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LOSS CALCULATION ON METAL SPACE-FRAME RADOMES

John Ruze

Lincoln Laboratory
Massachusetts Institute of Technology

1. INTRODUCTION

The purpose of this note is to present a method of determining the loss due to
a metal space frame. Fundamentally, the method does not differ from that intro-
duced by Kennedy (1958) and extended by Kay (1965). After certain simplifying
assumptions, these methods consist of subtracting the forward-scattered field of
each individual member from the unobstructed aperture axial field. It is hoped
that the procedure suggested in this note will prove convenient to electrical and

structural designers.

It must be realized that a rigorous formulation of the radome space frame as
an electromagnetic scattering problem represents a tremendously difficult endeavor.
Even such simplified problems as the transmission through a square grid have only
approximate solutions, and these only in the long- or short-wavelength limit. If
a rigorous formulation were available, suitable for use with modern computing
machines, one would questionits engineering usefulness since it would require, as one
of its inputs, accurate knowledge of the scattering coefficients of various structural

shapes and at all aspect angles.

It has, therefore, been customary to make certain simplifying assumptions to
make the problem amenable to calculation. Principal among these is that the ele-
ments scatter as independent, infinite cylinders placed in front of an aperture with
uniform phase. This implies the neglect of end effects, circulating currents at
member junctions, mutual scattering, and near field effects. In addition, simpli-
fying the calculations to average various effects implies that such an average has

meaning and the number of such elements is large.




To evaluate the success of this suggested procedure, recourse must be made
to experimental verifications on actual radome geometries. Unfortunately, there
is a dearth of precise radome-loss measurements over a range of frequencies.

We hope, the procedure, if applied to a number of structurally acceptable designs,

would yield those preferable from an electromagnetic standpoint.

2. THEORETICAL DISCUSSION

2.1 FLAT-SHEET RADOME

We first consider the spherical radome as a flat sheet and determine the frac-

tion of the aperture area blocked (Figure 1) as

2\3 wL s
n= + = + c (1)
L+25)2 W3 (Lt2r)? om0 h

The first term is the member blockage and the second the contribution of the hubs.
The latter is generally 10 to 30 percent of the member blockage. The above
formula is derived on the basis of equilateral triangles. For a random geometry
the individual member lengths vary. It can be shown that for a variation of £10
percent in length the error made by using the mean length in equation (1) is 2 per-

cent (too small).

At very high frequency (optical limit) the reduction in axial field is then simply

%=l-nm-nn . (2)

At lower frequencies the blockage must be modified by a factor that accounts for
the relative scattering efficiency of the members. This factor (Kennedy, 1958;
Kay, 1965), called the induced current or field ratio,is simply the ratio of the for-
ward-scattered field of the member to the forward-radiated field of an incident
plane wave of the same width. Itis a complex number that depends on the member
cross section, their shape, and on their orientation, 0, relative to the polariza-

tion vector. In the optical limit it approaches -1. Equation (2) then becomes
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2 2
e-‘;- =1+mn [ICR cos®6 +ICR, sin o] - n_ (3)

where we have not modified the smaller hub contribution, and where we have re-

solved the polarization vector along and perpendicular to the member axis.

If the members have a random or equiangular arrangement, then their summa-

tion in equation (3) yields

Se14n,TR- (4)

where ICR is the average induced-current ratio for the two orthogonal polarizations.

The loss in axial power is then

L2 - ICR -n |%= ICR -
po_|1+nm1c11 n, | 1+zqm@1c1{ 2n_ (5)

where the approximation is valid as the blockage is hopefully small (see Appendix)

Now by the '"shadow theorem' (Burke and Twersky, 1964), the real part of the
forward-scattered field is proportional to the total scattering cross section or

o
WICRL—Z%:-g(w) , (6)

where 2w is the optical cross section and og. the average total scattering cross
section. We have alternately for the loss of axial power

I;%:1-211n—2'r]rny(w) (7)
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The advantage in using the total scattering cross section instead of the more cor-
rect complex induced-current ratio is that many references calculate the former.
Figure 2 plots the total scattering cross sections for round cylinders. Figure 3
gives the average total cross section for rectangular cylinders (van Bladel, 1964;
Kay and Paterson, 1965; Mei and van Bladel, 1963; Morse, 1964; King and Wu,
1959; Mentzer, 1955).

The flat radome loss is then calculated by equation (7) with the use of equation

(1) and Figure 3. This loss is independent of the aperture illumination taper.

2.2 SPHERICAL RADOMES

In a spherical radome the aspect of the members change with aperture posi-
tion. It is, therefore, necessary to include this change in a modified scattering
cross section or ICR and to weigh this changing contribution with the aperture
illumination taper. The aspect of the members is bounded by two limiting cases;
namely, 1) those members directed along great-circle paths through the beam

axis, and 2) those members orthogonal to these great circles (Figure 4).

For the great-circle members the scattering is reduced by the cosine of the
angle of incidence as these members are foreshortened by the radome curvature.
For the orthogonal members the scatteringisincreasedbecause of the greater pro-
jection of deep members. In addition, the apparent concentration of the orthogonal
members increases as the cosine of the incident angle. We would therefore expect
the scattering of the orthogonal system of rectangular members to vary in the

optical limit (high frequency) as

d .
<os © [cos 0 +; sin 9] . (8)

In the low-frequency limit, the rotation of the member is immaterial as the
total scattering cross section here depends only on the perimeter in wavelength.
Generally, we can represent the scattering of the orthogonal members as

(Figure 5)
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~os 0 [cos 0 +% sin e]“()" . 9

The function n(\) varies from unity at the optical limit to zero at low frequencies.
This function was determined, for rectangular members, from Kay and Paterson
(1965) and Mei and Van Bladel (1963) and is plotted in Figure 6. It was found that
when n(\) was plotted as afunction of the perimeter in wavelengths thatit was essen-
tially independent of the d/w ratio. We note from Figure 6 that when the perimeter
is less than half a wavelength the total scattering cross section is independent of
element rotation; whereas when the perimeter is over 10 wavelengths the scattering
cross section is essentially the projected optical cross section. For round members

there are no rotational effects and n may be taken as zero.

As we must weigh these effects by the illumination taper and normalize by the

same, we have for the loss of axial gain

! ] E:os 0+ % sin O:In()‘) f(r) rdr
ff(r) cos Ordr + j “os 6
0 0
oo = 1-2m - 2 Ew) T ;
0 2ff(r) rdr
0

(10)
where we have summed or integrated over circular rings and assumed that the
extremes of member aspect behavior can be approximated by their mean.

3. APPLICATION
The result of our analysis is then given by equation (10) or Figure 7. Here
A. The hub blockage is calculated from equation (1) and is not modified by
the curvature factor as the hubs are thin compared to their diameter. As

they are uniformly distributed their effect is independent of the aperture

taper.
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The member blockage is also calculated by equation (7). However, it
must be modified by the ICR or relative average total scattering cross
section, g(w) (Figure 3), and by a radome curvature factor.

The curvature factor depends naturally on the ratio of the radome-to-
antenna diameter, on the aperture taper, and on the member depth-to-
width ratio. The dependence is expressed in the bracketed term of Figure
7. For given parameters it can be evaluated and is given in Figures 8, 9,

and 10. For n(\) = 0 the curvature factor is essentially unity.

An example best illustrates the procedure. A proposed space frame has the

following characteristics:

Radome diameter 500 ft

Antenna diameter 400 ft

Frequency 2700 Mc

Average member length (L) 37.5 (35 to 40 ft var.)
Member width (w) 2.5 inches

Member depth (d) 20 inches

Hub diameter (2r) 42 inches

Member perimeter (p) 45 ft

from equation (1) optical blockage

492

2N3 (2.5) (450) | 2m (42)2

n=1.02
(492)° N3

(Note: 1.02 inserted due to member length variation)

n=n_+ r]n=0.0164+0.0264

at 2700 Mc (XA = 4.5 inches, p/\ = 10 inches, and n = 0.75 inch) from Figure 6 as
w/\ =2.5/4.5 = 0.555 inch; and d/w = 8 inches. We have equation (10)

p/Py = 1 - 2(0.0264) - 2(0.0164) (2.3) (1.9)




or

p/py =1 - 0.0528 - 0.1850 = 0.7622 (-1.16 db)

4. EXPERIMENTAL CONFIRMATION

To establish the validity of the above procedure recourse must be made to
experimental measurements on actual radome structures. Unfortunately, there is
a dearth of precise measurements over a sufficiently wide frequency range and with

diverse element shapes.

Figure 11 shows the correlation between the calculated and the experimentally
measured data on the ESSCO model M-160 metal space frame. The measured data
were obtained by periodically rotating a half-radome scale model in front of the
parabolic antenna. The vertical bars indicate the signal variability while the ra-
dome section was in front of the aperture. Even with no rotation there is a signal

variability of about 0.02 db.
5. SHAPED MEMBERS

The present report presents data for loss calculations of radomes consisting
of round or rectangular members. At times suggestions have been made to reduce
the space-frame loss by streamlining the members. This suggestion, no doubt,
has its origin in the success obtained in reducing the radar cross section or back-
scattering coefficient of various missile shapes. Unfortunately, we are dealing in

the space-frame problem with the total and not the backscattering cross section.

It can be readily shown, at least in the high- and low-frequency limits, that

any member shaping or streamlining should not offer any advantage.

In the high-frequency limit, the scattering cross section is the optical cross

section or merely twice the projected area




Therefore, for a flat radome the streamlining will have no effect. For a spherical
radome the streamlining will be deleterious because of the curvature factor of

deep members.

In the low-frequency limit, the total average scattering cross section is given

by

T :_—"2__ (11)
S 2K 4n p/7]?

where k = 27/\ and p = cross-section perimeter.

As for a fixed member, width streamlining will increase the perimeter and as
the perimeter-to-wavelength ratio is less than unity, the streamlining will increase

the scattering cross section and hence the space-frame loss.
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APPENDIX

The approximation made in equation (5) requires justification. To present the

problem we note:
__ —= 2 2 2 .
p/py = |1+qICR|“ =1 + 2n|ICR| cos® + n° |ICR| ; (A-1)
in the optical limit the magnitude |ICR| — 1 and its phase 6 approaches 180°

2
p/p0=1-2n+n = 1-2nq s (A-2)

and the approximation is valid. However, in the low-frequency limit, the phase

angle 6 approaches 90° and the approximation is not evident.
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To investigate the behavior in the low-frequency limit, we insert the low-
frequency asymptotic form into equation (A-1). As in the low-frequency limit, the
induced-current ratio or relative total-scattering cross section does not depend on
the member shape, we can use the values derived by Burke and Twersky (1964)

for elliptic cylinders. Using the dominant terms of their equation 41, we have:

IR=-—Q—l-jE£ (A-3)

where

2w is the optical cross section

2
D =—"—
T +4L
f = d/w
L = f2oryx(l+f)/2

d and w are the ellipse major and minor axis

1.781 ...

<
1l

x = mw/\ s
and (A-1) becomes

p/p0=l-i—;LD+(k~1;'N-)2D .

We make a 10 percent error in our loss estimate by using only the first two terms

if

2
T = 10 ()
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kw = 5 =5.2N3 w/L

or

A=—— 1,=0.36 L
53

In other words, if the wavelength is smaller than about a third of the member
length, the approximation made by using the total scattering cross section instead
of the more correct forward-scattered field is less than 10 percent in the calculated
space-frame loss. When the wavelength is greater than this value, the calculations
are dubious in any case as then the wavelength is comparable to the space-frame

cell size.

) (-

» L .

Figure 1. The aperture area blocked.
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EFFECT OF RAIN ON RADOME PERFORMANCE

Introduction

Over a year ago severe deleterious effects of rain on the 210-foot Andover
inflated radome were reported by Giger (1). These effects are in agreement with
calculations on water film thickness based on a formula originally derived by

Gibble assuming uniform channel flow.

Recently considerably reduced losses were reported by Cohen and Smolski (2)
on a 55-foot metal space-frame radome simulating the rain by means of garden
sprinklers. These losses were below those calculated from the Gibble formula
for this size radome. Furthermore, visual observations indicated that the water
flow on the radome surface was not a uniform film but was largely due to streams
and rivulets. In addition, Cohen and Smolski reported that even these lower losses

could be made neglibible by treatment of the radome surface by a nonwetting agent.

The disagreement with the Gibble formula and the complex appearance of the
water run-off suggested a more expert approach to this problem. Professor
C. C. Mei of the M.I. T. Civil Engineering Department was therefore engaged on
a consulting contract. Basically, Professor Mei modified the Gibble formulation
by considering the turbulent nature of the water flow. (Report available on

request. )

Professor Mei's formulation checks the rain-simulation tests of Cohen and
Smolski but does not check the Andover results. For very large radomes (550~
foot diameter) and high rain rates the Mei and the Gibble formulations predictthe

same average water-film thickness.

(1) Giger, A. J. "4Gc. Transmission Degradation Due to Rain at the Andover,
Maine Satellite Station, ' BSTJ, Sept. 1965, p. 1528.

(2) Cohen, A., and Smolski, A, "Effect of Rain on Satellite Communications Earth
Terminal Rigid Radomes, "' Microwave Journal, Sept. 1966, p. 111.




It is the purpose of this report to gather together the various effects of rain
on antennas with radome enclosure with special regard to the CAMROC program
(400' Diameter Antenna and 550' Radome).

1) Rain and Wind Frequency

Figure No. 1 shows the percentage of time that rainfall exceeds a given rate
and wind a given number of miles per hour. The data are representative 200 feet
above a level coastal plane. Individual locations are expected to vary widely from

these values.
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o.o/ 7% ors% 2 Perceylose 7ivne 7O% 700%

Figure 1.

It is to be noted that heavy rain occurs only 0. 1% of the time, moderate rain

1%, and over 90% of the time it does not rain at all.

In contrast, at a height of 200 feet a 30-mph wind is exceeded 10% of the time
and only 10% of the time is the wind less than 10 mph.

The implication of these data to an antenna system requiring precise pointing

is evident.
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2) Signal Attenuation in the Rain Field

The signal attenuation in a rain field is also of interest.

This rain field exists

in front of the antenna, typically 5 to 20 kilometers, and is quite variable. A com-

prehensive study by Medhurst (3) of the experimental data indicates that the meas-

ured values are several factors above the theoretical predictions.

shows the expected values from his paper.

scatter an order of magnitude above and below this curve.

Figure No. 2

In a typical installation the data may

This large variation

is due primarily to lack of knowledge of the extent of the rain field, the drop size,

and the rain rate.
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Nevertheless, the curve indicates that for precise radio astronomical measure-

ments the rain field is a serious factor above 4-cm and becomes negligible below

10-cm wavelength. This rapid dependence is, of course, due to the fourth power

law of Rayleigh scattering.

(3) Medhurst, R. G., '""Rainfall Attenuation of Centimeter Waves, '' IEEE Trans.

Ant. and Prop., July 1965, pp. 550-564.
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3) Rain Flow on a Radome Surface

The water flow on a radome surface must be a very complex phenomenon,
involving both uniform water film flow and irregular water streaks and rivulets.
The water film flow is probably comparatively slow, whereas the streaks may
approach the velocity of free-falling raindrops (typically 800 cm/sec for 1. 5-mm

diameter drops).

Unfortunately, from the prediction point of view, the nature of this flow strongly
affects the electromagnetic transmission of the radome. This is evident when we
consider that the scattered energy of a water film depends on the square of the
film thickness in wavelengths and for streaks directly on the number and/or on the

cube of their diameter in wavelengths.

Fortunately, this strong dependence on film thickness or streak diameter means
we can do something about it. Treating the surface to enhance water run-off
(increasing flow velocity) implies that we are decreasing the film thickness and/or

the streak diameter.

Furthermore, the high dielectric constant of water implies that the portion of
the radome flow that is in steaks or rivulets should be markedly polarization sen-
sitive. A thin water cylinder at microwave frequencies scatters over a thousand
times more strongly when the electric vector is parallel to the cylinder axis. It
should therefore be possible to estimate the fraction of the water that is in streams

and that in uniform films.

4) Film-Thickness Formula

As mentioned,two formulas have been derived for the film thickness on the

radome; the

1/3

Gibble t=2.83[QR] mils

1

Mei 7/12

G
"

0.584 [QR] mils




where R is the radome radius in feet,

Q is the rain rate in inches per hour.

These formulas are plotted in Figures No. 3 and 4 for radome sizes of current
interest. It should be noted that the two formulas agree for large radomes and
high rain rates. Otherwise the Mei formula indicates a thinner film and a different

functional dependence.

5) Transmission-Loss and Noise-Increase Predictions

Assuming a uniform water-film thickness the transmission loss and the absorbed
(ohmic) energy can be calculated. From the absorbed energy the temperature in-
crease of the enclosed aerial can be computed by assuming the water temperature

to be 290° K. These data are seen in Figures No. 5 and 6 (for larger values, ref. 4).

6) Experimental Measurement

Measurements have been made on the Andover, Maine, 210-foot inflated radome
(1) using star sources. The results of these measurements are shown in Figures
No. 7 and No. 8* with theoretical calculations based on both the formulas of Gibble
and Mei.

It should be noted that the predictions based on the Gibble formula agree closely
not only for the expected transmission loss and increased noise temperature but
also in the general slope of these curves. From the nature of the experiment no
better agreement can be expected. The Mei formulation does not agree either in

magnitude or slope for the two quantities measured.

(4) B. C. Blevis, ""Losses Due to Radomes and Antenna Reflecting Surfaces, "
PGAP Jan. 1965,

*

In Figure No. 8, the theoretical curve considers only ohmic loss due to water
film and does not include additional noise temperature due to scattered energy
from the water film.
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In addition to the Andover data, transmission-loss measurements were made
on a 55-foot metal space-frame radome with treated and untreated Fiberglas panels.
The untreated radome data are shown in Figure No. 9 with the predictions based
on the Gibble and Mei formulation. In this case the Mei formula agrees much
more closely with the experimental data. It is also of interest to note that if the
flow were completely due to water cylinders whose diameter is constant but if

their number increased with rain rate, we would have a unity slope.

¢

Lo Eare (/)
Figure 9.

7) Conclusions

a) The Gibble formula predicts closely the Andover transmission loss and

increased noise temperature. The Mei formula does not.

b) The Mei formulation checks the ESSCO rain-simulation data. The Gibble
formula does not.

c) Panel-surface treatment (silicone, teflon, etc.), as demonstrated by ESSCO,

significantly decreases the radome rain effect.

d) At the present time it is not possible to predict the water-film thickness or

streak diameter on a 550-foot treated or untreated radome.
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8) Recommendations

a) That the ESSCO rain-simulation measurements be extended to both polari-

zations to determine, if possible, the proportion of water in film and stream.

b) That the ESSCO rain-simulation measurements be extended to higher rain
rates to determine the behavior of these curves and their possible use for larger

radomes and smaller rain rates.

c) That the HAYSTACK radome be implemented for rain-simulation studies.

There is some difficulty here owing to the radome height.

d) That the speed of rain run-off, film or stream, be examined on large flat
panels of different material and different coatings. This could be instrumented

using colored water and photographic techniques or other means.

e) That means of getting rid of the water be more thoroughly investigated.
Basically, what we wish to prevent is slow-moving and therefore thick uniform
films. What we want, electromagnetically, are high-velocity (small-diameter)

jets. These can be approximated by:
1) Surface treatment of the membranes to get rapid run-off.

2) Guides or gutters at the metal space-frame members to collect it

into thicker higher velocity flow.

3) Collection of a number of these flows into spouts that would throw

the liquid into high-velocity, free-fall streams off the radome.

This type of water-flow control is not out of order for as large a structure as
a 550-foot radome, as it collects one hundred times the water as a 55-foot structure

.and is about six acres in extent.
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CLIMATIC EXTREMES FOR A LARGE RADOME
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Interim Notes on Atmospheric Properties INAP No., 70
Norman Sissenwine and Irving I. Gringorten
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1. INTRODUCTION

The Cambridge Radio Observatory Committee (CAMROC) is contemplating
the establishment of a radio telescope within easy commuting distance (2 hours
by surface travel) of the sponsoring organizations, which are Harvard University,
Massachusetts Institute of Technology, MIT Lincoln Laboratory, and the Smith-
sonian Astrophysical Observatory. The telescope antenna currently under con-
sideration is so large that it would require a radome of more than 500 ft in dia-
meter to protect it from the elements. It has been determined that this facility
should be located in an inland New England valley in order to avoid extremes of
weather and difficulties in transportation found in hilly locations, and also to be
out of range of the strong radio interference found in the Boston area. Extremes
of wind, and perhaps several other meteorological stresses, require critical con-
sideration in a structure of this size, since the mass of the radome must be kept

to a minimum in order not to attenuate radio waves appreciably.

If a detailed examination of climatic history during preliminary design were
to reveal that the greatest extreme of a meteorological stress ever observed,
assuming a long period of record, could be withstood without excessive cost, it
appears logical to design for this extreme plus some practical safety factor.
However, should a stress or combination of stresses become critical, a more
sophisticated examination of the probability of extremes is required. Also, a
calculated-risk philosophy must be established that is related to the life expected
of the facility. Preliminary thinking is that the facility should be built for a use-
ful life of 25 years. Should a meteorological stress prove critical, calculated

risks of 0.1 to 1. 0 percent probability should be considered.




The Design Climatology Branch of AFCRL has been responsible for develop-
ing techniques and models for specifying extremes and durations of meteorological
conditions in connection with the design of military equipment for many years.
(Responsibility for DOD MIL STD 210A, "Climatic Extremes for Military Equip-
ment, ' has recently been assigned to this branch, and revision is being considered. )
Application of these techniques to practical problems invariably helps extend re-
search efforts toward providing more meaningful results. Therefore, when Dr.
Fred L. Whipple of the Smithsonian Astrophysical Observatory and Mr. Herbert
G. Weiss of MIT Lincoln Laboratory called upon us for advice, we responded with
seven independent notes concerning extremes of temperature, rain, snow, hail,
icing, wind, and gusts. Only the latter two are interrelated. These notes are
intended to serve in the development of preliminary design criteria. Refinements
may be possible for some of the meteorological stresses, if they prove critical
in preliminary design, once a specific location (or locations) is under consider-

ation.

