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Preface

This thesis is the presentation of the results of an

intensive literature search to discover the applications

of extreme value theory in the reliability analysis of

non-electronic components.

In an attempt to discover as many examples as

possible, over four hundred abstracts were reviewed. Of

these, approximately one hundred were selected for further

investigation. Final selection was made of forty-four

references which were applicable to this study.

It is assumed that the reader is familiar with

atatistical theory and basic concepts of reliability

analysis. For the reader who is unfamiliar with extreme

value theory, a discussion of this theory is found in the

text to the extent which I feel is necessary to understand

the applications presented.

I wish to thank my thesis advisor, Professor Albert

H. Moore for providing me with an interesting thesis topic

and for his helpful guidance and advice.

Finally, I wish to thank my wife for being patient

and for understanding a student-husband.

Cletus B. Kuhla
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IN
ABSTRACT

Manufacturers of non-electronic components and

systems are required to accurstely determine the relia-

bility of their products in order to meet the demands of

government weapon system contracts, safety programs and

commercial product warranties. In an effort to establish

simple but accurate technioues for determining relia-

bility factors of mechanical components, increased use of

statistical theory is being made in analyzing component

failure data.

This thesis illustrates the application of extreme

value theory in the reliabAlity analysis of mechanical

systems and components. The basic theory of extreme

values is presented and the exact and asymptotic forms of

the extreme value distributions are developed. Appli-

cation~s of the extreme value distributions ar.e presented

in example problems.

The Type I extreme value distribucion is applicable

to the analysis of corrosive pitting of aluminum and the

analysis of maximum loads. The Type III extreme value

distribution is useful in the failure analysis of step

motors, automobile door lock mechanisms, co)rrosion resis-

tance of magnesium, automobile structural components and

electromagnetic relays.

vii
________________ 1
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APPLICATIONS OF EXTREME VALUE THEORY
IN THE RELIABILITY ANALYSI3
OF NON-ELECTRONIC COMPONENTS

I. introduction

In the past decade, the term reliability has begun

to appear with greater frequency in all areas of industry.

Although manufacturers were always concerned with produc-

ing an operational product, not too much emphasis was

placed on the reliability of the product. The prevailing

attitude seemed to be that if a product worked it was a

reliable product. The present day concept of reliability

is quite different from merely having a product that

operates. Reliability may be defined as the probability

that a system, subsystem, component or part will perform

as specified for a given period of time under stated

conditions.

The first major effort to produce reliable products

was initiated when the electronics industry sought a

solution to the unreliability problem of electronics

equipment in the early 1950's. The crash program under-

taken by the government and aerospace industry to create

the ballistic missile weapon system during the mid-1950's

resulted in even greater demands for high reliability in

products. The early satellite programs and the manned

1g
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space project further stressed the need for developing

usable techniques for determining the reliability of

components and whole systems.

Because of the continued pressure of military

reliability predicti(: and demonstration requirements

and the increased demands made on commercial manufac-

turers in the form of warranties, a simplified method

of accurately predicting the reliability of mechanical

components and systems is constantly being sought. The

natural trend is to attempt to incorporate methods which

have been used in the analysis of electronic components.

The use of statistical distributions and statistical

analysis has been proven to be quite accurate in the

determination of reliability factors for electronic

components and systems. This fact is realized when an

evaluation is made of the methods available for relia-

bility prediction. Practically every reliability analysis

or prediction technique which is in popular use by the

government and aerospace industry is designed for

electronic systems.

Unfortunately, the characteristics of mechanical

and electro-mechanical components are greatly different

2
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from those of electronic components which are conducive

to the use of probability theory and statistical analysis.

Electronic components are highly standardized, mass

produced, relatively low cost and fail primarily because

of manufacturing defects. In contrast, mechanical

components are usually high cost, of special design rather

than mass produced, and non-standardized. The typical

mechanical component is designed for long life and

endurance, therefore, the usual life testing which is

performed with vacuum tubes, transistors, resistors and

other electronic componentq would be costly and time

consuming when performed on mechanical parts.

Despite the inherent difficulties, the ability to

predict the useful life characteristics of mechanical

components and systems has been improving'over the years.

This trend has been the result of advances made in a

few but important areas. First of all, the physics of

failure and breaking strengths for mechanical parts are

more precisely known than those of electronic parts.

Secondly, the advances made by the study of fatigue

strength has greatly improved mechanical reliability.

Among the by-products of fatigue studies of materials,

3



especially metals, are good design practices for mechan-

ical structures such as the use of fillets and rounds,

gradual cross-sections, better surface finishes and heat

treatments without which many industries of today, such

as the aircraft industry, would not have been possible

(Ref. 28).

Despite the many advances made by industry, the

determination of accurate reliability measurements for

mechanical and electro--mechanical devices is still a

difficult task. Systems requirements are becoming more

severe and design complexity is increasing. Greater

and more binding demands are being made on the engineer I
to specify and produce accurate reliability figures for

mechanical systems. Contracts no longer specify "goals"

and '"best efforts", terms in common use a few years ago,

but instead require firm guarantees of both reliability

and maintainability (Ref. 39).

In order to meet these demands, the current trends

in the methods of mechanical reliability analysis has

been an increased emphasis on the probabilistic approach

t3 the design of mechanical systems, especially structures.

Such an approach is necessary to aid in understanding the

4
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variations associated with design, materials and

application factors. The gathering and statistical

analysis of field failure data is continuing to increase.

Analysis of this nature results in greater knowledge of

mechanical reliability as a function of application,

environment and design factors. Also, the statistical

techniques used in these analysis procedures are being

extended (Ref. 42).

The purpose of this thesis then, is to present the

results of an extensive literature research which was

undertaken to uncover examples showing the applications

of statistical theory, in particular, extreme value

theory, in the reliability analysis of mechanical or

electro-mechanical components and systems. The initial

step in the literature survey was an invescigation of

the Technical Abstracts Bulletin, Reliability Abstracts

and Technical Reviews and the Quality Control and Applied

Statistics Abstracts. Publications found in these

sources led to further applicable articles. The results

of this survey is presented in the following order.

First, a discussion of the theory of extremes

including the exact distribution and asymptotic distri-

bution of extremes is presented. Next, some commonly

I 5
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used statist!cal methods of evaluating test data are

presentk Following this section, is an example problem

utilizing the exact distribution of the smallest extreme.

The next section is used to further discuss the asymp-

totic distribution of extremes and two problems are

presented which show the application of the Type I asymp-

totic distribution in mechanical reliability ana.ysis.

The Type III asymptotic distribution is then presented

in the following section with five examples of applying

this distribution in reliability analysis of mechanical

components. Finally, the results are stummarized and

conclusions are made.

6
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II. Extreme Value TheorK

One of the main problem areas of interest to

mathematicians was how to cope with values which lie

well away from the central values of a set of data.

