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NOTATI ON

A Complex wave amplitude

d Depth of submergence of wedge

d* =dN/U

F1  Function defined by Equation [49]

F2  Function defined by Equation [601

G Group velocity

H Heaviside function

G Components of group velocity in Cartesian
coordinates

Gr , Ge Components of group velocity in plane polar
coordinates

GR, G , Gy Components of group velocity in cylindrical
polar coordinates

k Radial component of wave number in plane polar
coordinates

K Radial component of wave -umber in cylindrical
polar coordinates

AHalf-length of wedge

m Source strength

N Vaisala frequency

n Zero or positive integer

q, qj, q2  Source distributions

q, qj, qa Fourier transform of q, q, and q2 respectively

R Radial coordinate in cylindrical polar coordinates

r Radial coordinate in plane polar coordinates

s Parameter in Laplace transform

t Time
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U, Ul, u2  Horizontal velocity components

x, y, z Cartesian coordinates

y Also an axial coordinate in cylindrical polar
coordinates

y* =yN/U

a, 3, y Cartesian components of wave number

0 Polar angle of wave number plane in plane polar
coordinates

8 Polar angle of wave number space in cylindrical

polar coordinates

T Half of wedge angle

4Polar angle in cylindrical polar coordinates

Polar angle in plane polar coordinates

wFrequency
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INTRODUCTION

In a recent paper, Wu and Mei (1967) discussed the problem

of gravity waves generated by a submerged two-dimensional dis-

turbance moving horizontally in a stratified fluid with a free

surface using a linearized theory. In addition to the usual

free surface wave mode, internal waves that behave asymptotically

like outgoing cylindrical waves were found on the downstream side

of the disturbance. Experimental evidences (Long 1955, Yih

1959), however, indicate that unattenuated waves (blocking) can

also exist upstream as well as downstream of the disturbance.

Since Wu and Mei have only examined the vertical component of the

perturbation velocity their analyses do not rule out the possi-

bility that a linear theory can account for the existence of the

blocking phenomenon; the reason for this is that the blocking

perturbations would consist essentially of horizontal motions.

This report attempts to resolve this issue within the frame-

work of a linearized theory incorporating the Boussinesq and

Oseen approximations. The fluid will be taken to be inbounded

and possess a constant Vaisala frequency. The concept of group

velocity (Lighthill 1960, 1967) will be used to clarify the

physical basis of the solution. In addition to the two-dimen-

sional problem, three-dimensional effects on blocking will be

considered. In the last section the internal waves generated

by a two-dimensional wedge moving horizontally in a stratified

fluid beneath a surface of large density discontinuity is cou-

sidered.
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FORMULATION OF THE PROBLEM

Consider the problem of a submerged disturbance moving with

constant horizontal velocity of magnitude U in an infinite ex-

panse of density-stratified, incompressible and inviscid fluid

under gravity. The Vaisala frequency N of the fluid is assumed

to be constant. Choose a Cartesian coordinate s ztem (x, y) with

origin at the center of the disturbance and oriented in such a

manner that gravity points in the negative z direction and the

fluid appears to be moving in the positive direction.

Let us assume that the disturbance can be represented by a

source distribution q(x,y). A large class of moving solid bodies

can thus be represented, although the correspondence is not

simple since the body? shape depends in a complex way upon the

stratification of the ambient fluid and velocity.

Within the Boussinesq and Oseen approximations the linearized

equation governing the horizontal component of the perturbatio

velocity, u, is

Eli

where t is the time. We focus our attention on this component

of the velocity because we expect the perturbations far upstream

and downstream of the disturbance, if there are any, to be es-

sentially horizontal. For a three-dimensional disturbance the

corresponding equation would be

III

,lL , . -- - '-- -:7 .7 * - -. . . . ... . . . . j,,J. n Jl : . • . ... . ..
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[[a 6x 6X 62 a52

2 C)2 + +26

+-( + )u N (+ - ) + N] q

[21

where z is the third space coordinate.