2. RAINFALL

Total rainfall and intensity of rain in valleys and other flat terrain within 50
to 100 miles of Boston will not vary sufficiently to require detailed specification
by location. The intensity of rain is probably the most important consideration
in designing structures. Although statistics are not available on accompanying
wind, intense short-duration rain, perhaps lasting only several minutes, is fre-
quently associated with thunderstorms. Winds of 30 mph gusting to 50 mph would
not be unreal to assume in design studies concerned with such downpours.
Extremes of intense rains that last several hours may be associated with hurri-
canes, in which case winds are in the 75- to 100-mph category. Short-duration
gusts will be 50 percent higher. Rainfall intensities for a range of probabilities
for a family of durations are provided in Table 1. (See Jennings, 1955, 1961,

1963.)




Table 1. Rate of rainfall (inches/hr) averaged over duration specified

Duration

5 minutes 1 hour 6 hours 24 hours

Actual max (65 years) 6.72 2.10 0.91 0. 35
Probability of exceeding max
50% in any year 3.70 1.15 0. 38 0.14
60% in 25 years 6. 55 2: 110 0.63 0. 24
20% in 25 years 7.90 2.70 0. 80 0. 28
1% in 25 years 12.00 3.09 113 0. 40

3. TEMPERATURE EXTREMES

To make estimates of extreme hot and cold hours within approximately 60
miles of Boston, we picked some 11 stations for which the USWB provides 30-year

records, as follows:

New Haven, Connecticut
Bridgeport, Connecticut
Hartford, Connecticut
Portland, Maine

Blue Hills, Massachusetts
Pittsfield, Massachusetts
Worcester, Massachusetts
Concord, New Hampshire
Block Island, Rhode Island
Providence, Rhode Island

Burlington, Vermont.

We studied the records for January, which is generally the coldest month, and

July, which is generally the hottest month.




3.1 COLD

The January average of the 11 stations gives for a ''typical' station the tem-
perature mean 25.4° F, compared with the Boston Logan Airport mean of 29.1° F.
Unfortunately, the records do not give the standard deviation of the temperature.
From the Handbook of Geophysics this is estimated at 11° F in January. It is
further assumed that the hourly temperatures, in toto,have a normal Gaussian
distribution, which is often a poor assumption. But it gives reasonable estimates

of percentiles as follows:

10 percent 11° F, compared with Logan 15° F,
5 percent 7°F, compared with Logan 11°F,
1 percent 0°F, compared with Logan 3°F.

The records that are readily at hand do not give the highest and lowest tem-
peratures in each year or the distribution of these extremes. Consequently, it is
not possible to make direct estimates of the risk factors. Recently at AFCRL we
developed a model of the duration and frequencies of anomalous values of meteor-
ological elements, which has worked demonstrably well. It assumes a simple
Markov process with a constant hour-to-hour correlation of normalized variates.
An assumed value of 0. 95 for this correlation is optimum when it is not known
otherwise. Given mean 25.4° F and standard deviation 11° F, the model yields for

the lowest temperature in 32 days (January 1 through February 1, inclusive):

50 percent probability -4°F
2 percent probability -15°F.

In a 25-year period the model yields for the lowest:

50 percent probability -15°F
2 percent probability -23°F.

In a 100-year period the model yields:

50 percent probability -19° F (Court, 1953a, gives
-20 to -30° F)

2 percent probability -26° F.

For the 11 stations the actual observed minima in 30 years (any month) are
given by the Weather Bureau, ranging from +3°F to -39° F, with an average of

-19° F. The value of -39° F was observed at Portland, Maine, where the mean




January temperature is 21. 8 F. All told, the model underestimates the extremes
of cold, suggesting that a special effort to collect the data of extreme cold is

necessary.

Using Washington, D. C., as a 'typical' southern location, we find the
mean January temperature is 37° F, with a standard deviation of 10° ', from
which the model estimates the 25-year lowest with a 2 percent probability at -6° F
(instead of -23° F).

3.2 HOT

The July average at the 11 New England stations gives as a ''typical' station
mean 70. 6°F, compared with Logan airport's 72. 2° F. From the Handbook a
typical standard deviation is 8° F. The model gives the following estimates for

the ''typical'' station:

10 percent 81° F, approximately the same for Boston,
5 percent 84° F, approximately the same for Boston,

1 percent 89° F, approximately the same for Boston.

Highest of the month

50 percent probability 92°F
2 percent probability 101° F
1 percent probability 102° F.

Highest in 25 years

50 percent probability 100° F
2 percent probability 107° F.

Highest in 100 years

50 percent probability 103° F (Court, 1953a, givesexpected 102° F)
2 percent probability 109° F

Actually observed at the 11 stations in a 30-year period, any time of the year,
were 97, 101, 100, 100, 101, 94, 94, 100, 91, 97, and 101° F, respectively.
Boston's record temperature in the 30 years is 100° F. At Washington, D.C.,
where the mean July temperature is 78° F, with a standard deviation of 7° F, the

model gives the 2 percentile in 25 years as 110° F.
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4. SNOWFALL EXTREMES

Using Boston as typical of any station in a 60-mile radius, with respect to

heavy snowfall, we have collected the following data:

Heaviest of the year: average, 9.91 inches in 24 hours

standard deviation, 3. 54 inches in 24 hours.

The distribution in the 35 years of record fits the double exponential distribution

very well, which makes the following estimates possible:

In 25 years the expected maximum is 18.9 inches in 24 hours
2 percent probable maximum 28. 0 inches in 24 hours

1 percent probable maximum 30. 0 inches in 24 hours.

For the 11 stations mentioned in the section on temperature, the greatest 24-hour

snowfalls on record (30 years) are:

15.0, 14.3, 17.2, 21.0, 27.2, 14.5, 24.0, 19.0, 16.9, 18.3, and 14. 5 inches,

averaging 18. 4 inches.

Boston's record is 19. 4 inches for the 30 years.
1
5. HAIL

There is a small frequency of hailstorms for a given location. It varies from
about 1.1 times per year near the coast to about 1. 2 times per year 50 to 100
miles inland. Statistics are not available in a form where frequency of hail by
size can be related to probability at any location. The most pertinent data avail-
able are included in an AFCRL survey of New England hailstorm occurrences,

obtained through cooperative reporting by residents of the area.

Over a 5-year period, 472 reports of hail were received. Most of these were
well within 100 miles of Boston and so can be considered as representative of
eastern Massachusetts. The most frequent size of the largest stones reported for
each storm is 1/4 inch. Sizes as large as 3/4 inch were mentioned in one-quarter

of the reports. Frequency of very large sizes in these 5 years were:

1For additional information, see United States Department of Agriculture (1941)
and Chimela (1960).
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Size Frequency Cumulative Probability

1. 00 inch 11 4.45 percent
1. 25 inches 4 2.12 percent
1. 50 inches 5 1. 27 percent
3. 00 inches 1 0

Assuming that this distribution of very large hailstones is typical of that in a re-
presentative sample of hailstorms that might be encountered at any one station

in eastern Massachusetts over many years, the probability that a storm at a given
point in the area will include hail equal to or greater than 1.0, 1. 25, and 1. 50 is
the same as the cumulative probabiiity shown in the table above. Since the aver-
age incidence of a hailstorm at that station is about 1.1 times a year, assuming

a Poisson distribution, the annual risk of receiving hailstones of different sizes
can be obtained. The risk with various design criteria to a structure designed
with a 25-year life expectancy can be approximated from P = l(l-p)n, where p

is the annual risk and n the expected life. Computed values are:

Design Criteria Annual Risk 25-Year Risk
1. 00 inch 4. 8 percent 71 percent
1. 25 inches 2. 3 percent 44 percent
1. 50 inches 1.4 percent 30 percent

It appears that a hailstone design criteria of at least 1.5 inches diameter will
still provide only a 70 percent probability of no damage, far from the ! percent
calculated risk considered during discussions of damage from strong wind. How-
ever, since there is good likelihood that the citizenry reporting the 472 storms
from which these data were obtained exaggerated sizes in each storm, especially
when they were large, a design criteria of 1.25 to 1.50 inches will probably be

acceptable.

6. RIME AND GLAZE ICING

As in the case of many other meteorological parameters important in the
design of structures, there is little data in a uniform format on rime and glaze
(or clear) ice from which studies could be developed to provide design criteria
applicable to stated calculated risks. This difficulty was encountered several

years agao by Austin and Hensel (1956, 1957) when they attempted to develop




design criteria for freezing precipitation and wet snow along the eastern North
American coast line in connection with radomes for aircraft warning systems.
They developed expressions that can be applied to standard meteorological data

to derive thicknesses of clear ice and wet snow that would accumulate on the wind-
ward side of the structure with high collection efficiencies. Rime ice was not
considered a design problem for the smaller radomes being developed at that

time since wind, concurrent with freezing drizzle, which forms rime ice, was
thought to be sufficiently strong to divert the small drops from impacting the
structure. Since there is some likelihood that rime ice can accumulate on a

radome as large as 500 ft in diameter,it will not be ruled out herein.

In general there appear to be two problems related to rime and glaze:
(1) the structure should be strong enough to support the total amount of ice that is
likely to accumulate on it, (2) if deicing methods are to be employed, the maxi-

mum rate at which ice will accumulate is required.

The total amount of ice that could accumulate on a structure will depend upon
the structure's geometry and size, as well as on the rate of precipitation and wind
speed. Unfortunately, available information on ice accumulation does not permit
the isolation of these factors. The most complete summary of glaze appears to
be that provided by Bennett (1959). A most pertinent presentation in this summary
is a set of maps for the United States that provides the results of a 9-year study
by the Association of American Railroads. The extreme radial thickness of glaze
on utility wires for Massachusetts provided by these maps was between 1. 75 and
1.99 inches and was noted near the coast and also in the Connecticut River Valley
area. During the 9 years, about 20 glaze storms were observed over coastal
areas and nearly twice this number over central Massachusetts. Austin and
Hensel (1956) provide an example that indicates that during a period of heavy glaze
formation, the rate of accumulation on a vertical surface, in a horizontal wind of
40 mph when rain is falling at a nominal rate of 0. 06 inch per hour, is 0.13 inch
per hour. Applying this 2 to 1 ratio to the 2 inches of radial icing reported upon
by the railroads, we can expect a nearly l1-inch accumulation on a surface such
as the top of a large radome. Austin and Hensel (1956) also give some frequency
distributions of rainfall rates and durations during near freezing, which indicate
that 1 inch of ice on a horizontal surface is conceivable, although this seems
extreme, and it is questionable whether other critical conditions would last the
period of precipitation. From these data they also estimated that the precipitation

rate will seldom exceed 0.1 inch per hour during near-freezing temperatures.
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Another extensive survey on ice appears to have been performed by one of
the most well-known climatologists of this area, the recently departed C. F.
Brooks, Director of the Blue Hills Observatory. The importance of altitude is
forcefully brought out in this work. His findings are summarized in a book on
wind power (Brooks, 1948), where some graphs are provided. For these lati-
tudes Brooks estimated a maximum thickness of rime ice (35 pounds per cubic ft)
of about 3 1/2 inches for stations near sea level, and 5 inches for elevations of
1000 ft, the altitude of the Worcester Airport. Presumably, these values apply
to surfaces with high collection efficiency, such as trees and wires. In terms of
clear ice, the comparable values would be 2. 2 inches and 3.1 inches, not in sharp
disagreement with the Bennett (1959) and Austin and Hensel (1956) findings, con-

sidering that the Brooks values are estimated maximums for all times.

In summary, it appears that for the structural problem, weights commen-
surate with 1 inch of clear ice (56 pounds per cubic ft) on a horizontal surface and
a couple of inches on vertical surfaces should be considered in preliminary design.
In connection with the deicing problem, accumulation on a horizontal surface of
0.1 inch per hour should be considered, with values at least 25 percent higher for
structures with high collection efficiency. These values could be refined by con-
sideration of the aerodynamics and geometry of the structure and by application
of the Austin and Hensel techniques to the large amount of surface wind data now

available on magnetic tape when a site is selected.
7. WIND EXTREMES
The best collection of data on wind extremes in the United States was made
by H. C. Thom of the USWB several years ago. Unfortunately his data are in

terms of the fastest mile. We shall present his data, but will also convert them

to maximum 5-minute wind speeds.

In Thom's record there were eight stations considered within the vicinity of

our interest:
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Boston, Massachusetts
Providence, Rhode Island
Portland, Maine
Concord, New Hampshire
Hartford, Connecticut
Nantucket, Massachusetts
New Haven, Connecticut

Burlington, Vermont

In all of these cases the station was moved from the city to the airport 15 to 30
years ago. We have from 24 to 30 years of city record and 12 to 19 years of
airport record at each station. They give for the annual extreme an average of
43 mph at city stations and 52 mph at airport stations. The standard deviation of
these annual extremes ranges from 4 to 12 mph. In all cases the distribution of
annual extremes can be fitted with confidence to the Double Exponential Distribu-
tion. This has allowed us to make estimates of the 25-year extreme wind., The

1 percentile of the 25-year extreme varies from 82 mph at the New Haven airport

to 128 mph at Logan airport (see below).

To convert the above figures from fastest mile to maximum 5-minute wind
we have compared Thom's record with Court's (1953b) record on 5-minute winds,
limiting the comparison to the same stations and the same years. We drew three
curves that best fit the conversion: (1) the 50 percentile of the 25-year maximum
fastest mile to maximum 5-minute wind, (2) the 1 percentile, and (3) the 0.1 per-

centile (see Figure 1).

The question has been asked: How do extreme winds in New England compare
with extreme wind speeds at southern Atlantic seaboard stations? To make a
qualitative comparison, we looked at Figure 4-36 in the Handbook of Geophysics
(Air Force Cambridge Research Laboratories, 1965) and concluded that little or

nothing would be gained by searching for lower speeds at the southern stations.

In the above estimates the winds were corrected to a height of 50 ft above the
ground by assuming the relation V o ln(z/zo), where z, is the roughness parameter

accepted as zy = 0.1 ft and z >> z.




In summary, we have estimates of the maximum 5-minute winds in 25 years,
averaged for the three coastal stations (Boston, Nantucket, and Portland) and for

the five inland stations as follows:

Height fo) al Inland

Above 50 1 0.1 50 1 0.1

Ground Ratio Percent Percent Percent Percent Percent Percent
50 ft 1.00 72 112 130 55 82 96

100 ft 150101 80 124 144 61 91 107

250 ft 1.26 91 141 164 69 103 121

500 ft 1,37 99 153 178 75 112 132

The actually observed greatest of all 5-minute wind speeds at the 8 stations, both
in the city and at the airport, was 95 mph at the Providence city station during the

1938 hurricane. The instrument was up 250 ft above the ground.

8. WIND GUSTS

A ripple on the water surface will cause a cork to bob furiously, but will have
no noticeable effect on a rowboat. Waves in Boston Harbor may make the occu-
pants of a rowboat feel quite uncomfortable but will not trouble passengers of an
ocean-going vessel, In fact, the same family of waves hitting the side of the boat
will be more nauseating than when hitting it lengthwise. The larger the dimension
of the floating object in the direction of wave propagation, the longer the wave

required to cause vertical displacement.

The above intuitively understood principle is completely analogous to the prob-
lem of relating the structure of the horizontal wind, primarily gusts, to the maxi-
mum force on a building in any wind situation. This maximum force, due to a
single gust, could blow over a structure. Another important wind structural
problem is that of vortex sheddings. It is most important for towers, chimneys,
cables, etc. If the frequency of shedding, dependent upon the wind speed and the
geometry of the structure, corresponds to the natural period of oscillation due
to elasticity of the structure, the resonance could serve as a forcing factor and
bring about destruction. It is conceivable that gust frequency could add to this
problem. This is a matter beoynd the scope of this paper. Because of the large
diameter of the sphere being cansidered, this factor may be of only small impor-
tance to CAMROC,




With regard to the gust force, the wind design criteria must be specified in
a form applicable to the size of the structure. Sherlock (1947) has determined
that a gust must be approximately 8 times the length of the structure's down dimen-
sion, or longer, to be effective. For example, for a 100-ft-square building one
should work with the statistics of 800-ft gusts, or wind data averaged over the
period of time required for 800 ft of air to pass, the gust duration. In a 50 mph
(73 fps) wind, gusts of 10, 6 seconds would be applicable; in 100 mph, the gust

need last only 5 to 6 seconds,

Available wind data that form the basis of climatic statistics are not directly
applicable. In this country, around World War II, winds were obtained by rotat-
ing cup anemometers. These electrically triggered a pen to mark a time-driven
chart when each mile of air passed. The greatest number of pen jogs in a 5-
minute period, multiplied by 12, provides the fastest 5 minutes' average speed
for the day, the duration of the chart. This was the standard entry in the climatic
record of winds until shortly after World War II.

Today's basic wind entry, wind extremes that have been recorded for years,
is the fastest mile, which is obtained from the shortest time between two con-
secutive pen marks., Duration may vary from minutes to 1/2 a minute or less,
making results of statistical summaries hard to evaluate. Gusts of short dura-
tion, which might be applicable to structures of smaller dimension, are not gen-
erally recorded since the instrumentation does not have a fast-enough response.
When obtained with special instrumentation, these can best be understood when
related to a wind averaged over a specific period of time, such as the now-obsolete
5-minute period. In the United States at a few locations there are records from
Dines (pito-static pressure tube) anemometers, which respond very well to gusts
of 5 seconds or less, depending upon the authority believed. In Great Britain
the Dines anemometer is a standard., In that country basic wind data are the
mean hourly wind speed, obtained by '"eye averaging' the wide range of pen strokes
during 1 hour of travel of 1 1/2 cm of the chart, and the maximum gust during
each hour. Statistical models, such as the Gumbel double exponential for extremes,
can be applied to both hourly and gust data for calculated-risk thinking, However,
since winds need to become strong only for a matter of minutes in order to destroy
a large structure and seconds for small structures, the British have also had
difficulty obtaining wind data applicable to structures. Interpolation between 5

and 360 seconds, when the function is exponential, is difficult. Also, a sudden



thunderstorm-type wind might hardly show up in the hourly average. One inter-
esting fact, from a most pertinent recent British summary of wind speeds appli-
cable to structural design-(Shellard, 1965), is that the gust speed likely to be ex-
ceeded only once in 50 years is 50 percent higher than the 1-hour wind speed of
the same probability on the windy west coast, but closer to 70 percent higher on
the more sheltered inland. Inland Massachusetts will probably have a gust regime
similar to the east coast of England. Pertinent to the problem of utilizing the 5-
minute winds of the United States, Shellard (1965) does provide a frequency dis-
tribution of the gusts during 404 10 -minute cases when the wind averaged more than
20 mph. It reveals that the maximum 5-second gusts had a 1 percent probability
of being above 70 percent stronger than the 10-minute winds ‘over open country,
supporting findings that are summarized in Figure 1. Gust factors will probably

be higher over cities.

The 5-minute wind speed is a statistical entry that can be utilized in structural
design in accordance with methods of Sherlock (1947) if the 5-minute wind speed
can be related to speeds averaged over shorter durations of time. This cannot be
readily accomplished with fastest mile data because of the changing duration of the
measurement. Court (1953b) made an extensive analysis of laboriously edited 5-
minute wind data for the United States. His basic data sample consisted of 37
years (1912-48) of maximum annual 5-minute wind speeds for 25 stations, at which
the instrumentation remained fairly constant in exposure, height, and type. Boston
was not included, because it did not qualify in this way. The nearest location,
Block Island, Rhode Island, had an average annual maximum of 58.4 mph, with

a standard deviation of 7.5 mph, third highest in the sample.

Court recognized that it was usually the gusts, and not the 5-minute buildups
of wind, that do the damage. He had no quantitative information on the size or
duration of gusts applicable to structures. To make his findings more meaningful,
he compared cup and Dines anemometer data, published for Washington, D.C., in
two separate studies. He found that the gust factor (amount by which the 5-minute
speeds should be multiplied) when winds exceed 30 mph is 1.5. This value has
been substantiated as a good rough value for an envelope of few-second gusts in
moderate wind speeds by many others. However, the data is probably fairly
coarse, especially with regard to the exact duration of the gusts. There are many

individual cases of lower and higher gust factors. There are questions of variation




with strength of 5-minute wind speed, height above ground, terrain, etc. Lettau
and Haugen (1960) summarize much of the applicable data, some of it obtained
during micro-meteorological research. Integrating these data requires consider-
able subjective treatment because of the many dependent conditions, often not

known, that appear to lead to conflicts in the findings.

A set of data from the Mount Washington observatory records was employed
for this CAMROC study, since special concern with gust structure of strong winds
is required when a structure is being designed to last 25 years within low (1 to 0.1
percent) risk. As shown in Section 7, design winds will approach 100 mph, far in
excess of speeds in the usual data sample from which gust factors are available.
Even a few percent changes in a gust factor could have large effect on the gust
force, considering that it varies with the square of the velocity, when a gust factor

is applied to 100-mph speeds.

The gust sample selected for special analysis included eighteen 5-minute
periods, which averaged 108 mph. The maximum gust duration, about 3 seconds
for each of these 18, ranged from 16 to 38 mph, averaging 23.9 mph with a standard
deviation of 7.9 mph. This yields a probable maximum 3-second gust, when 5-
minute winds average 108 mph, of 132 mph, a 1 percent probable gust of 150 mph.
This is a gust factor of 1.4. (These gusts were determined from the time of
passage of 0.1 miles of air on a specially designed rotor anemometer. In a steady

wind of 120 mph, this will take exactly 3 seconds.)

Also needed are gust factors for gusts of other durations. Fortunately, Durst
(1960) reported upon standard deviations of gusts with durations of 5, 10, 20, 30,
60, and 600 seconds (during samples of 1-hour periods) for wind speeds in eight
10 -mph groupings up to 80 mph. Manipulating these data, we found that these
standard deviations vary inversely with the logarithm of the gust duration, a straight
line on semilog graph paper. This relationship has been applied to the l-percent
probable gust of the eighteen 5-minute speeds, which average 108 mph (rounded to
110 mph) to form the basis of Figure 1. It is the curve on the far left. Also on
this figure is the relationship obtained by Sherlock (1947) for 30-mph winds. These
are average gust factors during a 70 -minute period, and the l-percent probable
gust curve, not available, would be shifted considerably to the right. It closely
approximates the semilog relationship, but does not fit it exactly. To give better

resolution to the picture, a set of maximum gusts of 5, 10, 30, and 60 seconds was




available (Mackey, 1965) for Typhoon Mary when it crossed near Hong Kong in
June 1960. This set approximates the semilog relationship and serves as the basis
for the 60-mph curve, although no probabilities were available. Also shown are
the strongest wind of record (Pagluica, Mann, and Marvin, 1934), 188 mph, and
another very strong wind, 136 mph, both for Mount Washington. The gust factors
for both these points are somewhat higher than we might get by extrapolating the
family of curves to higher speeds, but are within the general range of scatter of
data of this type. Both are probably within 0.1 of extrapolated gust-factor values.
Another point on the graph, that for an 80-mph wind over Tiree, England, in
February 1961, taken from a photo of the original strip recorder paper, appears
to fit fairly well the curve for 85 mph, which gives us an interpolation between the
data from Typhoon Mary and that of 1-percent probable gust from the Mount
Washington sample. It appears that this figure is one possible approach to a ra-
tional application of gust factors and can usefully be applied to the 5-minute de-

sign wind determined from Section 7 above.

