B R R T 3 S e P ST AR G~ F i s

ADG7¥772

SIMULATION PROGRAMMING USING SIMSCRIPT 11
Philip J. Kiviat*
Thg RAND Corporation, Santa Monica; California

The simulation described in this paper has beeé designed to
illustrate as much of SIMSCRIPT II as possible in a natural, problem-
oriented serting. While the program uses all of the language's
features that are important in simulation studies, it does not use
every SIMSCRIPT feature. A complete description is contained in
P. J. Kiviat and R. Villanueva, The SIMSCRIPT II Programming
Language, R-460-PR, The RAND Corporation, September 1968,

Even though the features illustrated are not exhaustive, the

example may still seem forced and artificial. This should not be
surprising, as it is a rare program that requires the full facilities
of any complex programming language. The example is an elaboration
of the job shop model of Chapter 3 of the SIMSCRIPT II report.¥k

The plan of the paper is as follows: the first section describes
a model of a system in}general terms, presents some problems the model
has been designed to dtﬁdy, and places the rest of the paper in per-
spective. The next section contains a ligting of the complete simula-
tion prcgram followed by -a set of typical data cards. _The last
section works through the program section by section and, occasionally,

where it is warranted, statement by statement, explaining the syntax
and semantics of the statements.

Any views expressed in the paper are those of the author. They
should not be interpreted as reflecting the views of The RAND Corporation
or the official opinion or policy of any of its governmental or private

regearch sponsors. Papers are reproduced by The RAND Corporation as a
courtesy to members of its staff.

*k
H. M. Markowitez, B. Hausner and H. W. Karr, SIMSCRIPT « A Simula-
tion Programming Language, Prentice-Hall Inc., New York, 1963.

———

THE SYSTEM

The system under study is shown abstractly in Fig. 1. It is
a shop containing N production centers, each containing Mt identical
machines, and finished goods inventory storage area. The shop
produces P standard products for local sale and distribution, and
variations of standard products for local and export distributors.
Each product ordered travels through the shop, undergoing processing
at production centers according to standard routings, production

times and expediting procedures.

Special export Production

orders = centerl Production

center, ~
Finished

Special local Production center * Goods —

orders e, centerz ‘ Inventory

{,/”J' Typical product

Standard Product Production Production routing

orders e center, enter, :

Fig. 1 -- System Under Investigation

Each production center has an in-process inventory area where
products in process are stored if they cannot be worked on when they
arrive. To minimize the value of in-process inventory, the production
rules of “the shop remove partially completed products from production
center queues according to a 'high value first" rule.

Table 1 shows the entity-attribute-set model of the shop and
its product line. These descriptors explain the shop's static struc-
ture. Permanent entities are used for production centers and product
descriptions. Temporary entities are used for jobs and for job pro-
cessing specifications.

The shop operates roughly as follows. When orders for standard
products come into the shop, a standard production sequence is copied
from an order book onto a job's production routing tag. The job is

sent to the first production center, where it is worked on if a

0 o ol B

o

machine is free. If no machines are available, the job is put in
a work-in-process queue until a machine becomes available. When a
job finishes processing, its routing tag is examined, and the job
iz either sent on to another processing center or to the finished
goods inventory.

The shop's dynamic structure is captured in two events -- SALE
and END.OF.PROCESS. Two other events, WEEKLY.REPORT and END,OF.
SIMULATION, print periodic system performance data and stop the
simulation. SALE is set up so it can be triggered both internally
and externally. When triggered internally, SALE represents a local
sale of a standard product. When triggered externally, SALE represents
either a local or export sale of a special order. Two external
event data tapes are provided to supply special order information.
In SALE, jobs are assigned to machines and the system state changes
to reflect such assignments. When a job is assigned to a machine,
an END.OF,.PROCESS event is scheduled to terminate the processing,
make the machine available for another job, and pass the job on
for additional processing or for shipment.

The simulation model is designed to, determine the number of
machines needed at each production center to provide 'adequate"
customer service. To study the effects of varying the number of
machines in each center, a TALLY statement looks at the length of
time jobs spend in the shop, and an ACCUMULATE statement looks at
the waiting lines that build up at the production centers. Some
number of machines will be chosen that balances the cost of degraded
customer sc<rvice with the costs of additional machines.

The program listing that follows has been written and annotated
to make it as readable as possible. Statements that are not clear
from the program itself are discussed in the section following the

listing.

Table 1

ENTITIES, ATTRIBUTES AND SETS OF THE SHOP MODEL

Set or
Entity Attribute Comment
PRODUCTION,CENTER NUMBER, IDLE The number of idle machines in
The shop has N a production center
production centers. |} QUEUE Each production center owns a
collection of in-process prod-
ucts.
PRODUCT SALES ,FREQUENCY | Characterizes the frequency with
The shop produces which orders for a standard
P different prod- product arrive at the shop.
ucts. NAME Identifies a product
STRUCTURE Each product has a list of
standard operations that have
tc be performed to produce it,
JOB VALUE The dollar value of a job
Each order for a DUE .DATE The time a job is promised to
product is called a customer
a8 job. ARRIVAL ,TIME The time a job is ordered
EXPEDITE .FACTOR | The degree to which a job's
- processing can be speeded up
at a production center.
ROUTING A list of production centers
through which a job has to
be processed
FINISHED .GOODS. | Jobs can be placed in finished
INVENTORY goods inventory awaiting ship-
ment
THE SYSTEM FINISHED ,GOODS, | Jobs are placed in finished
The sho INVENTORY goods inventory if finished
P before their due date.
OPERATION MACHINE ,DESTINED| The production center at which
A task performed by a job must be processed.
a production center
in producing a prod-
uct.
CODE A number representing a part-
icular processing task.
PROCESS ,TIME The time it takes to perform a
processing task
STRUCTURE The standard parts list on which
different operations appear
ROUTING The processing operations re-

