computation. In computing the entire fringe-set,

one intermediate array is needed to hold each node's result unless its

n(i) = 0, for in this case, the member is a leaf of the expression, and

already exists as a program variable. If node 1 is computed Jth among

the fringe-set members, then apparently we need at least

n(i) + J - 1 - *(J)

arrays to compute it. Here k(J) is the number of nodes L such that

n(L) m 0 which are to be conputed before node 1.

Let the number of arrays required to compute the fringe-set S

be N(S).

Then N(S) > n(i) + J - 1 - k(J) for each 1

Let S be a fringe-set, a set of nodes numbered arbitrarily 0 to m.

Let J be any permutation on the Integers in [0,m].

With each permutation J, we can associate an order for computing the

nodes of S. Namely, if these nodes are numbered 0,...,m, then the

1th node we compute is numbered J.. Thus, we can define

N(J,S) - mp (nCip + 1 - K(J,1))

where K(J,i) is the number of elements J. in S such that k < 1 and

n(J.) - 0. Then the following result holds:

M

80

Theorem; Any permutation J for which

NC^) > n(J1+1) 0 < 1< m

minimizes N(J,S)t end for that permutation

N(S) • max {n(J) + 1)
0 < 1 < m X

n^) > 0

Proof; Let N(J,S) - m^x (aiJ.) + 1 - K.(J,1)), «here K(Jtl) Is the

number of k's such that n(J) ■ 0 and k < 1«

We have N(S) - mln N(J,S).

In a following lenna, we prove that:

If for some 1, n(J.) < n(J. .), then there Is a

permutation J* such that

N(JfS) > NCJ'.S), where J* Is defined:

JjJ - Jk If k < 1 or k > 1 + 1

Jl Jl+1

Ji+r Ji
Therefore, If there Is an 1 such that

nUJ < n(J1+1)

then there Is a permutation J* which Interchanges J and J .

and BO that

nCJ'.S) < N(JfS)

By a sequence of such interchanges, we can arrive at J",

a permutation in which

(1) n(Jj)> n(Jj+1)

even if we started with a permutation J for which N(J,S)

took on its minimum value. Furthermore, N(J",S) < N(J,S).

All permutations J*' satisfying (1) produce identical

values of N(J"yS).

Therefore, N(S) • N(JM,S) for all J" satisfying (1).

81

If for some 1 n(J.) < n(J1+1), then there Is a permutation

J' such that N(J,S) > NO'.S), lAere J' is defined:

lfk<lork>l + l K- jk

n- ji+i
ji+1 ■

ji

Proof: Let T. - n^) + 1 - K(J,1).

Then N(J,S) ■ ngx Ii

Slnllarly, let Tj - n(Jj) + 1 - KU'.l)

so NCJ'.S) - mjx TJ

Suppose nCJ.) < B(J1+1)

Then n(J1+1) > 0, and either nC^) - 0 or n^) > 0.

Case: nCJ.) ■ 0.
Then K(J,1) - K(J,1+1) - KO'.l+l)

while K(J',1) - K(J,i) - 1.

Tl+1 " n(Jl+l) + 1 + ' + K(J.1+1)

Ti " n(Ji+i) + l + K(J,»l)

Therefore, T! < T. .

Also,
Tl+1 " n(Jl) + 1 + 1 + KU'.l+D

. nC^) + 1 + 1 + K(J,1+1).

Therefore, T^+1 < T1+1, «hen

n^) <n(J1+1).

82

Case: 0 < nC^) < n(J1+1).

Then K(Jtl) - K(J,i+1) - KCJ'.l) • KCJ'.l+l)

Tl+1 " n(Ji+l) + 1 + ' + K(J.1+1)

. n(J1+1) + 1 +K(J',l)

• n(J1+1) + 1 +K(J,i+1).

Ti

Therefore, T' < T. .,

T|+1 - n^) + I + 1 + KU'.l+l)

• n^) + 1 + 1 + K(J,1+1)

But niJ.) < n(J. .) by hypothesis,

•oTi+l<Ti+T

For *11 k < i or k > 1+1,

k k

Therefore, we have shown diet for «11 x, there

is a k such that

T. > T» k — x

In particular, for that T «hlch maximizes T', there

Is a k such that

T. > T' - NU'.S)

Since N(J,S) > T^,

N(J,S) > R(J,t8).

m .

83

Thus far we have shown how to calculate the number of a.rrays needed

both to compute each input to an algorithm, and to hold those Inputs

simultaneously Just before the algorithm executes. We have not, however,

shown how many are needed to complete the algorithm's execution. Including

computation of Its result. This number, n(S), depends on whether the

algorithm's result may overstore a fringe-set array, or not. We claim;

N(S) ■ N(S) if the result may occupy an array holding one of

the algorithm's Inputs.

- N(S U I) otherwise.

Here, I Is a node-name distinct from all the names of nodes of S,

and such that n(I) ■ 1.

When the result may not overstore an array of the alg-tree's

fringe-set, we must account for the possibility that the members of

the fringe-set each require more than one array in their computation,

but of course only one to hold their result. Let the non-zero-members-

of-S be the set of members x of S such that n(x) > 0. Then

n(S) m max (N(S), number of non-zero-members-of-S + 1).

But n(S) - N(S U I) computes precisely this.

We can say then, that

n(S) m N(S) if: (1) the root-shape of the alg-tree whose

fringe-set is S matches the leaf-shape of

some node x in S, and

x is

and n(S) ■ N(S U I) otherwise.

(2) x is not a leaf of E.

5
The second condition iß required, for we cannot change the value

of any variable of the expression in computing that expression.

84

Property 1 of an alg-tree enables us to avoid some of the redun-

dant alg-tree growing that simple application of our minimization

method would require. He can record, for each shape S at each node,

all the distinct alg-trees with shape S. We can then generate these

sets for any node x, given that they have been generated and recorded

for all descendants of x.

To generate all members of G(S,x), where x Is not a leaf of E:

(1) Choose an EEPT e, whose root-shape equals S, which matches

E at x. Let the nodes of E corresponding (In the match)

to leaves of e be y., certain descendant nodes of x.

Let the leaf-shape of each y be s .

(2) For every 1, choose a member of G(3 »y), Let the set

of alg-trees so chosen be {F).

(3' Extend the assignment B of e to E made In (1) to include
all assignments to F.. B', the extension of B, is defined
to assign to each none x assigned an EEPT node x by an
F or by B that same EEPT node x.

(4) Each distinct choice in step (1) or (2) generates a new

alg-tree in (3). Repeat until all choices are made.

(5) Repeat steps 1-4 for each distinct shape S.

(6) Steps 1-5 create a set of alg-trees B rooted at x.

Provide for the possibility that x may be In the fringe-

set of some alg-trees rooted at ancestors y of x, by

computing n(x), an Integer giving the minimum number

of arrays needed to compute x regardless of which B. Is

used. A "null alg-tree", which has only one input, x,

having n(x) as its array requirement, must then be

added to G(S,x) for each S.

When x is a leaf of E, compute G(S,x) - the null alg-tree,

with a single member in its fringe-set, x. n(x) a 0; for no

85

Intermediate arrays are needed In computing a leaf of E. Leaves

of E are assumed to be computed before any subexpression of E

Is evaluated.

Theorem: If no node In the parse-tree E has more than one line Incident

on it, we can verify that this algorithm computes all, and

only, the members of G(S,x) for each S.

Proof; To show that each object produced by step (3) Is a member of

G(S,x) for the S chosen In (1), we must show that each such

object Is an alg-tree rooted at x, with root-shape S. In

step (3) we extend an assignment of an EEPT e to x to other

nodes of E. We must show that the resulting assignment la

an alg-tree. Clearly, by the construction rule for alg-trees,

e's assignment to x is an alg-tree, T. e's ith line-shape,

s , la assigned a line Incident on node y of E by T. F Is

an alg-tree rooted at y. whose root-shape is s., by step (2).

This means that the EEPT f whose root is assigned y by F

has root-shape s . Also, f matches E at y.. Since no

node of E has more than one line Incident on l*, y. 's only

Incident line has line-shape s . All lines incident on y

have shape s , and lie in T. Therefore f, is parallel-
1 i

attachable to T at y , and hence the extension of T tu include

f. is an alg-tree rooted at x with root-shape S. Succeeding

extensions can be made to include all EEPT's used In f.'s

construction. Similar reasoning shows that T may be extended

to each F.. Hence, each object produced by step (3) is a

member of G(S,x).

To see that all members of G(S,x) are produced by the

leaves-ln algorithm, assume the contrary. Then there is

a T c G(S,x) not produced for any choices of e's and F 's

made in steps (1) and (2). T differs from each assignment

produced by the leaves-ln algorithm in at least one node.

T must, however, assign to x an EEPT which matches E at

x and has root-shape S. Since e matches E at x in only

one way, each node of E assigned by T to nodes of e matching

I V

86

E at x Is assigned that sane node by one of the choices of

(1). In particular, the leaves of e are assigned the sane <

nodes y and shapes s in T as In some choice of EEPT made

by (1), Thus, T e HUjS.jjr.) for each 1. Therefore for each

1 there is an F. e G(B.,y.) which is a sub-alg-Li.ee of T,

Scne choice made by (2) selects precisely these F 's for

every 1. Then T cannot differ from this selection on any

node in F.. But T assigns only nodes of E in an F., or

which match nodes of e. Thus, there Is one selection of

choices In steps (1) and (2) from whlcti T cannot differ.

In performing step (6) of the leaves-in algorithm, we find that

we must compute the mlnlmto number of arrays needed to compute the

result of a node x. This in turn requires an evaluation of the number

of arrays needed for the execution of each alg-tree rooted at x. These

numbers depend on the array requirements of the nodes in each alg-tree's

fringe-set. We will speak of "the value of" an alg-tree A, or a node

x, when we mean the minimum number of arrays needed for the execution

of A to yield x's result, or for the computation of x's result by the

alg-tree rooted at x whose value is least.

If we were to represent alg-trecs as EEPT-node identifiers attached

to certain nodes of E, linked together In some way, each time we needed

to compute an alg-tree's value, that alg-tree's fringe-set would have

to be obtained. A better representation for alg-trees avoids much of

this computation. We could represent alg-trees by their fringe-sets.

In order for this change of representation to save computation, we would

like to show that operations analogous to the steps of the leaves-in

algorithm can be performed on fringe-sets, to yield new fringe-set repre-

sentations directly. But only step (3), the step which produces a new

alg-tree depends on alg-tree repre .ntatlons. If each of the F Input

to step (3) were represented us alg-tree fringe-sets, step (3) could

produce the fringe-set of the extension F of e to the F. by set-uniting

all the F fringe-sets. [Each node In the fringe-set of F must have

been a fringe-set node of some F . Similarly, each node in the fringe-

I '.

87

set of some F is in Che fringe-sat of F.] The change of representation

Is thus desirable.

A still more desirable representation of alg-trees presents Itself.

In computing the value of each alg-tree, we apply the function n to the

alg-tree'a fringe-set, S, yielding n(S). n(S) ultimately requires the

evaluation of N(S) (or N(S U I)). Recall that a fringe-set S Is a

certain collection of nodes In a graph. In evaluating N(S), the names

of the nodes in S are Irrelevant. N(S) requires only n(S), the values

of the nodes S in S, for its computation. This suggests that each

fringe-set, represented as a list of integer node-names ^»...»y }be

associated with the fv-set (nCy.),...,n(y)). The fv (fringe-value)

set we will represent as a string of integers separated by spaces. Each

integer n(y.) is the value of some node y, in the associated fringe-set

and is the number of arrays needed In computing y by that algorithm

which uses fewest arrays.

We will extend the functions N(S) and n(S) to apply to fv-sets.

If S* is the fv-set associated with S, with S! being the integers in S',

l^S') = max (S! + 1-1)
lii

SJ>0

where Sj 2S|+1 for all S' 3J+1 in S'

Thus, N(S,) a N(S)(cf. the definition of N(S)).

Each alg-tree can be repr ;sented by its fv-set during the leaves-in

algorithm. We must describe once more how step (3) of the leaves-in

algorithm can be modified to accomodate the new representation. So long

as there is no node y of E with more than one line incident on y (an

assumption which the leaves-in algorithm requires in any case), no

two fringe-sets united by the modified step (3) have nodes In common.

For two fringe-sets united by step (3) must include descendants of two

distinct nodes y and y only. Furthermore, y is neither a descendant

nor ancestor of y , for both are members of the fringe-set of an alg-

tree, and nodes of a fringe-set of an alg-tree have no descendants in

that alg-tree, and hence in that fringe-set. The lack of nodes in the

•

88

tree with more than one Incident line implies that the set of descen-

dants of y. is disjoint from the set of descendants of y . Hence,

the fringe-sets united by step (3) Include no nodes in common.

The fact that two fringe-sets united by the modified step (3)

have no nodes in comnon suggests a simple extension of fringe-set

set-uniting to the fv-sets of those fringe-sets. He can define the

"join" of two fv-sets A = (A1t...,A) and B ■ (B.(...(B) to be im 1 r
(A.,...,A , B.,...^). That is, the Join of A and B, written A U B, l m l r
is a set of integers consisting of every Integer appearing In A or in

B. The number of integers in the join is the sum of the number of

integers in A and the number In B. Step (3) of the leaves-ln algorithm

can be modified to read:

(31) Join the fv-set representation of all the F, to

produce the fv-set representation of a new alg-tree.