Heights above the ground are not well defined in these gust-factor studies.
Sherlock's (1947) curve in Figure 1 applies to data obtained between 50 and 175 ft,
a fairly wide range of heights. The Mount Washington data were obtained 38 ft
above the ground. The height of the Tiree anemometer is believed to be standard
for England, 33 ft. That of the Hong Kong anemometer is not known but is quite
likely to be the same as that for England.

For large gusts, those of l-minute duration, Lettau and Haugen (1960) pre-
sent data obtained by German investigations that indicate that the gust factor re-
mains constant up to 300 feet. It appears reasonable to assume that this relation-
ship also holds to higher altitudes. Gust factors for few-second gusts during 5-
minute speeds of 20 knots or greater and the ratio of 5-minute speeds at height

to 10-ft speeds, obtained by Sherlock (1953), follow.

Height
Ratio 10 20 50 100 300
V/VIO’ 5 minute 1.00 1.05 1.14 1.21 1.32
Gust factor at height 1.7 1.6 1.5 15 1.4




The Sherlock findings reveal that the few-second gust does not increase as rapidly
with height as the 5-minute winds. Higher wind velocities at high levels are accom-
panied by lower gust factors, a form of compensation. Short-period gustiness
associated with surface roughness tends to damp out with height, as the slower
moving boundary layer air gradually merges with the faster geostrophic flow that

is in equilibrium with pressure forces, at about 2000 -ft altitude.

From Figure 1 and the relationship between height and velocity for 5-minute
wind speeds, provided in Section 7, we can study this problem. For example,
if the 5-minute design wind chosen were 85 mph at 50 ft, the 5-second gust factor
will be 1.45, yielding a gust of 123 mph. At 300 ft the 5-minute wind will be 110
mph, but the 5-second gust factor would be reduced to 1. 35, yielding a gust of
1.38 mph. This value is slightly larger than might be obtained by extrapolating

the Sherlock findings and can probably be considered as conservative.
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INTRODUC TION

The problems are:

a. To give estimates, by isopleths on a map of the United States, of the wind
speeds that will be equalled or exceeded with a 50% risk in a 50-year
period, or a 1% risk in a 25-year period. The first (50% in 50 years) will
be a map corresponding to Figure 3 of Thom (1959). The second (1% in
25 years) is considered to be a practical figure with respect to a structure
such as a radome that is built for an intended useful life of 25 years. It
will be located in open country (away from radio interference) and not on

top of a mountain or hill.

b. To estimate the frequency with which the wind speed, at a height of 500 ft

above the ground, will exceed 20 mph.

METHOD AND RESULT

A. Work on problem a. had been done by Thom (1959), which could be con-
sidered sufficient for the purpose of comparing the critical speed at one station with
that of another. But there are a few objections. First, Thom's speeds are in terms
of the ''fastest mile.'" A fastest mile of 60 mph is a 1-min wind; at 120 mph it is a
1/2-min wind, and so on. For the effect of the wind on a structure, it is believed
that the wind of a given force acting for a specific interval of time is the pertinent
statistic. Thom's original record of annual extremes of wind, therefore, was reexam-
ined and processed to yield extreme wind speeds in terms of ''5-min' wind speeds,

that is, a speed that is the average of the speed in a 5-min interval.

Thom's original record had both city and airport stations. Only the airport stations
were selected for this study since they represent wind conditions in open fields more
closely than do city stations. There were 129 such stations spread throughout the con-
tiguous U.S. The years of record varied from 5 to 29 years. Disregarding the length
of the record, the mean (V) and standard deviation (Sv) of the fastest mile were ob-
tained at each of the stations. The annual extreme wind is assumed to have a double
exponential distribution (Gumbel, Lieblein, Court, and Gringorten), and an estimate

A
(V) of wind speed satisfies the relation

-7
—_t (1)

where YS is a standardized variate, with mean zero, variance 1.0, and double exponen-

tially distributed.

For the 50 percentile of the 5-year maximum, y 2.90.

5.67;

For the 1 percentile of the 25-year maximum,

o
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Thus, the extreme fastest mile (50% in 50 years, or 1% in 25 years)

was estimated at each of the 129 stations.

The next step required a comparison of values of fastest mile with maximum annual
5-min wind. For some 25 stations Court (1953) gave the max 5-min wind in some 37
years. Fortunately, Thom's record included the fastest mile for each of the same 25
stations in the same 37 years. Using Equation (1) on both the Court and Thom data, it
was possible to obtain pairs of estimates of the desired extremes. Figure 1 shows the
estimate of the 50 percentile of the 50-year maximum, fastest mile plotted against

5-min wind. Simple regression gives

5-min - 0. 826 Vfastest + 2.57 .
Figure 2 shows the estimate of the 1 percentile of the 25-year maximum, fastest mile

plotted against 5-min wind. Regression gives

A

A\ . =0.78 Vv + 6.57
5-min fas

test

In Figure 3 the isopleths give estimates of the 50 percentile of 50-year max of the
5-min wind speeds throughout the U.S. The estimated values at each of the 129
stations remain plotted in Figure 3 to allow the reader to see to what extent the iso-

pleths have been smoothed and the field generalized.

In Figure 4, the isopleths give estimates of the 1 percentile of the 25-year max of

the 5-min wind speeds.

The shape of the isopleths in Figure 3 should correspond closely to Thom's Figure
3. But there are some differences, particularly over the New England region. Thom's
chart suggests that there is an axis of minimum speeds passing over Lake Champlain,
the Hudson River, eastern Pennsylvania, Maryland, eastern Virginia, and central
North Carolina. Our Figure 3, however, shows an axis of minimum speeds passing
over Utica, New York, western Pennsylvania, and West Virginia. The isopleths were
drawn as faithfully as possible to the available data. But we also think that some con-
sideration of the Appalachian mountain chain and the tracks of hurricanes is in order.
We can expect high winds between the East Coast and the eastern slope of the

Appalachians and lower speeds on the west side of the Appalachians.

Figure 4, which, we think, presents a more appropriate statistic, is fairly con-

sistent with Figure 3.

B. For the probability estimate of winds exceeding 20 mph in central
Massachusetts, the information source is the Handbook of Geophysics, Figures 4-31,

4-32, 4-33, and 4-34. The following are typical combinations of mean and standard
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deviations at 50 ft above the ground in central Massachusetts and corrected to 500 ft

by the relation:

V500 _ £n 500/0.1 _ .
Vo Ln 50/0.1
50 ft 500 ft
Month Mean s. d Mean s. d.
January 10 5 13.7 6.8
11 6 15.1 8.2
April 10 5 13.7 6.8
12 5 16. 4 6.8
July 9 4 12.3 5. 5
10 5 13,7 6.8
October 10 + 13.7 585

As found in the preparation of the Handbook of Geophysics, the gamma distribution

A
is a useful relation to estimate upper percentiles (V) of wind speed as follows:

]
where P(ys) = J. f(y) dy, where f(y) =1/2 (y2 . e_y). Values for P(ys) are given in

=00
Section 4,5.1 of the Handbook, and lead to the following answers:

Month Frequency of speed exceeding 20 mph
at 50 ft at 500 ft

January 8% 20%

April 6% 21%

July 3070 14070

October 2% 13%

At 500 ft, the rawinsonde might give information on the wind speed by interpolation
between 1000 ft (reported) and the surface wind. Such data were not at hand, and it is

not possible to judge whether they would yield lower or higher estimates of the wind.
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GEOMETRIC AND STRUCTURAL CONSIDERATIONS FOR LARGE RADOMES
By
R. A. Muldoon
I. Introduction

I plan to review very briefly the approximate methods that were used in space-frame
radome analysis prior to the employment of the computer and to indicate those areas
where the computer is being adapted to radome design,and also to sketch the benefits
that derive from the precise analyses afforded by the computer. I shall consider only
the stress analysis of the radome. Prof. James Mar and Dr. Howard Simpson will con-

sider the problems related to the buckling of space-frame radome structures.

Rigid ground radomes are designed to protect antennas from adverse environmental
conditions, e.g., wind, snow, and ice. The structural components of the radome must
be sufficiently sized and properly located so that the radome maintains its mechanical
integrity under the anticipated climatic loads. Yet the size and distribution must be
minimized in order to prevent undue interference with the transmission of electro-
magnetic radiation. It is this stringent electrical requirement that differentiates a
radome from all other type structures. Thus, the successful radome design must effect

a judicious compromise between these conflicting mechanical and electrical requirements.

The inclusion of a radome in a communications system confers many major benefits
on the antenna structure. The most important is a reduction in the stiffness and rigidity,
and thus the total weight and cost of the antenna structure itself. When an antenna is
exposed to the environment, increased stiffness and rigidity are essential in order that
the structure survive climatic conditions that occur but once in many years, e.g., winds
in excess of 100 mph. This survival criterion dominates and controls the whole antenna
design; it demands sturdier and more costly structural components that are rarely uti-
lized at their design capacity; higher power requirements are necessary to drive a
heavier antenna against the prevailing low-velocity winds; moderate wind and snow
storms compel a shut down of the whole system; exposure to the elements increases the
frequency of maintenance and repair time with a corresponding increase in shut-down

time. All these factors degrade the efficiency of the site.

Now with the tendency toward more accurate and precise dishes where surface
deflections must be kept within sixteenths of an inch, then the controlled environment
provided by a radome is essential. The radome by excluding the weather not only
removes the major source of mechanical loading from the antenna but permits the

smaller deflections resulting from the gravity and thermal loads to be controlled with




precision. Thus, the predictable deflections developed by the predictable gravity load
may be compensated for by means of cables or other such devices, while the deflections

due to thermal gradients may be minimized by proper heat and ventilation methods.
II. Space-Frame Radomes

1. General

Space-frame radomes in common with other radomes are spherical structures
truncated along a parallel circle (see Figure l1). They are distinguished from other
radome types by the presence of a continuous metal frame wove to produce triangular-
type cells that are comprised of individual load-carrying beam elements. The beam
elements are distributed about the surface of a sphere in accordance with some pre-
scribed geometric pattern. Each beam begins and ends at a hub and follows a chordal
line between these two hub points, which lie on the surface of the sphere. Each trian-
gular cell is covered by a thin, plastic, membrane of acceptable dielectric property

that is secured to these beam elements.

Space-frame radomes are generally subdivided into two classes — uniform and
random — depending on the geometry of the frame. A uniform configuration is charac-
terized by parallel sets of intersecting arc segments that proceed for large distances
along great circles of the sphere and form the sides of the triangular cells. This regu-
larity readily distinguishes the uniform from the random geometry, and conversely the

lack of symmetry in beam orientation identifies the random geometry.
2. Development of Space-Frame Geometry

In general, the geometry of the space frame is developedby consideringan icosa-
hedron or some variation of this model (see Figure 2). An icosahedron consists of 20
identical equilateral triangles disposed as illustrated. Each vertex point falls on the
surface of a sphere that circumscribes the icosahedron. Any one of the equilateral tri-
angles can be further decomposed into another system of triangles. In Figure 2 the
centroid of the triangle ABC, point G, has been raised to the surface of the sphere and
chords drawn from this centroid to the apices of the equilateral triangle. All the tri-
angles resulting from this operation are congruent. Now the triangle AEG may be
further decomposed into another set of triangles. This latter set can be made either
regular or random. This last process as applied to a 550-ft-diameter radome consists
in developing a triangular type grid of 15-20 points, which fall on the surface of the
sphere and the associated beams — chordal connections between the vertex points. Once
this basic net is established, computer programs have been written and are in operation
that rotate and reflect the points and beam elements in this basic unit to give the com-
plete space-frame geometry. Thus, if AEG is reflected about the line AG, then the unit
AGF results. Rotating the quadrilateral AEFG 120° counterclockwise about G gives




Uniform Geometry Space Frame Radome

Random Geometry Space Frame Radome

Figure 1. Typical 27.5-inch-diameter uniform and random-geometry space-
frame radome models used in shock-tube testing.



GEBD; a rotation 240° counterclockwise gives GDFC., A rotation of ABC 72° clockwise
about B gives BCC’. If five more rotations are performed, the hub points and beams for

a complete spherical radome result.

Figure 2. Breakdown of icosahedron used in development
of TTR random space-frame radome geometry.

In the past only the basic unit AEG, which defined the number and lengths of beams
framing into each hub type, were required for the structural analysis. Now the complete
stress analysis of the entire frame made possible by the computer requires that the
location of every beam and hub in the frame be known exactly. Computer programs

that perform as described above yield this information.
III. Radome Loads

Experience at radome installations has confirmed the expectation that wind storms
consitute the most severe loading imposed on the radome structure by the environment.
It has been demonstrated that snow and ice do not seriously challenge the mechanical
integrity of the radome. The maximum wind velocity that must be protected against is
usually obtained from the available meteorological data compiled at the installation

nearest to the site.

The distribution of pressures engendered about the surface of the radome by the
wind load (see Figure 3) is dependent on the radome base angle, the configuration of
the tower upon which the radome rests, the size and proximity of adjacent buildings, and

the prominent features of the surrounding terrain. The distribution of pressures is
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usually determined by wind-tunnel tests. The resulting data are then approximated by
a three-term Fourier series where the arbitrary constants are adjusted to yield the
measured lift and drag coefficients and also to preserve the dynamic pressure at the

stagnation point.

The use of the computer will permit a more accurate representation of the pressure
distribution either by extending the number of terms in the Fourier series or by using

the actual pressure result measured at each section of the radome model during testing.

For very large-diameter radomes of the kind contemplated for the CAMROC system,
the escalation in wind velocity with height and the resulting change in pressure distribu-

tion must be accounted for and included in the analysis.
IV. Structural Analysis
1. Modes of Failure

The loading imposed on the radome by the wind can fail the structure either by
overstressing one of the major components or by promoting a condition of unstable
equilibrium. Two distinct types of instability can result: The first is called general
instability and is characterized by a buckling collapse of several adjacent panel groups.
The second involves a column-buckling failure of one of the beam members in the space

frame.
2. Figure of Merit

The electromagnetic and mechanical performances of the radome are related
through the optical blockage of the space frame — the shadow cast by the frame on the
plane of the antenna. Thus, the width, depth, length, number, and distribution of beams
in the space frame establish the mechanical sufficiency of the structure. These same
parameters impede the electromagnetic transmission of the radome, which is indexed
by the optical shadow of the frame in the antenna plane. Then that space frame that
successfully resists the wind load and develops the minimum amount of blockage is

judged the most efficient.

In the past, the optical blockage was calculated by means of approximate formulas
or even in some cases determined by illuminating a scale-model frame, recording the

shadow photographically, and measuring the result.

A computer program is now in operation that calculates the optical shadow from the

beam dimensions and frame geometry.
3. Past Methods of Stress Analysis

Previously, the stress analysis of the radome structure consisted in calculating
the membrane stresses developed by the three-term Fourier representation of the wind

pressures in an ideal, homogeneous, spherical shell. The maximum membrane
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stresses were then expressed in terms of axial loads in the beam members by consider-
ing the condition of equilibrium between a planar arrangement of the minimum number

of beams that frame into a hub and the maximum membrane stresses (see Figure 4).

Pc PC

\ /

>

/ \

e e

Figure 4. Relation between membrane stresses and
compressive axial loads in space frame.

The local transverse loads carried by each beam member in the frame are next
estimated (see Figure 5), and together with the axial load they form the total loading on
the beam member. The local transverse loads associated with each beam are calculated
by assuming that one third of the pressure load imposed on each triangular panel is car-
ried by each beam member that constitutes the triangular frame. The distribution of the
transverse load along the beam length is determined by dividing each triangle into three
equal areas and multiplying the area by the local pressure. Because each beam member
serves two triangular panel elements, then the contributions from both adjoining panels
are summed. With the axial and transverse loads determined, a beam-column analysis
is performed for a fixed-ended beam to ascertain the maximum stresses in the frame
member (see Figure 6). This procedure was repeated for all the triangular cells that
occur in the basic geometric unit, and the beam dimensions that are everywhere equal

are based on the maximum beam stress.

The above method incorporates many conservative approximations that in turn
result in beam sizes that are conservative. As a consequence, the radome cost is

increased and its electromagnetic performance is downgraded.




Figure 5. Area of local transverse loading imposed on beam by

adjacent panels.

N

Y

Figure 6. General loading diagram for beam-column action,



4., Computer Methods for Future Design Analysis

With the advent of computer programs capable of analyzing highly redundant
space-frame structures, the means for calculating the exact stress in any beam member

are available.

Then the contemplated sequence of computer operations for the stress design of

space-frame radomes is

1) For the complete space frame, generate all the hub points and

identify the two hub combinations that define each beam.

2) Develop the overpressure due to the wind at each point on the

radome surface.

3) Input this information along with some estimate of the cross-
sectional dimensions of the beam and determine the stress for

every beam in the space frame.
Calculate the optical blockage due to this space frame.

Examine the beam stresses and alter the cross-sectional
dimensions of the individual members — increasing the
dimensions where high stresses occur and reducing the
dimensions where low stresses occur and then reading this

new information into step 3.

The latter steps are to be repeated until a space-frame structure of minimum optical

blockage and all of whose members are loaded up to the working stress by the design

wind results.
5. Anticipated Improvements in Radome Design Due to Computer Applications

It is estimated that the application of computer-design techniques by allowing
a more realistic modeling of the radome exposed to wind loads and thus eliminating the
large safety factors will permit the following improvements in the design of the radome

space frame:

1) The dimension of each beam member in the frame will be altered
such that it will be stressed to its capacity by the design wind

load, thus minimizing the cost and optical blockage of the structure.
The maximum working stress can be advanced to the elastic limit.

In some cases the maximum working stress might be able to be

advanced beyond the elastic limit and into the plastic range.




4)

5)

The use of longer beam lengths where the effective 1/r ratio
is reduced by means of guy wires, as suggested in a recent

A & W report, can be adopted if feasible.

Lastly, a very large volume of space-frame geometries may be
rapidly investigated in the search for the most efficient radome
structure for the CAMROC application.
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Errata

The average length of beam in a space-frame radome was estimated in this report
by relating the arc length of one of the sides of a spherical icosahedral triangle to the
number of beams that lie on that side. A better approximation of the average beam
length is obtained by equating the area of a sphere to the total sum of the triangular
areas that constitute the frame, This improved method yields a total beam length that

is 1,18 times greater than the results obtained in this report.

It is recommended that all optical-blockage and weight results plotted herein be
multiplied by the factor of 1.18 to obtain a more realistic appraisal of the anticipated

space-frame performance,







ESTIMATE OF OPTIMUM BEAM DIMENSIONS FOR CAMROC 550-FT-
DIAMETER SPACE FRAME WHEN EXPOSED TO 130-MPH WIND

Summary

A 550-ft-diameter space-frame radome whose height is 7/10 of the equatorial diam-
eter has been proposed as a protective enclosure for the CAMROC radio telescope. Itis

tentatively assumed that the radome structure must withstand 130-mph winds,

The choice of an optimum-length beam member must take into account the total
frame weight, cost, ease of fabrication and erection, the problems associated with
membrane manufacture and assembly, as well as the increasing membrane depth asso-
ciated with an increasing beam span. These problems, which are not treated in this
study, will define a maximum acceptable beam length, Under these conditions the choice
of an optimum length for a beam member will depend on the optical blockage, which is
the shadow cast by the beams in the plane of the antenna, This shadow degrades the
electromagnetic performance of the protected antenna. Thus, the beam dimensions that
yield a minimum optical blockage within the permitted maximum length are considered
optimum, This study is a first attempt to relate the beam dimensions to the optical

blockage for a range of space-frame parameters,

The preliminary calculations of this report consider the beam members of the space
frame only from the standpoint of beam-column behavior. The effect of general insta-
bility on the size of the beam members, which can have a considerable effect, is cur-

rently under intensive investigation.

The analysis in this study was carried out by expressing the axial and transverse
loads in a typical member as a function of the beam length. A pin-end support condition
was assumed for the typical member. It is recognized that both of these assumptions
are only rough, first approximations to the physical situation., These assumptions are
justified only for preliminary estimates to meet the need for a quick look at the beam

parameters of a 550-ft-diameter radome.

Two cases are considered in the calculations, The first case was based on a con-
dition of maximum stress. Ior this case, it was assumed that only radial deformation
was allowed with deformation in the plane of the membranes being prevented by the
membranes themselves, The second case did not limit the beam to radial deformation
but also included column buckling in the plane of the membrane. The size of the beams
calculated from these two cases were then used to estimate the optical blockage of the

frame as a function of the beam dimensions.

The calculations were based on a cross-sectional configuration for the beam con-

sisting of two identical steel channel sections with 4, 0-inch flanges (see Figure 7).
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Channel thicknesses of 1.0, 1,50, and 2.0 inches each in combination with channel
widths of 2.0, 4.0, 6.0, and 8.0 inches were considered. The beam depth was varied
according to the maximum stress requirements, Material yield stresses of 40, 000,

60, 000, and 80, 000 psi were investigated,
1. INTRODUCTION

In sharp contrast to the antenna, many of the major structural features of a radome
are fixed and permanent. Thus, electromagnetic requirements demand point symmetry
and the radome design must be spherical. The size of the enclosed antenna coupled
with economy fixes the diameter and the height of the radome. If the antenna is large,
the skin must still be thin, and shell, sandwich, and inflated radomes are eliminated in
favor of space-frame structures. Because the wind loads produce significant bending
moment, which must be sustained with a minimum of framing material, triangular
grids are necessary. Thus, only the triangular grid geometry, beam-member size,

hubs, and membranes remain to be designed,

Currently, the CAMROC facility envisions a radio-telescope antenna whose plan
diameter is 400 ft and which is protected from the environment by enclosure within a
550-ft-diameter space-frame radome. The radome height is 7/10 of the spherical diam-

eter. It is tentatively assumed that the radome must survive under 130-mph winds.