gquired for a particular jobh

T vt o vy i gl RNy

.
-

e ——

-5-

' SAMPLE SIMSCRIPTY LI SIMULATICN PROGRAM
ee A JOR SKHCP SIMULATION

PREANELE
NORMALLY MODE 3 INTEGER AND CIMENSION IS O

PERFANENT ENTITRESccces
EVERY PRODLCT HAS A SALES.FRECUENCY ANC A NAME ANC OWNS A STRuCTURE
CEFINE SALES.FREQUENCY AS A REAL RANUOM LINFAR VARIABLE
OEFINE NAME AS AN ALPHA VARIABLE
EVERY PROODUCT PROCUCT HAS A PRODUCT.SALES(®/2)
EVERY PROCUCTVICN.CENTER HAS A [MAX.IN.QUEUE(1/2) MAXSQUEUE(272)) IN ARRAY 1.
A (WNUMIL/2), MNUM{2/2)) IN ARRAY 2, A WSUM, A MSUM, A NUMBER.IDLE
AND OWNS A QUELUE
DEFINE NUMBER,.IDLE AS A VARIABLE MONITORED ON THE LEFY

FEFPCRARY ENVITIESecess
EVERY JCB HAS A VALUE IN WCRD 29 A CUE.DATE, AN ARRIVAL.TIME,
AN EXPECITE.FACTOR FUNCTICN, MAY BELONG TO A QUEUE, OWNS A ROUIING
AND MAY BELONG TC THE WAITING.SET
CEFINE EXPECITEL.FACTCR AS A REAL FUNCTION
DEFINE VALUE, DUE.DATE AND ARRIVAL.TIME AS REAL VARIABLES
DEFINE RCUTING AS A FIFO SET W]THOUT P AND N ATTRIBLIES
DEFINE CUEUE AS A SET RANKED B8Y HIGH VALUE
EVERY OPERAVICN HAS A (CCCE{1/2) ANC MACHINE.DESTVINEC(2/2)) IN wORD I
AND A PROCESS.TIME AND BELONGS 1C A STRUCTURE AND A ROUTING
DEFINE STRUCTURE AS A SET RANKED BY LCW C(CDE WITHCUT ™ ATTRIRUTE
AND WITHOUT R RCUTINES
DEFINE PRCCESS.TIME AS A REAL VARIABLE

EVENY NCTICES INCLUCE WEEKLYJREPCRIT
EVELRY SALE HNAS A PRCOUCTGSTYPE, A PRICE ANC A PRIOR]ITY
DEFINE PRICE AS A REAL VARJABLE
EVERY ENC.CF.PROCESS HAS AN ITEM ANC A PRCOUCER

PREAK SALE TIFS B8Y MIGH PRICE THEN BY LOW PRICRITY

EXTERNAL EVENTS ARE ENC.OF.SIMULATION AND SALE

EXTERNAL £ VENT UNITS ARE LOCAL.SALES AND EXPORT.SMI LS

PRICRIIY CRDER IS END.CF.PROCESS, SALE, WEEKLY.REPCRT AND END.UOF.SIMUL S TIIN

BEFCRL FILING AND REMCVING FRCM QUEUE (ALL QUEUE.LFECK
BEFORt DESTROYING JCB, CALL STAY.VIME

CEFINE STAY AS A REAL OUPMY VAR[ABLL
TALLY AVG.STAY AS THE WEEKLY MEAN, VAR.STAY AS THE wmEERLY VARIANCE, SUM.STAY AS
THE BEEKLY SUM, SUM.SCQUARES.STAY AS THE WEERLY SUMJCF.SCUARLS, AND
NUP STAY AS THE WEEKLY NUMBER OF STAY
ACCUPULATE wSLM AS ThE WEEXLY SUM, WNUM AS THE wWELKLY NUMHER, AVG.LLEUL AS THE
WEEKLY MEAN, MAXLQUEUE AS THE WEEKLY MAXIMUM AND FREGQIO TU 0% RY 1)
AS THE WEEKLY MISTOGRAM OF AN.QUEUE
ACCUMULATE MSLF AS THE MONTHLY SUM, MNLM AS ThL MUNTHLY NUMBER, AVGLIN.QUEUE AS
THE MONTHLY MEAN, MAX,INGCUEUE AS THE MUNTHLY MAXTMUM OF N, LLUF

The SYLTEP OWNS A FINISHED.GOODS « INVENTCRY

DUFINE FINISHEDLGCCODS. INVENTORY AS A StT RANREL "y L L.DATE

UEFIN LOCAL TC MEAN OFFINE 1oJeKoL oM AND N AS SAVID INTEGLER VARIAWILS
DEFING WEEFK TG MEAN SHCURS.Ve ! MOURS

CEFINE PRICRITY.FRECUENCY AS A 2-CIMENSICNAL ARKAY

-6-

CEFINF TITLE AS A TEXT VARIABLE
CEFINt WEEK.COUNTER AND TAPEJFLAG AS INTEGER VARIABLES
CEFINE AVERAGE AS A REAL FUNCTICN wITH 1 ARGUMENT

ENC

PAIN

SINITIALIZE® PERFORM INITIALIZATION

LET LtTwkEN.V=*TRACE® START SIMULATION

% PERFORM NEXT EXPERIFMENT *° A
FOR EACN JCB IN FINISHEC.GOODS.INVENTORY, 0O .
REMOVE THE JOB FROM FINISHED.GOODS.INVENTQORY
DESTROY THE JCB
LCOP

