AIR UNIVERSITY
UNITED STATES AIR FORCE

SCHOOL OF ENGINEERING

WRIGHT-PATTIRSON AIR FORCE BASK, OHIO. .

o 00TS New
R s f—— 1
. o T Ul Dyt ~M

G

{ 3 k
! M Rt - Y T - -~ - S e e S . . -

,

N

- N
PR
L€ N
~ ~/‘\J,‘\~4\' <

NG MR (4t




i

* I,

SARRO NI U AR PR LN A4 -

Ty

LORIN AN g4
Tt ‘
» £

s
-

v
4 Sty
2 o

LS g ey & acauttif b Bomw Fae BT LR TAY

;
i
GRE/MATH/67-8 ?
APPLICATIONS OF EXTREME VALUE THEORY
IN THE RELIABILITY ANALYSIS
OF NON-ELECTROMNIC COMPONENTS
THESIS
Cletus Bonaventure Kuhla
Capt USAF
k]
3
This document has been approved for ?
. pubiic release and sale; its distribution is unlimited. %
AFLC~-WPAFB-AUG 68 35 }
T N - 0T - T s S N




APPLICATIONS OF EXTREME VALUE THECRY
IN THE RELIABILITY ANALYSIS

OF NON-ELECTRONIC COMPONENTS

THESIS

T I e T TS T Yoy e A R VR DT RIS e A3
Y Gy e ‘:.‘., g :—"‘,“f-a“/w.

2 Presented to the Faculty of the School of Engineering of
% the Air Force Institute of Technology
E Air University

E in Partial Fulfillment of the
¢
1 Requirements for the Degree of

- Master of Science

MITT TR

TR

By

Cletus Bonaventure Kuhla

LEAT Gl ¥ AT PRt OX 1Y

ST
S e

Captain USAF

TIPS AT
b aior

Graduate Reliability Engineering

el tarteny

Decembexr 1967

Slavs

v |
B Y AR s
ol

%

I AR

SRR

2 Saade ot Satecntor W w2 T o
L]

This document has been approved for

TR TRy S
<sh¥y CE. 85 s, ¢
e AT e
[

public release and sale; its distribution is unlimited.

=
L»? i FETRCHD e A e ¢ SR s AT S I IIEATE I A Ty ol PO - g P - N T e w4 e e e L e
119
E‘
by
4
¥
£ —
e —ae m——— s B, - -~ e e e -
' .o - —




PO sorvvulatd et L

Y

Awie T

iMin NPy

ALY A S

Vi

Uniré Y9t iuAd

TRy

T wmrmas s e L O e B R Ly = 7 ~ oI TR A T e

Preface

This thesis is the presentation of the results of an
intensive literature search to discover the applications
of extreme value theory in the reliability analysis of
non-electronic components.

In an attempt to discover as many examples as
possible, over four hundred abstracts were reviewed. Of
these, approximately one hundred were selected for further
investigation. Final selection was made of forty-four
references which were applicable to this study.

It is assumed that the reader is familiar with
statistical theory and basic concepts of reliability
analysis. For the reader who is unfamiliar with extreme
value theory, a discussion of this theory is found in the
text to the extent which I feel ig necessary to understand
the applications presented.

I wish to thank my thesis advisor, Professor Albert
H. Mcore for providing me with an interesting thesis topic
and for his helpful guidance and advice.

Finally, I wish to thank my wife for being patient
and for understanding a student-husband.

Cletus B. Xuhla .
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ABSTRACT

Mgnufacturers of non-electronic components and
systems are required tc accurstely determine the relia-
bility of their products in order to meet the demands of
government weapon system contracts, safety programs and
commercial product warranties. 1In an effert to establish
simple but accurate techniques for determining relia-
bility factors of mechanical components, increased use of
statistical theory is being made in analyzing component
failure data.

This thesis illustrates the application of extreme
value theory in the reliaLility analysis of mechanical
systems and components. The basic theory of extveme
values is presented and the ezact and asymptotic forms of
the extreme value distributions are developed. Appli-
cations of the extreme value distributions are presented
in example problems.

The Type I extreme value distribuciorn is applicable
to the analysis of corrosive pitting of aluminum and the
analysis of maximum loads. The Type II1 extreme value
distribution is useful in the failure analysis of step
motors, automobile dvor lock mechanisms, corrosion resis-

tance of magnesium, automobile structural components and

electromagnetic relays. i
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APPLICATIONS OF EXTREME VALUE THEORY
IN THE RELIABILITY ANALYSIS
OF NON-ELECTRONIC COMPONENTS

I. Introduction

In the past decade, the term reliability has begun
to appear with greater frequency in all areas of industry.
Although manufacturers were always concerned with produc-
ing an operational product, not too much emphasis was
placed on the reliability of the product. The prevailing
attitude seemed to be that if a product worked it was a
reliable product. The present day concevt of reliability
is quite different from merely having a product that
operates. Reliability may be defined as the prokability
that a system, subsystem, component or part will perform
as specified for a given period of time under stated
conditions.

The first major effort to produce reliable products
was initiated when the electronics industry sought a
solution to the unreliability problem of electronics
equipment in the early 195Q's. The crash program under-
taken by the government and aerospace industry to create
the ballistic missile weapon system during the mid-1950's
resulted in even greater demands for high reliability in

products. The early satellite programs and the manned
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space project further stressed the need for developing
usable techniques for determining the reliability of
conponents and whole systems.

Because of the continued pressure of military
reliability predictica and demonstration requivements
and the increased demands made on commercial manufac-
turers in the form of warranties, a simplificd method
of accurately predicting the reliability of mechanical
compornients and systems is constantly being scughi. The
natural trend is to attempt o incorporate methods which
have been used in the analysis of elecrronic ccmponents.
The use of statistical distributions and statistical
analysis has been proven to be quite accurate in the )
determination of reliability factors for electronic
components and systems. This fact is realized when an
evaluation is made of the methods available for relia-
bility prediction. Practically every reliability analysis
or prediction techniaue which is in popular use by the
government and aerospace industry is designed for
electronic systems.

Unfortunately, the characteristics of mechanical

and electro-mechanical components are greatly different
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from those of electronic components which are conducive
to the use of probability theory and statistical analysis.
Electronic components are highly standardized, mass
produced, relatively low cost and fail primarily because
of manufacturing defects. In contrast, mechanical
comporients are usually high cost, of special design rather
than mass produced, and non-standardized. The typical
mechanical component is designed for long life and
endurance, therefore, the usual iife testing which is
performed with vacuum tubes, transistors, resistors and
other electronic components would be costly and time
consuning when performed on mechanical parts.

Despite the inherent difficulties, the ability to
predict the useful life characteristics of mechanical
components and systems has been improving over the years.
This trend has been the result of advances made in a
few but important areas. First of ail, the physics of
faiiure and breaking strengths for mechanical parts are
more precisely known than those of electronic parts.
Secondly, the advances made by the study of fatigue
strength has greatly improved mechanical reliability.

Among the by-products of fatigue studies of materials,
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especially metals, are good design practices for mechan-
ical structures such as the use of fillets and rounds,
gradual cross-sections, better surface finishes and heat
treatments without which many industries of today, such
as the aircraft industry, would not have been possibie
(Ref. 28).

Despite the many advances made by industry, the
determination of accurate reliability measurements for
mechanical and electro-mechanical devices is still a
difficult task. Systems requirements are becoming more
severe and design complexity is increasing. Greater
and more binding demands are being made on the engineer
to specify and produce accurate reliability figures for
mechanical systems. Contracts no longer specify "“goals"
and "best efforts'", terms in common use a few years ago,
but instead require firm guarantees of both reliability
and maintainability (Ref. 39).