It is well known that problems of the sort being formulated

are not determinate and it Is necessary to have a way to select

that particular solution corresponding to physical reality. Fol-

lowing Wu and Mel (1957) we consider the corresponding transient

problem in which the forcing function is switched on at t = 0

and take the large time limit of the resulting time-dependent

solution. The switching operation Is accomplished by multiplying

the source term by the Heaviside function H(t).

FEATURES OF THE WAVE PATTERN

Without integrating [1) directly we can obtain certain In-

formation about its associated regular, steady wave pattern

using the concept of group velocity. The regular wave pattern

may be considered to be composed of plane wave components and,

because the pattern is steady, only those plane waves that are

stationary with respect to the disturbance qualify to be in-

cluded. Packets of these waves are continuously generated
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Ithrough the interaction of the disturbance with the free stream.

These wave packets are then swept downstream and, at the same

time, they propagate with their own group velocities.

Let us, therefore, consider the behavior of plane waves in

a stratified fluid stream to select those which qualify to be In-

cluded in the regular wave pattern. Two dimensional plane waves

have the form

"(ax + Ay - Wt)
u =A e (3]

where the components of the wave number vector (a,A) and the

frequency w are real numbers, and the amplitude A is a complex

number. They must satisfy the associated homogeneous Equation of

(1]. This leads to the following dispersion relation:

(W - U (C1 - N 2C[2  0 [4]

which has two branches, viz.

W& - N

2 +e

Ua + + N [61

.--,-- -----.
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All wave numbers corresponding to w, - 0 and W 2 = 0 represent

stationary plane waves, they are

a= 0 for w, = 0 and WD2 0 [7]

\2 + N for W =0 (8]
U

and are shown in Figure 1 where a double line is used to indicate

the double root at a = 0. The regular wave pattern will be com-

posed solely of these stationary plane waves.

To obtain further information about the wave pattern we

use the concept of group velocity. Let us consider first the

system of plane waves corresponding to the double root at a = 0.

They have wave numbers pointing in the vertical direction and

their group velocities are given by

G =_ - , G = 0 for Wi =0 [9]

N
GGy 0 for w,=0 [10

xy
G = + G - 0 for W2 -- 0 [10]

where G and G denote components in the x and y directions
x y

respectively. Packets of these waves, therefore, nropagate un-

attenuated in the horizontal direction. Since the wave packets

I mw u m N
I nnmn n n hm nnmw nwn
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are swept downstream with velocity (U,O), waves corresponding to

the branch W2 = 0 always trail behind the disturbance while those

corresponding to cul = 0 appear ahead of the disturbance if

<I K and behind if > When the group

velocity is equal in magnitude but opposite in direction to the

free stream velocity. These wave packets, therefore, do not move

away from the disturbance after their generation and thus their

amplitudes grow with time. The linear theory is not adequate for

describing the behavior of these wave components.

Next we consider the system of plane waves corresponding to

[6] - the cylindrical system. It is convenient to introduce

polar coordinates defined as

a = k cos , =k sin [

x = r cos €, y= r sin ¢

In polar coordinates the group velocities (G ,G 8 ) of the com-

ponents of this system of waves are given by

Gr = 0, G8 = U sin e (12]

Figure 2 shows the vector sum of the group velocity and the free

stream velocity for various components of this system. It is

seen that they all point in the direction downstream of the dis-

turbance. Thus, this system of waves always trails behind the

---
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disturbance. When e = + the group velocity is exactly equal

-2

in magnitude but opposite in direction to the free stream ve-

locity so that again the linear theory is invalidated.

The resulting wave, of course, also depends on the excitation

produced by the disturbance. For the linear theory to be valid

we need to restrict ourselves to those source distributions whose

Fourier transforms vanishes at the critical points

a:0, N [13]-U

Let

q =.ql + q2  [14]

and using a bar over a function to denote its Fourier transform

-we have

q =q + 2  [15]

The above requirement is satisfied if q1 vanishes at a = 0 and

2q2 at a-m +, 2 -- because the sum q vanishes at the

U

critical points; its values at-any other point, however, is

arbitrary.