Further information will be associated with each fv-set computed,

in objects called the "tags" of each fv-set. Tags explicitly represent

alg-trees, which, although not needed during the leaves-in algorithm,

nonetheless must be recoverable, for the alg-trees constitute the

desired output of the procedure. Alg-trees will be explicitly repre-

sented by linking each fv-set F produced with the fv-sets F Joined

in step (3*) to form F. Tags will also hold additional information

associated with each fv-set, notably the root-EEPT number, and the

fringe-shape-set. Except for the fringe-shape-sets, none of the In-

formation In tags is essential in computing fv-sets.

The root-EEPT of an alg-tree A Is the EEPT assigned by the alg-

tree to the node at which A is rooted. Each fv-set when generated is

placed in one of the sets G(S,x). Sich sets are termed shape-sets. At

each node one shape-set Is produced for each distinct EEPT root-shape.

Shape-sets represent information about the fv-sets they contain, Infor-

mation which is needed by the leaves-in algorithm.

Fringe-shape-sets enable step (6) to compute n(S) from N^S), where

is an fv-set. Recall that

89

n(S) = N(S) if some node x In the fringe-set S satisifles:

(1) the leaf-shape of x matches the root-shape of

S's alg-tree; and

(2) x is not a leaf of E.

n(S) m N(S U I) otherwise.

Fringe-shape-sets record, associated with each fv-set, sufficient infor-

mation to allow these two cases to be distinguished. A fringe-shape-set

F(S)(where S is its associated fv-set, is a subset of all possible shape

names. Presence of a shape name t in F(S) records the presence, in S's

fringe-set, of some node x satsifying (2), whose leaf-shape equals t.

Suppose C is an fv-set belonging to shape-set G(S,x). Then, If F(C) is

C's fringe-set, the proper evaluation of n(C) can be determined:

n(C) . N(C) if S c F(C),

n(C) » N(C U 1) otherwise.

Here GUI is an fv-set formed by Joining an extra integer 1 to C.

The introduction of a fictitious node 1 to achieve the proper value is

no longer necessary.

Fringe-shape-sets must be computed along with fv-sets. Thus, again

using F(C) to denote the fringe-shape-set of fv-set C, if G are the

fv-sets to be joined in step 3', to form fv-set G, compute as well

F(G) - F(U G.) - U F(G.)
I 1 I 1

Here F(A) U F(B) is Just the set union of F(A) and F(B). Clearly, if

shape-name t occurs in, say F(A), it means that some node 1 of A's

fringe-set has leaf-shape t. In the fusion, I will retain leaf-shape

t. Hence, t should occur in F(A u E). Furthermore, if t occurs in

neither F(A) nor F(B), no member of the fringe-set of A U B will have

leaf-shape t (for no nodes other than those in the fringe-set of A

or the fringe-set of B enter the fringe-set of A U B), and hence t must

not be in F(A U B). Occasionally, we will need to represent fringe-shape-

sets explicitly, as in examples. We will represent (on paper) a fringe-

•

90

shape-set F(C) by listing, Immediately after fv-set C, the shape-

abbreviations contained In F(C). Thus, If

C Is an fv-set containing the Integers 1,1,2,3,

and F(C) contains the shape r,c,

we represent C and F(C) together as:

(1 1 2 3) r c

To complete the computation of fringe-shape-sets, we must produce

a representation for the "null alg-tree", added In Step 6 to each

shape-set G(S,x). The only nodes of E assigned by the null alg-tree are

In its fringe-set. This fringe-set consists of a single node, x. The

fv-set representation of this alg-tree would therefore by FN = (n(x)).

We can compute Z ■ min n(C), where euch C Is an fv-set generated In

shape-set G(S,x) for some S (Including S = ft). Each C represents a

method for computing x. That C among the C which requires fewest arrays

for x's computation is chosen. The number of arrays C requires Is n(C)—

hence the computation of Z gives n(x). The links of FN, which will repre-

sent the alg-tree to be used to compute x, should be copies of the links

of C . We argue that the fringe-shape-set of the copy of (n(x)) added

to G(S,x) should be S. For FN In reality represents the computation of

x Into an Intermediate array. When FN Is added to G(S,x), any fusion

with this copy of FN will, by step (2) of the leaves-in algorithm, access

this array by shape S. Hence, the fringe-set of FN contains a node, x,

which is not a leaf of E, and whose leaf-shape is S. Therefore F(FN) = S,

since x is the only node in the fringe-set of FN.

On? more refinement of our algorithm can be Introduced. Step (2)

of the leaves-in algorithm requires us to select a member of S(s ,y)

for each leaf 1 of EEPT e. But what if s =0? Such a shape is not

defined to "match" another of the bame name. We resolve this difficulty

simply. We arrange that G(s.,y.) contain only fv-set (n(y)). This

fv-set represents the null alg-tree, with which an alg-tree whose leaf-

shape is n at y. may "fuse". Furthermore, since in reality y will

belong to the fringe-set of the fusion, treating the fv-set (n<y.))

91

consistently as an fv-set introduces the Integer n(y) Into each fv-set

F for which y belongs to F's fringe-set, and to no others. We accom-

plish this by adding Step (7) to the leaves-in algorithm.

(7) Replace G(n,x) with the null alg-tree rooted

at x. The representation of this alg-tree is

the fv-set

FN = (n(x))

F(FN) is empty

The handling of the leaves L of E is straightforward. Clearly only

the null alg-tree matches a leaf of E. Hence, each shape-set G(S,L)

contains only FN a (0), for n(L) ■ 0(because no intermediate arrays are

required to compute a leaf. Furthermore, because L is a leaf of E,

F(FN) is empty in each shape-set, for the only node in the fringe-set

of FN is L which is a leaf of E. Hence, no shapes occur in the fringe-

shape-set of any copy of FN.

From now on we will discuss tagged fv-sets and the alg-trees they

represent interchangeably. Each of the terms here defined for alg-trees

can be extended to apply to the tagged fv-sets representing alg-trees.

Thus, we will speak of the root-shape of fv-set G, meaning the root-

shape of the alg-tree G* whose fv-set is G, and which the tags of G

represent, etc.

III.7 Effort Estimates Motivating Search Reduction

It is worthwhile at this point to make an estimate of the number

of alg-trees we must consider. The time we spend in optimizing an

expression is likely to be directly related to this number.

One of our early formulations of this problem suggested that a

very large number of alg-trees would have to be considered. We supposed

that a maximal alg-cree rooted at a node x was given. The leaves of

such an alg-tree either coincide with leaves of E, or have null leaf-

shape, so that no EEPT can be parallel attached to them. We then ob-

served that each "pruning" of a branch of this alg-tree resulted in a

92

new alg-tree. We can calculate the number of such alg-trees derivable ^

by such branch paring.
}

Let C(X) be the number of alg-trees derivable by branch-paring

from a given alg-tree rooted at x.

Each pruning of a descendant of x can be combined with the

primings of any other descendant of x to yield distinct alg-

trees. We get

C(x) = C(x}) * C(x2) + 1

wheie x. and x. are the Imnedlate descendants of x. The "1"

Is added to account for the alg-tree resulting «hen all nodes

but x are pruned away. When x Is a leaf, It has no descendants,

so C(leaf) m 1.

This function suggests a rather large number of possibilities. In a

binary, symnetrlc alg-tree, its value Is greater than */2 , where n

is the number of non-leaf nodes In the tree. This motivated us to

search for strategies which reduced the cost of searching this "tree-

pruning" space.

The exponential nature of the dependence was based on the "Indepen-

dence" of the operation on each branch. Each branch must be pruned In

all possible combinations with the primings of other branches. We

searched for a method which would decide how short any one branch should

be, regardless of the remaining branches.

The fringe-sets a branch B gives rise to are ultimately set-united

with fringe-sets arising from other branches. We hoped to avoid gen-

erating these "other branch" fringe-sets. We therefore searched for a

criterion which would allow two interchangeable fv sets, A and B, both

united with the same externally generated fv-set, C, to be compared.

Specifically we need:

N(A U C) > N(B U C) for all C.

Such a criterion was discovered. It promises to drastically reduce

the number of fv-sets we need consider in each shape-set, by allowing

93

us to discard sets like A, which are known to be no better than a

set, B, which we retain.

Tree Pruning Example;

We begin with:

a maximal alg-tree.

All Its primings are:

A

.

9A

We compute C(d), where d Is the distance from the leaves of a

node x In a binary symmetric tree.

(C(d) - C(x)).

We get

C(d) » [C(d-1)]2 + 1

C(0) - 1

In contrast, the number of Intermediate nodes In a binary symnetrlc

tree of height d is |i(d)(where

^(d) - 2^(d-l) + 1

^(0) - 0

Here, the height of a symnetrlc tree is the distance from its

root to any of its leaves; intermediate nodes of a tree are non-leaf

nodes. The number c£ operators In an expression equals the number of

intermediate nodes of that expression's parse-tree.

(d) d C(d)

0 0 1

1 1 2

3 2 5 (Our example)

7 3 26 - 52 + 1

15 4 677 - 262 + 1

We will show that

C(d) > 2**[/((d-l) +1] for all d > 2

and, since

^(d-1) + 1 » 1 + [^(d) - 1]/2 - [^(d) + l]/2

that

C(d) > 2**[/((d)/2] - Ql) **|i(d)

95

Proof; by induction on d.

Case; «i ■ 2.

C(2) - 5. j^Cd-l) - ^(1) - 1. 2**(^(d-1) + 1) - 2**2 - 4

C(d) » C(2) - 5 > 4 - 2**[^(1) + 1] - 2**[|((d-1) + 1]

Case; d > 2. Assume tfce conclusion for d - 1.

C(d) « [C(d-l)]2 + 1 > [C(d-1)]2> [2**(/l(d-2) + I)]2

C(d) > [2**(/((d-2) + I)]2 - 2**[2^(d-2) + 2]

2/l(d-2) + 2 - [2/l(d-2) + 1] + 1 - ^(d-1) + 1

therefore

C(d) > 2**[^(d-l) + 1]

holds for all d > 2.

Thus, if w a the number of operators in an expression, we will need

to investigate somewhat more than

2**[(w+l)/2]

tree primings.

The comparison technique motivated by the "maximal alg-tree" al-

gorithm can be profitably applied to the "leaves-in" algorithm. The

effort required by the leaves-in algorithm is very similar to that

required by the maximal alg-tree algorithm. It can be calculated as

follows:

Let D(x,S) a the number of alternative alg-trees rooted

at x with root-shape S.

Then D(leaf,S) B 1, for each root-shape S.

At a non-leaf node, x, this number depends on the number of

EEPT's with root-shape S, as well as the number of alg-trees in shape-

set S of descendant node x .

When we choose EEPT K which matches E at x, a (shape, node) pair

is determined for each leaf of K rooted at x. Let these pairs be

(SK1»XK1)»",»(SKJ*XKJ)

, " ■

96

The number of comblnatlors, each representing a possible

alg-tree rooted at x choosable In this way Is;

Thus

D(X,S) - Z H DO^.Sj^) + 1
KcL 1

«here L Indexes the EEPT's with root-shape at S natchable to E at X.

The tern "-f r' arises from the need to consider n(x) a member of

each shape-set, representing the computation of an array holding the

result of x.

Let us assume that each EEFT K Is a single-operator binary

tree, so that Its two leaves coincide with the sons of x when

the EEPT Is rooted at x.

Let us further assume that, for each shape S, there exists only

one EEPT having a root-shape equal to S.

Then D(X,S) » Dfc,.^) * D(X2»SK2) + 1

where X and X are the sons of X.

Assuming that the tree Is symnetrlc, and that

D(X,S) - D(X,S) for all shapes S^ S

we hn^e: D(X,S) = Dtf^S) * D(X2,S) + 1,

D(leaf,S) = 1

or. In a symuetrlc tree containing W Intermediate nodes

D(X,S) > 2**(W/2)

CHAPTER IV

Introduction

Chapter III demonstrated that the cost of choosing an optimum

compilation of a given matrix arithmetic expression appears to grow

exponentially with the size of the expression. The present chapter Is

devoted to demonstrating a result which reduces this exponential

dependence on the expression-size to linear dependence. The result,

called the "comparison theorem", allows two interchangeable fv-sets

(and hence, the alg-trees they represent) to be "compared".

Each alg-tree rooted at x was retained, In the leaves-in algorithm,

to allow It to become a part of a "larger" alg-tree. The number of

arrays this larger alg-tree requires depends not only on the alg-tree

rooted at x, from which it was generated, but on the alg-trees rooted

outside x which are also part of the larger alg-tree.

Suppose alg-trees A and B are both members of G(S,x). Then when-

ever A can be parallel connected to some EEPT which matches E at y, some

ancestor node of x, so can B. The number of arrays needed in computing

y via A, together with some alg-trees C rooted at other descendants of

y than x is n(A U C). N(A (J C) is a major component of n(A U C). The

comparison theorem is capable of deciding, by examining only A and B,

whether

N(A U C) < N(B U C)

without generating all the possible alg-trees C rooted outside x with

which A and B might fuse. The comparison theorem itself gives neces-

sary and sufficient conditions on A and B for the statement:

(1) for all C N(A U C) < N(B U C)

to hold. These conditions are in spendent of C.

The trick of generalizing over a variable to derive conditions
independent of that variable may work for other comparison predicates.
This would suggest its use In exhaustive-searches. Sufficient "structure"
must exist in the space being searched to allow a concept analogous to
"interchangeable fringe- ets" to exist. Also, the comparison theorem in
other searches may lack power (perhaps only holding between Identical par-
tial states) or applicability (perhaps few comparable pairs are ever pro-
duced). However, when proper conditions hold, it appears to be a powerful
search-space veducing operator.

98

While the quantification makes this predicate independent of C,

its determination would be too time consuming if every C had to be

generated before the predicate could be computed. Thus, we seek a

new predicate equivalent to (1), which does not specifically mention C.