The concern over outlying values in astronomical data

led to the development of a solution in the theory of

errors. In the early 1900's, statisticians became

interested in sampling distribution, the estimation of

distribution parameters and estimation errors. Included

in this work were studies in the sampling distribution

of the range and the largest normal value of the normal

distribution which indicated that the largest value and

the range are random variables possessing their own

distribution.

Some of the earliest applications of extreme value

statistics were in the field of human life statistics,

radioactive emission and strength of materials. Further

advances in the theory of order statistics and parameter

estimation techniques has led to the verification of

key extreme - value distribution theories. The most

important factor in the development of present day

extreme value theory has been the new knowledge of

exponential type distributions and order statistics.

1..7..7
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These two advancements in theory increase the possible

means of data analysis by offering new distributions

and characteristic properties from which to choose in

formulating hypothesis (Ref. 31).

An extreme value is an ordered sample value. If a

sample of size N is collected and the sample values are

arranged in increasing or decreasing values the sample

is an ordered sample. The values of the sample are

subscripted 'Xi with i indicating the order. If the

sample is ordered from lowest to highest value, , ,

is the smallest extreme and IZ, is the largest extreme.

Suppose we are interested in finding the probability

density function of the M ordered extreme in a sample

of size N . To find the probability density function,

r( , let us consider the following argument:

divide the real axis into three parts, one going from

- oO to 2'M , a second going from /X, toZ. + ,

where - is a positive constant and the third from

l '+ to +O0 . If the common probability density

of the random variables '2i is given as , the

probability that M-i of the sample fall into the first

interval, one value falls into the second interval and

N-M fall into the third interval is

. .. _ _ _ _ I_
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Using the law of the mean we have

and if we let 6 * , the probability density function of

"2M ,the random variable whose value is the M ordered

I statistic becomes

M -I)! (N-M)! . f(,) 1'M, (2.1)

for - oo e4 o (Ref. 14)

* -

Another form of thi.- formula is

II~~~- N!NV& f)M-*&
c) M-o! (N-MM! F, (2.2)

If in a sample of N independent observations from a

population whose density is -P(,X) . we are interested in

the probability density function of the smallest ordered

statistic or smallest extreme, it is found by substi-

tuting the value r i into equation (2.2). The

resulting density function for the smallest extreme is
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4x) - IN (2.3)

In the same manner, the probability density function of

the largest order statistic can be found by substituting

in equation (2.2). Therefore, the density function

of the largest extreme is

N (2.4)

It is now possible to determine the probability distri-

bution function for the smallest and largest extreme.

The probability that /Y is the smallest among

independent observations is defined as ,(r). This

distribution function can be derived by integration of

equation (2.3) over the limits of -o to 1 . Thus,

- L(2.5)

In a similar manner, the probability distribution function

of the largest extreme can be found by integrating

equation (2.4) over the limits of -OO to 'Z Thus, the

probability .N(X) , that 'X is the largest among

independent observations is

Fon (2.6)

10
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The equations previously derived, that is, equations

(2.3), (2.4), (2.5) and (2.6) are also presented by

Gumbel (Ref. 19) The names given to these equations are

the exact distributions of extremes.

If the initial distributions were known, equations

(2.3), (2.4), (2.5) and (2.6) could be utilized in

deriving the probability density and distribution

functions of the extremes. In most instances, direct

calculation would lead to complex integrals that could

be approximated only by long and tedious numerical methods.

Because of the difficulty involved when applying the

exact distribution of extremes, most reliability analysis

performed makes use of the asymptotic extreme value

distribution. The derivation of the three asymptotic

distributions will not be presented here. It is felt

that it is sufficient to present the results of the

derivation which appears in Ref. 19. The three asymp-

totic distribution functions are

Type I

Largest Value -(

mP (2.11

I>
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II tSmallest Value II

I >o

Type II

Largest Value

14>0

Smallest Value

S 1E W V.(2.10)

Type III

Largest Value
e -v] (2. 11)

?:w vtj V' , >0

Smallest Value

vs..' I-x K- F (2.12)

i
The Type I extreme value distribution is also known

as the exponential, double exponential and Gumbel Type I

extreme value distribution. This asymptotic distribution

is derived on the assumption that the underlying or

initial variant is of the exponential type. By expo-

nential type it is meant that the probability distribution

12
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function converges toward unity with increasing '

at least as fast as an exponential function. The proto-

type is the exponential distribution function itself

while the Normal, Log-Normal, Logistic and Chi--square

distribution are all members of this type. The Type II

extreme value distribution is referred to as the Cauchy

type because it was derived on the assumption of an

underlying Cauchy distribution as the initial distribution.

The Type III distribution is referred to as the limited

or bounded type distribution because it was developed as

the asymptotic distribution of initial distributions

which were limited or bounded on the right for largest

values and on the left for smallest values. Another

coitmon name for the Type III extreme value distribution

is the Weibull distribution because it was first used by

Weibull in the analysis of breaking strengths of metals

(Ref. 19).

When using the theory of extreme values in explain-

ing or analyzing extreme values observed under a given

set of conditions and to make predictions of the extremes

which may be expected when the same or equivalent set

of conditions exist the following conditions must be

adhered to:

13
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1. It is necessary to Aeal with statistical

variants.

2. The initial distribution from which the extremes

have been drawn and its parameters must remain

constant from one sample to another or that the

changes that have occurred or will occur are

determined and eliminated.

3. The observed data must be independent (Ref. 20).

In regards to the asymptotic theory of ext-remes, an

important relationship exists between the Type I asymp-

totic distribi cJon and the Type III asymptotic distri-

bution. This relationship is such that the Type III

distribution can be obtained from the Type I by a

logarithmic transformation of the variate. Conversely,,

the Type I distribution is reached from the Type III .by

a linear transformation of the variate and a limiting

process on one of the parameters (Ref. 19).

The most popular use made by this relationship is

the following. If X is a random variable having the

Weibull distribution (Type III) with location parameter

equal to 0 then Z = In X is a random variable which has

the Gumbel Type I extreme value distribution of smallest

extremes. The relationship between the parameters of

I -77- 1
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these two distributions as a result of this transformation

are

Gumbel (rype I) Weibull (Type III)

location parameter aw , scale -, = e

scale parameter b > shape /5 =

Another important concept in the study of extreme

value theory is that of "return period". The "return

period" is defined as-() with

The definition of "return period" is that it is the

number of observations or sample size such that on the

average there is just one observation equalling or

exceeding the value 1 (Ref. 29). This concept of return

period is useful in the application of extreme value

theory in reliability analysis. A use of the return

period will .be made in one of the extreme value theory

applications presented later in this paper.