This limitation of the theory is entirely due to finite

amplitude effects and has nothing to do with the Boussinesq ap-

proximation. Following an argument similar to the above, one can

la ili iN [ isi I i l" H
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easily show that elimination of the Boussinesq approximation

'ails to remove this limitation.

THE REGULAR WAVE PATTERN

In the previous section we have obtained a broad picture of

the regular wave pattern, here we will derive it analytically.

Referring to [1] let us split u into two components ul and u2

such that

+ UU 2

[16]

and

+ N2  ]2  2 + N2 q2H(t)

[17)

6X2 a t a

1171
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It is noted that we have split the total source distribution

into two components q, and q2 as discussed in the previous sec-

tion where qj, the Fourier transform of q, vanishes at a = 0 and

i2 at a2 + p2 N2

U
2

Using the method of Fourier-Laplace t:2ansforms we obtain

the following integral representations of the steady state solu-

tions of (16] and [17]:

00

i lim dadA a [ (s+iaU) 2 + N2 ]  i(ax Y)

2T)2 S - f 0 (s+iaU) 2 (a2+ g2)+ N2ca 2

[18]

U2 lim dadA a[(s+iaU)
2  + N ]2 1 

__2_e 

i(ax y)

(2r)2 S JJ (s+iaU)2 (a2+ p2 ) + N a

[19]

Let us first consider u, and rewrite the integral in polar

coordinate form as follows:

r/2 c
ul = lim dOdk cose s+ikU cose)2 + N2 ]ji(k cos e6,k sin e)x

2r2 s- 0 (s + ikU cos e)2 + N2 cos2 e

0 0

(eikr cos (e-t) ikr cos (e+4))
e + e [20]
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Since q, vanishes at cos G = 0 the integrand has simple poles at

is N

U Cos e U [21]

and only their residues contribute to the regular wave pattern.

Thus, retaining only the regular wave part, ul becomes

Re /2 sin2 O- N N i N r cos(e-o)
Re d@ N cos 0 q1  N cos 0, j sin 0 e

26 i U r cos (0+0)NN sin

N cs2 N I Cos N 1r sin e e

0
[22]

for x > O,and for x < 0 we have

ir/2 Nr/2 i H rcos(e-o)Re / eN sin 2e U

ul = - J dU c cos e, sin e e

0 -r/2

[23]

Using the method of stationary phase we obtain the following

asymptotic form for ul:
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u, - H(x) U _ s cos , sin ) e
L27r Co 4'

[24]

Thus ul represents an outgoing cylindrical wave system trailing

behind the disturbance.

Next we consider u2 . Since q2 vanishes at a2 + N 2

U2

the contributions from the integral to the regular wave pattern

come from the residues of the simple poles at

a isA U_± N[25](AU+N) (AU-N) [2

Retaining only the regular wave part, U2 becomes

N/u IPY

u2= Re dA AU - N e

0
w i~y

H(x)I Re d - e (26]

Therefore U2 does not depend on x except for the Heaviside

function which separates fure and aft behaviour, thus it repre-

sents unattenuated waves and accounts for the phenomenon of

blocking.

I-- - - - - -- - - - - - - - ~ - - - -.* - - -
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From [26] it is noted that disturbQances whose Fourier

transforms vanish at a = 0 cannot excite the fore and aft unat-

tenuated wave system and, therefore, no blocking can occur. These

source distributions satisfy the condition

00

f q(x,y) dx = 0 [27]
-w

that is, for all y the sources are exactly balanced by the sinks.

In particular, a source distribution that is antisymmetric in x

would satisfy this condition.