C, we investigate in some detail the evaluation rule for N(S), where S

is an fv-set. S is a set of integers (possibly including repetitions),

S . We have discovered that the function N(S) = max (S + i > 1), where
Hi 1

SfO

S > S. .. N(S) is then the maximum of a set of terms« g(S,i), where

g(Sti) » S + i - 1, 1 < i A S. > 0. Not all these terms contribute

directly to tUa maximum. Some, where S[i] a S[i], merely act as place-

holders, increasing the value of the index, 1, but are themselves smaller

than another term. In other words,

if Sj - Sj+1, then g(S,j) = g(S,J+l) - 1 < g(S,J+l).

Hence, mjx(g(S,l)) > g(S,J).

Furthermore, the side condition requiring S > S is not summarized

in the term function, g, and must be handled separately.

We introduce a different method of computing N(S), which eliminates

both the need for Che S. > S side condition, and emphasizes the

"important terms" of the g(S,i), i.e., those which may contribute to

the maximum. They are characterized by S. > S . The new method of

computing N(S) makes use of a new set of terms, f(S,v) ** I(S,v) + v - 1,

Rather than an index, v is a "value", an Integer which may be found

in the set S. I(S,v) » the number of elements S > v. l(S,v) incor-

porates the properties of the ordering condition S > S . It fur-

thermore serves to give the index of the "Important term" 1 whose

S a v. Its extensions to values v not occurring in S introduces new

"unimportant:" terms (where S > v> S .), but remains manageable. By

making the definition of f(S,v) conditional on v > 0 and I(S,v) > 0,

so that f(S,v) a 0 where these conditions fall to hold, N(S) can be com-

puted by unrestrictedly maximizing f(S,v) over v.

In order to derive a predicate equivalent to (1), but not involving

99

Once we have c elded Co use the sequences f(S,v) for the computation

of N(S), we can discuss the effect on N(S) of Joining another set Y to

S. Suppose Y is a set consisting of m copies of the integer x. Then

f(S U Y,v) Jf (S,v) if v > x.
(f (S,v) + m if v < x.

In other words, Joining a new set Y to S increases terms with low enough

values by a constant amount. Except f jr cases waen x > S for all S , no

new important terms are introduced b> the Join. When Y is adjoined to

two sets, S and I, we again have

f(S U Y,v) = f(S l Y,v) + m if v < x

and f (T U Y,v) ■ f (T L Y,v) + m if v < x

Thus, if two sets S and T compare so that N(S) > N(T), it may happen that

for some sufficiently small v, v.

f(S,v0) < f(T,v0).

Then, by adjoining some Y to both S and T, we can Increase the values of

the terms generated by v in the new sets:

f (S U Y,v0) « f (S,v0) + m

f(T U Y,v0) = f(T,v0) + m

If the value u which minimizes f(S,u) is larger than v , then the terms

generated by v will, for large enough m, be larger than f(S,u). When

this happens, we will have

N(S U Y) < N(T U Y) for that Y.

Example:

S » (41). T » (212).

We must reorder S and T:

S' = (41), T' . (221)

1 g(S,i) g(T,i)
1 4 2

2 2 3

3 - 3

Thus, N(S) o 4, N(T) » 3, so N(S) > N(T).

100

Suppose we adjoin Y a (11) to both S and T and repeat the process

of evaluation.

S U Y = (4111), T U Y o (21211)

(S U Y)' . (4111), (T U Y)' a (22111)

t g(S U Y.l) g(T U Y,l)

1 4 2

2 2 3

3 3 3

4 4 4

5 - 5

Now, N(S U Y) = 4, and N(T U Y) =. 5. Thus Y has reversed the S - T

comparison.

In terms of the f(S,v) and f(T,v) representation, we have:

v f(S,v) f(T,v) fSS U Y,v) f(T U Y,v)

5 0 0 0 0

4 4 0 4 0

3 3 0 3 0

2 2 3 2 3

12 3 4 5

Notice that f(S,l) ■ 2, while f(T,l) =3. So long as there Is no

v < 1 for which f(S,v) > f(T,1) (as there Is not In this example)

Increasing f(S,1) and f(T,1) by a sufficiently large m will Insure

that N(T) > N(S).

The following section derives more formally the predicate equiva-

lent to (1) which does not refer explicitly to C. This predicate Is

abbreviated A < B (or B > A). B > A just when, for each Integer w > 0,

there Is an Integer v, satisfying w> v > 0, such that f(B,v) > f(A,w).

Following the proofs of the equivalence of B > A and (1), a sec-

tion detailing the application of the comparison theorem to the leaves-

In algorithm Is presented. Here, we describe the "Interchangeablllty"

requirement conditions, as well as discussing the theorem's applicability

101

to comparisons of n(B U C) to n(A U C). It is shown that both fv-sets

must be members of the same shape-set, as well as satisfying an Inclu-

sion condition on their fringe-shape-sets before one of the fv-sets can

be discarded.

The remaining section of this chapter shows the power of the com-

parison theorem. Shape-sets produced during the leaves-ln algorithm
3 3

from EEPT's associated with the n and n jl basic algorithms have certain

particularly useful properties. These properties allow advance prediction

of the outcome of many fv-set comparisons between members of the same

shape-set. Because the Initial EEPT's satisfy an "equality" condition

on their root and leaf-shapes, we can show that only two fringe-shape-set

categories of fv-sets occur In each shape-set. Furthermore, we can show,

using various properties of the function f(S,v), that after n(x) Is added

to each shape-set of node x, only one fv-set In each category will sur-

vive the comparisons. This serves to place a constant upper-bound on the

number of fv-sets generated at each node, limiting the effort required

by the search to a constant times the number of operators In the given

expression.

102

IV.1 The Fv-Set Comparison Theorem

The letters A, B, and C here denote fv-sets, with S(A), S(B), and

S(C) their fringe sets.

Let I(A,v) - the number of Integers j In A such that j>v.

Properties of I(A,v):

1. w>v Implies that I(A,v)>I(/i,w)

since the set of values In A which are > v contains the

set of values In A which are > w.

2. If S(A) and S(C) are disjoint, then I(A U C,v) = I(A,v) + I(C,v)

Let f(A,v) = I(A,v) + v - 1 If I(A,v)>0 and v>0

= 0, otherwise.

Let f(A) = max f(A,v)

Theorem Is f(A) = N(A)

Let A «i B mean: Vw 3v [w>0 -^ w>v>0 A f (B,v)>f (Atw)]

Lemma 1

Lemma 2

Lemma 3

ASB -♦ VCCAUC^bUC]

A ■<; B - N(A) < N(B)

-i[A SB]-» 3C [N(A U C) > N(B U C)]

Theorem 2: A s B = VC [N(A U C) < N(B U C)]

We follow this brief statement of the results of this section with their

detailed proofs.

Suppose A = (A[0],...A[m],A[mfl]=0), with A[l] > A[l+1] > 0, for m > 1 > 0.

Properties of A:

I. If v = A[l] > 0, then 3j such that v = A[j] > A[j+1].

Proof: There is at least one J such that v ■ A[j], namely Jvl.

Suppose Vj such that v = A[j], A[j] < A[j+1].

By construction of A, A[j] = A[j+1].

Therefore Vj>l v=A[j].

In particular v = A[nri-1] = 0, contradicting

the assumption that v>0.

103

2. If A[j] >v >A[1+1] then I(A,v) = j+1.

Proof: I(A,v) is the number of A[^]*s such that A[J] > v.

In constructing A, we get

A[j] > exactly j+1 members of A,

A[0],...,A[j].

All of these are > v, so I(A,v) > J-t-1.

v < A[j+1], so v < A[i] for all i>J+l.

Hence, I(A,v) = HI.

Theorem 1: f(A) - N(A)

where:

f(A) = max f(A,v)

N(A) ■ max (A[t]+i,0)

A[i]>0 (where A is as before)

Let g(A,l) = A[l]+1 if A[1]>0 and m> i > 0,

■ 0, otherwise.

Then N(A) ■ max g(A,l).

Proof;

1. If A[i] > A[i+1] and m > 1 > 0, then f(AtA[i]) - g(A,l).

Proof: I(A,A[l]) = i+1 > 0

If A[l] = 0, f(A.A[l]) = 0 = g(A,l)

else, f(A,A[i]) - I(A,A[1]) + A[l] -1

= 1 + 1 + A[i] - 1

■ g(A,i)

2. If A[l] - A[l+1] > 0 and m > 1 > 0 then g(A,i) < g(A,l+l)

Proof: A[mfl] = 0, so m > 1, or m > 1+1.

therefore, g(A,i) = A[l]+i > A[l+1]+l < A[l+l]+i+l

g(A,i) < A[i+1] + 1 + 1 = g(A.i+l)

104

3. If g(A,l) = max g(A,J) > 0, then A[l] > A[l+1] and ra > 1 > 0

proof:

If A[i] -O A[l+1], A[i] = A[l+1].

Also, g(A,i) > 0, so A[i] > 0 and m > i > 0.

Then g(A,i) < g(A,l+l), by 2.

But g(A,i) = max g(A,j) > g(A,l+l). Contradiction.

4. If g(A,l) = m^x g(A,j), then g(A,l) = f(A,A[l]).

proof:

By 1 and 3, if g(A,l) > 0. Otherwise g(A,l) m 0 for

all 1, 0 < 1 < m, and f(A,A[l]) = 0, since A[i] = 0

for all i.

5. Vv 31 f(A,v) < g(A,i).

proof:

If A[i] > v > 0 for some i such that m > 1 > 0,

then 3j such that A[j] > v > A[j+1].

therefore, I(A,v) = j+1, so

f(A,v) = I(A,v)+v-l = J+v < j+A[j] = g(A,j).

If v < 0 then f(A,v = 0 < g(A,0).

If v > A[0] then I(A,v) = 0, so f(A,v) = 0 < g(A,0).

We have: 31 such that g(A,l) ■ max g(A,j), and

f(A) > f(A.A[l]) = g(A,l) = max g(A,J).

Vv 31 f(A,v) < g(A,l).

For some V, f(A) = f(A,V) < g(A,l) < max g(A,j)

Therefore f(A) = max g(A,j) = N(A).

105

Lemma 1A; If v > 0, then

if I(A,v) > 0, f,A U C,v) = f(A,v)+I(C,v)

and if I(A,v) = 0, f(A U C,v) = f(C,v) > f(A,v)+I(C,v)

proof:

Suppose v > 0.

Then f(X,v) = I(X,v)+v-1 unless I(X,v)=0.

We know that I(A U C,v) = I(A,v)+I(C,v).

Then:

1, Suppose I(A,v) > 0. Then, since I(C,v) > 0,

I(A U C) > 0.

Therefore f(A U C,v) ^ I(A U C,v) + v - 1

= I(A,v) + I(C,v) + v - 1.

Also, f(A,v) = I(A,v) + v - 1,

so f(A U C,v) = f(A,v) + I(C,v).

2. Suppose I(A,v) = 0.

Then I(A U C,v) = I(C,v).

Case; I(C,v) = I(A U C,v) > 0.

Then f(C,v) = I(C,v)+v-l = I(A U C,v)4v-1

= f(A UC,v)

Also, f(A,v)=0.

Therefore

f(A,v)+I(C,v) = I(C,v) < I(C,v)+v-l

< f(A U C,v)

Case; I(C,v) = I(A U C,v) = 0.

Then f(C,v) = 0 = f(A U C,v).

Also, f(A,v)+I(C,v) = 0 < f(A U C,v).

106

Lemma IB; If v > 0 then

£(A U C,v) > f(A,v) + I(Ctv)

Proof; I(A,v) > 0 V I(A,v) = 0. .

Ir I(A,v) > 0, f(A U C,v) ■ f(A,v) + i(C,v) by Lemma 1A

.-. f(A U C,v) > £(A,v) + I(C,v)

If I(A,v) = 0, f(A U C,v) > f(A,v) + I(C,v) by Lenma 1A

/. f(A L» C,v) > f(A,v) + I(C,v)

Lemma 1; A<B-»VC[AUC'<BUC]

Recall that A < B means Vw av[v >0->w>v>0A f(B,v) > f(A,w)]

Proof; We must show, assuming A < B, that for each w > 0 there

Is a v', w^v* > 0, such that

f(B U C.v1) > f(A U C,w).

We know that for each w > 0 there Is v such that

w > v > 0 and f(B,v) > f(A,w).

Also, w > v implies I(Ctv) > I(C,w),

so f(B,v) ■*■ I(C,v) > f(A 0 + I(C,w)#

Case; l(A,w) > 0

Then f(A,w) > 0, so f(B,v) > 0, giving I(Bfv) > 0.

/. f (A U C,w) - f (Afw) + I(C,w)

and f(B U C,v) - f(B,v) + I(C,v), by Lemna 1A,

so f(B U C,v) > f(A U C,w),

and we may take v* = v.

Case; I(A,w) ■ 0.

Then f(A U C,w) = f(C,w) by Lemma 1A

f(C,w) < f(C,w) + I(Bfw) < f(B U Ctw), also by Lemna 1A.

Therefore, f(A U C,w) < f(B U C,w)

and we may take v* = w#

Lemma 2; A < B -»NCA) < N(B)

Proof; We show A <i -»f(A) < f(B). (Then use Theorem 1.)

A<B = VWHV[W> 0'*w>v>0A f (B,v) > f(A,w)]

.'. V(w > 0) av[f(Bfv) > f(A,w)]

f(B) m max f(B,v) > f(B,v)

^

\ 107

;. Vw > 0 f (B) > £(A,w)

also f(A,0) - 0, and f(B) > 0

;. Vw f (B) > £(A.w)

or f(B) > £(A) » max f(Atw) = f(A,w*)f for some w*
~~ w

Lemna 3; -{A < B] -»Sc [N(A U C) > N(B U C)]

-^A < B] means 3w Vv [w > 0 A [w > v > 0 -» f (B,v) < f (A,w)]]

Proof: If N(A) > N(B)t choose C empty.

