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ABSTRACT

This paper illustrates the use of graphical analyses by pre-
senting the solution of six problems in the fields of operational
analyses, mechanics, and engineering: The Jeep Problem, the Range
of a Fleet of Aircraft, a Beam under Combined Compression and Trans-
verse Load, the Problem of Car Replacements, Determination of Bal-
listic Trajectory Parameters, and the Two-Magnetic-Reactor Problem,

The purpose of this paper is to arouse an interest in a meth-
odology which is further enhanced by tne graphical display capa-
bility available in today's computers with all its pctential prob-
lem solving flexibility., The examples treated in this paper are not
the stereotyped problems forming the usual subject of textbooks on
graphical methods and, in that sense, should prove of greater in-
terest to the reader,
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I. INTRODUCTION

Graphical solutions have not been popular in the United States;
and now, with the widespread use of computers, it may seem even more
a remote possibility to arouse interest in a skill not widely employed.
Orn the other hand, the graphical input and display capability and
computer processing of graphical information may yet foster the ac-
ceptance of graphical solutions and prove to be a tool to train
graphical visualization.

This training is as important as the training in any other math-
ematical symbolism, without which the shorthand of operations and re-
lationships would remain as hieroglyphics before discovery of the
Rosetta stone. A quite natural question would be to inquire as to
the reasnns for previous lack of enthusiasm for graphical soluticns.
That may have been due to many causes: lack of training in the use
of graphics; the hard-to-understand disdain of engineering students
of their own language--the language of drawings; the preponderance
of analytically minded mathematicians to geometers, etc. The princi-
pal cause, however, may have been unfounded fear of the lack of ac-
curacy of graphical solutions. I say "unfounded" because more often
than not the accuracy of a graphical solution is amply adequate, even
without having to alibi it by mentioning thz underlying assumptions,
physical constants, 3snd other factors which preclude cur precise
knowledge of a given physical phenomencr..

The virtue of a graphical approach is twofold: a diagram often
suggests to a trained mind a solution, *ut in all cas2s contains a
visual interplay of veriables indicatirg their relative importance.
In that sense alore, I feel justified in quoting Oliver Heaviside--
although his statement was unrelated to graphics--that there is no




better way to prove a fact than to show it to be a fact. Here the
use of the words "to show" is intended to convey an idea of a picture,
a diagram; but, of course, to a trained mind a shorthand symbol is
just as clear.

I have selected from my experience six problems--one as recent
as this paper, some going back to my early work in aircraft engineering.
Each of the six exampie problems selected was chosen to demonstrate an
approach, to make a point, and to illustrate the solutions of practi-
cal problems ercountered in practice.

The first two problems, the jeep problem and the range of a
fleet of aircraft, were selected because their analytical solutions
as offered in mathematical literature did not suggest that equally
accurate, and in fact rigorous, solutions were possible using consid-
erably more elementary graphical approach. The solution to both of
these problems is approached by drawing diagrams showing the relation-
ship of the fuel consumed as a function cf distance, and in the jeep
problem, the direction of travel. The actual solution becomes under-
standable by proper juxtaposition of lines and figures.

The third problem, that of a beam under combined compressicn
and transverse load, illustrates the reaction of a mind disposed toward
graphical approach. The expression of the bending moment for a beam
under combined compression and transverse load had been derived long
before I found it recessary to use it. Also, its use was widesp:2ad
in those days because airplanes were biplanes, and in wing construc-
tion one used routed wooden spars. The critical design points were
not cbvious; to verify the adequacy of design, the stress analyst used
his desk ceiculator to arrive at the bending moments and shears and
nhysical properties of the spar cross section to verify local fa~tor
of safety. It was perhaps natural that with ny preference for graphics,
that type of solution suggested itself becauss of the trigonometric
nature of the analytical expression of the bending moment. In reality,
of course, these functions represent the limiting magnitude of appro-
priate infinite series.
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The fourth problem, that of car replacements, once more offered
an illustration of how by drawing a diagram showing the relationship
of a number of cars, their ages, and stipulated change of their mean
age after a specified period, the solution suggested itself. Cf course,
the problem as pcsed and its solution are based on the assumption of
linear variation of car ages and vhe discarding of oldest cars to ar-
rive at a new mean car age. The finding of the answer requires care-
ful examination of the diagram and the ability to recognize unimportant
inaccuracy in areas being balanced to find the location of the solution
line.

The fifth problem, the determination of ballistic trajectory
parameters, is interesting because it calls for the application of
several disciplines and because it demonstrates that often the fear
of a graphical solution's rnot being accurate enough is ill-founded.
This example problem shows comparison of the results obtained graph-
ically, analytically by the use of a desk calculator, and finally
those arrived at from a computer program. It is significant that
even the apogee velocity, which graphically is obtained as a differ-
ence of two relatively large numbers, differs by less than one percent
from the computer answer. This is amply accurate, considering the
fact that in this particular case the assumption cf a trajectory in
vacuun and a nonrotating earth were considered acceptable for the
purpose for which the problem had to be soived. The additional irter-
est of the solution resides in the use of logarithmic coordinates em-
ployed to save certain arithmetic calculations.

The twc-magnetic-reactor problem, the sixth problem, is an
illustration of a problem whose solution was entirely intuitive. I
assume that unless once is inclined to think graphically one would
have difficulty in sensing the steps which led one to the eveatual
solution. On the other hand, once there was a graphical solution its
transformation to a grapho-analytical form, a simpler and more elegant
forn, became clear.
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Appendix A contains my extension of the use of the logarithmic
polar diagram of an airplane proposed and used by me as a young engi-
neer. It is reported here because it is the original use of the log-
arithmic scales by Mr. Rith that started me on their use and interest
in graphical solutions in some of my analytical work.
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II, THE JEEP I'ROBLEM*

N.J. Fine, Washington, D.C.

1. Introduction. The problem in lcgistics with which this paper deals was
proposed to the author by Cail Young and Ivan Niven, both of Purdue Univer-
sity, in the latter part of 1945. The original source is unknown tc the author. At
that time Niven had obtained a partial solution based on certain assumptions.
After the first submission of this paper it was learned that L. Alaoglu had also
obtained s complete solution. He mentioned that similar problems had arisen
in air trrusport operations in the China theater. It has also been suggested that
there may be applications to Arctic expeditions and interplanetary travel. This
paper, however, will confine itself to the lowly jeep.

Suppose that a jeep can carry a maximum load of n gallons of gas and can
travel ¢ miles per gallon. The jeep is required to cross a desort x miles wide. Our
problem is tn prescribe a method for making the journey most economically and
to find the least sufficierit amount of gas. It is not obvious that such a methoda
exists, and it would be more exact to speak of the greatest lower bound, until the
existence of the minimum is established.

We shall assume that # and ¢ are both unity. This involves no loss of gen-
erality; it is equivalent to taking as our unit of distance nc, the number of miles
that the jeep can travel on a full load.

If x £1, the problem is trivial. If x exceeds 1, however, gas Aumps will have
to be established at various points along the way. It will Le convenient to take
the path of the jeep along the positive x-axis, starting at x and ending ¢ the
origin. The gas dumps wili then form a subdivision ¢ of the interval (0, x):

e 0<y<5<--- <2<z,

in which the x; denote the positions of the dumps (assumed to be finite in rum-
ber). If s is any non-negative number less than x, the subdivision ¢ incuces a
subdivision of (0, 5) by deletion of all the stations to the right of 5. There will
be no ambiguity if we refer to this induced subdivision by the same symbol, ¢.
Other subdivisions will be denoted by o', #*, and so forth. If ail the staticns
(points of division) of & are contained among the stations of ¢’, we shall say that
o’ is a refizsmant of ¢, written o’ <o.

We may now replirase our probiem. Once a subdivision is fixed, the amount
of gas required is still a function of the method of establishing and em:ploying its
stations. We shall denote by f(x, ¢) the greatest lower bound of this amount for
all possibie methods, and by f(x) the greates: lower bound of f{x, ¢) for all poe-
sible subdivisions &. Our task is to discover the form ol f(x).

In §2 we introduce the standerd method of establishing and using the sta-
tions of a given subdivision #, and we prove that this method is at least as eco-
nomical as any other. This enables us to determie f(x, ¢) in §3. A rather sur-
prising application of the standard mathod lcads to the recuit (§4) that if
€' <o, then f(x, ¢’') $/(x, ¢). In §3 we determine criteria for non-ir:provement

P*-—
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by refinement. These criteria lead us to the construction of an optimum ¢* and
to the explicit representation of f(x, ¢*) =f(x) (§6). In §7 vre derive a simple an2
accurate asymptotic formula for f(x). The last section is devoted to a few re-
marks, including a comparison of the exact solution with the result obtained
by considering the stations equally spaced (one of Niven’s assumptions).

2. The standard method. One very natural method of employing the
stations of a given ¢ is to build up the stockpile of gasoline at x, by making all the
trips between x and x, before gcing to to x,.4, and to continue in this way
throughout the journey. In other words, once we go beyond any station x; we
never return to the preceding one, x;,,.

Suppose that, by some other method, m complete round trips are made
starting at x, followed by a last, one-way trip from x to x,. The ith one of the
round trips consists of 4;, the one-way trip from x to x.; B;, the round trip start-
ing and ending at x,; and C;, th> return trip from x, to x. Let g; be the amount
of gas in the jeep at the start.of-4;. Since 2(x—x,) is the amount used in per-
forming trips A; and Cy, the amount g;—2(x —=x,) plus the residue of the pre-
ceding trips is sufficient to perform B,. If we replace the sequence 4,, B, C),
Az, Bl. Clo C Am Bm Cn, Am-ﬂy by Ah Clv Alr C!n Tty Am Cm Amﬂ. and
deposit at x, the amount g;—2(x—x,) after each 4,(i=1, 2, ..., m), and
gm+1—(x —X,) after Am41, we shall then be in a position tc perform all the B; in
exactly the same order as before. When this has been done, the final configura-
tion will not have been altered and no'more gas will have been used. The same
reasoning applies to all the trips starting at x,, and so, by induction, the stand-
ard method is established as being at least as economical as any other. Hence-
forth we shall assume its use.

3. Determination of f(x, 0). Now we suppose that there is given a sub-
division

0! 0mxp <0<+ €8 < 2y ™ %,

and that f(x,_1, ¢) has already been determined. Cleariy f(x4, ¢) =0, 50 we have
the initial step in the inductive definition of f(x,, ). Let % be the number of
trips to be made from x, to x,_1. Obviously k,2 1. No gas is to be left behind at
x;, since that would imply waste. Hence the difference between f(x,, ¢) and
f(x41, ¢) must be accounted for by the amount used in the 2k,—1 trips between
the two stations. Writing 4, =x,—x,_1, we have

(1) [z @) = f(xa, 0) = (28 — 1)4, (i=1---,r+0.

