.l'-'lé-‘LE'H"_.HCrI_I',[

SOME TECHNIQUES FOR ALGORITHM OPTIMIZATION
WITH
APPLICATION TO MATRIX ARITHMETIC EXPRESSIONS

by

Robert Alan Wagner

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

June 27, 1968 [y i) O
< R
OV 271968

Submitted to the Carnegie-Mellon University '
in partial fulfillment of the requirements '
for the degree of Doctor of Philosophy

This work was supported by the Advanced Research Projects

Agency of the Office of the Secretary of Defense (3DwdW6))-¢4(Qo(7-C-0C Y
and is monitored by the Air Force Office of Scientific

Research, Distribution of this document is unlimited,

ABSTRACT

Algorithm optimization can be accomplished by an exhaustive search
over alternative algorithms for performing some programming task. The
resulting algorithms are optimum only with respect to a program technology--
the particular set of alternatives investigated. Thus, larger program
technologies can be expected to yield better algorithms. This thesis
contributes to the production of optimum algorithms in two ways. First,
a technique ('"loop-fusion') was developed for producing new algorithms
equivalent to old algrrithms, and thus expanding program technologies.
Second, a technique ("comparison") is described which reduces the effort
required by certain exhaustive searches over 'well-structured" search
spaces, These techniques are applied to the production of algorithms for
evaluating matrix arithmetic expressions /MAE). (The operators, + and *,
in such arithmetic expressions are interpreted as matrix addition and
multiplication, respectively.) A method is described for producing, for
any MAE, an algorithm for its evaluation which requires fewest arrays for
holding N by N matrices, while not requiring more execution time than the
"standard" MAE evaluation algorithm., Although the algorithm-production
method used is basically an exhaustive-search over a large space of pro-
gram alternatives for each subexpression of the given MAE, the effort
this method requires grows only linearly with the number of operators in
the given expression.

i1

ACKNOWLEDGMENTS

I wish to thank my adviser, Professor Alan J, Perlis, for
his efforts to aid me in this work, He suggested the specific
application of this thesis, He encouraged me to continue my
effort vhen all seemed hopeless. Furthermore, without his crit-
icism of the presentation, this thesis would probably be totally :
unreadable., I also wish to thank Miss Sally Dewald, who suffered
through many pages of nearly indecipherable handwriting to produce
these typed pages,

111

TABLE OF CONTENTS
TITLE PAGE: ¢ o ¢ ¢ ¢ o ¢ o o 06 ¢ 06 06 6 6 s o6 060 060060000000l
ABSTRACT. ¢« ¢ o ¢ o o ¢ o o 0 06 06 ¢ 0 0o 06 ¢ 0000000000000l
ACKNOWLEDGMENTS. ¢ « o ¢ o ¢ ¢ ¢ o ¢ ¢ o o o ¢ ¢ s 06 o 0 06 00 0 o o oiil
TABLE OF CONTENTS. « ¢« ¢ « o ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o s s ¢ 006 0600 0000 iv

CHAPTER I. 2 o ¢ ¢ o o o ¢ o 06 0o ¢ o 0 06 06 060606060 006060000000l
1.1 General Problem of Program Optimization, « o« « ¢ ¢ ¢ ¢ ¢ ¢ o o
I.2 A Specific Problem, « ¢« ¢« ¢ ¢ ¢ ¢ o ¢ ¢ ¢ 06 ¢ 6 ¢ 060 ¢ ¢ 0 ¢ o3
I3 Prioxr Worke ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ ¢ 006 060606 066060600 00202012
1.4 Statement of the Problem, « ¢« « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0o ¢ ¢ 0 0 o 16
I.5 Overview of Our Approach. . ¢ ¢« ¢ o ¢ ¢ ¢ ¢ s 06 06 06 0 0.0 0 o 17

CHAPTER II. o ¢ ¢ ¢ ¢ 6 o o 06 06 6 0606 06 00060600600 as0020e0a0ql9
II.) Basic Definitions. ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 6 ¢ 06 06 0606 0600 ¢ 19
I1.2 Parse~Trees and Expressions. « ¢« « ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o 0 o o o 20
IX.3 Parse~-Tree Examples. ¢« « « o ¢« « ¢ s ¢ 6 06 0606 0 06 0 0 0 o o 21
I1.4 The "n>" Elementary AlGorithms. o o « o « o o o o o o o o o o22
I1.5 Loop Fusing. « ¢« ¢ o ¢ o ¢ o o ¢ ¢ ¢ ¢ 06 06 06060600 000025
1I.6 Fusion in Flow Charts: Graphic Description. . « « ¢ o o « « ¢29
I1.7 Loop Fusion Conditions. « o« o ¢ ¢ ¢ ¢ o ¢ ¢ 6 ¢ 06 0 o o s o 430
I1.8 Storage Savings in Loop Fusion. « « ¢ o ¢ o« o o ¢ ¢ o o o o o45
I1.9 Summary of Loop Fusion Conditions. . « « ¢ o o ¢ ¢ o o o o o 48
11.10 Algol and Flow=Chart Langulie. « « « ¢ ¢ o s o ¢ ¢ o o o o ¢50
1I.11 Algorithm Fusion (parallel connection). « « ¢ ¢« ¢ ¢ o o o o 50
11.12 Matrix Operation Algorithms (MOA'S). « « o ¢ o ¢ ¢ o o o o« 52
11,13 Shapes, the "Valences” of an MOA, . « ¢ ¢ ¢ ¢ ¢ o ¢ o o o o 56 I

I1.14 Explicit Rule for Developing Shapes
for Arrays used in Algol Programs, 59

I1.15 Parallel Connection Algorithm, . « ¢« « ¢« ¢ s ¢ o s 0 ¢ o o o860
1I.16 Matrix Elementary Algorithms, . « ¢« ¢« ¢ ¢« ¢ o ¢ o ¢ o o o« o« 64
II.]7C‘n0ﬂ1¢l1k'm........................67

iv

~

CHAPTER III. ¢ o ¢ ¢ o o ¢ ¢ 6 6 6 06 0 0606060606 06006ccecoecesel
III.1 Elementary Expression Parse-Trees (EEPT's)e ¢ ¢ ¢ ¢ ¢ ¢ o o 69
I1I.2 Alg=Tree Definitions. « ¢ ¢« ¢« ¢ ¢« ¢ ¢ o ¢ ¢ ¢ 06 6 0606 060 ¢ 70
I1I.3 Major Properties of Alg-Trees. « « o ¢ ¢« ¢ o 6 06 06 06 06 ¢ o o4
I11.4 Result-Array and Fringe-Set Array Storage Overlap. . « « « 76
I1i.5 Calculating Intermediate 2-Array Requirements of an Alg-Tree79
III,6 The Leaves~In AlGoTithm, ¢ ¢ ¢ o ¢« ¢ ¢ o o ¢ o 0 0 ¢ o o o o84
II1.7 Effort Estimates Motivating Search Reduction, « « ¢ o o « o 91

CHAPTER IV, ¢ ¢ ¢ ¢ ¢ ¢ o ¢ 6 6 0 0 6 6 66 6 6 0606006000000 o97
Introduction. ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 6 ¢ 6 6 6 6 06 06606 0606060000 097
IV.! The Fv-Set Comparison Theor®® . ¢« ¢ ¢ ¢« ¢ ¢ o o ¢ ¢ 0 ¢ o o 102

IV.2 Applications of the Comparison Theorem to the
Leaves-In Algorithm, , . . .109

IV,3 The Leaves-In Algorithm, with Comperison Theorem, o « « « o 111
Iv.lb hm.-lﬂ Al‘ol".thl !ffol‘t R‘quir.-nt. ® 6 © o o © 0 o o o I‘z

mv...........'...................‘20
v.‘ s__:yOIR..ult..'...O..'.........l'...'zo

APPENDIX I. o ¢ ¢ ¢ o ¢ ¢ 6 ¢ 6 606 060606606060 c0o0socssecse 126
1. Winograd's Matrix Multiply Algorithm , . « « o o ¢ ¢ ¢ o o o o126
2, Additional Shapes Defined for Winograd's Algorithm, 127
3. Variations on Winograd's Algorithm (NEven). « « ¢« ¢ o o o o o127

APPENDIX II. ¢ ¢ ¢« ¢ ¢ o o ¢ ¢ 06 ¢ ¢ 6 06 0606 0606 060600000000 o130
Leaves-In Algorithm £n APL, . ¢« ¢« o ¢ ¢ ¢ ¢ o ¢ 6 0 006 06 0 0 o o130
External Representations. ¢ ¢« ¢« ¢ o ¢ ¢ ¢ ¢ ¢ 6 ¢ 06 006 00 0 ¢ o131
Detailed Examples. « o « ¢ ¢ ¢ o ¢ ¢ ¢ ¢ 06 ¢ 6 060606000000 133

nmlm.......'.........0...........I“

AT ek DA e

o

p—

e e~ B

CHAPTER 1
I,1 General Problem of Program Optimization

Problems are often presented to a human programmer in ways vhich
allow & multitude of possible approaches to their solution., The pro-
grammer sust then decide on some basis, vhich possible approach should
be used, Furthermore, a given "program" is, 1f it is at all useful,
normally destined to be a sube-program of various larger programs, One
has no reason to hope that the implementation of the sub-program is
the same in the optimum implementation of each prograam in vwhich it is
embedded. Thus, a program cannot actually be optimized permanently in
isolation. The programmer must optimize it for the particular context
in vhich it is to be used.

One form of the program-optimization problem can be stated as
follows:
Given a programming task formulated as a desired
transformation or mapping of input data to output
data, find that program vhich "best" implements
" the task,

A program specifies the sequence of operations some processor is to
perform in order to accomplish the desired transformation, Each
operation is itself a transformation, vhich must be drawn from a fixed
set of possible operatioas, the repertoire of instructions of the
given processor. When more than one sequence of operations can be
used to accomplish a given programming cask, such sequences are termed
equivalent, as are the programs vhich specify them, That program is
"best" wvhich, of all equivalent programs, minimizes some program cost
function.

Programs, in their specification of operation sequences, can be

associated with "costs". These costs need not be monetary. In general,

they represent the amount of some scarce resource used in creating, or
executing a given program. Examples of costs include:

(1) Programmer's time required in creating a prugram
(2) Processor time used in executing some program

S ————

(3) Processor memory space required.before the program
can be executed,

Costs (2) and (3) are of particular interest. These costs describe
the performance of the final product--the program., We therefore define
& program cost function to be some non-decreasing function of the pro-
cessor time expended, and memory space required, during the program's
execution,

In fact, a class of optimization problems can be devised, depending
on the precise description of the program cost function, .For example,
one can conceive of an enviromment in which total main memory space is
limited. Then no program is acceptable which requires more main memory
than this amount. Among the equivalent programs which are acceptable,
some require least processor execution time. These would then be pre-
ferred, In place of a single function of memory space and execution
time, one of the variables enters the optimization problem in a constraint,
vhile the other makes up the function to be optimized,

An equally valid description of the program cost function can
reverse the roles "space" and "time" played in the previous example.
That is, we conceive of a situtation vherein constraints are placed on
the execution time of some prograsming task, leaving us to choose among
the equivalent programs for this task one which uses least memory space.
Such a situtation arises in certain "multi-programmed” computer systems,
vhich employ the physical memory allocation technique called "paging".
In these environments, potentially, large amounts of space are available,
at increasing cost in "response time". It would seem desirable in such
an environment to choose a program which uses least space, while re-
quiring the processor time required for execution to lie below some
upper limit,

The cost functions described here all depend on the measurement of
a program's execution time and space requirements, These requirements
depend on both the program and the particular input data with vhich that
program is supplied in a given execution. In general, a program is
written to apply to many different selections of input data, It seems

desirable to discuss its requirements for several such input data

sets at once., One convenient way to describe program behavior for large
classes of possible inputs is to "parametrize" that program's require-
ments--to express the space and time requirements in terms of certain
“characteristic numbers" derivable from the data.

Thus far, the discussion of optimization of programs has implied
a search over all possible programs which specify a given programming
task, Unfortunately, for many programming tasks we know of no way to
characterize all programs which specify that task, Nevertheless, methods
of improving programs are still desirable.

For certain programming tasks, a number of alternative programs are
known, A search can be performed vhich is limited to a set of programe
for a programming task whira are derivable in some specific ways. The
best program among those Lonsidered will be termed "optimm with respect
to some (specified) technology”, or technologically optimm, for short.
Technologically optimm programs may well yield near-optimm values for
the program criterion function. Additional improvements can be realized
by increasing the number of programs derivable, that is, by expanding
the technology.

1,2 A Specific Problem

The general problem of program optimization tends to founder on the
problem of programming task representation. As presented to & human
programmer, many if not most prograsming tasks are not well-defined, Not
only does the programmer often have great scope in choosing solution
techniques; often he may choose the characteristics of the solution as
well, Such freedom limits the ability of computer optimization techniques
to derive equally satisfying results. Because the limits of accptability
of programs are vague, and indeed only informally stated, solutions
proposed by algorithms cannot be tested for acceptability.

Several classes of well-specified programming tasks do exist, how-
ever, Rach "higher-level" languuge comstruct, such as the expression
in Algol, or the DO-loop of FORTRAN, specifies a programming task some-

vhat independently of specific sequences of instruction on a specific
machine, The semantics, or meaning, of instances of such constructs
thus allow more than one program to correctly specify thst meaning.
Furthermore, because many instances of each constr.at may be presented

to an optimization (program-choice) algorithm, it is profitable to
derive such algorithms, The present work describes a method, based ulti-
mately on an exhaustive search over programming alternatives, for “com-
piling" or "translating'" one high-level language construct: the "matrix
arithmetic expression”, Several authors have advocated the addition of
matrix arithmetic capabilities to various programming languages. The
matrix arithmetic expression provides a basic construction for specifying
such arithmetic,

The syntax of a matrix arithmetic expression can be taken to be
that of an Algol expression vhose <variables> are all <array iden-
tifiers>, and vhose operators are restricted to '+' and '*', In these
expressions, + and * designate matrix addition and multiplication,

We can successfully compile technologically-optimal programs for instances
of a sub=class of all expressions., Our epsimization algorithm requires that:

(1) All variables of the expression must be N-by-N (square)
arrays;

(1) The expression must be "fully parenthesized"; and

(3) The expression may not contain common subexpressions,

A fully parenthesized expression syntactically describes exactly one
decomposition of the expression into one-operator subexpressions, Thus,
we will make no attempt to employ the associative and distributive laws
of matrix algebra to derive equivalent expressions., A common subexpres-
sion 1is & subexpression, more than one instance of which occurs in the
expression, Thus 'A+B' is a common subexpression of the expression

(A4B) * (A+B).

We will also assume that the matrices we deal with are "general", so
that no special space-saving storage techniques are possible,

We will describe a particular "technology" for programs which eval-

PR B sncsmn. e

uate matrix arithmetic expressions. From this technology, an expanded
technology can be developed, using a technique which mey well be useful
for creating new equivalents to programs for other programming tasks.

A search-procedure is developed over the programs in the expanded matrix
arithmetic expression technology., This search-procedure accepts only
those programs whose time-requirement is no greater than that required
by the "standard" technology. It searches for a program vhose memory-
space requirement is least, The search-procedure is shown to require
compile~time computation resources which increase exponentially with the
number of operators in the given expression., Finally, a general tech-
nique for reducing the effort of any "structured" exhaustive search is

developed, and applied to the present sear~h, reducing compile-time effort

to linear dependence on the number of operators in the given expression,

From the (informal) semantics of matrix arithmetic expressions, it
should be clear that techaniques known for "compiling'" scalar expressions
are applicable to matrix arithmetic expressions. Techniques are avail-

able which "compile" arbitrarily complex scalar expressions into instances

of a small number of basic assignment statements., For example, basic
assignment statements for scalar arithmetic expressions with the syntax

of matrix arithmetic expressions are:
A«B+C and A<B*C,

A compilation technique based only on the syntax of the given expression
can resolve any expression into a sequence of systematic substitution
instances of the above assignments, (A systematic substitution replaces
each variable name in an assignment with new names, chosen so that the
nevw name for the left-side variable does not agree with the new name

of any other right-side variable, Thus,

AX*Y and Z «Q* W

are systematic substitution instances of A B * C, but
Ae-A*X and Z «Q* 2

are not.)

New variables can be chosen to hold the values of subexpressions

until these values are input to a later assignment, Thus, the func-
tional composition of the binary addition and multiplication functions
making up the given expression can be achieved, Matrix arithmetic ex-
pressions can be compiled in exactly the way scalar expressions are
compiled, ylelding sequences of systematic substitution instances of
the (syntactically) same basic assignment statements, For each of the
basix matrix assignment statements, an algorithm can be devised. Thus,
a compilation into basic assignments serves to produce an algorithm for
computing the expressionm,

In the case of scalar expressions, relatively little merory space
is required to hold each intermediate result. Accordingly, many come
pilers make no attempt even to re-use variables used for intermediate

results,

Matrix arithmetic presents some motivation for space-optimal com-
pilation, In compiling matrix arithmetic expressions using this tech-
nique, a set of Nz variables must be allocated to hold each intermediate
result, Because N may well be large, a significant amount of .emory
could be demanded by the compiler for intermediate matrices. Accordingly,
some effort by the compiler to reduce the storage space it allocates
for the compiled program is desirable.

In the discussion of the general problem of program optimization,
it was noted that, realistically, program time and space requirements
should be parametrized. Both the time and space required for computing
matrix arithmetic expressions can be regarded as functions of N, where
each matrix entering the expression is N-by-N, Thus, each set of vari-
ables capable of holding a matrix (called a 2-array) must include Nz
variables, The time requirement for computing

AeB* C

can be stated as: N3 additions, and N3 multiplications, when one algor-
itm 18 used, or

3N°/2 additions, and N°/2 multiplications

vhen an algorithm recently discovered by S, Winograd (14] is employed.

In general, time and space requirements for computing a matrix
arithmetic expression are polynomials in N, For large enough N, the
leading texm of . polynomial in N dominates the polynomial, in the
sense that the contribution of all other terms are negligible with re-
spect to it, (The leading term of a polynomial in N is that term in
vhich N has the largest exponent.,) Accordingly, we will approximate
time and space requirements by the leading term of their representation
as polynomials in N,

The space~-requirement for a program to calculate a given matrix
arithmetic expression has several components, each corresponding to a
term in the polynomial in N. Since we have stated that certain terms
of the polynomial will be ignored in our optimization, it seems worth-
vhile mentioning the program entities to which they correspond.

The leading term of the space-polynomial clearly counts the number
of 2-arrays required., The linear term in N measures the number of
l-arrays, each capable of holding a l-by=N or N-by-1 matrix, or vector,
of values, The program itself is represented in memory at execution
time, However, its size is independent of N, since we will implement
it by means of "loops". The program-size thus enters the constant
term of the space polynomial, Thus, the space requirement for a matrix
arithmetic expression's evaluation is dominated by the number of 2-arrays
needed for that evaluatiom,

We will seek a technologically-minimum-space program., The program-
class we search will include only programs vhose time~requirement is
smaller than a time-standard, derivable from the given expression.

Two methods for computing matrix multiplication have been alluded
to. One the set of N3 algorithms, requires N3 scalar additions and
multiplications to perform a matrix multiplication; the other, the set
of N3/2 algorithms, requires 3N3/2 additions and N3/2 multiplications,
Suppose all basic matrix multiplication statements in the "standard"
compilation of some expression is implemented by the same algorithm,
and that no element of any subexpression 1is recomputed during the
expression's evaluation. Then the number of scalar additions and mul-

FEAYY

Pt

£ !-‘ I-: '”*'."P A e i] e - S e o

tiplications needed for this no-unnecessary-computation implementation
forms a reasonable upper bound on the time requirement of an "acceptable"
progtln.

We will seek a program for evaluating a given mairix expression
whose space-requirement is least, subject to the requirements that the

program
(1) be generatable by techniques to be presented, and

(2) requires no more time than a no-unnecessary-computation

sequence of one~operator basic assignments,

Programs which satisfy (2) are termed =minimum-connection-time
programs, We are seeking a program whose space requirement is least,
vhere we approximate a program's space requirement by the number of
2-arrays it uses. The 2-array requirements of two programs will thus be
compared in the course of the search outlined., However, we can show that

certain 2-arrays are needed by any program to evaluate & given matrix
expression, These 2-arrays hold the matrices which are input to the
expression., These variables must remain present and undisturbed through-
out the expression's ¢valuation., Thus, input 2-arrays do not a“fect

the comparison of two programs. In effect, only non-input 2-arrays need
be counted in the program criterion function. These non-input 2-arrays
will be termed "intermediate 2-arrays",

We will demonstrate an expansion of the basic compilation technology
which will introduce more ''basic" matrix assignment statements, These
statements will contain more than one operator. In fact, they are de-
rived by substituting the expressions of basic assignement statements for
the variables in otlier assignments., Corresponding to each new assignment,
we will show how an algorithm, called a matrix elementary algorithm, (MEA),
can be constructed, having the following properties:

(1) Its time requirement is the same as that of the sequence of
basic one-operator assignments from which its expression
was derived;

(2) It requires only k*N intermediate variables for its eval-
uation, Here, k does not depend om N,

These algorithms are created from sequences of basic (l-operator)
assignment algorithms by a process called "loop-fusion", Basically,
this process allows small portions of the matrix which represents the
value of a subexpression to be computed, and then used at once in

computing a portion of the expression enclosing that subexpression. h
This portion of the intermediate result need not be retained longer, :
The variables used to hold this part of the intermediate result can

then be used to hold another portion of the intermediate result, The

fusion may thus require as few as k*N intermediate variables,

The technique of loop fusion may permit combining two loops
which are not part of matrix arithmetic algorithms, One of the prin-
cipal results of this thesis is a set of sufficient conditions under
vhich two loops may fuse into one computationally equivalent loop. Any
technique for generating equivalent programs increases the set of pro=-
grams over vhich a technologically optimizing algorithm may search.
Thue, loop fusion holds potential for improving programs for tasks other
than evaluation of matrix arithmetic expressionms.

Loop fusion permits generation of a potentially infinite number of
matrix elementary algorithms (MEA's), However, the syntax of their
associated expressions is more restrictive than the syntax of matrix
arithmetic expressions. Not every matrix arithmetic expression can be
evaluated using a single matrix elementary algorithm, As a result,
techniques are needed for deciding just which MEA's should be used to
evaiuate each subexpression of a given matrix arithmetic expression.

The optimm decomposition of matrix arithmetic expressions into
expressions vhich MEA's are capable of evaluating can not be de.idsd apart {
from the given expression., In other word:, no one MEA is obviously
better than another, for all expressions, For example, it might be
supposed that the larger the expression evaluatable by an MEA, the better
that MEA is, The intermediate variable requirements of a "large' MEA
are no worse that that of a smaller MEA, In some sense, the overhead
of computing the large expression can be apparently allocated over
more operators, reducing the per-operator storage costs, Unfortunately,

10

large-expression MEA's have another property which limits their use-
fulness: every input of an MEA must be present simultaneously. Thus,

& large-expression MEA vhose inputs are all intermediate results requires
more intermediate 2-arrays to be present than a similar small-expression
MEA, Nonetheless, vhen a large-expression MEA's inputs correspond
primarily to inputs to the given expression, its use is desirable.

An algorithm, called the "leaves-in algorithm", was devised for
generating all the possible decompositions of a given matrix arithmetic
expression into MEA's, This algorithm is "efficient" in the sense that
it never re-generates an MEA used to evaluate a particular subexpression,
as the evaluation rules for other subexpressions are varied, Instead,
all possible MEA-decompositions which can be used to evaluate a sub-
expression are retained in memory, and combined with the MEA-decomposi-
tions for evaluating other subexpressions to geiierate new MEA~deccmposi-
tions., Unfortunately, the "effort'" (computation time) required by this
algerithm was found to grow exponentially with the number of operators
in the expression, for certain expressions. This potentially large effort
is undesirable, since it makes the cost of obtaining a techmnologically
optimum program unreasonably large,

A general technique for reducing the effort required by certain
exhaustive researches was devised, and applied to the leaves-in algorithm,
The technique is not "heuristic", in that no chance of missing an optimum
solution is introduced by its use, Furthermore, the technique may well
be useful in reducing the effort required by other exhaustive search
procedures,

Roughly, in any exhaustive search, "states' of the search are pro-
duced, Often, not all variables in the state-vector are computed simul-
taneously, We can speak of a "partial state", which reprezents the
situation obtained vhen not all state variables are given values, A
partial state may lead to any of a large number of complete states,
depending on the assignments made to the varialles not assigned values
in the partial state., A particular set of values assigned to the non-
partial-state variables will be termed a '"completion",

MM*PMM e . .

N

Most of the effort in an cxhaustive search involves generating all
the possible completions of each partial state. Now suppose two partial
states are known such that the same variables are fixed (to different
values) in each, and such that any completion of one is a possible com-
pletion of the other, Thus, if A and B are partial states, and C is a
given "completion", {f A U C (read "A completed by C") is valid, so is
B U C. Also, suppose N(S) is the value of a state, and we seek a
state of minimum value, If for all completions C, N(AUC) >N(B UC),
then completions of partisl-state A need not all be examined., For every
complete state A U C generated by any completion C, there is a complete
state B U C generated by that same C which is better. Now, notice that
the statement

(1) ¥ [N(AUC) > N(BUC)]

is a predicate on A and B which is independent of C., If we can discover
a predicate equivalent to (1) whose evaluation does not require the

generation of all possible completions C, we can compare partial states
using it. The resulting algorithm may reduce the number of states gen-

erated tremendously,

The power of the technique described depends on several properties
of the space searched, and the variables chosen to describe states in
that space., In some searches, the comparison may lack "power"--for
example, it may only hold between identical partial states, In other
searches, few pairs of partial states vhich yield true for the value of
the comparison may ever be generated. Nonetheless, in some searches over
Ywell-structured" spaces, such comparisons may drastically reduce the

search effort,

In the search for the best MEA-decomposition of a given matrix
arithmetic expression, the comparison theorem proved quite useful,
Here, a "partial state" correspouds to a particular decomposition of
one subexpression. A "state" corresponds to a particular decomposition
of the entire given expression, A partial state may be completed by
any decomposition of some subexpression not part of the partial state's

- e

12

subexpression, States arise from fusions of the MEA's used in computing
subexpressions, The evaluation rule for states depends on components
in the partial state and in the completion.

The evaluation function of an MEA depends on the set of subexpressions
whose values are inputs to this MEA. The number of intermediate 2-arrays
needed to compute each input is used to determine the number needed to
compute the MEA's result. An MEA A vhich is extended by loop fusion
becomes an MEA, A U C, vhose inputs include all inputs of A, as well as
additional inputs, C., These new inputs, adjoined to the input sets of
tvo different algorithms, may completely change the relative space-effi-
ciency of the algorithms,

We were able to discover just when two MEA-decompositions for evalue
ating some subexpression were interchangeable, By interchangeable, we
mean that any valid completion of one is a valid completion for the other.

Furthermore, we were able to discover the evaluation-rule, N(S), for
MEA-decompositions S, Also a predicate equivalent to (1) for this eval-
uation rule was discovered. The application of this comparison predicate
to the leaves-in algorithm reduces the effort required to a value propor-
tional to, rather than exponential with, the number of operators in the
given expression,

1,3 Prior Work

Several aspects of the prior art should be discussecd, Some re. \lts
have been published relating to the general problem of program optim . a-
tion, Also, various authors have attacked specific probl:i:ms in this area.
We freely admit to being influenced by their approaches. Some previous
wvork has been directed at the production of optimum compilations for
scalar-expressions, work whose basic techniques we build on., Finally, some
vork on optimum compilations of matrix arithmetic expressions has been
published, and should be mentioned here.