Otherwise, for w as in (1) let

m = N(B) -f(A,w)

m > 0, for

N(B) = f(B) > f(A) > f(A,w)

Take C to consist of m + 1 occurrences of the Integer w.

W <w f(A U C.v) o fCA.v) + m + 1

and f(B U C, ') = f(B,v) + m + 1

Vvl > w f(A U C,vl) - f(A,vl)

and f(B U Cfvl) = fCB.vl)

.'. f(A U C,w) = f(A,w) + m + 1 > N(B)

N(B) > f(Bfvl) = f(B U C,vl) for all vl > w

for all v < w f(A U C,w) = m + 1 + f(A,w) > m + 1 + f(B,v) - f(B U C,v)

.'. f(A U C,w) > N(B U C)

.'• N(A U C) > N(B U C)

Theorem 2; A < B H WC[N(A U C) < N(B U C)

Proof; A<B-»Vc[AUC<BUC]

->Vc [N(A U C) < N(B U C)] by Lemna 2

-i[A < B] -*-, Vc [N(A U C) < N(B J C)] by Lemna 3

Vc [N(A U C) < N(B U C)] -^A < B

.'. A < B H Vc [N(A U C) < N(B U C)]

108

Example: Use of the fv-set comparison theorem:

Given A = (3221) and B - (31111),

we Investigate whether A > B, or B > A.

We will compute f(A,v) and k(A,v) = max f(A,w), as
V>yt>0

well as f(Btv) and k(B,v).

We then need only ask If, for all v > 0, f(A,v) < k(B,v)

to determine If A < B.

v f(A.v) k(B.v) f(B.v) k(A.v)

4

3

2

1

0

3

4

4

5

5

5

5

0

3

2

5

4

4

4

4

For all v, f (A,v) < k(B,v) .*. A < B.

We try A' = (21) B (3)

f(A,,v) k(B,,v) f(B,,v) k(A',v)

4

3

2

1

0

0

2

2

0

3

2

1

0

3

2

1

2

2

2

2

i

Here, neither A' > B', since f(A,,3) ■ 0 < k(B,,3) - 3

nor B' > A', since f(B'.l) » 1 ^ k(A,,l) = 2

Potentially, If enough 'ones' are united with both A' and B',

A' U C will eventually achieve a larger N(A' U C) Chan will B':

Let C = (11). Then

A' U C » (2111) , NfA' U C) = max(2+0,1+1,1+2,1+3) - 4

B' U C B (311) , N(B' U C) » max(3+0,1+l,l+2) » 3

Of course, N(A') ■ 2, NCB') a 3, so their "actual" situation

can be reversed.

109

IV.2 Application of the Comparison Theorem to the Leaves-In Algorithm

Each fv-set produc I during the leaves-in algorithm ultimately

becomes part of an fv-set which Is compared against ail other fv-sets

at some node. Fv-sets A uhlch satisfy n(A) > n(B) for some fv-sets

A and B at node x are not chosen as the best method for computing x.

If we had conditions which guaranteed that, for all C, n(A U C) > n(B U C),

and If each C jolnable to A by some series of parallel connections

were Jolnable to B as well, then A would not need further Investi-

gation. In particular, we would not have to generate fv-sets A U C

for each possible C, since we would know that an at least equally good

alg-tree exists: B U C. Thus, A need not be retained In A's shape-

set at x 30 that generating all possible Joins of A to C's is avoided.

The previous section has shown that if (and only If) A r B,

then for all C, N(A U C) > N(B U C). We still do not know the rela-

tionship between n(A U C) and n(B U C), however. Furthermore, we must

develop a criterion for the Interchangeability of two fv-sets so that

any C Jolnable to one can be Joined to the other. The present sec-

tic n develops sufficient conditions for the application of the compar-

ison theorem in deleting fv-sets from the shape-sets of the leaves-in

algorithm.

First, we claim, by virtue of Property 1 of an alg-tree, that

two fv-sets A and B which are both members of the same shape-set are

Interchangeable. For that alg-tree property shows that, if A can be

a sub-f.lg-tree of some alg-tree, and is a member of G(S,x) then so

can any member B of G(S,x). But G(S,x) is Just the shape-set containing

A and B at x. Hence, A and B are Interchangeable, if both belong to

G(S,x) for some node x and shape S.

The extension of the comparison theorem to n(A U C) and n(B U C)

requires more thought. Basically, n(A) mey equal N(A) or N(A U 1),

depending on whether A's result cm occupy an input array of A's

AATA , or not. This is determine« by A's fringe-shape set. The

problem is that A may satisfy N(A; > N(B)t while n(A) < n(B), for

Associated alg-tree algorithms. See Section 3, Chapter III.

no

example If n(A) = N(A), while n(B) = N(B U 1). The method used to

Join fringe-shape sets allows determination of conditions

under which n(A U C) > n(B U C) for all C.

Let C be an fv-set rooted at some node which is not x or a

descendant of x. We say that C is an outside-x fv-set« If A is a

member of some shape-set of x then when C is Joined to A, the fringe-

shape sets of A and of C set-unite. This fact allows us to derive

conditions on the fringe-shape sets of A and of B, two fv-sets of the

same shape-set, which guarantee that, if A > B, then n(A U C) > n(B U C)

for all C.

Let Ffc), where C is an fv-set be C's associated fringe-shape set.

Theorem: If A > Bt and F(B) r> F(A),

then n(A U C) > n(B U C) for all C.

Proof; F(A U C) a F(A) U ?(C)t by the steps of the leaves-in algorithm.

Therefore

F(B U C) = F(B) U F(C) D F(A) U F(C) a F(A U C)

Hence, if A U C occurs in shape-set S, then if S e F(A U C),

S e F(B U C). Therefore, n(A U C) = N(A U C) Implies that

n(B U C) a N(B U C).

Case; n(A U C) a N(A U C). Then

n(B U C) a N(B U C) < :.(A U C) a n(A U C)

so n(B U C) < n(A U C).

Case; n(A U C) a N(A ü C U 1) Then

n(B U C) < N(B U C U 1) < N(A U C U 1)

so n(B U C) < n(A U C)

In summary then, if A and B belong to the same shape-set, and A > B,

and F(B) 3 F(A), then A may be deleted from the shape-set without

compromising the optimality of the compilation of the given expression

into AATA's.

F

in

IV.3 Ihe Leaves-In Algorithm, with Comparison Theorem

The following algorithm Is to be applied to the nodes of the

expression's parse-tree, E, In the following order. It Is to be applied

to a node x only after being applied to each of the descendant nodes of

x, taken in any order.

(1) If x is a leaf of E, then set G(S,x) = [(0)] for

each S. (0) is an fv-set constant, containing no

shapes in its fringe-shape-set. Exit.

(2) Initialize each shape-set G(S,x) to the empty set.

(3) Find an EEPT e which matches E at x. Suppose S is the

root-shape of e. Find, for each leaf 1 of e, the node

L of E corresponding to i In the match of e to E at x.

(4) Select one member, for each 1, of G(leaf-shape(1),L.).

Join the selected combinations of fv-sets, using fv-set-

Join to combine the fv-sets, and set union to combine

their fringe-shape sets. Add the resulting augmented

fv-set to shape-set S.

(5) Repeat (4) for each distinct combination of fv-sets

selectable by (4).

(6) Repeat (3)-(5) for each EEPT.

(7) Calculate n(x) = min n(A), where A ranges over all

fv-sets in any shape-set G(S,x). Ado the fv-set

(n(x))S to each shape-set G(S,x). Here, (n(x))S is an

fv-set containing the integer n(x) only, and whose

fringe-shape set contains S. Replace G(Q,x) with (n(x)).

(8) Compare each pair of fv-sets A and B in each shape-set

G(S,x). If

A >• B, and F(B) D F(A)

then delete A from G(S,x).

(9) Exit.

112

The root of E will be the last node visited by this procedure.

Along the way records can be kept, describing which fv-sets gave rise

to each retained fv-set. The Identity of the best alg-tree (fv-set)

available for computing node x should be associated with some copy of

(n(x)), say that which replaced G(n,x).

Apply the following algorithm to Isolate each alg-tree whose

AATA Is part of the optimum compilation.

The following algorithm Is applied first at the root of E.

AATA(x): (1) Locate G(D,x). Collect, into set N, all

the nodes Included In the alg-tree which 0(0,xVs

single member represents. This collection Is

accomplished by following the records of fv-set

generation until the fringe-set nodes are

reached. Let the fringe-set nodes be F..

(2) For each 1, compute MTA(F).

(3) Print N, perhaps with additional information,

indicating the EEPT rooted at each node in N,

and other information which is recorded In the

fv-set tags. Exit.

IV.4 Leaves-In Algorithm Effort Requirement

In the following section, we demonstrate that, by restricting the

given set of EEPT's appropriately, the effort required In applying the

leaves-in algorithm to any given expression, E, is bounded by a linear

function of the number of operators in E. We demonstrate this by

showing that the comparison-and-deletlon step of the leaves-in algorithm

leaves no more than 2 fv-sets in each shape-set. Since no more than

K shape-sets will appear at each operation node of E's parse-tree, no

more t'ian 2*K fv-sets occur at any node. Therefore, at each node, no

more than (2*K) fv-sets will be generated, where m> number of leaves

of any EEPT, This number Is reduced to ?*K by less than (2*K) ^com-

parlscii-and-deletlon steps. Therefore, the operators of E, W In number.

113

generate approximately W * [(2*K),n + (^Kr2*^] steps. Since K and m

are constant with W, this shows that the effort Is bounded by a linear

function of W.

The critical step In our derivation of the linear effort-bound

lies in bounding the number of fv-sets in any shape-set by 2. It

is at thic stage that we must Impose a restriction on the given

EEPT's.

Suppose we follow the steps of the leaves-in algorithm to a point

Just after all fv-sets have been computed for a given node. The next

step Involves computing

n(x) B min n(a)

for all fv-sets a. in any shape-set. The special fv-set (n(x)) is then

added to each shape-set, representing the "null" alg-tree, a result

stored in an intermediate array. We can show, under some circumstances,

that (n(x)) and the comparison theorem reduce the number of fv-sets

in each shape-set to 2, at most. If we consider only a finite number

K of shapes, and hence shape-sets, this limits the number of fv-sets at

each node to a constant 2*K. Ultimately, this will let us show that

if the expression contains W operators, only (2*K) * W fv-sets are re-

tained, at most. We thus bound the search effort.

We require (and will assume throughout this section) that all

EEPT's satisfy:

Let root-shape(e) ■ S and leaf-shape(i,e) = T ,

for each leaf 1 of e.

For all leaves 1 of e.

If S / T , then either S « ft or T. ■ 0«

The purpose of this restriction becomes clear in Theorem 1.

Basically, the restriction guarantees that only one shape in each

fringe-shape set can ever be relevant, regardless of the set-unions

an fv-set enters. For each shape-set G(S,x), that relevant shape in

each of its member's fringe-shape sets Is S. Furthermore, it ensures

that the special fv-set (n(x)), which Is added to each shape-set.

114

can be ised Co delete any fv-set in that shape-set. Here n(x) = min n(A)

for all fv-sets A In shape-sets of node x. The restriction thus effec-

tively relaxes the requirement that F(B) 3 F(A) before B may be deleted

by A. Theorem 1 partitions each shape-set into two classes. The

remaining theorems show how (n(x));

(1) replaces one of these classes, and

(2) leaves only elements B,C in the other such that B > C

and C > B.

Thus, we show that only one element remains in each class.

One final comment. The restriction we impose is light enough that
3 all EEPT's generated by the n algorithms we studied satisfy it. Fur-

thermore, most of the n jl algorithms also produce acceptable EEPT's.

The theorems we prove here are thus not vacuous.

Theorem 1; If A is an fv-set in shape-set G(S,x), then F(A) as computed

by the leaves-in algorithm satisfies:

If S ^ 0, and T ^ S then T / F(A).

Proof; By Induction on level(x). Level(x) is an Integer defined for

each node x in the parse-tree E as:

level(x) a 1 + max Ievel(x), for all sons x. of x.

and level(x) = 0 if x has no sons (is a leaf of E).

When level(x) = 0, x is a leaf of E, and the fringe-shape-

sets of all fv-sets A of all leaves are empty. Therefore,

T i F(A).

When level(x) = I > 0, we assume the the rem for all nodes

y such that level(y) < level(x). In particular, we assume

it for all descendants x of x.

Each fringe-shape-set F(A) in shape-set G(S,x), S / Q, la

generated by F(A)= l) F(A), where F(A) is a fringe-shape-set

in a shape-set G(S , x) of some descendant node x of x.

Furthermore, x is the Jth leaf of the EEPT e rooted at x

which generates P(A), Also,

115

root-shape(e) a S

leaf-shape(J,e) a S, or (by the EEFT restriction,)
-0

If leaf.shape(J,e) m S, then F(A) is chosen from a

shape-set G(S,X) such that S / n.

But x is a descendant of x, and by assumption, a

fringe-shape-set in a shape-set G(S,x) such that

S / 0 satisfies

if T / S then T ^ F(Ai).

Also, if leaf-shape(j,e) ■ 0, F(A.) comes from shape-

set G(n,x). But this shape-set's members all have

empty fringe-shape-sets, so

T / F(A1)

Therefore if T ^ S, then T / F(A), so

T / U F(A1) - F(A)

A following step of the leaves-in algorithm replaces

shape-set 0 at node x with the fv-set (n(x)) = X. When

added to shape-set ft, F(X) ■ /i. Also, X is adjoined to

shape-set G(S,x), with F(X) m S. After this step, if

T / S ^ n, and if B is an fv-set in shape-set S, then

T / F(B).