FOR EACH PRODULCTIONL.CENTER,
FCR EACH JOB IN QUEUE, 0O
FCR EACH CPERATION IN ROUTING, DO
REMCVE THE OPERATION FROM ROLTING
DESTROVY THE CPERATICHN
LCcoP
KEMOVE ThE J08 FROM QUEUE
LESTRCY THE JCB
Lcee

FCk EACW PRODUCTY, CC
fCR tACH CPERATION IN STRUCTURE, CO
REMCVE THE CPERATION FRCM THE STRUCTURE
CESTROY THE OPERATION
Lege
ALSC FLR FACH RANCOM.E IN SALES.FREQUENCY, DO
RFMOVE THE RANDCOM.E FROM SALES.FREQUENCY
CESTRCY THE RANDOM.E
Lcee

RELEASE NAME, FSSTRUCTURE JL.STRLCTUREy N,STRUCTURE, F.SALES.FRECUENCY,
PRICUCT.SALLSy NUPBER.IDLE, FoCQUEUE, L.CUEUE, N.CQUEUE, MAX.INJ.QUEUE,
MPAX.QUFLEs WSUM, MSUM, WNUM, MNUM

RELEASE PRICRITY.FREQUENLY

ERASE TITLE

RESEY TOTALS CH STAY
FCR FALH PRCOLCTICN.CENTER, RESET TOTALS CF N.QUEUE

LET wnitKoOCCUNTER=D
WRITE AS "eeeen,s
LET TAPEJFLAG=0

% REVLSE EXTERNAL EVENTS IN NEXT EXPERIMENT
HEWINL LCCAL.SALES AND EXPORT.SALES

GC INITIALIZE
sSTaP ENC

R e gt 5 A e IR N gl ST DA ~AREIIAT

e

R

Far -

RCLTINE FOR INITIALIZATION
LccaL
CEFIMNE PP TO MEAN PRICRITY.FRECUENCY
CEFINE SF TO MEAN SALES.FRECUENCY
CEFINL CHECK AS AN ALPHA VARIABLE
LEY ECrov=]l
INPLT TITLE
IF ECF.ve2, PRINT 1 LINE AS FCLLOWS
ENC OF CATA HIT

stae

ELSE

REAC A PROCUCTIGON.CENTER
CREATE EVERY PRODUCTION.CENTER
FUR EACH PRODUCTICN.CENTER, REALC NUMBER,.ICLE

REAC N.PRCOUCTY
CREATE EVERY PRCOLCT
RESERVE PRICRITY.FREQUENCY(®,%) AS N.PRODUCT BHY
FCR EACH PRODULCT, CC
REAC NAME
REAC SALES.FREQUENLY
RESERVE PRIOCRITY.FRECUENCY{PRCOUCT,®) AS PRCC.IT
FOR [=] TO PRODUCT, REAC PRICRITY.FREQUINCY(F J0UCT, 1)
UNTIL MODE IS ALPHA, DO THIS.ccee
CREATE AN CPERATICN
FILE THE OPERATICN IN STRUCTURE
READ CCOEys MACHINEL.DESTINED AND PROCES TIME
Looe
SKIP 1 FIELD
CAUSE A SALE IN SF HOURS
LET PROOUCT.TYPE=PRODUCT
LET PRICE=PRCCUCT*RANDONM.F(1)
LEV PRIORITY=PFIPROCUCT, TRUNC.FIPRICE)+1)
Lece

REAC LCCAL.SALEY, EXPCRT.SALES AND SAVE.TAPE
REAC MCNTH, DAY AND YEAR CALL ORIGINSR{MONTH,DAY ANC YEAR)

REAL ChECK IF CHECKX EQUALS "OK"™, CALL REPORY RETURN
CYMERWISE PRINT 1 LINE AS FOLLOWS
EITHER TOO MUCH DATA OR DATA HAS BEEN READ INCORRECTLY
stToe ENC

EVENT SALE(PRCOUCT,PRICE,PRIORITY) SAVING THE EVENT NCTICE
CEFINE SF TO MEAN SALES.FREQUENCY
LocatL
IF SALE 1S EXTERNAL, READ PRODUCT, PRICE AND PRIORITY AS & 30,1 Sy 0O(L10,3), | S
REGARCLESS AOD 1 TO PRCOUCT.SALES(PRODUCT, TRUNC,F{PRICE)*1))
CREATE A JCB

LET VALUE=PRICE

LET ODUE.DATE=TIME.V ¢ PRICE ¢ PRIORITY

LET ARRIVALTIME=TIRME,.V
I+ SALE PS INTERNAL,

FGR EACH PIECE OF STRUCTURE, FILE PIECE IN ROUTING GO TO JOB
T PROCESS SPECIAL ORDERS

-8-

CTHERWESE UNTIL MCDE IS ALPHA, UQ THE FCOLLOWINGs..
REAC N
FOR EACH PIECE IN STRUCTURE WITH CCOE(PIECE) = N,
FINC Txe FIRST CASE, IF NONE GO TO LCOP
FILE PUECE IN RCUTING
rcee LCoP
JCB NCw ATTEND.TC.JCB
1F SAlE 1S EXTERNAL, DESTROY THE SALE RETURN
CH-ER\ISE..-..
SCHEDULE THE SALE(PRCOUCT, PROOUCTSRANDCM,F(Ll), PRIOREITY.FREQUENCYIPRODUCT,
TRUNC.F{PRICE)*1) IN SF HOULRS
RETURN END

ROUTINE TC ATTEND.TC.J08
LET PRCOUCTION.CENTER=MACHINE.DESTINED(F.ROUT ING(JCB))
I+ NUMRER.IDLE 1S PCSITIVE,
SUBTRACT 1 FROM NUMBER.IDLE PERFORM ALLOCATION
RETURN
CTHERRISE FILE JOB [N QUEUE RETURN
ENC

