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SUMMARY 

Flow of gas-particle mixtures may exhibit significant relaxation 

effects if the particle velocity and temperature cannot follow rapid changes 

in the flow conditions.    These relaxation phenomena are first demonstrated 

in a discussion of viscous drag and h?at transfer for a single particle 

which has no effect on the gas flow.    If there are enough particles to make 

up a significant fraction of the mass of vhe mixture,  the thermodynamic 

properties of the mixture may differ considerably from those of the gas 

alone,  and a number of these properties are derived.    Equations for one- 

dimensional flow of uniform mixtures are applied to shock waves,   steady 

nozzle flows,  and general nonsteady flows to illustrate the relaxation 

processes.    For low and moderate particle concentrations,  the volume 

occupied by the particles can often be neglected.    Since this assumption 

may not be adequate for high concentrations,   some effects of a finite 

particle volume are also discussed. 
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1.    INTRODUCTION 

There are many engineering applications for flows of a medium 

that consists of a suspension of powdered material or liquid droplets 

in a gas.    A typical example is the ilow in rockets that use a solid propel- 

lant to which aluminum powder has been added for the purpose of improved 

flame stability and heat release.   A» a result,   small solid particles of 

aluminum oxide are formed which must be exhausted with the rest of the 

combustion gases.    Other examples occur in connection with some nuclear 

reactors,  fuel sprays,  air pollution and conveying of powdered materials. 

Most of these flows involve changes of the gas velocity and 

temperature.    Gas-particle interaction through viscous drag and heat 

transfer produces corresponding changes in the particles.    These processes 

are relatively slow,   so that for fast changes in the gas phase,  considerable 

deviations from equilibrium may occur.    Thus,  one has to deal with typical 

relaxation processes. 

A flow of a pure gas with sufficiently large and rapid temperature 

changes deviates from thermodynamic equilibrium because some degrees 

of freedom in the molecules cannot follow these changes without lag.    This 

behavior has led to such concepts as translational and vibrational temperatures. 

Similarly,  a gas-particle flow must be characterized by a gas temperature 

and a possibly different particle temperature.    Further complications 

arise because the velocity of the particles also may be different from 

that of the gas. 
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A single particle that is not in equilibrium with the gas flow simply 

represents a poor "tracer,:I but if there are enough particle? to form a 

significant fraction of the mass of the mixture,  their interaction with the 

gas affects the gas flow.    Rather complicated flows can therefore develop 

as a result of the re^xation processes.    As in the case of pure gas flows, 

the rate at which deviations from equilibrium tend to be eliminated may be 

fast or slow compared with the rate at which flow changes take place.    It 

is therefore possible to consider "frozen" flow in which no relaxation 

processes take place, equilibrium flows for which relaxation is assumed 

to be infinitely fast, and intermediate nonequilibrium flows. 

Only momentum exchange and heat transfer between the gas and the 

particles has been mentioned so far.    Mass transfer by condensation, 

evaporation,   or chemical reaction represents another important process, 

but only permanent particles will be considered here.    No distinction will 

be made between solid particles and liquid droplets. *  All flows will be 

treated as one-dimensional,   that is,  the particles will be assumed to be 

uniformly distributed over the cross section of a duct.    There are many 

important situations in which the particle distribution is not uniform or 

the flow not one-dimensional.    These involve considerable complications 

of the analysis without contributing to further insight into the relaxation 

processes and therefore will not be considered. 

* When the gas velocity differs sufficiently from that of a liquid droplet, 
the latter may break up as a result of the shear force {Gordon, 3 959). 
This phenomenon also will not be considered. 
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The discussion starts with a description of the nature of gas- 

particle interactions and the behavior of sinjle particles.    Before considering 

flows of gas-particle fixtures,  the thormodynamic properties of such mixtures 

will be derived,  since they may differ considerably from those of the gas 

alone.    The equations which describe one-dimensional flow then are derived 

and applied to several typical cases to illustrate various aspects of the flow 

modifications that result from the presence of the particles. 

Frequent references to previous publications are given:, most of 

these should be considered as representative examples,   and no attempt is 

made to provide a complete bibliography.    Extensive analytical studies that 

are published elsewhere are outlined only in general.    Reference to the original 

literature should be made for further details. 

2.    GAS PARTICLE INTERACTION 

a.    Viscous Drag 

Before discussing flows of gas-particle mixtures,  it is helpful 

to consider the behavior of a single particle that is not in equilibrium with 

the surrounding gas and does not affect the gas except in its immediate 

vicinity.    Important qualitative aspects of the relaxation processes can be 

brought out by this approach. 

Consider a spherical particle of diameteri)  and density p    moving 

with a velocity u.f   in a gas having a density p and velocity u. that need not 

be constant.    In the absence of external forces and for sufficiently small 

relative velocities,   the equation of motion is given by (Hinze,   1959) 
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where/^  is the viscosity of the gas,  and % and t are the position and 

time coordinates.    The substantial derivatives must be taken along the 

trajectories of the gas and of the particles,   so that 

^— =   — +■ M ■%- 
J>t       d-t d*> 

and AL 
Vt dt        p d% 

(2.1) 

(2.2) 

Txi left-hand side of Eq.   (2. 1) represents the product of particle mass 

and acceleration.    The right-hand side indicates the various forces that 

act on the particle,  and the first term is the viscous drag according to 

Stokes' law.    The second term represents the effect of the pressure 

gradient in the gas which may be expressed by the acceleration of the 

gas according to the momentum equation (Hinze,   1959) 

Du, 

(2.3) 

In gas-particle flows,   Eq.   (2. 3) does not hold (see Section 4),   and this 

substitution is then not permissible.    The third term indicates the force 

needed to accelerate the added mass of the particle relative to the fluid 

(for spherical particles,  the added mass is equal to one-half of the mass 

of the displaced fluid),  and the integral term accounts for the deviations 
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of the flow pattern around the particle from that for steady flow.    Under 

the usual conditions in which p    exceeds p  by about three orders of 

magnitude,   only the viscous drag needs to be considered and the other 

terms may be neglected {Hinze,   1959; Fuchs,   1964,   pp.   70-73).    This 

simplification may not be permissible under unusual conditions (high gas 

pressures or hollow particles),  but such situations will not be considered. 

If the particle velocity with respect to the gas is large enough, 

Stokes drag in Eq.   (2. 1) becomes inaccurate,  and a more appropriate drag 

force should be used.    This force is expressed as the product of the dynamic 

head of the relative motion acting on the cross-sectional area of the particle 

and an empirical drag coefficient Cp   ,   so that 

D"g=       q,^p   j e  I«" up\   (*- UF*> (2.4) 

Writing the square of the relative velocity in this form insures that the 

drag always has the correct sign.    After substituting Eq.  (2.4) for the 

viscous-drag term in Eq.  (2.1),   omitting the negligible terms,  and dividing 

by the mass of the particle,  the equation of motion for a single solid particle 

in a gas becomes 

V* **-(• ^     3       P     . .   , 
-p—   s  CJ> 4J> TF   '"'""I  ^-"r) 

(2.5) 

In general,  the drag coefficient is expressed as an empirical function 

of the particle Reynolds number which always is taken as a positive quantity 

pPli«.- Up I 
rv«    a  

(2.6) 
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Stokes drag corresponds to 

24 

(2.7a) 

Although Eq.   (2. 7a) is valid only for small Reynolds numbers (Re <• 1),  it is 

often used for qualitative studies because it leads to the simple expression 

shown in Eq.   (2. 1).    For larger Reynolds numbers,   extensive experimental 

determinations of the drag coefficient have been made (Schlichting,   1955, 

or Fuchs,   1964,   p.   32).    These results will be referred to as the "standard" 

drag coefficient for want of a generally accepted name.    They are shown in 

Fig.   1 for Reynolds numbers below one thousand which are of interest for 

gas-particle flows.    Various analytical approximations to this relationship 

may be found in the literature.    For example,  Gilbert,  Davis and Altman 

(1955) used 

28 
CD   *   0.4B  + 5 

' (2.7b) 

and Kliachko (Fuchs,   1964,  p.   33) suggested 

r 24 <* 

*e K* (2.7c) 

(The reciprocal of the first term in this reference is an obvious misprint. ) 

The latter formula approaches Stokes drag for small Reynolds numbers 

and should also be convenient for analytical studies (Putnam,   1961),  but 

apparently it has not been used extensively.    Other expressions for the 
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drag coefficient may be used for gas-particle flows as discussed in 

Section 4.   A few points,  representing Eqs.  (2. 7b) and (2. 7c) are entered 

in Fig.   1 to demonstrate that these equations give a good fit to the standard 

drag coefficient in the range of interest, while the Stokes drag of Eq.  (2. 7a) 

is markedly too low for higher Reynolds numbers. 

In the foregoing discussion,  continuum flow around the particle is implied, 

that is, the molecular mean free path in the gas must be small compared 

with the particle dimensions.    For particles much smaller than one micron, 

this condition is usually not satisfied, and corrections to the drag coefficient 

must be applied.    Such corrections may be found in the literature (Schaaf 

and Chambre',   1958; Carlson and Hoglund,   1964;  Willis,   1966; anl Crowe, 

1967), but their inclusion in the analysis would go beyond the scope of the 

present discussion. 