Thus, the theorem is true for nodes x such that

level(x) a I, and hence true for all nodes x in E.

Corollary? If A is an fv-set in shape-set G(S,x), and S / n,

then F(A) is either empty, or contains only S.

Proof! If F(A) contained T / S, it would violate Theorem 1 of

this section.

Thufi, we can divide the fv-sets A In shape-set G(S,x) into two dis-

joint classes, those such that

F(A) » {S)

and those such that

F(A) = /l

The first class will be called "l-class", the second •'O-class".

116

During the leaves-ln algorithm, for each node x we compute n(x),

and adjoin (n(x)) to each shape-set of x. X - (n(x)) becomes a part of

l-class of each non-ü shape-set. We will show that all members B of

a given l-class satisfy B > X, Since B and X are both members of the

same shape-set, G(S,x), and F(B) a F(X) = S, B is deletable by X. There-

fore, after the deletion, only one member, X, Is left In each l-class.

Similarly, we can show that only one member Is left In each O-class.

This demonstrates that In each shape-set, only 2 members remain after

the comparlson-and-deletlon step of the leaves-ln algorithm.

Theorem 2; If n Is an Integer > 0, and B an fv-set, then If

n < N(B), (n) < B.

Proof; N(B) > n Implies that

Wv f (B,v) > n.

Also, (n) has the property that

f ((n),w) < n for all values w,

since if w > n, I((n),w) a 0

so f((n),w) a 0 < n

and if n > w > 0, I((n),w) - 1

so f ((n),w) a I((n),w) - 1 + w » w < n.

Of course. If w a 0, f ((n),w) s 0 < n.

Therefore, Wvtw f(B,v) > n> f((n),w).

In particular, for each w > 0 3v such that

w > v > 0 and

f(B,v) > f((n),w)

therefore, B > (n).

117

Theorem 3; (n(x)) < A for all fv-sets A In any l-class.

Proof; By definition n(x) » min (n(A)) for all fv-sets A. at node x.

Therefore n(x) < n(A) » N(A) for all A In any l-class.

Therefore (n(x)) < At by theorem 2.

Theorem 4; If B Is an fv-set In 0-class, and B > (n(x)), then B

will be deleted.

Proof: F(B) la empty, by definition of 0-class. The l-class of

the shape-set containing B contains X a (n(x)), and hence

both (n(x)) and B belong to the same shape-set. Also,

F(X) r) F(B) a /I. Therefore, B is deletable by X.

Hence, If B > (n(x))(B will be deleted by the leaves-In

algorithm.

Suppose B Is an fv-set of 0-class which remains after the deletion step.

1: N(B) < n(x).

Proof: If N(B) > n(x), then B > (n(x)) by Theorem 2, and

would be deleted, by Theorem 4.

2: N(B U 1) > N(B).

Proof: n(B) = N(B U 1), since B e 0-class

n(B U 1) » n(B) > n(x) > N(B).

Theorem 5: If N(C U 1) > N(C) then f(C,l) = N(C),

and N(C U 1) = N(C) + 1.

Proof: N(C) = max f(C,v)

N(C U 1) - nax f(C Ü l,v)

f(C U l,v) . f(C,v) + 1(1,v)

- f(C,v) If v> 1,

= f(C,l) + 1 else.

.'. V v > 1 f(C U l,v) - f(C.v), while

f(C U 1,1) » f(C,l) + 1

118

If f(C,l) < N(C), then:

1 + f(C,1) < N(C).

.*. Vv f(C U l,v) < N(C),

or N(C U 1) < N(C) contradicting the theorem's hypothesis.

Therefore, f(C,1) > N(C).

But f(C,l) < max f(C.v) = N(C)

so f(C,l) »= N(C).

Also, for all v, f(C,v) > f(C U l,v) - 1

In particular f(C,v*) > f(C U 1,V*) - 1 « N(C U 1) - 1,

so N(C) + 1 > N(C U 1)

also, N(C U 1) > N(C), so N(C U 1) > N(C) + 1

giving N(C U 1) = N(C) + 1 .

Theorem 6; If N(C) ■ f(C,l) = f(B,0 ■ N(B),

then C > B and B > C.

Proof; f(C,l) ■ N(B) = max f(B,v)

Therefore, f(C,1) > f(B,v), for all v

Thus, for all v > 0, w = 1 satisfies

v > w > 0 and

f(C,w) = f(C,l) > f(B,v).

Therefore C > B.

Similarly, because f(B,1) = N(C), B > C.

Theorem 7; If C remains in 0-class after the deletion step,

N(C) = n(x) - 1, and

N(C) = f(C,l).

^

119

Proof; By Leuna 2 N(C U 1) > N(C), so

by Theorem 5 N(C U 1) » N(C) + 1.

Also, by Lemma 1, N(C) < n(x)t

so n(x) < N(C U 0 - N(C) + 1.

We have N(C) < n(x) < N(C) + 1 for Integers

N(C)f n(x), so

N(C) » n(x) - 1.

Part 2 follows directly from Lemmas 1,2 and Theorem 5.

Theorem 8; If B and C remain in 0-class after the deletion step,

B > C and C > B. Therefore one may be deleted.

Proof; By Theorem 7, N(B) ■ n(x) - 1 ■ N(C).

Also by Theorem V, N(B) = f(B,l) and N(C) = f(Cvl).

Therefore by Theorem 6, B > C and C > B.

Since both B and C are In 0-class, they are in the sane

shape-set, and F(B) a F(C) a j|.

Therefore, one may be deleted.

An Immediate consequence of Theorem 8 Is that only one fv-set

remains In 0-class after the deletion step. Also, Theorem 3 has shown

that only one fv-set remains In 1-class. Since 0-class and 1-class of

a shape-set together cover that shape-set, only 2 fv-sets remain In

each shape-set after the deletion step.

CHAPTER V

V,1 Smanary of Results

We have described a transformatIon, loop-fusion, on programs. If

X is a sequence of two loops satisfying certain conditions on the sets

of variables accessed, loop-fusion(X) is a single loop, computationally

equivalent to X, which executes no more operations than X. Such equiva-

lent, time-conservative transformations, applied to any program, yield

new programs, with different characteristic space requirements, which

are valid alternative programs for the progranning task performed by the

given program. We can search the space of such programs for one which

require» least space.

We present two sets of alternative programs for computing the matrix

assignment statements C *-A * B and C *-A + B. Each set of programs

forms the basis for an "equal-time" collection of algorithms for evaluating

matrix arithmetic expressions in + (matrix addition) and * (matrix multi-

plication) on square N-by-N matrices. Each compilation of a given matrix

arithmetic expression into sequences of Algorithms in a given equal-time

collection of algorithms requires the same amount of execution time. These

equal-time collections are derived by loop fusion from the set of algorithms

forming the basis for the collection.

An algorithm for choosing that compilation of any given matrix

arithmetic expression, E, which uses the fewest 2-arrays is presented.

This algorithm, called the leaves-in algorithm, uses the properties of

loop-fusion to "tailor" algorithms, selected from an equal-time collection

C, to fit each part of E, It searches over all possible compilations of

E into algorithms of C, potentially generating & number of algorithms

which is proportional to ^z/T)**W, where there are W operators in E.

A general technique is then presented for reducing the number of

cases which an exhaustlv«" search for an optimum alternative must examine.

A 2-array is a set of variables capib-j of holding one N-by-N
matrix.

121

Such »«arch«« um gcnarat« «lt«rnaclv«f by «•■Igning valuat on« by OM

Co Ch« stata-variabU« which dascrlba an altav^atlv«. Uaually, tha valua
of tha crltarioo fuoctloo of a parclally-tpoclflcd alcarnatlv« cannot ba

coaputad vitbout ccaplatlivc tha »poclflcatior. in all posalbla «nyt. Th«

glvan tachnlqua allow* •am pnrtially-tpoclfiad altamatlvw to ba rajactad

vithonC gananting all collations, by guarantaalng that for «vary coa-
f lotion C U A of OM «uch altarnativ«. A, thar* 1« a collation CUB
of anothar, B(which ia battar Chan C u A. Tbu«, gaoaraclng all tha con-
plation« C u A of A 1« «nnocosanry in tha ««arch for an optl— valmd

altanativ«.

Thi« tachnlqu« Is appliad to tha ««arch parforaad by th« l«av««-ln

algorichn. Iarat an "altrmativa** ia an «Igorltha for «valuacing tha
antin aspraaaion, I. Tha valua of th« criterion function, H(8), of an
altaraatlv« S It th« niabar of 2-array« naadad by 8. A parcially-tpaclfiad

altamatlve A is an algoritha for «valuatlng soas subaxpraasion 1(A) of
I. A pradicau P(A,B) is daflnad on partUUy-spacifiad altamatlve« A

and Bt aquivnlant to
MC H(A U C) > N(B U C),

uhara A U C ia a collation of A, and B u C Is a coovlation of B, darivad
by uaing B instaad of A in aubaxpraaaion E(A). P(A,B) any ba «valuat«d

without ganaracing all altaraatlv«« C. Whan P(A,B) ia truat A any ba
rajactad without invastigating all It« possibla coaplationa, for each is

known Co ba no baCCar (i.a.v no sanllar) than soas coaplation of B.

Uaing pradlcat« P(AVB) Co rajacc alcarnativas ganamtad during tha
laav«s-in algoritha, a aodifiad laavaa-in algoritha is produead. This

aodlfiad algoritha InvasCigaCas only k * V alternativ««t uhara V is tha
of oparntors in tha axprassion E, and uhara k doas not dopend on V.

W« have studiad a sat of prograa alternative« for laplsasnting one
class of aatrlx arithastic expression», searching for a prograa uhlch
use« fowast 2-artays uhil« never coaputlng th« valua of any elenent of a
«ubaxprassion «»re than once. Us aust adait that not all progrsas «at-
lafylng the«« criteria have been Investigated. In particular, we have

112

• cudled only thoM prograas derivable by loop fusion. Other ■ethodi

of conatructlng algorlthai for evaluating Mtrlx arlthacc'c «xproMalona

■ay rjtlit, possibly yielding algorlthat which use fewer 2-array» then

those the Icavei-ln algorithm can discover. Nevertheless, searches over

"prograai technologies** Ilka that Which the leaves-ln algorlthsi InvestlgaUs

are Interesting In their oun right, and aay «ell yield uear-optlaw

results.

Two typee of generalisation of our work come to «Ind. Certainly,

different optlalaatlon criteria could be usad, in particular, allowing pro-

gram coablnatlons which are not ■lnlmaa-connectloo-tlBai erd optlailslng s<

coobination of prograa execution time end memory spacn. Also, aany gener-

allsatlona of "«atrlx arlthastlc expressions** as we have defined the»

appear Intereatlng. We feel that It swiy be worthuhlle to Indicate aoaa

of the possible expression generallxatlone which our current technique

cannot handle.

First, we could consider expreeslons containing aore than one occur-

rence of a particular subexpression. The data flow diagraa of such an

expression contains nodes having wore than one incident line. The pros«

cence of such nodes aakes n(x), for same nodes x in the diagraa, depen-

dent on aore than n(x) for all descendants x. of x.

For exa^»le, consider:

/

e

/\

V\
the value of n(x) depends on whether y la to be cosq>uted before, or

after x. If before, then the coaaon node, s, mist be computed before

w. If after, the orders [w;t] and [s;w] are both possible.

Secondly, we could allow use of the associative laws of aatrlx

addition and ■ultiplicatlon by relaxing the requirement that an expres-

sion be fully parenthesized. Here, each possible association could be

123

generated, «ad the l««v«s-ln «ilgorltha could be applied Co each raaultlng

binary pane-tree. A »ore olagaaC, lass tlaa-cooeuBlnt search should

ha devised, however.

Thirdly, ve could coaaldar al loving the variables of the express loo

Co ha rectengular natrlces with the usual cooforaabilicy raquirasaoCs

iaposad. This generaIlKation «a believe lias in the scope of the leaves-

in algoritha. The aajor requirement is s generalization of the definiMoo

of fv-set Co allow arrays of various sisas Co hold the different inputs

Co an associeted alg-tree algoritha.

Other prograaaing language constructs far different froa aatrlx

arithaetic expressions could conceivably be technologically optialzed.

Theee constructs ausC be such that several alternative faplearatations

are available for each instance of Che construct.

One of the «ore interesting of such exas^>les, in uhich Che available

alternatives are particularly clear, concerns constructs which specify

parallelien. These constructs indicaCe Co a coapllcr that certain opera-

tions can "proceed in parallel", i.e., that any ordering of Chess opera-

tions which preserves Che relative order of the operetioos in each "parallel

aequance** yields equivelent results. These constructs are Intended for an

anvirooaent in which nore Chan one processor is available. However, where

only one processor exists, they pcrait the coayller Co chooee a space-

edniaal ordering of the given operations.

Mk iaporCanC class of problaaa, wich consequences for prograa opt la-

laaclon, concerns the developaenC of Cransfoiaaclons which generate pro-

graaa coapuCaCionally equivalent Co a given prograa. Such Cransfoiaacions

aay involve change of oata representation, change of sequence of cercaio

operations, or «ore drastic changes, naking use of aathaaacical properties

of the prograaMiag Cask description of Che Cask Che prograa iaplaaenCs.

Me have presented one such Cransforaacion (loop fusion). We have nada uaa

of another, re-ordering of operation sequences, in generating Che basic

n algorithas for aatrix addition and aulciplicacion. other CransforaaCions

axisc. Notably, we can consider developing techniques for coapiling func-

tions, described aa collections of recursive subroutines. Into efficient

•

12A

iterativ« progruM.