It is also noted that the unattenuated waves ahead of the

disturbance have small wave numbers. Thus a disturbance whose

vertical extent i is small compared with U/N can excite only

very weak forward u,_attenuated waves because the Fourier trans-

form of the disturbance will be small in the low wave number

range.

By integrating U2 over vertical sections upstream and down-

stream of the disturbance it is noted that one half of the

total discharge from the source distribution flows upstream and

the other half flows downstream.

THREE-DIMENSIONAL EFFECTS

We have seen above that fore and aft unattenuated waves can

be excited by two-dimensional disturbances moving horizontally

in a stratified fluid. For a disturbance having a finite span-

wise extension, however, this wave system attenuates due to

lateral spreading and therefore, no blocking can occur.

.i

i • nm u mnm • i mnnm n m l i lnmm n l nun in Nl l i 
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The equation corresponding to [4] for the three-dimensional

case is

(wua)2 (c2+ p 2) 2 N (a2+ Y2 ) = 0 [28]

which also has two branches, viz.

2 2l= Ua- N+[29]
a2  + 7 2

W 2  Ua + N 230]
2+ +72

In polar cylindrical coordinates defined as

a = K cos e); y K sin 0; -

x = R cos 0; z - R sin P; y y J

they are

w, . UK coB e - N K [32]

(0- UK coo B + N K (331
At
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Therefore, the stationary plane waves are

K = 0 for wi = 0 and W2 - 0 [341

K + p2 cos e = H for w, = 0 cos 0 > 0 [35]
U

V 2 for 2 = 0 COS < 0K2+ cos e -N~ [ow~cs( 36]

The system of plane waves given by [341 corresponds to the wave

system that causes blocking in the two-dimensional case. Our

primary interest is to see the three-dimensional effects on the

blocking phenomenon and thus we shall concentrate our attention

on this system.

Members cf this system have z = constant planes as surfaces

of constant phase and the components In cylindrical coordinates

of their group velocities are

S - , 0o - 0, = 0 for w,- ( o37]

GR  -+-,0 - , m o for ct - 0 38)

It is seen that those corresponding to w, - 0 have energy flow-

Ing radially inwards and are, therefore, not excited by a lo-

calized disturbance.
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The wave packets, while propagating with their own group

velocities are, at the same time, being washed downstream. Fig-

ure 3 shows the plane view of the position of wave packets of

different IAI one unit of time after .ieir generation by the dis-

turbance which is localized at the origin of the coordinate sys-

tem. Wave packets with II > N/U trail behind the disturbance
and are restricted to a sector with a half included angle of

N ISih-1 while packets with appears in front as well

as behind the body.

THE WAVES GENERATED BY A TWO-DIMENSIONAL WEDGE

In this last section we would like to apply some of the

theoretical results developed in the previous sections to a

specific problem.

As we have seen, the Fourier transform of the source dis-

tribution that represents the distur.a,'e must vanish at the

critical points given by Equation t .. for, otherwise, waves that

have group velociti equal but opp',site to the main stream

would be excited. The linear theory is not adequate for treating

these particular wave components. One of the source distribu-

tions that satisfies this requirement consists of two line sources

of constant strength m arranged as tlhown in Figure 4 where 2t

denote the length of the source lines and 2d is the distance

separating them. It will later be shown that d has to be re-

lated to U and N by
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d =r(n +) U/N 139]

where n is zero or any positive integer. Taking

m = 2U tan T (40]

where T is supposed to be small, then according to the thin body

theory, the body corresponding to each of the source lines Is a

wedge of angle 2T and length 21 follc i by a stern of thickness

21 tan T. If both T and i tan T are small then,aside from the

vicinity of the stagnation point and the turning point at the

shoulders,the perturbations are small and we should expect the

linear theory to be reasonably adequate. Furthermore, from the

governing equations and the symmetry of the disturbance,',t Is

clear that the flow is symmetric about the x-axIs and the flow in

the lower half plane may be considered to be produced by a wedge

moving horizontally beneath a wall or a surface of large density

discontinuity.