One of the major forerunners of the approach we employ here seems
to have been Simon's "Heuristic Compiler™ [9]. Simon's work appears to

[

13

have as its goal the production of uome program to accomplish a given
programing task; however, he appears to have been one of the first to
describe a wide variety of progtamming tasks in such ¢ way that a space
of program altermatives for their accomplishment could be visualized,
His "before-and-after" description of procedure operations forms such a
“state description" of programs, Indeed, he explicitly mentions the
possibility that '"there will generally be many programs (not all equally
efficient or elegant) that will do the same work" [9, pg. 6]. This very
naturally suggests a search for the most elegant, or efficient,

Several authors have attacked problems in the general area of op-
timizing the compilation of specific language-constructs, Notably,
Reinwald and Soland [7,8] have discussed at length the problem of con-
verting "Decision tables" into optimal computer programs, Interestingly,
they adopt an approach based on an exhaustive search over certain pro-
gram variations, They advocate use of "branch and bound" techniques for
reducing the space searched, Furthermore, they suggest that the space
of programs they search exhausts the space of all programs which can
be said to be "translations" of a given decision table., Thus, the pro-
grams they produce are claimed to be time-optimal, or space-optimal,
and they even propose means for locating optimal programs whose criterion
function is a linear combination of memory space and execution time,

Another group of problems has been attacked by Winograd [11,12,13],
Winograd treats both problems of designing minimal-time hardware for
performing certain computer instructions, and that of designing minimal-
operation-cost algorithms for performing certain operations, For the
most part, Winograd concerns himself with deriving theoretical lower
bounds on the "time" required for certain computer operations, In fact,
he usually also demonstrates procedures which yield near-minimal-time
operations, Although his approach is not constructive, nevertheless
his search for theoretical lower-bounds on quantities we attempt to mine
imize is certainly relevant, Indeed one of his results (in[14]) directly
concerns matrix multiplication, Here, he presents an algorithm for cal-
culating the dot-product of two vectors which, when applied to matrix

14

multiplication, reduces the number of multiplications required from n3
to approximately n3/2. We present a derivation of this result in
Appendix I, together with algorithms which implement it, and vhich can
be used as "basic algorithms" for the matrix assignment A «B * C,

Of more direct relevance to the compilation of matrix expressions
is an algorithm developed for space-optimal compilation of scalar
arithmetic expressions, and described by I. Nakata [5]). This algorithm
is based on an analysis of an expression into a data-flow diagram, a
precedence-graph showing the necessary time-sequence of subexpression com-
putation, This structure inspired the analysis of the leaves-in algorithm,
Nakata's algorithm which we describe briefly here, produces a linear order
for the evaluation of subexpressions. This order, of all possible evalua-
tion orders, uses fewest intermediate variables,

Let x be a node in the parse-tree T of an expression E. Suppose
n(x) represents the minimum number of intermediate variables needed in
computing the subexpression whose sub-tree is rooted at x, Apply the
following algorithm to each node of T, appiying it to every descendant
of a node y before y.

1. If x is a leaf of T, x's subexpression is a variable input
to E, and needs no algorithm for its computation, Set n(x) = 0.

2, If x1is not a leaf of T, let its immediate descendants be x,

and X, Then n(x1) and n(xz) have already been computed,

a, If n(xi) > n(xj), (1, = 1,2), compute xi'l sub-
expression first., One cell retains the result of this
computation during the following calculation of xj'l
subexpression., Set n(x) = n(xi), since enough cells
remain of the n(xi) = 1 to compute xj, vhich needs
only n(xj) Salx) - 1.

b, If n(xl) = n(x)z. then regardless of wvhich subexpression
is computed first, one cell is required to hold its
result, Then an additional n(xl) cells is needed in com-
puting the other result, x's subexpression can be

computed, using A « A op B, into one of the cells now
holding a subexpression's result, Hence, n(x) = n(xI) + 1.

The operation of this algorithm depends on the presence of elementary
operations for performing assignment statements like A « A op B, vhere
one input variable is replaced by the assignment's result, Othervise,
this same algorithm can be extended directly to matrix arithmetic expres-
sions, We show later that operations very similar to

A ~A* B, and of course A A + B
are available for matrices A and B,

Galler and Perlis [4] were early advocates of the addition of
matrix arithmetic capability to compiler languages. They comment on the
potential danger of allowing a compiler to allocate large amounts of
storage for the evaluation of matrix expressions, They suggest a number
of elegant devices for performing various matrix manipulations, One of
particular elegance seems to be their proposal for implementation of
the matrix transpose operation., No instructions are needed at execution
time, Instead, in each algorithm compiled, the compiler interchanges
the indices in the subscript positions of each subscripted variable
vhich is a transposed matrix,

Galler and Perlis also present an interesting technique for com-
puting a succession of matrix products, Indeed, this technique demon-
strated the computation of subsets of the elements of a matrix result,
followed by immediate use of those elements, We generalize this notion
to that of "loop fusion", applicable to algorithms other than matrix
arithmetic algorithms, in the sequel,

Galler and Perlis' algorithm for matrix multiplication:

Suppose we wish to compute A * B *,, * K, a »roduct of
matrices,

Let xi represent the ith row of matrix X,

Then we can compute

Alepg.@a*pt

i,

- = S

16

without using more than one vector of storage. By extension,
only vectors of storage are needed in computing

(A * 3 *...* K)i
by (A*B*ooo* J)i'*l(

By repeating this computation of one row-vector of the
product for different rows A", the entire product can
be produced, using only onc matrix to hold the result,

(Galler and Perlis also show that, in the repeated products
of row-vectors with matrices needed to produce a result

row, only two vectors of storage are needed, at most,]

While the Galler-Perlis algorithm produces highly acceptable pro-
grams for computing certain expressions, it is inapplicable to others.
For example, it does not apply to: A * (B + C) * D, Were we to
compute A" * (B + C), we could use an entire matrix to hold the value
of (B + C), Otherwise, the value of (B + C) would necessarily have to
be re-computed as each of the N rows of A were multiplied by (B + C).
The re-computation produces a program which is not minimm-connection-
time, and is hence unacceptable.

I,4 Statement of the Problem

We consider matrix arithmetic expressions (MAE's) (as distinct from
MEA's) whose syntax is:

MUAE> 3 = MUAD | QAT + MAR>
<UD i = MAP> | MAR> * QAT
UP> 3 = (QMAE>) | <matrix identifier>

The operators + and * signify matrix addition and multiplication respec-
tively, A <matrix identifier> 1is declared as an <array> [6].

We restrict the MAE's we investigate as follows:

(1) Each <matrix identifier> is declared to have subscript
bounds of [1:N, 1:N]. Thus, each matrix must be square;

17

(2) The semantics of an MAE> or <MAT> which includes more
than one operator is interpreted to be right-associative,
Thus, we assume that the MAE A * B * C must be computed as:
(A * (B *C)).

(3) No <MAE> may contain more than one instance of the sams
(sudb) QD>

We propose to find a program which, among a certain set of programs,
computes any given MAE ueing the smallest number of intermediate 2-arrays,
subject to a restriction on the acceptability of programs:

Esch acceptsble program must be a minimum-connection-time program,

The set of pzograms we study consists of sequences of instances of
basic matrix assignment algorithms, The basic matrix assignment algor-
ithms are a potentially infinite collection of algorithms derived from
algorithms for the matrix assigmments A «B * C and A «B + C. Because
the set of basic matrix assignment algorithms is far larger than the
collection of algorithms usually used for compilation, the technological
space minimum we obtain using them is smaller than that obtainable using
only algorithms for A «B * C and A « B + C, However, we can make no
claim to have discovered either time or space optimal algorithms, for we
have no proof that we have exhausted all programming possibilities in
constructing the particular set of programs studied,

I,5 Overview o. Our Approach

We first describe a technique, called "loop fusion", for creating
new programs equivalent to certain given programs, This technique pro-
duces p-ograms vhich are computationally equivalent to the given programs,
and vhich require the same (or slightly less) execution time, Their
patterns of accessing and computing data are different, however,

Using loop-fusion, we find we can grow a potentially infinite
collection of algorithms for evaluating matrix expressions. 'me-L
algorithms, called MEA's, are grown from only five basic algorithms,
They each require internal intermediate variables proportional in number

T T S A —

= R T TE—

18

to N,

A compilation algorithm, called the "leaves-in" algerithm is pre-
sented next, This algorithm discovers the space-minimal decomposition
of a given expression into MEA's, It does so by "tailoring" MEA's to
fit each subexpression of the given expression, in all possible ways.
While it succeeds in avoiding redundant re-decomposition of sub=branches,
it requires computational effort (time) vhich grows exponentially with
the number of operators in the given expression.

A general technique, called "comparison", is proposed to reduce
the computational effort of exhaustive search optimization, This tech-
nique attempts to avoid generating all possible "completions" of a pas-
tially-specified search state., It does so by comparing two interchangeable
partial states in all possible completions, without actually generating
these completions, By generalizing over all completions, a predicate
independent of any completion is produced, which compares two partial
lut.u. Certain evaluation rules for states permit derivation of an
equivalent predicate wvhich does not mention completions, and may hence
be evaluated by examination of only the partial states it compares,

Comparison is applied to partial states in the leaves-in algorithm,
Here, a partial state corresponds to a possible algorithm for use in
computing a single subexpression., A complete state is an algorithm for
computing the entire given expression, By eliminating many partial
states as soon as they are generated, the effort-requirement of the
leaves~in algorithm is reduced to & linear function of the number of
operators in the given expression.

TR R TN T A T MR S R T e - v

CHAPTER 1I

1I1.1 Basic Definitions

The input set of an algorithm is the set of variables whose con-
tents just before the algorithm is executed are accessed during the

algorithm's execution.

The change-set of an algorithm is the set of variables stored
into during the algorithm's execution,

The result-set of a: algorithm is the set of variables which are
(1) in the change-set of the algorithm, and (2), whose contents imme-
diately after the algorithm's execution is input to some other algorithm.

The intermediate set of an algorithm is the set of variables in the
algorithm's change-set, and not in its result-set.

The inputs to an algorithm are the values the variables in the al-
gorithm's input-set hold just before the algorithm's execution., Similarly,
the result of an algorithm is the set of values its result-set holds just

after the algorithm's execution.

*e

The word "algorithm" here may be taken to mean "statement-sequence',
including the sequence consisting of exactly one statement, We will
therefore use, for example, "result-set of a statement' in its sense

as defined here,

The word array is our name for the Algol [6] <subscripted variable>.
A k-subscript array corresponds to an Algol subscripted variable having

k subscript positions,

For our purposes, a k-subscript array is a named set of variables,

If two arrays A and B have different names, so
name(A) § name (B)

then AN B=f, 1i,e., A and B have no varir'le in common. Furthermore,
1f [1] and [j] are two k-tuples such that [1] 4 (1], then A[1] is some
particular variable, a member of A, and A[1] £ A[j]. Thus, different

1

20

combinations of the k subscripts select different variables, all members
of the array.

A simple algorithm is a sequence of loops and assignment statements
containing no branches outside loops.

Two simple algorithms are adjacent just when every statement of one
precedes every statement of the other, and when no statements intervene
between the last statement of the first algorithm, and the first state-

ment of the second algorithm,

1f A is a set, the number of elements of A will be denoted size(A).

11,2 Parse-Trees and Expressi ms

We often find it convenient to refer to expressions by their parse-
trees., The parse-tree of an expression is a directed graph with labeled
edges, The nodes of this graph correspond to the operators and variables
in ‘Ye expression in such a way that, if the expression is <EID<OP><E2>,
the parse-tree contains a node i whose name is the same as <OP>, and
whose left son is a subtree corresponding to <E1>, and whose right son
is & subtree corresponding to <E2.

Left (right) sons are located by following the branch labeled left
(right) to the node it is incident on., We often use "family tree" ter-
minology when dealing with trees. Other terminology used is:

"leaf" - A leaf of a tree has no descendants,

“"root" - The root of a tree is a unique node
having no ancestor,

"result" - The result of a node X of a parse-
tree is the value of the
subexpression represented by the
subtree rooted at X,
Each of our parse-trees has a root, the node corresponding to its
expression's main connective, The expression this operator is a part
of is a subexpression of no larger expression. Hence, the node which

corresponds to it has no ancestor, Any given algorithm which computes

21

an expression has an associated parse-tree, that of the expression com-
puted by the algorithm, In addition, we attach to its pa:se-tree char-
acteristics of the algorithm which will enable us to tell when and how
algorithms can combine., In particular, we associate "access-characteris-
tics" with each leaf, and the algorithm's "result-characteristic" with
the root.

I1,3 Parse-Tree Examples:

(1) Expression: (A+B*C*D) * (E+F*(GHi))
Note that we have assumed a right-associative convention vhere
ambiguity arises, as in B*C*D, B*C*D is taken to mean B*(C*D),

(2) Parse-tree for the above expression, fully labeled, Here L
stands for left, R for right.

)
N\ v\

N g

RYATNVAY

22

(3) In parse-trees, we will omit arrow-heads on lines pointing down-
ward, so that all indicated lines will be assumed to have an arrowvhead
on the end nearest the bottom of the page. Also, instead of explicit
L or R labels, we will omit them in favor of a geometrical convention.
That line drawn left-most on the page of any line directed out from a
node will be implicitly labeled L, Similarly, the right-most line di-
rected out from a node will be implicitly labeled R. These conventions
allow us to drav the above parse-tree as:

7O\,
VANIVAN
VANVAN
VANAN

Each line of this parse-trec is still labeled Left or Right, and directed,
but the labeling is now implicit in the geometry of the drawing of the

parse-tree.

2 34 The ng3n Elementary Algorithms

We present here a set of algorithms for matrix addition and multi-

plication based directly on the definition of these operations, Those

for matrix multiplication require n3 additions and multiplications, hence
the name, We realize that a tradeoff between additions and multiplications
has been achieved by lunogrnd which reduces the number of scalar multipli-
cations required to n /2 + nz. However, our techniques are not greatly
affected by the new algorithws, as will be seen later, and we prefer the
simpler, more familiar algorithms for most examples,

The algorithms are presented here in an abbreviated Algol notation.

s TP T,

The abbreviations we use are:

Abbreviation Algol meaning

IN for I:sl step 1 until N do
13N for I:=a step a until N do
"5 N for I:mN step -a until a do
X +—e x:=xte

b begin (See Footnote 1,)

e end; (See Footnote 1,)

X e X:me

All algorithms compute C:wA op B where 'op' is either '+' or '*', The
subscript bounds are assumed 1:N in each subscript position, Additional
vectors and elements used for temporary storage are introduced as needed,
and are assumed to be correctly declared. Each algorithm is accompanied
by a tree-like drawing, its EEPT, which abstracts certain characteristics
of the algorithm, These characteristics are iufficient to determine when
elementary algorithms can be combined into an "alg-tree', Their meaning,

names and representations are:

1. parse-tree. Represented as a tree whose nodes are operators,
or line-ends (representing variables each of

whose names are suppressed.)

2, space-characteristic., Represented as a lower case letter sub-
script, The characteristic partially describes

the order in which elements of the input matrices
are accessed and in which elements of the result
are computed., The letters used are chosen as
follows;

r - "row", A row at a time is computed or accessed.
The next row may be chosen arb.trarily.

c= "column", A column at a time is computed
or accessed, The next column may be chosen
arbitrarily,

- "matrix", A matrix is computed before
any part is complete, or is accessed in computing
one part of the result,

]Since the control structure of the algorithms is simple, we will
usually delete b and e and use indentation to indicate the scope associated

with matching begin-end's.

24

Algorithm 1:

I N
J =N
C[I,J] « O;
KN
C[I,J] + «A[I,K] * B[K,J];

Algorithm 2:

J >N
I N
C[I,J] « 0;
KN
C[I,J] + «A[I,K] * B[K,J];

9]

Algorithg 3:
I N

J N
C(1I,J] « 0; .

K-N
I N
J N
C[I,J] + «A[I,K] * B[K,J];

Algorithm &4:

I N
J N /\k
C[I,J] «A[I,J] + B[I1,J); r

Algorithm 35:

J N

C(I,J]) «A[1,3] + B[I,J];

25

I1,5 Loop Fusing

In the current section, we intend to describe a technique whereby
two loops which are sequential statements of a program can sometimes
fuse. The result of the fusion is a single loop which is computationally
equivalent to the original sequence of two loo;s., This fusion requires
less intermediate storage and no more operations than the original
sequence, Thus, we can sometimes replace a sequence of loops with a
single loop which requires less intermediate storage, and no more execu=-

tion time, without changing the result of the calculation,

We will define a loop to be any program of equivalent meaning to the

following flow=-chart:

ﬂﬁ

Box E’ is termed the initialization of the loop; | B | is the body of the
loop; and @10 the predicate of the loop.

1f control enters any node in a flow-chart, it does so through a line

directed toward the node, Further, control leaves a flow-chart node (if
it leaves at all) through a line leading away from that node. We will
assume that any flow-chart having exactly one entrance and one exit can
be substituted for nodes drawn as square boxes: J , Such flow=charts
may include assignment statements, as well as branches, which are drawn
as circles with more than one exit: (I; A branch may test any pred-
cates on program variables to decide which of its exits control is to
leave through; it may not, however, include assignment statements, that
is it may not specify that a variable of the program be stored into,

Let U be the collection of relevant program variables, We will
judge the effect of a flow-chart by its effect on these variables, That
is, two flow-charts will be termed equivalent if and only if the contents
of all variables in U after their executions are the same, if the contents

of all variables in U before their entrances agreed,

We present a series of equivalent flow-charts, Here P' is a

26

Boolean variable not in U, so that, in particular, it is referenced
novhere else in the flow-chart of which this loop is a part,

Q)] 'ﬂ "P' «P L

(2) “r‘; P' «P

A

(3) ——a, P F

B,P'

Where —»X,Y' is —-IB-—’-Y' o

Flowchart 3 simplifies the predicate P so that we may assume that the
decision to be made when the branch on P' is reached is pre-established,
at the time the last variable in P is assigned a value,

We are attempting to emphasize the repetitious nature of a loop.
In fact, 1f we know that P' would be set true the first K times the
box wvas entered, then flow-chart 3 is equivalent to

%) A —B,p |— --- B,p'|—

— et s
K times

Thus, a loop can be regarded as a compact abbreviation for a certain
sequence of square flow-chart boxes., The "test" has no effect on the
relevant program variables, Its effect is to ensure that one can create
a flow-chart which can be executed a variable number of times,

We will summarize the effect of any square box on the variables in
U by a set-assignment statement, Observe that the computation performed

- b ceml oo dagie e auile ot —— g ni ———

27

by any box assigns certain values to some of the variables of U, The
variables so changed (stored into, or ass d to are equivalent but

less compact terms) are some subset of U determined by the flow-chart
substituted for the box, as well as by the contents held in certain var-
iables on entry to the box, Similarly, the values stored into these
changed variables are functions of the box, and the input values, A set
assignment statement describes this relation by listing in a sirgle assign-
ment statement the set of variables changed, the function mapping used to
compute their values, and the set of variables vhose values are used in
the computation,

Set assignment statement example:
R «£f(A)

In the above example, R is the set of variables changed by the set-
assignment statement, f is the function used to compute their values, and
A is the set of variables input to the statement, Note that it may be
impossible to determine the membership of each of these sets of variables
without executing the flow-chart summarized by the set-assignment state-
ment at the proper time in the program, However, we can discuss relations
between these sets of variables, leaving to another problem the task of
deciding if these relations are satisfied, There will be no loss of
clarity in the sequel in using "assignment statement" to stand for either
the usually understood assignment statement, or the set-assignment state-

ment,

As a consequence of our introduction of the set-assignment statement,
and the flow-chart equivalences sketched above, we will regard a loop
as a certain sequence of set-assignment statements, We will allow the
sets of variables and the functions of these statements to differ arbi-
trarily from statement to statement of the sequence, We will write a
loop as one or more set-assignment statements, separated by semi-colons,

and enclosed in square brackets:

[R«£(A); S «g(B)]

28

The sequence of statements this represents is:
R); « £, ())); (8); «5,((B))); (R), «£,((A),);...

The center of a loop will refer to the statements enclosed in brackets
in the loop's abbreviation. In the above example, the loop's center is

Re«£(A); S «g(B),

More generally, let X be a set of variabies, and sJ be some particular
occurrence of a set-assignment statement, S,

Then we define (x)J to be the subset of X input to S

(X); to be the subset of X stored into by S,
Suppose S is a statement in loop L. To refer unambiguously to an
occurrence of S, J must indicate the occurrence's position in the sequence
of assignments resulting from L's iteration., J must also distinguish
among the possibly several statements of the loop's center, We write

J = (L,i,k), where L is the name of the loop, i gives the number of the
statement within the center of L (which is itself a sequence of state-
ments), and k gives the iteration number of the loop.

We will denote the contents of a variable, or set of variables,
X, just after the Kth assignment statement in some sequence as v(X,X).
In general K is a triple, (L,i,j) giving L = loop-name, 1 = statement-
number in loop, and j = iteration number of this occurrence, to uniquely
identify the assignment-statement we nean.z

If A and B are two sets of variables, we say v(K,A) = v(J,B) just
when there is a one-one correspondence between A and B, and when v(K,a)
= v(J,b) for each pair of corresponding variables a in A and b in B,

Also, let c(K,X) denote the contents of X just before the Kth
assignment statement,

2Iriples will be identified by capital letters, and the third ele-
ment of that triple will be the lower-case letter corresponding to the
triple's identifier,

29

We will write (A)K = (l!)J to mean
VR, (A),) = v(3, (B)))

We say that two sequential loops, L1 and L2, can fuse when a loop
L3 constructed from the components of L1 and L2 is computationally
equivalent to the statement sequence L1;L2, In our notation, the set-
assignment statement within the loop=brackets corresponds to the re-
peated box of the corresponding loop, In addition, various loop
initialization is summarized there, We symbolize the fusion L3 -f
L1: [R « £(A)] and L2: [S «g(B)] by

L3: [R «£(A); S «g(B)].

11,6 Fusion in Flow=C'.arts: Graphic Description

Let P', Q' be Boolean variables not in U, so that P' occurs only
in those boxes and Q which explicitly mention it,

F1:—>| A,P' -L-)I c,qQ' —)r—-—!

D,qQ’

Under certain conditions, flow-chart F1 is equivalent to flow=chart F2,

Flov-chart F2 is itself one loop.

£

[R R ST

30

Suppose v(j,P') is the value P' takes on just before box is
entered for the jth time in flow-chart F1, Define v(j,Q') similarly.
1f

v(3§,Q') = v(j,P') for all j,
then the fusion F2 can be simplified:

P:—> E- T (@) 1— .,
\=
B

I1.7 Loop Fusion Conditions

Let U be the (finite) set of all relevant program variables,

Let J be a triple (L,1,k) where L is a loop-nama
1 is the statement-number in L's center, and
k is the iteration number of L,

Let v(J,X) denote the contents of X just after set-assignment J,

Let c(J,X) denote the contents of X just before set-assignment J.

Let (X)[J], and (x)J, mean the subset of X input to set-assignment J,

Ilet (X)[J], and (.X_)J, mean the subset of X stored into by set-assignment J,

Let (x)J = (Y)K mean v(J,(X)J) - v(K,(Y)K).

Let (x)J

ol

(Y)K mean c(J,(X)J) - c(J,(Y)K).

3i

Rroperty of Set-Assignments:

) 8 sI and sJ are two set-assignments whose flow-charts are both f,
then

if and only 1f c(I,x) = c(J,x) for all x g(U)I.
then, for all f: I terminates if and only 1if J terminates, and

(), = (U); and (U); = (U),

and (_Q)I = (U) g ond (!)I = (U) J

Theorem 1: If (R)j, (A)j, (s).1 and (B)-1 are a finite collection of

finite sets of variables then statements a, and b,

are equivalent:

a, for all 1 and jJ,
) (R)j n(s) = fif 1 < j and

(2) (A)j
3) (n)Jn (R)inﬂif 1>

n(S)i-ﬂif1<jand

b, for all f and g, if there exist loops L1 and L2 whose

jth set assignments are:
j((A)j)
S[L2,1,)) = (8)j «-sj((B)j)

S[L1,1,3] = (R), « £

then there is a loop L3, constructed from L1 and L2
in the same way that F2 is constructed from F1,

and the sequence L1;L2 is computationally equivalent to L3,
written 'L1;L2 = L3°',
An examination of conditions (1) - (3) is appropriate to illustrate

the essential simplicity of the requirements. First, note that when

A and B are sets of variables, "A N B = f'" means that A and B have no
variables in common, We interpret a "variable" to be a unique memory
cell of some processor. Then, "A N B = f" means that the sets A and B
do not share storage. If A is store?! into by S1, and B is the set of
inputs to S2, this means that S| does not store into any variable input
to 82, i,e., that no result produced by S1 is accessible to S2,

Condtion (1), then, can be interpreted to mean that no variable

32

stored into by L2 is also stored into during any later iteration of L1,

(2) requires that no variable input to L1 on some iteration be computed

on an earlier iteration of L2, (3) states that no variable computed

by L1 on one iteration can be accessed by L2 on some earlier iteration.
Control reaches a statement S just when S is the next statement to

be executed,

Control is absorbed by statement S just when control reaches S,
and never reaches any statement after reaching S.

Define

®(1,)) = “control reaches the test-statement of loop Li for the
jth time"
[Ql] E[c((L1,1,5),P') = true]

[Q,] = [c((L2,1,1),Q") = true]
[0] = [c((L3,1,1),P') = true]

v [e((13,1,1),Q") = true]
T(L,9) = B(1,9) A [Q]) A —R(1,341)

(=T(1,)) is true if control is "absorbed” during the jth iteration
of Li.)

Let (R], =[c((L3,1,),P') = true]

(R,), = [c((L3,1,1),Q') = titue]

21
Then T(1,3) = —P(4,§) v —{Qi.]j v P(1,341)

Certain facts are easily seen from examination cf flow-charts F1
and F2, These facts we call "Axioms":

Axtom 1. B(L,1) +P(1,3-1) A [Q], ;s £ = 1,2,3.
Mcom 2. [Q) »¥I [0S)<k-[QL]1=1,1,3.
Axiom 3, —'[Ri.]j -Vk [k> j A P(3,k) -’—{Rilk]

Lemma 1: P(1,)) = T(1,3-1) A P(1,3-1) A [Q,

Proof:

Proof:

33

)y
By definition T(L,3-1) = <B(1,3-1) v {Q;1, ; v P(4,1)

from propositional calculus,

T(1,3-1) A P(4,3-1) = [{Qilj_l v P(1,3)) A P(1,3-1),
and T(1,3-1) A B(1,9-1) A [Q], = B(4,1) A B(4,3-) A [Q,], ,
- ¥(1,1).
From the definition P({,3) - T({,3-1).
By Axiom 1, P(1,3) = P(1,3-1) A [Q;], ,,
P(1,0) -

P(1,)) = Vk [0 < k< J >
T(1,k) A [],]

By induction on j.
Assume P(1,0).
Then P(1,1) = T(1,0) A [Q]y A P(1,0)
P(1,0) - [P(1,1) = T(1,0) A [Q,],]
SP(A,1) = Vk [0<k< 1 -5T(,k) A [Qilk]'

By Lemma 1, P(1,j) = T(1,3-1) A P(1,3-1) A [Qi.]j-l.

from the induction hypothesis P(i,j-1) = Vk [0 < k< J-1 -+ T(1,k) A [Qilk]

Therefore P(1,3) = T(1,3-1) A [Q], ; A ¥k [0 <k < §-1 5 T(4,k) A [Q;}]

or P(4,§) = Vk [0 < k< J -T(L,k) A [Q]]

Lemma 3:

ISR Gt

34

(9] 4\ ¥k [0 Sk < §5T(L,K)] »P(1,))
We know that

Vk [0<k<) _’[[Qi A T(1,k)]] -»P(1,)), from Lemma 2,

]k
Suppose [Q;], ;. Then Vk [0 <k < J -[Q;],], by Axiom 2,
If Vk [0 < k< J -»T(i,k)], as well, then

Vk [0< k< 3 »[[Q], A T(1,K)]],

which by Lemma 2 yields P(4,j).