In the process of researching the literature for

uses o2 the extreme value distributions it was noted that

-I no applications of the Type II asymptotic distribution

~i I could be found. The reasons why the Type II distri-

bution is not used in reliability analysis is because

15
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the variate X is in the negative domain for this distri-

bution (Ref. 28). The domain of the variate for the Type

II distribution prevents any logical, analysis of failure

data because the negative value would indicate failure

before the component is put into use.

This concludes the presentation of the theory of

extreme values. It is not intended that this presen-

tation would be all inclusive. Rather, it is presented

to assist the reader in understanding the application of

extreme value theory in reliability analysis which are

presented in the remaining portion of this thesis. For

a more detailed presentation of the theory of extremes,

the reader is referred to the publications of Gumbel

(Ref. 19 and 20). -i

A
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1III. Methods of Determining A
Probability Distribution Based On

Life Test Data

There are several methods available for determining

the underlying distribution from a set of data. The

importance of accurateiy determining the underlying

distribution can be seen when we consider that we are

attempting, on the basis of a sample, to establish as

close a measure as possible of the parent population

and the various statistics of the parent population which

are used in determining the reliability of a component.

IThus, if a given distribution is arbitrarily chosen for
i

a set of data and in reality, the data has a different

distribution, the statistics computed for the data can

be misleading. Two methods for determining the under-

lying distribution will be discussed. Both of these

methods were found to be mlost frequently used in the

example applications appearing in the literature. Other

methods will be mentioned at the end of the section.

Estimation of Parameters

Tn reference 19, Gumbel presents the equations for

determining the parameters of the Type I asymptotic

distribution. The cumulative distribution function for

the Type I largest and smallest extreme are

17
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Largest Extreme

e  
(3.1)

Smallest Extreme

Si-e (3.2)

where

"cf 6 (3.3)

The value is the so called reduced variate, while , and

bare parameters of the distribution. The quantity ,W

is the mode or location parameter while 6 is the scale

parameter. In order to explicitly define the equation

of the probability distribution function, it is sufficient

to determine the values of the parameters.

Using the method of moments, the following are

estimators for and as presented in Ref. 19.

4

b (3.4)

A

LL X - "Vbfor the largest extreme (3 5)

AA for the smallest extreme (3.6)

where , = .5772 (Euler's constant)

X= -3It.4 is the sample mean

18
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T' is the sample standard deviation

Through some algebraic manipulation and substitution of

equation (3.4) into equations (3.5) and (3.6) the

results are

A
A = X - .4502 Sx (Largest Extreme) (3.7)

A-

Al - X + .4502X (Smallest Extreme. (3.8)

The above equations can be utilized to estimate the

parameters of the Type I (Largest or Smallest) extreme

]! value distribution. Our hypothesis as the correct choice

of the distribution selected for describing the under-

lying distribution of the data will be rejected or

accepted on the basis of a test. Two widely used tests

are the Chi-Square and the Kolomogorov-Smirnov goodness-

of-fit tests. When the number of samples is.small it is

best to use the Kolcmogorov-Smirnov test because the

Chi-Square test loses power due to grouping.

For the purpose of evaluating data utilized in the
examples presented in the following sections, a computer

program was written in Fortran language to estimate the

parameters using ecuations (3.4), (3.7) and (3.8). A

19
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Kolomogorov-Smirnov test was also incorporated in the

computer program in order to determine whether or not the

sample data fit the Type I extreme value distribution.

Graphical Solution

A very convenient method of evaluating sample data

is to plot the data on an appropriate graph paper.

Graph papers have been designed for both the Cumbel Type

I distribution and the Weibull or Type III distribution.

The design of the probability graph paper is such that

data sampled from the governing distribution would plot

as a straight line on the applicable graph paper. The

use of a best-fitted straight line drawn through the

pltted data and the plotting of curves reflecting a

desired confidence limit can be used to determine if

the data fits the selected distribution. In cases where

the plotted data is found to fit a selected distribution,

the parameters of the distribution can be estimated by

usi-,>: Che appropriate scales on the graph paper. The

methods of using the Type I extreme value probability

paper (Gumbel Type I) can be found in Refs. 30 and 31.

For the methods of using Weibull probability paper, the

reader is referred to references 27 and 30.

20
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Other Methods

The increased availability of computers for use by

mathematicians, statisticians and engineers in the past

seven years has greatly increased the methods of

evaluating test data. Methods of evaluating test data

to determine the underlying distribution and estimating

the parameters of the distribution which were formerly

regarded as too difficult or impossible to apply are

becoming conmonplace methods because of increased use of

computers. A compute. program written by Gross (Ref. 16)

uses a regression techuique to determine estimates for

the shape, scale and location parameters of the Weibull

distribution. Greater application of order statistics

has provided new methods of estimating the parameters

of the Type I and Type III extreme value distributions.

Among the new estimation techniques for the Type I

extreme value distribution are the "best linear invariant

estimators" proposed by Mann (Ref. 34) and the nearly

best linear unbiased estimators presented by Hassanein

(Ref. 22). Linear estimators with polynomial coeffi-

cients were presented by Downton (Ref. 3). In Ref. 24,

Harter and Moore present methods of determining the

maximum-likelihood estimates for the parameters of the

21
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Type Iasymptotic distribution from doubly censored

samples.

Mann (Ref. 35) presented tables for obtaining the

best linear invariant estimates of the parameters of the

Weibull distribution. In Ref. 23, Harter and Moore

present a method of finding the maximum likelihood

estimates for the three parameters of the Weibull

distribution from complete and censored samples. Other

methods for estimating the parameters of the Weibull

distribution are presented by White (Ref. 43 and 44),

Menon (Ref. 32) and Leiberman (Ref. 30).

The purpose of this section is to familiarize the

reader with the methods available for analyzing test

data. It is felt that a step by step procedure for the

application of each method is not necessary and is not

within ti>; scope of this thesis. The use of some of

the previously mentioned methods will be made in the

following sections which present the applications of

extreme value theory in reliability analysis.

II 22
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IV. Application of the Exact Distribution

of the Smallest Extreme

This particular application makes use of the weakest-

IRnk theory. Under this theory of failure, each component

is treated as consisting of many sub-components which make

up the component itself in the same manner as links form.

a chain. Then this characteristic life pattern of the

component (chain) is equivalent to the characteristic life

pattern of the sub-component (link) Assuming that the

life length of all N sub-components are independently

and identically distributed with a probability density

function and cumulative distribution function X ,

the life of the composite component would be distributed

according to the smallest order statistic or smallest

extreme; thus,

=1- B-F(4.1)
and

F=7) (4.2)

The reliability function l)is defined as H-()

thus,

23
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F(,, (4.3)

The example is a hypothetical case but is a direct appli-

cation of the theory applied by Epstein (Ref. 8) in the

analysis of paper capacitor failures and the theoretical

example presented by Lloyd and Lipow (Ref. 33). Although

the f3llowing problem is not based on an actual situation,

the theory can be applied in many areas, such as failures

due to corrosive pitting, failures as a result of propa-

gation of cracks due to thermal fatigue, vibration or

stress and also failures resulting from flaws in a

component.