We must now determine &, The maximum amount of gas that can be trans-
ported on each of the first k,—1 tripsis 1 —24,; on the last, 1 —A,, since there is
no return. The total must not be less than the amount required to proceed from
%,-1. Hence

2) h(l —2A) + A2 f(2e, @)

-




From (1) it is clear that the number of trips must be as small as possible so that
3) (ke = 1)(1 = 24)) + Ay < f(%¢-1, 0),

provided that k,>1. It is easy to see that k,=1 for 2,51, and that f(x,, 0) =x,
in this case. If x,>1, we have k> 1. In this case, (2) and (3) determine the
integer k, uniquely, and f(x,, o) is then obtained from (1). We remark that if the
equality

m(1l — 24) + Ay = f(x:-y, 0)
holds for some integer m, then k,=m.

We shall now derive a useful reiationship between &, and f(x,, ¢). If we elim-
inate f(x.—1, @) between (1) and (2), we have, for all 121,

C) k2 f(x40).
Similarly, (1) and (3) yi=ld
(5) k‘ -1 < j(xh U),

provided that k. >1. But we see directly that (5) is also valid for k,=1, so (4)
and (5) hold for all t21. If we define ta] as the least integer not less than g,
then for all 121 we may write

(6) ki = {f(x:. o) }
Since f(z, ¢) is an increasing function of g,
(n ke S ke, tel.

Summing (1), we obtain
~1

(8) f(x, ) = 3 (2k — 1)A.
=]

4. Refinements of subdivisions. Let ¢’ be a refinement of o. The quantity
f(x, 0) may be thought of as the result obtained by applying a non-standard
method to ¢’, namely, passing over those stations of ¢’ which do not belong to ¢.
It follows immediately from §2 that f(x, ¢’) is not greater than f(x, ¢), that is,

9 f(x,¢") S f(z, o) ifo' <a.
{f (x¢-1, x¢) is an interval of @, with the associated parameter &, and if

(xei=yo, 7). (1, M), - -+, (32, ¥, =x,) are intervals of ¢’, with parameters

kR, -+« k™, then

(10) ko m {f(2n o)} S S50 0)} = k.

Using (7), we obtain

(11) MsSsk g - skngh,

From (8),




RROIH.

P

(12) Sz @) = f(Ber, o) = 3 (2B = 1)(y5 = ¥ioy).

Equation (1) may be written in the form

(13) Az @) = [z, 0) = 32 2k — D3 — pica).

-]

Subtracting the members of (12) from those of (13), we have

P
(149) Sz @) = f(2, 0") = f(%021, 0) = f(%emr, 0) + 225 (ke = RD) (3 — 3ica).
tm]
We observe that all the differences in (14) are non-negative. From this we deduce
that actual improvement by refinement takes place if and only if we can find an
interval (x,., %) and an integer ¢ such that k,> (9. By (11), this is equivalent
to k‘ >k’.

5. Properties of o*. Our problem will be solved if we can find a subdivision
a* for which

(A) f(x, ¢*) S f(x,0) for every a.

We can bring to bear the results of §4 by proving that any o* which satisfies
{A) also satisfies (B) that follows, and conversely.

(E) f(x, o*) = f(x, a") for every o' < o*.

Clearly, (A) and (9) imply (B). Conversely, suppose that (B) is satisfied, and
let ¢ be any subdivision whatsoever. We choose for o’ the common refinem :nt of
¢ and o From (B), f(x, 0*)=f(x, ¢’); another application of (9) shows that
f(x, 0’) Sf(x, ¢). Combining these we obtain (A).

Ising the criterion established at the end of §4, we find that (B) is equivalent
to

(C) Foreveryt=1,2, - - -, r+1, und for every y such that x, 1<y Sx,,
K= {f(y. e} = b= {f(z, oM}
\Ve shall now show that (C) is equivalent to (D):

(D) Foreverym =1,2, - - -, [f(x, 0*)], there exists an integer s such that f(x., o*)
=m.

Suppose frst that (C) fails for some t and y. Since f(z, ¢*) is strictly increas-
ing,

(15) f( 2y, €%) < f(y, o).
By the definitions of &’ and the function { },
(16) iy, 0%) S K.




Since (C) fails, ' <k, that is,

(17 Mshk-1.
Finally, since k,= {f(x:, ¢*)} carnot exceed f(x,, o*) by as much as unity,
(18) ke — 1< f(z,, 0%).

Combining (15), (16), (17), and (18), we see that the integer &’ lies strictly be-
tween f(x(, 0*) and f(x,, ¢*). By monotonicity, &’ cannot be equal to f(x,, ¢*)
for any s, so (D) fails.

Conversely, if m is an integer satisfying

(19) f(%, @) <m < f(,, %),
we can find a number y such that
(20) [y, a*) = m,

and (C) is violated. To prove this, set

- ¢
(21) y=x.+ Aok, U h—clr
2m — 1
and let A=y—~x,_1. Clearly 4 is positive, and
(22) m(l — 24) + A = f(z.y, 0%).

Referring to the remark in §3, we see that m is the parameter associated with
the interval (x,-1, ), and

(23) f(3,6%) = f(21, 6®) + (2m — 1)(y — 2,y) = m,

which proves (20). This completes the proof that (D) is equivalent to (C), (B),
and (A).

6. Construction of ¢*. It is now almost trivial to conctruct a «* satisfying
(D) and therefore (A). Merely choose the stations x* so that f(x,*, ¢°*) =t.
Clearly this can be done for t=1. Suppose that x,*, - - - | x,_,* have been found.
We must determine x,* by

(24) ko= {f(z 0%} =4,
(25) f(28 2") = f(z¥y, o%) = 2k — 1)(2®* — z%).
The left member of (25) equals unity; hence
(26) 2= 2% - (- 1)
Therefore ‘

1 1 1
(27) :.‘-1+3—+-§-+---+2‘_l‘




It is easy to verify that (27) leads to the required equations k,=f(x*, %) =¢,
The subivision ¢* so determined evidently satisfies (D). If r is the greatest in-

teger for which x,* does not exceed x, we may write

(28) f(2) = f(z, a®) = r + (2r + 1)(z — 27),
and

(29) 0Sz—2<(2r+ 1),

It has now been shown that f(x), which represents the number of gallons
needed to take the jeep x miles, is a function which is piecewis linear over in-
tervals of length 1, 1/3, 1/5, 1/7, and so on, the slope of the graph over the nth
interval being the nth odd number so that the function takes consecutive in-
tegral values at the corner points.

7. An asymptotic formula for f(x). From equation (1) it is possible to get a
rough idea about the order of magnitude of f(x). We have approximately
Af = (2k - 1)Az,
k= f(x).

Neglecting the —1 compared with k, we find

g- 2%
/

log f =~ 224 C,,
f = Cae?s,

We shall not attempt to make these heuristic methods precise, but shall pro-
ceed directly to a derivation based on the exact solution obtained in the pre-
ceding section. Let us define

1 1 1
(30) Sr) =t +—+—+4 -+ —-
2 3 r

It is well known that for large r,

1 1
@1 S(r) -logr+c+—2——+o(—),
y

r?
where C is Euler's constant, .577 - - -, and the O(1/r?®) denotes an error term
whose absolute value does not exceed a certain constant, irdependent of r, multi-
plied by 1/r%. This constant may vary from one equation to the next. From (27),
(0), and (31), we have

5% = S(2r) — %S(r) - (los @ +C+ 741‘ + O(l)\)

'|
(32) Llogr + €+~ +o('))
(z ™ ”
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Therefore,
1 1
7 = log (2v/7) + —C + 0(—-).
2 r?
Taking exponentials,

(33 exp (x,‘ ~ -g) = 2V/r exp (0 (—:;)) =20\/r (1 4 O(—:;))

Squaring, we obtain

(34) -} exp (2x* = C) mr 40 (—1-)

r
Thus, writing g(x) =% exp (2u-C),

1
(35) ) = ¢ = g5 +0 () = 4(a8) + O,
Now for any « satisfying
’36) P <usx<h,
we have, by equation (28),
37 (%) =2r 41,
Also,
1

(38) g(4) = 2(u) > 2g(z*) = 2r + 0 (—'-)

1
(39) gu) <2%(x%) = 2r +2+40 (—'—)
(40) I'(w) — ¢'(w) = 0(1),

Integrating (40) between x,* and x, we find

) = ) = (=) = ) + [ (70) = e

“h =0 (%) +0(x—~2*) =0 (i)

r

= O(es),
Therefore, for all x,

(42) (5) = { exp (22 — C) 4 O(et),

It will be observed that the error term is not only of lower order than the prin-
cipal term, but it actually tends to zero exponentially. Also, the approximate

11




equatior derived by such high-handed methods at the beginning of this section
turns out vo be much more accurate than might have been expected.

8. Remarks. Suppose we ducide to use equal subdivisions of the interval
(0, x), N in number. We can prove that if N is chosen to vary with x so that
x?/N tends to zero, then the increase in the amount of gas required (over the
exact solution) is less than 509, for large x. To counterbalance this increase,
however, the number of stations required will be very much smaller. For exam-
ple, if N varies as the cube of x, it will also vary as the cube of log r. Hence, if
we take into account the cost (in time, energy, material, and so on) of setting
up the stations, it might very well happen that the equal subdivisions would be
more economical. Of course, we should then have an entirely new problem.

For a fixed x and sufficiently large N, we can come as close as we please to
the minimum f(x) by means of N equal subdivisicns. An amusing fact here is that
the minimum can be attained if and only if x is rational.

We close with several ramarks about the character of the solution ¢* we have
obtained here. It is obvious that this solution is not unique, since every refine-
ment of a* is also a solution. It can be shown that the converse is also true; that
is, every solution is a refinement of ¢*. Furthermore, if we consider the class of
subdivisions ¢ for which the function f(x, @) is continuous, we can prove that this
class is identical with the class of all solutions. It would be of interest to see
whether this criterior can be obtained directly, and whether the minimum f(x)
can be derived from it.

12
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IIT. GRAPHICAL SOLUTION TO EXAMPLE PROBLEM NO. 1 (THE JEEP PROBLEM)

Postulates for optimum solution are:

1. The number of trips between two consecutive stations is
always odd.

2. The graph of the fuel consumed during the entire trip,
viewed from the terminus, is a series of straight lines
having a continually increasing slope.

