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ABSTRACT 

Three very different methods (from the literature) for 

the integration of differential equations by numerical meth- 

ods are described.    Formulas are given for two methods, 

and a computer program realization of the third is described. 
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NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS BY 
THREE METHODS -- EQUATIONS FOR,  DESCRIPTION OF 

COMPUTER ROUTINES,   DISCUSSION OF RESULTS 

I. INTRODUCTION 

Our work requires the numerical integration of second-order differential 

equations to high accuracy (one part in 10     , say) relatively close to the epoch, 

and good accuracy (1 part/10   ) over a long period.     The methods used must 

also be efficient,  lest many hours of computer time be wasted.    To meet this 

need we have dealt with three distinct methods, which the present memo will 

describe in various detail for our own purposes and/or external utilization. 

The potential user should be alerted that the methods to be described have 

been adapted to meet the particular needs of our program, and should not ex- 

pect our specific realizations to be optimum for another kind of problem. 

This element of caution seems to be lacking in the literature,  as is clarity. 

In fact,   I developed our Adams-Moulton routine from no more than a pair of 

predictor-corrector formulas given in an unpublished memo as quotients of 

(finite-difference) operational polynomials.    When-- after all the difficulties 

had been solved -- I found discussions of the method in the literature,   not 

only did these discourses fail to help in refining our routine, but the difficul- 

ties we solved were not treated.    Thus there is in this area ample opportun- 

ity to apply one's own insight and ingenuity. 

II. METHOD OF ADAMS-MOULTON 

This method rests upon a particular pair of quadrature formulas,  and 

(unlike some methods; e.g. ,   Runge-Kutta)  steps from t    to t       .  with the aid 

of the solution at previous steps,   say y   ,   y       , ,   . . .   y ;   i. e. , the method 

has "memory". Also, the predicted value y , , is "corrected" by a formula 

using y .; hence, this is one of a class of "predictor-corrector" methods, 

a class which is apparently superior to all other methods. 

Let us make the non-trivial supposition that the solution and its deriva- 

tive are known at a sufficient number of previous points,  and write 



'n+1 
y   + h   V     a. V1 y- 

i=0     l n 

Here,  the V's are backward difference,  with V    = 1 by convention.    We next 

use this estimate of y       , to obtain y'     . from the differential equation.    Then 

we use a second quadrature formula involving y'     . to correct y      .: 

'n+1 « '■ *h k b.   V1 yt 
l       7n+ 1 

If necessary,  the second step may be repeated --at the cost of a second com- 

putation of y1     ,,  and perhaps also the difference table. 

The explicit form of the quadrature formulas have been succinctly de- 

rived by Glautz . We give the formulas below and leave the derivation for 

the interested reader. 

'n+l 
y    + h 

V+ V2 + V3 + 

V2      V3 Yl n 

'n+l y    + h 7n ^~^ 
v + - + - + - 

y;+ 

One of the tasks in coding this method is that of finding the coefficients a. and 

b. up to high degree,   a painful task if the polynomial division be done by hand. 

We have derived recursive formulae to perform the division which are well 

suited to machine computation. 

■    J 

al ■        J - r2 

a2 =       1 - r3 - r2aj 

1 - 
i = 1 

rp-i + 2 ai- 1 



where   r. = l/i.    And 

b =        1 
o 

bl ■ -r2 

b2 = "r3 " r2 bl 

bp        =       -  1E1 
rp-i + 2bi-l 

It has heretofore been common to compute and print tables of such coefficients 

to save other workers the labor.    However,  a more current assumption is 

that everyone has a digital computer,   for which the above formulas are as 

good as numbers. 

It may be noticed that the prediction and correction formulae have been 

written in a form which appears to entail, computationally, the formation of 

difference tables of y1, followed by multiplication and summation. If a sec- 

ond correction be required, then p more multiplications and additions would 

be necessary. However, the formulae can easily be rewritten so as to in- 

volve only the y1,  not its differences. 