The Fourier transform of this source diltribution Is

-4 m cos Ad sin cil [41

At a=O

4 4ml cos Ad



HYDRONAUTICS, Incorporated

-17-

therefore d has to satisfy Equation [39] in order that -(O,p)

vanishes Pt the critical points.

q can now be written as the sum of q, and q2 so that q,

vanishes at a : 0 and q2 at a2 + p2 N2 /U 2  0 0 as follows

4mU C Nd cos 0 sin N' sin e [451
q -N sin cos U c

q2 4 mCaos N sin cos c- cos e sin sin 0

q2mcs a sin m U U)a

[(46I

The outgoing wave system trailing behind the wedge is ob-

tained by substituting equation [45] into equation [24 to give

H(x)2m -U tan cos (N in D coslNr -

[47]

We shall not get into the details of this wave system beyond

mentioning the fact that the wave is not singular at 0 *r+/2,

i.e., along the y axis,in spite of the factor tan 0, because

cos kNd cos t/U) vanishes there.
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To obtain the fore and aft unattenuated wave system we

substitute equation [46] into equation [26]. Let us consider

first the forward wake. For x < 0 we have

1mN yN ) [48]

where
1

F , J -Fi(y*,d*) = 2 dA -

0

= - sin d* sin y* Cin(y*-d*) - Cin(y*+..d

+ 00s y Si(y*-d*) - Si(y*+ d*[49]

In Figure 5 we have plotted F, as a function of y* for the

case where

d= r/2 [50]

For x > 0 we have

u2  mrU F1  F2)

~i

. a s ~ ~ .. - - - - - - . - - - - - - --
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where

F2 (y*,d*) = - sin d* cos y*[sgn(d* + y*) + sgn (d* - y*)]

[51]

In Figure 6, the expression (F, - rF2 ) is plotted against y*

for d* given by Equation [50].

It is noted that for the case where the fore and aft unat-

'tenuated perturbation profiles depend only on the volume of fluid

displaced by the wedge (i.e. mi) but not on the shape of the

wedge, we can arbitrarily vary m and 2 respectively so long as we

keep ml constant. The cylindrical wave system, however, would

not stay the same.

i.i

- - -4



HYDRONAUTICS, Incorporated

-20-

REFERENCES

Lighthill, M, J., Trans. Royal Soc., VoL 252A, pp 397-430, 1960.

Lighthill, M. J., J. Fluid Mech., Vol.27, pp 725-752, 1967.

Long, R. R., Tellus, Vol.7, pp 341-357, 1955.

Wu, T. Y., Mei, C. C., Phys. of Flufds, Vol. 10, pp 482-486, 1967.

Yih, C. S., J. Geophys. Res. Vol.64, pp 2219-2223, 1959.

I

Ii
I,



HYDRONAUTICS, INCORPORATED

nAJ

FIGURE I WAVE NUMBERS OF STATIONARY PLANE WAVES
IN A UNIFORM STREAM



HYDRON AULTICS, INCORPORATED

U~ ~ ~ CON 0 o

CYIDIA SYSTEMu

u LU S IN 9) 6

u Cos

FIGURE -VELOCTY OF ROPAGATON OF AVEPCESO



HYDRONAUTICS, INCORPORATED

I y

UB A

FIGURE 3-POSITIONOF WAVE ACKETS0O DIFNT OEUNTO

FIUR 3- OTI A F ENER A CKTOONEETINO EUNTO

TIM AFEENRTO



HYDRONAUTICS, INCORPORATED

IMAGE
U y md

MAIN STREAM

X=-Z X

LINE SOURCE.... y -d

STRENGTH -m

FIGURE 4 - SOURCE DISTRIBUTION REPRESENTING WEDGE BENEATH SURFACE OF
LARGE DENSITY DISCONTINUITY

*1

- --------- ~'-.--.- -



HYDRONAUTICS, iNCORPORATED

0

It!

rV*W *



HYDRONAUITICS, INCORPORATED

'U

C,

U.