Therefore, [Qi.] AVk [0<k< J-2T(,k)] -2P(1,)).

3-1

_— e e = g

35

Theorem 2: If a. of Theorem 1 holds, and

Proof:

if P(1,0), 1 = 1,2,3, and
c((L1,1,1),x) = c((L3,1,1),x) UxgU
then, for all j,

Vk< 3 TG,k) = ¥k < § [T(1,k) A T(3,k))
and
P(3,3) A T(1,3) A T(2,)) -

(X)j - (X').1 A (XJ) = (X')j. X =A,B

and (.‘I).1 = (Y')j A (.Y')-1 A (‘l)-1 = (_Y')j: Y = R,S,
Suppose P(3,])

Then vk [0 < k < J = T(3,k) A [Q.‘!]k]’

Therefore, by the induction hypothesis,

Vk [0 <k < 3§ -T(,k) A T(2,k) A [Q,),]

Also, from the induction hypothesis, and the fact that

P(3,4) - P(3,4-1), ve have:

Vk [0 <k < §-[[Q]) = [Q,], Vv (Q,].1]

SV [0Sk <§TO,k) A T(2,k) A [[Q], Vv [Q,)]].

From Lenma 3, and the statement above, we can deduce that
[Qi.]j-l -»P(1,)) 1=1,2

Because P(3,]§) - [Q3]j_1o

we have [Qllj-l v [Qzlj-l'

giving P(1,3) or P(2,3).

Thus, if L3's test is reached for the jth time, so is either L1's or L2's,

(931, = [Q,], V [Q,],, because

qk < J: ¢((L1,1,3),P") = v((L1,1,k),P') = v((L3,1,k1),P")
- c((IJ.I .j).P'

N e T VS

By Lemma 3, [Q’.]-1 -’[Qilj-l’ from Axiom 2, and
[Q111_1 -»P(1,)), 1= 1,2
1f -'[Q:)]j’ then the theorem holds, for S[Li,k,j] is a

vacuous statement, which accesses and changes no variables,
and always terminates,
If [Q:«,].1 then
1f [Ql] 5 then S[{13,1,j] is non-vacuous, and identical
in its set-assignment flow-chart to
78[L1,1,].
For any x ¢ (A)J,
because (A):| n (S)i - fVi<y,
and (S')i - (s)1 Vi < j by induction hypothesis

Therefore, c((L1,1,3),x) # c¢((13,1,3),x)
only 1f x ¢ (R')i for some 1 < J.

But (R'):l - (R):I. and (R'), = (R)i by induction hypothesis,

)1
80 x would be assigned the same value by both S[L1,1,3] and S[L3,1,3].
Therefore, by the properties of identical set-assignments,

8{L3,1,j] terminates = S[L1,1,j] terminates,
and 1f we assume T(1,j), so that S[L1,1,j], then

S(L3,1,]] terminates, and

(lt')_1 - (A)j A (A').1 - (A)j and

R'), = (R) = (ll»)_1 [(line (a)]

] b b
1f ~T(1,}) were assumed, so that [Ql]j would be true,

A RY)

this reasoning ghows that -T'(3,j), for control would
be absorbed in the flow-chart of S[L3,1,3], just as
it was in S[LI1,1,3].

If —{Ql]j’ both S[L1,1,3J] und S[13,1,)] are vacuous,

and the theorem holds.
Regardless of whether [Q]]:| or not, if P(3,3) A T(1,3),

contro] veaches the test preceding S[L3,2,3].
Again, 1f ~{Q)],, both S[L2,1,1] and S[L3,2,1] are
vacuous and the theorem holds,

Otherwise, [QZ]j A P(2,)).
If be (B)j’ b may have last been stored into by:

(1) s[L1,1,1], 1> 0, or
(2) s[L2,1,k], 0 < k< j, or
(3) None of the above,

Case 1: S[L1,1,1], 1> 0.
Then be (R),, b ¢ (R), for k> 4,
and b ¢ (s), for m< 4.
c((L2,1,4),b) = v((L1,1,1),b),
Then b ¢ (R), for k> 1, and b¢d (s), form < §,
Hence b ¢ (R'), for §> k> 1, and b P ('), form < 4,

Sincebc(R)iAbc(B) 1 must be < j§,

j’
for (R), N (13)j =f1E£1> 3.
(R'):I. E (R)i' for 1 < j, by induction hypothesis,

and line (a) above.
Therefore, since 1 < j, and b ¢ (R'), for §2> k> 1

and b ¢ (s'), form< 4,
in particular b ¢ (s') for 1> m> {.
Hence, c((L3,2,3),b) = v((L3,1,1),b)

= v((L1,1,1),b) = c((L2,1,)),b).

Case 2:

Case 3:

38

b last stored into by S[L2,1,k], 0 < k < j:
Then b ¢ (S)k, 0<k< j, and
c((L2,1,4),b) = v((L2,1,k),b),

and b ¢ (S), and b¢ (s), for > m> k.
By induction hypothesis, then,

be (S'), and b ¢ ('), for 1> m> k.

Dy
¢ ((13,2,1),b) = v((L3,2,k),i) if

(a) k<,
and(b) #m, k <m < j such that b ¢ (s')s

and(c) i, k <1< j such that b ¢ (R'),.

(a) and (b) have been shown.

Since (S), N (R), = pifEiL1>k

1, §> 1> k such that b ¢ (R), = (R'),, hence (e).

Since k < j, by induction hypothesis

(), = (8"), s0

c((L3,2,1),b) = v((L3,2,k),b) = v((L2,1,k),b)

= c((L2,1,3),b)

Neither 1 nor 2 hold,

Then b ¢ (R);, 0< 1, and

b4 (S), 0<k<).

Then, since c((L1,1,1),b) = c((L3,1,1),b),
and c¢((L2,1,3),b) = c((L1,1,1),b),
and c((L3,2,3),b) = c((L3,1,1),b),
then c¢((L2,1,3),b) = c¢((1L3,2,3),b).

39

Therefore, Vb ¢ (B)j

c((L2,1,5),b) = c((L3,2,1),b) and
hence: §[L2,1,j] terminates if and only 1if

S[L3,2,]] terminates.
If we assume —T(2,3), then S[L2,1,}] and
hence S[L3,2,4] do not terminate, so
~T(3,3).
If we assume T(2,j), then
(B)-1 - (13').1 A (B)J = (B')J

A(S), = (s')j A (8)y = (!’»')j

by thi properties of set-assignments,
We have shown that
P(3,3) - [T(1,3) A T(2,]) -
(x)j = (1!')j A (2()J = (X')
(Y)j - (‘l').1 A (Y)_1 = (Y'
A T(3,3)]

g K= AB
.Y-R’s

)y
and that
P(3,3) - [-1(1,3) v -T(2,3) »—-1(3,))].
Therefore P(3,3) - (T(3,)) = T(1,§) A T(2,1)].
By the induction hypothesis, assuming F(3,]),
¥(k <)T(3,k) = ¥(k < I)[T(1,k) A T(2,k)],
¥(k < 1)T(3,k) A T(3,3) = ¥(k < J)[T(1,k) A T(2,k)] A
[r(1,3) A T(2,9)],
or P(3,3) »¥(k < 1)T(3,k) = ¥(k < J)[T(1,k) A T(2,k)].
If #(3,)), then Tk 0 < k < J A [HT(3,k) vV =[],],

by the induction assumption, this is equivalent to:

- — i is

40

2k 0 < k< J A [A{T(,K) A T(2,0] V [-(Q,], A ={Q,],]1
If k[0 < k < § - T(1,k) A T(2,k)], then, since
—2(3,3) =+ T(3,3) by its definition,
¥k 0 < k< j T(3,k) by the induction hypothesis and T(3,]J).
Also, V[0 < k < § - T(1,k) A T(2,k)].
Therefore, Tk 0 < k < § : =[Q,], A =(Q,], .
S=R(1,3) A R(2,))
From the definition, then
T1,3) A T(2,)),
so ¥(k < §)T(3,k) = ¥(k < J)[T(1,k) A T(2,k)]
I£3k 0 < k < J A[T(1,k)A T(2,k)],
by the induction hypothesis
gk 0 < k < J A -T(3,k)
and hence
¥(k < §) T(3,k) and ¥(k < J) [T(1,k) A T(2,k)]
are both false,
Therefore, we can assert

¥(k < J) TG3,k) = ¥(k < J) [T(1,k) A T(2,k)]).

41

Proof of Theorem 1:

Part 1: a implies b,
We must show that, given identical initial conditioms,

(1) L1;L2 terminates if and only if L3 terminates
(2) I1f L3 (or L1;L2) terminates, then the results
computed are identical,

We have shown, in Theorem 2, that for all j,
¥(k < J)TG,k) = ¥(k < I[TO,Kk) A T(2,k)]
or Vj T(3,3) = ¥j§ [T(1,3) A T(2,))].
L1;L2 terminate if and only if
31,32 ¢ —-[Q,]j, A ﬂ[Qzlj2 A ¥(k < JT(,3) A ¥(k < J2)T(2,9)

Suppose L1;L2 terminates,
Then 331,32 : —'[Ql]j'l A —{sz.12 A ¥(k < J1T(T,k) A ¥(k < J2)T(2,k).

Let j = max(j1,j2).

Clearly, ¥(k > §1) =2(1,k), and hence T(1,k).
Similarly, ¥(k > j2) ~(2,k), and hence T(2,k).
Therefore, ¥(k < 1)[T(1,k) A T(2,k)]

Suppose —(3,1). Then g(k < 1) : =(Qy),,

for ¥(k < J)T(3,k).
Therefore L3 terminates

Suppose P(3,j). Then jJ1 < JA J2< j,

so P(3,31) A P(3,32).
Hence -'v[Rl]j.I A _'[R2]j2‘
Hence -,[R]].1 A -'[RZJj'

Thus, _'[Q3]j’ so L3 terminates,

@ N sl e B ., mhh

PR .

POm—

42

Suppose L3 terminates.
Then 3§ : ﬂ[Q:’]:l A ¥(k < 1)T(3,k) A P(3,3)
Hence Jj : --n[R]].1 A -{Rz].1 A ¥k < ITOL,K) A T(2,k)] A P(3,1).
58 3 =)y A Q) A ¥k < DIT(LK) A T(2,0))

Thus, L1;L2 terminates,

Hence L3 terminates if and only if L1;L2 terminates,
1f 13, say, terminates,
2+ ¥k < DY) A T(,K)]
hence ¥(k < J)P(3,k).
Then by theorem 2, ¥k < §,
’
R), = R"),
’
and (S)k = (S)k
so the results at the time they are computed are identical,
It is conceivable however that a result computed as part of
(8)1 would be destroyed, in L3, by statement S{L3,1,j] for
some j.
This could only happen 1if j > { and
|} [}
(8", N ('), 4§
a possibility denied by (a) of Theorem 1, which we are
assuming, and Theorem 2,

If a result of (R'), were destroyed by some later

)1
iteration of L3, then
(a) If by (R')j’ j > 1, the same result would have been

stored by L1,

(b) If by (S')j, J > 1, the same result would have been

stored by L2,
We conclude that L1;L2 = L3,

Proof of Theorem 1, Part 2: b implies a.

: |

We will show that —a implies —b,

Consider any finite collection of variable-sets

(A)j.(l!) (R):| and (S)

¥ 3
By using additional variables as loop control elements, we

can create loops L1 and L2 whose jth set-assignments are

(R) hfj((A)j)

]
and (S)_,l «gj((n)j) respectively,
vhere the control variables are designated not part of the

set of "relevant" variables, U,

Now, £ j and g j can be extremely sophisticrted transfor-
mations, capable of testing their inputs for consistency, In
fact, we can assume that if fj’ or 81’ ever accesses a variable
whbose contents differs from that supplied £ j or 35 on the jth
iteration of L1 or L2, the function produces an "error reaction",
Such an error reaction might take the form of a propagation

of the error, by changing che contents of at least one variable

in every set (A)j,(B)j,(R) and (S)j' (Once some variables'

3
value differs, £ j is not constrained to store only into variables

of (R)y)

Thus, 1if

(2) for any x in (A)j or (B)j,
c((L1,1,3),x) # c((L3,1,1),x),

the result computed by L3 will differ from that computed by
L1;L2, We will show that, if al or a2 or a3 do not hold,
then some loops L1 and L2 exist for which L1;L2 does not com-

pute the same result as L3,
Case: Suppose (R).1 n (s), # 0 for some 1 < §.
Then some x exists,
x¢ (l?.).1 A xc(S)i for some 1 < §.

After the sequence L1;L2, x's final value was computed
by S[L2,1,1].

After the loop L3, x's final value was computed by
S{L3,1,3i. £,
ensure that these values differ,

and g; can certainly be chosen which

Case: Suppose (A):| n (s), # § for some 1 < j§.

Then some value input to S[L1,1,jJ] is computed by
S[L3,2,1] on some iteration i before j., Thus, for
some x ¢ (A),, c((L1,1,3),x) £ c((L3,1,),x), and
hence L1;L2 ¥ L3,

£

Suppose (l!):| n (R), ¢ § for some 1 < J.

Then there is x ¢ (R):lA xe (B), for L > §.

J
In the L1;L2 sequence,

c((L2,1,3),x) = v((L1,1,%),x)
In L3, <c((L3,2,4),x) § v((L3,1,1),x),
for iteration 1 of L3 follows iteration j,
Therefore, L1;L2 ¥ 13.

45

II.8 Stnrage Savings in Loop Fusion

Once we have established the conditions under which two loops can
fuse, without changing their effect, there remains the question of the
storage~-saving that results, We will concentrate on the intermediate

storage.

Let L1, L2, and L3 be as before,

Define B = !j (B)j’ R= L;(R)j

Recall that the size(A), where A is a set, is defined to be the
number of members of A,

Then T = BN R is the set of variables used to communicate results
from L1 to L2,

L.

We define T to be the intermediate storage set,

We will suppose that R is not input to any statement
following L1;L2. \

On the kth iteration of L3, certain variables must be in existence
simultaneously, Those which are intermediate, that is members of T, are
those which

(1) are computed in (R):I. for 1 <k
(since for 1 > k, they have not yet been computed and need

not be present) and

(2) are accessed by some (B)_1 or (A), for j > k

3
(since if all such j's are j <k, then the variable

has already been used, and won't be needed again,)

This set 4s T = 5, Y oy (LR, N (B),JU LR N (B), N (A),]]

Where P(1,j,k,m) is 1< k< JA1<m< k,

Here, (R)1 n (A).1 contains those variables computed in (R)i and accessed
in (A)j. Some of them may not be in T, (R)i n (A)j N B gives the set

in T, Form> k (R)i n () o (R):l n (B)m N (A)j, so these are included
in the first term of T, . This leaves ®), N (A)_1 N (B), for 1<k Am< g,

46

Since, in order to fuse, (R), N (B) = g vhen 1 <m, we get
(R)i. n (A)j n (B)m for i <m <k,

If we add two assumptions to those necessary for loop fusion, we
can reduce the intermediate storage requirement still further:

Suppose (R)i n (B).1 =f1f1 43

and (R)iﬂ(A) n(n)i.ﬁ 1£1<)

b
Then, the intermediate storage set on the kth iteration becomes

T'y= (R) N (B)y
and, since successive T, 's can share the same storage,
only mgx (size((R)y N (B)y))
variables are needed for intermediate results,
There is a second advantage to the assumption
RN @), =f 1£1dy,

This assumption allows the two loops to be tested separately for their

fusion characteristics,
Let ('1‘)1 =TN (B)i
@)1 a2 TN (R)i.
Theorem: (R), N (B) " § 1f 1 £ § 1s equivalent to
[(T); = (D), and (), N (T), = f 1€ 4 4 3.]

Proof: Assume (R)i. n (B)-1 = ﬂ if 1)‘ 3.

('L')k-'rn (B)k-Ran (B)k-Rn (B)k
(My=TN R)y=BNRN (R) =BN (R)y

But RN (), = (R)k n (B)k =B N (R)k as a

Dk

consequerice of the hypothesis,

Therefore (T) = (_'Dk .

47

If R), N (B), = faf Ly,

since (T), c (B)

3 3

therefore (:l:)J n(m, c (n)j n (), cpie1d .

Assume (T), = (), and (T), N (1:)-1 -f1f 1 4§,
Then (T)j = TN (B)j =RNBN (B)j =RN (B)j

and (T), = (I), = TN (R), =B N (R)i

When (:r)j n(m, =f

g=[RN (n)j] NN @®),] = (8)

Since (B)

ECH

Hence (15)j N R), = gif 1 4 3.

Topd

SISRlagal .

o MBI A

48

11.9 Summary of Lgop Fusion Conditions

We have described a set of conditions which guarantee that two loops,
L1 and L2 can fuse to yield one loop, computationally equivalent to the
sequence L1; L2, A slight strengthening of these conditions results in

a fusion which uses less intermediate storage.

Let L1; L2 be
L1: [R «£(A)]
L2: [S «g(B)]

Then there is a loop

L3: [R' «£f(A"); S' «g(B'")]
constructed by fusing the flowcharts of L1 and L2 in such a way that
statements of L1 alternate with statements of L2,

1f
a) (R)_1 n(s), = fif 1<y

2 ®);n @), = g1£1> 3
@3) (s)j N @A), = g1£ 1> 3
all hold, then
L1; L2 is computationally equivalent to L3.
If initial conditions agree, so that
c((L1,1,1),v) = c((L3,1,1),v) for all v in A U B,
then finally for all j
(x)J - (x')j » X ¢ {A,B,R,S}
M, g ("
@), = @')

3 Y ¢ {A,B}
y
If the storage conditions
a*) (R)j n(e), = f1£1<) (same as (1))
2" (R), N (B), = f1f 14)
@B ()N @), - fif 1> 3§ (same as (3))
(4*) (®), N (B), N (A)j =fif 1<)

Z ¢ {R.S}

49

all hold, then the storage need for communication from L1 to L2,

T=U [(®) N ®))

L,J
becomes

T' = mpx [(B')k N (R')k] in L3

(Here "max" of a series of sets selects that set which contains most

members,)

i o R Rl

11,10 Algol and Flow-Chart Language

We have introduced a flow-chart language to clarify the meaning
of certain programs-parts. However, we consider any programming-language
construct having the same meaning as one of these iearms to be the "same"
as that term. In particular, we will often refer torestricted forms

of certain programming constructs in Algol.

Algol of course contains "assignment statements', Suitably restricted
versions of these, which store into only one relevant program variable,

agree with our (unstated previously) concept of an "assignment statement".

Furthermore, certain Algol FOR-statements agree with our definition
of "loop". An Algol FOR statement whose FOR-clause specifies no GOTO's
and whose body, S, specifies no GOTO's which lead outside S satisfies
our definition of loop. (A GOTO may be specified implicitly, as part
of a procedure body which 13 called in the text, or explicitly in the

text, Both are excluded.)

I1.11 Algorithm Fusion (parallel comnection)

We wish to describe how two algorithms, which occur in sequence,
can fuse to reduce the storage needed for commnication from che first
to the second, We will base our analysis on the properties which allow
loops to fuse. Here, we raust isolate the loops in the two algorithms
which can fuse to save storage. If these loops are separated by one or
more statements, they must be rearranged, preserving computational

equivalence, to make them adjacent.

Let S1 and S2 be adjacent simple algorithms. Let R be a set of
variables which is the result-set of S1, and an input-set to S$2.

Under certain circumstances, S1 and S2 can combine, or parallel connect,

allowing R, the storage used to communicate between S1 and S2, to be

reduced in size.

Conditions:
(1) The result computed by S1 into R is input to no statement
sequence other than S2;
(2) There is a loop, L1, of S1 which encloses all statements
of S1 which store into R;

51

(3) There is a loop, L2, of S2 which encloses all statements
of S2 which access the values stored in R by LI,

Let (5)J be the set of elements of R which are stored into during the
jth iteration of L1, Let (R)j be the set of elements of R which are input
during the jth {teration of L2,

Further conditions:

(4) (5)1 = (R)j for all j such that there is a jth iteration of
Ll and of L2.
() R, 0@ =g161 4]

(6) S1's change-set is disjoint from each input to S1, and from
the change-set, S, of S2.

(7) No variable stored into by S2 is accessed by Sl1,

Theorem: If conditions 1-7 above are met, there exists a single algor-
ithm S3 computationally equivalent to the sequence S1;S2,

Furthermore, R may be replaced by a smaller set V of variables,

where size(V) = msx [size((R)j)].

Proof: Conditions (1), (4)-(7) imply that L1 and L2 may fuse if they
are adjacent. If L1 and L2 fuse, then these same conditions

allow R to be reduced in size to V, where size(V) is as

above. We must show that Ll and L2 can be made to be adja-
cent,

In the statement sequence S1;S2, suppose there are
statements SO following L1 in S1. Since, by (2), L1 is the
only statement in 31 which stores into R, SO does not store
into K. Since R is the only input to 52 which is computed
by S1, and since no variable accessed by Sl is stored into by
S§2, SO can follow S2 without affecting the computation, Now,
suppose there are statements S4 of S2, which precede L2 in
S2. Since all accesses of R lie in L2, S4 cannot access R,

Since S2 does not store into any variable accessed by S1,

e

w l;,l' f Y

32

neither does 84, Further, S84 cannot depend on any result

computed by 81, for it does not depend on R's contents,

and, since R 1is S1's result-set, it does not depend on any

otler variable's contents computed by S!. Therefore, S84 can

be moved %0 precede 81 without changing the computational

effect. The result of these moves is a statement sequence .
in wvhich no statements intervene between L! and L2, L1 and

L2 can then fuse, (nd the result follows.

——— e SR

1 ration Algorithms (MOA's

| The results of the previous section can be applied to the specific
{ algorithms which are used in computing matrix arithmetic expressioms,

A matrix operation algorithm (MOA) is a simple algorithm which

computes an associated matrix assignment statement. Syntactically, a
matrix assignment statement is written '"V«B", where V is a matrix iden-
tifier, and E 1is a matrix arithmetic expression. Semantically, this
matrix assignment statement commands the replacement of the contents of
the array named V with the value of the matrix arithmetic expression, E,
The value of E is computed from the contents its variables hold immedi-
ately before the statement is executed, The result-set of the MOA is
the array V; the input-set is the union of the arrays vhose names appear
ia E. A copy of an MOA 1is a systematic substitution instance of the MOA,
A substitution instance of an MOA results from substituting new arrays
for the arrays referenced by the MOA, Suppose an MOA, B, computes the
matrix assignment statement "V«X", A substitution, S, vhich changes
array X to 8(X), is systematic if and only if, for all arrays R vhose
name occurs in E, 1f name(R) = name(V) then name(S(R)) = name(S(V))

and 1f name(R) £ name (V) then name(S(R)) £ name(S(V)). The same sub-
stitution may then be applied to the MOA's matrix assignment atatement,
to yield the new MOA's associated matrix assignment statement,

For example,

AB*C, AB*B, AD*E are all copies of X«¥*Z, However, A:A*C is not
a copy of Xe¥*Z, for since X is the variable stored into, and XY, the
nev names for these variables, S(X) and S(Y) must not agree.

o~

A substitution vhich is not systematic cannot in general be applied
to an MOA without changing the MOA's assignment statement radically, For
example, suppose the (not systematic) substitution

A replaced by A
C replaced by A
B replaced by B

1s applied to Algorithm | of the n> algorithms.
The algoritha becomes:

I 4N
J 4N
A(I,J] « O
K-N

A[1,J] + «A[LI,K] * B(K,J]
This algorithm most definitely fails to compute
Ae«A*B,

for some element of each row of A is set to zero before it can be
accessed, Precisely vhat it computes is not clear, but it certainly
does not compute the value of A * B, and store this value in A, as
the assignment statement A « A * B requires,

An algorithm to compute any matrix arithmetic expression can be
constructed from copies of the MOA's in a suitably chosen basic set of
MOA's, An example of a basic set of MOA's is any set containing MOA's
to compute the matrix assignment statemsnts

A-B+Cand A -B*C
Suppose we are given a set of MOA's containing MOA's that compute
A««B+Cand AeB*C,

We can use sequences of copies of these MOA's to compute the value of
any matrix arithmetic expressiom, K,

e L

T AT T A8 €

54

Proof: by induction on the number of operators in the expression E,

If E is a matrix identifier, V,
then the value of E {s defined to be the contents of V. But
the null sequence of MOA-copies computes just this, in V.

If E {s of the form V, op V2, vhere V. and V, are matrix identifiers,

1 1 2
and op is + or *, then the single MOA-copy which computes
Z «-Vl op V2 computes the value of E into Z. Z must be

chosen to differ in name from both Vl and Vz.
If E is of the form Bl op 32. vhere !l and Ez are expressions

containing at least one operator, and op is + or *, then

!l and Bz can each be computed, into any prescribed arrays
x1 and Xz, by sequences of MOA-copies Cl and Cz. Choose
xl different from any array occurring in Cz, and write

the sequence "cl; cz; op xz", where Z differs from Xl

and from xz. This sequence computes the value of E
into 2.
Let us call this technique COMP1,

The sequence of MOA's produced by COMP]1 for a given expression E
requires several arrays to hold values of subexpressions of E. The
semantics of the expression prevents these intermediate values from
ever being input to another statement in the progrem. In fact, the
result produced by each MOA in the sequence, if it is not the final
MOA's result, is input to only one other MOA. The sequence also has
the property that, if the expression E contains no common subexpressions,
no subexpression of E is ever computed more than once. Thus, this tech-
nique produces a8 wminimum-connection-time MOA to compute any matrix

arithmetic expression.

Refinements of COMP] for translating matrix arithmetic expres-

sions into sequences of MOA-copies can be derived, which reduce the

55

number of arrays used in producing the ox,wroutoq'o value. Notice that
the technique given requires that certain arrays must be chosen to be
different from others used in certain MOA's. Thus notice the constraint
on x‘ imposed in COMP1. This prevents one algorithm's result-set from
being stored into during the course of another, before that result-set
is accessed by the algorithm which must receive its contents. However,
it forces arrays not needed to hold the value of the expression to be
used to carry these intermediate results. Some of these intermediate
arrays can be eliminated.

At least two techniques for refining COMP! exist. One ‘can, using
only the two given MOA-assignments, reduce the number of intermediate
arrays used, by re-ordering the sequence of execution of the component
MOA's. This technique works by changing the statements over which a
given intermediate array must remain intact, and hence, be a distinct,
non-usable storage area. The maximum number of such distinct intermediate
arrays occurring in an expreasion's translation is the number of arrays
needed to compute that expression. This number can be minimized. Alter-
natively, one can develop new algorithms, capable of computing expressions
with more operators. It these algorithms theaselves each need so little
temporary storage (say, a factor of N less than an array) that it can be
discounted, the "larger" the expressions which can be computed using
only one array to hold results. Both techniques can be employed together,

as well,

From certain sequences of two adjacent simple algorithms, we can
reduce the storage needed for their communication to the amount needed
during one of their outer loop iterations. Suppose that we have trans-
lated some expression, using COMP!, The resulting sequence of MOA's has
many pairs of communicating adjacent MOA's, each pair using an array
for communication. This suggests the use of algorithm parallel connec-
tion, to produce a collection of algorithms for the basic set which
compute expressions having more than one operator, and yet need a negli-
gible amount of intermediate storage.