P 
y    ,  .      =     y    + h    V*      c,   y'     , for prediction, 7n+ 1 7n Z-f        k 7n- k r 

where 

c 
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P ,k 
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if,  by convention, (   )   =   1. 

where 
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The corresponding computer calculations are more efficient than from the dif- 

ference notation.    However,  this approach has a defect which may or may not 

be serious for a given problem;   i.e. ,  the behavior of the higher differences 

is an excellent index for the accuracy and/or stability of the integration.   It is 

common experience that increases in the higher derivatives of the "exact" 

solution,  or errors in computer programming,  may cause an increase in the 

higher differences of y',   so that without some remedy the process becomes 

unstable.    In our work,   we accept the liability,   and simply stop an integration 

when by some simple test an instability has obviously set in. 

When used for integrating the second order differential equations of mo- 

tion for a planet,  the Adams-Moulton class of methods appears to have an in- 

herent difficulty.    Suppose that the orbit were an ellipse;   then there would be 

four equations to be integrated in this method: 

xl X2 

-UXj 

r 
-uy2 

,   2   ,     2.3/2 2 (xx + yx) 

where (x,, y,) is the position and (x2,  y2) the velocity.    All such singly- 

integrating methods require double application as above to progress from ac- 

celeration to velocity to coordinate.    But the peculiar form of the equations 

of motion for such methods suggests that our computer integrator could eas- 

ily become a computer oscillator.    Indeed,  for a given number of differences 

in the predictor-corrector formulae,  use of a step size greater than a corre- 

sponding threshold makes the system oscillate.    We have found that a second 

correction alleviates the problem,   at the cost of a second evaluation of driving 



function.    However,   since the cure allows a step size larger by at least an 

order-of-magnitude,  the saving in computation time is considerable.    It is 

interesting that in the double-correction mode there seems to be no substan- 

tial difference between the first and second corrected solutions;    this appar- 

ent paradox appears to illustrate the close relationship between accuracy and 

stability in numerical integration. 

We have programmed the Adams-Moulton method and applied it with fine 

results to the N-body integration routine.    With 11      differences its perform- 

ance as to accuracy/computation-time is far superior to that of the previous 

method due to Nordsieck (described below),  with a computer time saving of 

about an order-of-magnitude. 

Except for the restrictions of fixed step size and equal-interval tabular 

output the method has been programmed in a flexible, easily-used form for 

general use. 

There are a number of techniques available for starting the Adams- 

Moulton method,  which requires the solution at a sufficient number of points 

at the epoch to compute the difference tables.    We  simply use the Nordsieck 

routine,   on which we can rely for solutions near the epoch with accuracy to 

14 or 15 decimal places. 

III. METHOD CALLED "ROYAL ROAD" 

If formulas could be found by which one can doubly integrate in one 

stride directly from acceleration to coordinate,  the just-discussed problem 

characteristic of single integration methods could be avoided.    In fact such 

formulas exist,  and we follow Kopal in referring to them as the Royal Road 

method,  a description we prefer over JPL's name ("2       sum").    Since we 

have not yet quite finished programming the method,  we shall limit the sec- 
2 

tion primarily to a listing of formulas.    We follow Hildebrand in their deri- 

vation,  but carry the algebra (for finding coefficients) in symbolic rather 

than numeric form,   so as to have the computer find coefficients for high 

order terms.    For correction, 
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with the b. the same as in an earlier formula for the Adams-Moulton method* 
l 

To carry out the squaring operation let u,     =   v,     =   b   .    Then, 
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For prediction,   we operate on both sides with the "advancing" operator 

E    =   1/(1 - V): 

EV2
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v2yk+i 
=
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wiyin 

i=0 

,2  . „3 . i,2 
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Since V    z,   = z    - 2z,      . + z,     2>  these formulae become 

yk + i *   -^k-i + ^k + h    E    eivlyk 
i = 0 

2      P 
rk+l »       -y_ -1 + 2^ + h    E   wivlyk+i 

i = 0 

where we have,  for clarity,   simply advanced the subscript of the correction 

formula originally given.    Of course,  these formulae can be expressed in 

terms of the yV  and yV, ■> instead of their differences,  as before. 