RCLTINE FOR ALLOCATION

REMCVE THL FIRST CPERATICN FROFM THIS ROUTING

SCHECULE AN ENDLOF.PROCESS GIVEN JOB AND PRODUCTION.CENTER [N
PRUCESS«TIMESEXPEUITE.FACTOR HOURS

Rt TLRA ENC

RCL1INL €XPEDITELFALTCR

IF 1IbE.V IS GREATER THAN DUE.CATE RETLRN WiTF 0.5 ELSE
RETURA WiETr MINGF((CUE.CATE-TIME.V)/PROCESS. TINE, 1)

ENL

LPUN I NDJDF.PROCESS GIVEN JOB AND PRNDUCTIONL.CENTER
1t RULLTING 1S EPPTIY, IF DUE.DATE <= TIVME.V,
OESTROY THIS JCB GO T0 pC
ELSt FILE THIS JOB IN FINISHE0.GOCDS.INVENTORY GO TO PC
(TitHnISE CALL ATTEND.TO.J0B
'pLY
it CuiLe 1S EPPYY,
ACC | TC NUMBER.IULE RE TURN
ELSE REmOyt THE FIRST JOB FROM QUEUL
PERFCKP ALLOCATICN RETURN
EnC

EVENT FUOR WEEKLY.REPORT SAVING THE EVENT NOTICE
HE ST LUl ThIS weERLY . REPCRT IN | wEFK

AL) T wEER JLCUNTER

Now HEPGRT

wESET webkLY TCYALS OF StAy

0 A N SN AL i g 1 O At B

i
*
3
?
3
¥
3
§

FOR EACH PRODUCTION.CENTER, RESET WEEKLY TOTALS OF N.CUEUE

IF MOD.FIWEEK.COUNTER,4)=C, FOR EACH PRODUCTICN.CENTER, RESET MONTHLY TOTALS
CF NJQUEVE ELSE

RETURN END

EVENT FOR END.OF.SINULATION

FOR 1=1 TC EVENTS.Ve FCR EACH NCTICE IN EV.S(1), DO
REMOVE THE NOTICE FROM EV.SUI)
DESTROY THE NOTV{CE

LcoP

NOW REPORT

LIST PRODUCT.SALES

RETURN END

ROLTINE FOR QUEVE.CHECK GLIVEN ENTITY AND I

LeCaL

IF 1 LE | LE N.PRODUCTION.CENTER, REVURN

CThERWISE.ee PRINT 1 LINE WITH § AS FOLLOWS
STOPPED TRYING TO REFERENCE CUEUEL *)

TRACE STOP END

ROUTINE FOR STAY.TIME GIVEN J0OB
LET STAYSTIME.Y - ARRIVAL.TIME({JCSE)
RETURA END

RCLTINt TC TRACE

LCCAL

IF FINISMEDJGCCOS.INVENTORY IS EMPTY, GO AROUND

ELSE FOR EACH JOB [N FINISHED.GOCODSL INVENTORY UNTIL DUELDATE > TIME.V, DO

REMOVE THE JCR FROM FINISMED.GCODS.INVENTORY DESTROY THE JOB
Lcaoe

AROULNC?

GC TC ENO.CF.PROCESSy SALE, WEEKLY.REPORT AND END.OF.SIMULATION PER EVENT.V

CENC.CHLPROCESS® WRITE 1VEM, PRODUCER, TIME.V AS “ITEM", 1 S5, "STOPPED"™,

"PROCESSING CN MACHINE™, | Sy " AT T[Me=",0{1043), /
RE TURN

*SALE' MWRIVE TIME.Ve PRODUCT.TYPE, PRICE AND PRICRITY AS "SALE OF TYPE™, | 3, "
* PROOUCT AT TIMEs®™, D(10,3), * FOR $%, D(6 2)y ™ PRIORITY=", | 3,
/ RETURN

*MEEMLY.REPORT®

SENC.CHSIMULATION®

RETURA

ENL

LEFT RCUTINE NUMBER,ICLE (M)

CEFINE J AS & SAVED, 2-CIMENSICNAL ARRAY
CEFINE K AS A SAVEC, L-CIMENSICNAL ARRAY
ENTER WITH N

It TAPEJFLAG=0,y LET TAPE.FLAG=]

-10-

RELEASE J AND K
RESERVE K(®) AS N.PRODUCTION.CENTER
RESERVE J(®,%) AS 100 BY N.PRODUCTION.CENTER
REGARLLESS ADD 1 TO K(M)
LET JIR(m) M)aN
10 K(F)13100y WRITE M AS | 3 USING SAVE.TAPE
FOR I=1 TC 100, WRITE JUI M) AS [3 USING SAVE.TAPE
WRITE AS / USING SAVE.TAPE
REGARCLESS MOVE FROM N
Rt TURN END