In order to meet these demands, the current trends
in the methods of mechanical reliability analysis has
been an increased emphasis on the probabilistic approach
to the design of wechanical systems, especially structures.

Such an approach is necessary to aid in understanding the
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variations associated with design, materials and
application factors. The gathering and statistical
analysis of field failure data is continuing to increase.
Analysis of this nature results in greater knowladge of
mechanical reliability as a function of application,
environment and design factors. Also, the statistical
techniques used in these analysis procedures are being
extended (Ref. 42).

The purpuse of this thesis then, is to present the
results of an extensive literature regearch which was
undertaken to uncover examples showing the applications
of statistical theory, in particular, extreme value
theory, in the reliability analysis of mechanical or
electro-mechanical components and systems. The initial
step in the literature survey was an invescigation of
the Technical Abstracts Bulletin, Reliability Abstracts
and Technical Reviews and the Quality Control and Applied
Statistics Abstracts. Publications found in these
sources led to furither applicable articles. The results
of this survey is presented in the following order.

First, a discussion of the theory of extremes
including the exact distribution and asymptotic distri-

bution of extremes is presented. Next, some commonly
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used statistical methods of evaluating test data are
presentt Following this section, is an example problem
utilizing the exact distribution of the smaliest extrome.
The next section is used to further discuss the asymp-
totic distribution of extremes and two problems are
presented which show the application of the Type I asymp-
totic distribution in mechanical reliability analysis.
The Type III asymptotic distribution is then preseanted
in the following section with five examples of applying
this distribution in reliability analysis of mechanical
components. Finally, the results are summarized and

conclusions are made.
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II. Extreme Value Theory

One of the main problem areas of interest to
mathematicians was how to cope with valuss which lie
well away from the central values of a set of data.

The concern over outlying values in astronomical data
led to the development of a solution in the theory of
errors. In the early 1900's, statisticians became
interested in sampling distribution, the estimation of
distribution parameters and estimation errors. Included
in this work were studies in the sampling distribution
of the range and the largest normal value of the normal
distribution which indicated that the largest value and
the range are random variables possessing their own
distribution.

Some of the earliest applications of extreme value
statistics were in the field of human life statistics,
radjoactive emission and strength of materials. Further
advances in the theory of order statistics and parameter
estimation techniques has led to the verification of
key extreme - value distribution theories. The most
important factor in the development of present day
extreme value theory has been the new knowledge of

exponential type distributions and order statistics.
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These two advancements in theory increase the possible
means of data analysis by offering new distributions
and characteristic properties from which to choose in
formulating hypothesis (Ref. 31).

An extreme value is an ordered sample value. If a
sample of size N is collected and the sample values are
arranged ia increasing or decreasing values the sample
is an ordered sample. The values of the sample are
subscripted %; with ( indicating the order. If the
sample is ordered from lowest to highest value, 2z, ,

is the smallest extreme and /2, is the largest extreme.

Suppose we are interested in finding the probability

density function of the M'H' ordered extreme in a sample y

of size NN . To find the probability density function,

" ! o o - L ey . '
e o R R R A e R Bt o B RN i g 255 el 7 - p S B Ao G a PR RE
s ot S B AN a8 B S 5 3R SR AT s S YR e ST, B
3 SRS ARG

-F ( Yy ) , let us consider the following argument:
divide the real axis into three parts, one going from

- o0 to %, , a second going from &, to’).’M-f-‘g, ,
where 7€ is a positive constant and the third from
Q’M'\“f to +0O . 1If the common probability density
of the random variables 2, is given as £(%) , the
probabiiity that M-41 of the sample fall into the first
interval, one value falls into the second interval and

N-M fall iato the third interval is

LACY AREANR: D iih ot 4 a0 3 rma
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N X M-l ezt *eQ —lN-M
M-I (N-M [i‘%)di ] [z'f(z)é%] Kj {Qwa«)

(&

Using the law of the mean we have
224
Lﬂ fwdy = £(ER, %, £ & tyaf

and if we let f—*d , the probability density function of
+h
%M, the random variable whose value is the M ordered

statistic becomes
M-1 o

N/ <o ( N-M
G () = M-DL (N Uf(y)&y] Fen [ #fm‘!"‘] (2.1)
for -0 YL+ (Ref. 14)

Another form of thi: formula is
N M-\ -t
Cﬂm(zV (m-01 ED [F(‘z) ] £ [\ - F(‘i’?] 2.2)

If in a sample of N independent observations from a
population whose density is 'ic("l’) , We are interested in
the probability density function of the smallest ordered
statistic or smallest extreme, it is found by substi-

tuting the value M =1 into equation (2.2). The

resulting density function for the smallest extreme is

Erte 2T

WA T % . Sphna h
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ﬂ(zzﬂNf(vz) [l—F‘m Tw (2.3)

In the same manner, the probability density function of

the largest order statistic can be found by substituting

in equation (2.2). Therefore, the density function ,

of the largest extreme 1is

. N-1
CDN('z) =N fen [F(’K) ] (2.4)

It is now possible to determine the probability distri-
bution function for the smallest and largest extreme.
The probability that /¥ is the smallest among N
independent observations is defined as m-,(’}(). This
distribution function can be derived by integration of

equation (2.3) over the limits of -o©0 to % . Thus,

Dar= |- Li- F_(xv]N (2.5)

In a similar manner, the probability distribution function

of the largest extreme can be found by integrating

equation (2.4) over the limits of ~00 to 7 . Thus, the

probability EN (1) , that X is the largest among N

independent observations is

[ONCHE L Few Yq (2.6)
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The equations previously derived, that is, equations
(2.3), (2.4), (2.5) and (2.6) are also presented by
Gumbel (Ref. 19) The names given to these equations are
the exact distributions of extremes.

If the initial distributions were known, equations
(2.3), (2.4), (2.5) and (2.6) could be utilized in
deriving the probability density and distribution
functions of the extremes. In most instances, direct
calculation would lead to complex integrals that could
be approximated only by long and tedious numerical methods.

Because of the difficulty involved when applying the
exact distribution of extremes, most reliability analysis
performed makes use of the asymptotic extreme value
distribution. The derivation of the three asymptotic
distributions will not be presented here. It is felt
that it is sufficient to present the results of the
derivation which appears in Ref. 19. The three asymp-

totic distribution functions are

Type 1
Largest Value _CZ;J£>
@, (x=cexp e > 1 (2.7)

by >0

11
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Smallest Value
-

(=) 1

D= 1-exploe | (2.8)

L>0
Type 1I
Largest Value

-~ Ku
D, = exp( (v 8\ ] (2.9)

K,20 x2& Vy>€E 2o

Smallest Value

K
w-X N
m‘(fx)'—'l'cxP[‘ wfv,) 1 (2.10)
K,>0 X=W  V<W
Type III

Largest Value
Kw
Ty = Cxp{ w- v,,) ] (2.11)

% 2w wi<w X, >0

Smallest Value
D@y=1- PXPY‘ (""" 1 (2.12)
x2¢& k>0 v,>&z 0

The Type I extreme value distribution is also known
as the exponential, double exponential and Gumbel Type I
extreme value distribution. This asymptotic distribution
is derived on the assumption that the underlying or
initial variant is of the exponential type. By expo-

nential type it is meant that the probability distributicn

12
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function F%&? converges toward unity with increasing %
at leudst as fast as an exponential function. The proto-
type is the exponential distribution function itself
while the Normal, Log-Normal, Logistic and Chi-square
distribution are all members of this type. The Tvpe 11
extreme value distribution is referred to as the Caucliy
type because it was derived on the assumption of an
underlying Cauchy distribution as the initial distribution.
The Type III Aistribution is referred to as the limited
or bounded type distribution because it was developed as
the asymptotic distribution of initial distributions
which were limited or bounded on the right for largest
values and on the left for smallest values. Another
cormon name for the Type III extreme value distribution
is the Weibull distribution because it was first used by
Weibull in the analysis cf breaking strengths of metals
(Ref. 19).