At Another Uvel, there m*y «all exlit prograa cu—nnlotlon alter-

iMtlvct «hoM value can bast be Inveetlfated by an exhauatlva aearch.

Por axaapla, variable! In a prograa an) exlat which the prograaMr hat

allocated aaparataly, for conceptual raaaona, but vhoaa contenta ara

never relevant alaultaneoualy. Coapllera could locate and coablna theae.

One could also conceive of automatic choice« being nada of alter-

native macrlcal procedurca for varlaua phaaas of certain prograaa.

A aaarch procedure, in conjunction with an autoaMtic error anelyais, nay

be uaeful, to determine the actual sensitivity of the results to saall

perturbations in the input values. Such an "experiawntal" approach, COSH

bined with alternative ntasrical procedure trials, night yield saaller

error bounda than can conventional htaHUi-inplesMnted ntascrical analyais.

The general 1 problcn of prograa optiaisation is difficult for several

reasons. First, tl*e nuabei of possible prograamlng approachea to «any

intareating progrsilng tasks seeas to be extreaaly large. The sise of

this nuaber prohibits an exhaustive generation of each poasible prograa

capable of perforaing the given teak. Second, the poasible programing

altemativea for a given teak are difficult to deteiaine. Thla is partly

the fault of the languages in which theae tasks are prograssssd. These

language a often require that the prograsMr specify aore details of the

procedure to be followed than are essential to the task to Un performed.

Third, a given prograaaing taak auat be optiaally prograaawd not once,

but aany tiass. lach tlae that taak appears as a subtask of aoas larger

progrsilng taak, the prograa which iapleaenta it optiaally auat change

to best fit the new context. Thus, one cannot hops to produce an optiaised

progrea for all task contexts. One could profitably develop algorithms

for rapidly finding auch optiarn prograaa. The hope of producing such

prograaaer-aidad algorirhaa o»tlvated this study.

The work reported here has barely brushed the surface of the study

of efficient prograaa. He have gained soaw insight into only a few of

the devices prograaaers use so freely in producing their prograaa. The

123

postlbillty of reducing prngf—r «ffort by providing programing •!-

■oriÜMM. rather than rul««-of*thuBb(Motivated our etudy. W« feel

that aany additional interesting and uaeful progroMer-aldlng ai^oriChaa

i in to be discovered.

.
w

APPENDIX I

1. Wlno.r.d'i MatrlK Multiply AUorltl» CUT

Th« following algoritha, c'u« to 8. Wlnograd. can «Uo b« ut«d to

coaput« tho aatrlx •••IgraMnt atotaarat C •- A * ■. Wo present • dorl-

vatIon of th« aIgor itha, and tha counts of tho nuabor of scalar addi-

tions and Multlpllcatlona It raqulrca.
n

V^ Vf **•'• "i" \i *ni yim *tr

yields C * A * B, where A, • and C ere (square) aatrices.

n OYan;

n n/2

1-1Vl" l-l ^l-^l-^^i5'"^

(*2i* 'li-J^li-l* y21> " «2l.l*21-l4 ■a^l4 "ahl-l4 ^21^21-1

• n/2
Tharofora. t^ Uff t^ (x^* f^O^^* y21)

n/2 nil
1 P^P; "Jj "2l"2l-l " ^ 72172i-l-

Of «ha tense on tha right» tha last two naad be computed

only once for aach row of A or coluan of 1. Thua, tha

oparatlon count a are:

•: n2* f ♦ n(f 4 f)

♦: n2^ ^ n(B 4. ^

3 2
or *: n /2 -f n

•»•: 3n3/2 -»■ n2

126b

I o44i

• (n-l)/2

J^Vl- Vn 4 ^ <«2l4 y2l-l><K2l.l4 «2l>
(n-l)/2 (n-l)/2

' *, ^l^l-l * 'j ^21^21-1

Th« operation coioCt In Chi« c«s« «r«!

•: 02 ♦ n2*(«-l)/2 ♦ B^^jü. ♦ XfilU]

♦, B24 n2»i^ ♦Il^n.i]

or *t ■,/2 ♦ 3«2/2 - n

♦: 3P3/2 ♦ n2/2 - n

127

2. Addltlooal Shmy» P«fln>d for Wlaotrad't Altorlttw;

2r - doubl« row - All [2I,x] and [2Z-1fx]

for 1 < x £ N

2c - double COIIMB - All [«»SX] «ad [x(2I-1] Mtlsfyiag 1 £ x < M

3. Vxriatloo* OP Wlooarad't Altorltiwi (M Ivn)

The varUtlons on the baalc «Igorltha presented here by no aeant

•xhautC the usctul verelone of the n /2 aatrlx aultlpllcatlon «Igirlth«.

Ill« lotroductlooe of the shapee 2r «nd 2c eugsette a «till larger clae»

of algorithm with EEPT'e Ilk«:

•2r ♦2r

A
2r n and correapoodlng EBPT'e

for 2c and c.

(1) I -.»

U[I] -0

, 2 M

At n

It c

U[I] > -A[I,IC] * A[I,K.1] C: c

wc

J »R

V «-0

K in
V ♦ ^B[K,J] * B(K-l,J]

X -«I

CCI.J] .--UCI) - V

Y 1*H

CCI.J] ♦ •- UCI.K] ♦ B[K-1,J]) * (ACI.K-l) ♦ ■[K.J])

•

U) I-»"
V[I] «-0 At 2c

U[I] «-0 B: 2T

J -*■ Ci 0

CCI,J]«-0

A 2c 2r

» * ■

I -»I

VCI] ♦«-•(»,!] *1(E-1,I1

J ■•■

c(i,J) ♦ ♦- UCM] ♦ »(«-».J)) • UCItBrf] ♦ ■CK.J))

i <•■
j -*■

c[i,j) --ü[I]*?CJ]

129

4. Coablnlnt CMO copUi of (1) to coaput« 1 «-D ♦ (A ♦ B)t

X -«I
U(I) «-0

tin
iiti] + «-Mi,»3 ♦All.E-l]

J -»1
f 4-0 At n

l&l • l c

▼ ♦-•(K.Jl* »C»-1,J1 £i c
!-»■

cci,J]--«(i) -▼
Eil

CCl.J) ♦ ♦- (A(ItK] ♦ ICK-I.J]) * UtI.K-l) ♦ •(»•J])

X -•■
«[X3 4-0

t[X]+*-DCX,I)*D(I,»-13

*«h

D: 0

Ct c

1« «

J -*«

» 2 -

X ♦ «-C[IC(J] * C[K-1(J]

X -»■
iCx.J]-- wtx] -x

ICX.J] ♦ 4- (D(J,X] ♦ CCK-I.J]) • (DCI.K-1] ♦ C(XtJl)

* * i. K -*m

APPKMDIX ZI

L—^•-1« AltorttlM in an

Ha präsent hart « prograa, written la ATL, t4ilch d«aoastr«t«t di«
NU«v««-lnN «Ifarid«. This slsorltta dsscrlbss bov s glwn sxprstslon'i

psrss-trs« cm bast bs caaputsd by slf-trss «ssocUtsd slgorltbss (AAXA's),

Isch AAIA is grenm by parsllsl coansctloo froa « Mt of BPT's, rsprsssn-

tlag a sat of slsasntsry slgorldMM, «hlch ths ussr suppllss. Ths NbostN

Mthod of caaputint ths givsn sxprsstloo is that coapoiltioo of AAXA*s
«hlch «MS ths fsmsst srrsys for cu—siicatlng rssults froa oos AAXA to
Inputs of ODothsr.

lbs inputs to ths progrsa dsscrlbs ths EEPT's trss strveturs, snd
ths shspss sad opsrstors Msocistod with thsir nodss. Also, ths stnae-
turs of tb« ssprsssloo's psrM-trs« is givsn. lbs rssult is s list of

«It-tnss, uhoM AAU's srs s ssriss of slsosntsry slgoffithas which, SMC

utod in the giTsn ordsr, producs ths rsquirsd sxprsssion vslus. lach slg-
trss is dsscribsd by listing ths nodss in ths trss sbich it includsi, ths
BPT rootod «t sscb nods, snd ths iatsiasdiats srrsy ssiignsd to bold sscb
input, snd ths rssult. All BFT's listed in oos slg-trss or« to bs fucsd.
lbs root of ths slf-trss is always listed first, snd is associstsd with
ths nunbsr of ths laterasdiats array «hieb it to hold ths AAIA's rssult.

As sn sxsapls, ws dsscribs tha üPT's of ths r algorithai, sad
thsir optiaal stticaasnt to ths psrss-trss of ths «xprsiiion (A*B) * (C*D),

BFT'st (I) (2) (3)

/^r ,*c *r

/\

Psrss-Trss: Issultt
a single alg-trsat

A (3)

/\/\ r\A
Uses one tsaporsxy to bold
ths finsl rssult.

 9
AFL is a convsrsstionsl language, dsvslopsd by K. E. Ivsrson, L. M.

Brssd, snd R. H. Lathwsll for the IBM 360/50. Ths Isngusgs is dsscribsd
1« [2].

131

1h« inUrnal structure of the APL prograa la notable for Ita use of the
«ffort-llBltlng results we presented. The "core** of the sMthod lies in
the coaparlson of generated fv-sets. We retain a "current value" of n(x)
throu^iout our generation of fv-sets at nod« x. Since we know that n(x)
la the only eleaent of the 1-set of each shape-set, we do not copy It.
Furthernore, space for only one neaber of «ach non<0 shape-set (the single
retained 0-set aeaber) Is reserved. As an fv-set 1« cretxted. It la tested
to see If It reduce« the current value of n(x), «ad. If It 1« a 0-set nea-
ber, to see If It will be retained in the 0-set. The«« coeparisons never

require the actual fv-set cooparlson algorlthn. Because of the way we
represent fv-sets, and retain values n(A), for certain fv-sets A, the cc
parisons are between single Integer« only.

Kxtomal I«pr«««ntatlon«i

(1) Input«!

(a) Tree structure:

The structure of a tree 1« Input in a single vector

called 'VAXHERS*. FATHERS[i] . J, Khar« nod« 1 hat father

j In the tr«e. 1c labeling the node« of a tree, the father

of 1 nust be given a nunber greater than 1, so that FATHERS

■ust satisfy FATHERS[l>i. Furtheraore, left sibling« nust

be numbered leas than their right siblings. (If these

rules are violated, the results are unpredlcatable.)

The FATHBRS-entry for the root of the tree is not

part of the tree-structure. It nust be present, but Its

value carries non-structural information.

(b) Node labels:

The internal label of a node 1, is given by a code

nuober, K., In the 1th position of vector OPERATORS.

Codes are uaed to indicate the operator (* or +) for

internedlate nodes, or, in the case of leaves of EEPT's,

to Indicate ahape (n, r, or c). Since the root-node of

. • •.

an EEPT has an operator, Che EEPT's root-shape Is coded

in place of the FATHER of the EEPT's root.

(2) To input EEPT's type:

EBPTS

The program responds with alternate requests for FATHERS, and

OPERATORS, Which should be answered with the appropriate vectors.

Bach pair of requests allows the input of another EEPT, EEPT's

are identified by the order of their Input, the first one being

glvan an identification nunber of 'I*. Any scalar or slngle-

eleaent vector typed in response to FATHERS ia ignored, and

temlnatea the in it of EEPT'a.

To execute the leavea-in algoritfaa, after EEPT'a have been input,

type:

TREE

The response is a FATHERS, OPERATORS request-pair Which should be

answered with the parse-tree description. The leavea-in algorithn

dien executes.

(3) Output:

The output is a sequence of alg-trees, essignaents of EEPT's

to the nodes of the parse-tree. Each alg-tree is given in three

vectors:

NODESfl] - lists the node-number of the node in the parse-tree

133

«ftoclated with the root of each KEPT, and with each KEPT leaf.
N0OES[1] elveyi lifts the root nf the alg-tree.

EEPTS[I] - the Identifying nunber of the EEPT assocleted with
node NODES[I] in thii alg-tree.

TBMFS[I] - the nunber of a tenporary aatrix assigned to hold
a result associated with node N0OES[I]t or tero.

The sequence in which alg-tree« are listed is the seqv'öce

in which the algorithsw they represent are to execute. Ihls
ensures that an intenwdiate aetrlx used as input to a given AAIA
is cceqputed before it ie accessed.

Detailed m lest

A. Input of EEPT'st

1. Pt 3 3 2

Ot 2 1 1

Hare the tree is labeled

r 0

♦3 A
Ita structure, given in Fi (fathers), is

3 3 _

signifying that node« 1 and 2 have father '3', and reserving

the last position of the vector (which always represent« the

"father1* of the tree's root) for other infomation.

The operators are _ _ 1, i.e., node 3 has operator I • ♦,

and the other nodes, known to be leaves of the tree, have no

operators.

The additional infonatlon given in the two vectors

represent« the ehape aesociated with each node:

134

Shaggss

r« -_ 2

0: 2 1 _

Thu», node« 3 and 1 h«v« shape 2 m r, while node 2 haa «hape 1 - 0.