Consider the motion of a single particle in a gas that flows with a 

constant velocity u , and assume that Stokes drag can be applied. Equation 

t2.5) then becomes 

du..        18 m.    , . 
(U-U>P) (2.8) 

dt V%pfs 

with the solution 

up- u   -   (upo - u.) e " * r" (2. 9) 

where ILPO is the initial particle velocity, and 

- 
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_    P*P, (2.10) 
>'      18 p, 

is the relaxation time for the particle velocity.    The distance by which a 

particle slips with respect to the gas before reaching equilibrium is readily 

obtained by integration of Eq.  (2. 9) from zero to infinity with the result 

that the slip is equal to   T^ (u.p- u.) . 

If the drag coefficient were given by another expression, the resultant 

differential equation would, in general, have to be solved numerically 

(for instance, Hoenig,   1957), and the result would no longer be a simple 

exponential function.    Nevertheless, Tv  would still be a convenient 

qualitative measure of velocity relaxation and would also be a natural 

reference time for dimensionless representation of data. 

b.    Heat Transfer 

Temperature relaxation of a particle may be treated similarly to 

velocity relaxation.    Let  T and   Tp    be the gas and the particle temperatures 

and -A  the heat-transfer coefficient.    The heat balance for a spherical 

particle then becomes 

H£ppC^-   -   AirJ)z(T-Tp) (2.11) 
(p     rP      dt R 

where <c is the specific heat of the particle material.    The heat-transfer 

coefficient is conveniently expressed in terms of a Nus'   \t number 

""-     "    ~Y (2.12) 
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where ~A is the thermal conductivity of the gas.    For pure heat conduction, 

a value Nu = 2 applies,  but if the particle moves with respect to the gas, 

additional heat transfer by convection takes place.    The Nusselt number 

then may be expressed as a function of the particle Reynolds number,  and several 

such relationships can be found in the literature.    One frequently used 

empirical relationship for steady flow is (Knudsen and Katz,   1958) 

No.  ■ 2 + o.fe Pr'^R«''* (2. 13) 

where ft-* }*-<-*>IA  is the Prandtl number,  andc^ the specific heat of 

the gas at constant pressure.    This relationship is shown in Fig.  2 for 

Pr   =   0. 7, which is a reasonable value for many commonly used gases. 

If the particle temperature were high enough for radiative heat transfer 

to become important, a more elaborate heat-transfer   coefficient would be 

needed (Simmons and Spadaro,   1965).    As in the case of the drag coefficient, 

a correction should be applied if the assumption of continuum flow around 

the particle does not hold (Schaaf and Chambre,   1958),  but only continuum, 

flow will be considered in the following. 

If Nu, = 2 is assumed, Eqs. (2. 11) and (2. 12) are easily solved for a 

constant gas temperature with the result 

rr-T  -(7;(0-T)e-t/rr (2.14) 

where  Tfe   is the initial particle temperature and 

rr "    k  HP"  *   iP"S   *~ (2.15) 

--*#'• 
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is the relaxation time for heat transfer.    The relationship between    Tr 

and Zv   is established through Eq.   (2. 10),  where the ratio 5   = £/&p ^ias 

been introduced.    Since the Prandtl number of many gases is close to 2/3 

and j£  is of order unity for many gas-particle combinations,  it can be seen 

that the temperature and velocity relaxation times are approximately equal 

(Marble,   1963a).    If the Reynolds number term in Eq.  (2. 13) cannot be 

neglected,   Eq.   (2. 11) must be integrated  numerically    and  ZT   is then 

only a convenient qualitative measure of temperature relaxation. 

In the foregoing discussion it was assumed that the temperature is 

uniform inside the particle,  but heat flow into,   or out of,  a particle leads to 

internal temperature gradients.    The question arises therefore,  whether 

heat conduction within the particle reduces these gradients fast enough 

that a single temperature can be assigned to the particle.    To evaluate 

this process,   assume that the surface temperature is suddenly changed 

and maintained at a new level.    Let   q      be the total amount of heat that 

must be transferred to reestablish equilibrium, and o the heat transferred 

after a time t .    The-ratio Q /Q     is given by (Carslaw and Jaeger,   1959) as 

(2.16) 

where   9 = 4 t(pt/J)    is a dimensionless time and  k(p   is the thermal 

diffusivity of the particle material.    Evaluation of Eq.  (2. 16) yields the 

following values 

10 
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&  - 4 *>*/£* 0.1 0.2 0.4 0.6 0.8 

%'%- 
0. 7705 0.9155 0.9883 0. 9984 0.9998 

These show that almost 99% of the heat transfer is completed when 9 * 0.+ 

or when  t * O.iT) / K.p ' ^i   .    The time  Zt   thus may be considered as 

a measure for the rate of internal temperature equalization and compared 

with the relaxation time for heat transfer  XT   .    From the definition 

Kp* "hp I?»*-  • where -*p is the thermal conductivity of the particle 

material, and Eq.  (2. 15) the ratio   tc/Tr  is found to be approximately 

equal to the ratio of the thermal conductivities ~R /Ap.   For metallic 

particles in air, this ratio is of the order of only 10    , and for most 

insulating materials in air it is still less than 0. 1.    For extreme conditions, 

however, the ratio may approach unity and even exceed this value.    For 

example, it reaches a value of about two for magnesium oxide in hydrogen. 

Effects of such long temperature equalization times on gas-particle flows 

apparently have not yet been studied.    As demonstrated by the examples in 

Section 5.  an error in the assumed heat transfer may not affect particle 

motion significantly. 

3.    THERMODYNAMIC PROPERTIES OF GAS-PARTICLE MIXTURES 

In describing the thermodynamic properties of a gas-particle 

mixture,  a careful distinction must be made between the density of the 

particle material p     and the amount of particle material in a unit volume 

of the mixture (Rudinger,   1965).    The latter quantity will be denoted by<rj,   and 

I 
11 
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might be called the particle concentration.   Similarly, there is a 

distinction between the gas density p and the gas concentration <s~ .   IS £ 

denotes the volume fraction of the particles, then,  clearly, one has 

0-p  -£pf and a-   -- d-£)p (3.1) 

The mass fraction of the particles V is given by 

<9 <r + 0-- 

Combination of these relationships yields 

£ 
1-S 

<r>       f> q>        p 
er     9, 1 -<P     9, 

and 

(3.2) 

(3.3) 

cr ?(>-%) 
(3.4) 

If the mixture is flowing through a duct of cross section A, the local 

mass flow rates of the gas and of the particles are given by »i *  a~XL A 

and »ip - £T> VLpA .    These flow rates are constant only if the flow is 

steady.    Let the mass-flow ratio (loading ratio) be denoted by ^  so that 

1   = fV   v*. 
i-e   e 

q>     u.. 
■Q     XL 

(3.5) 

This equation shows clearly that, although ^ is constant for a steady 

flow,   Cf    is constant only if the ratio ltp/u. is also constant. 

1' 
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In contrast,   c"   is constant only if <Tr   is constant, because the particles 

may be considered as incompressible.   It is evident from Eq. (3. 3) that, 

under the usual conditions for which the density ratio p /pp is of the order 

of 10"  , the particle volume fraction can become significant only for a 

rather high particle loading.    For low or moderate loadings the particle 

volume fraction can be neglected.    Mathematically,  a vanishing particle 

volume implies that  pp goes to infinity and E to zero in such a manner 

that the product So    remains finite and equal to <r>   . 

The average distance between neighboring particles is of the order 

D/£ >ft .    For particle diameters smaller than 0.1 mm, mass fractions 

as low as 0. 03, and a density ratio   p/pf  of the order of 10    , the average 

particle spacing would be less than about 3 mm,  so that both the particles 

and their average separations generally are small compared with the 

dimensions of a flow field.    It then seems natural to treat the particles 

as a species of heavy molecules with a molecular weight that is several 

orders of magnitude larger than that of the gas even for particles as 

small as 10      cm.    For any mixture composition of practical interest, the 

number   density of the particles is thus insignificant in comparison with 

that of the gas molecules, and the contribution of the particles to the 

pressure of the mixture is negligible.    Therefore,   the pressure of the 

gas-particle mixture is given by the pressure in the gas phase alone which, 

for a perfect gas,   is 

f   PRr (3.6) 

13 
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where F{   is the individual gas constant for the gas phase.    To obtain an 

equation of state for the mixture, the gas density o  in Eq.  (3. 6) must be 

expressed in terms of the mixture density which follows from Eqs.   (3. 1) and 

(3.3) as 

If.   then,   p   is eliminated from Eqs.  (3. 6) and (3. 7),  the equation of 

state for a gas-particle mixture is obtained as 

(1 -(f)-RT    =      -TTKHT 

(3.8) 

which is not the equation of state for a perfect gas since  f>M  appears both 

in the numerator and the denominator.    The term containing pH   in the 

denominator comes from the particle volume, and the important conclusion 

is therefore reached that a mixture of solid particles and a perfect gas may 

be treated as a perfect gas only if the particle volume can be neglected. 

The effective gas constant of the mixture is given by 

ff„   - (1-<P) * 

The internal energy of the mixture is 

EM   «   (t - Q) E + CfEp   *  d-q>)^v T t  qp-c Tp 

(3.10) 

and the enthalpy then follows from its definition as 

14 

(3.9) 



because 

HM   -    £„♦£   ' (1-1>("*T*f) + l(*Tß+£) (3.") 