3. To obtain maximum efficiency, the jeep must always ini-
tiate each trip to the next dump station fully loaded.

Consistent with Dr. Fine's choice for n and ¢, we take n = ¢ = 1.
This means that if the ordinate axis is c when the abscissa axis is n,
a 45 deg line gives the relationship between miles traveled and fuel
ccnsuned.

Figure 1 graphically portrays the relationship between possible
fuel dump locations (Cn)’ fuel consumned in traveling between each pair

of proximate points (ann’ FnPé), and fuel available after a single

trip between each such pair. The word "possible" in specifying the

fuel dump locations and the figure are drawn consonant with the post-
ulants T and III and Dr. Fine's choice for n and c.




Examining Fig. 1, we can see that segments PnF; repcresent the
quantity of fuel which cvan be deposited at the fuel dump and still
leave enough fuel (FéFg) to travel back for the next fuel load pickup.
Thus, if the fuel dump is located 1/3 of the range from start, a
round trip consumes 2/3 of the range, resulting in the deposit at the
dump being 1/3 of the range. A trip to the dump without return per-

mits deposit of 2/3 of the range.

Similarly, if the distance between durmps is 1/5 range, the
round trip permits deposit of 3/5 of the range, while the last single
trip makes it possible to deposit 4/5 cf the range.

The efficiency of depositing fuel, i.e., the ratio of the de-
posited fuel to that consumed in the round trip, increases as the
distance between fuel dump points decreases.

5 3 2 F’

n=} /
F7 )

Distance

- - €2 e

—es - o — C el ronge - - -y

3o te-ah-1

FIGURE 1.
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We now proceed in Fig. 2 to construct a graphical solution of
a possible relationship between fuel requirements and locaticns of
fuel dumps for ranges exceeding that of the jeep. Consistent with
postulate III, we start at the terminus and establish fuel dump pre-
vious to it as being a full jeep range away. The triangle OAF estab-
lishes the relationship between fuel consuned (the ordinate) and dis-
tance traveled (the abscissa). The location of the nearest fuel dump
can be inferred from the observation that, consistert with postulates
I and TIT, x = 1/3 is a logical contender for the preferred distance.
T:ve figure shows the three trips involved in the transfer and estab-
lishes the sufficiency of point F3 as a solution.

ne2k - F

Fuel
deposited
=2n/8

nd

Jecp rangs C ~ )

istance
o 100b 1 Diy

FiGURE 2.
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One observes now that the next fuel dump must contain sufficient
amount to permit the deposit ¢f two full ranges* at fucl dump 1/3.
This requires preferably increased efficiency of fuel transfer. Thus,
it is logical to assume the new fuel dump location somewhat closer,
which suggests the point 1/5 as the choice. 1In Fig. 3 it is readily
established by drawing the appropriate 45 deg lines representing the
trips between the 1/3 point and the new point that five such trips
consume one jeep range while affording the deposition of two ranges
at point 1/3, thus producing point FS. Using similar reasoning, we
construct points P7, F9, etc., corresponding to progressively de-
creasing distance between fuel dumps.

Thus, we have arrvived at a solution which is consonant with our
three postulates.

Now we shall endeavor to prove that this solution represents
the preferred solution.

The 1/3 range distance seems to be so logical that it is reason-
able to question the introduction of the 1/5 and 1/7 fuel dqumps. BAs
a test we will eliminate fuel dump 1/5 and replace fuel dump 1/7 with
a new fuel dump located, from fuel dump 1/3, a distance of another
1/3 range. Figure 4 shows that this choice of a new fuel Cunp penal-
izes by one full range--from F7 to F!--not even considering the slight

3
loss of the distance.

® .
Tre word "range" is used here to designate the amount of fuel
needed for that distance.
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Similar tests (Fig. 5) will readily prove that fuel dump loca-
tions closer than those originally chosen in conformance with the
stated postulates will not affect the fuel requirements but will in-
crease the number of trips, while locations greater than the original
ones will result in sewvere penalty of the required fuel.

This illustration proves that there is no
need to have an intermediate cache of
fuel between A and B because it saves
no fuel, but merely increases the number
of trips.
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Thus, we conclude that fuel dump locations 1, 1/3, 1/5, 1/7,
1/9, 1/11, etc. result in the optimum, i.e., a minimum amount of fuel,
but not a minimum number of trips. This fact is summarized in Fig. 6.

]

3

2
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o |
. .L. €=t + o +c/s'+:/7't/§ll
o 1hes Hinve
FIGURE 6.
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IV. THE RANGE OF A FLEET OF AIRCRAFT*#
J. N. FRANKLINt

1. Introduction. The problem discussed in this paper is to determine the
range of a fleet of n aircraft with fuel capacities g; gallons and fuel effi-
ciencies r; gallons per mile ({ = 1, --. , n). It is assumed that the aircraft
may share fuel in flight and that any of the aircraft may be abandoned at
any stage. The range is defined to be the greatest distance which can be
attained in this way. Initially the fleet is supposed to have g gallons of
fuel.

A theoretical solution is obtained by the method which Richard Bell-
man [1] calls dynamic programming. Explicit solutions are obtained in the
case of two aircraft with different fuel capacities and fuel efficiencies and
in the case of any number of aircraft with identical fuel capacities and
identical fuel efficiencies.

The problem is similar to the so-called jeep problem. The jeep problem
was solved rigerously by N. J. Fine [2]. A solution was also obtained by O.
Helmer (3, 4]. Fine cited an unpublished solution by L. Alaoglu. The prob-
lem was generalized by C. G. Phipps (5]. Phipps informally developed the
special result which is deduced in § 4 of this paper.

2. A recurrence formula. Let C,, be any subset of m of thegiven n aircraft.
Mathematically C.. may be represented by a subset of m of the first n
positive integers. Let M(g, C) be defined as the rauge of the fleet of m
aircraft C. starting with g gallons of fuel. Then the required range of the n

given aircraft is M (g, C.), where C. = {1, 2, -, n}. When there is only
one aircraft,
(1) M(g, C\) = min(g/r:, g:/1.),

where C, consists of just the ith aircraft.

When there are m > 1 aircraft, a distance x is flown by all m aircraft.
Then one aircraft is abandoned, leaving a subset Cm-y C Ca. It is un-
necessary to consider abandoning more than one aircraft at a time. For
example, the effect of abandoning two aircraft from C. may be obtained
by abandoning one of the aircraft from €. and then immediately aban-
doning the second aircraft from C_, . After the distance » the amount of
fuel remaining is

() hag—1r)ccals.
The greatest distance which can be attained by the remaining aircraft

* Recoived by the editors August 20, 1050 and in revised form March 17, 1960.
t California Institute of Technology, Pasadena, California.

# Reproduced by permission of the publisher.
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Cn-1 starting with A gallons of fuel is M(h, Cpoy). If g, Cm, and x are
prescribed, the subset C'm—y should be chosen so as to maximize the remain-
ing distance M (h, Cm-1). The total distance traveled wi'l then be

(3) z + maxe,_,ccaM (g — .th,,, iy Cm).

The maximum distance M(g, C.) ‘is obtained by maximizing thc last
expression with respect to x. In other words, if g is £ the total capacity
Zg.ﬂ foriin Cm,

Mg, Ca)

= max!sﬂzc. ry [I + maXc,_Ccm A[(g - xzcn ri, Cm-l)i-

In this maximization it is required that r be & g/ ., snce this is the
greatest distance which all m aircraft cen fly with g gallons of fuel before
one aircraft is abandoned. If g is given in excess of the total fuel capacity
3 g: of the aircraft in Cm , then some fuel must be thrown away and

(5) M(ﬂ, Ca) = M(ZC.. gis Cm) (g > ZC,.. gi).

The recurrence formulas ‘4) and (5) uniquely determine M(g, C.) for
all subsets C. withm = 2,3, --- , n. It is easy to see that each function
M(g, C.) is polygonal in g, i.e., continuous and piecewise linear. In fact,
(4) may be rewritten, by the identity (2), as

(6) M(g, Cn) = maxag, la(g — h) 4+ maxc,_,cca M(h, Cai)],

where a = 1/}:.-:0_ r.. We know from (1) that every function M (g, (')
is polygonsl. Let us suppose that every function 3/ (h, Cwm_y) is polygonal.
Then

() P(h) = maxc,_,cen M(h, Cu)

is polygonal, since it is the largest of a finite number of polygonal func
tions. Now (6) takes the form

(8) M(g, C.) = ag + maxag, [—ah + P(h)].

Since —ah + P(h) is polygonal, its maximum value for A £ g is a poly-
genal function of g, say P*(g), and therefore M = ag + P*(g) is also
polygonal 7This completes an inductive proof that M{g, Ca) is polygonal
forg 5 3_g., within which range (8) holds. It now follows from (5) that
M.g. C' is polygonal for all g. Incidentally, the identity (8) shows that
Mig. C, i steadily increasing with rae 2 a = 1/Y.ice.r. when
g -2 3¢ or 'arger values of g, (5) shows that M is constant.
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3. The case of two aircraft. Let

(s M(g) = M(g, (), Mi(g) = M(g,Ct) (C,=1=1,2).
For 7} < 0 + g2, (8) takes the form
(10) M(g) = ag + maxyg, [—ah + P(h)),
where
(1N P(h) = MaxX, .12 ]”.(h), a = ]/(T1 + 7'2).
By the identity (1),
(12) M(h) = min (h/r;, gi/1)) i =12).
Without loss of generality it will be assumed that r, < r,.

('ase 1. Suppose that ¢i/r, 2 g,/r: . In this case
{13 P(h) = My(k) (for all h).
Then

—ah + h h =

(14) —ah + P(h) = { ah 4+ h/n (h s 9)

\—ah + gi/ri (b2 g).
Rince a < 1/, it follows that
[—ag+g/n (g2 q)
1-09: +a/n (g2 ),
where P*(g) = max[—an + P(h)}for h < g. From (8) it follows that
g/m (g =q1)
alg—g)+a/n (SgsSa+ )
For g > g1 + ¢, equation (3) gives

(r M(g) = ag: + gi/n, (9> 9+ go).

From the definition (2) of the remaining fuel % as a function of the dis-
tance r to be traveled by both aircraft, it is clear that the optimal procedure
in Case I is to use just aircraft 1if g < g, orif g > g to use both aircraft
until only ¢, gallons of fuel remain and then to complete the trip with just
aircraft 1.