135-6

B. Input example: Entry of EKPT's,
The Indented line following the D: line Is t ped by the user,
not the conputer.

 EEPTS
FATHERS
D:

3 3 2
OPERATORS
G:

2 11
Ticnms
0:

3 3 3
OPERATORS
0:

1 ? >
FATHERS
0:

3 3 1
OPERATORS
Dt

3 2 1
FATHERS
D:

3 3 2
OPERATORS
0:

2 2 2
FATHERS
D:

3 3 3
OPERATORS
D:
 3 3 2
FATHERS
G:

0

A

A
A
A

137

C, Output interpref tlon

Example li

WEE
FATHERS
0:

3 3 0
OPERATORS
G:

0 0 1
ASSTGlfED 1 yjl TRICES:
NODES: 3 2 1
EFPTS: 3 0 0
TEMPS: 10 0

tb« Input# FATHERS and OPERATORS, describei the tree E:

A
The output («tarttig with the line reading "ASSIGNED 1 MATRICES")

gIvee the nuaber of MATRICES (2-«irra]ra> needed in coaputlng the root

of I. UM reaalnder of the output presents the alg-tree(s) «hoe«

AATA(e) correctly coaput« B. In this case, a single alg-tree suffices:

*3.........«n..... latemedlete array T1
/\ /\ holds the result.

sin 3

■

-

.

138

Exaaple 2;

TREE
FATHERS
D:

5 5 6 6 7 7 0
OPERATORS
Ü!

0 0 0 0 111
ASSIGNED 1 M TRICES:
NODES: 7 6 «4 3 5 2 1
EEPTS: 3 10 0 2 0 0
TF:fPS: 10 0 0 0 0 0

tree E;

BBPT'« uMd:

T1

A A

.-

■ .

139

3:

IMBT
FATHERS
Ot

7 7 6 8 9 9 10 10 13 13 m IH 15 15 0
OPERATORS
D:

000000121200111
ASSIGNED 2 HAWICES:
RÜDES: 13 10 8U3721J65
EEPTSi 3UUOO10O2O0
TtMPSi 10000000000

ROOESt 15 m 12 11 13
EEPTSi 3 10 0 0
TEMPS: 2 0 0 0 1

trt«t

T2

Tl

140

B. Inf rnal R»pf«nUtlon« of Inf r«it;

(1) Prlng«-vlu« Mt.

The contents of «ach frInge-value eet S Is represented ee

• table of f (S.v)t v - 1, 2, 3, 4.

Thue, the fv-sat

S - (332110), where

f(S,4) - 0

f(S,3) - 4

(S,2) - 4

f(8,l) • 5

la recorded es the APL vector 5 4 4 0.

Two fv-aete can be Joined to produce a third in one APL

ststeaent, based on the conponent-bycoaponent eddition

of vectors. The coapsrison theoraa is nose eesiljr spplied

in thie for», es well.

(2) Ths collection of fv-sete essocietad with a node.

Bach node ie associated with 3 shape-eets, one

each for the codeable ehapear Q, r, c. Matrix SHAPESET(1; j]

holde the "teg" of node I'a Jth ahapa-aet. Bach ahape-set

only holda one fv-eet-.elther the alnglc 0-set fv-act. for

ehepas r and c(or ths fv-sst whose single aeaber is the

•Value" of the node I, n(I), for shape Q. These are the

only distinct fv-eete which need representation et each

node, n'a fw-aet wmy be selected ee pert of ahepe-aet r

or e, end treated as the only l-aet awtiber. After ell fv-

sets of s node era generated and coshered, the surviving

fvsete era pieced in teble FVSETfl;]. SHAPB8BT ri;j] holds

the index K In FVSET of the single fv-eet which is repre-

sented in shape-aet J of node I. FVSET[k;] holde the

4-aleaent vector rapreaenting that fv-aet.

(3) Th< PTM-tr—.

A pars«-1re« «truetun 1« r«pr«t«ot«d lotcriuliy by
"downward" pointing link», •• «oil •• by nod« ordor. Modo I

of tho pan«-era« 1« assoclatad with a vac tor, S0R8fl;jJ,

giving tha nod« nuabar of noda Z*a Jth aon. OPtfl] glva«
tha cod« for noda I'a oparator. Nodaa ara niafearod auch

that aach antry of SOMSfl.j] < X. At a rasuit, wo can

vUlt nodaa of tha pana-troa In Ineraaalng ordar of noda

ir «1th aaavranea that aach noda's daacoadanta hava
vlsltad bafora that noda.

(♦)

lach fv-sat, «hon «torad In FVSrrfl;], la aaaoclatad
with taga, giving tha FVtiT Indlcaa of tha fw-aata froa
which fw-aat Z waa craatad. In addition, othar Infocaatlon
about tha fv-aat la a torad In tha aaaa array.

F. global Tablaa

■»da H of tha asproaaloa'a parao-traa la aaaoclatad with:

•Oll[M;X] • tha mvbar of tha Zth aon of noda N

OPtfl] - tha oparator" of noda 9

SHAÄ8irfll;8] • tha FV81T lodax of tha alnglo «urvlvlng wabar
of tha ahapa-aat 8 of noda R. Thla fv-aat la
a naabor of O-aat of tha ahapa-aat If I la *r'
or »••, NIMB I la ,t, or »••, 1-aat la glvan

by SHAPISETfll;OHECA].

Pv-aat Z la aaaoclatad with:

TAcfl;IALG] - tha nurtbar of tha I1PT which gonaratad fv-aat Z,

that la, tha EIPT foralng tha baaa of tha alg-

traa whoaa frlnga-aat Z rapraaanta.

TAGfl;INODi] • tha noda of ooa of whoaa ahapa-aata Z la a

TAcfl;IVAL] - tha valuo of fv-aat I, l.a., »jx(FVSBT("l;j])

-

142

TAG fl; ISAM] * UMd during th« output-phaa« Co lodlcatt

which nod« of I'« frlago-oot th« r«oult-MC

of CJM alg-cr«« em ogroo with.

HATRfl] • During eh« ouCput-ph«M(ho Ida Cho Intaraodlat«

array nuafeor of th« array which la «««ignad to

hold th« raault-sat of th« alg-traa'a algorltha.

TAC[l;ISO»H-K] - th« rvSBT Indax of th« Kth "•on" (ganaratlng

fv-iat) of fvaat I.

PV8BTfl;V] - hold. fv-a«t 1*« f(I.V) valu«.

Th« Ith EEPT r««d In by EEPTS la aaaoclatad with:

EEPT[l;l] • th« nunfear of th« nod« In th« CE^-foraat

r«prc««ntlng I'a root.

BEPTfl;2] - th« root-ahapa of EEPT I.

EEPT[l;3] • th« mabar of laavaa of EEPI I.

Th« HforeatH ef KEPT'« atoraa all noda« of all EEPT'«.

Bach noda la aaaIgnad a niaib«r dlatlnct fnm th« nuahar«

aaalgaad any othar EEPT'« noda« by "r«locaclng" th« ntabara

aaalgnad nod«« on Input. A glvon nod«, I, of thla foraat

la aasoclatad with th« following Inforaatlon.

SOHE[l;K] • th« forast noda nuabar of tha Kth aon of noda I.

If I la a laaf, SOHSfl;*] - 0.

OPREfl] - tha oporator of nod« I, whor« X la a laaf. If X

la a laaf of aoaa EEPT, 0PMfl] glva« 1*8 l«af-«hapa.

.

.

143

F, Detcrlptlon of progr— Operation

This *W1B routlna", keyboard activated, accepts an exprseelon'e
parse-tree, using INTREE. It initialises and structures the arrays

needed, and calls ASSIGN to initiate phase 7, On return, it prints
the nunber of Intermediate astrlcer ASSIGN finds to be needed, and

calls ALOOR to collect end print the alg-trea assigned.

% ' mm
ill INTREE 0
C2] NODES+pF
[3] mmh%
[•0 LFAFSET* "111
C5] MXFVS*HXSH*NODES
C6] MXVD**
C7] IÄLG+1
[8] INODE-7
C9] IVAL-Z
C1Ö] ISAlt*
Cll] ISOIh*
[12] MXTO-ISOIt+HXLV
C13] SHAPBSETHNODES,MXSrt)pO
CIH] FVSET*mFVSi¥XVL)p 0
[15] TA(h-(MXr/StMXTG)0O
[16] FVSL-1
[17] XPSS* 112 13 1
[18] Mh€
[19] OPfhC
[20] »tEGA-l
[21] ASSIGN
[22] MATIhHXFVSpO
[23] FVR*SHAPESmNODES; 1]
[2«»] VALUE+TAGUyRilVALl
[25] AVAIL-VALUFpO
[26] WASSIGNED 'iVALUEl' MATRICES:*)
[27] ALOOR FVR

144

EEPTS

Ihls "main routine", keyboard activated, reads as many EEPT'a

as the user cares to supply. All are recorded in the same tables,

SOME, to hold the "sons" tree representation, and OPRE, to hold the

trees' operators. Each EEPT occupies a different (contiguous) set of

indices in these tables, with the relocation argument of INTOEE uied

to adjust the values stored into a true list structure. A vector

EEPT[I;] holds 3 items of information about EEPT I: (1) the index

in SONE and OPRE of its root; (2) its root-shape; (3) the numbc of

leaves it has.

wEPTsrruv
V KKPTSiQ

[I] FFPT*-\0
[2] VXLW
[3] SOffB* 0 0 pO
[M] OPRF+xO
f 5] FFP2:irTRFFpOPRF
[6] -»ÄBPlKiUp.O
[7] FFP3:OPRF+((()OPnF)+oO)p(OPRFtO)
[81 5^/^(((p50A'F)ri]+(p5)[l]).(p5)r2])p((,50A'F).(,5))
[9] LVS++/*/r2lS=0
[10] f'XLV+HXm Lvr>
[II] FFPT*-rFPT,(pOPRF)tnoFl,LVS
[121 -'FFr2
[13] FTPl -.FFPT+i((pFFPT)*2),3 JpCTTTT

-

.

145

ASSIGN

ASSIGN inplements the leave a-In-a Igor 1 turn, as described.

ASSIGN visits each node of the parse-tree, T, In order of their

node-numbers, end tries to match each SEPT with that node. When a

■etching SEPT Is located, NEUFVS Is used to update B, BT, NV, and

NT, the "surviving" best fv-sets. After all EEPT's have been tried,

the surviving fv-sets are copied Into FVSET and TAG. SHAPESET gives

their Indices, or Is 0 fox empty shape-sets.

vAssicnWiv
7 ASSIGN if! iF;TSTiISET

[I] JIH-1
[2] FVSL+1
[3] ASCHi+ASaUxA/SOKNO'O
[»♦] F+l
[5] NT+0
[6] BT*(M[TrrtlfXSrt)0O
[7] BHMXVLtHXSH)pO
[8] AfM/iO
[9] ASG2:F NEWFVS N MATCH W7W;ll
[10] F+F+l
[II] ■*ASa7*\FS(pFFPTKl'\
[12] B2T;(/,/Vsr/[l]fl)/iWjr5ff]-K)
[13] BL;1}+FVST tJV
[m] KixpMTil'hn
[15] TST+BTilSOll+l;]*0
[is] BnnwEii+n
[17] ISET+TST/xMXSn
[18] FVSFTiFVSL+xpISETil* 2 1 m lISETl
[19] TAGtFVSL+XQlSETi}* 2 1 WTt;I5W]
[20] SHAPFSFnNO+TST\FVSL*XQlSFT
[21] FVSL+FVSL+QISFT
[22] -»»15(73
[23] ASG1 :FVSIs-FVSL*l
[2H] TAGlFVSL \ItmFl+N
[25] SnAPFSEnH;y-LEAFSFT*FVSL
[26] ASG3:IW+1
[27] *ASGH*xnsNODFS

■

WW—W—>WWWi.«ii

146

E NEWFVS X

One of the central pha**>-one routines, NEWFVS generates all

fv-sets which match EEPT E at some node N of the expression parse-tree,

T. X dftscrlbes each node of T matching a leaf of E. NEWFVS generates

combinations of fv-sets which are members of the proper shape-set of

the matching nodes by using the ba8e-2 representation of a number It

Increments from 0 to 2*pX. When a position of this vector Is 0, It

selects the «ingle 0-set member of the shape-set. When 1, it selects

the 1-set member, A translation vector, XPSS, translates 1-set requests

into n-shape-sct requests, since l-sets are represented only Implicitly.

Various tests exclude Incorrect combinations, such as 1-set of O-shape-set,

or requests for an empty shape-set. Each generated combination Is

JOINed, and tested against the previously-surviving best fv-sets of

the shape-set whose name is root-shape(E). Tags, Including values of

the fv-sets, and "ISAM" are computed here. ISAM designates one node

(by fv-set number) whose access-shape agrees with root-shape(E)f and

which can consequently be assigned a 2-t>ri*sy which is also assigned to

hold the result of the algorithm rooted at this nude. The principle

outputs of NEWFVS are:

B[;R] glvrs the fv-set surviving In shape-set R, R ^ 0

BT[;R] gives the tags of B[;R]

NV la a scalar, holding N(S*) of the fv-set S* of smallest

value In shape-sets of this node.

NT holds a copy of the tags of that fv-set whose value appears

In NV.