When using the theory of extreme values in explain-
ing or analyzing extreme values observed under a given
set of conditions and to make predictions of the extremes
which may be expected when the same or equivalent set
of conditions exist the following conditions must be

adhered to:
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1. It is necessary to deal with statistical

variants.

2. The initial distribution from which the extremes

have been drawn and its parameters must remain
constant from one sample to another or that the
changes that have occurred or will occur are

determined and eliminated.

3. The observed data must be independent (Ref. 20).

In regards to the asymptotic theory of eutremes, an
important relationship exists between the Type 1 asymp-
totic distribiilon and the Type III asymptotic distri-
bution. This relationship is such that the Type I1I
distribution can be obtained from the Type I by a
logarithmic transformation of the variats. Conversely,
the Type I distribution is reached from the Type III by
a linear transformation of the variate and a limiting
process on one of the parameters (Ref. 19).

The most popular use made by this relationship is
the foilowing. If X is a random variable having the
Weibull distribution (Type III) with location parameter
equal to O then Z = 1n X is a random variable which has
the Gumbel Type I extreme value distribution of smallest

extremes. The relationship between the parameters of

14
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these two distributions as a result of this transformation
are

Gumbel (Type I) Weibull (Type III)
location parameter 44 -———» scaleV = e*

L
scale parameter b — shape5= b

Another important concept in the study of extreme
value theory is that of '"return periocd". The 'return

period" is defined as T() with

-
Tt = “Fm

The definition of "return period" is that it is the
number of observations or sample size such that on the
average there is just one observation equalling or
exceeding the value % (Ref. 29). This concept of return
period is useful in the application of extreme value
theory in reliability analysis. A use of the return
period will be made in one of the extreme value theory
applications presented later in this paper.

Ir. the process of researching the literature for
uges o. the extreme value distributions it was noted that
no applications of the Type 1II asymptotic distribution
could be found. The reasons why the Type II distri-

bution is not used in reliability analysis is because
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11
g the variate X is in the negative domain for this distri- }*
ii, bution (Ref. 28). The domain of the variate for the Type g;

IT distribution prevents any logical analysis of failure )

data because the negative value would indicate failure

before the component is put into use.

This concludes the presentation of the theory of %ﬁ
extreme values. It is not intended that this presen- %;
tation would be all inclusive. Rather, it is presented ;‘
to assist the reader in understanding the application of é;
extreme value theory in reliability analysis which are £

presented in the remaining portion of this thesis. For

a more detailed presentation of the theory of extremes,
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the reader is referred to the publications of Gumbel -

(Ref. 19 and 20).
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I1I. Methods of Determining A
Probability Distribution Based On
Life Test Data

There are several methods available for determining
the underlying distribution from a set of data. The
importance of accurateiry determining the underlying
distribution can be seen when we consider that we are
attempting, on the basis of a sample, to establish as
close a measure as possible of the parent population
and the various statistics of the parent population which
are used in determining the reliability of a component.
Thus, if a given distribution is arbitrarily chosen for
a set of data and in reality, the data has a different
distribution, the statistics computed for the data can
be misieading. Two methods for determining the under-
lying distribution will ba discussed. Both of these
methods were found to be most frequently used in the
exampie applications appearing in the literature. Other
methods will be mentioned at the end of the section.

Estimation of Parameters

In reference 19, Gumbel presents the equations for
determining the parameters of the Type I asymptotic
distribution. The cumulative distribution function for

the Type I largest and smallest extreme are

17




< wana A -

200 e AL AR R A TS (S S R hickaliais i -3 Sl alkabela L 1

(3.1)

Smallest Extreme

_ed
D= 1-e” ¢ (3.2)
where
y
y = == (3.3)

The value Zf is the so called reduced variate, while 4 andd
b are parameters of the distribution. The quantity AL
is the mode or location parameter while b is the scale
parameter. In order to explicitly define the equation

of the probability distribution function, it is sufficient
to determine the values of the parameters.

Using the method of moments, the following are

estimators for and as presented in Ref. 19.
e V6
b= ar S (3.4)
A - E
a=X-Vv for the largest extreme (3.5)
A -
M= X +v ‘o for the smallest extreme (3.6}

where Y = .,5772 (Euler's constant)

N
X= 2,1%- /N is the sample mean
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(‘é".'uc-if)a Yﬁ‘
Sr= N1 is the sample standard deviation
Through some algebraic manipulation and substitution of

equation (3.4) into equations (3.5) and (3.6) the

results are

—

X ".45025& (Largest Extreme) (3.7)

Q=
A -—
AL = X 4+ .4502 Sx (Smallest Extreme) (3.8)
The above equations can be utilized to estimate the
parameters of the Type I (Largest or Smallest) extreme
value distribution. Our hypothesis as the correct choice
of the distribution selected for describing the under-
lying distribution of the data will be rejected or
accepted on the basis of a test. Two widely used tests
are the Chi-Square and the Kolomogorov-Smirnov goodness-
of-fit tests. When the number of samples is. small it is
best to use the Kclcmogorov-Smirnov test because the
Chi-Square test loses power due tec grouping.

For the purpose of evaluating data utilized in the
examples presented in the following sections, a computer
program was written in Fortran language to estimate the

parameters using equations (3.4), (3.7) and (3.8). A

19
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Kolomogorov-Smirnov test was also incorporated in the
compute:r prxogram in order to determine whether or not the
sample data fit the Type I extreme value distribution.

Graphical Solution

A very convernient method of evaluating sample data
is to plot the data on an appropriate graph paper.
Graph papers have been designed for both the Gumbel Type
I distribution and the Weibull or Type III distribution.
The design of the probability graph paper is such that
data sampled from the governing distribution would plot
as a straight line on the applicable graph paper. The
use of a best-fitted straight line drawn through the
pl ,tted data and the plotting of curves reflecting a
desired ccnfidence limit can be used to determine if
the data fits the selected distribution. In cases where
the plotted data is found to fit a selected distribution,
the parameters of the distribution can be estimated by
usi':; the appropriate scales on the graph paper. The
methods of using the Type I extreme value probability
paper (Gumbel Type 1) can be found in Refs. 30 and 31.

For the methods of using Weibull probability paper, the

.reader is referred to references 27 and 30.
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Other Methods

The increased availability of computers for use by
mathématicians, statisticians and engineers in the past
seven years has greatly increased the methods of
evaluating test data. Methods of evaluating test data
to determine the underlying distribution and estimating
the parameters of the distribution which were formerly
regarded as too difficult or impossible to apply are
becoming cormonplace methods because of increased use of
computers. A compute. program written by Gross {(Ref. 16)
uses a regression techuique to determine estimates for
the shape, scale and location parameters of the Weibull
distribution. GCreater application of order statistics
has provided new methods of estimating the parameters
of the Type I and Type 111 extreme value distributions.
Among the new estimation techniques for the Type I
extreme value distribution are the '"best lirear invariant
estimators'" proposed by Mana (Ref. 34) and the nearly

best linear unbiased estimators presented by Hassanein
(Ref. 22). Linear estimators with polynomial coeffi-
cients were presented by Downton (Ref. 3). 1In Ref. 24,
Harter and Moore present methods of determining the

maximum-likelihood estimates for the parameters of the

21
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Type I asymptotic distribution from doubly censored
samples.

Mann (Ref. 35) presented tables for obtaining the
best linear invariant estimates of the parameters of the
Weﬁpull distribution. 1In Ref. 23, Harter and Moore
present a method of finding the maximum likelihood
estimates for the three parameters of the Weibull
distribution from complete and censored samples. Other
methods for estimating the parameters of the Weibull
distribution are presented by White (Ref. 43 and 44),
Menon (Ref. 32) and Leiberman (Ref. 30).