There is an infinite variety of frame geometries — both uniform and random —
that can be developed to enclose and protect the antenna. Each geometry type can be
further distinguished by the range of beam lengths and total number of beams utilized
in the construction of the frame. For a given geometry and cross-sectional configura-
tion, the width and depth of the individual beam can be determined from the require-

ment that the frame be structurally sufficient under the design wind load.

When the geometry, number, and dimensions — length, width, and depth — of the

frame members are established, then the optical blockage — the shadow cast by the




beams in the plane of the antenna — is calculated. The optical blockage serves to index
the electromagnetic efficiency of the radome. Thus, it is anticipated that the frame
that yields the smallest optical blockage will permit the most efficient performance of

the enclosed antenna.

An investigation of the effect of the frame geometry and beam dimensions on block-
age will be made here. Particular attention will be devoted to obtaining an optimum

length beam for the space frame.
2, OBJECT

For a space-frame radome exposed to wind loading, this memo will attempt to

determine:
1. The relation between the number and length of beams for a given
geometry.

2. The relation between the length and cross-sectional dimensions of
a beam necessary in order to maintain the structural sufficiency

of the radome under wind loading.

3. The relation between the optical blockage, frame geometry, and

beam dimensions.

And finally,

4, To determine from these relations and for a 550-ft-diameter space-
frame radome exposed to a 130-mph wind, the most efficient beam

size for a given cross-sectional configuration.
3. RADOME FAILURE MODES

Wind loading can fail a space-frame radome structure through:

1. Overstressing one of the major components.
2. Column buckling of a beam member.
3. Promoting a condition of general buckling instability of the space frame.
This investigation will not be concerned with a general buckling collapse of the
radome structure. The relation between the external load and frame parameters that
promotes a general buckling failure is at present poorly understood and is currently

the subject of active analytic and experimental investigations under CAMROC

sponsorship.
4. ANALYSIS

The distribution of pressures engendered on the radome by the wind load is resisted
by the space frame. Structurally, the radome skin serves to transfer the local pres-
sures to the adjacent frame members and exerts some undetermined influence in prevent-
ing column buckling in the plane of the membrane. The individual beam must sustain

the axial loading developed throughout the frame and the transverse loading transmitted




by the adjacent panels. The maximum stresses induced in any member of the frame
may be calculated by treating the individual beam as a beam-column exposed to the axial

and transverse loads developed by the wind.

1. Forces and Moments Due to Wind Load

a) Axial Load

The axial load acting on the individual beam member is estimated by con-
sidering an idealized planar section of the space frame composed of six equilateral
triangles meeting at a common hub as depicted in Figure 1. Now the maximum com-
pressive membrane stress N¢max' which acts in a spherical structure exposed to a
wind load, is assumed to act along a circular element of the space-frame section, which
is centered at the common hub. Then, from static equilibrium considerations along the

circumference

R

\ R

ol
/ \

R R

[3

Figure 1. Relation between membrane stresses and
compressive axial loads in space frame.
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fN¢maxds=6Pc : (1)

Now,

s (2)
1
q:-sz s (3)

where PC is the compressive axial load, R the radome radius, q the dynamic pressure,

p the air density, and V the wind velocity.

Considering the triangular and circular areas defined by y and £ in Figure 2, where

one-third of the area of each triangle is apportioned to each hub in the triangle gives

1Tr2=6(%) ] (4)

where
I 2

A == sin 60° . (5)

Figure 2. Area of local transverse loading imposed
on beam by adjacent panels.

Using equations (2) to (5) and equation (l) reduces to
PC=O.275qR1 . (6)

Thus, the axial load acting in a radome space-frame member is seen to be linearly

dependent on the dynamic pressure g, radome radius R, and beam length £.




b) Transverse Load

The transverse loads that act on each beam member derive from the local
loads carried by the two panels that are adjacent to every beam in the frame save some

of the base beams.

It is assumed that each triangular panel sustains a local load equal to the panel
area multiplied by its local overpressure and that one-third of this local panel load is
transferred to each of the beam edge members that constitutes the triangular panel
frame. The load that is transferred to the beam member is directed perpendicular to

the beam (along the radome radius).

The distribution of the load along the beam length is dependent on the location of the
panel centroid in relation to the beam length; thus, the load increases linearly from zero
at the beam end to a maximum at the projection of the panel centroid on the beam axis.
Thereafter, it decreases linearly to zero at the opposite end of the beam. For simplic-
ity, it will be assumed that for both adjacent panels, the projections of the centroids

coincide with the midpoint of the beam. The scheme is depicted in Figure 3.

R Ay liiilinN G R

S ’e — V*Vz

Figure 3. Loading imposed on frame member by wind.

Wf/;_

Thus, the total load W’I‘ supported by a beam member is

Woo=2 ql(A/3) (7)

and the area A of the triangular panel is
2 ] °
A=127/2sin60° . (8)
Then
2

W = 0.2886 q £~ . (9)
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For the assumed triangular load distribution where the maximum intensity w of the

load is reached at the midpoint of the beam,

2W
w=—p (10)
or
w=0.5772q¢ . (11)

c) Beam-Column Action

With the axial and transverse loads acting on a space-frame membrane
established, the resulting moment distribution in the beam and finally the maximum
stress can be determined. The loading scheme developed on the beam member as a

result of the interaction of the wind with the spherical radome is illustrated in Figure 3.
For this loading condition the elastic deflection of the beam is
2

Exd—{i,_ “M(x)-P Y , (12)
dx <

where E is the elastic modulus, I the area moment of inertia of beam, y the deflection

along transverse axis, x the distance along beam, Pc the compressive axial load,

M (x) the moment induced by transverse loading, and
w 2
_ T [ 4 x ]
M(x) = — 1-3(1) . (13)

Substituting equation (13) into equation (12) and solving for the moment distribution

yields
4 WT 1
. [___kl sinkx—x] . (14)
k™ 4 k cos >

The maximum moment occurs at x = £/2 and is

aw
MW r . ke
Miax = 272 [ktanz'z]' (15)

k™ £

where




2. Maximum Stress

The maximum stress srnax developed in the space-frame beam member by the
axial and transverse loads caused by the interaction of the wind with the spherical

radome is

P
__c max
smax_ A * I ’ (16)

where A is the cross-sectional area of beam and C is the distance from neutral axis to

outermost fiber.

3. Column Buckling

The critical buckling load Pcr for a column is given as

2
p_ =123 (17)
(k, £)
1
where E is the elastic modulus, I the area moment of inertia about the buckle axis,

£ the length of column, and k, the constant depending on the manner of end restraint

1
for the column.

The minimum buckling load for a column of fixed dimensions occurs in the pin-ended

support case where k1 = 1.

In order that the radome beam member be sufficient against column buckling by

itself — without the introduction of guy wires or invoking panel restraint — it is required
that

cr C

or

Cr
=>1 (18)

where Pc is the axial compressive load developed in the beam member by the wind load

on the radome (see equation (6)).

4. Length and Number of Beams in Uniform Frame Geometry

In general, the geometry of the radome space frame — the length, number,
disposition, and orientation of the beam members in the frame — is developed by con-
sidering the icosahedron or some variation of this model. An icosahedron consists of

20 identical equilateral triangles disposed as illustrated in Figure 4. Each vertex point




falls on the surface of a sphere, which can be made to circumscribe the icosahedron.
When the legs of the equilateral triangles are raised to the surface of the circumscrib-

ing sphere, they are transformed into arc lengths. The result is shown in Figure 5.

Figure 4. Icosahedron used in development of radome geometry.

In order to develop an approximate relation between the length and number of beams
required for a radome space frame, one planar equilateral triangle whose sides are
made equal to the arc length (see Figure 6) is considered. This unit is then decomposed
into planar triangles by performing equal subdivisions of each triangular leg. Relations
are then established between the length and the number of beams for the triangular unit.
The 20 triangular units that constitute the complete sphere are then summed while care-
fully excluding duplicate contributions to the total at the contiguous edges. By imposing
equal subdivisions on the three legs of the triangular unit, all the beam members are

made equal and the resulting geometry is uniform.

The development of the relation between the length and number of beams for the
triangular unit is illustrated in Figure 6. The equations are given below.

The length of any side LS in the planar equilateral triangular unit is

LS=R¢ s (19)
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Figure 5. Icosahedron expanded to circumsphere used in the development of space-
frame radome geometry.

n = number of equal lengths into which icosahedral sides are subdivided.
n+l
Ny = El N number of vertices
n
NE =3 ). N number of edges
1
NT = n2 number of triangles

Figure 6. Planar icosahedral unit used in estimating elements of space frame.
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where R is the radome radius, and ¢ is the angular separation between any two adjacent

vertex points on the icosahedron — 63, 435°,

If each leg of the equilateral unit is subdivided into n number of beams of £ length,

then it is seen from Figure 6 that the unit has NV vertices, NE edges, and NT triangles,
where
-R¢
1 = o ) (20)
n+l
il S zx: N , (21)
n
Np =3 ? N , (22)
. 2
NT =n . (23)

The number of edges in a complete radome is obtained by summing the results from
the triangular unit in accordance with the relative disposition of the triangular units
while eliminating duplication between contiguous edges of the triangles. It is noted that
the radome can be subdivided into top and bottom pentagonal caps consisting of five tri-
angular units, and a center belt consisting of 10 triangular units. From equation (22)

and Figure 6 the number of beams in the separate radome sections are

Top cap = 5 A - 5 common sides ,

n
Topcap=5(3ZN-n) . (24)
1
Similarly for the bottom cap,
n
Bottom cap = 5 (3 YN - n) . (25)
]

While for the middle belt

Middle belt

10 A - 15 common sides,

n
Middle belt = 10 (3 3 N) -15n . (26)
1

Summing the results of equations (24), (25), and (26) to get the number of beams

NER in a complete radome gives

n
NER=30(221:N-n) ) (27)




or

Npp = 30 n? | (28)

where NER is the number of beams in a complete radome and

The total length of beams in a complete -radome EL is calculated by multiplying

the total number of beams by the length of the individual beam or
> L= Npp ! - (29)
Substituting equations (20) and (28) into the above gives

> L=30(Rén) (30)

L=30(Ré)>/L . (31)
=

For an actual radome stracture that, of course, is less than one diameter high,

equation (30) or (31) must be multiplied by the ratio of height to diameter.

5. Frame Weight

The weight of the radome frame exclusive of hubs and membranes is
WR=pA(EL) , (32)

where p is the density of beam-member material, A is the cross-sectional area of beam

members, and (E L) is the total length of beams in a complete radome.

Equation (32) gives the weight for a radome that is a complete sphere. For an
actual radome, this result should be multiplied by the ratio of height to diameter for

the radome design.

6. Optical Blockage

The optical blockage is a measure of the percent of the radiating antenna plane
that is obstructed owing to the shadow cast by the beams and hubs of the radome-space
frame. The optical blockage serves to index the electromagnetic performance of the
radome. That is, in general, a small value of the optical blockage allows a greater
efficiency in the operating performance of the antenna. Because the optical blockage

indexes the electromagnetic behavior and is expressed in terms of the frame geometry




and beam dimensions, it serves as a figure of merit in evaluating the relative efficiency

of different space frames.

The equations that express the optical blockage for a space frame in terms of the
coordinates of each individual beam and hub in the frame have been developed. Using
these equations in conjunction with the 7090 computer, extensive results were obtained
for the random Haystack geometry over a wide range of solid, rectangular, cross-

sectional beam dimensions.

Omitting the hub contribution, which was negligible in comparison to the beam

shadow, an empirical equation was fitted to these results. The equation is

_ 87.85 (L) [__sine
B = 5 ( )[1+coseh+b] : (33)

R

where

%B is the percent of the antenna plane shadowed by the beams,
3L is the total length of beams in complete spherical radome,
R is the radome radius,

h is the beam depth,

b is the beam width,

sin 0 = RP/R 5

and RP is the plan radius of the antenna.

Because 8 must always be less than 90°, the coefficient of h in equation (33) will
always be less than 1. Then it follows that increasing the beam width will always
produce a greater increase in blockage than a corresponding increase in the beam depth.
Thus, for maximum efficiency in space-frame design, a minimum beam width must be

developed for the space frame.

Also, it is noted from equation (33) that as the antenna plan diameter decreases in
relation to the radome radius, the effect of the beam depth on blockage is further

minimized.

Lastly, it is seen from equations (31) and (33) that a scaling up of the antenna and
radome radii while maintaining the dimensions of the individual beam member constant

will have no effect on the blockage.

Although the blockage equation pertains to a random-frame geometry and the cal-
culations performed in this study relate to a uniform geometry, it is felt that because

of the large number of beam members involved the effect will not be significant.

7. Member Properties

In order to apply the equations that have been presented to the preliminary develop-

ment of an efficient space-frame radome structure for the CAMROC facility, a material




and cross-sectional configuration for the individual beam member must be selected.

In order to maximize the buckling and stress capacity of the frame, steel has been
chosen for the beam material. To permit a high area moment of inertia consistent
with a reasonable total frame weight, a channel section shown in Figure 7 has been
selected. The separate channel elements could be laced together by means of diagonal
struts. However, for the sake of simplicity, the effect of the struts has been conserva-

tively omitted.
For this cross section, the member properties are:
The area A is

A=2bT +4(D-T)T . (34)
The area moment of inertia about the x axis Ix is

L =& [h3 - (h - 2T)3] o [(h -2y - (h - 2D)3] . (35)

The area moment of inertia about the y axis Iy is

3 3
_Db° (D-T)(b-2T)
I, =% - 3

36
. (36)

b

where b is the beam width, h is the beam depth, T is the channel thickness, and D is
the flange depth.

The flange depth is held constant at D = 4. 0 inches, and for steel, E = 30 x 106 psi,
p = 0.285 lb/in".

5. RESULTS AND DISCUSSION

By applying the equations that have been presented, an effort is made to determine
the most efficient beam dimensions for the CAMROC 550-ft-diameter space-frame
radome when exposed to a 130-mph wind. The beam dimensions — length, width, and
depth — the cross-sectional configuration, and channel thickness are considered con-
stant throughout the complete frame, and differing space frames corresponding to varia-
tions in these parameters are investigated and the relative efficiencies of these frames
evaluated. The cross-sectional configuration is as shown in Figure 7. To maximize
the stress and column-buckling capacity of the beam members, it is assumed that the

beams are fabricated from steel and various yield stress capacities are investigated.

Beam lengths that vary from 10 to 70 ft in increments of 10 ft are considered,
while for each length, beam widths of 2. 0, 4.0, 6.0, and 8.0 inches are investigated
by calculating the minimum depth consistent with the assumed yield stress required to
resist the maximum stress. Yield stresses of 40, 000, 60, 000, and 80, 000 psi are
investigated. This procedure is repeated for channel thicknesses of 1.0, 1.5, and

2. 0 inches. The optical blockage and total space-frame weight is next calculated for
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Figure 7. Type beam member for use in 550-ft-diameter space-frame radome.
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this range of beam sizes. The most efficient beam dimensions are then those that give
a minimum optical blockage. Because the weight of the space frame is one of the most
influential factors in determining the cost of the total radome structure, a range of

optical blockage-beam dimensions is considered in terms of the space-frame weight.

The procedure outlined above is performed for two distinct cases. In the first
case, only the maximum stress is allowed to limit the beam dimensions. It is assumed
that column buckling can be restrained with no important increase in optical blockage
through use of a system of wires interconnected to the beams as suggested by Ammann
& Whitney or by attaching the panel membranes in some fashion that enjoins the mem-
brane stress in preventing excessive beam deflections. In the second case, the beam
widths are restricted to those values that guarantee a buckling capacity about the weak
axis in excess of the wind-induced axial load, and the minimum permissible beam depth

is then calculated to accord with the assumed yield stress.
1. General

The parameters of the space frame, the loading components induced in the indi-
vidual beam by the interaction of the radome with the wind load, and also those beam
parameters that are independent of beam depth are illustrated in Figures 8 to 13.

These features possess some generality and are applicable throughout the study.
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Figure 8. Number of beam elements in 550-foot-diameter space-frame radome
designed to resist 130-mph wind versus length of individual beam.




Figure 8 indicates the number of beams as a function of the beam length for the
550-ft-diameter CAMROC radome whose total height is 7/10 of the diameter. This

result is derived from equations (28) and (20).

The axial and transverse loads imposed on the individual beam element in the
space frame by the interaction of the 550-ft-diameter radome with a 130-mph wind
are plotted in Figure 9 as a function of the beam length. These results are calculated
from equations (6) and (9), respectively. From this plot once the beam length is estab-
lished for the structure, the beam loads are immediately available for the determina-

tion of the cross-sectional dimensions of the beam member.

The area and area moment of inertia about the y axis are calculated from equations
(34) and (36) and are plotted in Figure 10 versus the beam width for the three channel

thicknesses investigated in this report.

In Figures 11, 12, and 13 the ratio of the critical column load about the y axis for
a pin-ended beam to the imposed axial load is calculated from equations (17) and (6) and
shown as a function of the beam length for beam widths of 2. 0, 4.0, 6.0, and 8. 0 inches
and the three channel thicknesses, T = 1.0, 1.5, and 2. 0 inches. Above the dashed
line, P:” Pc’ the beam member develops a sufficient buckling capacity to resist the
axial load, while below, the member must be assisted in some fashion — such as intro-
ducing interconnecting guy wires or invoking panel restraint. For the range of beam
widths investigated, these figures delineate at P':r = Pc the maximum length beam that

is stable without external assistance.

2. Optimum Beam Dimensions in Space-Frame Independent of Column Buckling

a) Beam Dimension

The results in this section assume that external restraints are readily intro-
duced to increase the column-buckling capacity and that this is accomplished without an
appreciable increase in the optical blockage of the space frame. Thus, for a range of
beam lengths extending from 10 ft to 70 ft in increments of 10 ft, a range of
beam widths extending from 2.0 inches to 8. 0 inches in increments of 2. 0 inches; a
range of channel thicknesses 1.0, 1.5, and 2.0 inches, and a range of yield stresses
40, 000, 60,000 and 80, 000 psi, the minimum beam depth consistent with the yield
stress is calculated. The resulting optical blockage and frame weight for the calculated

beam dimensions are then determined.

In Figures 14 to 22 the minimum beam depth is calculated by permitting the maxi-
mum stress to reach the yield stress. Equations (16), (15), (9), (34), and (35) are
utilized for this purpose. Figures 14, 15, and 16 plot this information for a channel
thickness of T = 1.0 inch and yield stresses of 40,000, 60,000, and 80,000 psi,
respectively. Figures 17, 18, and 19 consider the same range of yield stresses for a
channel thickness of T = 1.5, while Figures 20, 21, and 22 maintain the same range of

yield stresses for a channel thickness of T = 2.0 inches.
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Figure 9.

Area and area moment of inertia about weak axis versus beam width for
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550-ft-diameter space-frame radome designed to resist 130-mph wind.

Figure 10.
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Ratio of critical euler load about weak axis to axial load versus
beam length in 550-ft-radome designed to resist 130-mph wind.
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Figure 13.

Depth of beam in 550-ft-diameter radome required to resist 130-mph
6-20

wind load at constant yield stress versus beam length.

Figure 14.
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Figure 15. Depth of beam in 550-ft-diameter radome required to resist
130-mph wind load at constant yield stress versus beam length.
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Figure 16. Depth of beam in 550-ft-diameter radome required to resist
130-mph wind load at constant yield stress versus beam length.
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Depth of beam in 550-ft-diameter radome required to resist

Figure 17.

130-mph wind load at constant yield stress versus beam length.
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130-mph wind load at constant yield stress versus beam length.

Depth of beam in 550-ft-diameter radome required to resist

Figure 18.
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Figure 19. Depth of beam in 550-ft-diameter radome required to resist
130-mph wind load at constant yield stress versus beam length.
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Figure 20. Depth of beam in 550-ft-diameter radome required to resist
130-mph wind load at constant yield stress versus beam length.
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Figure 21. Depth of beam in 550-ft-diameter radome required to resist
130-mph wind load at constant yield stress versus beam length.
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Figure 22. Depth of beam in 550-ft-diameter radome required to resist
130-mph wind load at constant yield stress versus beam length.
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Examination of Figures 14 to 22 demonstrates that the required beam depth

a) increases with increasing length,

b) decreases with increasing beam width,

c) decreases with increasing yield stress,

d) decreases with increasing channel thickness.

It is noted that because the channel flanges are fixed at 4. 0 inches, beam
depths less than 8. 0 inches are not possible. Also, channel thicknesses of 1.5 and

2. 0 inches exclude beam widths of 2. 0 inches.

These graphs establish a wide range of dimensions, channel thicknesses, and yield
stresses for beam members that successfully resist the maximum stress developed in

the 550-ft-diameter space-frame radome when subjected to a 130-mph wind.
b) Optical Blockage

In Figures 23 to 31, the optical blockage of 550-ft-diameter space-frame
radomes capable of withstanding 130-mph winds is plotted as a function of the beam
length for beam widths of 2. 0, 4.0, 6.0, and 8. 0 inches. This information is developed
for the three channel thicknesses with three yield stresses for each channel thickness

being considered.

The beam dimensions — length, width, and depth — were extracted from the
previous plots and incorporated into equation (33) for the determination of the optical
blockage. The beam depth is not explicitly given in these figures but is readily
obtained by comparison with Figures 14 to 22.

Consulting equation (33) it is noted that the beam width is more influential in
minimizing blockage than the beam depth. This is reflected in Figures 23 to 31 where
it is seen that for a given channel thickness and yield stress the minimum optical
blockage for the same length is always obtained for the minimum beam width; also, it
is noted that the optical blockage decreases with increasing length, reaches a minimum,
and then begins to increase. However, the difference between minima for any channel
thickness-yield stress combination is less than 0.5%. As the beam width increases in
2. 0-inch increments, the blockage minimum occurs at beam lengths that advance

approximately in increments of 10 ft.

Increasing the yield stress and/or the channel thickness reduces the beam depth
required to resist the maximum stress while the other beam dimensions remain

constant. This reduction in beam depth decreases the optical blockage.