C'ase 2. Suppose that gi/ry < ga/r.. In this case

h/r (h S @)
g./n (pp Shsg")
ki (g* S h 3 qg)
g:/12 th 2 q)

(15) P*g) =

(16) M(g) = [

(18) P(h) =




o AR

where g* = ragy/r1 is the abscissa of the point of intersection of the graphs

of Mi(h) and M,(h). The function —ah + P(h) is a polygonal function

with peaks at b = g, and h = g2 . There are two subcases, depending upon

whether the first peak is higher (A) or lower (B) than the second peak.
Case 24. Suppose that gi./r < go/r2 and g1/ ' 2 go/ry’. Then

1\

A

91)
—-ap + g/ (g 2 g),

—ag + g/r (
(19) PHg) = LY

and, as in Case 1, M(g) has the furm (16), (17). The optimal procedure in
this case is the same as that in Case 1.
Case 2B. Suppose that gi/ri < go/raand gi/r° < go/r'. Let g = gir?/r%:

this is the first value of A > g, at which —ah + P(h) = —~ag, + P(y)).
Then
—ag + g/n (9 sq)
—ag, + g/r (msgsyg)
(20) O
—ag + g/r: (9 S g =g
—ag: + g/r: (g 2 g
Therefore,
g/n (g £g1)
alg — g) + 9/r (ppsg=y
(21) Mig) = g— n/n 9: g59¢)
0/7'2 (¢ = gsg)
alg—g) +g/rn (g2SgSg-+g),
and, according to equation (5),

(22) M{g) = agy + ' (g>g + g

The optimal procedure is as follows. If ¢ £ g1, use only airercft 1. I
g1 S g S ¢, use both aircraft until only g, gallons remain; then use jus
aireraft 1. If ¢’ £ ¢ S g2, use only aireraft 2. 1f g S 9 S g1 + g2, use
both aireraft until only g, gallons remain; then use just aircraft 2. If ¢
> g + g2, some fuel must be thrown away, und the trip is made with
g = o + g as deseribed in e preceding sentence.

From these results it is apparent that in the general case of »w airerafy
the optimal policy will depend in u complicated way upon g as well as
upon the g, and r, . For example, the value of ¢ may determine which ol
the aireraft finishes the trip.
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4. The case of identical aircraft. Let

(23) gl"-:("v rn=R (i = 1,"',‘"),

and let M,(g) = M(g,Cn) (m =1, --.

, 1). In this case the recurrence
formulas {4), (5) tuke the form

(24) J‘,m(g) = mux,i,/,,,,, [." + “I"l—-l(g —_ mh’_]")] (g _S_ m("),
(25) M.(g) = Mna(mG) (g > mG).
Tt will be shown that, if & = [9/(], the greatest integer < /G,

. G 1 1 - kG

&+ DR mf, k 2 1),

A

- G 1 1

The right-hand side of (26) ix defined as g/R when k = 0. In the optimal
policy, if g = kG S m(, the trip is begun with k aircraft. If kG < ¢
< {k 4+ )G £ m(, the trip is begun with k + 1 aircraft. If g > mG, then
g — mG gallons of fuel must be thrown away, and the trip is begun with
all m wireraft. I any case, if the trip is begun with K aircraft, the first
aireraft is abandoned wher only (K — 1)G gallons of fuel remain. Then
K — 1 aireraft are flown until only (K — 2)G gallons remain, and so on.

This result can be ¢xtanlished by induction. If m = 1, formulas (26)
and (27) become

(28) Mi(g) = g/R (9 S G
(2 Mi(g) = G/R (g > G),

whieh is correct acecrd ng to (1), Assume that the result holds form ~ 1
aireraft. Then

o 1

; = V. ath) 22—

(30) il il l) = m= 1)R

at all points k at < hich the polygonal funetion M. (k) has a derivative.

Therefore, £ + M .. \g =~ mRx) ix a steadily decreasing function of z for

0grgg/mRif; s (m— DR Setting r = 0in (24) gives the maximum
value

(31 Ma(g) = Maalg) (g £ (m— 1)G}.
But M. (@) i~ wen Ly the right-hand side of (26) forallg < (m — 1G.
Therefore, (260 s estublished for g € (m = V).

Next supposc that (m — 1Y < g § mG. Then Mo iy = me)'is
constant for 4 - mlte 2 (= 1)G; for larger values of r the rate of in-

0<h <(m-—=1G)
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crease is S —mR/(m — 1)R < 1. Therefore, the maximum (24) is

attained when g — mRx = (m — 1)@, and

- g

This establishes the resuit (26) for (m — 1)G < ¢ £ mG. The result (27)
for g > mG follows from (5).

5. An asymptotic formula for g. The solution (26), (27) in the case of
identical aircraft is similar to the solution of the jeep problem, although the
solutions were established by different methods. In this section an asymp-
totic formula will be developed for the amount of fuel g which is necessary
in order to transport identical aircraft a distance r. Let g = f(z). It wiil
be shown that

(33) f(z) = A(z) + O(exp (—Rz/G)),
where
Rz ,
(34) A(r) =G ——+ep -b—-c
In these identities G and R are the fuel capacity and the fuel efficiency of
each of the aircraft, and C is Euler's constant, .577--- . This result is

comparable to Fine’s asymptotic formula for the solution of the jeep prob.
lem {2].

From the result of the last section it is clear that r is the range of n + 1
aircraft with initial fuel supply g, where nG < g £ (n + 1)G. Setting
m = n + 1in (26) gives

= z* g — nG
(35) -y 200

where

G 1 |
L i | - -
P R(\.+2+ +”)

G
= R(logn+(*+ + o(",))

This well-known asymptotic formula is derived in [0, p. 528]. From (36) it
follows that

(37) exp(ﬁé-:—(‘)-nexp(%‘+0(u—l—,))- n+%+0(’l-;).

(36)
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This relation shows that

(38) n 2 constant + exp (ﬁg_‘ - C),

(39) = O (exp (~Rz*/@),

)

l »
(40) n= =3 + exp <Eé— - C) + O (exp (—Rz*/G)).
Since nG = f(z*), multiplication by G gives

(41) f(z*) = A(z*) + O(exp (—Rz*/G)).

In order to justify replacement of z* by z in the identity (41), it is con-
venient first to show that

(42) J() - A(x)=0(1) (0<z-1z2*< G/(n + 1R).
Differentiation of ¢ as a function of z in (35) gives

(43) f'(z) = (n+ 1)R.

But

A'(z%) < A'(z) = R exp (%’5 - c)

S A(z*+ G/(n+ 1)R) S A'(z*) exp (1/(n + 1)).

(44)

Since, by (39), A'(z*)/(n 4+ 1) = O(1), it follows that
(45) A'(z) = A'(z*) + 0O(1).
Subtraction of (45) from (43) gives

(46) f'(z) — A'(z) = (n + 1)R — R exp (’%‘ - c) +0(1).
\

The required relation (42) now follows from (40). Integration of (42)
gives

f(z) = A(z) = f(z*) = A(z*) + O(x ~ 2%

47

(47 = O(exp (— Rz*/G)) + O(1/n) = O(exp (— Rz*/@)).
Since * — z* is bounded, z* may be replaced by z in the last expression,
and this gives the asymptotic formula (33).
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V. GRAPHICAL SOLUTION TO EXAMPLE NO. 2 (THE RANGE
OF A FLEET OF AIRCRAFT)

I am indebted to my colleague Dr. H. Morris, who encouraged me
to c¢larify the presertation and to provide a treatment of the case of
aircraft of unequal speed. Two solutions are presented.

A. CASE OF AIRCRAFY WITH EQUAL SPEEDS

Initially, the problem will be solved using the two tacit assump-
tions contained in Franklin's solution, namely:

1. All aircraft are flying at the =zame speed.

2. Time lost in refueling is neglected.
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Figure 1 shows the relationship between fuel consuned and dis-

tance flown; for example, the fuel required to travel distance OB is
given by the ordinate OD. The relative efficiencies of aircraft are
readily indicated by the slope of lines AO--the smaller the slope, the
more efficient is the aircraft.

Figure 2 shows the solution for the case of two aircraft of
equal efficiency and equal range. In this case it is immaterial which
of the two aircraft gives up its fuel--the maximum range remains the
same in either case. To determine the range and location for refueling,
for convenience of graphical solution the fuel-distance relationship
for these aircrafft is drawn, one below and the other above the x-axis,
OA applying to aircraft A and OB to aircraft B.

If we draw line B’C parallel to line OB, the ordinates CC’ and
C’C” give the amounts of fuel required by aircrafts A and B, respec-
tively, to cover the distance OC’. It becomes evident that at point
C, aircraft B, by giving up all its fuel, can replenish the fuel con-
suned by aircraft A. In fact, CC’ = A’B, and CC’ = A’B - C’C”; there-
fore, at C’, aircraft B has just enough fuel left to restore the fuel
originally carried by aircraft A. Thus, aircraft A can now proceed
to a new destination A” such that C’A” = OA’'.

Next, we consider the case of two aircraft of equal efficiency
put unequal range. In this case it is not seif-evident which of the
two aircraft should give up its fuel. Examining both cases, as shown
in Fig. 3, we see that aircraft B shouid refuel aircraft A. The graph-
ical construction involved is the same as before but is repeated for
each aircraft to establish two maximum range points: point B’ if air-
craft B is used to refuel aircraft A at a distance OC’ from start of
flight, and point A’ if aircraft A refuels aircraft B at a distance

O’ from the departure point.




Figures 4, 5, and 6 show the determination of maximum ranges for
pairs of aircraft of differing efficiencies and ranges.