RCUTINE TC REPORT
LCCAL
IF TIvEIV=0,
START NEW PAGE °**AND'®* CUTPUTY TITLE
SKIP 2 OUTPUT LINES
PRINT 3 LINES AS FCLLOWS
PRODUCT CAT A
NAME SALES FRECUENCY PRODUCTION SECUENCE
PROB. VALUE CODE CNTR TIRE
FCR EACH PRODUCT, DC
LEY [sF.SALES.FRECUENCY
LET J=F STRUCTURE
PRINT 1 LINE WITH NAME, PROB.A(I), RVALUE.A(I)}, CODELJ),
BACHINEL.DESTINED(J) AND PROCESS.TINELJ) THUS
[22 2 s, 00 L 1] 0 *8 . 00
IF 1~20, LEY 1=S.SALESJFREQUENCY(I) ELSE
IF J~=0, LET J=S.STRUCTURE(J) ELSE
IF 1=0 AND J=0, GO TO *LOOP* ELSE
{F 1~3Q0 AND J=0Q, PRINT 1 LINE WITH PROB.A{I) AND RVALUE.AL]) THUS
*,08 L]
ELSE IF 1%0 AND J-=0, PRINT | LINE WITH CODElJ) ¢ MACHINE.DESTINEDIJ),
AND PROCESS.TINE(J) THUS
' *e Se08
tLSE IF [430~%Jy PRINT | LINE WITH PROB.A(LI), RVALUE.A(Ll), COOE(J),
MACHINE,DESTINED(J) AND PROCESS.TIME(J) THUS
2,88 00 L 1) L 2) 08
‘LCcop* LOCP
SKiP 2 CUTPUT LINES
PRINT 2 LINES AS FOLLOWS
PRCOUCTICN CENTER DATA
CENTER NUMBER OF MACHINES
FUKk EACH PROODUCTION.CENTER, PRINT 1 LINE WITH PRODUCTION.CENTER AND
NUMBER. IDLE THUS
.9 8
SRIP 2 OUTPUT LINES
PHINT 2 LINES AS FOCLLOWS
INT T AL EVENTS *
EVENT TYPE TINE
FUOR I=} TO EVENIS.V, FOR EACK J IN EV.S(I),
PRINMT 1 LENE WiTH | AND TIME.ALL) THUS
¢ [1 %] J
REGARLLESScoeee
START NEW PAGE
PRINT | LINE AS FCLLCWS
PRINT 3 LINES LIKE THIS.eoeo
WEEKLY REPCRT

Ny iy e

s

-11-

PRINY 2 LINES WiTH AVG.STAY AND VAR.STAY AS FOLLOWS
JOB STAY STATISTICS ARE: AVERAGE STAY= s ee
VARIANCE = 8,08
SKIP 3 OUTPUT LINES
BEGIN REPORTY
BEGIN HEADING
PRINT 2 LINES AS FOLLONS
PRODUCTION CENTER GQUEUEING REPORT
CNTR AvVG. CUEUE MAX. QUEUE
ENC *°*HEADING
FCR EACH PRODUCTION.CENTER, PRINT | LINE WITH PRODUCTIONJCENTER,
AVG.CUEUE AND MAX.QUEUE THUS
*9 o, 80 *
END *°* REPORT
PRINT 1 LINE WITH AVERAGE(AVG.QUEUE(®)) LIKE THIS
CVERALL AVERAGE QUEUE LENGTH OF ALL QUEUES 1S ®.s¢
SKIP 3 OUTPUT LIENES
FOR EACH PRODUCTION.CENTER, DO
BEGIN REPORT PRINTING FOR I=1 TO 25 [N GROUPS QF S
BEGIN FEADING
PRINTY] LINE WITH PRODUCTION.CENTER LIKE THIS
HISTOGRAM OF QUEUE LENGTH FOR PRODUCTION CENTER o»
END ** HEADING
PRINT 1| LINE WITH A GRGUP OF FREQ(PROOUCTION.CENTER.2) FIELOS THUS
L]]] L] [J
ENC °* REPORTY
LoaP
IF MCD.FIWEEK.COUNTER,4)~20, RETURN
CTHERRISE..d START NEw PAGE
PRINT | LINE AS FOLLOWS
MONTHLY REPCRTY
SKiP 2 OUTPUT LINES
SKIP 3 OUTPUT LINES
BEGIN REPORY
BEGIN READING
PRINT 2 LINES A3 FOLLCHS
PRODUCTION CENTER QUEUEING REPORTY
CNTR AvG. CUEUE MAX. QUEUE
ENC *THEADING
FOR EACHM PRODUCTION.CENTER, PRINT L LINE WITH PRODUCT IONACENTER,
AVG«IN.QUEUE AND MAX. IN.QUEUE THUS
L 1) s 00 J
ENC ** REPORT
PRINT t LINE WITH AVERAGE(AVG.INJCUEUE(®)) LIKE THIS
OVERALL AVERAGE QUEUE LENGTH OF ALL QUEUES IS ¢.¢e
RETURN
ENC

ROLTINE FOR AVERAGE GIVEN ARRAY

LCcCaL

CEFINE ARRAY AS A 1-DIMENSICNAL ARRAY

FCR J=1 TO DIP.FLARRAY(®)), COMPUTE M AS THE MEAN OF ARRAY(J)
RETURAN WRTH M

ENC

~12-~

SAMPLE OATA FOR SEVERAL JOB SHOP EXPERIMENTS USING THE LEVEL X, SECTION 5.09%
JOt SHCP SIMULATION PRCOGRAMeJ .o TITLES, AS SHOWN, CAN EXTEND OVER SEVERAL CARDS
ANC ARE ENDED 8Y A MARK.V CHARACTER »

S 1€ 10 55 3

3

Toe C.25 10.0 0.50 15.0 Q.75 20.0 1.00 25.0

1 11 C.2 22 0.% 3 & 0.3

YCvyC C.10 3.7 0.28 5.6 039 7.2 0.60 9.2 0.81 10.6 0.9% 15.2
1.00 20.0¢ .