The ratio of the two pressure terms in Eq.  (3. 11) is equal to yto-0 according 

to Eq.   (3. 3).    The last term of the enthalpy is therefore only of the order 

of the particle volume fraction.   Substitution of Eq.  (3. 6) and of the 

relationship 

•*> - ^v 

finally yields 

HM  - (i-cf> H + (pH, - a~<y)*.pT + <?UTP + f£) 

where p^  has been replaced by <rp l£  , according to Eq. (3. 1). 

(3. 12) 

The specific heats of the equilibrium mixture at constant pressure 

and constant volume are defined by {9HM/$7)    and ( dEH /dT   )      . 

The ratio of the specific heats for the mixture, *H  , therefore is related 

to that of the gas, 0  , by 

i + fn 
1§\ 

(3.13) 

This equation shows that the specific-heat ratio of a gas-particle mixture 

is always smaller than that of the gas phase.    Figure 3 represents this 

relationship for a diatomic gas and for several values of f which encompass the 

entire range that ordinarily might be encountered; it shows the marked reductions 

15 



of the specific-heat ratio that may occur. 

It is   important to derive relationships that apply for isentropic 

(equilibrium) changes of state of a gas-particle mixture.    The second law 

of thermodynamic yields 

H A        *      JC      —   -*—      - x"'     =    (s 

where J$H    is the entropy of the mixture.    This equation may be integrated 

if the ratio^b/7"   is expressed in terms of  p      from Eq.  (3. 8) with the result 

1'   9?M^P "Ai-JiL/eJ       s   cm> 
(3. 14) 

It is evident from Eq.   (3. 7) that the expression in parentheses is equal to 

p/(t - (f) t  and since  <p is constant for an equilibrium mixture,   one obtains 

(3.15) 

and by substitution from Eq.  (3. 6) 

(3. 16) 

Isentropic changes of state of a gas-particle mixture can therefore be 

computed by relationships that are analogous to those for a perfect gas, 

but are based on the state variables of the gas phase and the ratio of the 

specific heats of the mixture.    This peculiar result is a consequence of 

the particle volume not participating in volume changes of the mixture. 

16 
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The last thermodynamic property of a gas-particle mixture to be 

considered here is the speed of sound.   As in the case of pure-gas flow, 

a distinction must be made between the frozen speed of sound of the mixture 

a, and the equilibrium speed ae.    Frozen flow implies no viscous interaction 

or heat transfer between the gas and the particles so that 

(3.17) 

where a. is the speed of sound in the gas phase. 

The equilibrium speed of sound may be derived from its definition 

•        \$J.   W.W- (3.18) 

where subscripts e   indicate that the derivatives must be evaluated 

for equilibrium (isentropic) changes of state.    The first factor in Eq.   (3. 18) 

can be obtained from Eq.   (3. 16) and the second factor from Eqs.   (3. 3) and 

(3.7).    Equations (3. 6),   (3. 13),   (3. 17) and (3. 18) then yield 

(3.19) 

17 



All quantities on the right-hand <?ide of the foregoing expression with the 

exception of £ d# p nd only on the composition of the mixture,  while £■ also 

defends on the gas density as seen from Eq.   (3. 3).    Since the speed of sound 

of the gas phase varies only with the temperature,   the equilibrium speed 

of sound of a gas-particle mixture is a function of the temperature alone only if 

the particle volume can be neglected.    Figure 4 shows the relationship between 

a.e/a. and <p for a diatomic gas and o/p     = 0. 01 for three values of ^ •    For the 

sake of clarity, only the curve for the typical value    5    = 1 is plotted in 

its entirety.and for this case the consequences of setting      £  m 0       are 

also shown (broken line).    Clearly, the addition of particles to a gas can 

lead to large reductions of the speed of sound which are only slightly 

affected by the value of    ?     .    The  effect of the particle volume becomes 

appreciable only for large density ratios   p/p_     and large particle mass 

fractions.   As  <p   approaches unity, the equilibrium speed of sound 

approaches zero if the particle volume is neglected and infinity (the speed 

of sound in the incompressible particles) if the complete formula is used. 

Of course, once the particle concentration becomes so large that particles 

are in frequent contact with one another,a solid packing is approached, and 

the relationships do no longer apply.    Dense packing of spheres corresponds 

to approximately £ - 0.74, or    <p   = 0.997 in the present example.    The 

minimum of the exact curve is reached when approximately one-half of the 

mixture volume is taken up by the particles (Pudinger,  1965). 

Equation (3. 3) indicates that the particle volume fraction is quite small 

except under conditions of heavy particle loading or unusually high gas densities. 
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For many flows,   the density ratio p/o     is of the order of 0. 001,  and the 

mass fraction of the particles in smaller than 0. 5.    (A typical value for a 

eolid-propellant rocket is ^ = 0. 3. )   It is therefore often permissible to 

neglect the particle volume and thereby avoid the complications that arise 

from the £-terms in the equations.    The assumption  £ = 0 is made in most 

analyses of gas-particle flow,  but some aspects of a finite particle volume 

will be discussed in the following. 

4.    GENERAL EQUATIONS FOR ONE-DIMENSIONAL GAS PARTICLE FLOW 

Consider a flow of a gas-particle mixture through a duct of cross 

section A which may vary along the duct.    The conditions of the gas are 

completely described if its velocity u. and two state variables,   say a- and  T , 

are known as function    ^f position and time.    Similarly,   the particle conditions 

are described by "U-p , cr'p   and   T?   .    Six simultaneous equations are therefore 

needed to compute the flow in a duct of prescribed shape.    Often,   it is 

convenient to introduce additional variables,   such as pressure,  and appro- 

priate thermodynamic relationships,   such as those derived in Section 3, 

then provide the needed additional equations. 

To formulate the equations,   the following assumptions are made. 

Some of these have already been discussed in the preceding sections. 

1. The gas obeys the perfect-gas law,   and the specific heats 

are constant. 

2. The particles are spherical,   of uniform size,  and incom- 

pressible; their specific heat is constant,   and the temperature 

is uniform within each particle. 
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3. The particles are uniformly distributed over the cross section 

of a duct,  and their size and average spacing are small compared 

with the dimensions of the cross section of the duct. 

4. The flow is treated as one-dimensional so that changes of the 

cross-sectional area of the duct must be sufficiently gradual. 

Boundary-layer effects and heat exchange with the walls are 

not considered.    However,  the viscosity and thermal conductivity 

of the gas enter into the calculation of particle drag and heat 

transfer between the gas and the particle. 

5. The drag coefficient and Nusselt number are prescribed as 

functions of the particle Reynolds number. 

6. The effect of the particles on the gas flow appears a' first 

in the wake of the particles and is then distributed over the 

rest of the gas by mixing.    In view of assumption No.   3,   this 

mixing involves only a small gas volume and is therefore 

assumed to take place instantaneously. 

7. The particles do not contribute to the pressure. 

8. No external forces (such as gravity) or heat exchange affect 

the mixture,   and no mass transfer takes place between the 

gas and the particles. 

Derivation of the six equations to determine the flow of a 

gas-particle mixture in a duct of varying cross section follows the 

same general approach as for a pure gas (Liepmann and Roshko, 

1957,   Chapter 2) and will therefore not be presented in detail. 
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The continuity equation for the gas simply states that the net mass 

flux into a volume element leads to a  change of the gas concentration with 

the element,  or 

3 (<ru, A )    =    . da- 
(4.1) 

An entirely analogous equation holds for the particles, 

eC<7->xu,A)_   A££» (4.2) 
dx. dt 

The momentum equation for the gas relates the acceleration of a 

mass elem it to the force that acts on it, namely, that produced by the 

pressure gradient and the force of the gas-particle interaction 

Dt 

2-*> —   i-Z-   -    gas-particle interaction term 

Since the particles themselves do not exert a pressure,  the corresponding 

equation for the particles is 

Dt 
m     gas-particle interaction term 

By adding these two equations,   the interaction term may be eliminated 

once,   and one obtains the momentum equation for the entire mixture as 

o- —    + 
Dt 

2*L 
(4.3) 
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The momentum equation for the particles may be represented 

by the equation of motion for a single particle,   Eq.   (2. 1).    As discussed 

in connection with that equation,   the viscous-drag term should be replaced 

by Eq.   (2,4) and the pressure gradient is now given by Eq.   (4. 3) instead 

of Eq.   (2. 3).    If these substitutions are made,  and the particle volume 

fraction £ is introduced through Eq.   (3. 1),  the equation of motion for 

a particle is obtained in the form 

It-€)%&■   -*&-£■  l*-",U«-*r>   •   * 
(4.4) 

where all other terms have been neglected as in the derivation of Eq.   (2. 5), 

because p    is so much larger than ^>  .    It will be convenient to use   § as an 

abbreviation for the right-hand side of the equation.    Comparison of Eq.  (4.4) 

with Eq.   (2. 5) shows that a finite particle volume fraction introduces the 

factor ( 1-£   ) in the equation of motion of the particles 

The drag coefficient in Eq.   (4. 4) must be specified as some 

function of the particle Reynolds number as in the case of a single particle, 

and relationships such as those given by Eqs.   (2. 7a) - (2. 7c) have often 

been used.    Experimental observations indicate that the effective drag 

coefficient for flows of gas-particle mixtures may differ considerably from 

that for a single particle.    Ingebo (1956) proposed the relationship 
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which is also shown in Fig.   1; it lies approximately half-way between the 

"standard" and the Stokes drag coefficients.    Wide discrepancies exist 

between the results obtained by different investigators.    A number of these 

studies were reviewed by Torobin and Gauvin (I960); subsequent measurements 

were also made by Rudinger (1963) and Gorjup (1967),  but there is as yet no 

general agreement as to what data should be used in a given case.    This un- 

certainty about the drag coefficient does not affect a fundamental discussion 

of the relaxation phenomena,  and the illustrative examples presented later 

in this chapter are based on Eqs.   (2. 7a),   (2. 7b) and (4. 5) for which numerical 

results were available. 