Bn Au All
Max range
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We will assume now that fleet of aircraft examples shown in
Figs. 4, 5, and 6 represented six aircraft flying together. Having
established the preferred ordar for refueling for each pair, we are
now left with three aircraft, Rys AS, and B6’ the subscript designating
the figure where we have cdetermined the new range of the respective air-
craft. We also established the locations where the refuelings took
place. Figures 7 and 8 reproduce these locations at the time of re-
fueling, also individual ranges which each aircraft could .over with-
out further refueling. For clarity we redraw Figs. 4, 5, and 6, com-
bining the fuel-distance relationship of the three aircraft in Fig. 7
to facilitate graphical solution of the problem. If aircraft B were
to refuel aircraft A, the amount of available fuel is given by line
O'B64. Proceeding as before, we find point Ai and thus the range ex-
tension of aircraft A, to point AZ fron: the sequence of refueling A”
with aircraft B and finally with aircraft AS.
Figure 8 is merely a check to see whether a different refueling
sequence would improve the range. In the illustration, A4 refuels AS’

and B6 completes the refuleing cylce by giving up its fuel to AS. The

range, although close to that found in Fig. 7, is, however, smaller.

e FIGURE 7.

e
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B, CASE OF AIRCRAFT OF DIFFERENT SPEEDS AND EFFICIENCIES

This case is shown in Fig. 9. In addition to the abscissae of
distance we'show to the left of the origin an abscissa of time. Thus,
lines OAt and OBt give the time-fuel relationship for aircraft A and B,
respectively. Selecting time interval t from start--assuming in this
case that both aircraft depart simultaneously--we find that aircraft
A would have outdistanced aircraft B by G’A’. For aircraft A to ar-
rive at G’, it would have been necessary to delay its departure
by a segment AC, using the scale of time, or to move its departure
point back a distance AC, using the scale of distances. On the other
hand, if we wanted to have the two aircraft meet at a point A’, it
would have been necessary for aircraft B to be stationed distance G’A’
ahead of aircraft AR or to have delayed the departure of aircraft A by
a time inter-al represented by a segment G’A’, using the scale cf times.

Because of linear relationship of the variables involved it can
be seen that lines OC and OD represent the locus of points through
which pass lines OA and OB appropriate to selected distances of ren-
dezvous of the two aircraft. Thus, line CC‘ would describe a condition
in which aircraft A would arrive at point G’ when aircraft B has con-
sumed G’G amount of fuel. This suggests that if we drew lines R'F
parallel to line OB, and B’I parallel to line OA, we would establish
points H and E, giving the earliest time for complete refueling of
aircraft A by aircraft B, and aircraft B by aircraft A, respectively.
By inspection it is evident that the latter choice results in better

"

range. The new range is at point B,

It is believed that this method can be readily extended to the
case of saveral aircraft. Although it requires a trial-and-error
solution because it is not evident in what combinations refueling
should proceed, the simplicity of the solution results in relatively

small labor.
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VI. CRAPHICAL SOLUTION TO EXAMPLE NO. 3 (A BEAM UNDER
COMBINED COMPRESSION AND TRANSVERSE LOAD)

A. PRECISE BENDING MOMENT

The general expression of the bending moment can be written as

M =C, Sin (x/j) + C, Cos (x/3) + w32 (1)

where x 1is the distance from the left support and w is the uniformly
distributed transverse load. In the expression of j =‘@¥;, E is the
modulus of elasticity, I the effective moment of inertia and P the

axial compression. Cl and C2 are the constants of integration which
can be determined from the conditions at the two supports; C
[D2 - D1 Cos (L/3)]/Sin (L/j); C2 =Dy D; and g :
brevity and designate as follows: Dl = Ml - Wi D2 = M2 -wj", L is
the length of the bay, Ml the bending moment at the left support, M

is the momernt at the right support. See Fig. 1.

l:
2 are introduced for

2

Attention is invited to the mathematical significance of the
trigonometric functions appearing in the solution of differential

equations involved in the problem of comb>ined compression and bending.

These trigonometric functions must be thought of actually as rep-

resenting the infinite series whose limiting magnitude can be considered

as the sides of a right triangle usually employed to define the Sine x
and Cosine x, vhen one angle of a right triangle is x radians in mag-
ritude. This property makes possible the graphical construction des-
cribed in this article, but the reader should not lose sight of ths
true significance of the functions.
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FIGURE 1.

While the present solution can be extcnded to include the case
of transverse loading other than uniform the present article deals
with a uniformly distributed transverse loading only. Examining
equation 1, we observe that by drawirg two circles with radii equal

2 and by considering the signs

respectively to Cl and C2 and distant wj
o1 the products Cy Sin (x/j) and 02 Cos (x/3), it is possible easily

to obtain their magnitude for any value of x from zero to L. It will
be found in most pfactical cases that C1 and 02 will have a sign oppo-
site to that of wj“ and we will assume that they are negative. The
construction, however, is simple and once it is understocd it can be
easily changed to take care of the actual signs of Cl and C2. Noticing
that Sin (x/j) charges from zero to Sin (L/j) while Cos (x/j) from 1

to Cos (L/j) it is obvious that the angle 57.3 deg (L/j) must be drawn
in such a way (if we want to measure the bending moment, along y axis)
1 Sin (x/3j) and C,2 Cos (x/3)

become zero and C,, respectively. This can be obtaired by measuring

that for the value of x = o the products C

the angle 57.3 deg {L/j) on the circle ¢y from the horizontal, while

on the circle C2 it must be measured from a vertical diameter.
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Draw the beam 1-2 and on the continuation of the line choose a
center from which the circle C, must be described. Measure downward
along the continuation of the ;ertical diameter the distance wj2 and
from that point as a center describe the circle C2. Lay out the angle
equal to 57.3 deg (L/j) from a horizontal diameter and construct this
angle also on the circle Co» in which case it must be started from the
vertical diameter. (The construction is illustrated in Fig. 2 and
made clockwise.) Dividing the length of the bay and the arcs 1-2 of
the circles Cl and C2 into any number of equal parts, we construct the
bending moment diagram by simply projecting the points horizontally
from the circles on the vertical lines passing through the corresponding
points on the beam. In Fig. 2 the construction is illustrated for the
point b. It can be easily proved that the ordinates enclosed by the lines
1b, 21 and 12 b2 22 represent the bending moments at the corresponding
points of the beam in the scale in which were drawn the circles Cl and

, _ _ . 2 .
C2. In fact by b2 = Obl + Ob2 = C, Sin (x/3) - wi® + C, Cos (x/3).

1 a b c 2
i\ O ——? -0 o—
L
Ll \
°2
2.5 /'
9\ /] 2 ~
ST -7
bl
22r*

FIGURE 2. Construction of Precise Bending Moment Diagram
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In order to obtain the circles C, and C it is, however, not --

2

necessary to calculate the magnitude of Cl and C,, since we can make

P
the following observaticns: From Fig. 3, we see that since the dis-

tance 0, O, is equal to wj2 if we lay out downward from Ol the seg-

1 72 ’ .
ment Ol2 such that it is equal to Ml we obtain immediately C2.
- = 2 .2 =
02 = Dl = Ml -wj® = - (wj® - Ml).

- wj2 lay out upward 02 Oi equal to M,,
5" To obtain Cl’
constructed the angles 57.3 deg (L/j) we observe from Fig. 3 that

To obtain the D, = M
2 2

obtaining Ol Oi which is equal to -D after having

taking 02 2., and adding it downward to D, along vertical diamet.r we

v
obtain point 2

2
such that the intersection of a horizontal through

v
that point with radius Ol 24 gives us Cl' .
O2 2y, = D, Cos (L/3)
0, 25 =0, + D, Cos (L/3)
1% 2 1 J
| ] B .
Ol 2, = Ol QV/Sln\L/j) = - [D2 - DlCOS(L/J)]/Sln(L/j).

The attention is invited to the fact that argle 57.3 deg (L/j) must
be drawn accurately since otherwise it may result in a large error in
Cl' As a check, the distance 2% 2v, equal to M
proceeding with further construction.

or May be used teforc

B. PRECISE SHEAR

By differentiating the expression of the bending moments (equa-
tion 1) we obtain the expression for shear as follows:

af g 2L X . ¢ sinX
= -0 T3 (C1 Cos ; C, Sin J.)

It can be seen that if we draw the beam, divided into the same number
ot parts as befoure, aiong the continuation of the vertical diameter and

prcject from the circles Cy and C the points 1 ........b «..cvnnn 2 on

2
the horizontal lines drawn through the corresponding points on the beam,

A0 i




the horizontal distances between the two curves thus obtained will
give us the magnitude cof shear in the scale of M/j where M is the
scale of moments (Fig. 4).

FIGURE 3. Circies C] and C2

FIGURE 4. Construction of Precise
Shear Diagram

C. MAXIMUM BENDING MOMENT

The location of the maximun bending moment is determined from
the shear diagram at the point of zerc shear.

D. DEFLECTIONS

To cbtain tne deflection, we observe the fact that the oxpression
for precise bending moment can be written

L]

M=M)-Py (2)

(

Where ¥ is the primary bending monent due to the transverse load alone.

a1




Relationship of comstruction points to structure of the beam

Scole of moments: 1'=12,000 in, 1b

Scale of deflections:

-6000./12,000 = 172"

RN

1" P/M

180

el

N 3t 41 351 6l 7

8

Py

| bl ¢

Secsie of lengths:

"= 30 in,

daf el f]

~

| o b ¢

‘L iiimow bending

)

N

d e

Precise deflection diagram

f

Deflections

Precise bending

-

Precise shear diogram

Scale of sheors:

(=%

/

TN

105.5

1" =20,000/97,58 =

]
/ 204 ib
: : -

N

_7/

M= -40,000

po————-105. 3

N 44,500

Precise bending moment diagram: 1" =2Q,000 in. Ib

FIGURE 5. Graphical Solution of the Beam Analyzed in NACA Technical Note 383
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From equation 2 we can express y = (M0 - M) /P.

It is evident, therefore, that in order to obtain the deflection, we
can simply superimpose the diagram of precise and primary moments and
by dividing the difference L_etweer the two moments by axial load P, to
determine the magnituce of the deflection at any point. If, however,
ve should replot the precise bending momerit diagram on a horizontal
base by using a new scale of moments M = P (where M is the new scale
cf moments and P is the comprecsion load) and construct the primary
moment to the same scale, we will obtain directly the deflections to
their actual magnitude. The replotting of the precise hending momenc

can be easily accomplished by using a proportional divider or by a

method of similar triangles. The primarv bending moment for a uni-
formly distribited load is simply constructed as a parabola and the

example (Fig. 5) gives the constructicnal lir  involved.

C. EXAMPLE SHOWNING APPLICATION OF THE METHOD

To illustrate the practircal appiication of the method described
in this article, a complete determination cf precise bencing moment,
shear and desflection diagrams s given here for the metal truss beam
whose properties and 2ffective moment of Inertia were determined by
Mr. Endrew E. Swichard in NACA T.N. 393 (pages 24 to 3i incliusive).

Data:s

L = 180 inches: P = - 6000 pounds; I eff = 5.76 inches®; £ = 10,000,000
pounds /square chy M = - 40,000 inch pounds; M, = 03 w = - 12 pounds/
inches; 3 = 97.983 32 = 9£10; wi¢ = - 115,200; L/§ = 1.838 = 105 deg

19%; wL?/8 = 48,600 inch pounds.