The purpose of this section is to familiarize the
reader with the methods available for analyzing test
data. It is felt that a step by step procedure for the
application of each method is not necessary and is not
within tt . scope of this thesis. The use of some of
the previously mentioned methnds will be made in the
following sections which present the applications of

extreme value theory in reliability analysis.

22

ponsbti P visisnind oo oncbin 9

L Fha o,

5k TR s e T,

TREE S A

»
2 R AR bl v st v vt $R

f. v = -—

T T ‘"’T"‘F

I S




o | Lot | acemes

7
N Liancy

e v e

o
33

IV. Application of the Exact Distribution
of the Smallest Extreme

This particular application makes use of the weakest-
link theory. Under this theory of failure, each component
is treated as consisting of many sub-components which make
up the componeant itself in the same manner as links form
a chain. Then this characteristic life pattern of the
component (chain) is equivalent to the characteristic life
pattern of the sub-component (link) Assuming that the
life length of all N sub-components are independently
and identically distributed with a probability density
function'{}Z) and cumulative distribution function in),
the life of the composite component would be distributed
according to the smallest order statistic or smallest

extreme; thus,

QZ(z) ={- [\- F IN (4.1)

and

= N‘FOD {\*F(ﬂ X " (4.2)

The reliability function K(x)is defined as (‘Zii(%)

thus,

23
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The example is a hypothetical case but is a direct appli-
cation of the theory applied by Epstein (Ref. 8} in the
analysis of paper capacitor failures and the theoretical
example presented by Lloyd and Lipow (Ref. 33). Although
the following problem is not based on an actual situation,
the theory can be applied in many areas, such as failures
due to corrosive pitting, failures as a result of propa-
gation of cracks due to thermal fatigue, vibration or
stress and also failures resulting from flaws in a
component.
The problem is stated as follows:

A structural member, containing a constant cross-
sectinn area element one-half inch thick, is subjected
to a vibratory stress eavironment. The element is
fabricated from steel stock containing a large number of
surface defects which have a high probability of develop-
ing into cracks in the vibratory environment. A micro-
scopic examination reveals that the number of these
defects in the parent stock is such that a piece with an
area equal to the critical surface area of the element

will contain approximately 668 defects on the average.
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It is also determined that the defects in the p.rent
stock may be represented with an exponential distri-
bution, with a defect mean depth of 0.02 inches.
Computations of the stress-strength relationship in the
element indicates that it will fail (thereby failing
the structural member) when cracked half way through.
Vibratory tests, approximating the environmental stress,
show a crack growth rate, once started, which is propor-
tional to the time of exposure. The constant of
proportionality is of the form of an acceleration, and
is equal to 1.5 X 10~1% in./sec.?. Compute the period

of operation which will degrade the reliability to 95.1%.

Given:
D = X in.
z, =  initial depth of 1th pit
N = 668 (number of defects)
U= .02 in/defect M= 50 defect/in

Constant of proportionality C = 1.5 X 10~ 14

in/sec2

The density function of defects is
-al
F(Z‘) = ) c

A failure occurs when crack propagates to depth D/2

25
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Solution:
It is necessary to determine a new distribution

function for the distribution of defects. The original

I AR AL LTy ;ihm‘)@aﬁ e,

distribution was exponential with the range of O to +<0

BTN,

for the variate 7 . The new distribution will be

truncated at D (thickness cf component) because the 3
allowable range of the variate is res’ricted to O to D.

The efore, the truncated density function is

A

-aZ 3

p - 2< 1

(Z)= [Tad (6.4) ;

2 , i
: Let /?: = time of penetration of the it ¢rack %
7 D/a-Ze
3 Vot . 3
b= K (4.5) . ,;g

2 a J:;
where K= ct %

-4 3

= L5x10 t E

4

Reliability of the component Rt)is defined as: %

%

N 3

¢

RO R (Y >t) =T (R >0 ]

€ %

A L-R(ed]

(S 2]

A [-Feo]

o ap e Jrgdaton

sl

N
Re)= Ci-Fw ] (4.6)
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This equation is the same as equation (4.3).

Equation (4.6) can be approximated as follows

. NF®)
Rt)~ e 4.7)

O en

The basis for this approximation can be found in Ref. 33

ko, dlgeeles win

and 37.

Using equation (4.5)

R (7<)

o/a-Z<

R(—%— <t)

R (Dla -Z < Kt)
=P (z; >V - ct*)

ok =P (z >V -ct?)

"

1}

The probability density function for the distribution of

Zi is equation (4.4).

D
Fe) = R(ze>Dia -t | Fzodz

P/ -ct>

_a(ba-ct™)  _3D
e

-
-

' -— e"?\D
ab
 ae g .
Multiplying through by<:;D we obptain
A (Ua+Ct)
For =€ by (+.8)
ey

[,
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Substituting equation (4.8) into equation (4.7) we

obtain a
A(Dl +ct?)

N(gao“, ~ l) (4.9) .

RO =e

Because the value of A is large (50) in the above

equation the magnitude of € raised to the A power is

very large; therefore, the following approximation is

reascnable 2 !
N(ea(blz+cf )

Ry = ™ @?P (4.10)
. i
We now solve for the operating time t which will degrade :
3
the reliability of the structure to 95.1%. %
Using equation (4.10) N ;
ia+ct?) 3
-N [ez.g.opm*'c 1 ]
a5l = e i
3

3 (Dla+ct™) -2b
L. casn=-N (e e )

£ = 2% 10° seconds

5 5(9 Lourﬁ
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Thus, the operating time required to degrade the

reliability of the structure to 95.1% is 556 hours.
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V. Application of Type I Asymptotic
Extreme Value Distribution

Corrosion Pitting of Aluminum

The effect that a corrosive environment has on a
metal structure has always been of great importance to
design engineers because of the possibility of failure
in the form of holes caused by cerrosive pitting. A
large amount of money is spent each year in repairing
damage caused by failure of underground storage tanks,
water supply pipes and other metal structures which fail
as a result of the corrosive pitting of the metal. The
study of corrosive pitting of metal is made difficult
by the lack of a suitable variable which can be measured
quantitatively and treated mathematically. One of the
most commonly used measures is the maximum pit depth
developed on metal samples exposed to a corrosive
environment for a fixed period of time.

Aziz (Ref. 1) utilized the method of measuring the
maximum pit depth found on aluminum coupons which were
exposed to tap water for various lengths of time.

For purposes of the experiment, coupons measu;ing
5" X 2" were manufactured from various aluminum alloys.

Strings, each containing ten of these coupons, were

29
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immersed in a 300 gallon tank containing tap water. At
the end of a specified time period, the sample cocupons
were removed from the water and the maximum pit depth

was measured and recorded. The recorded maximum pit
depth for Alcan 3S-0 aluminum appears in Table 5-1. This

data is found in reference 1.