Derivation    of the energy equations for a gas-particle mixture 

follows a reasoning analogous to that used for the momentum equations.    A 

relationship for the entire mixture does not contain any terms that refer to 

the interaction between the gas and the particles.    The energy equation of 

the mixture thus relates the net energy flux into a volume element to the 

rate of energy accumulation within the element,   or 

After substitution for the internal energies and enthalpies from Eqs.   (3. 10) 

and (3. 12),   one obtains 
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A-2- <r(±vJ--t <cvT) v- <r> (1 uf + *Tp) 

(4.6) 

The energy equation for the particles may be represented by the energy 

balance for a single particle which follows from Eqs.   (2. 11) and 2. 12) as 

(4.7) 

where     Iff      is an abbreviation for the right-hand side.    An appropriate 

relationship between the Nusselt number and the particle Reynolds number 

must be prescribed.    Customarily,   it has been assumed that the heat 

exchange between the gas and the particies can be described by the same 

Nusselt number that applies to a single particle in steady flow,  and both 

Nu = 2 (pure heat conduction) and relationships such as Eq.   (2. 13) (heat 

conduction and convection for a single particle in steady flow) have been 

used.    It should be expected that the presence of many particles would have 

some effect on the effective Nusselt number,but this problem apparently 

has received only limited attention so far (Hoglund,   1962). 

The required six equations for a gas-particle flow are thus 

given by Eqs.   (4. 1) - (4.4),   (4. 6) and (4. 7) and appropriate assumptions 

for the drag coefficient and the Nusselt number.    Three additional variables, 

>> , o ,  and £,  have been introduced,  and the needed extra equations are 

given by the equation of state for the gas,   Eq.   (3. 6),  and the relationships 
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between the densities and concentrations,  Eqs.   (3. 1).    It is evident that 

this system of equations cannot be solved analytically and that numerical 

solutions of specific problems are best obtained with the aid of a computer. 

A number of examples are presented in the following sections to illustrate 

the relaxation phenomena,  but details of the numerical computing procedures 

will be omitted. 

5.    SHOCK WAVES 

a.    Discontinuous Shock Front 

Shock waves propagating in a duct of constant cross section 

represent a particularly good example of relaxation in a gas-particle mixture. 

If a shock wave travels through a stationary equilibrium mixture,  the gas 

pressure and temperature undergo a practically instantaneous rise at the 

shock front,  while the velocity decreases.    Behind the shock front,  the particles 

thus suddenly find themselves   in a gas of different velocity and temperature 

until their subsequent interaction with the gas gradually establishes new 

equilibrium conditions. 

In a coordinate system fixed to the shock wave,  the flow is steady, 

and some of the equations in the preceding section then can be integrated. 

Let subscript zero indicate the prescribed state of the mixture upstream 

of the shock front and     ic0     the velocity with which the mixture approaches 

the  shock.    The continuity equations, Eqs.  (4. 1) and (4. 2) then become 

(t-£)pu.A     -    (t- £0) p. u. A     «    m. 
(5.1) 
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and 

(5.2) 
*ftM   '^f^.-4   r    7 m 

where the concentrations of the gas and of the particles have been expressed 

in terms of the corresponding densities and the particle volume fraction 

according to Eqs.   (3. 1). 

With the help of Eq.   (2. 2) with 3/9*   =0 (steady flow) and Eqs.   (5. 1) 

and (5. 2),  the momentum equation for the mixture,   Eq.   (4. 3) can be 

integrated and written in the form 

Integration of the energy equation,  Eq.   (4. 6),   yields 

(5.3) 

(5.4) 

As pointed out in connection with Eq.   (3. 1 1),   the pressure terms in 

this equation are of the order of the particle volume fraction. 

The equation of motion and the energy balance of a particle, 

Eqs.   (4. 4) and (4. 7), may be written as 

and 

u>dT'   -^TW'T-V (5.t) 
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In addition to Eqs.   (5. 1) to (5. 6),  the equation of state for the gas, 

Eq.   (3. 6) applies    so that there are seven equations for the seven unknowns 

U , p   ,   7",yb,   v.p ,   Tf,   ,  and 6 . 

Consider first the more important case of moderate particle   loading 

for which the particle volume fraction can be neglected.    Deletion of the 

terms   of order £   in Eqs.   (5. 1).   (5. 4)    and (5. 5) leads to some simplification 

of the equations.    In Eq.   (5. 2) the product €op   equals the particle con- 

centration 07    according to Eq.   (3. 1) and cannot be neglected.    Note that 

the particle concentration appears only in Eq,   (5. 2) which thus serves to 

compute <Tp   after the other unknowns have been evaluated. 

During the short time in which a particle traverses the shock front, 

its velocity and temperature cannot be affected by viscous drag and heat 

transfer.    The frozen state of the particles,   immediately behind the shock 

front,   is therefore given by 

Uf    -    U0 and Tpf  --   71 (5.7) o 

If these conditions are substituted into Eqs.   (5.3) and (5.4),  all terms that 

refer to the particles drop out,  and these equations,  together with Eq.   (5. 1), 

reduce to the well-known conservation equations for a shock wave in a  pure 

gas with the solution (Liepmann and Roshko,    1957,   pp.   57-60) 

a*. A   
(Jjuab± (5.8) 
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and Tf    _   -ft i .   3L ft. ,  , 4  art-0  ^Vi ,.    n 

(5.10) 

where the frozen shock Mach number is given by Mr  m   V.   /a«, 0   =   XL /a.   i 

according to Eq.   (3. 17).    The conditions in the mixture immediately behind 

the shock front are therefore completely determined. 

The new equilibrium that is eventually established downstream of the 

shock front is also readily found by setting    U- s v.^- u.e  and    T- Tp = T€ 

By using Eqs.   (3. 5),   (3. 13),  and 3. 19,   it can be verified that the same shock 

equations are obtained as before,  but this time for a gas with the thermo- 

dynamic properties of the equilibrium mixture and for an equilibrium shock 

Mach number    MK = u./a#0     .    The equilibrium conditions are therefore 

given by 

&.   ;*gL«*l) (5.1Z) 

and 

Te    '    f>.    Q. (5.13) 
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Since    a.Ä    issmaller than      af     , according to Eqs.   (3. 17) and (3. 19),  it 

follows that    Me      is greater than    Mf 

The transition from frozen to equilibrium flow must be obtained by 

numerical integration of the equations with the initial conditions being given 

by the frozen flow.    One method for solving the equations was suggested by 

Carrier (1958), who eliminated % by dividing Eq.  (5.6) by Eq.   (■>, 5) and 

thereby obtained 

1ZL =    i      N"-    T-TP  ä J_ T-TF 
du,p fft      Cj,Re    -U.-U.,   ~    5     xc-ur (5.14) 

where use has been made of Eq.   (2. 6) and the definitions of   1?   and Pr . 

Carrier observed that the value of the dimensionless group   Nu. /(ß   Ra) 

is  close to 1/12 for an appreciable range of the Reynolds number,  and 

the approximate result given in Eq. (5. 14) then follows since the Prandtl 

number is close to 2/3.    Even with this simplification,  the equations 

must be integrated numerically with    u,f    as the independent variable. 

Subsequently,  Eq.   (5. 5) must also be integrated numerically to obtain the 

spatial distribution of the variables in the relaxation zone.    It seems 

preferable to perform a simultaneous numerical integration of Eqs.   (5. 5) 

and (5. 6) for prescribed drag coefficients and Nusselt numbers.    Details of 

this procedure will be omitted,  but a few results are given here.    Such data 

for different mixtures and shock strengths, and for various drag coefficients 

and Nusselt numbers have been published by Kliegel (1963),  Marble (1963a), 

Kriebel (1964),  Rudinger (1964),  Varma and Chopra (1967), and others. 
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A typical shock transition is shown in Fig.   5 for   10-(JL glass 

spheres suspended in air for n   - 0. 2; this mixture has the properties 

7 = 1.40,    7K, = 1. 30,  and ^ - 1. 125.    The calculations are based on 

Ingebo's drag coefficient,   Eq.   (4. 5),   on a Nusselt number given by 

Eq.   (2. 13),  and on a shock streigth  M. =  1, 50,   corresponding to 

Me a 1.70.    Equilibrium conditions are shown in the figure,   and it 

can be seen that the relaxation zone extends over a considerable distance. 