■

147

VNEWFVSZÜlV
V E NEWFVS X&iliFVS

tl] W«-(pX)Cl]
[2] ^On\M*0
[3] MD*'2*MuM
C1»] ML**/MD
[5] /♦<)
C6] NPliHC*HDJl
[7] -»OT2MV/(Jf[;i]«öMKG4)/M>l
[8] FKS* 1 1 ISHAFESmXi'JliXPSStMCrirtxXliin}
[9] FKS*FVSKl-2«c(FVS$0)Ajr[tl]-ai«C4
[io] -nmxw/FVSto
Cll] CWOIHS FVS
[12] 2N«-(X[;l]i>aMEGM)AMC>l
[13] SHI*SM\1
[lU] Ä**BPJtff;2]
[15] <Mv/SH)*lf*OI*EGA
[16] 5WS^O
[17] -HVr6xt(;«0
[18] SMS+FYSiSMIl
[19] SMT*TAGtSMSiISAMl
[20] -tHnnxSMT'O
[21] SMS+SMT
[22] HniCW/C
[23] W3M(Ctl]«mv(;*l
[2«»] -HIP5««iCT^K
[25] IC|Jr)«C
[26] BntWtJSO/?;Ä]^, 0 0 ,SHS,FVS
[27] CV*CV*l
[28] ^3:-^F5«iCK>#V
[29] irv*cy
[30] WM-ff),0,irV.5MS,fKS
[31] Jrf5:I*J
[32] ÄW:I*I*1
[33] -MJFl-iKItt

148

N MATCH E

Here N 1« a node number In the expression parse-tree, and E gives

the root of an EEPT. The value of MATCH is an APL matrix, Z. Z[I;J

describes the node matching E's Ith leaf. Z[I;1] gives the leaf-shape;

Z[I;2] the expression parse-tree node's number. The recursion is per-

formed by MATCH], MATCH restructures MATCHl's result, which is an

APL vector, into the more convenient form of an APL matrix.

V Z** h'ATCH F;W
Ci] fcMV MA Tan F
[2] Z«-(((pfv')*2),2)pfc'
[31 -K)xtA/7r;2]*0
[U] Z'-iO 2)p0

N MATCH1 E

Recursively matches node N of the parse-tree with node E of an

EEPT. Its value describes the list of nodes of the parse-tree lAich

match leaves of the sub-EEPT rooted at E.

7 Z+n yATCf'l F-JiJ
ill Z<-\0
[2] -*0*\F*0
[3] *vm*\ifro
fi*] HTCd'.Z* 0 0
C5] -0
[6] HTCl:Z*OPRF[F'i,r
[7] M)*\f</S0r.'F[FO=0
es] -frTC3*\opmn*opRtn
[9] J+CpSOFHll
do] i+i
[11] Z*i0
:i2] ffrci'.7.*7.%r>ot:U'',TV'Arcv\ sottKil']
[13] T+I+l

V

•

149

A JOIN B

A and B are fv-aats represented by APL vectors. The value of

'A JOIN B* la the APL vector representation of fv-aat C, rtiere

C - A U B.

VJOINlUlV
7 C+A JOIN B

ill C*-A+B-(.0*A*B)*{\(>B)-1
7

JOINS X

X la a vector of fv-aat Indices. The value of JOINS X la

JOIN/FVSET[X;]t If this could be written In APL, I.e., an fv-aat

vector representing U FVSET[X[I];].

VJOINSiniV
7 WOINS Xil

Cl] J«-l
[2] v*o
[3] JNSI:V+V join FYsmxtno
[•»] 1*1*1
[5] Vf/SlMlip*

FV8T X

X is a scalar. FVST X has as value an APL-vactor representation

of Che single-Integer fv-set (X).

7fK5nn]7
7 Z+FVST X

[1] ZH\X)t{MXVL-X)uO
7

150

Output pha»e.

Once each node hat been visited, and Its shape-set« and their

fv-sets have been computed, the list of alg-trees represented «ist be

produced. In the course of visiting each node in the expression'« parse-

tree, each node has been "evaluated". Furthenaore, "tags", tracing the

ancestry of each fv-set have been recorded. These tags represent alg-trees

in a true "sons" tree representation. The output-phase proceeds from the

root-node of the parse-tree to the leaves, collecting each alg-tree,

ordering its fringe-set, and collecting the alg-trees rooted at each of

the fringe-set nodes. Recursion reverses the printing order so that

alg-trees rooted at fringe-set nenbers of alg-tree A print before A.

Intemediate 2-arrays are assigned "linearly". Bach 2-array is given an

"available" indicator. As each alg-tree is printed, an available 2-array
4s assigned for its result (root-node), and the 2-arrays assigned its

fringe-set nodes are made available.

Output routines»

ALGOR X

X gives die FVSET index of an fv-set which is die "root" of an

alg-tree. ALGOR collects the fringe-set fv-sets, S[IJ, using COLLBCT,

orders then by fv-set value, using ORDER, then calls itself on each

of the S[J[I]] to coopute and print the alg-trees which are rooted at

each input to X's alg-trees. It then prints X's alg-tree.

V/IL#?/?[D]V
V ALGOR X\f\G\I

[1] I+TAOLXxIAUG}
C2] ■*ALG2*\I<0
C3J ERROR IK TAG
[U] ALG3:TAGlXiIALCl'—I
[5] F*C0LLECT X
[6] (hORDER F
t7] /♦I
[8] MbC7
C9] ALGUALGOR /ttf/]]
[10] /«-/♦l
[11] ALG2i*AI/;i*iIipC
[12] PRT F
[13] TAGiXiIALGl*0

I

151

COLLECT X

The value of COLLECT X la a vector, listing all fv-sets In the

connection-set and fringe-set of the alg-tree rooted at the fv-set whose

Index Is X. An fv-set In the fringe-set Is Identifiable because each

such fv-set Y Is the "value" of some node, and Is marked during phase 1

by recording a negative TAG[Y;IALG] entry for It. Also, only these

fv-sets have non-zero TAG[Y;IVAL] entries.

VCOLLECTtülV
7 Z+COLLECT X-.A;J

[1] Z*tX
C2] A+TAftXilALCl
[33 -tOxxAiO
[«0 I-ÜEPTTAill
[5] COLl-.Z+Z.COLLECT TAGlXiISOHIl
[6] r*j-i
[7] -tCOLUxIXi

ORDER X

Has as value a vector, Y, which lists certain Indices In vector X.

Y satisfies! XAG[X[Y[I]];IVAL] > X.^G[X[Y[I+1]]:IVAL]

and TAG[X[Y[I]];IVAL] > 0

Thus, according to our nils for ordering the coaputatlon of a fringe-

set, fv-oets X should be cooputed In the order given by Y. Note that

only fringe-set nembers of X are listed In Y. Fv-sets X[I] which

are In the connection set of an alg-tree, or are associated with leaves

of ehe parse-tree, have sero TAG[X[I];IVAL] encrles, and hence are not

listed In Y.

WRDERIVM
V C-CRDEP YiTiV

Cl] O»0
[2] V+TAGtyilVALl
C3] n:i]*o
Cu] •*0RD7
C5] ORD\'.T*V\UV
[6] Kn-M)
[7] 0*0 tT
t8] 0Hn2'.-ORDl*\v/tf>0

152

PRT X

PRT prints the alg-tree \Mo6e root fv-set, connection fv-sets and

fringe fv-aets are fitted, represented by their FVSET Indices, In vector

X. PRT also assigns Intermediate 2-array nuabars to the root fv-set*s

node, and frees the 2-arrays assigned the fringe fv-aets, using NEUM

and FREEH.

V PVT XiY
[I] J-CVODFC: 'iTACiX-JUODF})
[2] OCCFPTC: 'iTAGLXiIAUJ})
t3] y^jrti]
[U] SAl-l+TAClYiTCM']
[5] *PF1*\SAM=0
[6] MATPi Yl+W TRi SAMl
[7] -PR7
[B] FRltMATHliy+mMI
L91 PH2:FnFEt'MATHlXl
[10] OCrofPS: 'i-MiniCX])
[II] LV»0

■MM

NEWM'a value la the Index of the first "available** interred late

2-array. NEWM also sets that 2-array unavailable.

v;/fffc7Ar]v
7 Z-HEWM

[1] Z*AVAIL\0
[2] 4K4ILCZM
[3] Z«-Z

153

FREEH X

Frees (makes available) Intermediate matrix X.

VFREmülV
7 FREFH XtIiT

[1] J+l
[2] +FR2
[3] Fni:T*-Xin
[Hj *FR2*\TS0
[5] AVAILITI^
[6] FR2:I*-I+1
[7] +FRl*\lSpX

Input aubroutine

INTREE T

1NTREE accepts a parse-tree or SEPT from the keyboard. Its

output is the "FATHERS" vector (in F), the "OPERATORS" vector (in 0),

and a generated matrix of sons (in S), giving the "reverse" links

of the FATHER vector. Its single argument, T(is used to "r-locate"

the list structure produced in S and F, so that die value actually

stored in F satisfies F[I] ■ T+J, «here node J is node I's father,

according to the input structure.

V IVTRFE TiIiJ;M
[I] [^'FATHERS'
t2] M]
[3] 0*-F
[•♦] -»OMlip.f
[5] HXSNS+2
[6] SH((>F)tMXSNS)QO
C7] 0-(pf)pl

[10] 5[J;0tJ]]*/tr
[II] 0[J]*<7[J]*1
[12] rtiw*r
[13] J*/tl
[1U] •*Jf/T2*\I<(>F
[15] W* OPERATORS'
[16] OH!
[17] J+G'F

: : ^

154

BIBLIOGRAPHY

1. Conw«yt R, H., and H. L. Morgan, "Tele-CUPL: A Telephone Tlar
Sharing SysteB," COM. ACM 10, 9 (Septeaber 1967), 538-54?.

2. Falkoff, A. D. and K. E. Iverson, "The APL/360 Temlnal Systen,"
Research Report RC-1922, IBM Watson Research Center, Yorktown
Heights, N.Y. (October 1967).

3. Floyd, R. W., "Assigning Meanings to Programs," Proc. of
Symposium In Applied Mathematics, Mathematical Aspects of Computer
Science. Volume 19, American MatheMtlcal Society, 1967.

4. Caller, B. A., and A. J. Perils, "Compiling Matrix Operations,"
Con. ACM 5, 12 (December 1962), 590-594.

5. Nakata, I., "A Note on Compiling Algorithms for Arithmetic
Expressions," Con. ACM 10, 8 (August 1967), 492-494.

6. Naur, P. (editor), et. al., "Revised Report on the Algorithmic
Language ALGOL 60," Con. ACM 6, 1-17 (1963).

7. Reinvald, L. T., and R. M. Soland, "Conversion of Limited-Entry
Decision Tables to Optimal Computer Programs I: Minimum Average
Processing Time," J. ACM 13 (1966), 339-358.

8. . and . "Conversion of Limited-Entry Decision Tables
to Optimal Computer Programs II: Minimum Storage Requirement,"
J. ACM 14, 4 (October 1967), 742-757.

9. Simon, H. A., "Experiments with a Heuristic Compiler,** RAND Corp.
P-2349, June 30, 1961.

10. Walker, R. J., "An Instruction Manual for CUPL, The Cornell
University Programnlng Language,** Cornell University, December, 1966.

11. Hinograd, S., "On the Time Required to Perform Addition," J. ACM
12, 2 (April 1965), 277-285.

12. . "On the Time Required to Perform Multiplication," J, ACM
14, 4 (October 1967), 793-802.

13. , "On the Number of Multiplications Required to Compute
Certain Functions," Proc. Nat. Acad. Sciences, 58, 5 (November 1967)
1840-1842.

14. "A New Algorithm for Inner Product," IBM Watson Research
Center, Yorktown Heights, New York, research report RC-1943,
November 21, 1967.

>>«Hir CU«»inc«tlo<r

mmmj* >i—«ruti— ai IUH, N»
re

DOCUMENT CONTROL DATA RIP

Carnegie-Mellon University
Department of Computer Ccience
rittsbur^h, Tenncylvania 15213

it •$*»»HI*i

UnCLAGSIFIED
•movm

SOME TECHNIQUES FOR ALGORITHM OPTIMIZATION WITH APPLICATION
TO MATRIX ARITHMETIC EXPRESSIONS

Scientific
(Trpmmt I iMftMlf* «MM)

Interim

Robert A. V.'agner

E NI'OMT OAT« ""

27 June 1963
u CTgfinr

»a. TOTAL NO. OF »*•■•

159 l'i
•HAMT MO*

Ft{Ä620-67-C-0053
mm

*. rmojmcr mm.

9713

^130'J

t/f*tSS*/S -ÄFOSK 08-
S5 ««r B SSSSSF

I«. mtTHiaUTIOM ITATUMNT

1. This document has been approved for public
release and sale; its distribution is unlimited

11. •W^i.KMKNTANV NOTI

TECH, OTHER

II. •^OMMHIN« MILITARY ACTIVITY
Air Force Office of Scientific
Research (SRMA)
l^t-OO.V.'ilson Boulevard, Arlington,
feicfeidA, p??n9 L

U. AUflAtf
Algorithm optimization can be accomplished by an exhaustive search over

alternative algorithms for performing some programming task. The resulting
algorithms are optimum only with respect to a program technology--the particular
set of alternatives Investigated. Thus, larger program technologies can be
expected to yield better algorithms. This thesis contributes to the production
of optimum algorithms in two ways. First, a technique ("loop-fusion") was
developed for producing new algorithms equivalent to old algorithms, and thus
expanding program technologies. Second, a technique ("comparison") is described
which reduces the effort required by certain exhaustive seraches over "well-
structured" search spaces. These techniques are applied to the production of
algorithms for evaluating matrix arithmetic expresssions (MAE). (The operators,
+ and *, in such arithmetic expressions are interpreted as matrix addition and
multiplication, respectively.) A method is described for producing, for any MAE,
an algorithm for its evaluation which requires fewest arrays for holding N by N
matrices, while not requiring more execution time than the "standard" MAE
evaluation algorithm. Althouru the algorithm-production method used is basically
an exhaustive-search over a large space of program alternatives for each
subexpression of the given MAE, the effort this method requires grows only
linearly with the number of operators in the given expression.

DD .'r..l473
■•ciirtty ClMalllccUM

■•«wMy Cl—lfl€«tlwr
14.

HIV «•«•• LINN A

»•ta I WT

LIMB ■ kINN •
«•kl • T ■•Ct I »T

■•curllr ClaaalflcatlMi

■