VII, GREPAICAL SOLUTION TO EXAMPLE NO. 4 (THE PROBLEM
OF CAR REPLACEMENTS)

A given railroad owns N number of cars, purchased over a period
of T years. It is assumed that the ages of the cars can be expressed
as a linear function of time, thus giving % as the average age of the
cars. It is proposed to reduce the average age to a stipulated figure
by purchasing new cars during the next AT period. Assuming that the
replacements are being accomplished by yearly purchases and that car
ages can be considered a linear function of time, determine the number
of cars to be purchased and replaced in order to maintain the original
nurber of cars but lower the average age of all the cars sl the end of
AT period to the desired figure.

"In Fig. 1, at start, CD is the average age of the N cars. The
average age is reduced to EF after the required number of cars was

retired and replaced with new cars during the interval of time
AT = I8 = oop.




*Number

of cars
Assume - Linear variation of cars' ages. A B
Time and cars' ages are giver by abscissa }
while number of cars by the ordinate
CD is the average age of cld cars
EF < CD average age of cars after
replacement of oldest cars with new
cars purchased during time period AT
EF is sti puloted iritially
Z
I
g
e/, ID P o
13
r—Average.-—h- E
age after time £
interval AT T
/ o
/ b~
N
Zz
) 1Y
P L o Op
Past Present Future

el 1y

FIGURE 1.

Time




Figure 2 shows the old and the new cars at the end of the AT
replacement period.

Line OI gives the ages of M new cars purchased during the period
of AT = UUP years (an equal number of old cars was retired); at the
end of the OOp period the ages of the remaining old cars are given by
line RC. By averaging the ages of all cars at the end of the OOp per-
iod, and drawing a straight line BEL passing through point E, such
that EF is the specified new mean age of all the cars, we define an
area LBOp gising the total age of new and remaining old cars.

This implies by inspection that area AGHB must be equal to area
LHIO or, which is the same, that area APLB is equal to GPOI.

4

Number
Retire all cars between the ages OP and Gl, of cars

i.e., Ol cars and replace them with new
cars purchased during the same time period

To huave reduced the average age from CD to
EF meons that ot time O the area of triangle
BL Op would represent tge total age cf all the
cars. For that to be the case area GABH
must be equal to the area LHIO

FIGURE 2.
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One can resort to a graphical determination of M (Fig. 3) by
proceeding as follows:

Draw line RK equidistant from lines AO and NOP. Erect an ordi-
nat¢ at L intersecting lines PA at S. Continue PA until it intenrsects
KR at K’. Mark off an ordinate K"p equal to the segment K'T’ on the
line KR. By inspection we state that with sufficient accuracy, area

8000 '
Kl
7000 }- A K_8
6000 |- L
|
|
000 |
5000 Y |
o |
8 |
‘s |
5 40001 I
£ |
F
z fD —
)
30“)"‘ a a AI
|
5 I
2000
H i |
Kll
1000
-~1720 Y
)
ol& 1 L i 1# 0] R ~p
-60 -50 =40 -30 -20 -10 0 10
Year
FIGURE 3.
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LSK'T’ is equal to the area LSK”’R. If at midpoint of line 3K’ we
draw line GI parallel to the abscissa axis, and a line joining I with
O, the figure PGIO gives the required area, while its ordinate IOp de-
fines the number of cars, answering the problem.
Figure 4 gives an example of the application ~f this method.
8000
Data:
Number of cars at start 6804 r
7000} Average age 29 yr N
Number of cars after 10 yr___ 0804
Average age 25 yr
6000}
Problem: .
Find number of cars to
be replaced in equal
5000}~ yearly lots 6804
§ Final M = IV 29
(o]
© 4000} 33+58\ _
5 95,25/ (238 = / 25 .
g =1720
Z
30001
20001
olution M = 1720 cars
/ or )y ca
"
S per Year
1000+
-20
olP ] L | 1 | J
-60 -50 -40 -30 -20 -10 0 10
Year

e FIGURE 4.
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VIIT. GRAPHICAL SOLUTION TO EXAMPLE NO. 5 (DETERMINATION
OF BALLISTIC TRAJECTORY PARAMETERS)

For much of the conceptual and analytical work dealing with
ballistic missiles, computer precision is not required.

Given two of the three basic parameters (burnout angle, burnout
speed, and range or range angle), the method described in this paper
can be used to determine vacuum trajectory, velocity at any point,
and time of flight, using only a slides rule, compass, and ruler. Figure
1, taken from "Free Flight of a Ballistic Missile,” by Albert D. Whelan
(American Rocket Society Journal, December 1959), gives the relation-
ship of burnout speed, burnout angle (from vertical), and range angle.
The method assumes a nonrotating earth and applies to the portion of
the unpowered trajectory outside the atmosphere. For many problems
the data are adequate for a complete trajectory from ground launch to
reentry.

&40

-

Escape velocity

B arout speed, nft sec
b

- el 20

FIGURE 1. Relationship of Burncut Speed, Burnout Angle, and the Range Angle




A. BALLISTIC TRAJECTORY CONSTRUCTION

Graphical construction of the ballistic trajectory is made on
the basis of the following laws of mechanics and properties of conics:

1. Ballistic trajectory is an ellipse whose one locus is the
center of the earth.

2. Included angles between a tangent to the ellipse and lines
joining the point of tangency with each focus are equal.

2. Sum of the length of the two lines joining any point on the
ellipse and its two foci is constant.

4. Given its major and minor axis, an ellipse can be constructd
by the use of the auxiliary circle.

Figure 2 shows the construction of ballistic trajectory ellipse.

E Trajectory ellipse

i oxis

ELF2 = ELFI

\ 1
\\ ! / /LF.‘:*LF‘=¢O'F2=20'FI

Earth rodius

L RS~

FIGURE 2. Construction of Ballistic Trajectory Ellipse
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B, DETERMINATION OF SPEEDS AND TIMES ALONG THE TRAJECTORY

To determine missile speeds and times aleng the trajectory we
make use of the energy relaticnship which gives the interplay between
kinetic and potential energies:

2
o

n%{a
N

2

H'N Mg R2
My2 +4 —29 G4H ..... e (1)
o

where VO is the burnout speed; V is missile speed at some point N; 95

is gravitational constant at sea level; H,, is a segment giving the

N
height of the missile from the center of the earth.

Lfter integration we obtain
2 ‘2 1 \
ve = + 29’ F’\ ( - ___/

1
iy

2 v2 R,

——-—'2- 1’1_ . (2)
Here H is the altitude of the missile, HN = Ro+h, and V is the speed
at that point.

From Equation 2 it can be seen that previcusly obtained trajec-
tory can be transfoimed into the curve of potential enmergy by correcting

each altitude by a factor of as shown in Fig. 3.

-H_N’




FN.=H=Rorh, h=NN,
R

NN, = h—ﬁ! ~ potential energy

at point N

N2N3. v2 where g = g Ro and
29 ° H2

V missile speed ot point N

S A-ed- 1)

FIGURE 3, Determination of Kinetic and Potential Energy

It then becomec apparent that if NNl’ the segmeni representing potern-
tial energy, is subtracted from the segment representing the initial
kinetic energy, LLl = NNS’ the difference thus obtained, N2N3 repre-
sents, to a proper scale, the vel-city of the missile at that point
on the trajectory. Assuning that we have (' tained such a segment,
then if speeas are taken in feet per seccnd, accelerations ii feet
per second squared, and distances in rautical miles, the cpeeds would

be obtained My measuring the length of the segment usihy the scale of

dis-ances and ther taking a square root of the product:




(Segment length) x 2 gy X 6080, so that missile velocity at
any point is

V = 625 ,/Segment length = 625 W
If, now, we were to divide the trajectory into a number of equal
segments and determine at midpoint of each such segment the average
velocity V, then the ratio of the segment length divided by the aver-
age velocity would give us the time of flight along that segment of
trajectory.

C, USE OF LJUGARITHMIC SCALES FOR DETERMINATION OF SPEEDS IND TIMES

The graphical ccnstruction and calculation of speeds and times

can be more conveniently accomplished by the use of logarithmic scales.

In Fig. 4, if we make 1gVo = QL, we will have a convenient loga-
rithmic scale (2) of velocities and at.

Having previously divided the trajectory into a number of equal
length segments L-1, 1-2, 2-3, etc., one measures lengths -;N; with
the linear scale of lengths 1 which in Fig. 4 we plotted to the left
of 0. Next, using a logarithmic scale, these magnitudes of these
lengthe are plotted on corr—sponding rays as an extension of 1lg 625
which was marked as an arc of a circle with O as its center. Because
the magnitude required is % 1g N;";, the logarithmic scale (3 of half
the magnitude of that used fer lg 625 must be employed. A smooth curve
LLA plotted thiough these points gives at any point on the trajectory
the speed at that point.

D, TIMES

Usiny logaritiuwnic scale @ , we draw an arc of a circle with

™~

center at r, and radius eaual to lg [(4073x56080) hacause the length of

1
the equal scysents into which we divided the trajectory is 400 nmi.

Thus,

St A
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1

AS _ ) 1
L (1g 625 + 3 1g W),

F
vV time "1
625 ./ TR

expressed in terms of logarithmic scale C), gives logarithm of At

at the apprcp-iate points 1, 2, 3, etc. These lengths terminate on
the arc Ltime Lm and the speed curve LLA as shown in Fig. 4. By sum-
mation of the At's, one obtains the elapsed times from launch to any
point on the trajectory.

E., EXAMPLE

Figure 4 was drawn for a case in which the given initial condi-
tions are

<<
1]

24,000 ft/sec

Yo 41 deg (from vertical) .

From Fig. 1, one finds the angle § = 67.8 deg, equivalent to a
range of 4070 nmi, Figure 4 gives the appropriate scales necessary
to construct and to determine missile altitude, velocity, and time of
flight at any point on the trajectory and sumnarizes the data graphi-
cally. The apogee is found to be 1870 nmi, the apogee speed 10,160
ft/sec, and the total time of flight 46.9 min. The total time of
£light was obtained as the sum of At's for each segment as shown in
the following tabulation.

57




=
°
»
[)]
[0

,g
ot

1 L-1
2 1-2
3 2-3
4 3-4
5 4-5
) 5-6
7 6=-7
8 7-8
9 8-7
10 7-6
11 6=5
12 5-4
13 4-3
14 3-2
15 2=-1
16 1-L

as the computer.