Ty

56

11,13 Shapes, the "Valences" of an MOA

A convenient summary of the combining properties of MOA's can be
devised. First, note that the variasbles used for communication between
two algorithms are, in the case of MOA's, organized into arrays. Fur-

thermore, COMP1 shows that we cen freely choose these arrays. In fact,
we could choose a distinct array for eech pair of communicating MOA's

in the sequence COMP] produces. Note also, that once an array of the
sequence is accessed by an MOA, its contents is not needed by any other
MOA. These considerations, checked against the requirements which allow
twvo algorithms to parallel-connect, rapidly reduce the potentially
unsatisfied conditions.

Of the conditions sllowing two algorithms to parsllel-connect, only
a fev are possibly unsatisfied in an appropriate sequence of MOA's. Since
any communicating storage in such a sequence takes the form of an array,
1t seems natural to investigate the remaining requirements by character-
izing each array used to hold inputs or results of an MOA.

Let ue define, for each array X of an MOA which occurs in a loop L
of the MOA, the element-sets of that array. (’01.,5 will represent the
subset of variables of array X input to L during L's jth {teration,
Similarly, ®L,j will represent the subset of X stored into during L's
jth iteration. PFor any array X, these sets represent a subset of X's

variables selected by a certain subset of the possible subscript com-

binations by which elements of X are selected. Let the collection of

subscripts in (X) be [X] and similerly let LXJ select (X), ..
L, L,J L,) L,J

Nov define the shape associated with an array X to be the sequence

of subscript-sets [X]L J or [!JL 3 according as X is input to or stored

» »

into during a single outermost loop L of the algorithm. If X occurs in

more than one outermost loop of the algorithm, let its shape be defined

to be 0. Purthermore, 1if (X n (x) ¢ or (X n (x 'y)

L,J L,i L, L,J
for some 1 £ §, let X's shape be Q1.

The shape () is assigned to an array to prevent fusion at this array
with other MOA's. Assignwent of QO to an array in effect demands the

presence of an entire array to hold values during a computation. When-

PR AR AT N S L DA e w0 ST —

57

ever it is difficult to assign a "combinable" (non{1) shape to some
array, (I may be assigned, without altering the correctness of the al-
gorithm resulting from parallel-connection at that array,

The concept of "shape" is our promised useful summary of an
algorithm's parallel-connection property., In some sense, it corresponds
to a chemist's "valence": we state that MOA B can parallel connect to
MOA C at input X of C if the shape of the result-array of B and the shape
of X in C match, Two shapes match 1if neither are (}, and if they are
equal, element-set by element-set, for the first K element-sets of the
sequences where K is defined as the largest number j such that iteration
J of either loop exists, We call the shape associated with an input array
X of an MOA C, the access-characteristic of X in C. The shape associated

with the result-array of an algorithm C is called the result-characteris-
tic of C, The algorithm resulting from the parallel connection is
called the fusion of A to input X of B,

We can simplify shape-comparisons considerably by assigning descrip-
tive names to the most commonly occurring shapes. The table below lists
these names, together with a one-letter abbreviation for each, defining
them in terms of the subscripts their Jth element-set is selected by:

r - rov. All [J,1] such that 1 < {1 <N
¢ - column, All [1{,J] such that 1 <1 <N

0 - . No subscript set corresponds., Given to “unfuseable"

arrays,

The. em: If the result-characteristic of MOA A matches the access
characteristic of input X of MOA B, and 1f A's change-set 1is
disjoint from each of A's input-sets, and if B's result array
is disjoint from X, then there exists an algorithm C such that

(1) C computes a matrix assignment statement derived
by substituting the expression of a substitution
of A's associated matrix assignment statement for
each occurrence of X in B's matrix assignment

statement,

L —— e geens: S e

S

v"“ilf’

m

(2)

&)

(4)

58

(2) C 1s constructed as the sequence S(A); 8(B), with

S(A) parallel connected to input X of B, 8(A) is
a systematic substitution of A, such that A's
result becomes X in S(A). X in B remains X in
8(B), but B's change-set is chosen differently
fcom any veriable A,

Proof: The sequence S(A); 8(B) computes in S(B)'s result-set, the
required matrix assignment statement, We will take this as the
result of C, We can therefore assume that no value computed
into variables not in the result-set of B is input to any
later statemsnt in the program, by the definitiom of result-
set, It remains to show that 8(A); S(B), a sequence of two

! adjacent simple algorithms, can fuse.

We observe that:

the result computed by S(A) into X is input to no
statement-sequence other than 8(B), by our defin-
ition of the result-set of the sequence.

The result-shape of A, and hence of S(A) does not
equal (). Therefore, there is a single outermost
loop L1 of S(A) wvhich encloses all statements of
8(A) vhich store into X.

Similarly, the access-shape of X in 8, and hence in
8(B), does not equal (). Hence there is a single
outermost loop L2 of 8(B) wvhich encloses all state-
msents vhich access X in S(B).

Let (X) 3 stand for the subset of variables of X
stored into during L1's jth iteration, and (X) 4
be the subset of X input during the jth iteration
of L2,

The result-shape of A equals the access-shape of X
in B, because the non) shapes match. Hence, the

39

subscript-sets [X]lj - [;jj for all j§ < K. But
applying {dentical subscripts to the same array, X,
<elects identical variubles, Hence (X)J » (g)j for
all § <X, Then (x)j - (;)j for all j such that
there 1is a jth iteration in L] and L2,

(5) (g)j N @), =f1f 14}, for it this weren't so,
the result-characteristic of A would be Q.

(6) 8(A)'s change-set is disjoint from each of S(A)'s
input-sets by assumption., S(A)'s change-set is
disjoint from S(B)'s change-set by construction of
the substitutiotus.

(7) 8(B)'s change-set is disjoint from any variable in
S(A), so no variable stored into by S(B) can be
accessed-by S(A).

(8) No variable stored into by S(A) is input to any
statement other than S(B), by our definition of
the sequences result-set to include only variables
in S(B)'s result-set.

Thus, all the hypotheses of the parallel-comnection theorem are satisfied,

11,14 Explicit Rule for Developing Shapes for Arrays used in Algol Programs

In general, a shape cannot bs calculated for each array occurring in
an MOA, The difficulty arises because the element-sets which constitute
the shape may depend on values cowputed during the algorithm, In general,
because we camnot predict these values, we cannot decide the membership

of the element-sets,

The Algol programs we use &3 illustrations, however, all reference
element-sets in a particularly simple way. Their loops are thoroughly
predicable FOR-statements, for which the value of the FOR-statement's
index at the start of the loop's jth iteration is easily calculable,
These indices are the only variables appearing in array subscripts,

e g

'

60

Purthermore, no conditional statements occur to skip statements, leaving
variasbles unreferenced, even though their subscript-combination appar-
eutly appears, PFor these loops, we can, and do, calculate shapes,

11,13 Parallel Connection Algorithm

Suppose we are given two Algol simple algorithms A and B such that
A's Tesult 1is input to B, Suppose that A's result-characteristic and
B's access-characteristic match, Then A and B may be parallel-connected.
Here, we make explicit how,

First, set down A immediately preceding B, A's result-characteristic
is a non-() shape., Therefore, there exists an outermost loop, L1, of A,
enclosing all statements of A vhich change A's result, Similarly, an
outermost loop of B, L2, exists, enclosing all accesses of A's result,
Move any intervening statements out from between L] and L2, moving those
statemsnts of A after B and those of B before A, Fuse L1 and L2, by
deleting L2's controlling for-clause, and the now-ad jacent end-begin
pair vhich enclosed it., Replace the for-clause with statements to ensure
that L2's index is stepped in exactly the way it was stepped by L2's for-
clause, Now, subst{tute an intermediate variable name for A's result
throughout the combined algorithme,

This technique of fusing two Algol loops fails to account for
possible "conflicts" of indexes. Semantically, an Algol FOR-loop's
controlled variable, or index, takes on an “undefined" value after the
FOR-1ist is exhausted, We can take this to mean that this value may not
be input to any statement in the program, Therefore, wve may substitute
a nev variable for the FOR-statement's index, without changing the
msaning of that FOR-statement, We use this property to avoid such con-
flicts,

Suppose 11 1s L1's index, and L] and L2 are to fuse, If, in L2,
I1 1is stored into, we say a2 "conflict on I1" exists., To avoid it, we
simply substitute for Il a variable mot occurring in L1 or L2,

We have been somevhat vague in describing how we insure that L2's

index is stepped exactly the sams way L2's FOR-clause stepped it,

In general, this can be accomplished by substituting an appropriate
sequence of conditional statemsnts and assignments, The Algol report ([6)
suggests such sequences for each FOR-1ist element-type. By "expanding"
the FOR-clause into the simpler statemsnts it abbreviates, and then
redetermining the statement the loop's exit 1s to reach, L2's index can
be stepped.

In certain loop-fusions, a simpler approach can be used, Suppose
that L1 and L2 are to fuse, and that each iterates the sams number of
times, Suppose also that Il 1is L1's index and I2 is L2's,

Suppose that the first statement in the Algol text of each loop's

body is given the number "1", and the last in loop Li's text is numbered Xi.
If there is a function ¥ such that F(v((L1,X1,5),I1)) = ¢((L2,1,3),12)

for all j then statements to compute 12 from Il's current value directly
may replace I2's iterative computstion. These statements may be placed
just before the first statemsnt of L2's body in the fusion. If no state-
ment of L2 stores into I2 (the usual case), then F(I1) may replace each

occurrence of 12, ([In many cases, such an F exists--the identity function,]

e ™ -

62
Example 1

a; I N At ¢
J =N B: Q0
C{1,J] «0 C:r

KN

C(I,J] + «A[I,K] * B[K,J]

b: I N D:. r
J =N E: Q
A[1,J]) « 0 At r

K~-N

A[1,J] + «D[I,K] * E[K,J]

We can reduce A from a 2-array to a 1 array:

b: I N
J =N
A[I,J] « 0
KN
A[I,J] + «D[I,K] * E[K,J]
a: (I »N)
J N
C(1I,J] « O
KN

C[I,J] + «A[I,K] * B[K,J]

Fusion begun:
delete the second

for clause.

63

Reduce the size of A to a row by assigning the Ith element of the.
Jth row to U[I]); i.e.,, substitute U[x] for A[y,x] wherever A occurs:

I oN

J =N

U[J] «0

KN

U[J] + «D[I,K] * E(K,J]

J N

C[I,J] «0

K-N

C{I1,J] + «U[K] * B[K,J]

Space characteristics: D: r

E: Q
B: Q
Csr
Example 2% _
bo{J >N D: Q
I-N E: ¢
A[I1,J] «0 A: c
i K—-»N
L_' A[1,J] + «D[I,K] * E[K,J]
al I N A: ¢
J-oN B: r
L} c(I,J1 <0 ¢: Q
K—-N
J =N
I >N

C[1,J] + «A[I,K] * B[K,J]

J 18 the index of b, K that of a, Simple replacement
conditions are met, An F(J) which can replace K through-
out a, is 'J', A name conflict arises, so choose J1 for
both J in b and K in a., Let Ulx] = A[x,y].

63b

and upon fusing, we get:

I »-N D: Q
J N E: c
C(1,J] « 0 B: r
J1 SN c: Q0
I 5N
U[I] «0
K -N
U(I]) + «D[I,K] * E[K,J1]
J N
I 5N

C[I,J] + « U[I] * B[J1,J]

RTINS TR A T T AR ROTRCT AT yD nee

64

11,16 Matrix Elementary Algorithms
Let us define the matrix elementary algorithm of size k (k-MEA's)

to be a subset of the MOA's satisfying certain crastraints:

(1)

(2)

Q)

(4)

Some
Theorem 1:

Theorem 2:

Theorem 3:

There is a single loop in each algorithm, called its
main loop, whose input-set includes each variable input
to the algorithm, and which stores into each variable
of the algorithm's result-set,

All arrays of the algorithm assigned non<} shape

are k-arrays, i.e,, have sizes of N**k.3

Each noa<l shape associated with an array of the algorithm
consists of 1*N equal-sized element sets, Here, j may
differ depending on the shape, but may not depend on N,
Hence, each element-set of a non~) shape of a k-MEA hae

size proportional to N¥*(k-1)

Each k=-MEA uses no more than L¥N**(k-1) intermediate
variables, Here, L does not depend on N,

consequences of our definition of k<MEA follow:
1f two k-MEA's fuse, the result is a k-MEA,

The inputs to a k-MEA must all be present simultan-c.sly |
at some instant in time,

I1f two k-MEA's fuse, any input to either except the result
of the first becomes an input to the fusion, |

' |

3

We will use the FORTRAN notation ** for exponentiation and
* for multiplication

e

Proof of Theorem 1:

65

Suppose A and B are k-MEA's, and C is the fusion

of A to input X of B, Then C is a simple algorithm,
since the initial step of the fusion process merely
lists the statements of A before those of B, The
sequence of two simple algorithms is itself a sim-
ple algorithm, We must shov that C is a k-MEA,

We first need to show that C contains one loop,
which stores into each variable of the result of

C, and accesses each variable of each input-set of C,

(1) The result-set of C is defined to be the result
set of a substitution of B, B, and hence .(B)
are MEA's, and therefore there is a loop, L2,
which stores into each element of S(B)'s
result-set, Furthermore, L2 accesses each
variable input to S(B)., In particular, X
is an input to L2, But X's access character-
istic 1s not (1, since A can fuse to X of B,
Therefore, X must be input only to L2, and hence
L2 is the loop of S(B) which fuses with some
loop of S(A). Also, A's result-characteristic
is not), and A is an MEA, Similarly, there
is a loop L1 of S(A) to which each input of A
is input, and which must be the loop which fuses
with L2, The fused loop, L, has, as inputs,
all inputs to S(A) and to S(B) (except X).

The inputs to L thus include all the inputs to

C. Furthermore, L stores into each variable in
C's result-set, for it stores into B's result-

set, Therefore, L satisfies the definition of

a k-MEA's main loop.

(2) All arrays of the original k-MEA's were k-arrays.
Hence all arrays of the fusion, a subset of the

arrays of the original k-MEA's, are k-arrays.

B i iak i Ak

. Pt

L]
R A T I SR TP IR Loy

Proof of Theorem 2:

66

(3) Bach shape associated with an array of B
or of A other than X is still the same,
since loop-fusion does not change the
element-sets of inputs or result-sets,
Therefore, each array has a shape con-
sisting of J*N equal-sized element-sets,
since it did so in the original k-MEA's,

(4) Let A and B be the k-MEA's which fuse to
form C, Then A used no more than jI1*N¥*(k-1)
intermediate variables, B no more than
J2kN¥*(k-1), C uses, at most, all inter-
mediate variables of A and of B, plus those
variables used to hold X, wvhich is inter-
mediate in C, But the fusion reduces the
number of variables needed for X to one
element-set of X, or j3*N**(k-1) variables,
by property (3) of a k-#MEA, and the fact that,
since A parallel connects to B at X, X must
have a non{} shape in A and in B, Thus, C
uses at most (J1 + j2 + J3) * Nwv*(k-1)
intermediate variables, where ji do not
depend on N,

The inputs to a k-MEA must all be present simul-
taneously just beforc the algorithm's execution,

for they arc all inputs to the same loop of the
k<MEA, By definition of "input", the contents of
each variable just before the loop is executed is
accessed by this loop. But then all variables

to the loop must have been in existence simultan-
eously just before the loop executed. These inputs
are precisely the inputs to the k-MEA, by definition
of k=MEA,

el pars

m—— -

67

Proof of Theorem 3: The inputs to the main loop of the first algorithm
arz clearly inputs to the main loop of the fusion,

because if they were accessed by the first's main

loop, they are now accessed by the fusion's main

loop. Similar reasoning holds for each variable

input to the second's main loop. However, some of
those variables are now not in existence before the
fusion, since in the sequence they were results of
the first k-MEA, Hence, all input variables to either
MEA except the result of the first k-MEA become

variables of the fusion,

17,17 Canonical k-MEA's

A canonical k-MEA is a k~-MEA which computes a matrix assigmment
statement sati:fying:

No identifier appearing in the expression (right-side)
of the assignment agrees in name vith the lecft-side
variable of the statement.

Equivalently, the result-set of a canonical k-MEA 1is disjoint from
each of its input-sets,

Theorem: I1If the result-characteristic of a canonical k-MEA A matches
the access-characteristic of input X of canonical k-MEA B,
then A may parallel-connect to input X of B to form a
fusion C vhich is itself a canonical k-MEA,

Proof: A and B are MOA's satisfying the hypothesis of the theorem
of Section 13, Therefore, they may fuse to form an MOA,
This MOA is a k-MEA, by Theorem 1 of Section 16, The fusion
k=MEA computes a matrix assignment statement whose expression
results from substituting a systemetic substitution instance
of A's expression for each occurrence of X in B, B is canon-
ical, so that no input-array of B has the same name as B's"

result-array. The substitution instance of A can be so chosen

68

to arrange that no input array of A is given the same name
as B's result-array, But then C is canonical.

- —— U ——
1 ‘?,,’

Chapter III

In this chapter, we apply the results of Chapter II to matrix
arithmetic expressions, Our goal is an algorithm which compiles
these expressions into canonical 2-MEA's, choosing a compilacion which
uses fewest 2-arrays., We will, throughout this chapter, use "array"

to abbreviate 2-array, and "MEA'" to abbreviate 2-MEa,

I1I.] Elementary Expression Parse-Trees (EEPT's)

In order to study the possible compilations of an expression
into MEA's, it is convenient to examine parse-trees, both of the
expression, and of the availahle primitive MEA's, The significance
of a parse-tree in expression compilation stems from the fact that,
for the expressions we deal with, a parse-tree is a data-flow diagram

for the expression. That is, if x and y are nodes of a parse-tree,

and y is x's father, then x cannot be evaluated after y, for x's re-
sult is an input to the computation which ylelds y's result. [x can,
however, be calculated in pieces, at the same time parts of y are being
calculated.] The parse-tree, or its generalization the data-flow
diagram gives a partial ordering of the times of calculation of the
expressions rooted &t each parse-iree node, It is therefore extremely
useful in displaying all possible valid linear orderings of those

computations,

Each canonical MEA can be abbreviated by a tree diagram. The
structure of this diagram is a parse-tree of the expression the MEA
computes, The names of the input arrays, and the result are suppressed,
since systematic renami.igc of these variables yield computationally
equivalent algorithms, However, we associate with each leaf of the
tree, and with the root, shapes--the access-characteristic and result-
characteristic of the algorithm abbreviated., The diagram, called an
elementary expression parse-tree (EEPT) conveniently sumewarizes the

fusion and computation behavior of the algorithm it abbreviates,

Using EEPT's as building blocks, we can device a technique for

P T M I B NS L L S D e I Pwepgery » ool PO IR TS e

70

producing a large collection of canonical MEA's., Suppose EEPT-1's
result-characteristic matches the access-characteristic of a leaf L
of EEPT-2, Construct the tree diagram vwhich results from attaching
EEPT-1 to L, This tree is the parse-tree of an expression composed of
the expressions of EEPT-1 and EEPT-2, Furthermore, this new expression
abbreviates an algorithm which is itself a canonical MEA,

To construct the canonical MEA abbreviated by the joining of two
EEPT's, we can proceed as follows:

1. Write EEPT-1's algorithm, A, immediately before EEPT-2's
algorithm, B,

2. Rename the matrices used in A and in B so that A's result-
matrix agrees with the input-matrix of B associated with
the leaf L of EEPT-2 whose access-characteristic matched
the result-characteristic of EEPT-1, and so that the name
of B's result-array does rot agree with the name of any
array input to A, or to B,

3. Fuse A and B, This fusion can be accomplished, because
A's result-characteristic agrees with B's access-charact-

eristic at the common communicating array.

111.2 Alg-Tree Definitions
Let us assume that we are given:
l. An expression's parse-tree, E,
2. A collection of EEPT's, e.,...,€ .
1 n

Each EEPT represeats an algorithm-class, any cne of whose members
can compute the subexpression described by the EEPI's parse-tree, We
wish to assign to each intermediate node of E a method drawn from these
algorithms for computing that node from its descendants. Thus, we
want a correspondence set up between each intermediate node of E and a

unique intermediate node of a unique e

i
Definition: We say that an elementary expression tree "e" matches
E at z if and only if

—

- ———

it

n

1. For each node o of e there exists one and only

one node x of E, its corresponding node,

2, 1f o, B are nodes of e joined by a line from «
to B labeled 1, then so are their corresponding
nodes in E,

3. If o is an intermediate node of e, then its
operator-symbol matches the operator-symbol of
its corresponding node x in E,

4, The root-node of e corresponds to z.

If e matches E at x, then the set of nodes of E corresponding to leaves
of e are termed the fringe-set of e at x, We will often identify the
fringe-set by listing the set of its node-names, Associated with each
line incident on a member of a fringe-set of e at x is the corresponding
line of e. These terminal lines of e have an access-shape characteristic
wvhich 1is thereby associated with lines of E. The access-shape associated
vith line L is termed the line-shape(L). If only one line L is incident
on & node x, we define leaf-shape(x) = line-shape(L). Also, the root

of e 1s asso.iated with a shape attribute, called the root-shape of e,

Definition of an alg-tree:

An alg-tree of a node x in E is an assignment of elementary
expression parse trees [EEPT] e, to certain nodes of E., The

assignment satisfies the following construction property:
1. An EEPT which matches E at x is an alg-tree of x in E,

2, If T is an alg-tree of x in E, then if e is an EEPT
“parallel attachable" to T at some node y of E, then
T extended to the nodes matched by e is also an alg-
tree of x in E,

The nodes in an alg-tree T are the nodes of E assigned EEPT-nodes
by T. The root of an alg-tree T is that node in T having no ancestor
node in T, The fringe-sct of an alg-tree T is that set of nodes which

have no immediate descendants in T, The connection-set of an alg-

tree T consists of that set of nodes of T which corresponds to the
root of some EEPT assigned by T to E,
Definition of parallel-attachable:

An EEPT e 1is parallel-attachable to an alg-tree, T, in
E at a node y if and only 1if:

1. y is in the fringe-set of T
2. e matches E at y

3. The line-shape, 8:» assigned by T to each line {
incident on y equals e's root-shape.

4, Every line incident on y comes from a node iu T,

> The above de’ nitions allow E the possibility of being a re-entrant
tree, one in which a given subtree may have several ancestors. This
corresponds to a generalization of a parse-tree to a data-flow diagram

for expressions with common subexpression.

Example: An expression with common subexpressions, such as (A + B * C) *
(B*C<+ D) would be represented as:

A
2.

Suppose e is an EEPT vhich abbreviates an algorithm e, Let e
match E at x, so that X seoesXy are the nodes of E matching leaves of
e, Let the result of a node x be the value of the expression whose parse-
tree is rooted at x, If the results of each x, are stored in arrays
xi, executing a suitable version of e produces the result of x, We say
that the EEPT can compute the result of the node its root matches,

Associated with each alg-tree A is a canonical MEA A vhose parse-
tree matches the portion of E in A, If the results of each node in
the fringe-set of A is available to A, A can compute the result of the

3

root of A. A is constructed from the algorithms abbreviated by the
EEPT's assigned in A, One way of constructing such an associated al-

gorithm proceeds in parallel with the construction of A:
(1) Suppose A is an EEPT e which matches E at x, Then let

A be e's canonical MEA,

(2) Suppose A is an alg-tree T of x, parallel-attached to
an EEPT e at y., Then construct A from T, T's canonical
MEA, and e, e's canonical MEA, as follows:

1. Systematically substitute a new matrix name, Z for
e's result-matrix, and for thc input y of T cor-
responding to y, Here, Z is a name not occurring

inT or e.

2, Write the substituted e before the substituted T
3. Parallel connect e to T, yielding a canonical MEA,

The inputs to the resulting algorithm include all inputs
toT and to e.

Steps 1 and 2 can always be accomplished, Step 3 can
also be accomplished, for if A assigns e to match y, the

root-shape of e must agree with the leaf-shape of y in T,
But the root-shape of e is the result-characteristic of

e and the leaf-shape of y in T is the access~-characteristic
of y in T, The result of y is needed only as an input to
I, since all lines in E incident on y are in T, Therefore,
Z as computed by e reed be input only to T. Therefore, once
e and T have been placed in sequence, they can parallel-

connect,

To show that the algorithm produced indeed computes the proper
reeult, observe that if A is e, we have already demonstrated the result,
Suppose then that A is the fusion of e with input y of T, A is then
computationally equivalent to e;T. But immediately after e is executed
in this sequence, all of T's inputs are available. Since T is T's

associated algorithm, T computes the result of the root of A,

74

III.3 Major Properties of Alg-Trees

Alge-trees are interesting primarily because they explore the
mechanism by which canonical MEA's may be constructed to fit a given |

expression-part., This growth-mechanism is itself important in growing
alg-trees efficiently, Thus, the first of the three major alg-tree |
properties concerns only the growth-mechanism--the EEPT's, not their

algorithms, The two additional properties we discuss are primarily

properties of the algorithms which can be grown in parallel with alg-

trees, the "associated alg-tree algorithms" (AATA).

Property 1

Let G(S,x) be the set of all alg-trees of x whose root's shape is
S. Let H(y,S,x) be the set of alg-trees of y which include x in their
connection-set, and such that the root-shape of the EEPT they assign
to x 1is S,

Then: For o1l U ¢ G(b,x), there 18 T ¢ H(y,S,x) such that U is
a sub-alg-tree of T, For all T ¢ H(y,S,x), there is
U ¢ G(S,x) such that U is a sub-alg-tree of T,
In other words, the set of subtrecs of members of
H(y,S,x) rooted at x and with root-shape S equals
G(S,x), the set of all alg-trees of x with root-
shape S,

We will use this result in growing the alg-trees rooted at y from
G(S,x). Every alg-tree of x with root-shape S can be "extended upward"
by parallel-attaching it to any EEPT A which matches some ancestor-
node y of x such that x lies in A's fringe-set, and such that x's leaf-
shape in A 18 S, These extensions ultimately create all alg-trees

rooted at y.

Proof: Each member T of H(y,S,x) contains a subealg-tree (which
may be null, if x is in T's fringe-set) which is rooted
at x with root-shape S, Clearly this is a member of G(S,x).
Furthermore, this sub-alg-tree may be replaced by any mem-
ber of G(S,x), each replacement yielding an alg-tree rooted
at y, a member of H(y,S,x). 1|

75

The remaining major properties of alg-trees concern, in reality, AATA's.

