DDC AVAILABILITY NOTICE

Qualified requestors may obtain copies of this document from DDC.

This publication has been translated from the open literature and is available to the general public. Non-DOD agencies may purchase this publication from the Clearinghouse for Federal Scientific and Technical Information, U. S. Department of Commerce, Springfield, Va.

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
According to the existing studies the immunogenicity of vaccines prepared from various phases of Burnet's rickettsiae is not the same (Fedorova and Dyuysaliyeva, 1963; Fedorova, 1964; Ormsbee et al, 1964, and others).

Ormsbee et al (1964) demonstrated that vaccines prepared from phase I Burnet rickettsiae are more immunogenic than those prepared from phase II. And the authors believe that the difference in immunogenicity is related to the phasic state rather than distinctions of the strains used to prepare the vaccine. There was negligible difference between immunogenicity of vaccines from different strains (Nine Mile, Ohio 314, California 16, Henzerling) (three to six-fold difference), whereas the vaccines prepared from different phases of the same strains presented 100 to 300-fold differences in immunogenicity.

The killed and live vaccine from attenuated strain M-44, used in the Soviet Union for the prevention of Q fever, is prepared from egg cultures of phase II Burnet rickettsiae. They contain very little or a negligible amount of phase I component (Vasil'yeva and Yablonskaya, 1955; Zdrodovskiy and Genig, 1962; Genig, 1960, 1963, 1965; Vorob'yev et al, 1965). And only the vaccine obtained from the spleens of albino mice at the Tashkent Institute of Vaccines and Sera (Khodukin et al, 1956, 1960) apparently is phase I vaccine. However it has not gained
wide approval for humans because of its reactogenicity. Vorob'ev et al.
(1965) proposed a soluble antigen prepared from phase I Burnet
rickettsiae using tirchoracetic acid as a chemical vaccine.

The purpose of the present study was to investigate the immuno-
genic properties of a vaccine in relation to phase variations of Burnet's
rickettsiae. We used the standard Shorsher strain isolated from the
blood of a patient in Yaroslavl' (Kulagin and Fedorova, 1957). The
immunogenic properties of different phases of Burnet's rickettsiae were
determined on guinea pigs according to the level of complement fixing
antibodies in the blood and resistance following infection with a virulent
strain of rickettsiae. Two series of corpuscular antigens prepared from
yolk cultures of Burnet's rickettsiae were used as the vaccine following
varying numbers of passages: 5th passage in series No 15, 60th passage
in series No 17.

In order to identify the phase, the antigens were examined by
means of checkerboard titration in the complement fixing reaction using
the conventional technique. Guinea pig serum collected in the early
(20th) and late (60th day) post-infection period following inoculation
of a spleen culture (rickettsiae -- +++ , ++++) served as the standard.
The reaction was run under refrigeration with two units of antigen.
Antigens and sera were used in the experiment in successive two-fold
dilutions. The minimal dilution of antigen that elicited distinct
delay of hemolysis (.4- , ++HH) was considered the antigen titer.

As shown in Table 1, with the antigen of series No 15, a positive
complement fixing reaction was obtained only with serum collected at a
late date. We classified it as phase I antigen. Series 17 antigen
reacted in equal titers with sera collected both "early" and "late"
i.e. it was phase II antigen.

For vaccination purposes we used antigens in the following concentrations:
one billion, 250, 62, 31 and 16 million bacterial cells per milliliter.
The concentration was determined by the bacterial standard and by nephelo-
metry. Different concentrations of antigen were injected subcutaneously
in a dosage of 0.5-1 milliliter twice at a 10-day interval to a group of
guinea pigs weighing 250 to 300 grams (each concentration was administered
to ten animals).