Range, deg

Range, nmi

Apogee altitude, nmi
Apogee velocity, ft/sec
Flight time, min

i

Seconds
at At
118 118
130 248
146 394
163 557
184 741
205 946
221 1167
244 1411
244 1655
221 1876
205 2081
184 2265
163 2428
146 2574
130 2704
118 2822

I am indebted to Dr. R. Finke, who calculated principal trajec-
tory parameters, using both a desk calculator and slide rule as well

The following tabulation gives the three sets of figures and,
thus, a relative precision of the graphical and analytical methods:

Graphical Analytical Computer
68 67.74 67.74
4,070  4,071.7 4,072.66
1,870  1,858.1 1,857.38
10,160 10,225.3 10,228.81
47 46.78 46.78
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IX. GRAPHICAL SOLUTION TO EXAMPLE NO. 6 (THE TWO-MAGNETIC
REACTOR PROBLEM)

Given: Two magnetic circuits which are so constructed that
they share some volume in which their respective magnetic fields and
induction (also flux) are at right angles (Fig. 1). FEach core may
be of any reasonable material.

Problem: For a given .4nNI in the control magnetic circuit,
what is the flux through the power circuit for various .4nNI of power.

S le-a0-N

FIGURE 1.
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A. METHOD A: GRAPHICAL SOLUTION

Legend

o BLc> BI= - - - B o A )

ZC&eZP

An examination of Fig. 1 suggests the foliowing relationships:

In addition, since it is possible to orient the commcn zone
material in such a way as to ensure identical magnetizetion properties
at right angles along the direction of core C and core P, one can

write

Current in amperes. o
Number of turns. *

Mean length of the magnetic path.

Flux density in gauss.

Magnetizing force in oersteds (gilberts/cm)
Magnetomotive force in gilberts.

Properties and characteristics of the control reactor

circuit.

Properties and characteristics of the power reactor

and circuits.

Properties and characteristics of the common zone of

C and P (Fig. 1).

Subscript denotes characteristics due to or induced by the
the control and power reactor, respectively.

Boe = B¢ (1)
Bzp = Bp (2)
Hao + Hop = Hy (3)
By, + Bop = B (4)

%2¢c _ Bzp (s)
e Map
60




The magnetomotive forces in the control and the power circuit are:

Fo = 8H()AL = Hdy + Hydy = W4TNGIoe e (6)
Fp = PH(L)A = Hbp + Hyply = nNpTo... (7)

The relationships B vs H are given in the form of usual mag-
netization curves, indicated schematically in Figs. 2, 3, and 4.

H
H -

FIGURE 2. FIGURE 3,

- idade28 4

FIGURE 4.

Also known are the number of tuwns in the contrcl and power
reactor.
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The solution of the problem requiies the determination of the
magnitudes of Hc, HP’ HZC’ and HZP for any selected values of Fc
and PP'

We will proceed to develop a graphical solution based on the
following observations:

Assume that for a specific value of PC and a specific value of
PP we obtained the corresponding magnitudes of HC’ HP’ HZC’ and HZ

2 2 _ 2 . .
70 + HZP = HZ we can spot the proper points on the

three magnetization curves (as shown in Figs. 5, 6, aad 7):

P.
Then, since H

:

FIGURE 5. FIGURE 6.

FIGURE 7.
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We redraw curves of BC vs HC and BP Vs HP by modifying their

‘o Lp
abscissae by a factor T and T respectively.
Z Z

This is shown schematically in Figs. 8 and 9.

4
£
£
Z
FIGURE 8.
B
— P
3
i
H  J
z
TN FlGURE 9‘ .
Assuming that the scales selected remain the same, then Bc and
Bp of Figs. 8 and 9 are equal, respectively, to BC and ap of Figs. 5

and 6.

We will now aod to these curves a verticel line on each, such
that its distance from the origin of coordinated js equal to

F F '
59 and zg for control and power curve, respectively (Figs. 12 and 11).
Z YA
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— P

4

%

l e
z

- 14-40-0

FIGURE 11.

Note that the difference of abscissae in these curves, namely
FC "C FP Lp
- H and = ~ H are equal to H,. and » respectively.
T, " ", i 2¢ 2nd Hazp

Since we assumed that points C and P, and hence points Cl and Pl,

represent the solution of our specific problem then angles & in Figs.
10 and 11 are equal because, in that case,

B

8
C p
. = which fulfills the relation-
A iEP

ships (5) and (1) and (2).
€4
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A check of the correctness-of our solution would be to construct
right angle triangle shown in Fig. 12 below and compare the magnitude
of HZ thus obtained with the HZ of Fige. 7.

Hz
H
ZC
1
56-14-48-29 h Hzp 4
FIGURE 12.

The examination of Figs 10 and 11 suggests a graphical solution

A 4
C P ,
of the problem. We plot Bc Vs Hc Iz- and BP Vs HP zz- having

selected suitable scales for the coordinates. . .

On “his diagram we draw vertical lines spaced rg»and £ crom
Z

R/

the origin of coordinates as it was initially shown in Figs. 10 and 11.
On curves C and P we mark several pairs of points corresponding to the

number of equal al angles randomly picked by us. For each poirt we

obtain a pair of magnitudes of Bé and Héc and a corresponding Bé
Hép among which accidently there may be a point representing the solu-

and

tion of the problem.
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$6-14-68-20

FIGURE 13

Since, however, this is improbable we must proceed differently.

. 1. 1 1 1
Using values of Bc and BP, and values of HZC and HZP £rom

points corresponding t» the same angles el we obtain graphically

1 _ 1.2 1.2
BZ = (BC) + (BP)
because
Bjo = Bo and Byp = Bp
Similerly,

1 2 3
Hy = ﬁ“%c) + (Hpp)™

The resulting curve contains one correct point, namely the point
common with the magnetization cuirve BZ Vs Hz (curve Z as shown in
Fig. 14). ‘

1%
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$6-14-68-31

FICURE 14,

Having determined HZ we obtain B, and B, as weil as H

c P z¢ and
HZP’ as it will be shown later.

The soiutior must be repeated for various valucs of F, and Fy

and cross-plotted to show the interdependence of the selected variables.

B. APPLICATION OF THE METHOD

' g
C P .
Curves Bc Vs Hc I—Z and BP Vs HP {'—Z are superimposed on the

same graph using cross-section paper.

This graph is used as a template, the actual construction being
performed for each pair of PC and FP on & separate piece of tracing
paper which thus will contain all deteils of construction permitting
an easy check of individual solutions.

For one group of solutions either FC or Fp is kept constant.
The curve corresponding to the variable factor is traced on the

€7




individual vellum and placed so as to superimpose vertical lines F % s
7 o

described on page 64. With this arrangement, a group of radial
lines emanating from point Ol prevides a group of points le and 1p, g
2c and 2p, 3¢ and 3p, etc. corresponding to points Pl and Cl of Fig. 13. .

-

-

st FIGURE 15.

To ensure uniformity of all solutions we will agree to retain
the orientation of coordinates of curve C, for 2xample, and rotate
90 deg the coordinates of curve P.

Having marked off a series of poiats ., 2, 3, 4, etc., forming
the same angle with the coordinate axes, we proceed to construct

1. .1
cuIve BZ Vs HZ.

For clarity the construction is shown in Fig. 16 for point 2.
Construction of B% vs H% curve illustrated for point 2. BC and HZC
ordinates remain oriented as drawn vhile BP and HzP arc ‘nate rotated
30 deg. Foints "Z" defire E% Vs Hé curve.

68




FIGURE 16,

After repeating this construction for all the points (normally
4 to 5 points suffice) curve B% Vs H% is drawn (Fig. 17) and super-
imposed on the selected BZ vs HZ curve which thus Jdetermines point
Z establishing the values of HZ and BZ forming the sclution of
the problem, The determinaticn of point Z on BZ Vs Hz magnetization

curve is shown in Fiqg, 18,
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FIGURE 18, Determination of point Z on Bz vs Hz magnetization curve
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FIGURE 19.

Final determination of all the unknowns of the original problem

is given in Fig. 19. Having obtained point Z we project it on O'Bz'

and O'Hé axes indicated here as points Bg and Hg. The magnitudes
O'Bg and O’Hg are measured off on 0'B” and O‘H" curves and Bes Bpo
HZP determined directly as shown,

The practical application of the method permits a number of
shortcuts:

The curves need not be redrawn for separate constructions and

many of the construction lines need not be drawn because of the

reference offered by the graph paper on which are drawn the magnetization

CUrves.
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C. METHOD B: GRAPHO-ANALYTICAL SOLUTION

In describing the alternate method, reference will be made to

the previous explanation of the graphical solution of the two-mag-
netic-reactor j.roblem.

In this case the magnetization curves are drawn on log log paper
having introduced on this paper two additional scales equal to one
half of the original scales. The new scales thus permit direct
reading of the magnitude of the square of any ordinate plotted using
the original scale (Fig. 20).

Instead of obtaining graphically the curves of HZC vs Ec and

HZP Vs BP as it was shown in Figs. 10 and 11, a table shown below
is prepared.

TABLE 1

4 F L 4 F L
C C C P P P
B, {H,!H, = |H,n = 57~ - H+=<| B, |H, |H H,, = 5= - H >~
clc|ct, |"zc L, "G, | PP 7P T, | zP (S

] t ] ] ] ) | t
A“-\- M
ey > (™ _v_m

] ] ] [ ] ] t &
Curves of HZC vs BC and HZP Vs BP are plotted on a sheet of vellum,

using vhe previous log log plot as a template as shown in Fig. 21.
Note now that reandomly dmawn set of 45 deg lines accomplishes the
same purpose as the radial lines of Fig. 15 In fact, because the
abycissae and c.dinace scales are equal, we can write

log BC - log BP = log HZC - log HZP or

B

wnich fulfilis condition (5).
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Having thus obtained a series of 1lc and 1lp, 2c and 2p, 3¢ and 3p,
etc., points we read the square of the corresponding ordinates, enter
them into Table 2, add the respective magnitudes, and plot the curve
of B% Vs H% whose graphical determination was given in Fig. 17. 1In
this instance the cperation of extracting the square root in expressions

1 _ t2 2 1 _ 12 2, .
B, = Bzc + BZP and HZ -VHZC + HZP is taken care of by using

the proper scale.