Property 2

Prop-.rty 3

Each AATA is a canonical MEA,

Two consequences of Property 2 are:

a. Each AATA requires only k*N intermediate variables,
since it is a 2-MEA. Thus, the storage
internal to an AATA does not enter the leading
term of the polynomial in N which counts the number

of memory cells (variables) needed by the program,

b. If the AATA of an alg~tree T of x is used to com=
pute x's result, then the result of every node in
the fringe-set of T must be computed, and be present,

before T's AATA can execute,

Proof: The fringe-set of T lists the limits of the
fusion making up T's AATA. The results of
these nodes are inputs to T's AATA, and must
therefore be present simultaneously just
before the AATA's execution, since each AATA
is an MEA,

A non-canonical MEA can be produced from certain canonical
MEA's which are AATA's of alg-trees. By a '"non-canonical"
MEA, we mean one whcse result-set may be assigned the same
variables as one of the MEA's input-sets, For example,
from the canonical MEA to compute

A«B*C
we can produce non-canonical MEA's which compute

AB*C and A «B * A,
Such non-canonical MEA's allow us to re-use intermediate
variables immediately, thus avoiding the need to provide
anp additional distinct array to hold the result of an MEA,

76

Theorem: If the result-characteristic of an MEA, A, matches the
access-characteristic of an input I of A, then the result
set of A may be chosen to be 1's input-set, The MEA which |
results from this transformation requires one 'move" opera- |
tion for each element of I's input set, in addition to the
operations needed by A,

Proof: Suppose A's result-characteristic matches the access-characteristic
of an input I of A. Then, each element-set of the result-set
computed during a single iteration j of A's main loop equals
(in subscript sets) the set of elements of I accessed
during iteration j. Set A's result-array equal to I's input
array, Include instructions in A's main loop to perform

U 4—(1)J

just before the body of A's main loop. Within the body of

A's main loop, refer to the copy of (I)j in U whenever the
contents of a variable in (I)j is accessed, A's result,

now (l)j, is computed into the same variables in (I)-1 by

this resulting algorithm, Because the shapes of A's result and
I "match", neither is O, and since (I)j n (I)1 - f 1if

14 3j, no variables in (I)j will be accessed on any

iteration other than the jth; Because (_I_)j = (I)j’ no

variable is stored into during iteration j vhich is not in

(I)j' and hence copied into U,

I11.4 Result-Array and Fringe-Set Array Storage Overlap

At the end of the preceding section we presented a demonstration

that, 1if the root-shape of an alg-tree matches a leaf-shape, and 1if

an intermediate array was assigned to that leaf, then that same array

can be used to hold the result, Our demonstration involved copying

the set (R), into intermediate storage just before computing (g)j. It
appears that this"move" or copy operation is ornly a bookkeeping con-
venience, and that at no cost in intermediate storage it can be eliminated.,

D iy

77

An example follows:

Suppose we wish to compute
XeX*B

vhere X and B are 2-arrays, and X is interuwediate. We can compute

X (final) with only one 1 * N array of storage and no copy as follows:

Instead of X, allocate Y, an (N+1) * N array, and compute X
(initially) in the first N rows of Y, ie,

X(I,J] = Y[I,J)
This leaves Y[N+1, J] empty.

Now substitute into algorithm 1 (see "the n3 basic algorithms") as
follows:

for C[1,J] substitute Y[I+1, J]

for A[I,J] substitute Y[I,J]

Also, reverse the sequence of values computed by the outer loop.

The result 1is:
Case: X[I1,J]) = Y[I,J] 1<I,J<N
13N
J =N
Y(I1,7] « 0;
KN
Y(I+1,3)+ « Y[I,K] * B[K,J];

X (final) is computed by this algorithm in the last N rows of Y,
This suggests another case, differing in X's initial position in Y.
Here we again use algorithm 1, this time substituting

Y(I,J] for C[I,J]
Y[I+1,J] for A[I,J]

and running the outer loop in normal order,

bR . Canils

78

Case: Y[I+1,J] = X[I,J]

I aN
J N
Y[I,J] « 0
K 5N

Y[I,J] + « Y[I+1,K] * C[K,J)

Virtually the same construction may be used in the outer loop of
any canonical MEA whose result-characteristic matches one of its access-
characteristics, The direction of the main loop is determined by the
"“position" of the input which is to be overstored in its larger inter-

mediate array,

Similar constructions can de used to overstore an input whose
access-shape is "c", However, the array in which the input to such an
algoriths. is stored must be allocated somewhat differently: N * (N+1)
rather than (N+1) * N, allowing an extra column. Consideration of the

N * (N+1) arrays (extra-colummn arrays), and c-rccess algorithms with

input matrices stored in extra-row arrays indicates a proliferation of
cases, One simple solution would simply allocate each intermediate
array to be (N+1) * (N+1), This results in only four possible locations
for the (1,1) element of a matrix stored in such an array, T:

[T(1,1) , T[1,2] , T[2,1] and T(2,2]]

The appropriate r-access and c-access algorithms can easily be calculated

in each of these cases,
A similar const-.uction applies to any shape of an algorithm such that:

(1) An additional element-set of variables may be allocated as
an extension of the sequence of element-sets which make up

the shape, and

(2) The element-sets of the shape may be computed (and accessed)
in reverse order without changing the result of the algorithm,

When these conditions are satisfied for some shape S, then any canonical
MEA whouse result-shape equals S may overstore any of the MEA's input-arrays

whose access-shape also equals S,

Vg S
‘; 7

79

I11.5 Calculating Intermediate 2-Array Requirements of an Alg-Tree

One of the properties of alg-trees suggests that, in some cases,
a "large" algorithm with many inputs to the same outer loop may require
more space than the equivalent "smaller" (fewer input) algorithms,
This is the "parallelism" inherent in parallel attachment, namely,
that all inputs to an alg-tree must exist simultaneously, Given the
set of inputs to an algorithm, the results at each node of the algorithm's
fringe-~set, we must determine the number of arrays needed to evaluate

all members of the fringe-set and which must be simultaneously present,

Suppose we are given a fringe-s:t, each node i in it requiring
n(i) arrays for its computation. In computing the entire fringe-set,
one intermediate array is needed to hold each node's result unless its
n(i) = 0, for in this case, the member is a leat of the expression, and
already exists as a program variable. If node i is computed jth among
the fringe-set members, then apparently we need at least

n(i) + § -1 - k(J)
arrays to compute it, Here k(j) is the number of nodes L such that
n(L) = 0 which are to be computed before node 1.

Let the number of arrays required to compute the fringe-set S
be N(S).

Then N(S) > n(4) + §J = 1 = k(J) for each 1
Let S be a fringe-set, a set of nodes numbered arbitrarily 0 to m,
Let J be any permutation on the integers in [0,m].

With each permutation J, we can associate an order for computing the
nodes of S, Namely, if these nodes are numbered 0,,..,m, then the

ith node we compute is numbered J Thus, we can define

1.
N(J,S) = mgx (n(J)) + 1 - K(J,1))

where K(J,1i) is the number of elements Jk in S such that k < 1 and
n(Jk) = 0, Then the following result holds:

=

T

Theorem: Any permutation J for which
N(J,) 2 n(
minimizes N(J,S), &nd for that permutation

N(S) = max [n(Ji) + 1}

Proof: Let

.
Eamh » .

80

41’ 0<i<m

N(J,5) = mpx (J(Ji) + 1 - K(J,1)), where K(J,1) is the

number of k's such that n(Jk) = 0 and k < 1,

We have N(S) = n}n N(J,S).

In a following lemma, we prove that:

I1f for some 1, n(Ji) <n(@J then there is a
permutation J' such that
N(J,S) > N(J',S), where J' is defined:

'
Jk-Jk ffk<iork>1+1

'
Ji-J

141>

i+

! =
Ji= Iy

Therefore, if there is an { such that

n(Ji) < “(Ju-l)

then there is a permutation J' which interchanges J1 and J1+l

and s~ that

n(J',8) < N(J,S)
By a sequence of such interchanges, we can arrive at J",
a permutation in vhich

(M 8@ 2 0y,

even if we started with a permutation J for which N(J,S)
took on its minimum value, Furthermore, N(J",S) < N(J,S).

All permutations J" satisfying (1) produce identical
values of N(J",S).

Therefore, N(S) = N(J",S) for all J" satisfying (1).

81

1f for some 1 n(J’) < n(J1+1), then there is a permutation

J' such that N(J,S) > N(J',S), where J' is defined:

-.Jk ifk<iork>1+1

J

1]
Iy

Gt

1+1

41 "9

' =
i
[}

J

Let T, = n(J,) + 1 - K(3,1).
Then N(J,S) = mgot '1‘1

Similarly, let T} = n(J}) +1 = K(J',1)
so N(J',S) = @ Ti

Suppose n(Ji) < n(Ji-H)
Then n(J“_I) > 0, and either n(Ji) = 0 or n(Ji) > 0,

Case: n(Ji) =0,
Then K{J,1) = K(J,1+1) = K(J',1+1)
vhile K(J',1) = K(J,1) = 1.

Typ = 000 ,0) + 141+ K(J,141)
[} '
TP =0 +1 + K(J',1)

=n(J) +1 + K(J,141) - 1

Therefore, T! < T

i 1+1
Also,
] -]
Ty = 8D +4 41 +KQ',14)

=n(J,) +1+1 +K(J,1H).
L}
Therefore, T1+1 < Ti-H’ vhen

'n(Ji) < n(J“_.') .

oy Py ¥ -+

82

Case: 0 < n(Ji) < n(J“_l).

Then K(J,1i) = K(J,i‘”) = K(J'.’.) - K(J'.i‘”)

T,,, =n(J,,.)+4+1+K(,141)

i+l i+1

' [}
Ti - n(Ji_._‘) +1 + K(J .1)

——— e

L W

L 2

CRTCAB U (AR TN

]
Therefore, '1'1 < '1‘1_”.

']
Tjq = 00 +1+1 + K, 14)
=n(J,) +1+1+K(J,14)

But n(Ji) < n(J“_l) by hypothesis,

]
50 Tip < Ty
For all k < { or k > 141,

! -
Tk Tk

Therefore, we have shown that for all x, there

is a k such that

T

> T!
= "x
In particular, for that X vhich maximizes ‘1‘":, there

is a k such that

Ty

Since N(J,5) > T,,

L - '
2 T2 = NQ',S)

N(J,S) > N(J3',S).

(‘,-0-‘-

-

83

Thus far we have shown how to calculate the number of arrays needed
both to compute each input to an algorithm, and to hold those inputs
simultaneously just before the algorithm executes., We have not, however,
showvn hov many are needed to complete the algorithm's execution, including
computation of its result, This number, n(S), depends on whether the
algorithm's result may overstore a fringe-set array, or not. We claim:

N(S) = N(S) 1f the result may occupy an array holding one of
the algorithm's inputs,

= N(S U I) otherwise,

Here, 1 is a node-name distinct from all the names of nodes of S,
and such that n(I) = 1,

When the result may not overstore an array of the alg-tree's
fringe-set, we must account for the possibility that the members of
the fringe-set each require more than one array in their computation,
but of course only one to hold their result, Let the non-zero-members-
of-S be the set of members x of S such that n(x) > 0. Then

n(S) = max (N(S), number of non-zero-members-of-S + 1),
But n(S) = N(S U I) computes precisely this,

We can say then, that

n(S) = N(S) 1£: (1) the root-shape of the alg-tree whose
fringe~set is S matches the leaf-shape of
some node x in S, and

(2) x is not a leaf of E.a

and n(S) = N(S U I) othervise,

7'I‘he second condition is required, for we cannot change the value
of any variable of the expression in computing that expression.

84

111 aves-Ipn Algorithm
Proparty | of an alg-tree cnables us to avoid some of the redun-
dant alg-tree growing that simple application of our minimization i

method would require, We can record, for each shape S at each node,

all the distinct alg-trees with shape S, We can then generate these

sets for any node x, given that they have been generated and recorded |

for all descendants of x.

To generate all members of G(S,x), where x is not a leaf of E:

M

(2)

3)

(4)

(5)

(6)

Choose an EEPT e, whose root-shape equals 8, which matches
E at x, Let the nodes of E corresponding (in the match)
to leaves of e be Yyo cer.ain descendant nodes of x,

Let the leaf-shape of each Yy be 8. £

For every i, choose a member of G“i'yi)' Let the set
of alg-trees so chosen be {F,].

Extend the assignment B of e to E made /n (1) to include
all assignments cto F,. B', the extension of B, is defined
to assign to each node x assigned an EEPT node x by an

F‘1 or by B that same EEPT node x.

Each distinct choice in step (1) or (2) generates a new

alg-tree in (3). Repeat until all choices are made,

Repeat steps 1-4 for each distinct shape S.

Steps 1-5 create a set of alg-trees Bi rooted at x,
Provide for the possibility that x may be in the fring--
set of some alg-trees rooted at ancestors y of x, by
computing n(x), an integer giving the minimum number

nf arrays needed to compute x regardless of which Bi is
ustd, A '"null alg-tree", which has only one input, x,
having n(x) as its erray requirement, must then be

added to G(S,x) for each S,

When x is a leaf of E, compute G(S,x) = the null alg-tree,

with a single member in its fringe-set, x. n{x) = 0; for no {

m.;&.w-.mm et ot et - . — - . '

i

85

intermediate arrays are needed in computing a leaf of E., Leaves
of E are assumed to be computed before any subexpression of E

is evaluated,

Theorem: If no node in the parse-tree E has more than one line incident

|:r
A

on it, we can verify that this algorithm computes all, and
only, the members of G(S,x) for each S,

To show that each object produced by step (3) is a member of
G(S,x) for the S chosen in (1), we must show that each such
object 18 an alg-tree rooted at x, with root-shape S, In

step (3) we extend an assignment of an EEPT e to x to other
nodes of E, We must show that the resulting assignment is

an alg-tree, Clearly, by the construction rule for alg-trees,
e's assignment to x is an alg-tree, T, e's ith line-shape,
8» is assigned a line incident on node Yy of E by T, F'1 is
an alg-tree rooted at y, whose root-shape is s, by step (2).
This means that the EEPT fi
T Also, fi
node of E has more than one line incident omn 1i:, yi's only
incident line has 1line=-shape 8o 411 lines incident on Yy
have shape 8:» and lie in T, Therefore f1 is parallel-

whose root is assigned Yy by Fi

has root-shape s matches E at Yye Since no

attachable to T at Yyo and hence the extension of T to include
£
extensions can be made to include all EEPT's used in fi's

is an alg-tree rooted at x with root-shape S, Succeeding

construction, Similar reasoning shows that T may be extended -
to each Fi' Hence, each object produced by step (3) is a
member of G(S,x).

To see that all members of G(S,x) are produced by the

leaves~in algorithm, assume the contrary. Then there is

a T ¢ G(S5,x) not produced for any choices of e's and Fi's

made in steps (1) and (2), T differs from each assignment
produced by the leaves-in algorithm in at least one node,

T must, however, assign to x an EEPT which matches E at

x and has root-shape S, Since e maitches E at x in only

one way, each node of E assigned by T to nodes of e matching

i i 050 D S TS s . et 0 -

86

E at x is assigned that same node by one of the choices of

(1). 1In particular, the leaves of e are assigned the same LI
nodes ¥y and shapes 8, in T as in some choice of EEPT made
by (1). Thus, T ¢ H(x,s

i there is an Fi e G(s

1,y1) for each i. Therefore for each
1”1) which is a sub-alg~tree of T,
Scme choice made by (2) selects precisely chese Fi's for
every i, Then T cannot differ frow this selection on any
node in Fi‘ But T assigns only nodes of E in an Fi’ or
which match nodes of e, Thus, there is one selection of

choices in steps (1) and (2) from vhich T cannot differ,

In performing step (6) of the leaves-in algorithm, we find that

we must compute the minimum number of arrays needed to compute the
result of a node x. This in turn requires an evaluation of the number
of arrays needed for the execution of each alg-tree rooted at x., These
numbers depend on the array requirements of the nodes in each alg-tree's
fringe-set, We will speak of '"the value of'" an alg-tree A, or a node
x, when we mean the minimum number of arrays needed for the execution
of A to yleld x's result, or for the computation of x's result by the

alg=-tree rooted at x whose value 1is least,

If we were to represent alg=trees as EEPT-node identifiers attached
to certain nodes of E, linked together in some way, each time we needed
to compute an alg-tree's value, that alg-tree's fringe-set would have
to be obtained., A better representation for alg-trees avoids much of
this computation, We could represent alg-trees by their fringe=sets,

In order for this change of representation to save computation, we would
like to show that operations analogous to the steps of the leaves-in
algorithm can be performed on fringe-sets, to yield new fringe-set repre=
sentations directly. But only step (3), the step which produces a new
alg-tree depends on alg-tree repre ".ntations, If each of the F:I. input
to step (3) were represented as alg-tree fringe-sets, step (3) could
produce the fringe-set of the cxtension F of e to the F, by set-uniting
all the l"1

been a fringe-set node of some F

i
fringe-sets, [Each node in the fringe-set of F must have

T Similarly, each node in the fringe-

87

set of some F, is in the fringe-sat of F.] The change of representation

is thus desir:ble.

A still more desirable representation of alg-trees presents itself,
In computing the value of each alg-tree, we apply the function n to the
alg-tree's fringe-set, S, yielding n(S). n(S) ultimately requires the
evaluation of N(S) (or N(S U I)). Recall that a fringe-set S is a
certain collection of nodes in a graph, In evaluating N(S), the names
of the nodes in S are irrelevant. N(S) requires only n(Si), the values
of the nodes Si in S, for its computation, This suggests that each
fringe-set, represented as a list of integer node-names 91,...,ym}be
associated with the fv-set (n(y]),...,n(ym)). The fv (fringe-value)
set we will represent as a string of integers separated by spaces, Each
integer n(yi) is the value of some node Yy in the associated fringe-set
and {s the number of arrays needed in computing y by that algorithm

which uses fewest arrays.

We will extend the functions N(S) and n(S) to apply to fv-sets,
If S' is the fv-set associated with S, with Si being the integers in S',
N(S') = max (Si +1 -1)

1<i
'
Sf>0

where S!' 28! for all S' in S°

S!
i 77141 i? iR
Thus, N(S') = N(S) (cf. the definition of N{S)).

Each alg-tree can be repr:sented by its fv-set during the leaves-in
algorithm, We must describe once more how step (3) of the leaves-in
algorithm can be modified to accomodate the new representation, So long
as there 18 no node y of E with more than one line incident on y (an
assumption which the leaves-in algorithm requires in any case), no
two fringe-sets united by the modified step (3) have nodes in common.
For two fringe-sets united by step (3) must include descendants of two

distinct nodes Yy and y, only, Furthermore, Yy is neither a descendant

3
nor ancestor of yj, for both are members of the fringe-set of an alg-
tree, and nodes of a fringe-set of an a2lg-tree have no descendants in

that alg-tree, and hence in that fringe-set., The lack of nodes in the

[e

88

tree with more than one incident line implies that the set of descen-
dants of Yyq is disjoint from the set of de.cendants of yj. Hence,

the fringe-sets united by step (3) include no nodes in common, {

The fact that two fringe-sets united by the modified step (3)
have no nodes in common suggests a simple extension of fringe-set
set-uniting to the fvesets of those fringe-sets, We can define the
"join" of two fv-sets A = (A],...,Am) and B = (BI"'°’Br) to be
(Al"°°’Am’ Bl""’Br)' That is, the join of A and B, written A U B,
is a set of integers consisting of every integer appearing in A or in
B, The number of integers in the join is the sum of the number of
integers in A and the number in B, Step (3) of the leaves-in algorithm

can be modified to read:

(3') Join the fv-set representation of all the Fi to

produce the fv-set representation of a new alg-tree,

Further information will be associated with each fv-set computed,
in objects called the ''tags'" of each fv-set, Tags explicitly represent
alg-trees, which, although not needed during the leaves-in algorithm,
nonetheless must be recoverable, for the alg-trees constitute the
desired output of the procedure, Alg-trees will be explicitly repre-
sented by linking each fv-set F produced with the fv-sets Fi joined
in step (3') to form F. Tags will also hold additional information
associated with each fv-set, notably the root-EEPT number, and the
fringe-shape-set, Except for the fringe-shape-sets, none of the in-

formation in tags is essential in computing fv-sets,

The root-EEPT of an alg-tree A is the EEPT assigned by the alg-
tree to the node at which A is rooted, Each fv-set when generated is
placed in one of the sets G(S,x). Suvch sets are termed shape-sets, At
ecach node one shape-set 1is produced for each distinct EEPT root-shape.
Shape-sets represent information about the fve-sets they contain, infor-

mation vhich is needed by the leaves-in algorithm,

Fringe-shape-sets enable step (6) to compute n(S) from N(S), where

" 1s an fv-set, Recall that |

e

e

89

n(S) = N(S) if some node x in the fringe-set S satisifies:

(1) the leaf-shape of x matches the root-shape of
S's alg-tree; and
(2) x 1is not a leaf of E,

n(S) = N(S U I) otherwise,

Fringe-shape-sets record, associated with each fv-set, sufficient infor-
mation to allow these two cases to be distinguishel, A fringe-shape-set
F(S), where S is its associated fv-set, is a subset of all possible shape
names, Presence of a shape name t in F(S) records the presence, in S's
fringe=-set, of some node x satsifying (2), whose leaf-shape equals t,
Suppose C is an fv-set belonging to shape-set G(S,x). Then, if F(C) is
C's fringe-set, the proper evaluation of n(C) can be determined:

n(C) = N(C) 1f S ¢ F(C),
n(C) = N(C U 1) otherwise.

Here C U 1 is an fv-set formed by joining an extra integer 1 to C.
The introduction of a fictitious node I to achieve the proper value 1is

no longer necessary.

Fringe-shape-sets must be computed along with fv-sets, Thus, again
using F(C) to denote the fringe-shape-set of fv-set C, if G1 are the
fw-sets to be joined in step 3', to form fv-set G, compute as well

F(G) = F(Y G,) = Y F(G,)
i - i

Here F(A) U F(B) is just the set union of F(A) and F(B)., Clearly, if
shape-name t occurs in, say F(A), it means that some node I of A's
fringe-set has leaf-shape t., In the fusion, I wili retain leaf=-shape

t. Hence, t should occur in F(A U E), Furthermore, if t occurs in
neither F(A) nor F(B), no member of the fringe-set of A U B will have
leaf-shape t (for no nodes other than those in the fringe-set of A

or the fringe-set of B enter the fringe-set of A U B), and hence t must
not be in F(A U B)., Occasionally, we will need to represent fringe-shape-
sets explicitly, as in examples, We will represent (on paper) a fringe-

90

shape-set F(C) by listing, immediately after fv-set C, the shape-
abbreviations contained in F(C), Thus, 1if f

C is an fv-set containing the integers 1,1,2,3,
and F(C) contains the shape r,c,

we represent C and F(C) together as: |
(1123)rc

To complete the computation of fringe-shape-sets, we must produce
a representation for the "null alg-tree', added in Step 6 to each
shape-set G(S,x). The only nodes of E assigned by the null alg-tree are
in 1its fringe-set, This fringe-set consists of a single node, x. The
fv-set representation of this alg-tree would therefore by FN = (n(x)). .
We can compute Z = min n(Ci), where each Ci is an fv-set generated in
shape-set G(S,x) for some S (including S =(Q). Each C1 represents a

method for computing x, That C, among the C, which requires fewest arrays

j i

for x's computation is chosen, The number of arrays C, requires is n(Cj)--

hence the computation of Z gives n(x). The links of Fﬁ, which will repre-
sent the alg-tree to be used to compute x, should be coples of the links
of Cj' We argue that the fringe-shape-set of the copy of (n(x)) added

to G(S,x) should be S, For FN in reality represents the computation of

x into an intermediate array., When FN is added to G(S,x), any fusion
with this copy of FN will, by step (2) of the leaves-in algorithm, access
this array by shape S. Hence, the fringe-set of FN contains a node, x,
which 18 not a leaf of E, and whose leaf-shape is S, Therefore F(FN) = S,

since x is the only node in the fringe-set of FN,

On> more refinement of our algorithm can be introduced, Step (2)
of the leaves-in algorithm requires us to select a member of S(si,yi)
for each leaf i of EEPT e, But what if s,
defined to "match" another of the same name., We resolve this difficulty

= (? Such a shape 1is not

simply, We arrange that G(si,yi) contain only fv-set (n(yi)). This
fv-set represents the null alg-tree, with which an alg-tree whose leaf-
shape 1s (1 at y may "fuse', Furthermore, since in reaslity Yq will
belong to the fringe-set of the fusion, treating the fv-set (n(yi))

'
|
‘
!

91

consistently as an fv-set introduces the integer n(yi) into each fv-set
F for which Yy belongs to F's fringe-set, and to no others, We accom-

plish this by adding Step (7) to the leaves-in algorithm,

(7) Replace G(1,x) with the null alg-tree rooted
at x, The representation of this alg-tree is
the fv-set

FN = (n(x))
F(FN) 1is empty

The handling of the leaves L of E is straightforward, Clearly only

the null alg-tree matches a leaf of E, Hence, each shape-set G(S,L)
contains only FN = (0), for n(L) = 0, because no intermediate arrays are
required to compute a leaf, Furthermore, because L is a leaf of E,
F(FN) 1s empty in each shape-set, for the only node in the fringe-set
of FN is L which is a leaf of E. Hence, no shapes occur in the fringe-
shape-set of any copy of FN,

From now on we will discuss tagged fv-sets and the alg-trees they
represent interchangeably, Each of the terms here defined for alg-trees
can be extended to apply to the tagged fv-sets representing alg-trees.
Thus, we will speak of the root-shape of fv-set G, meaning the root-
shape of the alg-tree G' whose fv-set 1s G, and which the tags of G

represent, etc,

I11.7 Effort Estimates Motivating Search Reduction

It is worthwhile at this point to make an estimate of the number
of alg=-trees we must consider, The time we spend in optimizing an
expression is likely to be directly related to this number,

One of our early formulations of this problem suggested that a
very large number of alg-trees would have to be considered, We supposed
that a maximal alg-ctree rooted at a node x was given, The leaves of
such an alg-tree either coincide with leaves of E, or have null leaf-
shape, so that no EEPT can be parallel attached to them. We then ob-

served that each '"pruning'" of a branch of this alg-tree resulted in a

92

nev alg-tree. We can calculate the number of such alg-trees derivable i !

by such branch paring.

Let C(X) be the number of alg-trees derivable by branch-paring

from a given alg-tree rooted at x,

Each pruning of a descendant of x can be combined with the
prunings of any other descendant of x to yield distinct alg-
trees, We get

C(x) = C(x]) * C(xz) +1

vheire x, and x, are the immediate descendants of x, The "1"
is added to account for the alg-tree resulting when all nodes
but x are pruned away. When x is a leaf, it has no descendants,

8o C(leaf) = 1,

This function suggests a rather large number of possibilities, In a
binary, symmetric alg-tree, ite value is greater than JZ-‘-{, where n
18 the number of non-leaf nodes in the tree., This motivated us to
search for strategies which reduced the cost of searching this '"tree-

pruning" space.

The exponential nature of the dependence was based on the "indepen-
dence" of the operation on each branch, Each branch must be bruned in
all possible combinations with the prunings of other branches, We
searched for a method which would decide how short any one branch should

be, regardless of the remaining branches.

The fringe-sets a branch B gives rise to are ultimately set-united
with fringe-sets arising from other branches. We hoped to avoid gen-
erating these "other branch" fringe-sets, We therefore searched for a
criterion which would allow two interchangeable fv sets, A and B, both
united with the same externally generated fv-set, C, to be compared,
Specifically we need:

N(A U C) > N(B UC) for all C,

Such & criterion was discovered, It promises to drastically reduce

the number of fv-sets we need consider in each shape-set, by allowing

— 2 - o = =t

us to discard sets like A, which are known to be no better than a

set, B, which we retain,

Tree Pruning Example:

We begin with: /Q

& maximal alg-tree,

All its prunings are:

AN
A
9
A

i Do &

94

We compute C(d), where d is the distance from the leaves of a
node x in a binary symmetric tree,

(C(d) = C(x)).
We get
e¢(d) = [C(d-1)]% + 1

€c(0) =1
In contrast, the number of intermediate nodes in a binary symmetric
tree of height d is f(d), where

f(d) = 26(d-1) + 1
f(0) = 0
Here, the height of a symmetric tree is the distance from its

root to any of its leaves; intermediate nodes of a tree are noneleaf

nodes. The number rf operators in an expression equals the number of

intermediate nodes of that expression's parse-tree.

f(a) d c(d)
0 0 1
1 1 2
3 2 5 (Our example)
7 3 26 = 5% 4 1
15 4 677 = 26% + 1

We will show that
C(d) > 2x*[f(d=1) + 1] for all d > 2
and, since
f(d-1) + 1 = 1 + [$(d) - 1)/2 = [f(d) + 1]/2

that
C(d) > 2x*[#(d)/2] = (/2) **f(d)

e » 3 - TR

A—

95

Proof: by induction on d.