TABLE 5-1

MAXIMUM PIT DEPTH (MICRONS)

Two One Two Four Six One
Rank Weeks Month Month Month Month Year
1 330 570 600 620 €40 700
2 460 620 670 620 650 700
3 500 640 770 670 670 750
4 500 640 790 680 700 770
5 530 700 790 720 720 780
6 540 740 830 780 730 810
7 560 780 860 780 7590 820
8 560 810 930 800 770 830
9 580 840 1030 830 780 830
10 910 920 850 930

The data presented in Table 5-1 was plotted on Type 1
extreme value probability paper, Fi%gres 5-1 and 5-2,

to determine if the sample data can be fitted to the
extreme value distribution. For purposes of plotting the
data on probability paper, plotting positions were used
versus the ranked data. The median rank plotting positio

™M
is defined as fj+| where M is the assigned rank and N
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is the sample size. Reasons for using median rank

plotting positions can be found in references 18 and 19.
Using graphical methods to estimate the parameters

from the sample data, the results are presented in Table

5-2. The Fortran program, mentioned in section III was

TABLE 5-2

ESTIMATES OF DISTRIBUTION PARAMETERS
FOR MAXIMUM PIT DEFTH DATA

Graphical Solution Method of Moments

L b Mean s b

2 weeks 475 59.6 510 474 .4 55.86
1 month 680 77.9 725 678.2 81.04
2 month 755 95.4 810 753.7 94.33
4 month 705 69.5 745 700.5 71.87
6 month 700 48.4 728 698.3 47.36
1 year 765 52.0 795 762.7 50.75

utilized to estimate the parameters from the sample data
and also perform a Kolomogorov-Smirnov goodness-of~fit
test at the 957 confidence level. The results of the
computer analysis are also presented in Table 5-2., A
comparison cf the results shows that there is not a

significant difference in the accuracy of the graphical

e o it
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solution and the computer solution. The results of the
goodness-of-fit indicates that the data can be assumed
to be a sample from the Type I largest extceme value
distribution.

Because the corrosive pitting of aluminum can be
accurately represented by the Type I extreme value
distribution, the use of extreme value theory can lead
to some interesting results. In this application, the
natural experimental unit was a coupon of fixed area
which was exposed to a corrosive environment and from
which the deepest pit developed «as recorded. Thus,
the return period is the number of coupons that on the
average, must be exposed in order to obtain a pit depth
greater than the observed pit depth. The return period
indicates that the deepest pit observed is a function of
the area exposed to the corrosive environment (Ref. 1).

The vaiue of the return period can be read directly
from the plot on the probability paper. Thus, from the
one month data of Figure 5-1, it can be determined that
at least 100 coupons must, on the average, be exposed
in order to have a pit develop to at least 1060 microns;
whereas on the ten coupons exposed the decest observed

pit was 910 microns. This can also be stated in another

34
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way: on 100 square inches, the deepest pit that will
be observed, on the average is 910 microns, whereas on
2000 square inches, the deepest observed pit, on the
average will be 1060 microns.

Reliability Applications

Suppose we have a container manufactured from Alcan
3S-0 aluminum and the container is to be used toc store
tap water for a one month period. The inner surface
area of the container is 100 square inches and the walls
measure 900 microns in thickness. We wish to determine
the reliability of this container for the one month
period. 1In this case, reliability is defined as the
probability that a pit less than the thickness of the
container walls will develop. The reliability value can
be determined directly from the one month plotted data

of Figure 5-1 or using the following =quation

900 ~£78.2
zﬁﬂu)= C_e‘u~suo4
Using either method for solution, the reliability of the
container is found to be 93.5% for the one month period.
This example shows that extreme value theory can
readily be applied to the analysis of corrosive pitting.

In cases where weight and cost of the storage container

35
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solution and the computer solution. The results of the
goodness-of-fit indicates that the data can be assumed
to be a sample from the Type I largest extreme value
distribution.

Because the corrosive pitting of aluminum can be

o S i et Tt oot Y o,

accurately represented by the Type I extreme value

distribution, the use of extreme value theory can lead

L we e W

to some interesting results. In this application, the

natural experimental unit was a coupon of fixed area

L T TN

which was exposed to a corrosive environment and from

which the deepest pit developed was recorded. Thus,

A e

oy

the return period is the number of coupons that on the

average, must be exposed in order to obtain a pit depth

greater than the observed pit depth. The return period

PRSP TRL A SR P RA Y

indicates that the deepest pit observed is a function of

the area exposed to the corrosive environment (Ref. 1).
The value of the return period can be read directly

from the plot on the probability paper. Thus, from the

one month data of Figure 5-1, it can be determined that

at least 100 coupons must, on the average, be exposed

in order to have a pit develop to at least 1060 microns;

whereas on the ten coupons exposed the deepest observed

pit was 910 microns. This can also be stated in another
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way: on 100 square inches, the deepest pit that will
be observed, on the average is 910 microns, whereas on
2000 square inches, the deepest observed pit, on the
average will be 1060 microns.

Reliability Applications

Suppose we have a container manufactured from Alcan
35-0 aluminum and the container is to be used to store
tap water for a one month period. The inner surface
area of the container is 100 square inches and the walls
measure 900 wmicrons in thickness. We wish to determine
the reliability of this container for the one month
reriod. 1In this case, reliability is defined as the
probability that a pit less than the thickness cof the é
container walls will cdevelop. The reliability value can ‘
be determined directly from the one month plotted data

of Figure 5-1 or using the following equation
‘900 ~67%.2

I 8l.o4
Dy=eC
Using either method for solution, the reliability of the

container is found to be 93.5% for the one month period.

A

This example shows that extreme value theory can

readily be applied to the analysis of corrosive pitting.
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are of major interest, such as the fuel or oxidizer tank

b S

of & ballistic missile, it is believed that the use of
extreme value theory in the analysis of the effect of a

corrosive environment can possibly lead to a more optimum

Cx ey e s s

design.
The successful application of extreme value theory
in the analysis of corrosive pitting is also presented

by Eldredge (Ref. 4) and by Finley and Touncre (Ref. 11)}.

Load Arnalysis

The problem of designing a structure to adequately -

meelt the maximum load expected to be experienced by the

structure in the intended environment has always proved

to be a majc. dilemma to design engineers. When problems

of proper load design arose in the design phase of a

project, it was a common practice for the enginezr to

base hi:z calculations on average values and then multiply

his answer by an arbitrary number called the "safety

"

factor'. 1In many cases, the safety factor represented

nothing but a vague feeliig of danger involv:d in the

JOPRTSNN

specification (Ref. 18). -
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A structure or couwponent experiences a load failure
when the load applied equals the strength of structure.
This interaction of applied load and structure strength
can be evaluated in two ways. 1In the first case, the
strength of the structure remajins constant but the load
applied is variable. When the appliiea load equals or
exceeds the strength of the structure, a failure will
occur. In the second case, the strength of the structure
changes over a period of time which in effect is that
the largest allowable lcad changes over time. As can
readily bz seen, both cases deal with the extremes
encountered and aot with the avevage value. Therefore,
it is logical that the theory of extremes wosuld be quite
applicable in analyzing design problems of this nature.

The following is an example of the aspplication of
eiztreme value theory in 1load analysis. An impactograph,
mounted on the skid of a missile shipping contairner, was
used to record the largest shock acceleration encountered
by a missile on a road trip between Scherectady, New York
and White Sands, New Mexico. The tctal distance was
about 2500 miles, over g variety of paved roads. The
resulting recorded data is presented in Table 5-3.

{Ref. 26).
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TABLE 5-3
MAXIMUM VERTICAL ACCELERATION
Missile Vertical
Serial Acceleration (g's) Trio
A5 2.4 N.Y. - N.M.
4.5 N.M. - N.Y.
Ab 6.0 N.Y. - ¥,M.
8.0 N.M. - N.Y.
A7 10.0 N.Y. - N.M.
3.0 N.M. - N.Y.
A8 2.5 N.Y. - N.M
Bl 4.0 N.Y. - N.M.
5.0 N.M. - N.Y,
B2 7.0 N.Y. - N.M
7.5 N.M. - N.Y.
B3 4.6 N.Y. - N.M.
5.0 N.M. - N.Y.
B4 3.0 N.Y. - N.M.
5.0 NoMo - NOY.