Blood samples were taken on the 30th, 60th and 80th post-vaccina-
tion day to run the complement fixing reaction with antigens from phase I
and II Burnet rickettsiae. Table 2 shows that there were substantial
differences between the serological indices of guinea pigs immunized with
antigens of different phases. Thus, vaccination with phase I antigen
elicted appearance of both "early" and "late" antibodies on the 30th
day, their titer dropped somewhat by the 60th day then again rose follow-
ing infection with a virulent phase I culture. Vaccination with phase
II antigen elicited production only of "early" antibodies. "Late"
antibodies were demonstrable following infection with a virulent phase I culture, i.e. by the 80th postvaccination day. Some correlation was found between antibody titer and concentration of material injected.

Thus, with immunization with antigen at a concentration of one billion and 250 million bacterial cells per milliliter, the antibody titer against phase II Burnet rickettsia antigen on the 30th day constituted 1:640, at a concentration of 16 million it was 1:40 to 1:20.

Table 1
Results of checkerboard titration of Burnet's rickettsiae (Shorsher strain) in the complement fixation reaction

<table>
<thead>
<tr>
<th>Phase</th>
<th>Antigen</th>
<th>Concentration</th>
<th>Antibody titer</th>
<th>Concentration</th>
<th>Antibody titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5-A</td>
<td>1000</td>
<td>1:2</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>1:4</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>1:8</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>1:16</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
<td>1:32</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>1:64</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1:28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>50-A</td>
<td>1000</td>
<td>1:2</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>1:4</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>1:8</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>1:16</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
<td>1:32</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>1:64</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1:128</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
a) antigen
b) antibody titer with sera obtained at different post-immunization intervals
c) phase
d) passage
e) concentration according to bacterial standard (in millions)
f) dilution
g) "early"
h) "late"

Intensity of immunity was tested 60 days after vaccination by means of intraperitoneal injection of 100,000 ID [infective doses] of standard Burnet rickettsiae cultures. As the phase I culture we used a suspension of rickettsiae from the spleens of albino mice; as the phase II culture we used an egg culture (40th passage). The minimum infective dose was determined through titration tests on guinea pigs according to temperature.
indices (a temperature above 39.5°C was considered elevated).

Table 2
Arithmetic means of titers of complement fixing antibodies in the sera of guinea pigs vaccinated with antigens from phase I and II Burnet rickettsiae

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Concentration (millions)</th>
<th>28-th day</th>
<th>60-th day</th>
<th>on 60-th day</th>
<th>10-th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1000</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>160</td>
</tr>
<tr>
<td>II</td>
<td>250</td>
<td>80</td>
<td>640</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>40</td>
<td>640</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
</tbody>
</table>

Legend:
a) antigen e) ...th day
b) phase f) ... phase
c) concentration (millions) g) on the 60th day 100,000 ID of Burnet rickettsiae (phase I) were administered
 d) antibody titer in sera obtained on different days h) control

Evaluation of immunity was made by comparing the duration of the febrile period in vaccinated and control guinea pigs given the same dose of infective material.

When immunity was tested by infection with a phase II rickettsiae no differences in temperature reactions could be demonstrated: all of the guinea pigs, regardless of phase and concentration of injected material, were found to be immune. Analogous data were obtained by Ormbea et al (1964) following infection with phase II rickettsiae.

Different temperature reactions in guinea pigs vaccinated with phase I and II antigens were observed only when testing immunity by infection with a phase I rickettsial culture. As shown in Table 3, the guinea pigs immunized with phase I antigen, regardless of the concentration of
administered material, were immune to administration of 100,000 ID of phase I rickettsia culture. The animals vaccinated with phase II antigen were less resistant to infection with the same dosage of culture: administration even of high concentrations of antigen (one billion and 250 million bacterial cells per milliliter) provided complete immunity in no more than 50% of the animals, whereas injection of a small amount of phase I antigen (16 million bacterial cells) provided total immunity in all of the animals.