Case: d = 2,
C(2) = 5. P(d=1) = f(1) = 1, 2%*(f(d=1) + 1) = 2¥*2 = &
C(d) mC(2) = 5> &= 27[F(1) + 1] = 2¥*[f(d=1) + 1]
Case: d> 2, Assume the conclusion for d - 1,
c(d) = [c@-11% + 1> [c@-1)12 > [2*(f(e-2) + 1))?
C(d) > [2%*(f(d=2) + 1)]% = 2¢*[26(d-2) + 2)
20(d=2) + 2 = [26(d=2) + 1] + 1 = f(d=1) + 1

therefore
C(d) > 2x[f(d=1) + 1]
holds for all d > 2,

Thus, 1f w = the number of operators in an expression, we will need
to investigate somewhat more than

20x[(wH1) /2]

tree prunings,

The comparison technique motivated by the 'maximal alg-tree" al-
gorithm can be profitably applied to the 'leaves=-in" algorithm, The
effort required by the leaves-in algorithm is very similar to that
required by the maximal alg-tree algorithm, It can be calculated as
follows:

Let D(x,S) = the number of alterna:ive alg-trees rooted

at x with root=-shape S,
Then D(leaf,S) = 1, for each root-shape S,

At a non-leaf node, x, this number depends on the number of
EEPT's with root-shape S, as well as the number of alg-trees in shape-

set S1 of deecendant node xi.

When we choose EEPT K which matches E at x, a (shape, node) pair
is determined for each leaf of K rooted at x, Let these pairs be

(SKI’XK])"'°’(SKJ’XKJ)

96

The number of combinations, each representing a possible
alg-tree rooted at x choosable in this way is:

’1‘ D (Xeq»5yy)

S e y—

Thus
D(X,S) -fo 111 D(Xy 0Sg) + 1
vhere L indexes the EEPT's with root-shape at S matchable to E at X, '
The term "+.'' arises from the need to consider n(x) a member of
each shape-set, representing the computation of an array holding the

result of x.

Let us assume that each EEPT K is a single-operator binary
tree, so that its two leaves ceoincide with the sons of x when
the EEPT is rooted at x,

Let us further assume that, for each shape S, there exists only
one EEPT having a root-shape equal to S,

Then D(X,S) = D(XI,SKI) * D(XZ,SKZ) + 1

where X and x2 are the sons of X.

Assuming that the tree is symmetric, and that

D(X,S,) = D(X,S,) for all shapes S,, S

j 1

ve hrve: D(X,S) = D(X,,S) * D(X,,S) + 1,

3

D(lea.f,S) = 1
or, in a symetric tree containing W intermediate nodes

D(X,S) > 2%*(W/2)

CHAPTER IV

Introduction

Chapter III demonstrated that the cost of choosing an optimum
compilation of a given matrix arithmetic expression appears to grow
exponentially with the size of the expression, The present chapter is
devoted to demonstrating a result which reduces this exponential
dependence on the expression-size to linear dependence, The result,
called the "comparison theorem", allows two interchangeable fv-sets

(and hence, the alg-trees they represent) to be "compared",

Each alg-tree rooted at x was retained, in the leaves-in algorithm,
to allow it to become a part of a "larger" alg-tree. The number of
arrays this larger alg-tree requires depends not only on the alg=-tree
rooted at x, from which it was generated, but on the alg-trees rooted

outside x which are also part of the larger alg-tree,

Suppose alg-trees A and B are both members of G(S,x). Then when-
ever A can be parallel connected to some EEPT which matches E at y, some
ancestor node of x, so can B, The number of arrays needed in computing
y via A, together with some alg-trees C rooted at other descendants of
y than x {s n(A U C). N(A U C) is a major component of n(A U C). The
comparison theorem is capable of deciding, by examining only A and B,
vhether

N(A UC) < N(BUC)
without generating all the possible alg-trees C rooted outside x with
which A and B might fuse. The comparison theorem itself gives neces-

sary and sufficient conditions on A and B for the statement:

(1) for all C N(A U C) < N(BUC)

to hold, These conditions are in zpendent of C.5

5The trick of generalizing over a variable to derive conditions
independent of that variable may work for other comparison predicates,
This would suggest its use in exhaustive-searches, Sufficient "structure"
must exist in the space being searched to allow a concept analogous to
"interchangeable fringe-:ets" to exist. Also, the comparison theorem in
other searches may lack power (perhaps only holding between identical par-
tial states) or applicability (perhaps few comparable pairs are ever pro-
duced), ‘lowev.r, when proper conditions hold, it appears to be a powerful
search-space veducing operator,

- Na B B N o i

98

While the quantification makes this predicate independent of C,
its determination would be too time consuming if every C had to be
generated before the predicate could be computed, Thus, we seek a
new predicate equivalent to (1), which does not specifically mention C,

In order to derive a predicate equivalent to (1), but not involving
C, we investigate in some detail the evaluation rule for N(S), where S

is an fv-set, S is a set of integers (possibly including repetitions),

Si. We have discovered that the function N(S) = max (Si + 1 - 1), vwhere
<1
S£>0
S1 Z'Si+]. N(S) is then the maximum of a set of terms, g(S,i), where
g(S,1) =8, +1 -1, 1< 1A Si > 0. Not all these terms contribute

i
directly to t.e maximum, Some, where S[il] = 8[12], merely act as place=

holders, increasing the value of the index, i, but are themselves smaller

than another term. In other words,

1f sj - st, then g(S,j) = g(5,§+1) - 1 < g(8,3+1).

Hence, miX(g(S.i)) > g(s,3).

{2 S1+1 is not summarized

in the term function, g, and must be handled separately,

Furthermore, the side condition requiring S

We introduce a different method of computing N(S), which eliminates
both the need for the Sy Z.Si+]
“{mportant terms" of the g(S,i), i.e., those which may contribute to
the maximum, They are characterized by S, > § The new method of

i i+1°
computing N(S) makes use of & new set of terms, f(S,v) = I(S,v) +v = 1,

side condition, and emphasizes the

Rather than an index, v is a 'value'", an integer which may be found
in the set S, I(S,v) = the number of elements S, 2 Ve 1(S,v) incor-

porates the properties of the ordering condition S1 > S It fure

i+1°
thermore serves to give the index of the "important term" i whose

S1 = v, Its extensions to values v not occurring in S introduces new

" "
unimportanc" terms (where Si >v> Si+]

making the definition of £(S,v) conditional on v> 0 and I(S,v) > 0,
so that £(S,v) = 0 where these conditions fail to hold, N(S) can be com=

), but remair.s manageable., By

puted by unrestrictedly maximizing £(S,v) over v,

s

¥

99

Once we have dccided to use the sequences £(S,v) for the computation
of N(S), we can discuss the effect on N(S) of joining another set Y to

S. Suppose Y is a set consisting of m copies of the integer x. Then

£(S U Y,v) = £(s,v) 1f v > x.
£(S,v) +m 1f v< x,

In other words, joining a new set Y to S increases terms with low enough
values by a constant amount, Except for cases wucn x > Si for all Si, no
new important terms are introduced by the join, When Y is adjoined to
two sets, S and T, we again have
f(SUY,v) = £(S | Y,v) +m 1fv<x
and f(TUY,v) = £(TL Y,v) +m if v< x
Thus, if two sets S and T compare so that N(S) > N(T), it may happen that

for some sufficiently small v, Vo

f(S,vo) < f(T,vo).
Then, by adjoining some Y to both S and T, we can increase the values of
the terms generated by v, in the new sets:

0
£(S U Y,vo) = f(S,vo) +m

£(T Y Y,vo) = f(T,vo) +m

1f the value u which minimizes £(S,u) is larger than Vor then the terms
0 will, for large enough m, be larger than £(S,u), When
this happens, we will have

N(S UY) <N(TUY) for that Y,

generated by v

Example:

S = (41). T = (212),
We must reorder S and T:

S' a (41), T' = (221)

1 g(s,1) g(T,1)
1 4 2
2 2 3
3 5 3

Thus, N(S) = 4, N(T) = 3, so N(S) > N(T).

100

Suppose we adjoin Y = (11) to both S and T and repeat the process

of evaluation,
SUY = (4111), TUY = (21201)

SUuY)'=(@111), (TUY)' = (22111)

i g(S U Y,1) g(T U Y,1)
1 4 2
2 2 3
3 3 3
4 4 4
5 - 5

Now, N(S U Y) = 4, and N(T U Y) = 5. Thus Y has reversed the S - T

comparison,

In terms of the £{S,v) and £(T,v) representation, we have:

v £(S,v) £(T,v) £fSUY,v) £f(T U Y,v)
5 0 0 0 0
4 4 0 4 0
3 3 0 3 0
2 2 3 2 3
1 2 3 4 5

Notice that £f(S,1) = 2, while £(T,1) = 3. So long as there is no
v < 1 for which £(S,v) > £(T,1) (as there is not in this example)
increasing £(S,1) and £(T,1) by a sufficiently large m will insure
that N(T) > N(S).

The following section derives more formally the przdicate equiva-
lent to (1) which does not refer explicitly to C. This predicate is
abbreviated A< B (or B» A), B> A just when, for each integer w> 0,
there 1is an integer v, satisfying w > v > 0, such that £(B,v) > f(A,w),

Following the proofs of the equivalence of B » A and (1), a sec-
tion detailing the application of the comparison theorem to the leaves-
in algorithm is presented, Here, we describe the "interchangeability"
requirement conditions, as well as discussing the theorem's applicability

et

101

to comparisons of n(B U C) to n(A U C), It is shown that both fv-sets
must be members of the same shape-set, as well as satisfying an inclu-
sion condition on their fringe-shape-sets before one of the fv-sets can
be discarded.

The remaining section of this chapter shows the power of the com-
parison theorem, Shape-sets produced during the leaves-in algorithm
from EEPT's associated with the n3 and n3/2 basic algorithms have certain
particularly useful properties, These properties allow advance prediction
of the outcome of many fv-set comparisons between members of the same
shape-set, Because the initial EEPT's satisfy an "equality" condition
on their root and leaf-shapes, we can show that only two fringe-shape-set
categories of fv-sets occur in each shape-set, Furthermore, we can show,
using various properties of the function £f(S,v), that after n(x) is added
to each shape-set of node x, only one fv-set in each category will sur-
vive the comparisons, This serves to place a constant upper-bound on the
number of fv-sets generated at each node, limiting the effort required
by the search to a constant times the number of operators in the given

expression,

102

IV.1 The Fv-Set Comparison Theorem

The letters A, B, and C here denote fv-sets, with S(A), S(B), and
S(C) their fringe sets.

Let I(A,v) = the number of integers j in A such that j>w.

Properties of I(A,v):
1. w>v implies that I(A,v)>I(A,w)
since the set of values in A which are > v contains the
set of values in A which are > w.

2. 1f S(A) and S(C) are disjoint, then I(A U C,v) = I(A,v) + I(C,v).

I(A,v) + v - 1 1f I(A,v)>0 and v>0

Let £(A,v)

0, otherwise.

Let f(A) = max f(A,v)
Theorem 1: f(A) = N(A)
Let A < B mean: Vw 3v [w>0 - wv>0 A £(B,v)>f(A,w)]

Lemma 1: A<B — VC [AUC<BUC]
Lemma 2: A < B - N(A) < N(B)
Lemma 3: —[A < B] -» dC [N(AUC) >N(B U C)]

m

Theorem 2: A< B ¥C [N(AUC) < N(BUC)]
We follow this brief statement of the results of this section with their

detailed proofs.

Suppose A = (A[0],...A[m],A[m+1]=0), with A[1] > A[i+1] >0, for m > 1 > 0.
Properties of A:
1. If v = A[1i] > 0, then dj such that v = A[J] > A[j+1].
Proof: There is at least one j such that v = A(j], namely j=i.
Suppose ¥j such that v = A[j], A[J] < A[j+1].
By construction of A, A[}] = A[j+1].
Therefore ¥j>1 v=A[]].
In particular v = A{[m+1] = 0, contradicting

the assumption that v>0.

R

103

2. If A[j] >v > Al1+1] then I(A,v) = j+1.
Proof: I(A,v) is the number of A[j)'s such that A[j] > v.
In constructing A, we get
A[J]) 2 exactly ,+1 members of A,
A[0],...,A[]].
All of these are > v, so0o I(A,v) > j+1.
v < A[j+1], so v < A[1] for all 1>j+1.
Hence, I(A,v) = i+!,

Theorem 1: £(A) = N(A)

where:
£(A) = max £(A,v)
N(A) = max (A[1])+1,0)
mzi20
A[1]>0 (vhere A is as before)
Let g(A,1) = A[1]+L 1f A[1]>0 and m> 1 > 0,

0, otherwise.

Then N(A) = max g(A,1).

Proof:
1. If A[1] > A[i+1] and m > 1 > 0, then f(A,A[1]) = g(A,1).
Proof: I(A,A[1]) = 141 > 0
1f A[1] = 0, £(A,A[1]) = 0 = g(A,1)
else, £(A,A[1]) = I(A,A[1]) + A[1] -1
1+ 1 +4A[1L] -1
g(A,1)

2. If A[1]) = A[i+1] > 0and m > 1 > 0 then g(A,i) < g(A,i+1)
Proof: A(m+1] = 0, som > {,or m > {41,
therefore, g(A,1) = A[1]+l = A[1+1 1 < A[14+1 Hi+]
g(A,1) <A[i+1] + 1 + 1 = g(A,141)

[}

104

3. If g(A,1) = m?x g(A,j) > 0, then A[1]) > A[i+1] and m > 1 > 0
proof:

If A[L1] —> A[1+1], A[1] = A[1+1].

Also, g(A,i) > 0, so A[1] > 0 and m > 1 > 0.

Then g(A,1) < g(A,i+1), by 2,

But g(A,1) = m3x g(A,J) > g(A,i41). Contradiction,

4. If g(A,i) = qfx g(A,]), then g(A,1) = £(A,A[1]).

proof:
By 1 and 3, if g(A,i) > 0. Otherwise g(A,i) = 0 for
all i, 0 <1 <m, and f(A,A[1i]) = O, since A[1i] = 0
for all 1.

5. ¥v 31 £(A,v) < g(A,1).

proof:
If A[i] > v > 0 for some { such that m >1i >0,

then ¥j such that A[j] > v > A[j+1].
therefore, I(A,v) = j+1, so
f(A:V) - I(A)V)"'V'] = j+V S j+A[j] = S(A,j).
If v < 0 then f(A,v = 0 < g(A,0).
0, so f(A,v) = 0 < g(A,0).

If v > A[0] then I(A,v)

We have: J1i such that g(A,1) = m?x g(A,j), and
£(A) > £(A,A[L)) = g(A,1) = m?x g(A,3).
Vv J1 f(A,v) < g(A,1).
For some V, f(A) = f(A,V) < g(A,1) < mgx g(A,))
Therefore f(A) = m?x g(A,j) = N(A).

V===

105
Lemma 1A: If v > 0, then
if I(A,v) > 0, £{A U C,v) = £(A,v)+I(C,v)

and 1f I(A,v) = 0, £(A U C,v) = f(C,v) > £(A,v)+I(C,v)

proof:
Suppose v > 0.
Then f£(X,v) = I(X,v)+v-] unless I(X,v)=0.
We know that I(A U C,v) = I(A,v)+I(C,v).
Then:
1. Suppose I(A,v) > 0. Then, since I(C,v) > 0,
I(AUC) >0.
Therefore £(A U C,v) ICAUC,v) +v -1
I(A,v) + I(C,v) + Vv - 1.
Also, f(A,v) = I(A,v) + v - 1,
so f(A UC,v) = £(A,v) + I(C,v).

2. Suppose I(A,v) = 0.
Then I(A U C,v) = I(C,v).
case: I(C,v) = I(A U C,v) > 0.
Then £(C,v) = I(C,v)+v-1 = 1(A U C,v)+v-1

= f(A UC,v)
Also, f(A,v)=0,
Therefore
f(A,v)+I(C,v) = I(C,v) < I(C,v)+v-]
< £(A U C,v).

agse: I(C,v) = I(AUC,v) = 0.
Then £(C,v) = 0 = £(A U C,v).
Also, f(A,v)+I(C,v) = 0 < f(A U C,v).

4 il T

106

Lemma 1B: If v > 0 then
f(AUC,v) > f(A,v) + I(C,v)
Proof: I(A,v) > 0v I(A,v) = 0.
1r I(A,v) > 0, f(AUC,v) = f(A,v) + L1(C,v) by Lemma 1A
S f(A U C,v) > £(A,v) + I(C,v)
If I(A,v) =0, f(AU C,v) > £(A,v) + I(C,v) by Lemma 1A
L E(AL C,v) > £(A,v) + I(C,vV)

Lemma 1: A<BoVC[AUCSBUC)
Recall that A < B means Ww gv[v> 0 »w> v> 0A £(B,v) > £(A,w)]
Proof: We must show. assuming A < B, that for each w > 0 there
is a v', w> v' > 0, such that
f(BUC,v') > f(A U C,w).
We know that for each w > 0 there is v such that
w>v> 0and £(B,v) > f(A,w).
Also, w > v implies I(C,v) > I(C,w),
so £(B,v) + I(C,v) > £(A v) + I(C,w),
Case: I(A,w) > 0
Then f(A,w) > 0, so £(B,v) > 0, giving I(B,v) > 0.
LE(AUC,w) = £(A,W) + I(C,w)
and f(B U C,v) = £(B,v) + I(C,v), by Lemma 1A,
so f(BUC,v) > f(AUC,w),

and we may take v' = v,

Case: I(A,w) = 0.
Then f(A U C,w) = f(C,w) by Lemma 1A
f(c,w) < f(C,w) + I(B,w) < f(B U C,w), also by Lemma 1A,
Therefore, f(A U C,w) < £(B U C,w)

and we may take v' = w,
Lemma 2: A < B - N(A) < N(B)

Proof: We show A < B - f(A) < £(B). (Then use Theorem 1.)
A<B

it}

VWEv (w> 0 sw>v>0A £(B,v) > f(A,w)]
S Y@ > 0) AV[E(B,v) > f(A,w)]
f(B) = max £(B,v) > £(B,v)

,?,-‘

ISl SS - e

107

SW> 0 £(B) > f(A,w)
also £(4,0) = 0, and £(B) > 0
oW £(B) > £(A,w)
or f(B) > f(A) = max f(A,w) = f(A,w*), for some w*
Lemma 3: —{A < B] —»dc [N(AU C) > N(B U C)]
—~[A < Bl means qw ¥v [W> 0 A [w> v> 0 - £f(B,v) < f(A,w)]]

Proof: If N(A) > N(B), choose C empty.
Otherwise, for w as in (1) let
m = N(B) -f(A,w)
m> 0, for
N(B) = £f(B) > f(A) > £(A,w)
Take C to consist of m + 1 occurrences of the integer w,
Yy < W f(AUC,V) = f(A,v) +m + 1
and f(BUC,’) = £(B,v) + m +
Wwil> w f(AUC,vl) = £(A,v])
and f(B U C,vl) = £(B,vl])
L f(AUC,W) = f(A,w) + m + 1 > N(B)
N(B) > £(B,vl) = f(B U C,vl) for all vl > w
for all v<w f(AUCwW) =m+ 1+ f(A,w)>m+ 1+ £(B,v) = £(B U C,v)
.. £(A U C,w) > N(B U C)
<+ N(A U C) > N(BUC)

Theorem 2: A < B = ¥Uc[N(AUC) <N(BUC)

Proof: A<B oV [AUC<BYC]
—¥c [N(AUC) <N(BUC)] by Lemma 2
—[A < B] »— V¥c [N(A UC) < N(BUJC)] by Lemma 3
Ve [NAUC) < N(BUC)] -A<B
A< B=¥c [N(AUC)<NBUC)]

Example:

108

Use of the fv-set comparison theorem:

Given A = (3221) and B = (31111),

we investigate whether A » B, or B » A,

We will compute f(A,v) and k(A,v) = max f(A,w), as
W0

well as f(B,v) and k(B,v).

We then need only ask if, for all v > 0, f(A,v) < k(B,v)

to determine if A < B,

v £f(A,v) k(B,v) £(B,v) k(A,v)
4 0 5 0 4
3 3 5 3 4
2 4 5 2 4
1 4 5 5 4

For all v, f(A,v) < k(B,v) .. A< B,

We try A' = (21) , B' = (3)

v f(a',v) k(B',v) f(B',v) k(A',v)
4 0 0 0 2
3 0 3 3 2
2 2 2 2 2
1 2 1 1 2

Here, neither A' » B', since f(A',3) = 0 < k(B',3) = 3
nor B' > A', since f(B',1) = 1 (k(A',1) = 2

Potentially, if enough 'ones' are united with both A' and B',
A' U C will eventually achieve a larger N(A' U C) than will B':

Let C = (11). Then
A'UC= (2111) , N(A'UC) = max(2+0,141,142,143) = 4
B'UC= (311) » N(B'UC) = max(340,141,142) = 3

Of course, N(A') = 2, N(B') = 3, so their "actual" situation

can be reversed,

109

IV.2 Application of the Comparison Theorem to the Leaves=In Algorithm

Each fv-set produc: ! during the leaves-in algorithm ultimately
becomes part of an fv-set which is compared against all other fv-sets
at some node, Fv-sets A which satisfy n{A) > n(B) for some fv-sets
A and B at node x are not chosen as the best method for computing x.
If we had conditions which guaranteed that, for all C, n(AUC) > n(B UC),
and if each C joinable to A by some series of parallel connections
were joinable to B as well, then A would not need further investi-
gation. In particular, we would not have to generate fv-sets AU C
for each possible C, since we would know that an at least equally good
alg~-tree exists: B U C. Thus, A need not be retained in A's shape~-

set at x so that generating all possible joins of A to C's is avoided.

The previous section has shown that if (and only if) A ~ B,
then for all ¢, N(AUC) > N(B U C). We still do not know the rela-
tionship between n(A U C) and n(B U C), however. Furthermore, we must
develop a criterion for the interchangeability of two fv-sets so that
any C joinable to one can be joined to the other. The present sec-
ticn develops sufficient conditions for the application of the compar-
ison theorem in deleting fv-sets from the shape-sets of the leaves=-in

algorithm,

First, we claim, by virtue of Property 1 of an alg-tree, that

two fv-sets A and B which are both members of the same shape-set are

interchangeable. For that alg-tree property shows that, if A can bte

a sub-ulg-tree of some alg-tree, and is a member of G(S,x) then so

can any member B of G(S,x). But G(S,x) is just the shape-set containing
A and B at x, Hence, A and B are interchangeable, if both belong to

G(S,x) for some node x and shape S,

The extension of the comparison theorem to n(A U C) and n(B U C)
requires more thought. Basically, n(A) may equal N(A) or N(A U 1),
depending on whether A's result can occupy an input array of A's
AATAG, or not, This is determine.. by A's fringe-shape set, The
problem is that A may satisfy N(A) > N(B), while n(A) < n(B), for

6Assoc1ated alg-tree algorithms, See Section 3, Chapter III.

110

example if n(A) = N(A), while n(B) = N(B U 1), The method used to
Jjoin fringe-shape sets a_lows determination of conditions
under which n(A U C) > n(B U C) for all C,

Let C be an fv-set rooted at some node which is not x or a
descendant of x, We say that C is an outside-x fve-set, If A is a
member of some shape-set of x then when C is joined to A, the fringe-
shape sets of A and of C set-unite, This fact allows us to derive
conditions on the fringe-shape sets of A and of B, two fv=sets of the
same shape-set, which guarantee that, if A » B, then n(A U C) > n(B U C)
for all C,

Let F(C), where C is an fv-set be C's associated fringe-shape set,

Theorem: If A » B, and F(B) D F(A),
then n(A U C) > n(B Y C) for all C,

Proof: F(A U C) = F(A) U F(C), by the steps of the leaves-in algorithm,

Therefore
F(BUC) = F(B) U F(C) DF(A) UF(C) = F(AU C)

Hence, i{f A U C occurs in shape-set S, then 1f S ¢ F(A U C),
Se F(BUC). Therefore, n(AUC) = N(A U C) implies that
n(B UC) = N(B UC).
Case: n(AUC) =N(AUC), Then
nBUC) =N(BUC)<:u(AUC) =n(AUC)
son(BUC) <n(AUC),

Case: n(AUC) =NAUCUT) Then
n(BUC) XN(BUCU1)<NAUCUI)
son(BUC) <n{AyC)

In summary then, if A and B belong to the same shape-set, and A » B,
and F(B) D F(A), then A may be deleted from the shape-set without
compromising the optimality of the compilation of the given expression
into AATA's,

T R S0 e e DTG - S MR SRRSO A AL 2 e % v & SASA B oL ALk SRl Su) M

1m

IV.3 The Leaves-In Algorithm, with Comparison Theorem

The following algorithm is to be applied to the nodes of the
expression's parse-tree, E, in the following order. It is to be applied
to a node x only after being applied to each of the descendant nodes of

x, taken in any order,

(1) If x is a leaf of E, then set G(S,x) = [(0)] for
each S, (0) is an fv-set constant, containing no

shapes in its fringe-shape-set, Exit,
(2) 1Initialize each shape-set G(S,x) to the empty set,

(3) Find an EEPT e which matches E at x, Suppose S 1is the
root-shape of e, Find, for each leaf 1 of e, the node

Li of E corresponding to i in the match of e to E at x,

(4) Select one member, for each i, of G(leaf-shape(:l.),Li).
Join the selected combinations of fv-sets, using fv-set-
join to combine the fv-sets, and set union to combine
their fringe-shape sets, Add the resulting augmented
fv-set to shape-set S,

(5) Repeat (4) for each distinct combination of fv-sets
selectable by (4).

(6) Repeat (3)-(5) for each EEPT,

(7) Calculate n(x) = m{n n(Ai), vhere A:I.
fv-sets in any shape-set G(S,x). Adu the fv=-set
(n(x))S to each shape-set G(S,x). Here, (n(x))S is an

ranges over all

fv-set containing the integer n(x) only, and whose
fringe-shape set contains S. Replace G(},x) with {n(x)).

(8) Compare each pair of fv-sets A and B in each shape-set
G(S,x). If
A > B, and F(B) D F(A)
then delete A from G(S,x).

ma L CCRY TR

112

The root of E will be the last node visited by this procedure,
Along the way records can be kept, describing which fv-sets gave rise
to each retained fv-set., The identity of the best alg-tree (fveset)
available for computing node x should be associated with some copy of
(n(x)), say that which replaced G(Q,x).

Apply the following algorithm to isolate each alg-tree whose
AATA is part of the optimum compilation.

The following algorithm is applied first at the root of E,

AATA(x): (1) Locate G{1,x). Collect, into set N, all
the nodes included in the alg-tree which G(Q,x)'s
single member represents, This collection is
accomplished by following the records of fv-set
generation until the fringe-set nodes are
reached, Let the fringe-set nodes be Fi'

(2) For each i, compute A.\TA(Fi).