The use of these royal road formulae in PEP raises a series of questions 

regarding computation of velocities.    For our equations of motion the driving 

function y" is a function of y' only in the relativity term,  which is always nu- 

merically much smaller than other terms.    In our equations for partial deri- 

vatives only the  d/d (relativity factor) contains "velocity" terms,  though of 

course these partials do not need to be as accurate as the coordinates.    The 

velocities are also used in two other ways,  both requiring considerable accu- 

racy:    (1)   in processing "probe" (e.g.,   Mariner V) data the f must be calcu- 

lated to better than 1 mm/sec,  for which numerical differentiation of r may 

not be adequate;   and (2) in restarting numerical integrations,  where x,  y,   z, 

x, y, z are all needed to define the osculating orbit. 

If the computation of velocities by integration of y" could be avoided,  a 

significant portion of computer time needed for PLANET and N BODY integra- 

tions could be saved.    Hence,  we shall incorporate the option of calculating 

velocities by numerical differentiation with only prediction of y'   , ,,   since 

there will not be a second correction of y       ,. 



To derive the prediction formula we begin,  as before,  with the correction 

formula . 

y» =        - iln (1 - V) y 7n h 7n 
00 

h      i-   ,     m   V      yn m = l 

Now apply E to both sides. 
00 

1 1       _ 1    „m 
^n+l =        E^n   =  T^V     h      E        m V     ^n 

m = l 

(i + v+v2 + v3 + ...)ly;  lvm
y h     *-»     m 7n 

2   +   3)   V r...J7n< [v+ (i +1) v2 + (l +4+4) v   + . . .] y 

To express these formulae in terms of tabular points,  let 

q 
y» V f Vm  y yn 2^ m yn 

m =0 

where 
f = 0, f l/hm 
o m 

Then,   following the previous equations 

q 

yn        = ,En     ^kyn-k        ' k = 0 

where 
q k       i 
£    <-x>   (k)fi    • 

i = k 

with analogous equations for the predictor. 



For restarting in the absence of integrated velocities it will probably be 

possible to use velocities computed from the position and perhaps accelera- 

tion in the vicinity of the restarting time.     We will give below a suggested 

formula for numerical differentiation of position;   more elegant and accurate 

methods using the acceleration can certainly be derived,   but may not yet be 

in the literature. 

For accurate numerical differentiation we prefer some kind of central 

difference formula.    It is easy to compute the mean  of the previously given 

formula and the corresponding formula using forward differences. 

y1     =    7(yb| + yff) 3 n 2 v 7n        7 n 

We imagine the previous formula to contain superscripts b (for backward dif- 

ferences),  and write analogous formulas for forward differences: 

f » JL       <*      Am 
V = V       f        Ay y n 2^ m yn 

m= 0 

f* =       0,       fi      =     (-l)m+1/hm o m 

s . s k      s 
Since A    y      =     V*      (-1)     ( , ) y    , c    ,,   it follows in a not-so-simple way 

that k = 0 

«. ^        f 

V = £      gkyn + k     ' 
k=0 

where 

gk   =     E (-1)    (k)fi 
i=k 

and hereby we can obtain y   '.    We will discover by experiment whether it is 

accurate enough. 

Since the Royal Road method will be stable without a second correction, 

and by using numerically differentiated velocities,   we expect a saving in 

where 



computer time of better than a factor of 2,  an important improvement for our 

projected very long integrations. 

IV.    METHOD OF NORDSIECK 

The third method is due to A.   Nordsieck,   and is described in detail in 

Ref.   3.    We have programmed and thoroughly checked out a double-precision 

"package" based on the reference.    In this section we comment on the method 

and upon some aspects of realizing package. 