A plot of this data on

extreme value probability

paper, Figure 5-3, indicates that the data can be

represented by the Type I largest extreme value distri-

bution. Using the computer

program to estimate the

parameters from the sample data and to perform a

Kolomogorov-Smirnov test, the scale parameter estimate
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is 1.77 and the location parameter is 4.105. The results

of the goodness-of-fit test at the 95% confidence level

. 3

indicates that we can accept the hypothesis that the g
sample was drewn from a Type I largest extreme value %
distribution.
If the usual method of applying the three sigma rule §

as a safety factor was applied in this case, the estimated ?
"largest load" would be 11.4 g. This implies that a load é

of 11.4 g would occur once in 1,000 trips or an equiv-
alent of 2,500,000 road miles (Ref. 26).
Since it was shown that the data can be represented

by the Type 1 extreme value distribution, the use of

extreme value theory should lead to more accurate results.

B T SN

As can readily be seen, the basic unit for the '"return
period" is the number of trips required which, on the

average, would result in a load acceleration equal to

1

or greater than the given value. From Figure 5-3, it

can be seen that 3 value of 11.4 g corresponds to a

R S

return period of 60 additional trips or 150,000 miles.

B Pl

It can also be seen that the "expected largest value"

AN

in 1,000 trips is 16.5 g which is over three times the

mean value and which approaches 1.5 times the value of 3

the three sigma rule. Comparison of the results obtained
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using the theory cf extremes rather than the three sigma
rule indicates the error involved when the wrong assump-
tion is made concerning the governing distribution. By
using the three sigma rule, a normal distribution was
assumed as the underlying distribution when ir reality,
the data was best modeled by the Type I largest extreme

value distribution.

41

s+ i o ot




T Tiad g 2 FIRANEEENCE L Y
Cort- 0 8 e S e LS

GRE/MATH/67-~8

VI. Type III Asymptotic Extreme
Value Distribution

The cumulative distribution functions for the Type o
ITII largest and smallest extreme value were presented in
Section IT equations (2.11) and (2.12). Although both
distributions are referred to as Type I1I, only the %
smallest extreme distribution will be presented in this ‘
section. It has been discovered that the Type III1 E
smallest extreme value distribution nas greater appli-
cation in the engineering field than does the largest
extreme value distribution.

The Type III distribution of smallest extremes was
first applied by W. Weibull to analyze data resulting )
from failures caused by contact stresses. BRecause Weibull :
was the first to successfully apply the Type III smallest

extreme value distribution in engineering studies, the

e

distribution is more familiarly known as the Weibull

istribution.

The more commonly defined form of the Weibull
probability density function is

” _v)ﬁ

. A
1CC@=€1(2%!> e - (6.1) '
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where; Af

-7?;

shape parameter or Weibull slope

scale parameter
Y = location parameter

The general shape of the Weibull density function
is determined by the value oftg, the shape parameter.
A plot of the Weibull density function for various values
of Z{ with 7 =1 and Y = O is presented in Figure
6-1. It should be noted that when ég = 1 , the Weibull
distribution specializes to the expcnential distribution.
When & = 2, the resulting distribution is the Rayleigh
distribution.

The Weibull cumulative distribution function, which

is derived from equation (6.1) by integratiocn is

n

x-Y 6/ (Q%%{)A
Fe f\z ( du

()
= |-C (6.2)
The reliability function K =1-F ) s
_;;\_r)é
Ry =™ © (6.3)
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GRE/MATH/67-8

Analysis of Failures of Door Lock Mechanism Assembly

This particular application of the Weibull distri-
bution was presented by Fcrgione (Ref. 13). The object
of the test was to determine the life characteristic of
a door lock assembly which was used on an automobile.
The purpose of the door lock mechanism was to secure the
door in a closed positicn. Other requirements were that
the door must open and close smoothly and, in the locked
condition, withstand specified static loads so as to
prevent the door from opening.

For purposes of the test, a sample of twelve
mechanisms were placed on test, using a special test
fixture which accurately simulated the impact loads
incurred when a door is slammed shut. The twelve door
lock mechanisms were placed on simultaneous test and
che numbers of opening and closing cycles required until
failure were recorded.

In order to analyze the data opn probability paper,
use of median rank tables was made to assign a cumulative
percent failure value to each failure. As was pointed
cut by Forgione, the purpose for using median rank is
that when failure history of the entire population is

not known, a statistical estimate is made for the rank

45
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of each failure. The median rank, which has a 50%
probability of being either toc high or too low, is the
best estimate of the actual failure rank.

The recorded data and the corresponding value of
median rank is presented in Table 6-1. As is reflected
in Table 6-1, the test was concluded after recording nine
failures with 3 mechanisms removed from test after 122,218
cycles without failure. The three mechanisms removed are
referred to as suspended items. Suspended items must be
taken into account when selecting the median rank values
for the failed items, therefore, the median rank values
in Table 6-1 were obtained from a median rank table for
a sample size of 12.

A plot of the data on Weibull probability paper is
presented on Figure 6-2. Included on the plot, are the
907 confidence bands to aid in determining if the data is
a representative sample from the Weibull distribution.
The resulting straight line plot of the data is an
indication that the underlying failure distribution of
the population is Weibull with cumulative distribution

function given as

A
%)
Fen=1-e (6.4)
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TABLE 6-1

DOOR LOCK MECHANiISM FAILURE DATA

©

Item Failure Cycles to Median
Number Number Failure Rank
1 1 32,680 0.056
2 2 44,560 0.137
3 3 55,442 0.218
4 4 61,074 0.298
5 5 73,998 0.379
6 6 81,468 0.460
7 7 92,900 0.540
8 8 100,690 0.621
9 9 122,218 0.701
10 Suspension 122,218
11 Suspension 122,218
12 Suspension 122,218
where 5 is the shape parameter

the characteristic 1ife or the number of

cycles at which 63.27 of the items have failed
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(6.2) except that the location parameter VYV is O

This distributior is the same as that given by equation
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One of the objectives of the test was to determine
the BIO life of the component. The BIO life is defined
as the life of the component at 907 reliability. The
value of the BIO life can be read directly from the graph
as 36,800 door slam cycles. Another method of determining
the BIO life would be to use the graphical method or
computer method to determine the estimates of the
parameters and use equation (6.3) to solve for the value
of x corresponding to R (.90). Using graphical methods
and the method presented in Ref. 22 to estimate parameters
and equation (6.3) to determine the BIO life, the results

are presented in Table 6-2.

TABLE 6-2

BiO LIFE AND PARAMETER ESTIMATES OF
DOOR LOCK MECHANISM FAILURE DATA

Graphical Max. Likelihood
A =2.14 2.37
< = 110,000 111,854
Y =0 0
BIO = 36,800 43,253
49
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GRE/HATH/67-8

The BIO life determined from the first set of sample
components was below that required for the component.
An evaluation of the failed parts indicated that all nine
failures were caused by fatigue failure of an actuating
1ink. Redesign of this component was performed and
another twelve lockirg mechanisms were placed on test.
The resulting data is shown plctted on Weibull paper in
gigure 6-3. The BIO life of ¢he redesigned mechanisms
wa; determined to be 62,000 cycles. Statistical tests
performed by the author indicated an 887 confidence that
the BIO life of the redesigned item was at least equal
to or greater than the original mechanism. (Ref. 13).

The change of slope of the data plotted in Figure
6-3 indicates a mixed population. As was pointed out
by the author, an evaluation of the cause of failure
indicated that the change of slope resulted from failures
of an actuating spring. This could be expected since
the €first failures were link failures having one
distribution and another ccmponent would have an
altogether different distribution of failure.

This example shows the flexibility of the Weibull
distribution in that it was used to compare two designs

of a component and different values of the shape
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parameter which indicated a failure of a different

component..

" Analysis of Step-Motors

In many engineering design applications, the various
iife characteristics of a component are used in selecting
a required component for use in a larger system. life
characteristics such as BIO life, characteristic life,
and mean time between failure (MIBF) are used in various
industries as a measuring devi~e in comparing one
component with another. 1In this example, the Weibull
distribution is used to determine the MIBF of step motors
from failure data. The methads and data presented in
this example were utilized by Webb (Ref. 40).