(3) Print N, perhaps with additional information,
indicating the EEPT rooted at each node in N,
and other information which 1is recorded in the
fv-set tags., Exit,

1V.4 Leaves-In Algorithm Effort Requirement

In the followirg section, we demonstrate that, by restricting the
given set of EEPT's appropriately, the effort required in applying the
leaves-in algorithm to any given expression, E, is bounded by a linear
function of the number of operators in E, We demonstrate this by
showing that the comparison-and-deletion step of the leaves-in algorithm
leaves no more than 2 fv-sets in each shape-set, Since no more than
K shape-sets will appear at each operation node of E's parse-tree, no
more than 2*K fv-sets occur at any node. Therefore, at each node, no
more than (2*1()m fv-sets will be generated, where m > number of leaves
of any EEPT, This number is reduced to 2*K by less than (Z*K)(z*m)com-

pariscu-and-deletion steps., Therefore, the operators of E, W in number,

i

113

generate approximately W * [(2*)™ + (2*K)(2*m)] steps., Since K and m
are constant with W, this shows that the effort is bounded by a linear
function of W,

The critical step in our derivation of the linear effort-bound
lies in bounding the number of fv-sets in any shape-set by 2, It
is at thic stage that we must impose a restriction on the given
EEPT's.

Suppose we follow the steps of the leaves-in algorithm to a point
just after all fv-sets have been computed for a given node. The next
step involves computing

n(x) = min n(ai)

for all fv-sets a, in any shape-set., The special fv-set (n(x)) is then
added to each shape-set, representing the '"null" alg-tree, a result
stored in an intermediate array, We can show, under some circumstances,
that (n(x)) and the comparison theorem reduce the number of fv-sets

in each shape-set to 2, at most, If we consider only a finite number

K of shapes, and hence shape-sets, this limits the number of fv-sets at
each node to a constant 2*K, Ultimately, this will let us show that

if the expression contains W operators, only (2*K) * W fv-sets are re-

tained, at most, We thus bound the search effort.

We require (and will assume throughout this section) that all
EEPT's satisfy:

Let root-shape(e) = S and leaf-shape(i,e) = Ti’
for each leaf 1 of e,
For all leaves 1 of e,

If S 4 T,, then either S =Q or T, = Q.

The purpose of this restriction becomes clear in Theorem 1,
Basically, the restriction guarantees that only one shape in each
fringe-shape set can ever be relevant, regardless of the set-unions
an fv-set enters, For each shape-set G(S,x), that relevant shape in
each of its member's fringe-shape sets is S, Furthermore, it ensures
that the special fv-set (n(x)), which is added to each shape-set,

114

can be 1sed to delete any fv-set in that shape-set, Here n(x) = min n(A)
for all fv-sets A in shape-sets of node x, The restriction thus effec-
tively relaxes the requirement that F(B) D F(A) before B may be deleted
by A, Theorem 1 partitions each shape-set into two classes, The

remaining theorems show how (n(x)):
(1) replaces one of these classes, and

(2) leaves only elements B,C in the other such that B » C
and C » B,

Thus, we show that only one element remains in each class.

One final comment, The restriction we impose is light enough that
all EEPT's generated by the n3 algorithms we studied satisfy it., Fur-
thermore, most of the n3/2 algorithms also produce acceptable EEPT's,

The theorems we prove here are thus not vacuous,

Theorem 1: If A 1s an fv-set in shape-set G(S,x), then F(A) as computed
by the leaves-in algorithm satisfies:
If S #0, and T £ S then T { F(A).

Proof: By induction on level(x). Level(x) is an integer defined for

each node x in the parse-tree E as:

level(x) = 1 + max level(xi), for all sons Xy of x,

and level(x) = 0 1f x has no sons (is a leaf of E),

When level(x) = 0, x is a leaf of E, and the fringe-shape-

sete of all fv-sets A of all leaves are empty. Therefore,
T ¢ F(A).

When level(x) = I > 0, we assume the the rem for all nodes
y such that level(y) < level(x). In particular, we assume

it for all descendants x1 of x,

Each fringe-shape-set F(A) in shape-set G(S,x), S £ Q, is
generated by F(A)= Y F(Ai)’ where F(Ai) is a fringe-shape-set
in a shape-set G(Si, xi) of some descendant node X, of x,

Furthermore, x, is the jth leaf of the EEPT e rooted at x

i
which generates F(A)., Also,

et e P " Ted T .

.,/..-'

115

root-shape(e) = S

leaf-shape(j,e) = S, or (by the EEPT restriction,)
= (]

1f leaf-shape(j,e) = S, then F(Ai) is chosen from a
shape-set G(S,X,) such that § 4Q.
But x, is a descendant of x, and by assumption, a

i
fringe-shape-set in a shape-set G(S,xi) such that

S 4 QO satisfies
1£f T4AS then T { F(A)).

Also, if leaf-shape(j,e) = (), F(Ai) comes from shape-
set G(n,xi). But this shape-set's members all have
empty fringe-shape-sets, so

T 4 F(A)
Therefore if T £ S, then T ¢ F(A,), 80

T ¢ y F(A;) = F(A)
A following step of the leaves-in algorithm replaces
shape-set () at node x with the fv-set (n(x)) = X, When
added to shape-set (3, F(X) = . Alsc, X is adjoined to
shape-set G(S,x), with F(X) = S, After this step, if
T { S 4 1, and if B is an fv-set in shape-set S, then
T ¢ F(B).

Thus, the theorem is true for nodes x such that

level(x) = I, and hence true for all nodes x in E,

Corollary: If A is an fv-set in shape-set G(S,x), and S ¢ (),
then F(A) is either empty, or contains only S,

Prooft 1If F(A) contained T & S, it would violate Theorem 1 of
this section,
Thus, we can divide the fv-sets A in shape~-set G(S,x) into two dis-
joiat classes, those such that
F(A) = {S]
and those such that
F(A) = §

The first class will be called "l-class", the second "0-class",

116

During the leaves-in algorithm, for each node x we compute n(x),
and adjoin (n(x)) to each shape-set of x, X = (n(x)) becomes a part of
l=class of each non«] shape-set, We will show that all members B of
a given l-class satisfy B» X, Since B and X are both members of the
same shape-set, G(S,x), and F(B) = F(X) = S, B is deletable by X, There-
fore, after the deletion, only one member, X, is left in each l-class,
Similarly, we can show that only one member is left in each O-class.
This demonstrates that in each shape-set, only 2 members remain after

the comparison-and-deletion step of the leaves-in algorithm,
Theorem 2: If n is an integer > 0, and B an fv-set, then if
n < N(B), (n) < B,
Proof: N(B) > n implies that
Vv £(B,v) > n,
Also, (n) has the property that
f((n),w) < n for all values v,
since if w> n, I((n),w) = 0
so f((n),w) = 0<n
and if n > w> 0, I((n),w) = 1
so f((n),w) = I((n),w) = 1 +w=w<n,
Of course, 1f w= 0, £((n),w) = 0 < n,
Therefore, ¥v,w £(B,v) > n> £((n),w).
In particular, for each w> 0 3v such that
w>v> 0 and
£(B,v) > f((n),w)

therefore, B » (n).

117

Theorem 3: (n(x)) < A for all fv-sets A in any l-class,

Proof: By definition n(x) = min (n(Ai)) for all fv-sets A, at node x.

i
Therefore n(x) < n(A) = N(A) for all A in any l-class,

Therefore (n(x)) < A, by theorem 2,
Theorem 4: If B 1s an fv-set in O-class, and B » (n(x)), then B
will be deleted.

Proof: F(B) is empty, by definition of 0-class. The 1-class of
the shape-set containing B contains X = (n(x)), and hence
both (n(x)) and B belong to the same shape-set, Also,
F(X) D F(B) = f. Therefore, B is deletable by X.

Hence, 1f B » (n(x)), B will be deleted by the leaves-in
algorithm,

Suppose B is an fv-set of 0-class which remains after the deletion step,
Lemma 1: N(B) < n(x).

Proof: If N(B) > n(x), then B » (n(x)) by Theorem 2, and
would be deleted, by Theorem 4,

Lemma 2: N(B U 1) > N(B).
Proof: n(B) = N(B U 1), since B ¢ O-class
n(B U 1) = n(B) > n(x) > N(B).

Theorem 5: If N(C U 1) > N(C) then £(C,1) = N(C),
and N(C U 1) = N(C) + 1,

Proof: N(C) = max f(c,v)
NCU 1) = max £(C U 1,v)

f(CU 1,v) = £(C,v) + I(1,v)
= f(C,v) 1fv> 1,

= £(C,1) + 1 else.
SV v> 1 £(CuUl,v) = £(C,v), while

£(C U 1,1) = £(C,1) + 1

LS

118

If £(C,1) < N(C), then:
1 + £(C,1) < N(C).
oWy £(C U 1,v) < N(C),
or N(C U 1) < N(C) contradicting the theorem's hypothesis,
Therefore, £(C,1) > N(C).
But £(C,1) < max f£(C,v) = N(C)
so £(C,1) = N(C).
Also, for all v, £(C,v) > £(C U 1,v) -1
In particular £(C,v*) > £(CU 1,v*) - 1 = N(CU 1) - 1,
so N(C) + 1> N(CU1)
also, N(C U 1) > N(C), so N(C U 1) > N(C) +1

giving N(C U 1) = N(C) + 1,

Theorem 6: If N(C) = f(C,I) = f(B,l) = N(B),

Proof:

then C» B and B » C,
£(C,1) = N(B) = max f(B,v)
Therefore, £(C,1) > £(B,v), for all v
Thus, for all v> 0, w = 1 satisfies
v>w> 0 and
f£(C,w) = £(C,1) > £(B,v).
Therefore C > B,

Similarly, because f(B,1) = N(C), B> C,

Theorem 7: If C remains in O-class after the deletion step,

N(C) = n(x) - 1, and
N(C) = £(C,1).

119

Proof: By Lemma 2 N(C U 1) > N(C), so

by Theorem 5 N(C U 1) = N(C) + 1.

Also, by Lemma 1, N(C) < n(x),
so n(x) < N(C U 1) = N(C) + 1,
We have N(C) < n(x) < N(C) + 1 for integers
N(C), n(x), so
N(C) = n(x) - 1,

Part 2 follows directly from Lemmas 1,2 and Theorem 5,

Theorem 8: If B and C remain in 0-class after the deletion step,
B» C and C» B, Therefore one may be deleted,

Proof: By Theorem 7, N(B) = n(x) - 1 = N(C).

Also by Theorem 7, N(B) = £(B,1) and N(C) = £(C,1).
Therefore by Theorem 6, B» C and C » B,

Since both B and C are in 0-class, they are in the same
shape-set, and F(B) = F(C) = f.

Therefore, one may be deleted,

An immediate consequence of Theorem 8 is that only one fv-set
remains in O-class after the deletion step. Also, Theorem 3 has shown
that only one fv-set rcmains in l-class. Since 0-class and l-class of
a shape-set together cover that shape-set, only 2 fv-sets remain in

each shape-set after the deletion step.

CHAPTER V

V.1 Summary of Results

We have described a transformation, loop-fusion, on programs. If
X is a sequence of two loops satisfying certain conditions on the sets
of variables accessed, loop-fusion(X) is a single loop, computationally
equivalent to X, which executes no more operations than X, Such equiva-
lent, time-conservative transformations, applied to any program, yield
new programs, with different characteristic space requirements, which
are valid alternative programs for the programming task performed by the
given program, We can search the space of such programs for one which

requires least space,

We present two sets of alternmative programs for computing the matrix
assignment statements C « A * B and C « A + B, Each set of programs
forms the basis for an "equal-time" collection of algorithms for evaluating
matrix arithmetic expressions in + (matrix addition) and * (matrix multi-
plication) on square N-by-N matrices, Each compilation of a given matrix
arithmetic expression into sequences of algorithms in a given equal-time
collection of algorithms requires the same amount of execution time. These
equal-time collections are derived by loop fusion from the sct of algorithms
forming the basis for the collection,

An algorithm for choosing that compilation of any given matrix
arithmetic expression, E, which uses the fewest 2-arrays7 is presented,
This algorithm, called the leaves-in algorithm, uses the properties of
loop-fusion to "tailor" algorithms, selected from an equal-time collection
C, to fit each part of E, It searches over all possible compilations of
E into algorithms of C, potentially generating & number of algoritims
vwhich is proportional to V/E-)**W, where there are W operators in E,

A general technique is then presented for reducing the number of

cases vhich an exhaustive search for an optimum alternative must examine.

A 2-array is a set of variables capab.. of holding one N-by-N
matrix,

12}

Such searches can gensrate altermatives by assigning values one dy one

to the state-varjables wvhich describe an altev:ative. Usually, the value
of the criterion function of a partially-specified alternative cannot be
computed without completirg the specificatior. in all possidle ways. The
given technique allows scme partially-specified altermatives to be rejected
vithout generating all completions, by guaresnteeing that for every com-
pletion C U A of ome such altermative, A, there 1is & completion C U B

of another, B, vhich 1is better than C U A, Thus, generating all the com-
pletions C U A of A is umnecessary in the search for an optimum-valued
alternative,

This techaique is applied to the search performed by the leaves-in
algorithm, Here, an “alternative™ is an algoritha for evaluating the
entire expression, E. The value of the criterion functiom, N(8), of an
alternative 8 is the number of 2-arrays needed by S, A partially-specified
alternative A i{s an algoritha for evaluating soms subexpression E(A) of
B. A predicate P(A,B) 1is defined on partially-specified altermatives A
and B, equivalent to

¥ NAUC)2N(BUC),

vhere A U C 1s a completion of A, and B U C 1s & completion of B, derived
by using B instead of A in subexpression E(A). P(A,B) may be evaluated
vithout generating all alternatives C. Vhen P(A,B) 1is true, A may be
rejected without investigating all its possible completions, for each is
known to be no better (i.e., no smaller) than some completion of B,

Using predicate P(A,B) to reject alternatives gensrated during the
leaves-ia algoritha, & modified leaves-in algorithm is produced., This
modified algorithm investigates only k * W alternatives, vhere W is the .
aumber of operators in the expression E, and vhere k does not depend on W,

Ve have studied a set of program alternatives for implementing one
class of matrix arithmstic expressions, searching for a program wvhich
uses fewest 2-ariays vhile never computing the value of any element of a
subexpression more than once. We must admit that not all programs sat-
isfying these criteria have been investigated. In particular, we have

studied only those programs derivable by loop fusion. Other methods

of constructing algorithms for evaluating matrix srithmetic expressions
may exist, possidbly yielding algorithms which use fewer 2-arrays than
those the leaves-in algorithm can discover. Nevertheless, searches over
“program technologies™ like that which the leaves-in algorithm investigates
are interesting in their own right, and may well yield ucav-optimm

results,

Two types of generalization of our work come to mind. Certainly,
different optimisetion criteris could bc used, in particulsr, allowing pro-
grem combinations which are not minimum-connection-time, ard optimizing some
combination of program execution time and memory spacn, Also, many gener-
alizations of "matrix arithmetic expressions” as we have defined them
appear interesting. Ve feel that it may be worthwhile to indicate some
of the possible expression generalizations which our current technique
cannot handle,

First, we could consider expressions containing more than one occur-
rence of a particular subexpression. The data flow diagram of such an
expression contains nodes having more than one incident line, The pres-
cence of such nodes makes n(x), for some nodes x in the diagram, depen-
dent on more than n(xt) for all descendants x, of x,

For example, consider:
x/ y
v z
the value of n(x) depends on whether y is to be computed before, or

after x, If before, then the common node, z, must be computed before
w., If after, the orders {vw;z] and [z;w] are both possible,

Secondly, we could allow use of the associative laws of matrix

addition and multiplication by relaxing the requirement that an expres-
sion be fully parenthesized, Here, each possible association could be

123

generated, and the leaves-in algorithm could be applied to each resulting
binary parse-tree, A more elegant, less time-consuming search should
be devised, however,

Thirdly, we could consider alloving the variables of the expression
to be rectangular matrices vwith the usual conformability requiremsats
imposed, This generalization we believe lies in the scope of the leaves-
in algorithe, The major requirement is a generaliszation of the definition
of fveset to allov arrays of various siszes to hold the different inputs
to an associated alg-tree algoritha,

Other programming language coustructs far different from matrix
arithmetic expressions could conceivably be technologically optimized,
These constructs must be such that several alternative implementations
are available for each instance of the comstruct,

Ons of the more interesting of such examples, in wvhich the available
alternatives are particularly clear, concerns comstructs vhich specify
paralleliom, These constructs indicate to & compiler that certain opera-
tions can "proceed in parallel™, i.es., that any ordering of these opera-

tions which preserves the relative order of the operations in each “parallel

sequence” yislds equivalent results, These constructs are lntended for en
enviroament in which more than one procesior is available, However, vhere
only one processor exists, they permit the compiler to chooss a space-
minimal ordering of the given operatiomns,

An important class of problems, vith consequences for program optim-
isation, concerns the development of transformations vhich generate pro-
grames computationally equivalent to a given program. Such transformations
may involve change of data representation, change of sequence of certain
operations, or more drastic changes, making use of mathematical properties
of the programming task description of the task the program implements.
We have presented one such transformation (loop fusion), We have made use
of another, re-ordering of operation sequences, in generating the basic

n’ algorithas for matrix addition and multiplication, uther transformations

exist, Notably, we can qonlidar developing techniques for compiling func-
tions, described as collections of recursive subroutines, into efficient

124

{terative programs,

At another level, there may well exist program commmication alter-
natives vhose valus can best be investigated by an exhaustive search,
For example, variadbles in a program ma) exist vhich the programmer hae
allocated separately, for conceptual reasons, but wvhose contents are
never relevant simultaneously, Compilers could locate and combine these,

One could also conceive of automatic choices being made of alter-
native numerical procedures for various phases of certain programs,
A search procedure, in conjunction with an automatic error analysis, may
be useful, to determine the actual sensitivity of the results to small
perturbations in the input values, Such an "experimental"™ approach, com-
bined with alternative numerical procedure trials, might yield smaller
error bounds than can conventional human-implemented numcrical analysis,

The general problem of program optimization is difficult for several
reasons, First, the number of possible programming approaches to meany
interesting programming tasks seems to be extremely large. The size of
this number prohidbits an exhaustive seneration of each possidble program
capable of performing the given task, Second, the possible programming
alternatives for a given task are difficult to determine. This {s partly
the fault of the languages in which these tasks are prograsmed. These
languages often require that the programmer specify more details of the
procedure to be followed than are essential to the task to he performed,
Third, a given programming task must be optimally programmed mot once,
but many times, Each time that task appears as a subtask of some larger
programming task, the program which implements it optimally sust change

to best fit the new context. Thus, one cannot hope to produce an optimized

program for all task contexts. One could profitably deveslop algorithms
for rapidly finding such optimm programs. The hope of producing such
programmer-aided algorithms motivated this study,

The work reported here has barely brushed the surface of the study
of efficient programs, We have gained some insight into only a few of
the devices programmers use so freely in producing their programs, The

T T i

DEE—— . Jem : B I

123

possibility of reducing programmer effort by providing prograsming sl-
gorithms, rather than rules-of-thumb, motivated our study., We feel

that many additional interesting and useful programmer-aiding algorithms
remsin to be discovered,

R~ -~ - B s I als

APPENDIX 1
1, W d' i &

The following algorithm, due to 8. Winograd, can also be used to
compute the matrix assignment statement C ~ A * B. Ve present a deri-
vation of the algorithm, and the counts of the number of scaler addi-
tions and multiplications it requires.

n
c".tfl XY vhere x,® A“ and v .U'

yields C = A * B, vhere A, J and C are (square) matrices.

8 _gven:
n n/2
Exy = & (%, 179.1% %X9,¥0)
(o1 V1 oy 24-1721-1" "2472¢

(kg% Y201 Raq 1% Y20) = %90 1Y2141% Z20¥2¢* %21%21-1% Y21721-1

n n/2
Therefore, £ xy = T (x,+y, ,)(x, .+vy,)
e L R T AR T8 Ly TH MR]
n/2 n/2
- 8 X..X - z ’ , .
(o] 2172141 (o1 24724-1

Of Che terms on the right, the last two need be computed
only once for each row of A or column of B. Thus, the

operation counts are:
. piw B n,n
* a*eaGed
2
S RLCES

or ¥: n3/2 + nz
+: 3n3/2 + n2

126
8 odd:
n (n-1)/2
LTS Ra v E Ot v) gyt Xy
(n-1)/2 (9'11:)/2
| PP il - , , el’
e T TR B S T TR

The operation cownts in this case ere:

o1 ol ¢ ale(n-1)/2 + w251 4 L22),
+; .2 + nzﬁ!h%u- + n*{n-1)

or *3 n3/2 4 33/2 - n
+: 30’/2 » azlz -n

RO W W RS STIIIe AR -y

127

2, Additional Shapes Defined for Winograd's Algorithm:

2r - double row - All [2I,x) and [21-1,x]
for 1 < x< N

2¢ - doudble colum - All (x,21] and (x,21I-1] satisfying 1 < x < N

3, Va ons on W rad's Algorit n

The variations on the basic algorithm presented here by no means
exhaust the usetul versions of the 13/2 matrix multiplication algorithm,
The introductions of the shapes 2r and 2c suggests a still larger class
of algorithas with EEPT's like:

*2r *2r
r/ \0 ‘ zr/ \0 and corresponding EEXPT's
for 2¢c and c,
(1) 1 <N
U(1)] «~0 At Q) *c
K 3.! Bt ¢ / \
U(I) + ~A[IK]) *A[LIK-1] C:c 9] c
J 2N
Veo
K Eol
V + «3[K,J] * B(K=1,J)
I =N
c{1,J]) ~-U(1]) - V
K 30!!

ClI,J]) + « (A(L,K] + B(K-1,J]) * (A(I,K-1] + B(K,J])

128

I-+N
V[I) «0 As 2¢
U[1]) «0 B: 2x qu‘,
J N (1]
Cc(1,J]) «0
i
I N
U(I) + «A[I,K) *A[I,K=1)
VII) + «B[K,I] *B{K=1,I]
J N
C(I,J) + « (A(1,K] + B(K=1,J]) * (A[I,K~1] + B{K,J])
) QY |

J N
C(1,3) - «U(1) + V[J)

4. Combining two copies of (1) to compute B «D * (A * B)s

I N
U1} «~0
xin
U[I) + < A[I,K] + A[I,K=1]
J =N
Veo At Q
K -“-’ol Bt ¢
V 4+ 3K, J] * B(K1,3) Ct ¢
1 -0
C(1,)) ~=-u(I) -V
k3
C(1,J) + « (A[I,K] + B{K=1,3]) * (A[I,K=-1) + (K, J))
I N
1) ~0 D: 0
4 -zol Ct e
W{I) + «D[I,K)* D(I,K=1] | 1
J R
Xed
x 3
X + «C[K,J] * C[K-1,J])
I -9
B{I,J] =~ W[I) -X
x 3
B(I,J] + « (D(J,X] + C[K-1,3])) * (D[I,K-1] + C[K,J])
W—

AFPEMDIX I1

Jesvee-In Algorithe in APL

We present hers a program, written in AL, vhich demonstrates the
"leaves-in" algorithm, This algoritha describes how a given expression's
parse-tree cam best be computed by alg-tree associated algorithms (AATA's),
Bach AATA 1is grown by parallel commection from & set of EEPT's, represen-
ting a set of elementary algorithms, which the user supplies. The "best”
method of computing the given expression 1s that composition of AATA's
vhich uses the fewest arrays for commmicating results from one AATA to
iuputs of another,

The inputs to the program desecribe the KEPT's tree structure, and
the shapes and operators associated with their nodes., Also, the struc-
ture of the expression's parse-tree 1s given, The result is & list of
alg-tress, vhoss AATA's are a series of elementary algorithms which, exec-
uted in the given oxder, produce the required expression valus, Each alg-
tree 1s described by listing the nodes in the tree which it includes, the
EEPT rooted at each node, and the intermediste array assigned to hold each
input, and the result, All EEPI's listed in one alg-tree are to be fuced,
The root of the alg-tree is always listed first, and is associated with
the number of the intermediate array which 1is to hold the AATA's result,

As an example, we describe the EEPI's of the I’ algorithms, amd
their optimal assigmment to the parse-tree of the expression (A'B) * (C*D).

EEPT's: (4)] (2) 3)
r/.r\n 0/*\ c/*r\ 4

Parse-Tree: Result:
a single alg-tree:s

I\ AW
/N N\ /\ /N

x

APL is a conversational language, developed by K., E. Iverson, L, M,
lrudi and R, H, Lathwell for the IBM 360/50., The language is described
in (2],

N

The internal structure of the APL program is notable for its use of the
effort-limiting results we presented. The "core" of the mathod lies in
the comparison of generated fv-sets, We retain a "current valus" of n(x)
throughout our generation of fv-sets at node x, Since we know that n(x)
is the only element of the 1-set of each shape-set, we do not copy it.
Furthermore, space for only one member of each non-} shape-set (the single
retained O-set member) is reserved, As an fv-set is crented, it is tested
to see if it reduces the current value of n(x), and, if it is a O-set mem-
ber, to see if it will be retained in the O-set. These comparisons never
require the actual fv-set comparison algorithm., Because of the way we
represent fv-sets, and retain values n(A), for certain fv-sets A, the com-
parisons are between single integers omly,

External Representations:
(1) Inputss

(a) Tree stru:ture:
The structure of a tree is input in a single vector

called 'VATHERS', FATHERS[1i] = j, vhere node i has father
J in the trce, In labeling the nodes of a tree, the father
of 1 must be given a number greater than i, so that FATHERS
must satisfy FATHERS[i]1i. Furthermore, left siblings must
be numbered less than their right siblings, (If these
rules are violated, the results are unpredicatable,)

The FATHERS-entry for the root of the tree is not
part of the tree-structure. It must be present, but its
value carries non-structural informationm,

(b) Node labels:

The internal label of a node i, is given by a code
number, K:I.' in the ith position of vector OPERATORS,
Codes are used to indicate the operator (* or +) for
intermediate nodes, or, in the case of leaves of EEPT's,
to indicate shape (1, r, or c). Since the root-node of

an EEPT has an operator, the EEPT's root-shape is coded
in place of the FATHER of the EEPT's root.

Codes:
0 = variable
l = ™

2.+ .

Shapes:
1=-0
-1
J-c¢c

(2) To input EEPT's type:
ERPTS

The program responds with alternate requests for FATHERS, and
OPERATORS, which should be answered with the appropriate vectors.
Each pair of requests allows the input of aaother EEPT, EEPT's
are ideatified by the order of their input, the first one being
given an identification number of '1', Any scalar or single-
element vector typed in response to FATHERS is ignored, and
terminates the in. it of EEPT's,

To execute the leaves-in algorithm, after EEPT's have been input,
type:
TREE

The response is a FATHERS, OPERATORS request-pair vhich should be
answered with the parse~tree description., The leaves-in algorithm
then executes,

(3) Output:

The output is & sequence of alg-trees, assignments of EEPT's
to the nodes of the parse-tree, Each alg-tree is given in three
vectors:

NODES[1) - lists the node-number of the node in the parse-tree

133

associated with the root of each EEPT, and with each EEPT leaf.
NODES[1]) always lists the root of the alg-tree.

EEPTS[1] - the identifying number of the EEPT associated with
node NODES[I] in this alg-tree.

TEMPS{1] - the number of a temporary matrix assigned to hold
& result associated vith node NODES[1], or zero.

The sequence in vhich algetrees are listed is the sequri e
in vhich the algorithms they represent are to execute. This
ensures that an intermediate matrix used as input to a given AATA
is computed before it is accessed.