As discussed after Eq.   (2. 10),  the time required by a particle to traverse 

the relaxation zone is roughly proportional to the square of the particle size. 

Furthermore,   since the initial deviation of the gas velocity from the 

particle velocity is an indication of the shock strength,   Eq.   (5. 5) shows 

that equilibrium is approached faster for stronger shock waves.    Kriebel 

(1964) observed that the length of the relaxation zone also increases with 

decreasing shock strength.    Wide variations in the length of the relaxa- 

tion zone may therefore be encountered. 

It is interesting to note that the gas velocity decreases behind the 

shock although the particle velocity is higher than the gas velocity.    This 

decrease is a consequence of the simultaneous effects of viscous drag and 

gas-particle heat transfer; it is closely related to the well-known increase 

of a subsonic flow velocity in an adiabatic duct with wall friction.    The 

general validity of this behavior may bd established by forming the ratio 

V.f / ue     from Eqs.(5. 8) and (5. 11),   replacing   Mf   by    XLo/a.0    and Me 

by    v.0/a.        .   and then substituting Eqs,   (3. 13) and (3. 19) for  "/w and 

a.. 0       ; the resulting expression for    U.^ / U-e     is readily proven to be 

greater than unity for all possible conditions.    Similarly,   Fqs.   (5.9) and 

• 
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(5. 12) maybe used to show that ..jo   is always greater than   Jo 

Since the particle velocity in the relaxation zone is always larger than 

the gas velocity,  the decrease of     1Lp    is monotonic,    as seen from 

Eq.  (5. 5),   but under some extreme conditions,  the derivative (dLtu/d.f>)%^o 

may become positive so that the gas velocity then goes through a maximum 

before decreasing to its equilibrium value.    This situation cannot occur as 

long as       M.   <   2^ /(if - l)    ,   and even for stronger shocks,   it is necessary 

(Rudinger,   1964) that the two conditions 

and 

JGr* 1 

Jj + (i-1)G 

be satisfied simultaneously, where 

8 

P. 
L  ( Nu- ) 

If both the gas velocity and the particle velocity decrease   monotonically,   then 

Eq.  (5. 3) indicates that the pressure increases   monotonically.    Similar 

conclusions do not hold for the gas temperature.    Equation (5.6) shows 

that the particle temperatu re increases monotonically  from    T       -   T0 

to  T€     since    Tf     is higher than    7^        ,   but   Tf    may be higher or lower 

than    J9     ,  and the transition may not even be   monotonic  (Rudinger,   1964, 

Varma and Chopra,   1967 ,   see also the discussion of Fig.   7). 

The uncertainty of the drag coefficient and Nusselt number for gas- 

particle flows is discussed in Section 4.    It is therefore important to see 
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what effect these parameters have on the relaxation zone.     Figure 6 shows 

the gas pressure and the particle velocity for the same conditions as for 

Fig.   5,   but with different assumptions for Cj,  and  Nu,   and Fig.   7 shows 

the corresponding gas and particle temperatures.    It is quite evident that 

the assumption for the drag coefficient has a significant effect on the particle 

velocity and the gas pressure,   while the assumption for the Nusselt number 

has only a : iinor effect. *   In contrast,   the gas and particle temperatures 

are significantly affected by the assumption made for the Nusselt number 

and only to a lesser extent by that for the drag coefficient.     In this example, 

Te  is greater than Tf ,   and the transition is monotonic or exhibits a maximum 

or minimum.    Figure 5 indicates that the gas velocity decreases only slightly 

in the relaxation zone,   and the variations caused by different assumptions 

for the drag coefficient and Nusselt number are not shown since they amount 

to not more than a few percent. 

Modifications of the relaxation zone result if the particle loading 

becomes high enough that the particle volume should not be neglected. 

During the time in which a particle crosses the shock front,   the pressure 

difference across the shock acts on the particle while it traverses the front 

and slightly changes its velocity (Wright,   1951).    Equation (2. 1) then simplifies 

to the form 

dvu. cL-P 

(5.15) 

*This observation forms the basis for studies to determine the effective 
drag coefficient experimentally (Rudinger,   1963). 
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which yields the relationship between particle velocity and p 

difference across the shock front 

res sine 

<,= -:-«*-* P, 

Since the deviation of uf from   U. is small,   this equation may be linearized 

to yield 

1L 
P.f A& 

(5.16) 

where Eq.   (5. 2) has been used to substitute for   £> XL9 .    The frozen particle 

volume fraction then follows from Eq.   (5. 2) which shows that 

&t =£o (5.17) 

to the same accuracy as u.    .    The frozen particle temperature   Tpf      is 

equal to £    as before.    These results,   substituted into Eqs,  (5. 1),   (5. 3) 

and (5.4),  again yield the conservation equations for a pure gas,   so that 

the frozen conditions in the gas are given by Eqs.   (5. 8) to (5. 10),   accurate 

to the first order of the particle volume fraction. 

The effects of the particle volume cr. the equilibrium conditions are 

more significant.    If   u- U.p* ue and    T *Tp* Te   are substituted into Eqs. 

(5. 1) to (5.4),   the system of equations can be solved by successive 

elimination of unknowns with the result (Rudinger,   1965) 
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and 

z^      (i„- l)MJ + i+2£.(M2-l) 
-H-o (l^D Ml 

£. - 

Pe 
(1-C0)ua 

e. (7-<f.) u.. 

"Ä        i (/ -£0)j(1+ q)(Uo-V.t)  U. 

i°- A. 

'♦#,(*-» 

T0 

a   ft 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

Since M /Mt = o-^/a.  ,   it follows that the square of this ratio is given 

directly by Eq.  (3. 19).    The particle volume therefore affects the results 

both indirectly through modification of the equilibrium Mach number and 

directly through additional terms in the equations. 

The effects of the particle volume on the equilibrium velocity is 

shown in Fig.   8 as a function of the dimensionless velocity upstream of the 

shock wave -- the frozen Mach number -- for several values of rf  and €o   , 

and for i  = 1. 4 and  § = 1.    Clearly,   the effect is significant for    £c = 0. 01 

and can be quite large for  £u   greater than 0. 05.    For example,   for  ^   = 10 

and  U /a,    =1.5,   the correct value of   u  /a is about 0. 079,  while 
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a value of only 0. 064 would be obtained if the particle volume were neglected. 

It follows from Eq.  (3. 5) that the foregoing example corresponds to a ratio 

of   p  /Q      of only    10   . 

The effect of the particle volume on the equilibrium pressure is fairly 

small as seen in Fig.   9.    For the example given in the foregoing,  the exact 

value of Jo /~h    is 32. 6 compared with a value of 33.4 if the particle volume is 

neglected.     The curves in Figs.   8 and 9 are extended to frozen shock Mach 

numbers below unity.    This case is discussed in the next section. 

The transition from frozen to equilibrium conditions must be 

determined by numerical integration of Eqs.  (5. 5) and (5. 6) with simultaneous 

consideration of Eqs.  (5. 1) to (5.4) and (3.6),   as in the case for neglibible 

particle volume.    Apparently,  the only calculations of this kind were performed 

by Varma and Chopra    (1967) for particle volume fractions of 0. 05 and 0. 1 

and loading ratios of 1 and 5.    Their results indicate transition zones that 

appear similar to those shown in Figs.   5 to 7 except that the gas velocity 

goes through a shallow minimum before approaching its equilibrium value 

whenf is not equal to zero.    However,  these authors disregarded the <f-term 

in Eq.  (5. 5),   and the influence of this term has not yet been evaluated. 

b)   Dispersed Shock Waves 

Shock transition from the initial to the final equilibrium conditions 

is possible only if the mlxtura approaches the shock wve with a velocity 

that exceeds the equilibrium speed of sound.    On the other hand,   a dis- 

continuous shock front in the gas phase requires that the velocity exceeds 

the frozen speed of sound,   that is,   the speed of sound in the gas phase. 
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As discussed after Eq.   (3. 19).  the frozen speed of sound is greater than 

the equilibrium speed so that there exists a velocity range for which a 

shock transition is possible but a discontinuous shock front is not.    Within 

this range     OLr"> ^>a«» the transition takes the form of a dispersed shock 

wave.    Analogous dispersed transitions occur in relaxing pure gases for 

sufficiently weak waves (Griffith and Kenny,   1957,   or the chapter on shock 

waves by E.   Becker in this volume). 

Transition with a discontinuous shock front changes to a dispersed 

wave occured at that limiting value of the equilibrium Mach number at which 

the frozen Mach number becomes unity,or when    A/  £/_   = Q-r /^-e ■    These 

values can be obtained from Eq.   (3. 19) and are plotted in Tig.   10 as a 

function of thtf particle miss fraction for three values of ^  .      The calcu- 

lations are based on "2f - 1.4,  and the small effect of the particle volume 

has been neglected.    Clearly,   the particle mass fraction is of major 

importance,  while the value of lj   has a comparatively small effect.    It 

is evident that dispersed shocks of substantial strength are possible com- 

pared with similar shocks in relaxing gases which are extremely weak. 

For example,   Griffith and Kenny (1957) indicate that the limiting shock 

Mach number for a dispersed shock in carbon dioxide is only 1. 042. 