1 2 15 1 1.2 16 3 0.8 L7 5 Q.2 18 2 1.5¢

ceelL Cel 1.0 0.2 2.0 0.2 3.0 Ceé 4.C 0.1 5.0

123 20 5 4.2 21 & 5.6 a2 1 3,2 23 5 2.00¢

1 2 3

1 1 19¢8

K

IHES 1S A TEITLE CARD FOR THE SECOND SIMULATION EXPERIMENT OF THE SERIES
CATA CARDS FOR THIS EXPERIMENT wILL HAVE THE SAME FORMAT AS THOSE OF THE
PREVIFLS EXPERIMENT ANC WILL ENC WITH AN ®OK*™ CARD *

TME FCLLOWING CARDS ARE SAMPLES OF THE DATA CARDS PUNCHED FOR ONE OF THE TNO
EXTERNAL EVENTS TAPES esddesceccensse THIS IS JUST A SAMPLE FROM THE TAPE

SALE 7/2/768 12 CC 2 1.98 1 15 17 18 »
SALF 172768 13 25 1 0.97 1 1 2 3>

SALE 1/3/68 0©Y 30 2 1.50 2 16 17 18 ¢
SALE T7/3/68 C7 0C 3 24501 20 22 23 ¢
ENC.LF.IIMULATION 971769 12 00 ¢

-13-

COMMENTS ON THE SIMULATION PROGRAM
The program is arranged functionally and is discussed as it

appears. The order of the program is preamble, main routine,

-

initfalization, events and routines of the simulation model, routines

! for monitoring, debugging and analysis.

Ereamble

The preamble is divided into seven sections: permanent entities,
temporary entities, event notices, event control, debugging, analysis
and miscellaneous declarations. Most simulation programs can be
organized this way.

One compound and two simple permanent entities are declared.

The special features of each are these:

PRODUCT has a RANDOM attribute and an ALPHA attribute, each

requiring definition in a DEFINE statement.
PRODUCT,SALES, the single attribute of the compound entity
PRODUCT ,PRODUCT, is intrapacked to conserve storage space.

PRODUCTION.CENTER has two pairs of attributes that are packed in
the same array, and one attribute that is monitored. The
packed attributes use field-packing, equivalence and array
specification. The monitored attribute requires an additional
DEFINE statement.

PRODUCT.SALES could just as easily have been defined as a global
array or as a two-dimensional system attribute. As a global array
though, it could not have been packed; as a system attribute it
would not be eligible for implied subscripting.

Two temporary entities are declared. The special features of
each follows:

JOB has one attribute placed in a specific word in its
entity record, and has a function attribute. The function
attribute requires a DEFINE statement to declare its mode.

Two sets in which a JOB participates have their implied
properties modified by DEFINE statements.

, Two attributes of OPERATION are packed in the first word of

each entity record,.

-14-

A set to which an OPERATION belongs has its removal routimes
deleted by a DEFINE statement,.

Three event notices are declared. The special features of each
are these:

WEEKLY .,REPORT has no attributes, and neither owns nor belongs
to sets other than the standard one defined for all event
notices.

One event,SALE, breaks ties among competing event notices
through a BREAK TIES declaration. The other internal
events break ties, if they occur, on a first-come, first-
served basis.

Two external event classes, END.OF,.SIMULATION and SALE, are declared.
Two input devices are declared as suppliers of external event triggers.
The priority order of the four event classes is declared {n a PRIORITY
statement.

Two BEFORE statements are used. Each states that a certain
routine is to be called before a specified action takes place. The
arguments of these routines are not stated, but implied.

One TALLY and two ACCUMULATE statements are used. The special
features of each faollow:

The TALLY statement compiles statistics for a DUMMY variable,

" which is declared in a separate DEFINE statement.

All of the statistical counters used in the TALLY and
ACCUMULATE statements are defined so they can be released.
If they were not named, they would be given local names
such as A.1 and A.2 by the SIMSCRIPT II compiler.

FREQ is a two-dimensional array. The first dimension is
an entity index. The variable for which it accumulates
a histogram is an attribute of PRODUCTION,CENTER. The
second dimension is the histogram index and {s an
integer between 1 and 26.

The remaining statements are:

Declare a system owned set.

Use DEFINE TO MEAN statements to create shorthand notation.

Declare four global variables: a two-dimensional array,
two INTEGER variables,and a TEXT variable.

e ——— e Y~ B

-15-

Declare a function and specify the number of arguments it

must always have.

Main Program
The main routine has three functions: it initializes the model

so simulation can start, it transfers control to the timing routine
when initialization is complete, and it resets the entire system to
an "empty" condition at the end of a simulation run so another
experiment can beg.n.

Initialization takes place in the routine INITIALIZATION. After
inicialization, the SUBPROGRAM system variable BETWEEN.V is set to
the routine name 'TRACE', indicating that this routine is to be called
before each event is executed. Simulation begins at the START
SIMULATION statement that removes the first event from the events
list and transfers control to it. Simulation proceeds until an END,OF.
SIMULATION event occurs. This event, aside from its obvious task of
reporting the results of the simulation experiment, empcies the events
list sets. When END.OF,.SIMJLATION returns control to the timing
routine, the lack of scheduled events causes control to pass to the
statement after START.SIMULATION. In many simulations this will be
STOP. In this example, it L8 the first of many statements that
release and destroy all permanent and temporary entities. After these
statements have been executed, all the memory structures set up by the
previous experiment have been erased.

To perform this erasure, the system set FINISHED,GOODS,INVENTORY
and the sets owned by the permanent and temporary entities are emptied
and thelr members destroyed. Ff{nally, all attributes of permanent
entities are released. Special features to notice are these:

The PRODUCTION.CENTER loop in which operations owned by
Jobs owned by production centers are successively
removed and destroyed.

The RANDOM variable SALES.FREQUENCY {s treated as a set
vhen it is emptied.

All permanent entity attributes, including set pointers

and statistical accumulators, are released.

-16-

In many programs, so extensive a reinitialization process is not
necessary. For example, it is usually sufficient to zero out all
attribute values and empty all sets. This example has been written
to illustrate what seems to be the worst case, When single simulation
runs are made and no reinitialf{zation is necessary, the initialfzation
routine can be released and its space regained for array and entity
storage. The following routine shows how this is done.