The problem is stated as follows:

A structural member, containing a constant cross-

section area element one-half inch thick, is subjected

to a vibratory stress environment. The element is

fabricated from steel stock containing a large number of

surface defects which have a high probability of develop-

ing into cracks in the vibratory environment. A micro-

scopic examination reveals that the number of thesescopic

defects in the parent stock is such that a piece with an

area equal to the critical surface area of the element

will contain approximately 668 defects on the average.

24



GRE/MATH/67-8

It is also determined that the defects in the irent

stock may be represented with an exponential distri-

bution, with a defect mean depth of 0.02 inches.

Computations of the stress-strength relationship in the

element indicates that it will fail (thereby failing

the structural member) when cracked half way through.

Vibratory tests, approximating the environmental stress,

show a crack growth rate, once started, which is propor-

tional to the time of exposure. The constant of

proportionality is of the form of an acceleration, and

is equal to 1.5 X 10-14 in./sec. 2 . Compute the period

of operation which will degrade the reliability to 95.1%.

Given:

D in.

Z. initial depth of ith pit

N 668 (number of defects)

lu.. = .02 in/defect = 50 defect/in

Constant of proportionality C 1.5 X 10-14

in/sec2

The density function of defects is

A failure occurs when crack propagates to depth D/2
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Solution: 4
It is necessary to determine a new distribution

function for the distribution of defects. The original

distribution was exponential with -he range of 0 to +co

for the variate Z . The new distribution will be

truncated at D (thickness of component) because the

allowable range of the variate is res .ricted to 0 to D.

The efore, the truncated density function is

- -AD

/ i~th

Let - time of penetration of the i crack

1< (4.5) "

where k=

! .5 X

Reliability of the component Pfflis defined as:

II

R(L= Ci- F(+)" (4.6)
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This equation is the same as equation (4.3).

Equation (4.6) can be approximated as follows

I (4.7)

' The basis for this approximation can be found in Ref. 33

and 37.

4

Using equation (4.5)

,('ILtf) = F, (--. <

i Zi is equation (4.4). D

Th- proaiplityrdesity fucto for o th i stiuino

F() - P >D -, C4. -

e
Multiplying through by eMD we oDtain

(11,.4-cg)(4.8)
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Substituting equation (4.8) into equation (4.7) we

obtain

-N D ' -' (4.9)

Because the value of is large (50) in the above

equation the magnitude of e raised to the 'A power is

very large; therefore, the following approximation is

reasonable

(e (D/2 -'

) (4.10)

We now solve for the operating time t which will degrade

the reliability of the structure to 95.1%.

Using equation (4.10)

.9 51 C

4kt 1)= N (Da4-cJ: =) -b

= x o' ecowls

55(a ovr5

Thus, the operating time required to degrade the

reliability of the structure to 95.1% is 556 hours.
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V. Application of Type I Asymptotic

Extreme Value Distribution

Corrosion Pitting of Aluminum

The effect that a corrosive environment has on a

metal structure has always been of great importance to

design engineers because of the possibility of failure

in the form of holes caused by corrosive pitting. A

large amount of money is spent each year in repairing

damage caused by failure of underground storage tanks,

water supply pipes and other metal structures which fail

as a result of the corrosive pitting of the metal. The

study of corrosive pitting of metal is made difficult

by the lack of a suitable variable which can be measured

quantitatively and treated mathematically. One of the

! jmost commonly used measures is the maximum pit depth

developed on metal samples exposed to a corrosive

environment for a fixed period of time.

Aziz (Ref. 1) utilized the method of measuring the

maximum pit depth found on aluminum coupons which were

exposed to tap water for various lengths of time.

For purposes of the experiment, coupons measuring

5" X 2" were manufactured from various aluminum alloys.

Strings, each containing ten of these coupons, were

29
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immersed in a $,00 gallon tank containing tap water. At

the end of a specified time period, the sample coupons

were removed from the water and the maximum pit depth

was measured and recorded. The recorded maximum pit

depth for Alcan 3S-0 aluminum appears in Table 5-1. This

data is found in reference 1.

TABLE 5-1

MAXIMUM PIT DEPTH (MICRONS)

Two One Two Four Six One

Rank Weeks Month Month Month Month Year

1 330 570 600 620 640 700
2 460 620 670 620 650 700
3 500 640 770 670 670 750
4 500 640 790 680 700 770
5 530 700 790 720 720 780
6 540 740 830 780 730 810
7 560 780 860 780 750 820

8 560 810 930 800 770 830
9 580 840 1030 830 780 830

10 910 920 850 930

The data presented in Table 5-1 was plotted on Type I

extreme value probability paper, Figures 5-1 and 5-2,

to determine if the sample data can be fitted to the

extreme value distribution. For purposes of plotting the

data on probability paper, plotting positions were used

versus the ranked data. The median rank plotting position

is defined as Ni- where M is the assigned rank and N
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is the sample size. Reasons for using median rank

plotting positions can be found in references 18 and 19.

Using graphical methods to estimate the parameters

from the sample data, the results are presented in Table

5-2. The Fortran program, mentioned in section III was

TABLE 5-2

ESTIMATES OF DISTRIBUTION PARAMETERS
FOR MAXIMUM PIT DEPTH DATA

Graphical Solution Method of Moments

b Mean / b

2 weeks 475 59.6 510 474.4 55.86

I month 680 77.9 725 678.2 81.04

2 month 755 95.4 810 753.' 94.33

4 month 705 69.5 745 700.5 71.87

6 month 700 48.4 728 698.3 47.96

1 year 765 52.0 795 762.7 50.75

utilized to estimate the parameters from the sample data

and also perform a Kolomogorov-Smirnov goodness-of-fit

test at the 95% confidence level. The results of the

computer analysis are also presented in Table 5-2. A

comparison of the results shows that there is not a

significant difference in the accuracy of the graphical

33

N. -~



GRE/MATH/67-8

solution and the computer solution. The results of the

goodness-of-fit indicates that the data can be assumed j
to be a sample from the Type I largest extreme value

distribution.

Because the corrosive pitting of aluminum can be

accurately represented by the Type I extreme value

distribution, the use of extreme value theory can lead

to some interesting results. In this application, the

natural experimental unit was a coupon of fixed area

which was exposed to a corrosive environment and from

which the deepest pit developed was recorded. Thus,

the return period is the number of coupons that on the

average, must be exposed in order to obtain a pit depth

greater than the observed pit depth. The return period

indicates that the deepest pit observed is a function of

the area exposed to the corrosive environment (Ref. 1).