Numerical evaluation of the flow in the transition zone is based on 

the same equations as for the case of a discontinuous shock front except 

that a small deviation from the initial equilibrium must be assumed to provide 

starting conditions for the calculations.    Kriebel (1964) assumed perturba- 

tions of the gas velocity and temperature produced by a weak hypothetical 

compression wave and obtained the perturbations of the other variables 
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compatible with the equations.    Rudinger (1964) linearized the equations 

and obtained a set of compatible initial perturbations in terms of an 

arbitrary perturbation of the gas velocity.    Figure 11 represents the 

results for a typical relaxation zone computed for the same conditions 

as for Fig.   5 except that now tAt - 0- 95,   corresponding to Ale = 1. 08. 

Comparison of Figs.   5 and 11 also shows how much the length of the 

relaxation zone is increased for the weaker shock,  as discussed in 

Section 5a. 

The effect of a finite particle volume on the equilibrium conditions, 

indicated by Eqs.   (5. 18) to (5. 22),   is shown in Figs.   8 and 9.    The 

curves are extended to values of Me below unity until the limit Me = 1 

is reached.    This limit is shown in Fig.   8; in Fig.   9 it corresponds to 

*o fjg - 1   according to Eq.   (5. 21). 

6.    NOZZLE FLOW 

Nozzle flows of gas-particle mixtures may be significantly affected 

by relaxation effects.    In a typical problem,   the flow is steady,  and the 

shape of the nozzle is prescribed    The continuity equations,   Eqs.   (4. 1) 

and (4. 2),  again reduce to Eqs.   (5. 1) and (5. 2),   except that the cross- 

sectional area of the duct now is not constant but a prescribed function 

A(?0-     Because of the variable area,   Eq.   (4. 3),   combined with the 

continuity equations,   cannot be integrated,   so that the momentum equation 

takes the form 
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dp df- ""i <i£ (6. i) 

The energy equation,   Eq.   (4.6),   becomes 

u*±**iL+*fu.J:**^**L 
d%      fdl 

but sometimes it is more convenient to use the integrated form 

T + V   +  7    ( 2  "r + *T» +   g;)   "   COM* (6.2b) 

where the constant is determined by prescribed inlet or reservoir conditions. 

In addition,   Eqs.  (3.6),   (4.4),  and (4.7) apply,   so that a complete set of seven 

equations for the seven variables U, 7 , Jo, p ,   ZLp ,   7"p     and   6  is established. 

If the particle volume can be neglected,   a simplified system is obta:ned 

since the€~terms in Eqs.   (5.1) and (4.4) and the pressure terms in Eq.   (6. 2) 

can be omitted; Eq.   (5.2) then becomes an equation for the particle 

concentration G~p - £o   ,   as in the case of shock waves. 

Equations that are identical or substantially equivalent to those 

given here have been published by Kliegel (I960 and 1963),  Soo (1961), 

Bailey,   Nielson,  Serra and Zupnik (1961),   Glauz(1962),   Rannie (1962), 

Duban and Nicolas (1963),   Marble (1963b),Hassan (1964),   Hultberg and 

Soo (1965),  and others. 
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One approach to solving the system of equations is to prescribe the 

flow at the nozzle inlet and integrate the equations numerically.    A difficulty 

must then be expected when the nozzle throat is reached because the   prescribed 

mass flow may not be able to pass through the throat,   or in the case of a 

converging-diverging nozzle,  the flow may decelerate instead of accelerate 

downstream of the throat.    Since the maximum flow rate that can just pass 

through a given throat depends on the relaxation processes,   the correct 

mass flow cannot be accurately prescribed beforehand,   and various 

computational techniques have been used to overcome this difficulty. 

They all are based on some iteration in which the flow rate or the throat 

area are varied until the flow can just pass through the throat.    Once a 

solution for the flow has been obtained,   any data of interest may be derived. 

For example,   the specific impulse of the jet emerging from a nozzle,   defined 

as thrust/weight flow rate,  has been evaluated for various nozzle shapes 

to find optimum configurations (Marble, 1963b.or Duban and Nicolas,   1963). 

Often,   it is desired to obtain a better general understanding of 

the flow properties rather than finding numerical answers to specific 

prob'.ems.    Other techniqi es then might be preferred.    One of these is 

based on the assumption tnat deviations from equilibrium are small.    If 

one sets   6-0, 2t* U^ and 7~* Tp ,   the equations reduce to the form that applies 

to one-dimensional nozzle flow of a perfect gas with the thermodynamic 

properties of a gas-particle mixture outlined in Section 2.    Small deviations 

from this flow may then be analyzed by linearizing the equations.     This 

approach has been used,   for instance,  by Rannie (1962) and Marble (1963b) 

who obtained analytical relationships between the deviations of the variables 

from their equilibrium values. 
39 



Another approach,   which is not limited to small deviations from 

equilibrium,   is based on an inverse method.    For qualitative studies, 

one may assume Stokes drag,   Eq.   (2. 7e),  and Nu = 2.    Furthermore,   the 

particle volume may be neglected for moderate loading ratios.    From 

Eqs.   (5. 5),   (5. 6),   (2. 10) and (2. 15) it follows then that the particle 

velocity and temperature obey the relationships 

and 

•>&■*<—>> 

v.    fü «  JL (T -T ) 

(6.3) 

(6.4) 

It is immediately apparent that the gas velocity follows directly from 

Eq.   (6. 3) if the particle velocity is prescribed by some function of % .    The 

other variables may ihen be obtained by proper combination of the equations 

of the system.    In particular,  the cross-sectional area is now one of 

the unknowns,   so that the shape of the nozzle depends on the initial 

assumptions made for It, . 

This method has been used by Gilbert,   Davis,   and Altman (1955)  to 

evaluate the effects of the velocity lag of the particles on the specific impulse 

of a nozzle.    These authors made the assumption that the particle velocity 

increases  linearly with the distance traveled.    More general studies were 

performed by Kliegel    (I960,   1963) who assumed the particle velocity to b.; 

directly proportional to the distance.    Subsequently,   Hassan (1964) considered 

particle velocities proportional to the square root of the distance. 
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The following discussion is based on Kliegel's approach which yitlds 

particularly convenient results.    If It,, is assumed to be proportional to %, 

Eq.  (6. 3) shows that then 

if ■ x 
(6.5) 

where K is a constant.    The lag of the particle temperature may be indicated 

by the ratio 

=   L 

(6.6) 

where subscript A. denotes the reservoir conditions of the flow.    Kliegel 

showed that the parameter L is related to  K by 

t-Ks"' 
' *(>*3P'$ir) (6.7) 

and is therefore also constant; he termed nozzles with these properties 

"constant-fractional-lag nozzles".    The interesting property of such nozzles 

is that the flow equations reduce to the form that applies to the flow of a 

perfect gas which has an apparent specific-heat ratio ^  and in which the 

Mach number is given by M ; these quantities are determined by 

and 

3 i-    1+(1-1)~ 

M CM* 

(6.8) 

(6.9) 
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where     f^\    =     it/a-, 

and 

0   « (6.10) 

C  -   / + i{/<[(l-K)'/+K]+(f-t)§LB] (6.ii) 

The solution of the flow equations is thus given by the well-known 

relationships 

2L. U±±M* 
(6.12) 

e 
rr,^-1 

A - 1 ?- f r,2 

it, 
YWXf- 

1+1 

Ci- i) MZ 

(1+^-M2) 

-.Va 

(6. 13) 

(6.14) 

(6.15) 

(6.16) 
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where an asterisk indicates throat conditions; V.      is the velocity reached 
■»»■Mir ' 

for an infinite expansion and is given by 

1L 
2**Z. 

»*w. (6.17) 

Integration of Eq.  (6. 3) yields the distribution of the gas  velocity along the 

nozzle as 

1~ * JL 
rv (6. 18) 

Zu   - 
K 

The flow is therefore completely determined since the constants   V, B  ,  C   , 

and"U-^, follow from the properties of the gas-particle mixture and the 

selected value of   K    .    It is readily verified with the aid of Eqs.   (3. 13) 

and   (3. 19) that Eqs.  (6.8) and (6. 9) reduce to  1 * 1M  and M s H€ for 

equilibrium flow for which   K * L * 1 . 

The maximum flow rate through the nozzle throat is obtained 

by setting M" /in Eqs.  (6. 13),  and (6. 15) to (6. 18) and is given by 

(m + m^) 
ynaf. 

yy\ 
2   v^V^-l' 

►»laft 0*1>   •«♦ !>(£-,)'(£;)  ft'-..*. (6. 19) 

A few of Kiiegel's (1963) numerical results are indicated by Figs.   12 

to 14.    Figure 12 shows how ■/ increases with increasing deviation from 

equilibrium flow for two loading radios of a typical metalized rocket 

propellant,   and Fig.   13 represents the corresponding maximum flow rates 

divided by the flow rates for equilibrium.    It can be seen that the maximum 

flow rate increases significantly with increasing lags. 
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Combination of Eqs.   (6. 15),   (6. 16) and (6. 18) yields an expression 

for the nozzle profile 

f 

/Af.-fJLlfj, 
(l+DCI -2*) 

2(1-1) 

(6.20) 

where 

2   ,     '■« 
K'     *v«-»»» (6.21) 

is a dimensionless coordinate.    The throat is located at   Z* where the 

derivative of A   with respect to i vanishes,   and Eq.   (6. 20) yields 

2    - (f - 1)/(T( + 1)  .    Figure 14 shows the nozzle profile for   1   - 1.2 

as a function of the dimensionless   distance from the throat H " 2.* .    This 

plot indicates that a constant-fractional-lag nozzle may be a satisfactory 

approximation of actual nozzle3,  at least in the vicinity of the throat. 