Add to the preamble:

DEFINE INITIALIZATION AS A RELEASABLE ROUTINE
Use this routine:

MAIN

PERFORM INITIALIZATION

RELEASE INITIALIZATION

START SIMULATION

STOP END

Program Initialization
INITIALIZATION starts with some declarations. The first takes
advantage of the DEFINE TO MEAN statement of the preamble to define
some local INTEGER variables I, J, K, L, M and N. The next two
statements are local DEFINE TO MEAN declarations that create short-

hand notations for two lengthy variable names. The last declaration
describes a local ALPHA variable that verifies whether or not all
input data have been read.

Since a mistake may have been made in setting up a simulation
run, EOF,V is set to 1 to give the program control over the actions
taken when the end of the input data file is reached. If an end-of-
file is encountered when reading TITLE, EOF.V is set to 2 and
this fact is picked up in the following IF statement. A sequence
of simulation experiments can also be stopped this way. When all
the data for a sequence of runs are exhausted, these statements

will stop the program.

A e —~

The INPUT statement reads characters from the current input
unit READ.V until an asterisk, the MARK.V default symbol, is reached,.
A typical simulation TITLE card might be:

SIMULATION RUN NO, 1 JOB SHOP WITH 10 CENTERS *
If some symbol other than * is to be used as a TEXT terminator, a
statement such as LET MARK,V="?" is put at the head of INITIALIZATION.

A value that is the number of production centers is then read
and used to reserve the arrays that hold the attributes of PRODUCTION.
CENTER. This value is also used to read in the number of machines in
each production center (which are all idle when simulation begins.)

A similar process then takes place for PRODUCT. It is more
complex in that a richer variety of data structures are associated
with PRODUCT than with PRODUCTION,.CENTER. The data structures are
the following:

PRIORITY .FREQUENCY--a "ragged table" whose rows are "sized"
dynamically,

SALES ,FREQUENCY--a RANDOM variable whose sampling data is
read in a standard fommat.

STRUCTURE--a set with OPERATIONS as members,

Also, an initial local SALE for a standard product must be
scheduled for each product type. 1In scheduling these sales, the
PRICE of each SALE is a random variable between 0 and the product
type, e.g., a type 3 product can be sold for between $0 and $3, and
the PRIORITY assigned to a sale can be determined by a random draw
from the PRIORITY.FREQUENCY table.

At the end of initialization the numbers of the input devices
for the LOCAL.SALES and EXPORT.SALES external event units are read.
This allows devices to be changed between simulation rums. Finally,
the ORIGIN,R routine is invoked to set the simulation calendar so
that calendar dates can be used on the external event tapes.

If the last data fleld read is not the character string OK, the

run terminates with an error ressage.

-18~

Events and Routines of the Simulation Model

The event SALE is written to react properly to both internal
and external event triggers. The event creates a job, determines
its routing through the shop, and starts it in its processing sequence.
If the sale is internal, a new order is scheduled for the same product
some time in the future.

The EVENT Statement defines SALE as an event routine with three
input arguments. It also declares that when a SALE event notice is
selected as the next event, the first three programmer defined
attributes of SALE are to be assigned to the local variables,

PRODUCT, PRICE and PRIORITY, and that the event notice is not to be
destroyed. An important point to note here is that PRODUCT, PRICE

i 35 ettt e

and PRIORITY are local variables; they are different from the variables
defined as attributes of the event notice in the preamble.

The first two statements are local declarations that we have
seen before. The third statement is the one that allows SALE to
be used with both internal and external event triggers. It says:
if SALE has occurred externally, read three data items, otherwise
do not read any data. Regardless of how the event was triggered,
values get assigned to PRODUCT, PRICE and PRIORITY.

The next statement adds 1 to an element of PRODUCT,SALES, counting
the number of times particular products are sold at different prices.

The next section of code creates a JOB entity and assigns valuves
to its attributes. The JOB is the entity that will flow through the
shop, and will represent the sale from now on. If SALE is triggered
internally, it is a sale for a standard product, and the standard
sequence of operations for producing that product is transferred from ;
STRUCTURE(PRODUCT) to ROUTING(JOB) . Notice that implied subscripts
are used in the program for both STRUCTURE and ROUTING. If the SALE
is triggered externally, it represents a possible special order. As
special order operations are subsets of operations that produce
standard products, data are read that select a subset of operations
for producing the order and store it in the JOB routine set.

-19-

With this, the task of SALE is almost completed. The now completely
specified JOB is started through processing by the routine ATTEND,TO.JOB.
After this routine deals with the job, it returns to SALE where
arrangements are made for the next SALE. If the SALE just processed
was triggered externally, the event notice is destroyed and control
returned to the timing mechanism. The next external event will be
selected automatically by the timing mechanism from the extermal
events tapes. If the SALE was triggered internally, the event notice
is reused to schedule another sale for this same product, with a
different price and priority. The time at which this sale is to
occur is determined by a random sample from the RANDOM variable
SALES ,FREQUENCY(PRODUCT) ; again implied subscripting is used.

ATTEND,TO,JOB uses the routing of the current JOB to select
the production center in which the first operation is to be performed.
The first statement in ATTEND,TO.JOB is important as it illustrates
several basic operations in SIMSCRIPT II programming. First, it
illustrates the use of a set pointer to select a set member; F . ROUTING
(JOB) picks out an entity identification number. This identification
number is then used with an attribute of the entity type it represents
(OPERATION) to determine a value; MACHINE ,DESTINED(R.ROUT:NG(JOB)) is
the production center number the first operation requires. This
number is assigned to PRODUCTION.CENTER so that implied subscripting
can be used later on in the program.

After the production center is determined, NUMBER,IDLE(PRODUCTION,
CENTER) is examined to determine whether a machine is available in this
production center to process the job. If a machine is available, it
is allocated to the job by first subtracting 1 from the idle machine
counter and then calling the routine ALLOCATION. If a machine is
not available, the job is filed in a QUEUE owned by the
production center, When a machine becomes free at some later date,
the QUEUE will be examined and a job removed for processing. All
the time a job spends in the shop in excess of its actual processing
time {s spent in queues belonging to different production centers

and in finished goods inventory.