The value of the return period can be read directly

from the plot on the probability paper. Thus, from the

one month data of Figure 5-1, it can be determined that

at least 100 coupons must, on the average, be exposed

in order to have a pit develop to at least 1060 microns;

whereas on the ten coupons exposed the decpest observed

pit was 910 microns. This can also be stated in another

34
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way: on 100 square inches, the deepest pit that will

be observed, on the average is 910 microns, whereas on

2000 square inches, the deepest observed pit, on the

average will be 1060 microns.

Reliability Applications

Suppose we have a container manufactured from Alcan

3S-0 aluminum and the container is to be used to store

tap water for a one month period. The inner surface

area of the container is 100 square inches and the walls

measure 900 microns in thickness. We wish to determine

the reliability of this container for the one month

period. In this case, reliability is defined as the

probability that a pit less than the thickness of the

container walls will develop. The reliability value can

be determined directly from the one month plotted data

of Figure 5-1 or using the following equation

= C (goo-47 .2

Using either method for solution, the reliability of the

container is found to be 93.5% for the one month period.

This example shows that extreme value theory can

readily be applied to the analysis of corrosive pitting.

In cases where weight and cost of the storage container
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solution and the computer solution. The results of the

goodness-of-fit indicates that the data can be assumed

to be a sample from the Type I largest extreme value

distribution.

Because the corrosive pitting of aluminum can be

accurately represented by the Type I extreme value

distribution, the use of extreme value theory can lead

to some interesting results. In this application, the

natural experimental unit was a coupon of fixed area

which was exposed to a corrosive environment and from

which the deepest pit developed was recorded. Thus,

the return period is the number of coupons that on the

average, must be exposed in order to obtain a pit depth

greater than the observed pit depth. The return period J

indicates that the deepest pit observed is a function of

the area exposed to the corrosive environment (Ref. 1).

The value of the return period can be read directly

from the plot on the probability paper. Thus, from the

one month data of Figure 5-1, it can be determined that

at least 100 coupons must, on the average, be exposed

in order to have a pit develop to at least 1060 microns;

whereas on the ten coupons exposed the deepest obsered

pit was 910 microns. This can also be stated in another
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way: on 100 square inches, the deepest pit that will

be observed, on the average is 910 microns, whereas on

2000 square inches, the deepest observed pit, on the

average will be 1060 microns.

Reliability Applications

Suppose we have a container manufactured from Alcan

3S-0 aluminum and the container 4is to be used to store

tap water for a one month period. The inner surface

area of the container is 100 square inches and the walls

measure 900 microns in thickness. We wish to determine

the reliability of this container for the one month

period. In this case, reliability is defined as the

probability that a pit less than the thickness of the

container walls will develop. The reliability value can

be determined directly from the one month plotted data

of Figure 5-1 or using the following equation

qoc -67?.2e 810.o4

Using either method for solution, the reliability of the

container is found to be 93.5% for the one month period.

This example shows that extreme value theory can

readily be applied to the analysis of corrosive pitting.

In cases where weight and cost of the storage container
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are of major interest, such as the fuel or oxidizer tank

of a ballistic missile, 4t is believed that the use of

extreme value theory in the analysis of the effect of a

corrosive environment can possibly lead to a more optimum

design.

The successful application of extreme value theory

in the analysis of corrosive pitting is also presented

by Eldredge (Ref. 4) and by Finley and Toncre (Ref. 11).

Load Analysis

The problem of designing a structure to adequately

meet the maximum load expected to be experienced by the

structure in the intended environment has always proved

to be a majc. dilemma to design engineers. When problems

of proper load design arose in the design phase of a

project, it was a common practice for the engineer to

base hia calculations on average values and then multiply

his answer by an arbitrary number called the "safety

factor". In many cases, the safety factor represented

nothing but a vague feeliiag of danger involved in the

specification (Ref. 18).
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A structure or component experiences a load failure

when the load applied equals the strength of structure.

This interaction of applied load and structure strength

can be evaluated in two ways. In the first case, the

strength of the structure remains constant but the load

applied is variable. When the appliea load equals or

exceeds the strength of the structure, a failure will

occur. In the second case, the strength of the structure

changes over a period of time which in effect is that

the largest allowable load changes over time. As can

readily be seen, both cases deal with the extremes

encountered and not with the average value. Therefore,

it is logical that the theory of extremes would be quite

applicable in analyzing design problems of this nature.

The following is an example of the application of

e:itrewe value theory in load analysis. An impactograph,

mounted on the skid of a missile shipping contdiner, was

used to record the largest shock acceleration encountered

by a missile on a road trip between Schenectady, New York

and White Sands, New Mexico. The total distance was

about 2500 miles, over a variety of paved roads. The

resulting recorded data is presented in Table 5-3.

(Ref. 26).
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TABLE 5-3

MAXIMUM VERTICAL ACCELERATION

Missile Vertical
Serial Acceleration (g's) TriD

A5 2.4 N.Y. - N.M.
4.5 N.M. - N.Y.

A6 6.0 N.Y. - iW.M.
8.0 N.M. - N.Y.

A7 10.0 N.Y. - N.M.
3.0 N.M. - N.Y.

A8 2.5 N.Y. - N.M.

BI 4.0 N.Y. - N.M.
5.0 N.M. - N.Y.

B2 7.0 N.Y. - N.M.

7.5 N.M. - N.Y.

B3 4.6 N.Y. - N.M.

5.0 N.M. - N.Y.

B4 3.0 N.Y. - N.M.
5.0 N.M. - N.Y.

A plot of this data on extreme value probability

paper, Figure 5-3, indicates that the data can be

represented by the Type I largest extreme value distri-

bution. Using the computer program to estimate the

parameters from the sample data and to perform a

Kolomogorov-Smirnov test, the scale parameter estimate

38
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is 1.77 and the location parameter is 4.105. The results

of the goodness-of-fit test at the 95% confidence level

indicates that we can accept the hypothesis that the

sample was drawn from a Type I largest extreme value

distribution.

If the usual method of applying the three sigma rule

as a safety factor was applied in this case, the estimated

"largest load" would be 11.4 g. This implies that a load

of 11.4 g would occur once in 1,000 trips or an equiv--

alent of 2,500,000 road miles (Ref. 26).

Since it was shown that the data can be represented

by the Type I extreme value distribution, the use of

extreme value theory should lead to more accurate results.

As can readily be seen, the basic unit for the "return

period" is the number of trips required which, on the

average, would result in a load acceleration equal to

or greater than the given value. From Figure 5-3, it

can be seen that a value of 11.4 g corresponds to a

return period of 60 additional trips or 150,000 miles.