Detailed examples:
A. Input of EEPT's:

1. F31332 >
01211 /\
4 o

Here the tree is labeled

i W‘_ -

2 it -

s

1 \2
Its structure, given in F: (fathers), is
33 _

g el b Wt g g

signifying that nodes | and 2 have father '}', and reserving
the last position of the vector (vhich always represents the
“father" of the tree's root) for other information,

The operators are _ _ 1, {.¢,, node 3 has operator 1 = *#,
and the other nodes, known to be leaves of the tree, have no
operators,

The additional information given in the two vectors
represents the shape associated with each node:

134

) £ 2

0: 21 _
Thus, nodes 3 and 1 have shape 2 = r, vhile node 2 has shape 1 = (3,

135-6

B, Input example: Entry of EEPT's,
The indented line following the (J: line is typed by the user,
not the computer,

EEPIS
FATHERS

a:
332
OPERATORS

0:
211
~ FATHERS

0:
333
OPERA

0:
131
FATHERS

0:
331
OPERATORS

0:
— 321
FATHERS

0:
332
OPERA

0:
222
FATHERS

0:
3313
OPERATORS

> > > > >

332
FPATHERS
0:

0

137

C, _Output interpretation
Example 1:

TREE
FATHERS

0:
330
OPERATORS

0:

001
ASSIGNED 3§ MATRICES:
NODES: 3 2 1
EFPTS: 3 0 O
TEMPS: 1 0 O

the input, FATHERS and OPERATORS, describes the tree E:

N\
The output (startiag with the line reading "ASSIGNED 1 MATRICES")
gives the number of MATRICES (2-arrays) needed in computing the root

of £, The remsinder of the output presents the alg-tree(s) whose
AATA(s) correctly compute E. In this case, a single alg-tree suffices:

2

e acccaccaa -----mtomdutouuy'rl
holds the result,

----.--.--t

‘-.------.-c

138

TREE
FATHERS

0:
5§566770
OPERATORS

0:

0000111
ASSIGNED 1 MATRICES:
NODES: 7 6 4 3
EEPTS: 3 1 0 O
TEfPS: 1§ 0 0 O

oON W
oCOoOnN
O O -

tree E; one alg-tree:

AR AX

EEPT's used:

* e eecea=T

c ltr
67\ /\n

139

Exsmple 3:
TREE
FATHERS
0s
77889910 10 13 13 14 14 15 150
SHIRAIORS
$

000000121200111
ASSIGNED 2 MATRICES:
NODES: 13 10 8 4 3 7 2 1 J 6 S

0
0

EEPTS:
TENPS ;

- W
(= -]
© o

1 0 0 2 0
0 0 0 0 O

o &
o &

NODES: 1
EEPTS: 3
TINPS: 2

S 1% 12 11 13

on
[~)
con
-0

-q---n

-------r‘

140

Internal Representations of Interest:

(1) Fringe-value set.

(2)

The contents of each fringe-value set S is represented as
a table of f(S,v), v= 1, 2, 3, 4.
Thus, the fv-set
S= (33211 0), vhere

£(S,4) = 0

£(8,3) = 4

($,2) = &4

£f(S,1) = 5
is recorded as the APL veztor 5 4 4 0.
Two fv-sets can be joined to produce a third in one APL
statement, based on the component-by-component addition
of vectors. The comparison theorem is most easily applied
in this form, as well.

The collection of fv-sets associated with & node.

Esch node is sssociated with 3 shape-sets, one
esch for the codeable shapes:), r, c. Matrix smn[!:j]
holds the "tag" of node I's jth shape-set. Eech shape-set
only holds one fv-set--either the single O-set fv-set, for
shspes r and ¢, or the fv-set vhose single member {s the
"value"” of the node I, n(l), for shape (). These are the
only distinct fv-setec vhich need representation at each
node. ()'s fv-set may be selected as part of shape-set r
or ¢, sand trested as the only l-set member. After all fv-
sets of a node are generated and compared, the surviving
fv-sets are placed in table PVSET(I;]. SHAPESET [I;J] holds
the index K in FVSET of the single fv-set which is repre-
sented in shape-set J of node I. FVSET(K;] holds the
4-clement vector representing that fv-set.

(3) The parse-tres.

A parse-tree structure is represented internally by
"downward” pointing links, as well as by node order. Wode I
of the parse-tree is associated with a vector, soms(I;J],
giving the node number of node I's Jth son. OPR[T) gives
the code for node I's operator. WNodes are numbered such
that each entry of SOMS(I,J]) < I. As a result, we cen
vieit nodes of the parse-tree in incressing order of node
number with sssursnce that each node's descendsnts have
been visited before that node.

(4) Togs.

Bach fv-set, vhen stored in FVSET(I;], 1s sssoctieted
vith tags, giving the FVSET indices of the fv-sets from
vhich fv-set I was created. In addition, other information
sbout the fv-set is stored in the same srray.

L._Globel Tebles
Node N of the expression'’s parse-tree 1 associated with:
M[I;I] = the number of the Ith son of node N
orx(w) = the "operator” of node N

SHAPRSET(N;S] = the FVSET index of the single surviving member
of the shape-set 8 of node N. This fv-set {e
e member of O-set of the shape-set if 8 1is 'r'
or 'c¢c'. When 8 {s °'r' or 'c’, l-set is given
by SHAPESET(N;MEGA).

Pv-set I is associated with:

TAG(1;1IALG) = the number of the EEPT wvhich generated fv-set I,
that {s, the ERPT forming the base of the alg-
tree vhose fringe-set I represents.

TAG[I;INN] = the node of one of wvhose shape-sets I 1is a member.

TAG(1;IVAL] = the value of fv-set I, {.e., ngx (PVSET (1;3))

142

TAG(1;18AM) = Used during the output-phase to indicate
vhich node of I's fringe-set the result-set
of the alg-tree cen agree with,

MATR(I] = During the output-phase, holds the intermediate
array mmber of the srray which is assigned to
hold the result-set of the alg-tres's algorithm.

TAG(I;IS0M+K] = the FVSET index of the Kth "son" (gemerating
fv-set) of fv-set I.

PVSET(I;V) = holde fv-set I's £(I,V) value.
Ith EEPT read in by EEPTS {s associated with:

urr[x;I] e the number of the node in the EB"I-forest
representing I's root,

EEPT(1;2] = the root-shape of EEPT I.
EZPT(1;3] = the number of leaves of EEPI I.

The "forest" cf EEPT's stores all nodes of all EEPT's.
Bach node is assigned s number distinct from the numbers
assigned any other EEPT's nodes by "relocating” the numbers
assigned nodes on input. A given node, I, of this forest
is associsted vith the following information.

SOME(I;K) = the forest node number of the Kth son of mode I.
If I 1s a leaf, SONS(I;K] = 0.

OPRE(I] = the operator of node I, vhere I is & leaf. If I
s s leaf of some EEPT, OPRE(I] gives I's leaf-shape.

E—

PPy YT IR ' e e -

143

P, Description of program operationm

This "main routine", keyboard activated, accepts an expression's
parse-tree, using INTREE, It initializes and structures the arrays
needed, and calls ASSIGN to initiate shase), On return, it prints
the number of intermediate matricers ASSIGN finds to be needed, and
calls ALGOR to collect and print the alg-tree assigned.

VTREE(O)V
v TREE
(1) INTREE 0
(2] NODES+oF
(3] MXSH+3

(v) LFAFSET« "1 1 1
(S) MXPVS+MXSHxNODES

(6] MAVL~u
(7) IALG+1
(8] INODF+2
(9] IVAL+3
[16]) ISAMey
(11) ISON+u

(12] MXTG«ISON+MXLV

(13) SHAPESET«(NODKS ,MXSH)p0
(14) PVSET«(MXPVS,MXVL)pO
(15) TAG+(MXFVS,MXTG)p0

(16) FVSL+1

(17) XPSS~+ 112131

(18] SOMeS

(19) OPR+«0

(20) OMEGA+1

(21) ASSIGN

(22] MATReMXFVSpO

(23) PVR+SHAPESETINUDES;1]
(24) VALUR+TAGCFVR;IVAL)
[25) AVAIL+VALUEoO

(26) (W('ASSIGNFD 'i;VALUE;' MATRICES:')
(27) ALGOR FVR

ERRNE AP Ry -

144

EEPTS

This "main routine", keyboard activeted, reads as many EEPT's
as the user cares to supply., All are recorded in the same tables,
SONE, to hold the '"sons" tree repreaentation, and OPRE, to hold the
trees' operators. Each EEPT occupies a different (contiguous) set of
indices in these tables, with the relocation argument of INTREE used
to adjust the valuea stored into a true list structure, A vector
EEPT[I;] holds 3 items of information about EEPT I: (1) the index
in SONE and OPRE of its root; (2) its root-shape; (3) the number of

leaves it has,

VEEPTSITI]V

V EEPTS;q
{1] FFPT+\0
[2] VXLV<O
(3] SOrE« 0 0 pO
(4] OPRF+\0
(5] FEFP2:INTREFpOPRF
r6] -EEP1x\12p,0
[(7) FEP3:0PRF«((pOPRF)+p0)p(0OPRFE,0)
(81 SONE+(((pSOLNE)[11+(pS)[1]),(pS)2])p((,S0FF),(,S))
[9) LVS«+/A/[215=0
F10) MXLVeMXLVILVS
(11) FEPIT«IFPT,(pOPRF) ,F(oF],LVS
(121 -FEP2
[13) FEP1:FEPT«(((pFEPT)+3),3)oErPT

i abhs

LowSiges

7

[
{

P Y A PR e s

ASSIGN

ASSIGN implements the leaves-in-algorithm, as described.

IS T i el

145

ASSIGN visits each node of the parse-tree, T, in order of their

node-numbers, and tries to match each EEPT with that node,

When a

matching EEPT is located, NEWFVS is used to update B, BT, NV, and

NT, the "surviving" best fv-sets,
the surviving fv-sets are copied into FVSET and TAG.

their indices, or is 0 for empty shape-sets,

(1]
(2]
(3]
4]
[5]
(6]
7]
(8]
(9]
[10]
[11)
[(12]
[13)
[14]
r1s)
(16]
[(17)
(18]
(19]
[20]
[21]
[22]
(23]
(2u4])
[25]
[26]
(27]

VASSIGNID]V
ASSIGN VN ;F;TST; ISET

N+l

PVSL+1

ASGY : »ASG1x\A/SONTN 3 1=0

Fel

NT«0

BT«(MXTG ,}XSH)p 0

B+(MXVL ,MXSH)pO

NV<| /10

ASG2:F NEWFVS N MATCH EFPT{F;1)
FeFel

+ASG2x\FS(pFEPT)[1]

BT(;(MVs[/(1]B)/\MXSH])+0

B[;1)«FVST NV

BTC\pNT;1]eNT

TST«BT{ISON+1 ;)20

BT{INODE ;]«l!

ISET«TST/\MXSH
FVSFETIPVSL+\pISET;)+ 2 1 QB[;ISET])
TAGIPVSL+\pISET;)}+ 2 1 QBT(;ISFT)
SHAPFSETCN; J«TST\FVSL+1pISFT
FVSL+FVSI.4pISET

+ASG3

ASG1:FVSL+FVSL+1

TAGLFVSL ; INODF J+N

SHAPESET(N ; J»LEAFSETxFVSI,

ASG3: NN+l

+ASGUx\ NSNODF'S

After all EEPT's have been tried,
SHAPESET gives

146

E NEWFVS X

One of the central phase-one routines, NEWFVS generates all
fv-sets which match EEPT E at some node N of the expression parse-tree,
T. X describeas each node of T matching a leaf of E, NEWFVS generates
combinations of fv-sets which are mcmbers of the proper shape-set of
the matching nodes by using the base-2 representstion of a number it
increments from 0 to 2*pX., When a position of this vector is 0, it
selects the single 0O-set member of the shape-set, When 1, it selects
the l-set member, A translation vector, XPSS, translates l-set requests
into Q-shape~-sct requests, since l-ssts are represented only implicitly.
Various tests exclude incorrect combinations, such as l-set of (}-shape-set,
or requests for an empty shape-set, Each generated combination is
JOINed, and tested against the previously-surviving best fv-sets of
the shape-set whose name is root-shape(E). Tags, including values of
the fv-sets, and "ISAM" are computed here., ISAM designates one node
(by fv-set number) whose access-shape agrees with root-shape(E), and
vhich can consequently be assigned a 2-srr=2y which is also assigned to
hold the result of the algerithm rooted at this node, The principle
outputs of NEWFVS are:

B(;R]) gives the fv-set surviving in shape-set R, R § 0
BTI(;R] gives the tags of B[;R]

NV is a scalar, holding N(S*) of the fv-set S* of smallest
value in shape-sets of this node,

NT holds a copy of the tags of that fv-set whose value appears
in NV,

(1)

(2]

[3)

(s]

[s)

(6]

(7]

()]

(9]

[10]
(11]
(12)
(13)
[14)
[(15)
(16)
(17])
(18]
(19)
(20)
(21)
(22)
(23)
(2]
[2s)
(26)
(27)
(28)
(29]
(30)
(31)
(32)
(33)

147

YNEWFVSLOIV
E NEWFVS XM I:PVS
Me(pX)(1]

+0x1M=0

MD+2xMuM

ML+ /MD

I+0

NP1 :MCMDYI
+*NF2x1v/ (XU ;1)=0MEGA) NMC=1
PVS+ 1 1 QSHAPESETLX(;2] ;XPSSTMC+™ 1+¢2xXT 311])
FYS+FVSx1-2x(PVS<0)AX(;1) =0MECA
+NF2x\v/FVS<0

C«JOINS PVS

SM+(X[;1)20MEGA) ANC=1
SMI+SM\ 1

R<EEPIE;2)

G+(v/SM) AR®ONEGA

SMS+0

+*NP6x1G=0

SMS+PVS{SMI)
SMTTAGUSMS ; ISAN)
+NIP6x\SMT=0

SMS+SMT

NP6 :CV+{ /C
+NP3x1(C{1)2CV) vyl
+fPSx\CV2NV

B(;R)«C

BT(\M+ISON;R)+E, O 0 ,SMS,FVS
CVeCV+1

NP3 :sNFSx\CV>NV

NVeCV
NT(-E),0,NV ,SMS, PVS
NPS:I«I

NP2:I+I+1

*>NPixy I <ML

| i el Ll e Lt P — - ‘ -

148

N MATCH E

Here N is a node number in the exjression parse-tree, and E gives
the root of an EEPT., The value of MATCH is an APL matrix, Z. 2(I;)
describes the node matching E's Ith leaf. Z[I;1] gives the leaf-shape;
Z[I;2] the expression parse-tree node's number, The recursion is per-
formed by MATCH1, MATCH restructures MATCH1's result, which is an
APL vector, into the more convenient form of an APL matrix,

QHATCHI]V
V 2« NMATCH E3¥
(1] WeN MATCH1 F
(2] Z«(((pW)+2),2)oW
(3] +0x1A/2[32)20
(4] Z«(0 2)p0
v

N MATCH1 E

Recursively matches node N of the parse-tree with node E of an
EEPT. 1Its value describes the list of nodes of the parse-tree which
match leaves of the sub-EEPT rooted at E.

ATCRAIIN]Y

9 Z<«l MATCHY F:iI:J
(1] 2z« 0
(2] +0x\F=0
£3] SLTCA% >0
4] MTC3:2« 0 0
(5] =0
(6] MTCY:Z«OPRF(F] 2
(7] +0x\A/SONELE;1=0
(8] +/{TC3x\OPP¥(F)20PR{ V]
(9] J«(pSOM)[2]
[(10) I«1
(11])] 7«0
712) MPC2:7+2,S0N(V TY'ATCIHA SOrFiE;I]
(13] I<T+l
(14]) MTC2ISS

- ——— e

149

A JOIN B

A and B are fv-sets represented by APL vectors., The value of
'A JOIN B' is the APL vector representation of fv-set C, vhere
C=AUSB,

vJOINLO)V
v C«A JOIN B
(1) C«A+B-(0=AxB)x(1pB)-1
v

JOINS X

X 49 a vector of fv-set indices., The value of JOINS X 1is
JOIN/FVSET[X;], 1f this could be written in APL, i.s., an fv-se:
vector representing l{ FVSET[X[I];].

WJOINS(1]v
Vv V&JOINS X:I
(1] I+«1
(2] V0
(3] JNS1:V«V JOIN FVSETLX(I]);]
(4] IeI+t
(5] JNS1x\IspX

v

FVST X

S]

X is a scalar, FVST X has as value an APL-vector representation

of the single-integer fv-set (X),

YPVSTI]V
V Z+FVST X
(1) Z«(\X),(MXVL-X)wO
v

|

150

Output phase.

Once each node has been visited, and its shape-sets and their member
fv-sets have been computed, the 1list of alg-trees represented must be
produced. In the course of visiting each node in the expression's parse-
tree, each node has been "evaluated", Furthermore, "tags', tracing the
ancestry of each fv-set have been recorded. These tags represent alg-trees
in a true "sons" tree representation, The output-phase proceeds from the
root-node of the parse-tree to the leaves, collecting each alg-tree,
ordering its fringe-set, and collecting the alg-trees rooted at each of
the fringe-set nodes. Recursion reverses the printing order so that
alg=-trees rooted at fringe-set members of alg-tree A print before A,
Intermediate 2-arrays are assigned "linearly"”, Each 2-array is given an
“available" indicator. As each alg-tree is printed, an available 2-array
‘s assigned for its result (root-node), and the 2-arrays assigned its
fringe-set nodes are made available,

OQutput routinesg
ALGOR X

X gives the FVSET index of an fv-set vhich is the "root" of an
alg-tree., ALGOR collects the fringe-set fv-sets, S([I], using COLLECT,
orders them by fv-set value, using ORDER, then calls itself om each
of the S{J[1]] to compute and print the alg-trees which are rooted at
each input to X's alg-trees, It then prints X's alg-tree.

VALGOR(OJV

Vv ALGOR X3F;G:I
(1) I«TAGUX;IALG)
(2) ALGI*I<0
(3] ERROR IK TAG
(4] ALGI:TAGUX;IALG)e-I
(5) F<«COLLECT X
(6] G<+ORDER F
(7] I«
(8) -+ALG?
(9] ALG1:ALGOR FLG(I]]
(10) IeI+1
(11) ALG2:+ALGAx\ISpC
(12) PRTF
(13] TAGUX;IALG)+O

v

151

COLLECT X

The value of COLLECT X is a vector, listing all fv-sets in the
connection-set and fringe-set of the alg-tree rooted at the fv-set whose
index is X, An fv-set in the fringe-set is identifiable because each
such fv-set Y is the "value" of some node, and is marked during phase 1
by recording a negative TAG[Y;IALG] entry for it. Also, only these
fv-sets have non-zero TAG[Y;IVAL] entries.

SCOLLECTL(IV

Y Z+COLLECT X;A;I
(1] Zex
(2) A<«TAGLX;IALC)
(3] -+0x14s0
(4] I<EEPTLA;3]
[S) COL1:2+Z,COLLECT TAG{X;ISON+I]
(6] I«I-1
(7] +00L1x\I>0

v

ORDER X

Has as value a vector, Y, vhich lists certain indices in vector X,
Y satisfies: TAG[X([Y[I]];IVAL] > T S(X[Y(I+1]);IVAL)

and TAG[X[Y[I]]);IVAL] > 0
Thus, according to our rule for ordering the computation of a fringe-
set, fv-ocets X should be computed in the order given by Y, Note that
only fringe-set members of X are listed in Y, PFvesets X[I1] which
are in the connection set of an alg-tree, or are associated with leaves
of the parse~-tree, have zero TAG[X[I];IVAL] encries, and hence are not
listed in Y,

VORDER([(1)V

Y C+ORDFR Y;T:V
(1] G+
(2] V<TAGLY;IVAL)
(3] W1)e0
(8] +0RD2
[S) ORD1:TeW:\[/V
(6] WT)«0
[7) GeG,T
(8] 0HD2:+ORDix\v/V>0

152

PRT X

PRT prints the alg-tree whose root fv-set, connection fv-sets and
fringe fv-sets are }isted, represented by their FVSET indices, in vector
X. PRT also assigns intermediate 2-array numbers to the root fv-set's
node, and frees the 2-arrays assigned the fringe fv-sets, using NEWM
and FREEM,

VPRTLO]V

v PYT X;Y
(i *('NODES: ' ,TACLX;INODF])
(2] DO« ('CEPTS: ';TAGLX;IALG])
(3] Y«x(1l
(4] SAMeTAGLY;TS5A!!)
(5] +PR1x\SAM=0
(6] MATRL YI-MATRL SAM)
(7] -~rr2
(8] PR1:MATRLY)<NFW!
L9891 PR2:FRFEL MATRLX)
{10 [W('TEiPS: ' ;-MATR(X])
(11] U=0

NEWM's value is the index of the first "available" intermediate
2-array. NEWM also sets that 2-array unavailable.

VNEWIL()V
V Z+lIEWM
(1) Z<AVAIInO
(2] AVAIL{Z])+1
(3] 2«-2
v

[B O

Bt

FREEM X

153

Frees (makes available) intermediate matrix X,

(1]
(2]
(3]
(u]
(s)
(6]
(7]

VFREEM((]V
FREFM X, I;T
I+l

+FR2
FR1:Te-X(I]
+FR2x\Ts0
AVAIL[T)+
FR2:I+I+1
+FRIx\ISp X

Input subroutine

INTREE T

INTREE accepts a parse-tree or EEPT from the keyboard, 1Its
output is the "FATHERS" vector (im F), the "OPERATORS" vector (in 0),
and a generated matrix of sons (in S), giving the “reverse" links

of the FATHER vector,

Its single argument, T, is used to "ralocate"

the list etructure produced in S and F, so that the value actually
stored in F satisfies F[I] = T™™J, vhere node J is node 1's father,
according to the input structure,

(1)
(2]
(3]
(D)
(5]
(6]
(7]
[(e)
(9]
(10]
(11)
(:2)
(13)
(14]
(15])
[16]
(17)

VINTREFL]V
INTREE T:I:J:M
(}-'FATHERS'

Fe{

O«F

+0x\12p,F
MXSNS+2
S«((pF) ,MXSKS)0
O«(pF)p1

I+l
INT2:J«F(I]
S(J;0(J))eI+T
olJ1+0(J1+1
FUI)eJ+T

JTeI+l
<INT2x\I<pFP
[1='OPERATORS
o

JO=F

’)

——a LS

9.

10,

11,

12.

13,

14,

154

BIBLIOGRAPHY

Conway, R, W,, and H, L, Morgan, "Tele-CUPL: A Telephone Time
Sharing System," Comm., ACM 10, 9 (September 1967), 538-542,

Falkoff, A. D. and K, E. Iverson, "The APL/360 Terminal System,"
Research Report RC-1922, IBM Watson Research Center, Yorktown
Heights, N.Y, (October 1967).

Floyd, R. W,, "Assigning Meanings to Programs," Proc, of
Symposium in Applied Mathematics, Mathematical Aspects of Computer
Science, Volume 19, American Mathematical Society, 1967,

Galler, B, A., and A, J, Perlis, "Compiling Matrix Operatiomns,”
Comm, ACM 5, 12 (December 1962), 590-594,

Nakata, I., "A Note on Compiling Algorithms for Arithmetic
Expressions,” Comm. ACM 10, 8 (August 1967), 492-494,

Naur, P, (editor), et. al., "Revised Report on the Algorithmic
Language ALGOL 60," Comm, ACM €, 1-17 (1963),

Reinwald, L, T., and R, M, Soland, "Conversion of Limited-Entry
Decision Tables to Cptimal Computer Prosgrams I: Minimm Average
Processing Time," J, ACM 13 (1966), 339-358,

, and » ""Conversion of Limited-Entry Decision Tables
to Opthll Colpuur Programs II: Minimm Storage Requirement,"
J. ACM 14, 4 (October 1967), 742-757.

Simon, H. A., "Experiments vith a Heuristic Compiler," RAND Corp.
P-2349, June 30, 1961,

Walker, R, J., "An Instruction Manual for CUPL, The Cornell

University Programming Language," Cormell University, December, 1966,

Winograd, S., "On the Time Required to Perform Addition," J, ACM
12, 2 (April 1965), 277-285,

» "On the Time Required to Perform Multiplication,” J, ACM
%, % (October 1967), 793-802.

s ""On the Number of Multiplications Required to Compute
Certain Functions," Proc. Nat. Acad. Sciences, 58, 5 (November 1967)

1840-1842,

» "A New Algorithm for Inner Product," IBd Watson Rese..rch
Center, Yorktown Heights, New York, research report RC=1943,
November 21, 1967,

i i G LT A TR TR

DOCUMENT CONTROL DATA-RA& D

annelation must bo entered when the sverel!
88, REPORT SECURITY CLASHIFPICATION
Carnegic-l‘cllon University ULCLASSIFIED
Departmen! of Computer Gcience 8. snous

Pittsburcgh, Fennsylvania 15213 I

RGReRTTITE
SCME TECHNIQUES FOR ALGORITHM OPTIMIZATION WITH APPLICATION
TO MATRIX ARITHMETIC EXI'REGSIONS

4. OEECAIP TIVE NOTES (Type of repert and inelusive daies)
Scientific Interim

6. AU THORIB] (Pirel nome, middie Iniile], losi nome)

nobert 4. wagner

6. REPOATY OATE %e. TOTAL NO. OF PASES 76, HO. OF REPS
27 June 1968 159 14
38, CONTRACY OR GRANT NO. 96, ORIGINATOR'S REPORT NUMBEAIS)

FL1620-67-C-005°

5 PAGJRCY NO.

9718
C Y ovni REPORT NOIS) (Any other numbere tha! mey be scoigned

) Gsemen b/¥¥50/5 | BROSR 63-2 64 1

10. DISTRIBUTION STATEMENT

1. This dozumecnt has been approved for putlic
release and cale; 1its digstribution is unlimited

e AT Torse OfFice of Scientific
TECH, OTHER Research (3RNA) |
1400 Wilson Bgulevard. Arlington,
VYirginia, 22200

T3, KBSTRACY .
Algorithm cptimization can be accomplished by an exhaustive search over
alternative algorithms for performing some programming task. The resulting
algorithms are optimum only with respect to a program technology--the particular
set of alternatives investigated, Thus, larger program technologies can be
expected to yleld better algorithms. This thesis contributes to the production
of optimum algorithms in two ways. First, a technique ("loop-fusion'") was
developed for producing new algorithms equivalent to old algorithms, and thus
expanding program technologies. Second, a technique ("comparison") is described
which reduces the effort required by certain exhaustive seraches over 'well-
structured" search spaces. These techniques are applied to the production of
algorithms for evaluating matrix arithmetic expresssions (MAE). (The operators,

+ and *, in such arithmetic expressions are interpreted as matrix addition and
multiplication, respectively.) A method is described for producing, {or any MAE,
an algorithm for its evaluation which requires fewest arrays for holding N by N
matrices, while not requiring more execution time than the ''standard' MAE
evaluation algorithm. Althous* the algorithm-production method used is basically
an exhaustive-search over a large space of program alternatives for each
subexpression of the given MAE, the effort this method requires grows only
linearly with the number of operators in the given expression.

I

—Becurity Classllication

DD 2V..1473

B T i i) ek S i R, i e i | P ORI ST 0500 ol A LA | W s eSS

’

e e L

= Teewdlly Classlllcellon

Ve.
Py REv Bonis LiINR A Linn LCinx ¢

feLe Yy AeLe we AL & LAJ

e ——————— e e —

Security Classification