-20-

ALLOCATION knows that it is given a certain job because the
that the identification number of this job is in the global variable
JOB. It removes the first operation from the ROUTING of this job, .
and schedules an END.OF.PROCESS eyent. The job identification
and the production center identification are assigned to the first
two attributes of this event notice. The event is scheduled for a
standard time, PROCESS.TIME(OPERATION), modified by a factor
that depends upon the current time and the time the job was
promised to the customer. Note the use of implied subscripts in
communicating between the routines ALLOCATION and EXPEDITE.FACTOR,
and within the routines themselves,

EXPEDITE ,FACTOR looks at the DUE.DATE of the current job and
compares it with the current simulation time. If the job is late,

EXPEDITE ,FACTOR returns a value of 0.5 to shorten the processing time

of the operation. If the job is not late, a value between 0 and 1 is computed,
which depends upon the time remaining before the iob will be late

and the processing time of the current operation. Again

implied subscripts are employed.

The event END.OF ,PROCESS does two things, it takes care of a
job that has just finished processing at a production center and it
takes care of the production center. First it deals with the job.

If the ROUTING of the job is empty, all its operations have been
completed and it can pass from the shop. If the job is finished on
time, or is late, Lts entity record is destroyed. If it is early,
it is filed in FINISHED.GOODS.INVENTORY where it stays until its
DUE.DATE. If the job is not completed, the routine ATTEND,TO.JOB
assigns it to its next operation. Note the use of the REMOVE state-
ment in ALLOCATION that makes this assignment automatic.

It is important at this point to understand the flow of control
be tween events and routines. The reader is advised to make up some
data, or use the data at the end of the program to trace geveral
jobs and their flow through the shop.

After disposing of the job, END,OF ,PROCESS deals with the produc-

tion center. If no jobs are awaiting processing in the production

-21-

center QUEUE, the machine just released is returned to the idle state.
If jobs are waiting, one is selected accoxding to the queue's priority
rule and processing is started on it.

This completes the routines and events that are directly involved
in the shop simulation. The remaining routines and events deal with
preparing reports, stopping the simulation, collecting data and

monitoring the model.

Events and Routines for Monitoring, Debugging and Analysis

The event WEEKLY .REPORT occurs periodically. It keeps track
of the number of simulated weeks that have gone by, resets counters
that are used for collecting periodic statistical information, calls
on a report routine and reschedules itself. The feature of interest
in this routine is the use of the word WEEK in the RESCHEDULE state-
ment. This word was defined to mean *HOURS.V*7 HOURS in the program
preamble; the RESCHEDULE statement is therefore compiled as RESCHEDULE
THIS WEEKLY ,REPORT IN 1*HOURS,V*7 HOURS. When declarations such as
this are made, care must be taken that the defined word is not used
inadvertently in another context, e.g. there can be no variable,
routine, label or set named WEEK in this program.

The event END,OF ,SIMULATION is triggered extermally and has as
its main purpose the termination of a simulation run. It does this
by emptying the events sets so control will pass to the statement
after START SIMILATION when END,OF ,SIMULATION returns control. In
addition to stopping the simulation, END.OF .SIMULATION calls REPORT
and lists an array.

The next two routines, QUEUE.CHECK and STAY.TIME, are associated
with the BEFORE statements of the preamble. QUEUE,CHECK is called
before filing or removing is done in any QUEUE; STAY,.TIME is called
before any JOB is destroyed. The sole purpose of QUEUE.CHECK is
error checking; its code is gtraightforward. STAY.TIME has a
different purpose. It computes the time a job spends in the shop,
assigning this time to a variable that will have a TALLY operation.
Note that STAY is used to compute statistics through

-22-

its TALLY computations, but as it is not used anywhere else in the
program, it is declared DUMMY and given no storage location.

TRACE is more complicated. Triggered by a call from BETWEEN.V
before every event, it is used to trace events and to release jobs
from finished goods inventory when the simulation clock reaches
their due date. The first part of the routine deals with this task.
The code makes use of the fact that jobs are ranked in FINISHED.GOODS.
INVENTORY in order of their DUE.DATE.

The trace section of the program uses EVENT,.,V to branch to a
different output statement according to the type of event that has
been selected to occur next. These output statements print different
items of information about each event type. The program could as
easily be written to take actions on the event types, such as tuming
off the trace by setting BEIWEEN,V=0 when TIME.V reaches a certain
value or a special kind of event occurs.

Routine NUMBER,IDLE is a left-handed routine that implements
the monitoring of the attribute NUMBER,IDLE. It has several unusual
features. One reason for defining NUMBER,IDIE as a left-hand monitored
variable is to save values of the number of machines idle over time
for later processing, without putting the code to do this in the
simulation routines. To remove thia feature from the program at same
later date, one need only remove the preamble card that states that
NUMBER ,IDLE {s monitored and the routine NUMBER,.IDLE, and recompile
the program. No changes need be made to any other routines.

The program uses two SAVED local arrays to collect and write on
tape successive values of NUMBER,IDLE for each production
center. A global variable TAPE,FLAG is used to tell the routine
when initialization of the SAVED local variables is required; TAPE
FLAG is set to zero at the start of every simulation experiment.

The routine demonstrates SAVED values, local arrays, a left-handed
function, subscripted subscripts, and monitored variables.

The last routines deal with reports of system activity during
a simulation experiment. They print out the parameters of the
experiment and the measurements made during the experiment. They
fllustrate the report generating facilities of SIMSCRIPT II as well
as the COMPUTE statement.