It can also be seen that the "expected largest value"

in 1,000 trips is 16.5 g which is over three times the

mean value and which approaches 1.5 times the value of

the three sigma rule. Comparison of the results obtained

40
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Iusing the theory of extremes rather than the three sigma

rule indicates the error involved when the wrong assump-

-tion is made concerning the governing distribution. By

i using the three sigma rule, a normal distribution was

assumed as the underlying distribution when in reality,

Sthe data was best modeled by the Type I largest extreme

value distribution.
t
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I

VI. Type III Asymptotic Extreme
Value Distribution

The cumulative distribution functions for the Type

III largest and smallest extreme value were presented in

Section II equations (2.11) and (2.12). Although both

distributions are referred to as Type III, only the

smallest extreme distribution will be presented in this

section. It has been discovered that the Type III

smallest extreme value distribution has greater appli-

cation in the engineering field than does the largest

extreme value distribution.

The Type III distribution of smallest extremes was

first applied by W. Weibull to analyze data resulting

from failures caused by contact stresses. Because Weibull

was the first to successfully apply the Type III smallest

extreme value distribution in engineering studies, the

distribution is more familiarly known as the Weibull

distribution.

The more commonly defined form of the Weibull

probability density function is

(6.1)
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where; c = shape parameter or Weibull slope

77' = scale parameter

I = location parameter

The general shape of the Weibull density function

is determined by the value ofA, the shape parameter.

A plot of the Weibull density function for various values

of ' with-7 =.7 and Y = 0 is presented in Figure

6-1. It should be noted that when 9= 1 , the Weibull

distribution specializes to the exponential distribution.

When x 2 2, the resulting distribution is the Rayleigh

distribution.

The Weibull cumulative distribution function, which

is derived from equation (6.1) by integration is

F(r -7 e7

= -" (6.2)

The reliability function R((? = -. V() is

(6.3)
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Analysis of Failures of Door Lock Mechanism Assembly

This particular application of the Weibull distri-

bution was presented by Forgione (Ref. 13). The object

of the test was to determine the life characteristic of

a door lock assembly which was used on an automobile.

The purpose of the door lock mechanism was to secure the

door in a closed positicn. Other requirements were that

the door must open and close smoothly and, in the locked

condition, withstand specified static loads so as to

prevent the door from opening.

For purposes of the test, a sample of twelve

mechanisms were placed on test, using a special test

fixture which accurately simulated the impact loads

incurred when a door is slammed shut. The twelve door

lock mechanisms were placed on simultaneous test and

che numbers of opening and closing cycles required until

failure were recorded.

In order to analyze the data on probability paper,

use of median rank tables was made to assign a cumulative

percent failure value to each failure. As was pointed

out by Forgione, the purpose for using median rank is

that when failure history of the entire population is

not known, a statistical estimate is made for the rank
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I

of each failure. The median rank, which has a 50%

probability of being either too high or too low, is the

best estimate of the actual failure rank.

The recorded data and the corresponding value of

median rank is presented in Table 6-1. As is reflected

in Table 6-1, the test was concluded after recording nine

failures with 3 mechanisms removed from test after 122,218

cycles without failure. The three mechanisms removed are

referred to as suspended items. Suspended items must be

taken into account when selecting the median rank values

for the failed items, therefore, the median rank values

in Table 6-1 were obtained from a median rank table for

a sample size of 12.

A plot of the data on Weibull probability paper is

presented on Figure 6-2. Included on the plot, are the

90% confidence bands to aid in determining if the data is

a representative sample from the Weibull distribution.

The resulting straight line plot of the data is an

indication that the underlying failure distribution of

the population is Weibull with cumulative distribution

function given as

T = - e (6.4)
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TABLE 6-1

DOOR LOCK MECHANISM FAILURE DATA

Item Failure Cycles to Median

Number Number Failure Rank

1 1 32,680 0.056

2 2 44,560 0.137

3 3 55,442 0.218

4 4 61,074 0.298

5 5 73,998 0.379

6 6 81,468 0.460

7 7 92.900 0.540

8 8 100,690 0.621

9 9 122,218 0.701

10 Suspension 122,218

11 Suspension 122,218

12 Suspension 122,218

where 6 is the shape parameter

the characteristic life or the number of

cycles at which 63.2 of the items have failed

This distribution is the same as that given by equation

(6.2) except that the location parameter V is •
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One of the objectives of the test was to determine

the BIO life of the component. The BlO life is defined

as the life of the component at 90% reliability. The

value of the BIO life can be read directly from the graph

as 36,800 door slam cycles. Another method of dtermining

the BIO life would be to use the graphical method or

computer method to determine the estimates of the

parameters and use equation (6.3) to solve for the value

of x corresponding to R (.90). Using graphical methods

and the method presented in Ref. 23 to estimate parameters

and equation (6.3) to determine the BIO life, the results

are presented in Table 6-2.

TABLE 6-2

BIO LIFE AND PARAMETER ESTIMATES OF
DOOR LOCK MECHANISM FAILURE 1ATA

Graphical Max. Likelihood

= 2.14 2.37

= 110,000 111,854

0 40

BIO =36,800 43,253
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The BIO life determined from the first set of sample

components was below that required for the component.

An evaluation of the failed parts indicated that all nine

failures were caused by fatigue failure of an actuating

link. Redesign of this component was performed and

another twelve lockin.g mechanisms were placed on -est.

The resulting data is shown plotted on Weibull paper in

Figure 6-3. The BIO life of fe redesigned mechanisms

was determined to be 62,000 cycles. Statistical tests

performed by the author indicated an 88% confidence that

the BIO life of the redesigned item was at least equal

to or greater than the original mechanism. (Ref. 13).

The change of slope of the data plotted in Figure

6-3 indicates a mixed population. As was pointed out

by the author, an evaluation of the cause of failure

indicated that the change of slope resulted from failures

of an actuating spring. This could be expected since

the first failures were link failures having one

distribution and another component would have an

altogether different distribution of failure.

This example shows the flexibility of the Weibull

distribution in that it was used to compare two designs

of a component and different values of the shape

50
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parameter which indicated a failure of a different

component.

Analysis of Step-Motors

In many engineering design applications, the various

life characteristics of a component are used in selecting

a required component for use in a larger system. Life

characteristics such as BIO life, characteristic life,

and mean time between failure (MTBF) are used in various

industries as a measuring dev'ce in comparing one

component with another. In this example, the Weibull

distribution is used to determine the MTBF of step motors

from failure data. The methods and data presented in

this example were utilized by Webb (Ref. 40).

In the article presented by Webb, failure data

resulting from the test of twenty-three motors were

plotted on Exponential, Normal and Weibull paper in an

effort to determine the -dtyndistribution. The

data plotted on Weibull paper resulted in a nearly

straight line indicating that the data is representative

of the Weibull distribution. A plot of the data on

Weibull paper is presented in Figure 6-4.
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The equation used to determine the MTBF for the

Veibull distribution is given as

MTBF f l( + (6.5)

In this equation 77 is the scale parameter or character- I
istic life, 6 is the shape parameter and Findicates the

gama function. Values of the F(W) can be found in any j

standard math table. Using graphical methods, = = 2.06I
and -7Z 5.8 X 106. Solving equation (6.5) results

6in a value of 5.15 X 10 steps for MTBF. In this

particular application, the failures were measured in

steps, hence, the mean steps before failure is used

instead of MTBF.