From the figures it appears that the greatest improvement in performance is
obtained in increasing the yield stress from 40, 000 to 60, 000 psi and increasing the
channel thickness from 1.0 to 1.5 inches. The increase in blockage benefits obtained
from increasing the yield stress from 60,000 to 80,000 psi and/or increasing the channel

thickness from 1.5 to 2.0 inches is less than obtained before.
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However, if the absolute minimum in optical blockage is required, then the fol-

lowing beam properties are necessary:

Channel Thickness — 2. 0 inches,

Beam Width — 4. 0 inches,
Beam Depth — 14.5 inches,
Beam Length — 60 ft,
Optical Blockage — 3.6%,

Yield Stress — 80, 000 psi.

c) Frame Weight

The frame weight is calculated from equations (32) and (34), and the results are
plotted in Figures 32 to 34 as a function of length for the selected beam widths and
channel thicknesses. The frame weight increases with the beam width and channel

thickness but decreases with increasing length.

Because only the channel sections and not the lacing that binds them into a beam
are considered, the frame weight is independent of the beam depth. The number
of beams in the frame varies inversely as the length and is more influential in control-

ling the frame weight than the beam width or channel thickness.
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Figure 23. Optical blockage of frame versus length of individual beam in 550Q-ft-
diameter space-frame radome designed to resist 130-mph wind.
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Figure 24. Optical blockage of frame versus length of individual beam in 550-ft-
diameter space-frame radome designed to resist 130-mph wind.
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Figure 25. Optical blockage of frame versus length of individual beam in 550-ft-
diameter space-frame radome designed to resist 130-mph wind.
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Figure 26.

Figure 27.

Optical blockage of frame versus length of individual beam in 550-ft-
diameter space-frame radome designed to resist 130-mph wind.
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Optical blockage of frame versus length of individual beam in 550-ft-
diameter space-frame radome designed to resist 130-mph wind.
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Optical blockage of frame versus length of individual beam in 550-ft-

diameter space

Figure 28.
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Figure 32. Weight of space frame for 550-ft-diameter radome designed to
resist 130-mph wind versus length of individual beam.

Figure 33. Weight of space frame for 550-ft-diameter radome designed to
resist 130-mph wind versus length of individual beam.
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Figure 34. Weight of space frame for 550-ft-diameter radome designed to
resist 130-mph wind versus length of individual beam.

d) Method of Selection of Optimum Beam Dimensions for 550-ft-Diameter Space-

Frame Radome

The selection of optimum beam dimensions for use in the CAMROC 550-ft
diameter space-frame radome when exposed to a 130-mph wind must depend on a
judicious balance between optical blockage, frame weight, and maximum length beam.
Although an absolute minimum in optical blockage is eminently desirable, the weight
penalties incurred in securing the last fractional decrease in blockage must be con-
sidered. Also, the difficulties associated with fabricating membranes and erecting
the radome frame with large length beam components (beam lengths in excess of 40

ft) must be taken into account

If a range of practical beam lengths is fixed along with a channel thickness and
yield stress, then it is seen from Figures 23 to 31 that for a constant length, the
minimum optical blockage is obtained for a minimum beam width. Under a condition

of fixed length, the minimum beam width also gives a minimum weight.

If an absolute minimum optical blockage is necessary, then the minimum width

beam at maximum yield stress, channel thickness, and length is required.

It is noted that the optical blockage minima tend to be relatively flat. Thus, if
the beam length or frame weight is considered excessive for the minimum blockage,

then some favorable adjustment can be made without unduly affecting the blockage.
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In any case, Figures 23 to 34 permit the rapid selection of the most efficient space
frame for the CAMROC application once a range of acceptable beam lengths and frame
weights is established. The amount of restraint that will have to be provided to

prevent column buckling for the selected beam can be determined from Figure 11.

3. Optical Beam Dimensions in Space Frame Consistent with Column-Buckling
Requirements

a) Beam Dimensions

The dimensions of the beam element are now limited by the additional require-
ment that the minimum buckling capacity of the beam be at least equal to the axial load
developed in the member by the 130-mph wind. This limitation is used to establish
the relation between the minimum acceptable beam width for a given beam length and
channel thickness. Equations (36), (17), and (6) are used for this purpose. The
results are plotted in Figure 35. Under this restriction the minimum beam depth
consistent with the assumed yield stress is calculated. These results are plotted in
Figures 36 to 38 for the different yield stresses — 40, 000, 60, 000, and 80, 000 psi —
and the different channel thicknesses — 1.0, 1.5, and 2. 0 inches.

It is seen from these figures that the increasing beam length demands an increasing
beam width to prevent column buckling, and also an increasing beam depth to accommo-

date the larger axial and bending stresses. As the yield stress of the beam material
increases, the required beam depth is lowered. As the channel thickness increases,

a smaller beam width will stabilize the column for a given length by increasing the
area moment of inertia about the weak axis. Also, the increase in area and area

moment of inertia about the strong axis reduces the required depth.
b) Optical Blockage

In Figures 39 to 41, the optical blockage is plotted against the minimum beam
width-beam length combination for the various yield stresses and channel thicknesses.
For a given channel thickness, the optical blockage improves with an increasing yield
stress. This result reflects the smaller beam depth for any length that is associated
with the higher yield stresses. Also, as the channel thickness increases, the decrease
in beam width and depth for any given length causes a corresponding decrease in the

optical blockage.

From Figures 39 to 41, it is seen that within a beam length range of 20-60 ft,
a minimum occurs that is relatively flat. Thus, substantially the same minimum

optical blockage can be preserved for minor changes (5 to 10 ft) in the beam length.
c) Frame Weight

The weight of the space frame is plotted as a function of beam width, length,
and channel thickness in Figure 42. Again, because the lacing between the separate
channel sections has not been included, the frame weight is independent of the

height.
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Figure 35. Minimum beam width versus beam length in 550-ft-diameter
space-frame radome required to resist 130-mph wind.
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Figure 36. Minimum beam depth versus constant beam width and length for beam
element in 550-ft-diameter radome required to resist 130-mph wind.
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Optical blockage of frame versus width and length of individual beam in
550-ft-diameter space-frame radome designed to resist 130-mph wind.
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The total length of beam is the most influential parameter in determining the
space-frame weight. Because this parameter varies inversely with the length of the
individual component, the frame weight is caused to decrease with increasing
beam length.

d) Method of Selection of Optimum Beam Dimensions for 550-ft-Diameter Space-
Frame Radome

The selection of optimum dimensions for the beam element in the space frame
depends on establishing a compromise between frame weight, maximum length beam,
and optical blockage. The maximum length beam will be restricted by the cost and
capability of fabricating the membrane panels, while an acceptable frame weight will
be influenced by cost and erection procedures. Once a tolerable range of these param-
eters is specified, then the minimum optical blockage that can be developed under these

specifications can be obtained from Figures 35 to 42.
6. COMPUTER STRESS ANALYSIS OF RADOMES

A computer stress analysis of radomes entitled STAR for STress Analysis of
Radomes is in the process of being developed and should be available within several
months. When completed, this will permit a complete stress analysis of various
candidate geometries for the CAMROC 550-ft-diameter space-frame radome using

the model 360 computer.
The procedure will be as follows:

a) Develop the complete radome geometry from a small batch of input vertex
points and beam members that fall on a surface element (approximately 1/90 of the
complete radome surface area), which is repeated continuously over the radome sur-
face.

b) Using the known pressure distribution about the surface of the radome and
an assumed cross-section configuration of the beams, develop the axial loads acting

in each beam member in the frame by means of the STAIR computer program.

c) Determine the transverse load and load distribution from the local pressure

and the geometry of the two triangles adjacent to each beam in the frame.

d) With these loads perform a beam-column analysis for every member in the
frame to ascertain the maximum stress and critical column-buckling load for each
member.

e) Increase the cross-sectional dimensions of the beam members in the frame
in those areas where the stresses are high; decrease the cross-sectional dimensions
in those areas where the stresses are low. All changes will be maintained consistent

with column-buckling requirements.




f) Repeat steps (b) to (e) until the procedure converges to constant cross-

sectional dimensions for each beam member.

g) Calculate the optical blockage for each final geometry-beam member com-
bination.

After a selection of different geometries has been analyzed in this fashion,
several of the most promising will be extensively investigated using the more precise

FRAN computer program.

The accuracy of the computer stress analysis suggests that the stress results be
carefully examined to see if any substantial advantage can be accorded to the space-
frame design through reducing still further the dimensions of selected beam members
and thus permitting these members to be stressed into the plastic region. The relative
infrequency of the design winds and the modest distortions in the frame that would
result should be balanced against the anticipated advantages accruing to the antenna

over its life span.

Also, some consideration should be given to revising the geometric pattern of the
space frame over that portion of the radome surface area where a change in the basic
length will yield improvements in the optical blockage. These length changes could be
compensated for by adjusting the beam depth or by using interconnecting wires in the

selected area.
7. REMARKS

Although the optical blockage calculated in this report does index the electro-
magnetic performance of the radome, the precise electromagnetic behavior is deter-
mined by other methods. The most promising beam-member dimensions developed in

this study will be submitted for precise electromagnetic calculations.

Present indications are that the estimated design wind speed of 130 mph, which
was used in the development of the Haystack radome, is on the high side. However,
it is felt that the reduction in design wind speed will not significantly influence the
relative merits of the different geometry-beam-member combinations reported herein.

In any event the calculations are readily performed for any wind speed.

The assumption of pin-ended joints is severe and leads to conservative stress
results and column-buckling loads. A more precise estimate of end fixity can be

developed through a comparison of STAIR and FRAN computer runs.

At some future date, several different cross-sectional configurations will be
evaluated. A box design consisting of two identical channel sections joined at the

midline will probably be considered.
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It is recognized that if the total frame weight is relatively unimportant, then in
the limit a solid cross section is always the most efficient. The increase in area and
moments of inertia effected by a solid section will permit some reduction in the cross-

sectional dimensions and thus an improvement in the optical blockage.

If it is decided that the antenna will operate for longer periods over certain areas
of the sky or that the data from certain portions of the sky are more significant, then
this bias can be built into the radome. The radome areas of major viewing importance

can probably be rendered more efficient at the expense of areas of less importance.
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BACKGROUND DISCUSSION

The present effort involves the design, construction, and testing of an appropriate
space-frame radome model to provide, among the objectives, buckling data to check
both present and in-development prediction methods. Following preliminary study and
discussions with the CAMROC Radome Structural Committee, the following (tersely

listed) decisions pertaining to the subject model were reached:
1) TTR random space-frame geometry.
2) l4-ft model diameter.
3) At least 45° half-angle cone intercept on sphere.
4) Straight rectangular cross-section beams fixed rigidly to hubs.

5) 7075-T6 beam material selected for greatest ratio of yield strength to

modulus of elasticity.

6) Hubs of hardened SAE 4150 steel with inner and outer disks, beveled to

receive beams.

7) Two #4-40 bolts rigidly attach each beam end to a hub. Special bolts of
SAE 4037 steel, 170,000 psi min. ult., 2200-1b double shear, 0.065-inch

smooth cylinder, diameter tolerance 0.1075 to 0.1120.

8) Beam cross section 0.200 X 0. 313 inch allows model to buckle with normal

load of between 100 and 200 lbs per hub joint.
9) Preliminary testing with 64 hubs equally loaded.

10) Specific model being built will have 64 loaded hubs, 57 intermediate hubs,
40 terminal hubs attached rigidly to mandrel, and 440 beams.

11) Large steel mandrel is needed to support model during construction and

testing, and able to be assembled in MIT Building 41.

The design for the radome model is based upon providing a small space frame that
can yield experimental measurements to verify analytical techniques. The features of
the full-scale radome important to buckling are accurately represented by the test con-
figuration. Four areas of special consideration, based on previous model testing in

this laboratory, are:

(a) seek an initial condition of zero stress in the model,
(b) joints should lie on the same spherical surface,
(c) seek geometric continuity of the members at the joints, and

(d) model to be large as possible to increase construction accuracy.

The first three items listed involve design of the hub (the fitting that connects the

members together at joints). Of several possible construction methods available, the




best seemed to involve a pair of flat disks with the beam ends clamped in between. With
beams curved to lie in the spherical surface, each would come tangentially into a hub
and it would be a simple matter to fasten every beam end with two bolts in double shear.

In fact, some previous model work had been done with curved beams.

However, it was decided that in spite of increased model-construction complexity
and cost, the model should be built with straight beams that are representative of full-
scale radome-construction techniques. While this decision slightly simplified beam
construction, it has greatly increased the complexity of design and construction of the
hubs.

The last item (d) above, model size, was limited by the space available in the ASRL
laboratory. The model chosen represents a part of a 14-ft-diameter sphere and in
fact covers the spherical surface within a cone of half angle 42.7° to the lowest row of

unsupported hubs, or 52.0° to the lowest row of anchor hubs.

In selecting a beam material to study elastic buckling, it is desirable to obtain a
high ratio of yield strength to modulus of elasticity. The most promising materials

considered are listed as follows:

Item Material fyp E fyp/E
1 7178-T6, T651 78,000 psi  10.4x10°psi 7.5 x 1073
2 7075-T6, T651 69,000 psi  10.4 x 10° psi 6.6 x 1073
3 4340 162,000 psi 29 x 10° psi 5.6 x 1073
4 4150 135,000 psi 29x10°psi  4.6x1073

Of these materials, Item 1 is not readily available commercially. Item 2 was therefore
selected. While beams could be machined from plate stock to the beam geometry, it
was considered less expensive to buy a minimum order for special rolling from Alcoa
(300 1bs) and have it delivered in the desired hardness. The order was placed through
Edgcomb Steel of New England, Inc. The aluminum alloy has the further advantage

over steel that even in the hardened condition it can still be machined easily.

Having selected aluminum alloy for the beam material, then the cross sections were
determined from equivalent shell calculations. While the full-scale CAMROC radome
may be designed for lower pressures, practical considerations of model construction
indicate a buckling pressure close to 1 psi. Figure 6 of CAMROC Technical Memo.

No. 6 dated 10 May 1966 provides a graph for beam cross-section dimensions for this
model. From this graph, the most appropriate rectangular dimensions are 0.2 inch
wide by 0. 3 inch deep. Consideration of a typical hub-panel geometry indicates that
the 1-psi design pressure loading will be equivalent to concentrated loads of about 100

lbs per hub for the subject model. Since 64 hubs are to be so loaded, a total force of

over 6000 lbs will be required to cause buckling. Although there was an expressed




desire for a larger ratio of depth to width on the beams, this was not feasible for the
contemplated mechanical beam-to-hub attachment if the beams were to have simple

rectangular shapes without thickened ends.

Euler buckling of individual beams in this model structure, based on a rigid-end

attachment at the hubs, is calculated to occur at the following loads:

Beam length Euler buckling load
7.91 inches (shortest) 1312 1bs
13.15 inches (longest) 475 lbs

compared with a compressive nonbuckling strength of 4260 lbs for the beam material.
Connection of beam to hub was provided (adequately) by two #4 bolts in double shear.
This connection was computed to carry 2080 lbs, limited by beam material at the first
bolt hole. The bolts were separated by 0.375 inch in order to give adequate end rigidity
to delay buckling about the more flexible axis. For hub construction A1S1 4150 steel,
heat treated to Rockwell C 33, was selected. This material exceeds the strength re-
quirements for bearing but will be useful in the intended construction procedure wherein
the beams will be drilled in place through the hubs. Also, it is anticipated that beams

could be replaced after a model has been buckled, and the hubs reused.

Before ordering beam and hub materials, sample hub-beam models of both longest
and shortest beams were tested under compressive loading. While it is not difficult to
calculate the strength of such a joint, it was uncertain what end fixity would be obtained.
These models were mounted in the testing machine with the hubs rigidly fixed and the
beam material initially under no bending load. If the buckling load for rigid-ended beams

is taken as

where E is Young's modulus of elasticity, h the beam width, A the beam cross-sectional
area, and £ the beam length to outer bolts, then one may compare the measured to the

theoretical buckling load as

LB measured
s = L_B calculated

For the short beam, measured buckling loads were 1290 and 1305 lbs, while for the long
beam, measured buckling loads were 470 and 435 lbs. The last-mentioned load was
disregarded, owing to an initial beam curvature incurred during manufacture. Values

of ¢ were then as follows:




Beam €

Long beam 0.992
Short beam 0.988

Aside from achieving a close approximation to the theoretical buckling load, it was
also observed that no end failure occurred, even when the beam center had laterally dis-
placed by about 1/2 inch. Therefore, it was concluded that the hub-to-beam connection

design is adequate.

Lincoln Laboratory supplied position data in both rectangular and angular coordi-
nates for all the hubs of interest on a 14-ft-diameter sphere for the TTR random-
geometry configuration. With these and other data, it was possible to select the exact
geometry of the model, including the locations of the 64 hubs (uniformly distributed
about the north pole) that are to be loaded, 57 intermediate hubs, and 40 hubs to be
anchored rigidly to the mandrel. In addition, detail design information was extracted
and an order was placed on July 22, 1966, with the F. W. Dixon Company to manufac-
ture a complete set of the required hubs together with necessary spares. In all, 196
hubs were ordered, of 14 different kinds. Each is made in two parts, an upper and a
lower hub disk. These hubs contain beveled surfaces to meet the individual beams at
the correct angle, with an angular tolerance limit of £ 4 min in order to minimize

initial bending in the beams.

It was decided that construction of the model would require a mandrel to support
all hubs accurately and rigidly in position. The beams will then be drilled, reamed,
and bolted in place. Finally, when the model radome has been completed, it will be
released from the mandrel except for the 40 anchor hubs around the base. The mandrel
will also be useful as a reference for the measurement of hub deflection under load and
for auxiliary use during the loading procedure. This mandrel thus becomes a very
important part of the test arrangement. The central part of the mandrel design is a
spherical dished head of 76-inch radius. This is a standard item commonly used in
boiler construction. It provides a surface that is located 8 inches inside the radome
surface. Around the perimeter of the dished head is a flat machined surface that will
support the anchor hubs. The mandrel is large and heavy and had to-be designed for
disassembly into elements small enough to be entered through the loading doors at
Building 41, MIT. It will weigh approximately 6000 lbs. This mandrel was ordered
from Hodge Boiler Works on August 12, 1966.

A large template, guided by the machined outer surfaces of the mandrel and working
in an angular coordinate system (latitude and longitude), will be used to locate the hub
supports on the mandrel and also to adjust the hubs into place during the manufacture of
the radome structure. This template has not as yet been designed. It probably will be
built in the ASRL machine shop.




The support system (steel weldments) for the anchor hubs has been designed and

the material is on order. This will also be built in the ASRL machine shop if feasible.

The hub supports for the 64 loading and 57 intermediate hubs have been designed
and the parts have been ordered. These iterns are required to hold the hubs rigidly
during manufacture and to provide limits to prevent excessive damage to the model when
it buckles. They also are intended to be used to reestablish the radome surface during

model repair or if other model beams are to be tested.

In order to lift the mandrel into its position and onto its leg supports, lifting pads
are being attached to the ceiling in the laboratory. Three lifting stations around the
perimeter will carry 2-ton chain hoists. A central lifting station will assist during

assembly of the mandrel.
PRESENT STATUS
1) Special #4-40 bolts were ordered 6-1-66 and were delivered 8-26-66.

2) Aluminum 7075-T6 beam material which was ordered 6-14-66 for August

delivery was delivered on 9-27-66.

3) Hubs ordered 7-22-66 for delivery on 9-16-66, but most probable date is
now 10-15-66.

4) Steel mandrel ordered 8-12-66 and promised latter part of October.

5) Material for hub supports ordered and expected before end of September.
6) Template yet to be designed.

7) Loading rig yet to be designed.

8) One lifting pad attached to ceiling; others to be completed by end of
September.
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1. INTRODUCTION
1.1 General

The investigation reported herein constitutes the first phase of an analytical study of
the buckling behavior of reticulated radomes and of their load-deformation character-

istics. The scope of this phase is as follows:

a) Derivation of the governing nonlinear algebraic equations expressing the
end forces acting on a bar in terms of its end displacements, and formu-
lation of the problem for solution by a modified existing computer program

for linear analysis of structures.

b) Selection of an available large-capacity linear analysis program, and for-

mulation of the required modifications in the selected program.

*
The derivation of the governing nonlinear equations and the method of solution of
these equations are discussed in Section 2; the selection of the computer program and
the required modifications are discussed in Section 3. The proposed extension of this

effort is described in the last section.

1.2 Historical Background

Nonlinearity in the behavior of space-frame structures under static loads is due
either to nonlinearity in the material or to the change in the geometry of the structure
caused by its own deformation. The latter, referred to as geometric nonlinearity, is

especially significant for shell~like structures such as space-frame domes.

Although a number of large reticulated domes have been built in the past few years,
the methods of analysis for such structures still consist, in general, of establishing an
analogous homogeneous shell that can be analyzed by the use of the existing solutions
for continua. This method is considered adequate for linear analysis and for design
purposes if general stability of the dome can be guaranteed. Wright [I]T and Buchert
[2] have applied this analogy to the determination of the buckling load of reticulated
structures; however, it is unlikely that the method has sufficient accuracy for the

economical design of large structures.

The snap-through buckling of ideally hinged reticulated domes has been studied by
Besseling [3], Aguilar [4], and Carpenter et al. [5]. In reference [5] the solution to
the problem is obtained by first solving the linear problem. Next, the bar forces are
corrected so that equilibrium is satisfied in the deformed state. This correction causes
a further deformation that in turn causes a second correction to bar forces. Repetition

of this operation will yield the solution to the nonlinear problem if it converges.

*The details for the derivation of these equations are presented in a supplementary report
prepared for CAMROC, but are not included here.

TNumbers in brackets refer to entries in the list of References.




For framed structures undergoing small displacements and rotations, the elastic
instability load has been determined by numerous investigators employing various tech-
niques. A recent survey -of these techniques is presented in reference [6]. Chu[7] and
Absi [8] derived the nonlinear equations for elastic buckling of frames under conditions
of small displacements and rotations and discussed the behavioral characteristics of
these equations in detail. The problem of elastic stability of plane frames using finite
deflection theory has been investigated by Saafan [9], who neglected the flexural shorten-
ing of the bar., The inclusion of flexural shortening was studied for plane structures by
Williams [10], who investigated the instability of a shallow toggle both mathematically
and experimentally. He indicated that a very close agreement can be achieved between
the load-deformation relationship established theoretically and that obtained experimen-

tally if the flexural shortening is included in the analysis.