J 
The author,   in an investigation to be published,  has extended 

Kliegel's concept of the fractional-lag nozzle to particle loadings so 

high that the particle volume had to be considered.    The numerical 

analysis then becomes considerably more complicated,  but it is possible 

to make an approximation which leads to convenient results.    Computer 

solutions for such flows indicate that the gas and particle temperatures remain 

substantially constant throughout the nozzle.    This observation is plausible 

because isothermal flow implies a   specific-heat ratio of unity and this 

value is rapidly approached with increasing loading ratios.    For example, 

Eq.  (3. 13) yields <jH   = 1. 027 for ^   =1.4,  ^   - 1 and   ^ = 10 and still smaller 
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values for higher loading ratios.     It seems therefore reasonable to assume 

r- T. Tr ■ const.    Two unknowns are thus eliminated and with them the 

energy equation, Eq. (6.2), and the heat balance of a particle,    Eq.  (6.4), 

The remaining Eqs. (5.1),  (5.2), (6.1) and (3.6) may be combined and 

integrated with the result 

*    1 + nK J~4+ 6 
(6.22) 

where subscript zero denotes prescribed conditions at the nozzle inlet. 

Other variables then follow from 

and 

€ 
1'€ 

_      €0      lb 

A W.-ÄO-0 
A. u j>(1 -£) 

(6.23) 

(6.24) 

The equation of motion of the particles, Eq.  (6.3), multiplied by 

\1 - C) as in Eq. (5.5), may be used to find the longitudinal area variations by 

numerical integration. 

The nozzle throat is reached when the derivative of A with respect to -fo 

vanishes.    With this condition,Eqs. (6.22) to (6.24) yield 

2j~n    (i-£. +.'      1-6. f» 

' + 1K-U.>-2-^ 
R"TA 1-6. 

(6.25) 
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The throat velocity and particle volume follow from Eqs.   (6.22) and (6.23). 

The foregoing results may be compared with "exact" data obtained by 

numerical integration of the equations without assuming isothermal flow. 

Such a comparison is shown in Fig.   15 where the ratio of the approximate to 

the "exact" results is plotted as a function of the initial particle volume 

fraction or the loading ratio for    ^ ~ 1+ ,    ?"/0»    6 /?    -   5 xio 

tio =  o.i  cue ^     ,  and     K m O.U.     It is evident that the errors intro- 

duced by the assumption of isothermal flow are below 2% if the loading ratio 

exceeds approximately 10.    If the   C -terms in the foregoing equations are 

neglected,  extreme\y simple relationships are obtained,and the correspond- 

ing results are shown in Fig.   15 as the broken lines.    In this case the errors 

remain below 2% as long as the loading ratio does not exceed about 100. 

Thus,  there exists a range of the loading ratio,  roughly between 10 and 100, 

within which both isothermal flow and negligible particle volume may be 

assumed.    The deviations from the "exact" results become larger for lower 

loading ratios because the flow is no longer sufficiently isothermal, and for 

higher loading ratios because the particle volume is no ionger sufficiently 

small.    However,  a much wider range of the loading ratio may be treated in 

the simple manner indicated if a lower accuracy is acceptable. 
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7.    NONSTEADY FLOW 

The flows in the illustrative examples given in the preceding sections 

are all steady.    A brief discussion of more general nonsteady flows is given 

in this section.    The equations which describe such flows have already been 

stated in Section 4 as Eqs.  (4. 1) to (4.4),   (4. 6),   (4. 7) and (3. 6),  and the 

only simplification introduced in the following will be the assumption of 

negligible particle volume. 

The particle conditions are therefore given by 

&**. 3 
Dt        * (7.1) 

Dt        Y 

(7.2) 

where £ and >* are abbreviations for the right-hand side of Eqs.   (4. 4) and (4. 7), 

and 

D,0? 

For the gas,   it seems preferable to describe the conditions in terms of its 

velocity U ,   speed of sound  a. ,   related to T  , ^ and P by Eq.   (3. 17), 

and the entropy given by the thermodynamic relationship 

where subscript zero denotes a suitable reference state. 
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The continuity equation then becomes 

—   —    +  a 2JL   - Ht   JA.        JL    ^ 

and the momentum equation,  after substitution from Eq.  (7. 1), takes the form 

Du.        Z 'da.   _   _f^   fl^    _   <T>    T 

J>t    +  7-1      V*        1R   1% P (7.5) 

The energy equation is most conveniently combined with Eqs.   (7. 1),   (7. 2) 

and (7. 5) and may then be written as 

5I-f 4rh—>*--H P.« 

By setting     0~r - O    in the last three equations, the equations for non- 

steady flow of a pure gas are obtained,  and these are usually solved numer- 

ically by means of the method of characteristics (Courant   and Friedrichs, 

1948,  Rudinger,   1955,   or Fox,   1962).  An extension to gas-particle flows 

was first provided by Chu and Parlange (1962) who linearized the equations 

under the assumption that deviations from equilibrium are small.    A more 

general approach may be taken by deriving the characteristic relationships 

for the complete equations.    Rudingtr and Chang (1964) treated the unknown 

gas and particle conditions as one set of unknowns, while Migdal and Agosta 

(1967) considered the particle terms in the equations as sources or sinks of 

drag and heat transfer in a pure gas flow.    There seems to be little practical 

difference between these two points of view. 
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The foregoing system of six simultaneous partial differential equations 

has six characteristic velocities which are given by 

dt. 
dt 

U ± cu 
(7.7) 

and 

dt 

d/L.   =   u 
dt ' 

(7.8) 

(7.9) 

which must be counted threefold.    The triple degeneracy indicated by the 

last equation was explained by Sauerwein and Fendell (1965) as a consequence 

of neglecting the partial pressure of the particles.    In a more rigorous 

treatment,  the speed of sound in the particle phase -vould be given by 

a.p = *fp y»r Ja-f.    where ^   is the ratio of specific heats and _^   the 

pressure of the particle phase; Eq.   (7. 9) would then split to yield the three 

velocities ur and  iij. ± a.r .    Equation (7. 9) is then a consequence of setting 

Flow changes along the characteristics are described by the compati- 

bility equations which take the form 

<frP   _ 
(ft 

au   1A       _±_ jU   M ±± a V± $ (7.10) 

£Q_ 

eft 
e± 1L 4.  ±- Ik  + izLa.2*   + ?±- $ 

(7.11) 
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for the characteristics given by Eq.  (7.?), where 

St Dt '* (7.12) 

represents derivatives along these characteristics,and  P and Q. are the 

well-known Riemann variables of nonsteady gas flow defined by 

7'1 (7.13) 

and 
2 - a. - u. 

(7. 14) 
Q  =    p*-*> 

The derivatives along the other characteristics are indicated by Eqs.   (7. 1) 

to (7. 3) and (7. 6),    Equation (7. 3) may be used for numerical work,   although 

it is not a true compatibility equation.    Sauerwein and Fendell (1905) pointed 

out that compatibility equations should contain only derivatives in the 

characteristic directions and showed that the present result is a consequence 

of the already mentioned degeneracy. 

A numerical evaluation of a given problem may now be set up for pre 

scribed initial and boundary conditions in the same manner as for nonsteady 

flow of a pure gas.    As an illustrative example (Rudinger and Chang,   1964) 

consider a semi-infinite tube of constant cross section filled with a mixture 

of 30- p. glass spheres in atmospheric air at a loading ratio of 0.3.    A 

piston at the end of the tube is impulsively accelerated from rest to such a 

speed that the velocity 1^a   of the resultant shock wave initially equals 1,3 a.,, 

where a-6   is the initial speed of sound in the gas.    In this example,  Stokes 
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drag,  Eq.  (2. 7a), and Nu.«2 have been assumed to characterize the particle 

drag and heat transfer.    The gas flowing behind the shock wave gradually 

accelerates the particles and, in this process, its own velocity is affected. 

Waves signaling these changes propagate upstream and downstream.    When 

the upstream-traveling waves reach the piston, they are reflected so that 

the gas velocity at the piston remains equal to the piston velocity.    Both the 

waves originally traveling downstream and those reflected at the piston even- 

tually overtake the shock wave and in merging with it reduce its strength. 

These wave processes are indicated in Fig.   16 which shows the piston path, 

the shock path and the trajectories of a typical particle and of a gas element. 