Corrosion Resistance of Magnesium Alloy Plates

The effects of a corrosive environment have always

been important in selecting the correct metal in the

design of a component or structure which is to be used

in that environment. Corrosive action results in a

depletion of the metal with a resultant loss ofI I

structural strength thereby increasing the possibility F
of failure. This particular analysis of the effects of

corrosion was presented by Berrettoni (Ref. 2).
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The items being tested are magnesium alloy plates

approximately two square inches in area and with a f

thickness of one-tenth of an inch. The specification made

on the plates was that the corrosion weight loss shall

not exceed .120 milligrams per square centimeter per day

(MSCD) with an AQL of 1% when the plates were immersed

in an inhibited aqueous solution of MgBr2 for a seven

day period.

The resulting data of the test performed on two

hundred and ten plates is shown in Table 6-3 (Ref. 2).

An examination of the test data indicates that the

specifications were satisfied because the sample portion

exceeding .120 MSCD was only .487% which was less than

the limit of 1%.

In an attempt to determine what distribution function

characterized the corrosion variation, the data was

plotted on Weibull paper. A plot of this data appears

in Figure 6-5. Two curves are shown in the figure,

curve A is a plot of the original data arid curve B is

the resulting plot after using graphical techniques for

estimating the location parameter. The graphical

estimates of the Weibull parameters are 6 - 1.8, Y=

3 and 7 = 3.67. Using these estimates for the
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TABLE 6-3

CORROSION DATA OF MAGNESIUM ALLOY PLATES

MSCD (102) Percent: Frequency Percent
Less Than

3 9.05034
4 19.05 9.05

5 20.48 28.10

6 20.48 48.58r

7 14.7i6 69.06

8 7.14 83.62

9 5.7'1 90.96.

10 1.90 96.67

11 U.95 98.57

412 0.48 99.52

13 0 100.00
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parameters, the distribution function for the corrosion

variation is

Electromagnetic Relay Life Characteristics

This particular application of the Weibull distri-

bution has been discussed by Fontana (Ref. 12). In this

reference is described a test program performed with a

newly developed relay to determine the functional

relationships between the relay life expectancy and tbe

operating parameters of load current, ambient temperature

and operating frequency.

A group of 150 new relays were divided into fifteen

test samples of ten relays each. Each test sample was

submitted to lie test under varying combinations of

operating stress levels. The range of test levels for

the t ree operating parameters were:

Contact current (I) amp: 5.5 to 14.5

Ambient Temperature (0C): 0 to 150

Operating Frequency
(cycles/min): 5 to 60
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In order to provide a mathematical model which

showed the relationship between the life characteristics

of the relay as a function of the three operating

parameters (current, temperature and frequency) a

regression equation was formulated based on the results

of the fifteen test runs. The equation presented in

the reference is:

Sb , + o + -

++ a + L-4. 2

The values of the b's are the regression coeffi-

cients and the x!, x2 and x3 are coded values of current,

temperature and frequency used on each test run. The

relationship between the coded values and the operating

parameters are:

Current (I) = 3 x, + 10

Temperature ('C) = 50 x2 + 75

Frequency (CPM) = 18.5 x 3 + 32.5

The values of the x's were given as + 1.5 to

indicate the maximum parameter value and -1.5 to indicate

the minimum parameter value. As an example the first

test run had values of x,, x, and x3 equal to -1 which
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corresponds to value of 7 amps, 250C and 14 cycles per

minute.

The fifteen groups of ten relays each were placed

on life test and the resulting times of failure in terms

of cycles were plotted on Weibull graph paper. The data

for the first run is shown plotted on Weibull paper in

Figure 6-6. Graphical est.mates of the shape and scale

parameter were made for each test run. The parameter

(stimates were used as the value of Y in the regression

equation to determine a set of regression coefficients

for each test run. An optimum set of regression coeffi-

cients were obtained which could be used in the

regression equation to estimate the shape and location

parameter for various levels of operating .parameters as

reflected by xl, x 2 and x 3 . The regression coefficients

are given in Table 6-4.

To give an example of using the results of the

experiment suppose we were interested in estimating the

reliability of the relay after 250 hours of operation

with a current of 5 amps, frequency of 20 cpm and ambient

temperature of 85C as operating parameters. Using the

regression equation to estimate the shape parameter and

scale parameter the results are 2.65 and4 = 6.3.
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TABLE 6-4

REGRESSION COEFFICIENTS FOR ELECTROMAGNETIC RELAYS

Coefficients for Coefficients for
Estimating Estimating

bo  4.03 3.45

b -1.61 +0.07

b2  +0.09 -0.41

b -0.12 -0.03

b -3.33 -0.38

b -0.54 -0.01

b -0.60 -0.39

b +0.63 +0.14

b 1 3  -0.19 +0.31

b23 -0.04 -0.14

An estimated Weibull plot using the estimated parameters

appears in Figure 6-7. The reliability for 250 hours of

operation (3 X 105 cycles) can be read from the Weibull
graph as 97%.

This experiment by Fontana (Ref. 12) shows the

important application of the Weibull distribution and

regression techniques in determining the life character-

istics of an electromechanical component. The method

62
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enables the determination of reliability values of the

component which were not attainable by conventional life

testing.

Analysis of Automobile Component Failure Data Using
Weibull Distribution and Type I.Smallest Extreme Value
Distribution

This example of the use of the Weibull distribution

will show the relationship between the WeibulI distri-

bution and the Type I extreme value distribution. It is

further int:ended to show the application of this relation-

ship in the reliability analysis of components exhibiting

a failure pattern which can be modeled with the two-

parameter Weibull distribution.

The relationship that exists between the Type I and

Type III extreme value distribution is: If x is a random

variable having a two parameter Weibull distribution with

shape parameter 'gand scale parameter -/ , then the random

variable Z -L X has the following distribution

function: l~~~i'z( = [

This equation is the same as that given for the Type I

smallest extreme (Equation 2.8, page 12). The parameters

of the Type I smallest extreme value distribution given

64 .
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in terms of the Weibull parameters are, scale parameter

and location parameter I eC7 .

The importance of the relationship that exists

between these distribution is that methods which are used

to estimate thp parameters of the Type I distribution from

sample data can be used to estimate the parameters of the

Weibull distribution data by making the necessary trans-

formation.