0

z z

*0

110.

Ag

UAC



UNCLASSIF' ED

DOCUMENT CONTROL DA'TA - R&D
(Skeftditr al/"asefcti/ of Olfle, 6M ol l&l €¢ t and r"Rng1 amnnst. must be weered whenq Ow eorell repoa is celo140

I. M)eONTIn ACTOvIrY (C-wosleft suiow) " 20 lREPORT SEC[URITY C t.LASSIrtCATIO04

C", Incorporate l, Piniell School UNCLASSIFIEDRoadi, Howari County, Lnurel, M~rylaniz 26 GOUP

S. RR T TPITLE

ON INTERNAL GRAVITY WAVES GENERATED BY SUBMERGED DISTURBANCES

4. DISClPTiVi NOTmS (7rip. ei am w a"Ei hwed ame)

Technical Report
S. AUTHOWtS) MeL- meo Hat man. bSU1aI)

Wong, K. K.

6 PWDT I&. TOTAL me. OO. Oa F mps
August 1968 31 1 5
S CONTRACT OR oCAN? NO. 9. o6OnAT,r mPOR? MUNOZ")

Nonr-3349(OO), NR 062-266 Technical Report 117-13
66 PMWBCT NO.

11 AVA ILAGI LTY/ULMSilOATHO MO i@.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

11. supft3sm"?ASv mom IS SPWOSM NUARYACTMV

Office of Naval Research
jDepartment of the Navy

is. AU ? ..
The problem of gravity waves generat(d by a disturbance moving

horizontally in a stratified fluid with a free surface has been con-
sidered recently by experiments and theory. The linear theory,
which consilered only the vertical component of the perturbation
velocity, found internal waves only on the downstream side of the
disturbance. The experiments, however, have disclosed the presence
of upstream unattenuated waves (blocking). This report attempts to
resolve thir Issue within the framework of a linearized theory in-
corporating the Boussinesq and Oseen approximations, and accounting
for the blocking effects as essentially horizontal motions. The
fluid is assume-1 unbounded with a con'atant Vaisala frequency, and
the concept of group velocity is used tc clarify the physical basis
of the solution.

D ,. 147 UCASSMIM

-or'

. _ __ __



UNCLASSIFIED

-~ Security Classification -

14KY OO LINK A LINK 2 LINK C
KEWRSROLE WT ROLE WT ROL W-Y

Internail wrivesI

?ubmergel Jisturbance

'Itratifiel fluid

Bl1oc king

lNwrRUCTIONS
A..~iC'da. Lntar the name and ado.e-'< imposed by security classification, using standard statextefts

-. ..~..a:.. &bcoatractct. grantee. Depatiment of De- such as:
I- .. 4aa' ty or ether ocgaflaaion (coeparalo author) issiliti (1) "Qualifiled requesters MY obtain copies of thim
Ite ...ton. report from DDC."

.~&'~ SEC WRlY CLASSIFICATON Eatet. 11t. uvvt (2) "Foreign m eee enad isajglnofthis
d .9 it,at .asaffict&Qn of the report. Indicate wht~ reor aylul ounet u isselmtin

' .k , .d Dae" is included. Mmeeksted a to be in 6 eor y C a otethrge
with alpropniew security regulations. (3) "U. S. Governiment agencies may obtain copies of

lb .~)tP: utemati donpang i e~eciae4 n &.ieti~this report descily from DDC. Other qualified DC2h ;%3%P: utoatit doei~din isapecfits i L-o Musers sthell request thvaqllb
-. s 20.10an AmedFoce Iniatrsl anelEiite

tl.v L'.4 iptWmf. Also. sIhe applicable show that t..a
ubs~i.h4% bse been used fut Group 3 tad Griot 4 biahr (4) "U. & military aencies may otain copies of this
k~el. report dirclY (no. DCC. Other 4valifted ums
t RIPCRT M TI Lvae the comeplete tmj.a Oti~ &a a sholl req6at tbwough

ctepetal loei. Titlev in all cases shoald be uwclasieJ.
It a meamingful title cainot be selected eiritleut vlesaatica. -