Particles that initially are close to the piston collide with it before reaching 

equilibrium with the gas and are assumed to remain attached to the piston 

surface.    As a result of the changing shock strength,  the shock path is not a 

straight line,  but this change is better seen in Fig.   17 where the shock velocity 

is plotted as a function of the distance traveled by the shock wave.    The 

ultimate steady velocity reached by the shock wave is also shown in the figure; 

it may be computed directly on the basis of equilibrium flow and the shock 

relationships given in Section 5a.    The shock velocity decreases from its 

initial value of 1. 3 a., to an equilibrium value of 1. 124 a, over a distance of 

several meters.    By comparison,  Fig.   16 indicates that the particles should reach 

their final velocity after only 20 to 30 cm ,  or about one order of magnitude 

faster.    The large difference between particle and shock relaxation may be 

significant for investigations of the particle motion since it may then be per- 

missible to neglect changes of shock strength during the relaxation time of 

the particles. 
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8.    CONCLUDING REMARKS 

The relationships presented in this chapter describe thermodynamic 

properties,   shock waves,   steady nozzle flows and general nonsteady,   one- 

dimensional flow of gas-particle mixtu--es.    Relaxation effects arise because 

viscous drag and heat transfer cannot adjust the particle ve ocity and tem- 

perature fast enough to maintain equilibrium conditions.    These interactions 

also lead to modifications of the gas flow.    Ordinarily,   other relaxation 

effects need not be considered because they are either so fast that instantaneous 

establishment of equilibrium may be assumed or so slow that frozen conditions 

represent a good approximation for a significant part of the flow.     The volume 

occupied by the particles frequently can be neglected with resultant simplifi- 

cations of the analysis,  but appreciable consequences of the particle volume 

may appear if the particle loading is sufficiently high. 

A number of typical examples clearly demonstrate the importance 

of velocity and temperature relaxation.    The rates of these processes are 

approximately proportional to the inverse square of the particle diameter 

but do not depend on the dimensions of the flow system.    Therefore,  changes 

in the size of the system produce approximately similar flows only it the 

particle diameter can be scaled in proportion to the square root of the 

duct dimensions. 
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9.    LIST OF SYMBOLS 

A speed of sound 

A cross-sectional area of duct 

B constant,  Eq.  (6. 10) 

* specific heat of particle material 

£ß.Cv specific heats of the gas at constant pressure 

and at constant volume 

C constant,  Eq.  (6.11) 

Cp drag coefficient 

D particle diameter 

£ internal energy 

n enthalpy 

" heat-transfer coefficient 

~n thermal conductivity 

" velocity ratio in a constant-fractional-lag nozzle,  Eq.  (6. 5) 

L temperature ratio in a constant-fractional-lag nozzle, 

Eq.  (6.6) 

M shock or flow Mach number 

M effective Mach number in a constant-fractional-lag nozzle 

>n mass flow rate of gas phase 

Nu. Nusselt number 

Pr Prandtl number 

Jb pressure 

P,Q characteristic variables,  Eqs.  (7. 13) and (7. 14) 
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R gas constant 

Re Reynolds number 

vö entropy 

T temperature 

u, velocity 

% coordinate along duct 

2. dimensionless form of   X 

if ratio of specific heats 

/ effective ratio of specific heats in a constant-fractional- 

lag nozzle 

£ volume fraction of the particles 

tf mass flow ratio 

K. thermal diffusivity 

fjL> viscosity 

I 5 * */*? 
p density 

o~ concentration 

Zv relaxation time for velocity 

ZT relaxation time for temperature 

T± temperature eqiialization time for a particle 

(p mass fraction of particles 

$ right-hand side of Eq.  (4.4) 

Ifr right-hand side of Eq.  (4. 7) 
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Subscripts 

0 

f 
e 

A. 

M 

P 

* 

initial or reference conditions 

frozen flow 

equilibrium flow 

reservoir conditions 

equilibrium mixture 

particle conditions if different from gas conditions 

conditions at nozzle throat 

Derivatives 

Eq.  (2.2) 

<ft Eq.  (7.12) 
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FIGURE CAPTIONS 

Fig.   1 Drag coefficient for particles. 

Fig.   2 Nusselt number for particles. 

Fig.   3 Ratio of the specific heats of a gas-particle mixture 

for a diatomic gas and various relative specific heats 

JT    =•   ^/^p       (after Rudinger 1965), 

Fig.   4 Equilibrium speed of sound for a gas-particle mixture 

(after Rudinger,   1965). 

Fig.   5 Typical relaxation zone behind a shock front.    Computed 

for a mixture of     10-u.   glass spheres and air at 

standard temperature and pressure at a mass-flow ratio 

^   = 0.2 and a shock velocity    U,/a. ■   Mf    =1.50, 

corresponding to     J     ■ 1.125,       fM      > 1.30, 

a«,o/a9       «0.88,   and     Mc    =1.70.    The calculations 

are based on Ingebo's drag,  and steady-flow heat 

transfer (after Rudinger,   1964a). 
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Fig.  6 Effect of different assumptions for particle drag and 

heat transfer on the pressure and the particle velocity 

for the same mixture and shock strength as for Fig.  5 

(after Rudinger,   196-4). 

Drag Coefficient Nusselt Number 

Ste. idy Flow Nu = 2 

"Standard" A B 

Ingebo C D 

^tokes E F 

Fig.  7 

Fig.  8 

Fig.   9 

Fig.   10 

Fig.   11 

Effect of different assumptions for particle drag and 

heat transfer on the gas and particle temperatures for 

the same conditions as for Fig.  6. 

Effect of partite volume on the equilibrium velocity 

behind a shock front {after Rudinger,   1965). 

Effect of particle volume on the equilibrium pressure 

bshino a shock front (üfter Rudinger,   1965). 

Limiting (minimum) shock Mach number for a 

discontinuous shock front. 

Typical dispersed shock wave.    Computed for the same 

nnxture as for Fig.   5 but for   Mf = 0. 95,  corresponding 

to   Me = 1. 08. 
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Fig.   12 Apparent ratio of the specific heats for a constant- 

fractional-lag nozzle for a typical metalized rocket 

propellant (after Kliegel,   1963). 

Fig.   13 Effect of velocity lag of the particles on the total 

mass flow for a constant-fractional-lag nozzle and a 

typical metalized rocket propellant (after Kliegel,   1963). 

Fig.   14 Profile of a constant-fractional-lag nozzle for 

jf = 1. 20 (after Kliegel,   1963). 

Fig.   15 Comparison of throat conditions for a constant- 

fractional-lag nozzle obtained by the "exact" and 

approximate equations. 

Fig.   16 Piston impulsively accelerated in a mixture of 

10-fj. diameter glass particles in air at a loading 

ratio ^  = 0. 3.    The initial shock velocity is 1.3 a.,, 

and the calculations are based on Stokes drag and 

Nu = 2 (after Rudinger and Chang,   1964). 

Fig.   17 Shock velocity ahead of impulsively accelerated 

piston for example of Fig.   16 (after Rudinger and 

Chang,   1964). 
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GAS AND VARIOUS RELATIVE SPECIFIC 
HEATS   f =  c/c   (AFTER RUDINGER 1965). 
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(AFTER RUDINGER, 1965). 
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Figure 5 TYPICAL RELAXATION ZONE BEHIND A SHOCK FRONT. COMPUTED FOR A 

MIXTURE OF 10/* GLASS SPHERES AND AIR AT STANDARD TEMPERATURE 

AND PRESSURE AT A MASS-FLOW RATIO r, = 0.2 AND A SHOCK VELOCITY 

uJao=Mf= 1.50 CORRESPONDING TO f = 1.125, 7^= 1.30. aeo/a0 =0.88 

AND Mf - 1.70. THE CALCULATIONS ARE BASED ON INGEBO'S DRAG AND 

STEADY-FLOW HEAT TRANSFER (AFTER RUDINGER, 1964a). 
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Figure 7       EFFECT OF DIFFERENT ASSUMPTIONS FOR 
PARTICLE DRAG AND HEAT TRANSFER ON 
THE GAS AND PARTICLE TEMPERATURES FOR 
THE SAME CONDITIONS AS FOR FIGURE 6. 
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Figure 8      EFFECT OF PARTICLE VOLUME ON THE 
EQUILIBRIUM VELOCITY BEHIND A SHOCK 
FRONT (AFTER RUDINGER, 1965). 
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Figure 9      EFFECT OF PARTICLE VOLUME ON THE 
EQUILIBRIUM PRESSURE BEHIND A SHOCK 
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Figure 10     LIMITING (MINIMUM) SHOCK MACH NUMBER FOR 
A DISCONTINUOUS SHOCK FRONT. 
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Figure 11     TYPICAL DISPERSED SHOCK WAVE.   COMPUTED FOR 
THE SAME MIXTURE AS FOR FIGURE 5 BUT FOR 
M, " 0.95, CORRESPONDING TO Mf = 1.08. 
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Figure 12     APPARENT RATIO OF THE SPECIFIC HEATS FOR A 

CONSTANT-FRACTIONAL-LAG NOZZLE FOR A TYPICAL 

METALIZED ROCKET PROPELLANT (AFTER KLIEGEL, 
1963). 
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Figure 16 PISTON IMPULSIVELY ACCELERATED IN A MIXTURE OF 10M 

DIAMETER GLASS PARTICLES IN AIR AT A LOADING RATIO 

Tj  =0.3. THE INITIAL SHOCK VELOCITY IS 1.3 ag, AND THE 

CALCULATIONS ARE BASED ON STOKES DRAG AND Nu = 2 

(AFTER RUDINGER AND CHANG, 1964). 
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