In an effort to show how the previously discussed

relationships can 1e applied to the reliability analysis

of mechanical components, use will be made of data

presented in Ref. 43. The data was recorded on thirty

mechanical components which were installed on test

automobiles. The data in terms of miles to failure for

all thirty components are presented in Table 6-5.

As with most data that results for the life test of

components that exhibit a wear-out type failure, a plot

of the data on Weibull probability paper can be used as

a method of determining the underlying failure distri-

bution. The plot of the data (Figure 6-8) indicates

that the underlying distribution appears to be the two-

parameter Weibull. A further test of the data using the

methods presented by Gross (Ref. 16) resulted in accepting
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TABLE 6-5

FAILURE DATA FOR AUTOMOBILE COMPONENTS

Ordered Data Natural Logarithms

(miles)

1 15517.4 9.64972
2 16723.5 9.72457
3 21249.9 9.96411
4 23013.3 10.0438
5 24567.6 10.1092
6 27760.4 10.2314
7 29228.0 10.2829 F
8 32445.7 10.3873 F
9 34006.0 10.4343
10 34424.4 10.4465
11 38057.6 10. 5469

12 38110.1 10.5482
13 38525.0 10.5591
14 39803.3 10.5917
15 40120.9 10.5997
16 40781.9 10.6160
17 41182.9 10.6258
18 44445.5 10.7020
19 45845.4 10.7330
20 46147.9 10.7396
21 46301.0 10.7429
22 48513.2 10.7896
23 50745.2 10.8346
24 51440.7 10.8482

25 52471.1 10.8680
26 53415.1 10.8858
27 53572.4 10.8888
28 58794.9 10.9818
29 60233.1 11.0060
30 62370.5 11.0408
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the hypothesis that the underlying distribution is the

two-parameter Weibull with /9 = 3.37 and -- 44,320.

The acceptance is based on the Kolomogorov-Smirnov

"goodness-of-fit" test at the 95% confidence level.

Maximira-likelihood estimators of the Weibull parameters

based on the sample data were obtained using the method

presented by Harter and Moore (Ref. 23).

The resulting estimates of the Weibull parameters

using graphical solution, regression techniques (Ref. 19)

and maximum-likelihood estimators (Ref. 23) are presented

in Table 6-6. A
TABLE 6-6

WEIBULL PARAMETER ESTIMATES

Graphical Regression Max.-Likelihood
Techniques Techniques Techniques

,9 3.4 3.371 3. 725

- 44,370 449319.5 44s760.59

An alternate method for determining the failure

distribution from the sample data would be to plot the

value Z X from Table 6-5 on Type I extreme value

probability paper. A plot of the data appears in Figure

6-9. The resulting straight line fit of the data

indicates that the variate Z has a Type I smallest

f
68
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extreme value distribution and hence the X variate has i
a two-parameter Weibull. Acceptance of the hypothesis

that the underlying distribution of the Z variate is

the Type I smallest extreme was based on a Kolomogorov-

Smirnov goodness-of-fit test with a 95% confidence level.

Using graphical methods and the method of moments to

estimate the parameters of the Z variate distribution

the results are shown in Table 6-7. Estimates for the

Weibull parameters were made by using the equations
Iada

and . These results are also shown

in Table 6-7.

TABLE 6-7

EXTREME VALUE TYPE I PARAMETER ESTIMATES

Graphical Method of Moments

b= .295 .2885

- 10.70 10.7139

6 = 3.39 3.466

7? - 44,440 44,933

Reliability Application

Suppose we are interested in determining the

reliability of the components for 30,000 miles. Since
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we haN? two distributions which can be used as a model

to determine the answer, a solution will be given using

each model. The reliability value can be read directly

from the Drobability graph paper or by using the parameter

estimates and solving the applicable reliability equation

for the distribution. The results using both methods

are:

Type I Extreme Value Distribution

Graphical: = (o. 30v) 7 7 0/O

Solving P'z.)- ei'F-e
- rjt 0/0

Weibull Distribution

Graphical: 3(3OOOO) oo )/
3 0_ 00 -3 3'

Solving 320

r7(L C

As can be seen from this example, either distri-

bution can be used as a model to analyze wear-out type

failure.
If other than A. -r ^- altimai oi the parameters

is desired, transformation of the data from Weibull
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distribution to the Type I smallest extreme distribution

enables the use of the method of moments to estimate the

parametets. The advantage of using the transformed data

is that the distribution of the variate depends linearly

on the mean and standard deviation of the transformed

variate (Ref. 43).
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VII. Summary and Conclusions

Summarv

The past decade has seen an increased demand being

placed on manufacturers to specify accurate reliability

estimates for mechanical systems and components. Industry

has been required to establish reliability programs to

meet the demands of government contracts, product

guaranties and safety requirements.

Reliability analysis techniques have been firmly

established in the electronics industry. Unfortunately,

the nature of mechanical components has prevented

successful application of these same techniques in the

reliability analysis of mechanical systems. In an attempt

to provide better estimates of mechanical reliability,

greater use is being made of statistical theory to

analyze failure characteristics.

This thesis presents the results of a literature

search to determine the extent to which statistical

theory, in particular extreme value theory is employed

in mechanical reliability analysis. The extreme value

distributions and theory are presented in sufficient

depth to enable the interested reader to understand their

applications in the examples presented in the text.
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It is felt that extreme value theory would prove to be

quite u. Zul in establishing reliability estimates of

mechanical components because of two reasons. First,

increased success in applying effective quality control

techniques has eliminated or controlled the interaction

of a large number of product variables. Control or

elimination of these variables result in products which

possess a skewed failure distribution. Second, in many

applications, especially design, the critical variable

is the extreme rather than the average value.

In the examples presented, actual failure data was

used in applying the analysis techniques. For the Type

I extreme value distribution, two examples were presented.

A total of five examples were presented for the Weibull

or Type III extreme value distribution. Graphical

analysis as well as techniques which are based on order

statistizs were used to estimate the parameters of both

extreme value distributions from the failure data.

It must be remembered that with most statistical

techniques, the objective is to predict the life

characteristice of An entire population on the basis

of a sample of the population. Any predictions made

are based on the assumption that failure patterns
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determined from the data are representative of the parent

population.

Conclus ions

The Type I extreme value distribution has been found

useful in the analysis of corrosive pitting of metals and

the study of loads. The use of this distribution and

extreme value theory has allowed the determination of

the effects of corrosion which had been impossible to

I quantify by other methods. When applied to the study cf

loads, the Type ! distribution provided more accurate

results than the commonly applied three sigma r..le.

The Weibull distribution has been found to apply to

the reliability analysis of electromagnetic relays and

step motors, fatigue failures of automobile components,

the comparison of quality of door locking mechanisms and

the corrosion resistance of magnesium alloy plates. The

Weibull distribution is particularly useful in the

analysis of "wear-out" type failures and has been found

to apply to a wide range of mechanical components.
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