In the article presented by Webb, failure data
resulting from the test of twenty-three motors were
plotted on Exponential, Normal and Weibull paper in an
effort to determine tﬁahdﬁaefiyiag~distribution. The
data plotted on Weibull paper resulééd in a nearly
straight line indicating that the data is representative

of the Weibull distribution. A plot of the data on

Weibull paper is presented in Figure 6-4.
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GRE/MATH/67-8

The equation used to determine the MIBF for the

Weibull distribution is given as

MTBF =T (1+ %) (6.5)
In this equation 77 is the scale parameter or character-
istic life,tg is the shape parameter and r’ indicates the
gamma function. Values of the rka)can be found in any

standard math table. Using graphical methods, Zg =

2.0

and 7 = 5.8 X 106. Solving equation (6.5) results
in a value of 5.15 X 106 steps for MIBF. 1In this
particular application, the failures were measured in %
steps, hence, the mean steps before failure is used i %
instead of MTBF. . f

a
Corrosion Resistance of Magnesium Alloy Plates %

The effects of a éorfosive environment have always
been important in selecting the correct metal in the
design of a component or structure which is to be used
in that enviromment. Corrosive action results in a
depletion of the metal with a}resultant loss of 3
structural strength thereby increasing the possibility ;

of failure. This particular analysis of the effects of

corrosion was presented by Berrettoni (Ref. 2).
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The items being tested are magnesium alloy plates
approximately two square inches in area and with a
thickness of one-tenth of an inch. The specification made
on the plates was that the corrosion weight loss shall
not exceed .120 milligrams per square centimeter per day
(MSCD) with an AQL of 17 when the plates were immersed
in an inhibited aqueous solution of MgBr, for a seven
day period.

The resulting data of the test performed on two
hundred and ten plates is shown in Table 6-3 (Ref. 2).
An examination of the test data indicates that the
specifications were satisfied because the sample portion
exceeding .120 MSCD was only .487 which was less than
the limit of 17%.

In an attempt to determine what distribution function
characterized the corrosion variation, the data was
plotted on Weibull paper. A plot of this data appears
in Figure 6-5. Two curves are shown in the figure,
curve A is a plot of the original data aud curve B is
the resulting plot after using graphical techniques for
estimating the location parameter. The graphical
estimates of the Weibull parameters are gf? =1.8, Y=

3 and /{ = 3.67. Using these estimates for the
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9.05

Percent
Less Than
i

28.10
48.58
65.06
83.862
80.96
96.67
98.57
99.52
100.00

requency

F

Percent

TABLE 6-3
CORROSION DATA OF MAGNESIUM ALLOY PLATES
9.05
19.05
20.48
20.48
14.76
7.14
.7
1.90
v.95
0.48
0
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i ot b s tacs 1es s

parameters, the distribution function for the corrosicn

variation is

~-3\L¥
..( 3.67 .

Fo = 1-¢

Electromagnetic Relay Life Characteristics

A RIS bt F MRy e0nY SR o € A
DU LY P o P

This particular application of the Weibull distri-

bution has been discussed by Fontana (Ref. 12). 1In this

reference is described a test program performed with a
newly developed relay to determine the functional

relationships between the relay life expectancy and the

cperating parameters of load current, ambient temperature

and operating frequency.

A group of 150 new relays were divided into fifteen
test sampies of ten relays each. Each test sample was
submitted to life test under varying combinations of
operating stress levels. The range of test levels for
the three operating parameters were:

Contact current (I) amp: 5.5 to 14.5
Ambient Temperature (°C): 0 to 150

Operating Frequency
(cycles/win): 5 to 60
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In order to provide a mathematical model which
showed the relationship between the life characteristics
of the relay as a function of the three operating
parameters (current, temperature and frequency) a
regression equation was formulated based on the results
oL the fifteen test runs. The equation presented in

the reference is:
\'= by + b7 + by % + by %5
1 9 2
+b, 1> + by % ¥ by, 7

~ - !
+ l’l'}. ‘,,’](a + L’13 ’Zl (3 + baa 2’12,3

The values of the b's are the regression coeffi-
cients and the X715 X9 and X3 are coded values of current,
temperature and frequency used on each test run. The
relationship between the coded values and the operating
parameters are:

Current (I) = 3 x; + 10
Temperature (°C) = 50 x5 + 75
Frequency (CPM) = 18.5 x5 + 32.5

The values of the x's were given as + 1.5 to
indicate the maximum psrameter value and -1.5 to indicate
the minimum parameter value. As an example the first

test run had values of x;, X, and Xq equal to -1 which
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e e

corresponds to value of 7 amps, 25°C and 14 cycles per

minute.

Tne fifteen groups of ten relays each were placed
on life test and the resulting times of faiiure in terms
of cycles were plotted on Weibull graph paper. The data
for the first run is shown plotted on Weibull paper in
Figure 6-6. Graphical est..mates of the shape and scale
parameter were made for each test run. The parameter
(stimates were used as the value of \( in the regression
equation to determine a set of regression coefficients
for each test run. An optimum set of regression coeffi-
cients were obtained which could be used in the
regression equation to estimate the shapzs and location
parameter for various levels of operating parameters as
reflected by x;, xo and x3. The regression coefficients
are given in Table 6-4.

To give an example of using the results of the
experiment suppose we were interested in estimating the
reliability of the relay after 250 hcurs of operation
with a current of 5 amps, frequency of 20 cpm and ambient
temperature of 85°C as operating parameters. Using the
regression equation to estimate the shape parameter and

scale parameter the resuylts are /g = 2,65 and Z.,cx = 6.3.
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TABLE 6-4

REGRESSION COEFFICIENTS FOR ELECTROMAGNETIC RELAYS

o A BT R AR s o s SRS P AR TR IS L

Coefficients for Coefficients for
Estimating Estimating

b, 4.03 3.45

bl -1.61 +Q.07

b2 +0.09 -0.41

b3 -0.12 -0.03

bll -J.33 -0.38

b22 -0.54 -0.01

b33 '0.60 "0.39

b12 +0.63 +0.14

b13 -0.19 +0.31

b23 -0.04 -0.14

An estimated Weibull plot using the estimated parameters

appears in Figure 6-7. The reliability for 250 hours of
operation (3 X 105 cycles) can be read from the Weibull
graph as 97%.

This experiment by Fontana (Ref. 12) shows the
important application of the Weibull distribution and
regression techniques in determining the life character-

istics of an electromechanical component. The method
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enables the determination of reliability values of the
component which were not attainable by conventional life

testing.

Analysis of Automobile Component Failure Data Using
Weibull Distribution and Type I Smallest Extreme Value
Distribution

This example of the use of the Weibull distribution
will show the relationship between the Weibull distri-
bution and the Type I extreme value distribution. It is
further intended to show the application of this relation-
ship in the reliability analysis of components exhibiting
a failure pattern which can be modeled with the two-
parameter Weibull distribution.

The relationship that exists between the Type I and
Type III extreme value distribution is: If x is a random
variable having a two parameter Weibull distribution with
shape parameter g and scale parameter 7{ , then the random
variable Z = ,Z.. X has the following distribution

function:
- A(z-BmO
(2)= | -exp |-¢ ]
This equation is the same as that given for the Type I
smallest extreme (Equation 2.8, page 12). The parameters

of the Type I smaliest extreme value distribution given
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in terms of the Weibull parameters are, scale parameter

womanber s AN DL

A
b =74 and location parameter ,Z(=,Z' n .
The importance of the relationship that exists

between these distribution is that methods which are used

owb OB AN v

to estimate the parameters of the Type I distribution from

sample data can be used to estimate the parameters of the

ELTIL R SEARY EY ¥

Weibull distribution data by making the necessary trans-

formation.