The problem of finite deflection of space-frame structures has been investigated by
Johnson and Brotton [11]. The governing nonlinear equations are derived neglecting the
flexural shortening of the bars and the effect of axial load in the bars on their flexural
stiffness. The solution is obtained by first performing a linear analysis. Since the
initial solution does not satisfy the applied load, a correction solution is obtained by
applying the unbalanced forces and performing another linear analysis. This process is

repeated until the unbalances are sufficiently small.

The level of investigations performed is insufficient for an adequate study of the
buckling behavior of reticulated radomes and their load-deformation characteristics.
The available theories are not general enough for this purpose. For the most part, they
are developed for plane structures or involve approximations that cannot easily be justi-
fied for large reticulated radomes. Another point of interest is that the volume of
numerical results accompanying these investigations is very small. Consequently, many
of the questions that could have been answered by analyses of coarse mathematical models
are yet to be investigated. The insufficiency of numerical investigations may be related

to the lack of sufficiently rapid methods of solution for nonlinear equations.
2. DERIVATION OF GOVERNING EQUATIONS

2.1 Introduction

The governing nonlinear equations for finite deformation of a linearly elastic bar are
derived in terms of its end displacements and end rotations. In this derivation the bar is
assumed to be composed of linearly elastic material under a condition of small strains.
The deformation of the bar is assumed to obey the Bernoulli-Navier approximation of the

simple-beam theory.




In the following sections of this chapter the governing nonlinear equations are
discussed; a method of solution, which may be considered an extension of Newton's
method for finding roots of polynomials, is presented; and the application of this method

to the solution of the governing equations is described.

2.2 Formulation of Nonlinear Equations

The approximations involved in the derivation of the nonlinear equations that govern

the deformation of an elastic bar are as follows:
1) The bar is composed of linearly elastic material.
2) The bar is prismatic and homogeneous.
3) The deformation of the material is in a state of small strains.

4) The Bernoulli-Navier approximation for the deformation of a simple beam

holds. (This includes the neglecting of the shear deformations. )

5) The torsional buckling of the bar and the local buckling of its components

do not occur; furthermore, the bar is free to warp.

The nonlinearity is introduced by the finite end displacements of the bar and by the

inclusion of the effect of the axial 1oad in the bar on its stiffness.

The finite displacements of the bar are assumed to produce moderate, but not very
large, rotations. This limitation on the rotation of the bars is equivalent to the approxi-
mation involved in neglecting the square of the rotations of the bar when compared to
unity. For determination of prebuckling deformation configurations of the structure, this
approximation seems quite valid. The error involved will probably demonstrate itself
when post-buckling configuration is being investigated. Even then a stressed configura-

tion with an intrinsic coordinate system may be adopted.

The effect of the axial load in bars on their stiffnesses and flexural shortening pro-

duces a very complicated form of nonlinearity.

The following equations present the stress resultants at an end of a bar in terms of

%
the displacements and rotations of both ends of the bar (see Figure 1 for notation ):

_ AE 1 2, 1 2, L{,2 2 “z
F]. = - 7 I:ur - ul +E(v1' - Vl) +E(Wr - Wl) +—8-(ezl+ ezr + Zezlezr¢—z

2 . 42 v\ ., L 2. L 2
+ eyl + eyr + Zeyleyr ¢y> + 1% gz(ezl + ezr) + ¢ gy(eyl + eyr)] s

(1. 1)

x
The usual symbols A, E, G,1I, and J designate, respectively, cross-sectional area,
Young's modulus, shear modulus, and moments of inertia for flexure and for torsion.
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Figure 1. Notation.
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for axial compression

EI for axial tension 5

Similarly, other variables may be defined.

The variations of the coefficients w, ¢, and £ with the axial force in the bar are pre-
sented in Figure 2. It is important to note that the compression in an unbraced bar can-
not be more than four times its Euler buckling load corresponding to simply supported

ends. This limit is its buckling load when its ends are fully fixed.

If in the above equations appropriate simplifications are made, they reduce exactly
to the equations derived by Chu [7] for the determination of buckling loads of truss mem-
bers, by Williams [10] for the determination of the behavior of rigid jointed plane frame-

works, and by Wah [12] on the buckling of gridworks.

2.3 Method of Solution

The method of solution of the nonlinear equations consists of approximating them by
a sequence of linear equations that can easily be solved numerically. The method con-
sists first of assuming a solution for the nonlinear equations. The linearization is
achieved by expanding the nonlinear terms appearing in the governing equations in Taylor

series in a neighborhood of the assumed solution and retaining only the linear terms.

The technique involved is demonstrated for the solution of the following system of

two simultaneous nonlinear equations:

F(x,y) = Pl
G(x,y) =P, , (2)

where x and y are in the independent variables. Assume a solution, say x = x, and

0
Y =Yo If

AP, = P, - F(x,,y,)

and

AP

do not identically vanish, then a correction to X and y, can be obtained by noting that in

some neighborhood of point (xo, yo)
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F(X, Y) = F(xo’ YO) + (x - XO)FX(XO’ Yo) + (Y - YO)FY(XOJ YO) to-.
G(X, Y) = G(on Yo) + (X - XO)GX(XO’ Yo) + (Y - YO)GY(XO’ YO) + - » (4)

where subscripted functions are partial derivatives with respect to the subscript varia-

bles. If system (4) is substituted back into system (2), the following is obtained:

AP

(x - XO)FX(XO' YO) +(y - YO)FY(XOJ YO) + o 1

(x = %0)Gy (x0, ¥o) + (¥ - ¥)Gy(xq, ¥g) + - ** = AP . (5)
An approximate solution of this nonlinear problem can be found by assuming that x - X
and y - Yo 2re small and hence dropping all the higher order terms (quadratic and beyond).
The linearized problem can then be solved; the new solution, say X, and y» can replace

x . and Yoi and the process can be repeated if desired. This process in most cases con-

0
verges very rapidly to the desired solution of the nonlinear problem.

Physically speaking, the values of x, and Yo correspond to an assumed deformation

0
configuration. If the set of assumed values is not a solution to the problem, then the

unbalanced forces APl and AP, have to be elirhinated by an appropriate correction solu-

2
tion, say x - Xq and y - Yor The correction solution is approximately determined from
the linearized equations (5). The corrected solution, the sum of the assumed solution
and the correction solution, may again be considered as a new assumed solution and cor-

rection to this solution can in turn be obtained.

In obtaining the load-deformation relationship, incremental loads can be succes-
sively imposed on the structure. Regardless of the previous history, a sufficient num-
ber of iterations can bring the numerical solution as close as desired to the '"exact solu-
tion. '"" Therefore, it is not essential to obtain an accurate solution at each load incre-
ment. Since accurate convergence is not required for progressing forward, the load-
deformation relationship can be established rapidly by applying only a single correction
to the solution of the previous increment and then obtaining the higher corrections to the

problem at only a few points on the load-deformation diagram.
The method of solution of Eqs. (1) consists, therefore, of the following:

1) Assume a deformation configuration for all the joints in the piece of
structure being analyzed. The assumed configuration may be that

obtained for the previous load increment.

2) Compute the end displacements and rotations for each bar.




3) Compute the forces at the ends of each bar. For a given joint, the
end forces computed on the basis of the assumed configuration will
in general not be in equilibrium with the external loads applied at
that joint. Compute the system of unbalanced forces at all joints.
If these forces are more than a prescribed limit, the computation
proceeds by progressing to step (4); otherwise, the solution is in

fact an approximate solution of the problem.

4) The linearized system described later in this chapter is solved,

subjected to these unbalanced forces at the joints.

5) The assumed deformation is modified by the calculated corrections
and the process can be repeated by considering the modified defor-

mations as assumed values.

A significant feature of this method when it is applied to the solution of nonlinear
problems in structural mechanics is possible symmetry of the linearized system. The
governing equations of equilibrium of an elastic mechanical system can be written by
setting the first variation of the total potential energy equal to zero. Interms of a gen-

eralized coordinate system, say X, this corresponds to the following relationship:

@
(e

= P, (6)

1 2

,
o

where
U = the strain energy of the structure,

x; = the components of the generalized coordinates,
Pi= the components of the generalized force.

In applying the method described herein to the solution of these nonlinear equations,

a corresponding linearized system is obtained as follows:

N
8%y
ZA"J' ax.ox, - AF - (7
j=1 b

It is obvious that the coefficient matrix [BZU/Bxiaxj] is, in fact, symmetric.

2.4 Linearized Equations

The governing nonlinear equations expressing the end forces of a bar in terms of its
end displacements, Eqs. (1), can be linearized by the method discussed in Section 2. 3.
The linearized stiffness matrix of the structure can then be established from a suitable

assemblage of the linearized stiffness matrices of the component members.
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In this section the linearized stiffness matrix of a single bar is presented. The
details of the derivation of this matrix are given in a supplementary report prepared for

CAMROC, but are not included here.

The force-displacement relationships for a single bar express the 12 force com-
ponents acting at both ends of the member in terms of its 12 end displacement components.

In linear analysis, it is expedient to group the expressions relating to either end. Then,

(PL‘ K BLr SDL

zPR Kpe Krg | [Pr | (8)

where PL is the force vector at the left end and DL is the displacement vector at that end.

It can easily be shown from the equations of equilibrium of the bar that

B T

Eyr=51LE )

Erp- B5p g

K = EK ET (9)
RR LL 2

where E is the end force transformation matrix defined by the following expression:

P_-EP, =0 . (10)

To obtain the linearized equations for a nonlinear system, the above relationship
must be somewhat modified since the matrix E will also depend upon the deformation of

the structure. In fact, Eqs. (10) can be written as follows:

PR-El PL-EZ(DL—DR)=O R (11)
where
o 1
0 1
El=- 0 o 1 s
g 0O L 0 1
_Wr-wl)
0 0
_(vr—vl -L 0 0 O U

the superscript O refers to the assumed values, and



o _
00 0]
E, - 0 0 0 ‘
0 0 0 0
0 0 -F(; 0 0
0
0 F, 0 0 0 o]
Hence, it can be shown that
- T _T
K"K Bl +Ep s
Kpp = E1 Kt B
~ T T
Kpn =B K F)y +E By Ep

The matrix KLL’ which is derived by an appropriate linearization of system (1), is pre-

sented in Appendix 1 of this report.

2.5 Discussion

The distributivity of the load was not considered in the mathematical derivation
However, its only effect will be on the value of the end moments corresponding to a de-
formation configuration and consequently on the resulting unbalanced joint forces. The

computer program will incorporate the effect of load distributivity.
3. SOFTWARE DEVELOPMENT

3.1 Introduction

To minimize the magnitude of the required programming effort, it is desirable to
base the software necessary for the solution of the linearized system onan existing space-
frame analysis program of adequate capacity. The program selected must be well docu-
mented and of a nature such that the necessary modifications and extensions can be econ-
omically accomplished. Since computer time is an important factor in the proposed

application, the program should be very efficient in information handling.

3.2 Selection of Existing Analysis Program

Because of the fundamental difference in the method of formulation, analysis pro-
grams based on the flexibility method were rejected a priori. A detailed survey was
made of the programs discussed below, all of which, with the exception of GISMO, em-

ploy the deflection method of formulation.




1)

2)

3)

4)

5)

6)

FRAN is alarge-capacity program for the analysis of space-frame
structures. The solution is obtained by reducing the stiffness matrix
to a triangular matrix; this is an efficient method with relatively small
round-off errors. This program, however, is slow and is not com-

pletely documented.

GISMO consists essentially of mathematical operators for manipulating
matrices. It is designed to be used in connection with auxiliary routines
to provide its input. For purposes of generality, it ignores the fact that
many terms in stiffness matrices for large assemblages are identically
zero. As a result, it executes tape search and matrix manipulation for

a single row at a time, which causes it to be excessively slow.

MAST (an extension of STAIR) is a large-capacity computer program for
the solution of assemblages of axially loaded bars and of plate elements
carrying in-plane stress resultants. An outstanding feature of this pro-
gram is that its procedure for partitioning the stiffness matrix for solu-
tion is externally read. This requires a manual input preparation that
increases its susceptibility to human error, but renders a more effi-
cient method of solution. The conversion of this program to include the
analysis of continuous framed structures would involve considerable

effort, especially with respect to bookkeeping difficulties.

STIFFEIG is a moderately small computer program for static analysis
and free vibration analysis of framed structures. Since it works entirely

in core, its use is restricted to very small structures.

STEIGR is alarge-capacity version of STIFFEIG. However, it differs
from STIFFEIG in its solution of the static deflection problem, because
it obtains the complete inverse of the stiffness matrix for static solutions.

This makes STEIGR unnecessarily slow for the proposed application.

STRESS is a programming system for the solution of a variety of struc-
tural engineering problems, including space frames. A significant
feature of this program is its adaptability to modification and expansion.
The capacity limitations that exist in modifying and expanding this
program are much relaxed by a dynamic memory allocation procedure
that provides flexibility in information handling. (This flexibility,
however, causes difficulties in gaining access to a bit of information. )
As a result of the dynamic memory allocation, the core storage avail-

able for the solution process is increased.




7) SIGMA is a program for static and free vibration analysis of structures
composed of beams, pinned bars, and ""membrane' panels. A unique
feature of this program is its generality and its acceptance of infinitely
rigid bars and nonsymmetric cross sections. It is written, however,
for the ELEA computer system, which is not readily available. Further-
more, this program is not at the present time sufficiently well docu-

mented.

The computer program STRESS was finally selected on the basis of its speed, ease
of modification, efficiency in information handling, and availability of sufficient docu-

mentation.

3. 3 Modifications of STRESS

The required modifications of STRESS to make it capable of solving the nonlinear
problems of buckling of reticulated radomes by a sequence of linear approximations is

discussed in this section.

STRESS is composed of a number of small subroutines. On the basis of the level of
modification required, these subroutines fall into three distinct categories. The first
category consists of those that must be deleted; the second category contains those re-
maining unchanged or with minor modifications; the subroutines that involve major mod-
ification or require complete rewriting constitute the third category. The following is a

list of the subroutines contained in each category.

Category 1 - Subroutines to be deleted.

a) Subroutines used to restore and save the initial input data for later reuse:

RESTOR
SAVE

b) Subroutines used in the introduction of member releases:

MRELES
FIXM
CARRY
PERMUT
UNPCK
LSTOR

c) Subroutines related to the prescribed member distortions and joint

displacements:

MDISTN
JDISPL

d) Subroutine for combining the results of different loading conditions:

COMBLD




Category 2 - Subroutines involving minor or no modifications.

a)

b)

d)

f)

Subroutines used for checking input, initialization, etc. :

ITEST
ICNT
CLEAR

Subroutines used in connection with the dynamic memory allocator:

START
DEFINE
ALOCAT
RELEAS
REORG
SSLAD
STER
DUMP
FILES
DUMPER
NEWADR

Subroutines that transform the member stiffness matrix into global
coordinates and set up the lower half of the system stiffness matrix:

TRANS
ATKA
KOFDG
IOFDG
IFDT

Subroutines related to the modification of the system stiffness matrix
and of the load vector for support joint releases:

JRELES
STEP2
STEP5
BUGER
FOMOD
ADRESS

The subroutine related to the solution of the system stiffness matrix:
SOLVER

Certain subroutines used in matrix handling and operation:

PACKW
COPY
MAMUL
MATRIP
TTHETA
MAPROD
MAPRDT




Category 3 - Subroutines involving significant modifications or complete rewriting.

a)

b)

d)

e)

Subroutines related to input-output phases:

PHASIA
LISTS
MEMDAT
SIZED
JTDAT
READ
MATCH
DPRINT
SELOUT
ANSOUT
PHASI1B

Subroutines used for output error messages; new messages must be
included and irrelevant messages must be deleted:

PRERR
PRER2

The subroutine that computes axes-transformation matrices (the
sections dealing with plane structures must be deleted):
TRAMAT

Subroutines that compute member distortions, member forces, support
reactions, and loads. These subroutines must be modified to compute the
unbalanced joint loads, to check the magnitudes of the unbalanced forces,

and to modify the loads and unbalanced forces on the structure, as neces-
sary:

BAKSUB
DEFSUB
AVECT
STATCK
MEMBLD
LOADPC
LOADPS
CASE2
JTLOAD
LINEAR
EFVDTL
STICLD

Subroutines used to form member stiffness matrices and to connect

various subroutines (these must be completely rewritten):

MEMBER
MEMFOD
MAIN

Note: In the process of modification, a number of subroutines may be deleted or com-

bined to form a smaller number of subroutines. A block flow chart of the modified

STRESS program is presented in Figure 3.
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Figure 3. Execution flow chart.
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3. 4 Additions to STRESS

Only two entirely new subroutines must be added to STRESS. They consist of a sub-
routine for computing the variables wy, d’y’ F,y, etc., for each bar, and a subroutine to

modify joint displacements for the subsequent solution
4. CONCLUSIONS

The nonlinear equations governing the finite deformations of an elastic bar have been
derived. These equations expres$s the end forces of a bar in terms of the components of
the end displacements. A method of solution, which is a generalization of the Newton
method for finding roots of polynomials, has been presented. The method consists of an
iterative solution of a linearized system. The linearized problem may be solved by an

appropriately modified available program for linear analysis of structures.

A survey of available large-capacity computer programs for solving linear problems
in structural mechanics revealed that the program STRESS is most suitable for extension

for the solution of geometrically nonlinear problems.
5. RECOMMENDA TIONS

The recommended future work for the continuation of the effort reported on herein

can be divided into the following tasks:

TASK 1. Perform the modification and extension of the STRESS program as described
in Section 3. The final computer program will be able to establish a branch
of the load-deformation diagram for any given reticulated radome with elastic
joints. (""Load-deformation diagram!'' refers to the behavior of a scalar func-
tion defining the intensity of the joint loads with respect to a properly defined
deformation parameter.)

TASK 2. Test the validity and accuracy of the program and the mathematical model
by establishing the load-deformation relationships for a few small structures
for which exact solutions are available or can easily be obtained. Perform
and test any modifications of the program that are found to be necessary from
a study of the results of these applications.

TASK 3. Utilize the mathematical model by calculating the buckling loads and load-
deformation relationships for the test structures and comparing them with
the corresponding experimental results. The discrepancies between the
experimental and theoretical results should be analyzed to determine if
simplifications or other refinements should be made in the mathematical
model. Additional numerical analyses will be useful in the planning of the
subsequent experimental program and in the interpretation of the test results.
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APPENDIX 1

STIFFNESS MATRIX OF A SINGLE MEMBER

In this appendix the matrix K as defined in Section 2. 4,is presented. The follow-

LY
ing variables are defined for the sake of simplicity of the final matrix:
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where superscript 0 refers to the assumed values of the components of deformation, and

®d and 2 are defined as follows:

dé 2 w
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I. INTRODUCTION

During the radome hardening studies conducted by Lincoln Laboratory, a 7.42-ft-
diameter space-frame radome was fabricated and statically tested under a uniform
external pressure by air evacuation from the interior of the model until a buckling
failure developed.l The beam elements in the space frame were oriented according to
the random geometry depicted in Figures 1 and 2. This geometry has been designated
the TTR Radome. Photographs of the model before and after testing are shown in
Figures 3 and 4. All the individual beam elements were fabricated from 4150 steel and
featured constant rectangular cross sections of width b = 0.131 inch and depth h = 0.195
inch.

By means of the equivalent shell methodz’ . and the appropriate frame geometry

and beam parameters, an empirical buckling coefficient can be obtained. This
coefficient can then be applied to establish approximate critical buckling pressures for
space-frame structures of the same TTR random geometry but different beam param-
eters, e.g., beam width, depth, and material. In this fashion the cross-sectional
dimensions of the beam members necessary to resist a desired pressure level can be
estimated.
II. CALCULATION OF STATIC BUCKLING COEFFICIENT FOR TTR RANDOM
GEOME TRY
By means of the equivalent-shell method, the critical buckling pressure for a
space-frame radome with constant rectangular cross-section beam members can be

expressed as

2

K(EL )Ebh
__\n s

P
cr 8 R4

where Per is the critical pressure, R the radome radius, I_.s the length of individual
beam member in space frame, n the number of beams in complete sphere, E the elastic
modulus of beam material, b the beam width, h the beam width, and K the empirical

coefficient.

1MIT Lincoln Laboratory, "TTR 2-psi Hardened Radome, ' Division 7, Final Report

vol. I, September 1961.

A. F. Foerester, '""Stress Distribution and Stability Criteria of Spherical Ground
Radomes Subjected to Wind Loads, " Proceedings of the OSU-WADC Radome
Symposium, vol. I, June 1958.

3R. A. Muldoon, "Dynamic Buckling of Space Frame Radome Models, ' MIT Lincoln
Laboratory, Group Report 71G-3, 15 February 1962.
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Figure 1.



Figure 2. TTR Radome (Random Geometry)

Spherical angles and sides (degrees)

Al 01—60.132115 a — 7.234506
h1 — 6.269428

Al a2—79.911923 a — 7.234506
[32— 50.269316 b —9.277440

hz— 5.557689

AlIL 0.3—60.217541 b —9.277440

1 —2.685015
2 —5,358290

ALV a, — 80.779032 b —9.277440
Py —49.832313 c —7.169611

h, — 5.472761

AV u5—50.226604 c —7.169611
B — 65.059102 d —6.072676

h5_ 6.497964

AVI ae = 72 b — 9.277440
By, — 54.259974 e —7.908331

h6_ 6.412012

AVII a, = 42.497430 c —7.169611
P, — 68.902763 f —5.184998

h, — 6.686760

AVIII ag — 70.707721 c —7.169611
38—54.858114 g — 8.282600

h8— 5.857710

AIX ag — 42.099198 g — 8.282600
59—69.150997 i —5.931769

h9—7.736829

ax a10—69.484348 g — 8.282600
PG 55-538634 k —9.418005

th_ 6.821413




Figure 2 (continued)

Spherical angles and sides (cont.)