The Nordsieck method is distinguished by two features:    (1)    it is self 

starting,  and (2) the step size is automatically changed when needed.    Since 

the method is one of the class of predictor-corrector methods,   which involve 

the "memory" of the solution for earlier values of the independent variable (t), 

starting is naturally a problem because in the beginning there is nothing to re- 

member!    The starting procedure in the Nordsieck method is  so accurate and 

easy to use that the package is very useful as a starting routine for other 

methods,  and is so used.     The importance of a good starting procedure should 

be emphasized;   the "inherited error" due to inaccuracy in computing the first 

few values of a solution can easily dominate subsequent errors. 

The variable-step-size feature performs as follows:    the step size (h) is 

such that the equation is integrated over a unit distance (from t = t. to t = 

t, + 1) with an accuracy not worse than a specified value (the program input 

variable named EPS).     Changes in h are accomplished efficiently and stably, 

so that even poorly behaved solutions,   such as (continuous) stepwise-linear 

functions,   are efficiently found.     In the Planetary Ephemeris Program (PEP) 

work the method proved to be especially useful for integrating the equations 

of motion of the asteroid Icarus,   which,  because of its high eccentricity and 

near-collision with the Earth,   required the diminution of h by about a factor 

of 10 at perihelion and at close approach. 

Analogous with the utility of observing the high order differences in other 

methods,  the behavior of h provides an index to the current nature of the dif- 

ferential equation.    In particular,   in a number of instances the onset of a rap- 

idly decreasing h has led to the discovery of programming errors outside the 

integrating package. 

10 



One fairly subtle point should be mentioned for the benefit of those who 

may wish to use our package for the Nordsieck method.   Ordinarily no loss of 

accuracy is entailed when h abruptly diminishes; indeed, it usually diminishes 

precisely to retain accuracy.   An exception occurs when h is required tempo- 

rarily to decrease by more than a factor of 2 in order to compute a solution at 

a preset tabular point.    We prevented this from occurring at any tabular point 

after the  second (excluding the epoch) by allowing h to double only at any other 

tabular point, via logic involving L5.    However, the user must select the ini- 

tial interval (HC) and/or the tabular interval (HMX) so that for his problem 

this circumstance will not occur at the first or second tabular point. 

Because of difficult algebraic problems involved in deriving certain coef- 

ficients,   and because of questions about the stability of the variable h,  the 
th th 

method has been programmed only for the 5     and 6      degrees.     While satis- 

factory for general use,   it turns out that for our work in planetary orbits 

other methods of higher degree are much more efficient -- with the probable 

exception of Icarus and other bodies with similar orbits.    When the higher 

degree differences of a solution are large for a given h,   the Nordsieck method 

responds by diminishing h,   whereas a method which carries along these higher 

differences can condone the original h without loss of accuracy.    It may happen 

that the increased computation time for high-degree methods (for a given h) 

may be more than offset by the larger allowable value of h,   especially when 

evaluating the right-hand side of the differential equation(s) requires a large 

share of the gross computation time.    Hence,   we have found that for the inte- 

gration of the 9-body problem the Nordwieck method is more consumptive of 

computer time by a factor of (roughly)  10 in comparison with the Adams- 

Moulton method,  for the given required accuracy. 

Some additional comment is needed regarding the criteria for allowing h 

to double.     These criteria were carefully tailored to be efficient for our kind 

of celestial mechanics integrations,   and may or may not be suitable for other 

work.   A note of caution should be offered to anyone who might wish to change 

them.    We have found that a single step at a doubled interval when non-optimum 

11 



criteria were used could produce a truncation error,  propagated through sub- 

sequent steps,   which dominated all later errors.   That is, with no saving of time 

for the one step,   accuracy was nevertheless greatly diminished.     With proper 

selection of criteria this does not occur. 

12 
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