REFEIEIEN LW N PN

In an effort to show how the previously discussed

relationships can be applied to the reliability analysis

bt Lad ATLAT e des Ban

of mechanical components, use will be made of data
presented in Ref. 43. The data was recorded on thirty
mechanical components which wece installed on test
automobiles. The data in terms of miles to failure for
all thirty components are presented in Table 6-5.

As with most data that results for the life test of

components that exhibit a wear-out type failure, a plot

.
A% b SP i T2 A0 il A mh A 1 R B 2 MORR A e s T

of the data on Weibull probability paper can be used as

SRy

st - ———n 1

a method of determining the underlying failure distri-
bution. The plot of the data (Figure 6-8) indicates

that the underlying distribution appears to be the two-

o e

parameter Weibull. A further test of the data using the ’
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methods presented by Gross (Ref. 16) resulted in accepting
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TABLE 6-5 |
FAILURE DATA FOR AUTOMOBILE COMPONENTS :
- i
Ordered Data Natural Logarithms g
(miles) i
1 15517.4 9.64972 :
2 16723.5 9.72457 ;
3 21249.9 9.96411
4 23013.3 10.0438
5 24567.6 10.1092
6 27760.4 10.2314 :
7 29228.0 10.2829 ;
8 32445.7 10.3873 1
9 34006.0 10.4343 ?
10 34424 .4 10.4465 ;
11 38057.6 10.5469 i
12 38110.1 10.5482 :
13 38525.0 10.5591 j
14 39803.2 10.5917 j
15 40120.9 10.5997 j
16 40781.9 10.6160 ;
17 41182.9 10.6258 ;
18 44445 .5 10.7020 ;
19 45845.4 10.7330 ;
20 46147.9 10.7396 ‘
21 46301.0 10.7429 ;
22 48513.2 10.7896 ¥
23 50745.2 10.8346 ;
24 51440.7 10.8482 8
25 52471.1 10.8680 g
26 53415.1 10.8858 £
27 53572.4 10.8888 1
28 58794.9 10.9818 g'
29 60233.1 11.0060 ¥
30 62370.5 11.0408 3
35 s
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the hypothesis that the underlying distribution is the
two-parameter Weibull with ég = 3.37 and 7 = 44,320.
The acceptance is based on the Kolomogorov-Smirnov
"goodness-of-fit" test at the 957 confidence level.
Maximua~likelihood estimators of the Weibull parameters
based on the sample data were obtained using the method
presented by Harter and Moore (Ref. 23).

The resulting estimates of the Weibull parameters
using graphical solution, regression techniques (Ref. 19)
and maximum-likelihood estimators (Ref. 23) are presented
in Tasble 6-6.

TABLE 6-6

WEIBULL PARAMETER ESTIMATES

Graphical Regression Max.~-Likelihood
Techniques Techniques Techniques
B 3.4 3.371 3.725
Nt 44,370 44,319.5 44,760.59

" An alternate method for determining the failure
distribution from the sample data would be to plot the

value 2 =,Z; X from Table 6-5 on Type 1 extreme value

probability paper. A plot of the data appears in Figure

6-9. The resulting straight line fit of the data

indicates that the variate Z has a Type I smallest
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extreme value distribution and hence the X variate has
a two-parameter Weibull. Acceptance of the hypothesis
that the underlying distribution of the Z variate is
the Type I smallest extreme was based on a Kolomogorov-
Smirnov goodress-of-fit test with a 957 confidence level.
Using graphical methods and the method of moments to
estimate the parameters of the Z variate distribution
the results are shown in Table 6-7. Estimates for the
Weibull parameters were made by using the equations
g = If' and 7= e’ . These results are alsc shown
in Table 6€-7.

TABLE 6-7

EXTREME VALUE TYPE I PARAMETER ESTIMATES

Graphical Method of Moments
b = .295 .2885
M = 10.70 10.7139
B = 3.39 3.466
T = 44,440 44,933

Reliability Application

Suppose we are interested in determining the

reliability of the components for 30,000 miles. Since
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we have twe distributions which can be used as a model
to determine the answer, a solution will be given using
each model. The reliability value can be read directly
from the probability graph paper or by using the parameter
estimates and solving the applicable reliability equaticn

for the distribution. The results using both methods

are:

Type I Extreme Value Distribution

Graphical: R (10.308) = 717 0/0

——rn——

exp [’_e T awvs
779 %

10.3¢8 —Io,'7(3‘7>

n

Solving R(Z)

1]

Weibull Distribution

Graphical: K(30000) = T6 o/o

30,000 )3'3‘71
Solving R( x) = e‘ 44,320
= 6.4 c/o

As can be seen from this example, either distri-
bution can be used as a model to analyze wear-out type
failure.

If other than n g¢rephical astimaie of the parameters

is desired, transformation of the data from Weibull

71

R T AT R e

TR TR




PRS- AR - LA

GRE/MATH/67-8

distribution to the Type I smallest extreme distribution

enables the use of the method of moments to estimate the

PRI, i, e - AT

parameters. The advantage of using the transformed data

PR
R Pt

is that the distribution of the variate depends linearly
on the mean and standard deviation of the transformed

variate (Ref. 43).
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VII. Summary and Conclusions

Summarv

The past decade has seen an increased demand being
placed on manufacturers to specify accurate reliability
estimates for mechanical systems and components. Industry
has been required to establish reliability programs to
meet the demands of government contracts, product
guaranties and safety requirements.

Reliability analysis techniques have been firmly
established in the electronics industry. Unfortunately,
the nature of mechanical components has prevented
successful application of these same techniques in the
reliability analysis of mechanical systems. In an attempt
to provide better estimates of mechanical reliability,
greater use is being made of statistical theory to
analyze failure characteristics.

This thesis presents the results of a literature
search to determine the extent to which statistical
theory, in particular extreme value theory is employed
in mechanical reliability analysis. The extreme value
distributions and theory are presented in sufficient
depth to snable the interested reader to understand their

applications in the examples presented in the text.
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It is felt that extreme value theory would prove to be
quite us ful in establishing reliability estimztes of
mechanical components because of two reasons. First,
increased success in applying effective quality contrcl
techniques has eliminated or controlled the interacticn
of a large number of product variables. Control or
elimination of these variables result in products which
possess a skewed failure disztribution. Second, in many
applications, especially design, the critical variable
is the extreme rather than the average value.

In the examples presented, actual failure data was
used in applying the analysis techniques. For the Type
I extreme value distribution, two examples were presented.
A total of five examples were presentzd for the Weibull
or Type III extreme value distribution. Graphical
analysis as well as techniques which are based on order
statistics were used to estimate the parameters of both
extreme value distributions from the failure data.

It must be remembered that with most statistical
techniques, the objective is to predict the life
characteristice of an entire population on the basis
of a sample of the population. Any predictions made

are based on the assumption that failure patterns
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determined from the data are representative of the parent

population.

Conclusions

The Type I extreme value distribution has been found
useful in the analysis of corrosive pitting of metals and
the study of loads. The use of this distribution znd
extreme wvalue theory has allowed the determination of
the effects of corrosion which had been impossible to
quantify by other methods. When applied to the study cf
loads, the Type I distribution provided more accurate
results than the commonly applied three sigma ».le.

The Weibull distribution has beern found to apply to
the reliability analysis of electromagnetic relays and
step motors, fatigue failures of automobile components,
the comparison of quality of door locking mechanisms and
the corrosion resistance of magnesium alloy plates. The
Weibull distribution is particularly useful in the
analysis of "wear-out" type failures and has been found

to apply to a wide range of mechanical components.
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