AXI a,, — 74.551382 d —6.072676
By, — 51.385486 1 —5.837604
Y, ~ 54-361665 j —17.207670
AXII a,, = 81.997348 c —7.169611
By, = 49.050102 j —17.207670
Yy, — 49-399994 k —9.418005

For the TTR random space-frame radome model tested statically
R =3.71 ft E =30x16 lb/inch2 b = 0.131 inch
(,’f Ls)= 28, 388 inches
Substituting these results into equation (1), the buckling coefficient is calculated as

K = 0.248 o (2)

By means of equations (1) and (2) the critical buckling pressure may be estimated for
a TTR random geometry space-frame radome with the same rectangular cross section

throughout.
III. RESULTS

Using equations (1) and (2), the rectangular cross-sectional dimensions required by
aluminum beam members to resist buckling at various static pressure levels are deter-
mined for the TTR random geometry and a radome radius R = 7ft. The results are

plotted in Figure 5.




Figure 3,
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members in TTR random geometry space frame radome models required

Beam width versus depth for rectangular cross-section aluminum beam
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1. INTRODUCTION

This report describes a series of experimental structural model tests performed
during the period from July 1 to September 15, 1966, on a unit element of the space
frame of a large radome. The purpose of the study was to obtain, in as short a time as
possible, experimental data to make initial performance checks of the analytical methods
of analysis that were being developed concurrently by others. Both the magnitude of the
proposed radome and the complexity of its nonlinear analysis contributed to the need for

an accurate model study.

Owing to the extremely short period of time allotted to the study, its scope was nec-
essarily limited. Development of loading frame, experimental procedure, and fabrica-
tion techniques required a large proportion of the time. However, it has been possible to
test two Plexiglas and two polyvinyl chloride (PVC) models, all of which had the same
basic geometry shown in Figure 1. One model of each material had members 0. 70" X
0. 70" and failed by ''snap-through' buckling while the other had members 0. 70" x 0. 35"
and failed by local buckling of the compression members about the weak axis. Each
model was tested at least twice under vertical dead load applied at the center joint; the

Plexiglas models were also tested twice under applied deflection.

Owing to various factors explained in the report, the latter models F 1 Dand F 2 D
are considered to have given the best results. These results, together with essential
data pertinent to them, may be obtained directly from the report as follows: the model is
defined in Figure 1, while detailed dimensions are available from Appendix 1; the mate-
rial properties are given in Table 1; Table 2 gives test statistics; and, finally, the load

deflection curves applicable are shown in Figures 17 and 18.
2. MODEL FABRICATION

2.1 Selection of Materials

It was evident, both from inspection of the model's configuration and from the re-
sults of some preliminary tests, that the production of models with fully fixed joints was
a critical requirement. To ensure that this would be achieved, and for other reasons,
two dissimilar model materials were chosen, Plexiglas and PVC type II. The Plexiglas
model was cemented together with P. S. 18, an adhesive manufactured by Rohm and

Haas Company, whereas the PVC was heat welded.

Both model materials have been used many times in the past. With the correct tech-
niques, both can be cut and machined. Each material has a low modulus of elasticity, a
stress-strain curve essentially linear up to stresses approaching 2000 psi, and a great
reserve of strength and toughness. Although the creep of the Plexiglas is approximately
twice that of the PVC, it was not expected to be significant, since the unit stresses were

below 1000 psi and the test duration was short. As is typical of plastics, the mechanical
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Table 1. Results of modulus tests.

Orientation of
cross section
Material Test No. ¥

Plexiglas

1
2
3
4
5
6
7
8

—/] .3

9
10
11
12
13
14

PVC

0 0

~N O AR W N

Note:

All data given are for 72° F and 50% relative humidity.

described in text and Figure 2.

Joints in
member

None
None
None
None
None
None
Two
cemented
joints
None
None
None
None
Two
cemented
joints
None
None
None
None
Two
welded

joints

Number
of
deflection
readings

(o AT o AN « AN AT A N o LN « AN © A S o ARV« N« Vo )

w W
[V WV

36
36

© o 0 W WO

Modulus

437,000
444,000
437,000
451,000
440,000
429,000
448,000
443,000
454,000
479,000
465, 000
467,000
476,000
484, 000

432,000
411,000
405,000
422,000
395,000
405, 000
411,000

Averages

439, 800

440, 000

448, 000

471,800

484, 000

417, 500

403,700

Method of obtaining data is

* g
Square cross sections were approximately 0. 70" X 0. 70". Rectangular cross sections

were approximately 0. 35" X 0. 70".
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Table 2.

Details of models tested and results.

Load-
Model Cross-section Date Ambient Duration Max. Mode of deflect
no. Material dimensions tested conditions Loading of test load failure | diagram
width  depth sustained * Figure
ins. ins. temp. R. H. mins. 1bs. no.
Fl-1 Plexiglas { 0. 350 0.700 8/9 72 50 D. L. 5 14. 9 1 13
Fl-2 Plexiglas | 0. 350 0.700 8/22 72 50 D. L. 10 15. 4 1 13
F2-2 Plexiglas { 0. 703 0.703 8/10 72 50 D. L. 7 40. 1 2 14
F2-3 Plexiglas | 0. 703 0. 703 8/17 72 50 D. L. 13 56.5 3 14
F3-1 PVC 0. 354 0.702 8/19 72 50 D. L. 7 12. 4 1 15
F3-2 PVC 0. 354 0.702 8/22 72 50 D. L. 7 13.0 1 15
F4-1 PVC 0. 701 0.700 8/23 72 50 5 dboc 12 45.2 2 16
F4-2 PVC 0. 701 0.700 8/24 72 50 D. L. 7 47.6 4 16
F1D-1 | Plexiglas | 0. 350 0.700 9/12 72 50 Applied -- 14.9 1 17
deflection
F1D-2 | Plexiglas | 0. 350 0.700 9/14 72 50 Applied 10 15. 4 1 17
deflection
F2D-2 | Plexiglas | 0. 703 0.703 9/14 72 50 Applied 11 45. 7 2 18
deflection
F2D-3 | Plexiglas | 0. 703 0. 703 9/14 72 50 Applied 27 55.6 5 18
deflection
"1 = local buckling of compression members about weak axis.
2 = test discontinued prior to failure.
3 = snap-through buckling followed by fracture starting at center joint.
4 = failure of center joint either simultaneously with or prior to snap-through buckling.
5 = overall buckling (constant load at increasing deflection).




properties are sensitive to both temperature and humidity changes; however, a fully
controlled environment was available for the project and all tests on models and mate-

trials were performed at 72° F and 50% relative humidity.

2.2 Jointing Methods

Although it was the first use of the P.S. 18 cement in this model laboratory, the
results obtained for the Plexiglas were ideal. A thin glue line with strength in excess of
the Plexiglas itself was consistently obtained — in virtually all of several dozen breakages
that occurred during the work, the fracture line passed through the virgin material. The
stiffness of the joints was investigated by means of a cantilever-bending specimen as
shown in Figure 2. A total of 1] tests indicated the cemented beams to be stiffer by ap-

proximately 2%.

A commercially produced, heat-welded PVC model was tested in the Civil Engineer-
ing Model Laboratory earlier in 1966. The excellent results obtained prompted the lab-
oratory to invest in a basic welding machine produced by the Kamweld Company of
Massachusetts. This equipment was used to fabricate the PVC. The resulting models
gave results that are considered to be slightly inferior to those of the Plexiglas models.
The reason for this lies in the difficulty of producing 100% strength and penetration butt
welds in square and rectangular stock with relatively inexperienced welders. The tech-
nique of producing the initial tack welds (or root sealing bead) by heating the parts and
pushing them together gave incomplete fusion, which initiated the failure of model F4
(PVC square member section). The stiffness of the welds was investigated in the same
manner as for the Plexiglas cement. A reduction of 4% in the cantilever-beam stiffness
indicated a greater reduction at the weld itself, attributed to the presence of some small
voids and, perhaps, to the effect of heating the material to beyond its transition or

softening temperature.

2. 3 Dimensional Control

All model material was initially taken from 1" thick plate. First cutting to shape
was done on a band saw with a blade in the order of 20' long to avoid heating the material.
To eliminate the effect of residual stresses and to obtain straight members, it was found
necessary to reduce the members to size by taking cuts symmetrical with respect to the
center line of the finished member. Similarly, in the following operation of milling the

sections down to final size, an equal number of cuts was taken from each side.
The models were assembled on a plywood jig with the joint configuration detailed in
Figure 1.

After assembly, the dimensions of the models were established by second-order tri-
angulation from a fixed base line with a Wild T-1 optical transit. The T-1 reads directly
to 10 sec, and by four-fold repetition readings of both the angle required and its exple-

ment, all angles were established to within £0. 05 sec. The base line was set out using
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Figure 2. Modulus tests.
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a standardized surveying chain. The surveying data were reduced to angles and lengths
required with the help of the Dept. of Civil Engineering Systems Laboratory IBM 1620
computer and the COGO program. The output is given in Appendix 1. Lengths are esti-
mated to be accurate to £0. 003", which, at a model scale of 1:20, is equivalent to

+1/16" in the prototype structure.

Since the two models with rectangular member sections were expected to buckle in
compression, it was thought desirable to know the degree of initial curvature as meas-
ured by the distance between the true center of the member and the line passing through

its ends. These data are also shown in Appendix 1.

2.4 Modulus Tests

Modulus of elasticity tests were performed on cantilever beams of material that was
either cut from the model after testing or taken at random from the members that had
been prepared for fabrication. A total of 14 separate tests involving 145 deflection read-
ings were done on Plexiglas samples, while the evident repeatability of the test allowed
a reduction to 7 tests for the PVC. The detailed results, given in Table 1, show the
effect of the Poisson's ratio restraint when a wide beam is clamped as a cantilever.
Because of this, the average values for modulus include only square or rectangular
beams stressed on their major axis; the beam shown in Figure 2 is recommended for

future tests.
3. TESTING APPARATUS

3.1 Description of Loading Frame

The supporting frame, shown in Figure 3, consists of a large "'"box'" fabricated from
slotted angles. The model, which hangs inside the frame, is supported at each of the six
circumferential joints. To attain equal vertical reactions at each joint, the load from
three pairs of supports was collected, by means of machined aluminum beams, to give
three main reactions at the frame. One of the beams is illustrated in Figure 4. The
support for the beam includes a weigh pan and spring. The spring was designed to have
a 10" deflection at maximum load so that any unforeseen contortions of the structure dur-
ing loading would not affect the equality of the reactions. The weights served only the
purpose of eliminating the initial tension in the spring. In the symmetrical cases tested

thus far, the springs proved unnecessary and were discarded for some of the later tests.

3.2 Application of Load

In all models tested to date, the load has been applied vertically at the center by
means of a spherical seat, visible in the photograph of Figure 5. Load was measured
with an aluminum load cell (see also Figure 5) equipped with four EWR strain gauges.
With one gauge in each arm of the wheatstone bridge a temperature compensated output

of 51. 3 microinches per inch for each pound of load was obtained, with linear response
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Figure 3. Overall view of loading frame.

Figure 4, View of beam-support structure.
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Figure 5. View of arrangement at center joint.

to 50 1bs. When computing the load on the model, a correction was made for both the

weight of the load cell and the spring force of the dial gauge used.

For some tests, dead load was applied to the model by means of a wire, pulleys, and
steel weights. In other tests, a deflection was applied and the load measured in an
attempt to define post-buckling behavior. In the latter tests, the loading wire was wound
onto a shaft that was connected to a hand crank. A chain drive with a large reduction

ratio enabled the operator to set deflection to an accuracy of +0. 001"

3. 3 Instrumentation

Due to the symmetry of the initial loading cases described in this report, the only
data required were the vertical deflection of the center joint relative to the exterior ring.
In later asymmetrical tests, two or more components of deflection and perhaps of rota-
tion will be required. However, in all dead load tests described herein, the center
deflection was measured relative to the center yoke of the load-collecting beams by the
Plexiglas support visible in Figure 6. Because some deflection was discovered in the
tension wires connecting the model to the beams, the models tested under applied deflec-
tion were equipped with a further nine vertical dial gauges, one at each of the circumfer-
ential joints and one on the supporting yoke of each load-collecting beam. The true net

deflection of the center joint with respect to the edges could, therefore, be computed.
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Figure 6. Model F 1 ready for testing.

4. TESTS AND RESULTS

4.1 Models with Member Section 0. 70'' X 0. 35"

A total of six tests was performed on two models with nominal cross-sectional
dimensions as given above, all with the weak axis oriented perpendicular to the plane of
the model. The overall behavior was the same for all tests; the load could be increased
until column buckling about their weak axis occurred in the compression (radial) mem-
bers; due to the symmetry, the center joint rotated and behaved as a pinned connection,
whereas the circumferential tension members supplied rotational restraint at the edge
joints. The post-buckling behavior was similar to the typical Euler column case with

essentially constant load under increasing deflections.

Two of the tests were performed with dead load applied to a PVC model (F3), which
sustained 12. 4 and 13. 0 1bs before buckling at 13. 8 and 13. 5 lbs, respectively, to give a
buckling load somewhere between 13. 0 and 13. 5 1bs. In this and other cases where a
model was tested more than once, it was completely removed from the loading frame be-
tween tests. Photographs of model F 3 before and after buckling are shown in Figures 9
and 10. Table 2 and Figure 15, respectively, give essential data and load-deflection
curves. The difference between the two load deflection curves in Figure 15 is partially
attributed to support deformation between loading beams and model. The discrepancy in
some of the results was noticed after the dead-loading tests (F 1 to F 4) had been com-
pleted. In subsequent applied-deflection tests (F 1 D and F 2 D), the support deformation
was found to be 0. 028" for the rectangular section models and 0. 079" for the square sec-

tion models, both figures being valid at maximum load. Thus, the results of all models
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tested by dead load have a systematic error of slightly less than 10% in the deflection
readings (actual deflections being smaller than those measures); however, the buckling

loads are correct.

The remaining four tests of the local-buckling behavior were done on a Plexiglas
model. The three photographs in Figures 6, 7, and 8 clearly illustrate the original ap-
pearance and buckled shape typical of all tests done on the model. Again, Table 2 gives
essential statistics relevant to the tests, while the results are given graphically in
Figures 13 and 17. Figure 13 shows the excellent repeatability generally obtained with
the Plexiglas and defines the buckling load to be between 15. 4 and 16. 0 1bs. Figure 17
gives the results for the applied-deflection case (model F 1 D). The average buckling

load was 15.2 1bs. Post-buckling behavior is clearly shown.

4.2 Models with Square Member Section 0. 70" X 0. 70"

Six tests were made on models that were designed to fail by overall buckling. The
PVC model F 4 did not yield useful results since it suffered from the support deflection
described above and failed prematurely at a weld (see section 2. 2). The Plexiglas model
gave excellent results. For the dead-load case (F2), two coincident load-deflection
curves were obtained (see Figure 14). In the second test, a maximum load of 56. 6 lbs
was momentarily sustained before a short period of rapidly increasing deflection and,
finally, fracture of the model as it tried to snap through. The same model was success-
fully repaired and tested under applied deflection (model F 2 D; results in Table 2 and
Figure 18). Again, coincident load-deflection curves were obtained for two tests. The
maximum load was, at 55.6 lbs, slightly lower than for the dead-load test. Figures 11

and 12 illustrate the original and buckled configuration.
5. CONCLUSION

An experimental apparatus and procedure has been developed for the study of the
behavior of small-scale structural models representing a hexagonal element of a spher-

ical framework.

A total of 12 tests has been completed on four models differing in material properties
and member cross-section characteristics. In all tests, the load was applied vertically
at the center joint of the model, with equal and symmetrical reactions at the other six
joints. The dimensions of the individual members were chosen so that two distinct facets
of behavior, local and overall buckling, could be simulated. The results from models
F 1D, and F 2 D, in particular, are considered to be of the highest accuracy attainable

with structural engineering model studies of this type and scope.

10-11




Figure 7. Model F 1 after buckling.

et asste.

Figure 8. Model F 1 after buckling.
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Figure 9. Model F 3 ready for test.

Figure 10. Model F 3 in buckled position.
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Figure 11. Model F 2 D ready for test.

Figure 12. Model F 2 D with maximum load applied.
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Figure 13, Load-deflection curves for model F 1.
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Figure 14. Load-deflection curves for model F 2.
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Figure 18. Load-deflection curves for model F 2 D.
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To obtain more data for further checks on theoretical work, it is considered desir-

able to use the existing apparatus, with slight modifications, to perform the following

tests:

1%

Models with rectangular and square-section members loaded with vertical
and horizontal loads that lie in a vertical plane containing two radial mem-
bers. In this case, the symmetry retained would reduce the demands on
instrumentation to that required to measure two components of translation
and one or two components of rotation at the center joint, and at least one
horizontal reaction at an exterior joint. Some benefit might also accrue

from measuring displacements at the exterior joints.
Square-section models with completely asymmetrical loading.

Finally, it might be useful to test a model whose member properties
differed widely from those used in the tests so far. For example, although
it would be more expensive, it would be possible to fabricate a three-plate
I-section with the same area as the rectangular sections but with a much

lower torsional-to-bending stiffness ratio.
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APPENDIX 1
EXPLANATION OF DIMENSIONAL DATA

The following pages give the angles at the center joint and the lengths of the radial
members for each model. Angles are given in degrees, minutes, and seconds with an

accuracy of better than +5 sec, whereas lengths are given in inches with an accuracy of
0. 003 inch.

To read the data, it is necessary to know that the circumferential joints are num-
bered 3 to 8 consecutively in a counter-clockwise direction, and the center joint is
assigned number 9. Thus, the angle between legs 7 - 9 and 6 - 9 of model F 1 is (angle
796) 59° 42' 56", and the lengths of the legs are, respectively, 24. 017" and 24. 015",

The last page of the appendix gives a measure of the initial curvature of the radial

(compression) members of models F 1 and F 3.
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*
*
CLEAR
STORE

*

ID GRIGGS

AZ/INTERSECT

ANGLE

3
4

5

59

6
60

5
59

4
59

DISTANCE

DUMP

8
7
6
5
4

3

10. 000000
10. 000000
10. 000000

MODEL F 1

70073
DIMENSIONS OF MODEL FOR CAMROC RADOME PROJECT
1 99
1 1180.0 1000.0
2 1000.0 1000.0
MODEL SECTION 0. 70 BY 0. 35
31 11455 09. 2 61 55 41.
1096. 1988 1180. 3766
41 121 01 59. 2 68 01 50.
1072. 2482 1179. 0953
51 121 12 20. 2 73 25 59.
1059. 2837 1199. 2828
6 1 116 26 52. 2 72 21 06.
1070. 2148 1220. 6988
7 1 111 0943, 2 67 01 17,
1094. 0970 1221. 9086
8 1 109 50 33. 2 62 01 27.
1107. 1831 1201. 7872
9 1 115 46 08. 2 67 27 42.
1083. 2080 1200. 5020
398
9 8
13 35. 335200
897
9 7
58 12. 939600
796
9 6
42 56. 484000
6 95
9 5
9 46. 526400
59 4
9 4
58 16. 158000
49 3
9 3
57 12. 567600
89
9 24, 009521
79
9 24. 016927
6 9
9 24. 015286
59
9 23. 955345
4 9
9 24. 049199
39
9 23. 953968
I 99
1 1180. 0000 1000. 0000
2 1000. 0000 1000. 0000
3 1096. 1988 1180. 3766
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MODEL F 2

* ID GRIGGS 70073
* DIMENSIONS OF MODEL FOR CAMROC RADOME PROJECT
CLEAR 1 99
STORE 1 1180.0 1000.0
2 1000.0 1000.0
* MODEL 2) SECTION 0. 70 BY 0. 70
AZ/INTERSECT 31 114 3802. 2 61 43 18.
3 1097. 1717 1180. 6307
41 120 46 34. 2 67 47 21.
4 1073. 2133 1179. 3065
51 121 01 36. 2 73 13 42.
5 1060. 0840 1199, 3637
61 116 1709. 2 72 11 16.
6 1070. 9427 1220. 7984
7 1 110 57 59. 2 66 51 47.
7 1094. 8980 1222. 0880
8 1 109 36 50. 2 61 52 04.
8 1108. 0112 1202. 0134
9 1 115 3309. 2 67 16 50
9 1084. 0397 1200. 7117
ANGLE 398
3 9 8
59 55 31. 724400
89 7
8 9 7
59 57 46. 951200
796
7 9 6
60 2 2.5332000
6 9 5
6 9 5
60 6 55. 324800
59 4
5 9 4
59 56 59, 262000
493
4 9 3
60 0 44. 215200
DISTANCE 8 9
8 9 24. 006815
79
7 9 23. 976006
69
6 9 23. 979300
59
5 9 23. 993596
49
4 9 23. 987361
39
3 9 23. 993665
DUMP 1 99
10. 000000 1 1180. 0000 1000. 0000
10. 000000 2 1000. 0000 1000. 0000
10. 000000 3 1097.1717 1180. 6307
10. 000000 4 1073. 2133 1179. 3065
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t3 ID GRIGGS 70073
| * DIMENSIONS OF MODEL FOR CAMROC RADOME PROJECT
CLEAR 1 99
STORE 1 1180.01000.0
2 1000.0 1000.0
* PVC MODEL, DIMENSIONS 0. 70 X 0. 35
AZ/INTERSECT 31114 1230. 2 61 18 25.
3 1098. 8233 1180. 5563
41 120 34 38. 2 67 05 31.
4 1075. 0559 1177.6122
51 121 1554, 2 72 54 10.
5 1060. 5249 1196. 7729
61116 4335 2 72 18 18.
6 1069. 8155 1218. 8266
71111 16 50. 2 67 07 05.
7 1093. 6102 1221. 8012
8 1 109 3055. 2 61 54 57.
8 1108. 1596 1202. 6995
9 1 115 36 20. 2 67 07 25.
9 1084. 2768 1199. 7403
ANGLE 3938
3 9 8
59 53 29. 655600
8 97
8 9 7
60 0 17. 236800
796
7 9 6
60 4 56. 827200
6 95
6 9 5
59 58 14. 775600
59 4
5 9 4
60 15 25.192800
493
4 9 3
59 47 36. 322800
DISTANCE 89
8 9 24. 065430
79
7 9 23. 954032
69
6 9 23.946107
59
5 9 23. 936545
49
4 9 23, 972438
39
3 9 24. 075434
DUMP 1 99
10. 000000 1 1180. 0000 1000. 0000
10. 000000 2 1000. 0000 1000. 0000
10. 000000 3 1098. 8233 1180. 5563
10. 000000 4 1075. 0559 1177.6122
10. 000000 5 1060. 5249 1196. 7729
10. 000000 6 1069. 8155 1218. 8266
10. 000000 7 1093. 6102 1221. 8012
10. 000000 8 1108. 1596 1202. 6995

MODEL F 3




MODEL F 4
* ID GRIGGS 70073
* DIMENSIONS OF MODEL FOR CAMROC RADOME PROJECT
CLEAR 1 99
STORE 1 1180.0 1000.0
2 1000.0 1000.0
* PVC MODEL 0. 700 X 0. 700
AZ/INTERSECT 3166 3030. 2 117 38 36.
3 1098. 3682 812.18510
4 1 60 26 05. 2 111 55 52,
4 1074. 7217 814. 41500
51 59 51 07. 2 106 30 56.
5 1060. 8355 794. 82730
6 1 64 19 37. 2 107 21 38.
6 1070. 9335 773.10360
7169 3407. 2 112 27 42.
7 1094. 6846 770.97790
8 1 71 0715. 2 117 20 20.
8 1108. 3388 790. 44630
91651736, 2 112 11 38.
9 1084. 5960 792. 64050
ANGLE 398
3 9 8
299 53 26. 232000
897
8 9 7
300 15 7.6320000
796
7 9 6
300 3 43. 632000
6 95
6 9 5
299 42 26. 532000
59 4
5 9 4
299 39 6. 3000000
493
4 9 3
300 26 9, 7080000
DISTANCE 89
8 9 23. 843972
79
7 9 23. 896611
6 9
6 9 23. 840184
59
5 9 23. 860918
49
4 9 23. 908797
39
3 9 23.909514
DUMP 1 99
10. 000000 1 1180. 0000 1000. 0000
10. 000000 2 1000, 0000 1000. 0000
10. 000000 3 1098. 3682 812.18510
10. 000000 4 1074. 7217 814. 41500

10-23




INITIAL CURVATURE OF COMPRESSION MEMBERS
FOR MODELS F 1| AND F 3

""Initial curvature!''