IIAI SbW ttleC14611(iC110% inOilCaptal inPONA141116 M "All distuibeeti of this beport is omotslla: Ni.
IMAMt -hath following the title. sedDCte tsolr~ttr~

4 D1CRIPT11VF NOJE& If edwpmsets. ante. thet I~vv tt_____________
febt~t. e4g&. isterum. peropems. gumumyl. summedl. ag final. It the report has bee" feerted to the Office& *I TeehAical
Geo Ih w-Juavo dates weft a setits repistti. f4i..i'W4 m DqateUOf CCoAWC. tar set* to the p*ilc. madt.

ci' co. Icate Jus fact bad este the pace, a know%
%.AUTkV")S £*s. th laiWse 5.s.4.am ~ PPLtWTAR T IW s e ddaa~cpaa

of In the report. ate, loaw saoe. It. *1 name Wa4"e itia. ~ t~w.
It ~Alldsery, 0,111t MeA 41ad breath Wt bffii6* The nao" of
Ik I irpt I ha %W . s ebs11110 t*00W*WW hV Sm rtquiWMW&. I LWOMWRI MILITARY ACTIVITY' Lavee the am* of

e ipatinetal peolect offtc, af lsetary epeeW~ fitu(er
4 EZPOWT DAMT &Wt -het dae %A day..at* ~ a)teeeachaddwlpm. nld dee
m *th. Vow' a moull, yea I somet Ika now *A*e 6etM )ASUC nt seetatem ee ata

~~~~~~~MNH the teotta ~t t~~ehe decemet Wtadivosu ot the Wpoat. even theusi.~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~k 1*A U3OFPG"t'gI4a~W ' tmpels apper #jelsembe Ih dedye of the teem d"
xb 14(chlef"asa pugenliam IIooedwat. 4.. em"i ftpet. I addatneel spac, t i s e'ed a Cemauiem sheet shon

4 Ht WIt OF RIFERENCE ILvAm I,* itta tmem It *8 =i.t eloule the aiet .14 .heboub rpasto
4~ tfers~ C ed I^ the 40 b e .am aate. "ic 101e1reh of the obeset dol " ed h

OUt RAC ONli aRANe Nmmbe Itse~we t so es.sa teruatia of the witgah. sapeemed tes"mbm ofa ati Wc.~ v
IW*k&tnmbr* CtKhAC came aR~l N ~d tom 46 110110.111ia Imm aictie to the atIry aecarfayedaafta as(Sto) se t.
Ihe tpt aftVl eft I%" htoi me, Immesa as fth b% ^j to ""Po ehtrc.is
#a. &, It d PROJET MSM mme. thie ON so -te eWes Semw eug a ft a b intod 25molds.
mulitary" datmbe er ems& ala.. tuhas pe060.mOf. It aR rUS e wee"s an "sseetymeaeI

5IM~~~~~~~i~~~~ct~o Isbt ve S M .bt t" etPhrase that comarmftmsa a top"s s mop a"" a~ a
Its. WGINATOK'S ER t WUWUif. OW~e thihadest 00eata Set cesalesag S tpet " p WWI"s OA he

il .epav *Now b) Wich the dasme 1 il be IduW iftd selected a Segt be wece" ty emctlas, is "Joitd ku"a.
em~lceaettd b theeeteutg at w lbsshe eWbee mast fees s * as elow.eme sedel doisism. meb d. . oul"*ae

be ftesque t this top"s pla~t .me. -oftsmse "Isems. my he Now~ a may

at ber th apaees) dom e, s talkes "
ho. rivii. AMLSMLAIOW MOM=& low as" la
mats, do furlther dhasaealamso as moota. thait iiM

D D F 1A"O1473 (BACK) i"UKASIW