Table 3
Degree of immunity of guinea pigs following infection with 100,000 ID of Burnet's rickettsiae (phase I)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Concentration (millions)</th>
<th>Dose (ml)</th>
<th>% in control</th>
<th>Mean duration (days)</th>
<th>Mean indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1000</td>
<td>0.5</td>
<td>0</td>
<td>39.9*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>0.5</td>
<td>0</td>
<td>39.7*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>0.5</td>
<td>0</td>
<td>39.8*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.5</td>
<td>0</td>
<td>40*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.5</td>
<td>0</td>
<td>40*</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1000</td>
<td>0.5</td>
<td>52.9</td>
<td>3.4</td>
<td>39.7*</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>0.5</td>
<td>62.7</td>
<td>3.6</td>
<td>39.8*</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>0.5</td>
<td>80.4</td>
<td>4.6</td>
<td>40*</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.5</td>
<td>74.8</td>
<td>4.2</td>
<td>40*</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.5</td>
<td>92.1</td>
<td>5.2</td>
<td>40*</td>
</tr>
<tr>
<td>I</td>
<td>Контроль</td>
<td></td>
<td>100</td>
<td>81</td>
<td>40*</td>
</tr>
</tbody>
</table>

Legend:
a) vaccine
b) phase
c) concentration (millions)
d) dose (milliliters)
e) on the 60th day 100,000 Burnet rickettsiae (phase I) were administered
f) temperature reaction
g) number of days
h) number of guinea pigs
i) % in relation to control
j) mean duration (days)
k) mean indices
l) control

The findings showing greater immunogenic activity of the vaccine from phase I Burnet rickettsiae coincide with those of Ormsbee et al (1964) and are somewhat inconsistent with the studies of Brezina (1958). This author studied the immunogenicity of vaccines prepared from the yolk sacs of the second to third (phase I) and 13th passage (phase II) of the Florian strain isolated in Bratislava in experiments on guinea
pigs. He failed to note any differences in degree of immunity following infection with 100,000 ID of the Florian strain (phase I).

Evidently these results can be attributed to the fact that in the 13th passage the Florian strain did not entirely move to phase II and contained components of phase I that were not detectable serologically. It is known that with the shift from phase I to phase II antigenic properties change more rapidly than immunogenic ones. This is confirmed by the studies of Ormsbee et al (1964): by determining the density of rickettsiae in a CaCl₂ solution, they found a small amount of phase I antigen in the Henzerling strain (22th egg passage) which behaved serologically like phase II antigen. For this same reason, Smadel et al (1948) were unable to demonstrate a difference between vaccines prepared from Henzerling (12th egg passage) and Dyer (second egg passage) strains.

Conclusions

1. Vaccine prepared from phase I Burnet rickettsiae is more immunogenic than the vaccine from phase II.

2. Following immunization of guinea pigs with phase I vaccine production of antibodies was observed at both "early" and "late" times following immunization, whereas phase II vaccine stimulated production of antibodies only at the "late" period.

In a concentration of 16 million bacterial cells per milliliter, phase I vaccine elicited production of complete immunity against 100,000 ID of Burnet rickettsiae (phase I), while phase II vaccine, even in high concentrations (one billion and 250 million) provided only partial immunity.

BIBLIOGRAPHY

L.V. Vasil’yeva, V.A. Yablonskaya, Zh. mikrobiol. (Journal of Microbiology), No 6, 1955, p 44.
V.A. Genig, Vestnik ANN SSSR (Vestnik of the USSR Academy of Medical Sciences), No 2, 1960, p 46.
Idem, in the book: Voprosy infektsionnoy patologii i immunologii (Problems of Infectious Pathology and Immunology), Moscow, 1963, p 165.
S.M. Kulagin, N.I. Fedorova et al, Zh. mikrobiol., No 2, 1958, p 44.
Idem, Trudy Tashkentsk. mezhiinstitutskov nauchny konferentsii po voproam kori, difterii i rikketsiozov (Proceedings of the Tashkent Inter-Institute Scientific Conference on Problems dealing with Measles, - 6 -
Diphth.-ia and Rickettsiosis), Tashkent, 1960, p 133.

Submitted to press 26 April 1966