Model Member inches

F 1 (plexiglas) 3-9 -0. 025
4-9 -0. 015

5-9 +0. 045

6-9 +0. 085

7-9 +0. 010

8-9 -0. 025

F 3 (PVC) 3-9 -0. 065
4-9 -0. 025

5-9 -0.010

6-9 +0. 020

7-9 +0. 035

8-9 -0. 015

Note

The "initial curvature'' given is the ordinate of the actual center-line of the member
with respect to the theoretical center-line. Measurement is made in plane of buck-
ling.

F 1: total deviations +0. 140, -0. 065, net 0. 075 average 0. 013.

F 3: total deviations +0. 055, -0. 115, net 0. 060 average 0. 010.

The maximum deviation of 0. 085" is 1/280 of span, and the average deviation is
1/2200 of span.

10-24




ANNEX 11

FORMULATION OF THE GOVERNING EQUATIONS FOR THE BUCKLING
OF A PLANAR FRAME

CAMROC WORKING MEMORAND UM
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INTRODUCTION

In what follows, the derivation of the governing equations for the planar deformation

of a planar member is outlined. The material is considered to be linear elastic and the

rotation of the tangent to be sufficiently small such that the square of the rotation with

respect to unity can be neglected. The notation for the end actions and displacements is

summarized in Figure 1.

The Xl direction coincides with the centroidal axis.

< L e
Ua) B Ug,
. ” X;»U,
Upz
u..—u
xz 'Uz ( AI Ps= BZL A2

Fa \ ‘

\ Yas = Us2
MA3 i 7\ \

-

B2 V

Figure 1
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DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

The strain-displacement relations are specialized for the case of a '""small-finite"
rotation and negligible transverse shear deformation:

(E)§= € - tK

(1)
where

w = rotation of the normal = U

2,1 .

’

(2)

For convenience, the subscript 3 on w and M is dropped and the notation ( ) is used to
indicate differentiation with respect to x

1 The stress resultants are related to the de-
formation measures by

N=AE &

M=EIK |, (3)

where A is the cross-sectional area and I is the second moment of the area with
respect to the X3 axis:

I=fx§dA=J§,2dA

(4)
A
The positive sense of the internal forces is shown in Figure 2.

Note that
sin w

L

COos w

]
—

for wz << 1.

(5)

The transverse shear is related to M by

- .4aM
= dxl

(6)

11-2




XI’Ul

2’72

Figure 2

The principle of virtual displacements is used to establish the force-equilibrium
equations and force-boundary conditions consistent with the initial geometrical approxi-

mation (i. e., wz << 1). The general principle is

dW_ = dWwW (7)

D E ’

where dWD is the first-order work done by the internal forces (N, M) and dWE repre-

sents the first-order work done by the external forces. For this problem, dWD and

dWE are given by

L
dw.. = J(N6€+M6K)dxl ,
0

dW_ =F_ 86U, + F

+MA6WA . (8)
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The first-order increments in the strain measures follow from (1):

6 & =6Ul’l+w6w ,

6K=6wl )

bw = 6U2,1 - (9)

Substituting (9) into (8) and carrying out the necessary partial integration leads to the

following differential equations and boundary conditions:

Ole_L
dN _
& 0 o)
1
2
M. L noy=0 (11)
dx 1
1
xl=0
Fy =-N
Fpp=-Nog +M | =-Noy -V
M,=-M |, (12)
xl=L
Fy, =+N
Fpp=Nop -M | =Nag +V
Mp=M . (13)

SOLUTION OF THE EQUATION

From (10)

N = const =fBl . (14)
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The relative axial displacement is found from

2 1

=N 1 2_ 1 2

B L
LFp1 1 2. LFp) A
= s - (16)
0

Equation (11) is expressed in terms of U2 using

M=EIU2,11 5

N=fBl . (a)

The resulting equation is

4 2
d 2 d
1 3

() =0 (17)

o

where

For convenience, the subscript on x) is dropped and the solution to equation (17) is

expressed as

U =-;l3(Clsin)\.x+C2cos)\x)+Cxx+C4 . (18)

2

The integration constants are found from the displacement boundary conditions at

x =0, L:
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1 -
-‘—)\—+C3-—uA )
S C B
-_ECI__2-C2+C3L+C4_UBZ s
A A
C S _
-)\C1+XC2+C3_QB s (19)
where
S=sin\AL and C=cos\L
Now,
1/2
\ Fp, L%
$=AL = - 21— (20)
[ *'B

Note that ¢ is dimensionless. If X is replaced by ¢/L, then it is convenient to write

c,=LCc,
C,=LC, ,
C
c =_4
C,=7 (21)

The "barred'' constants are dimensionless. With this notation, the equations become

U
—2_._L (E sin? c ¢ X .z
I - ¢2 (C151HLX+CZCOSLX>+C3L+C4 g
-1 X _C sineX
w--¢<Cl cos 7 Czsm¢L>+C3 s (22)
EI (= . X
M =—L—(Cl sin ¢>i+ C, cos ¢1) s (23)
and
Sz ta
2 4~ L ’




3 A ’
U

S = C = = B2
-—C,-—-C,+C,+C, = —

2 71 2 2 3 4 i

$ $

C = S = _
-¢Cl+¢C2+C3-—wB ,

where

S = sin ¢ and C =cos ¢

Solving the first two equations gives

_ 1=
C3—u>A~l~4)C1 5
U
= _CA2 1=
Cys=—T1T +¢zcz

The remaining equations take the form

©-
O

where
p = (U2 - Upp)/L
The solution of (a) is
S, =15 pmen) (79 &

C2=-klwA-k2wB+k3p ¢

= C 1\ = _
}C1+ {-7+—2}C2-—p-wA

2

11-7

(24)

(25)

(a)

(26)

(27)




where

K -4(-Co
1°2(1-C)-59%

K o 0(®-85)
2 2(1-C) -S¢ ’

2

- =—¢ (1-C)
3=kt =3n-C) -5 (28)

This solution is valid for ¢ # 0 and ¢ # 2.
EVALUATION OF THE END MOMENTS AND SHEARS

The end moments are

Mg =M.y

My =ML,

Specializing (23) yields

L_ _ ==

EiMaA~-C2

L M. =SC,+CC (29)
E1 Mg 1 2

If we substitute for 61 by use of (26), the expression for MB becomes

Lpm . = _ & ,
—MB--C2+%C-(wB-wA) . (30)

=
—

Finally, if we substitute for 62, the resulting relations are

- U
= B2 ~ Ya2
EIMA'k1“A+k2“’B'k3(U L ) ,




U -U
L — _ B2 -~ “A2
EIMB—kaA+k1wB-k3 (—-——-———L ) (31)
The shears are determined using (12) and (13). This leads to (note that
kl + k2 = k3)
U -U
- _EI, ) B2 ~ A2\, =
F132‘sz31""A""13”"‘( L X+FBIP '
U -U
= _EI, B2 ~ Ya2\l =
FAZ-L2k3 tc.\»A+c.oB-2( T )s-FBlp . (32)

Note that the term involving fBl is due to the rotations p of the member. If the joint
displacements are small (e. g., no sidesway), this term can be omitted.

DETERMINATION OF (A/L)

The quantity A/L is defined by

L
A1 2
L = L j w”dx ’ (a)
0
where w is the rotation of the tangent to the centroidal axis. Now, from (22),
L= I
w=-$(C1 cos Ax - C, sin )\x)+C3 s (b)
Substituting for w in (a) and evaluating the resulting integrals leads to
2C 2
A _ ~2 3 = _ = =~ _S
L-ci+—2[-s€ +1-0E,]+Tc, [—5]
¢ ¢
=2 =2
C C
+—L [1+—S-£]+—23 [1-%] (33)
2¢ ¢ 26
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If the effect of bending is neglected, w = p and

2

a_ 2 (Y82 Ya2
L. g7 (Be 2z . (34)

SUMMARY OF FORCE-DISPLACEMENT RELATIONS

'I'j and u are defined as
E ={F1'F2’ M3} ’
52 {“1' i “’3}

Collecting (16), (31), and (32), the complete set of end action — end displacement rela-

tions are written in matrix form as

\Es| |k8p kpa | Un| \Eo|
O (T ST [T ) (35)
,EA\ E.TBA k E Ua /—EO\

where 'IE'BB 5AA are symmetrical and 1;0 contains the second-order terms due to the

rotation, i.e., the nonlinear geometrical terms. The expanded form of (35) is listed

below:
Ug) Y “B2 Ual Uy “A3
- N r 3
( 3 AE AE AE
Fai L y Ug, z (a/L)
EI El EI El
3 3 3 3 =
F 2k, —= -k, —2 -2k, —2 -k,— | U Fo, p
B2 37,3 373 3.3 37,2 B2 Bl
EI El El El
I 3 -3 _3
Mg o S k2 L TE “B3 .
L L
< b= < >+ < Lo
AE AE AE
Fal L L Ual - =5 (a/L)
EI EI EI EI
3 3 3 3 =
F -2k, —2  k, — 2k, —  k, —= U -F_op
A2 373 3772 373 3772 A2 B
EI EI EI EI
3 3 3 3
M -k, —=* k., — k, —= Kk, = w 0
[ A3 372 2T 372 1 L | “a3] | )
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oL (o 0p)

INCREMENTAL LOADING TECHNIQUE

The general end-action — end-displacement relations are given by (35), which are

written as

E=KU+E, - (37)

~

Now, K depends on the axial force, i.e., the nonlinearity in K is due to the effect of
axial force on the flexibility of the member. Fortunately, the coefficients (kl’ kZ’ k3)
vary rather slowly with ¢, the axial force parameter. The elements of £ are due to

the finite chord rotation p and the effect of rotation (of the tangent) on the axial strain.

Now, it is assumed that the system is in equilibrium and an incremental joint load
is applied. Since K varies slowly with ¢, the change in K is neglected. This is

reasonable if the loading increment is small. The increments in the end actions are

AFE =

X

AU + AE (38)

0 ’

where K is evaluated at the position prior to the application of the load increment; AFO

remains to be evaluated:

E
Ey = ‘\"O"/' ’ (a)
I'EOS
EE
Eo= ST
?FBIP
NP

Assuming Aa is small,
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(b)

where d( ) denotes the first differential, i.e., the first-order change due to increments

in the end displacements. Now,

1
dp =1 (AUB2 - AUA2> )
aFy) =4F (avg, - aU, ) + AR aa/L) (c)
L
d(%)=—i-‘ J-wdw ax . (d)
0
Now,
dw = const = dp c (e)

This is consistent with neglecting the change in K, and corresponds to neglecting the

incremental rotation due to bending. Egquation (d) reduces to

L

d(A/L)z%dpj w dx
0

But,

It follows that

—

L
1 d_UBz'UAz_
L ) ®%~ L -P




and

d(A/L)=2pdp . (f)
Finally,
r AEp 1
T (4Upz - AU,,)

AEp AEp?  Fg

AEy = L (AU - AU, )+ (ST T (AU - AUpp) 1 (39)
0
~ -

AF | is expressed as
~0

AEy =kg(Up - Ua) - (40
where
0 EXP 0
L
2 F
_,T_|AEDP AEPp Bl
ko=kc= | 7T .t ° (41)
0 0 0 |
Using (40)
AE, =K. ay (42)
where
]
n .L‘G ' fISG
Kc=Kg = I . (43)
kgl &g
Substituting for AEO in (38) leads to the following equations for AF:
AE = (§ +Kg) AL=K; &Y . (44)
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The expanded form of (44) is

) |

AF g kpstkg ' Xpa ~ Xg \A'QB(

coool 8 || oocoonocoa He000000000 SS9 . (45)

[25,) 554 ko | SN

A\ kpa kg | kaa thg| (2Ra
Note that 5I is evaluated at the position defined by U, i.e., the position before the
incremental load is applied.
CORRECTION PROCEDURE
The exact end-action — end-displacement relations are given by
E=KU+E, - ()

Since K and .130 depend on U, one must generally resort to an iterative procedure in
order to obtain the solution for a specified loading. It is convenient to evaluate K and
EO using U determined from the previous cycle. That is, the relations for cycle n+ 1

are
gD o glo) gt ), plo) (46)

where 5(:1) denotes K evaluated at t.-‘L= Irl(n). The iteration is continued until successive

values of the joint displacements agree to the desired accuracy.

Now, the linearized incremental approach is combined with the iterative procedure
outlined above. This involves correcting the solution after a certain number of loading
increments. The displacements obtained with the incremental approach are used as
starting values for the iteration. Once convergence is obtained, then the process is

repeated again with the incremental approach, using K. evaluated at the corrected dis-

I
placements. This procedure is illustrated below:

11-14




O 8.

/

LOAD CORRECTED
DISPLACEMENT

DISPLACEMENT

11-15







ANNEX 12

SURFACE-PANEL GEOMETRY FOR HAMMERHEAD
ANTENNA CONCEPT

CAMROC WORKING MEMORAND UM

5 January 1967

Prepared by

John F'. Hutzenlaub
MIT Lincoln Laboratory







SURFACE-PANEL GEOMETRY FOR HAMMERHEAD
ANTENNA CONCEPT

I. INTRODUCTION

Most present paraboloidal antenna reflectors have been designed as structures
having circular symmetry about the paraboloidal axis. Such structures naturally
provide support points for pie-shaped surface panels. The number of different
types of panels required for the complete surface is essentially a function of the

radial dimensions of successive circular rows of panels.

The structural concept employed for the Hammerhead antenna reflector is
rectangular in keeping with the fact that the only appreciable mechanical loading
experienced is that due to gravity. If a surface supporting substructure is to be
avoided in the Hammerhead concept, it would appear that square or rectangular
panels should be utilized. However, in the limit of doubly curved sections of the
paraboloid, a great number of different type panels would result since there would

be just four panels of any given type, one in each quadrant of the paraboloid.

In an attempt to minimize the number of types of rectangular surface panels
required for Hammerhead, geometries other than sections of a paraboloid are
considered in this memorandum. For this purpose, a portion of the error budget
for surface inaccuracies and deviations has been allotted to the resulting nonideal
geometry of the surface panels. In this memoradum, the geometrical R. M. S.
surface error has been assumed to be a maximum of 0. 025 inch. Thus, if the total
permissible R. M. S. surface error were 0. 075 inch, the contribution from all other

sources than geometry would be limited to 0. 0707-inch R. M. S.

The coordinate system used for this analysis is shown in Figure 1. The vertex
of the paraboloid is at the origin and the z axis is the RF axis of the reflector. It
isyassumed that the reflector of interest has a nominal diameter of 400 feet and a
focal length of 160 feet.
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N

Figure 1. Coordinate system for paraboloid of revolution.

II. SURFACE-PANEL GEOMETRY
A. Flat-Plate Panels
The simplest type of panel is a flat plate. Square panels with their edges

parallel to the xz and yz planes are utilized to approximate the surface of the

paraboloid. For a given panel, the equation of the plane is

z-zo mx + ny, (1)

where zg z axis intercept of the plane

m slope of edge of panel parallel to the xz plane

n slope of edge of panel parallel to the yz plane.

The geometry involved in fitting a typical panel is shown in Fig. 2. This repre-
sents the projection of the panel edge parallel to the xz plane on the xz plane. A
similar projection on the yz plane exists for the other edge of the flat-plate panel.

It should be noted that the focallength, f, of the parabola shown is the same as the
focal length of the paraboloid.
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PROJECTION,

— N

PANEL EDGE
22 — o
Z, 1 — PARABOLA
l =X
Xy X2
(EXAGGERATED

PANEL DIMENSIONS)

Figure 2. Geometry for flat-plate surface panel.

For given values of 3} and Z), which at the vertex of the paraboloid would be

x, = 0 and z, = 0, one determines X5, 2y and m in terms of the panel-edge dimension,

w, as follows:

xZ
2

(xz-xl)z + (zzvzl)2 = w2 . (3)

Solving these simultaneously,

= 4fZZ (2)

z
2 16 (1 - -—l)xg - 32¢% X%, + 16£2 (x? + 2t - wz) =0




Having determined X5, 25 is obtained from (2) and,

m=2—1 (4)

A similar calculation is performed for the panel edge parallel to the yz plane
to obtain the value of n in (1). Finally, values of x, y, and z for a point in the
plane are substituted in (1) to obtain the value of zq-

The deviations of the flat-plate panel from the paraboloid can be obtained by
taking the difference between the z obtained from (1) and the z for the-paraboloid

given by
x2+ 2
Z =—TL g (5)

The minimum R. M. S. error or best fit for the panel is obtained by a transla-
tion of the panel parallel to the z axis such that the mean of the average deviation
in z is zero. For this purpose, averages of the deviations over the range of

0.25 - 1. 0 square foot of the panel are adequate.

To fit panels to the complete surface of the paraboloid, one starts at the vertex
for which X) =y, =2, = 0 and then uses the x, and Y, for this panel as the x) and
Yy for the next successive row and column of panels. Thus, adjacent panels have
their respective edges in the same plane with the planes of the flat plates tilted
with respect to each other. From the minimum R. M.S. errors for the separate
panels, a measure of the geometrical R. M. S. surface error for the paraboloid
can be obtained as the square root of the mean of the square of the individual panel
errors. This last calculation assumes equal weighting for all panels. If illumina-
tion taper or other effects are introduced, suitable weighting factors should be

assigned to the individual panels.
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In fitting a flat-plate panel to the surface of the paraboloid, the resulting
R.M.S. error will depend upon the radius of curvature of the paraboloid. The
smaller the radius of curvature, the larger the error for a given panel dimension,
w. Thus, the deviations will be a maximum in the central portion of the reflector
for a fixed w. To determine the order of magnitude of errors involved, the above
relationships were used to calculate the minimum R. M. S. errors for flat-plate

panels having a nominal dimension, w = 4 feet.

For a 4-foot square panel in the region of the vertex of the paraboloid the
minimum R. M. S. error is 0. 030 inch. In the regions of y = 0, x = £200 feet
and y = £200 feet, x = 0, the error is 0.026 inch. In the regions of y = +140 feet,
x = 1140 feet, the error is 0. 025 inch.

If the maximum allotted geometrical R. M. S. surface error of 0. 025 inch is
to be met, it would appear advisable to reduce the individual panel errors to this
value in the intensely illuminated central portion of the reflector. The resulting
panel dimension for this error is approximately 3. 65 feet. Since the area of the
paraboloid is approximately 137, 000 square feet, more than ten thousand (10, 000)
3. 65-foot square flat-plate panels would be required to meet the allotted geometrical
surface error. This number is considered excessive from installation and rigging
standpoints. Panels other than rectangular flat plates were therefore investigated

for possible application in the Hammerhead antenna concept.
B. Singly Curved Panels

Next to a flat plate, the simplest type rectangular panel is one that is singly
curved and has a constant radius of curvature in the curved dimension. Such panels
are sections of the surface of a right circular cylinder, the flat dimension being
an element of the cylinder. In this analysis it is assumed that the flat dimension,

w, of all panels is the same and that the chordal length, h, of the curved dimen-

sion of all panels is the same. The geometry involved is shown in Fig. 3.




CIRCULAR CYLINDER

WITH RADIUS = RZ—\ q M

v A 1 ™\

Figure 3. Geometry for singly curved surface panel.

For the purpose of fitting the singly curved panels to the paraboloid, it is
assumed that the axis of the circular cylinder is rotated about the y axis through
the angle a and displaced parallel to the xz plane. As shown in Fig. 4, the inter-
section of the cylinder with the yz plane is the ellipse

a%(y - yo)® + b2lz - 2)° = a%b (6)

where

Yor %q 2re the coordinates of the center of the ellipse

(Y
1]

semimajor axis of the ellipse

b = semiminor axis of the ellipse
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Figure 4. Intersection of cylinder with yz plane.

Since the axis of the cylinder is rotated only about the y axis, the equations

for any element of the cylindrical surface are
y=u (7)
z=mx+v , (8)
where m is the slope of the projection of an element on the xz plane, or
m =tana . (9)
Letting x = 0 in (7) and (8) gives the coordinates of the point at which any
element of the cylindrical surface pierces the yz plane. All these points lie on

the ellipse and therefore substituting in (6)

I (10)

2 2
az(u—yo) +b(v-z0) =
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Solving (7) and (8) for u and v and substituting in (10) one obtains

az(y—y0)+b2(z-mx—zO)Z=aZb2 . (11)

Noting that

R /cos a

o
1]

b=R

where R is the radius of the cylinder, one has as the equation of the cylindrical
surface

(y-y0)2+cosza(z-xtana -zo)2=R2 . (12)
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