TABLE 2
2 _ 2 2 _ 12 12 12 12 '2 2 12
Bo = Bya |Bp = Bgp |Byo 4 Byp Hze Hyp | Hge + Hyp
[] [] L 1 [] ] ]
M‘ T ] —————
[} [} ] ] [} ]
|

Figure 22 shows the plot of B% Vs H% whose intersect with the

selected BZ vs Hz

The determination of points C and P and corresponding magnitudes

magnetization curve determines the point Z.

of B.. BP’ HC, HZC’ and H,,. is given in the illustration and is self-

Zp

explanatory.
Example:
Assumed magnitudes
4 4 F F

C P C P

= = 5; = 16.25; 3 = 10

Ll 7Y R’

Curve C is Cobalt Iron (50% Co, S0% Fe)
Curve P is Medium Silicon Steel
Curve Z is Permalloy.

Table 3 is a completed versicn of Table 1, and Table 4 is a com-
pleted version of Table 2. Figure 22 which was used as an illustration
of the method also represents a graphical sclution to the values con-
tained in Tables 3 and 4,
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TABLE 3

B H H fg H! B H H fB H!
C C I, 7C P P P I, 7P
1.77 | 1.0 5.0 11.25 || 1.3 | 0.5 2.5 7.5 E
4. 1.5 7.5 8.75 3.5 0.75 3.75 6.5 :
7.6 | 2.0 10.0 6.25 || 6.0 | 1.0 5.0 5.0
10.2 | 2.5 12.5 3.75 || 7.3 | 1.2% 6.25 | 3.75 L
12.1 | 3.0 15.0 1.25 || 8.4 | 1.5 7.5 2.5
13.3 | 3.5 17.5 9.1 | 1.75 8.75 | 1.25
14.3 | 4.0 20.0 9.8 | 2.0 i0.0 0
15.5 | 5.0 25.0 10.6 | 2.5 12.5
16.5 | 6.0 30.0 11.3 | 3.0 15.9
17.2 | 7.0 35.0 11.8 | 3.5 17.5
17.7 | 8.0 40.0 12.2 | 4.0 20.0
18.2 | 9.0 45.0 12.7 | 5.0 25.0
18.7 |10.0 50.0 13.0 | 6.0 30.0
20.0 |15.0 13.3 | 7.0 35,0
20.8 |20.0 13.5 | 8.0 40.0 f
21.4 |25.0 13.7 | 9.0 45,0
21.8 |[30.0 13.8 | 10.0 50.0
14.3 | 15.0
14.6 | 20.0
14.9 | 30.0
TABLE 4
’ ’ 2 2 ’ Y 2 12
No.| B. | Bp | By |Hpe [Hpp |Hy; | Bo | Bp | By" | Hy | Hyp | Hy
s | 6.78] 5.42| 8.7 |6.75(5.42{8.7| 45.8{29.4| 75.2 | 45.6 {309.0 |75.5
4 8.4 6.4 /10.5 {S.6 [4.42]7.1]| 70.6/40.9]211.5] 31.4 19.6 [51.0
3| 9.4 7.4 [11.9 |4.68!3.68/5.9| 68.4{54.8/143.2 | 21.4 [13.56 |35.0
2 110.2 | 8.0 |12.8 |3.82/3.0 14.9/100.4/64.0(164.4 | 24.6| 9.0 |23.6
1{11.2 1 8.7 14,1 [2.76]2.15/3.5]124.0/75.6(199.6 | 7.6 4.6 |12.2
7
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X. CONCLUSIONS

The range of problems of the six examples presented here is
broad enough to acquaint a reader not versed in the subject with the
variety of approaches which could be used to solve a given problem.
In all cases, however, graphical problem solving has one common
ingredient--to prepare at the outset a diagramatic presentation of
the relationship of variables in several possible forms. In fact,
very often the approach of classical Euclidean geometry will offer a
hint of required construction. By the classical approach I mean the
assumption that the problem has been solved, which thus permits the
drawing of the solution figure. Inspection of this figure, with its
juxtaposed variables, will often disclose their principal dependence
or relationship pointing to a solution. A good illustratior of this

is given by Figs. 2 and 3 in the problem of Car Replacements (pp. 47,48).

The example problems contained in this paper could also form

instructive exercises in training one in the use of graphical computer

display and techniques of interaction between the computer and the
operator,

If this paper will whet the graphical appetite of some of its
readers it will amply justify its publication.
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APPENDTX A. A NEW APPLICATION OF THE LOGARITHMIC POLAR DIAGRAM

The original adaption of the logarithmic polar diagram is
credited to Mr. Rith of the Eiffel Laboratory and may be found in
Eiffel's works "La Resistance de l'air et l'aviation" and "Nouvelles
Recherches sur la Resistance de l'air et l'aviation." Disatvantages
of the original Rith and later methods based on the use of the log-
arithmic polar diagram are in the approximate nature of the estimated
performance obtained and the consequent inaccuracies and discrepancies
as compared with other available methods.

THEORY OF Tnc LOGARITHMIC POLAR DIAGRAM

Rith points out that if the characteristic curves of fﬁe air-
plaie are plotted as a polar in logarithmic coordinates, the plot
represents a functional dependence of all the main factors entering
into the two principal equations of the flight characteristics of an
airplane:

W= LV2 and
HP = DV3;
or expressed logarithmicelly:
log W =1log L + 2 log V and
log HP = 1log D + 3 log V ;
therefore:
log L =1log W=-21logV and
log D = log HP = 3 log V.

From the last two equations it is apparent that we can consider
log L as the sum of log W and -2 log V, while log D can be considered
as the sum of log HP ard =3 log V. The values of log W and log HP
can be plotted on the direction of the ordinate and abscissae directly,
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while log V can be plotted on a line inclined in such a way that the
values projected on the direction of the ordinate will give -2 log V
and the same point projected on the axis of abscissae will give a
magnitude of =3 log V. This new axis, called the speed axis, has the
slope of 2/3 and the graduations have a modulus of JEQ:_;f = 3,605
times that of the modulus used on the other axes.

The diagram (Fig. 1) thus constructed gives the necessary
functional dependence of the factors entering into the two equations.

2|~ |-
K 88
§ Line li to olar of -
Log }/ axis the airplane
-3
Log V|
® ¢

' -4|.09V‘

Log L
Log W

)‘“/ ® -
v i ~

Log h 2 &
°8 P Log hp o al10° € Log hp
Log D Log D Hﬁ
$4-14-48-40 @ L” M ?
FIGURE 1. FIGURE 2. Determination of Maximum
Speed ot Sea Level

In order to take into account the effect of the density of the
air and so to obtain the characteristics of flight at altitude, we
observe that in the two equations mentioned above we must incorporate
the value of relative density. The new equations are written as:

W nkL V2 and

HE =nDV
where n is the ratio of the density at altitude to that at sea level.
The neccessary transformation can be obtained by atsuming the origin
of coordinates moved along a 45-deg line so that the magnitudes
of L and D assume a new value equal ton L and n D. Consequently,
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in order to obtain the relationship of the factors involved at altitude,
it is sufficient to incorporate a new reference axis (the altitude

axis) which has a slope of 1/1, and to plot the logarithmic values of
relative density with a modulus equal to JI+1 = 1.41 of the modulus

used for L and D axes.

Knowing the theory of the logarithmic polar chart, we can turn
our attention to the practical application cf it to performance
estimate.,

It is assumed that the characteristics of the airplane (that is,
the 1lift and drag at one mph on a full-size machine) are determined
either through calculations or from a wind tunnel test. Xnowing
the values of L and D and having a sheet of coordinates availablse,
we plot the logarithmic polar curve.

DETERMINATION OF MAXIMUM SPEED AT SEA LEVEL

On the right hand side of the diagram (Fig. 2), a vertical
logarithmic scale is marked scale u. This scale facilitates the
determination of the available thrust horsepower when the propeller
efficiency is known. Draw a horizontal line through the known
propeller efficiency (line 1) until it intersects a 45-deg line
passing through the point of BHP maximum (line 2). Draw a vertical
line (3) through the point thus obtained until it intersects a
horizontal line (4) passing through the ordinate indicating the
gross flying weight of tne airplane. Point A is the thrust horse-
power available at the maximum speed. Drawing through pcint B
line (5) parallel to the speed axis, the segment BC cbtained between
the intersection of this line with the polar (point C) and point
B gives the magnitude of the maximum speed of the airplane. To
find its value lay out from the origin of coordinates an equal segment
on the speed axis and the reading at the point D will give the desired
magnitude.
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DETERMINATION OF STALLING SPEED

Draw a horizontal line (1) tangent to the uppermost point of

the polar (Fig. 3).
Line (2) is parallel to the speed axis.

Draw line (2) through given gross flying weight.
Segment AW (where A is the

point of intersection of the two lines) gives the stalling speed

of the airplane, which must be measured on the speed axis.

SPEED FOR FLIGHT AT MINIMUM POWER

DPraw line (1) tangent to the polar and parallel to the V axis

(Fig. 4).

flying weight.

Draw line (2) through W corresponding to the given gross
The intersection of the two lines defines point A

in such a way that AB is the speed corresponding to minimum power

and AW is the minimum power.

8ls B <
@ 0)
w Q
w A
N
8 \
N
R
Log hp Log hp
Tog D Tog D
o~ 18-4h-41

FIGURE 3, Determination of Stalling

Speed at Sea Level

FIGURE 4, Determination of Speed
for Flight at Minimum
Power

MAXIMUM L/D

It can be easily proved that a vertical scale graduated logarith-
mically with the same modulus as used for the L and D axes, and located
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arbitrarily on the drawing will give us the ratio of L/D at the point
of intersection of this scale with a line passing through the cnosen
point and inclined at an angle of 45 deg. In graduating this scale,
we must determine at least one reference point and graduate the scale
in the same sense as the L axis. To obtain the value of maximum

L/D, simply draw a line inclined at 45 deg and tangent to the polar
(Fig. 5). Point A gives the maximum L/D of the design.

The brief explanation of ‘he theory and a few illustrations of
the possible uses of the logarithmic polar diagram given above
will suffice to explain the practical use of the new grapho-analytical
method which consists of incorporating the ~urves of horsepower
available and required drawn in locarithmic coordinates. This involves
an incorporation of a few more reference curves as explained and
illustrated in the following paragraphs.

HORSEPOWER REQUIRED AT SEA LEVEL

Knowing V max., calculate values of 0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3 of V max., and mark them on the speed axis as shown in
Fig. 3. This is not absolutely necessary for the purpose of obtaining
the horsepower required, but later we will see that it will aid us
in obtaining the horsepower available. The drawing of the curve of
horsepower required will be illustrated by following the procedure
for one point; for instance, point V = 0,5 V max. (Fig. 6).

Draw line (1) through W and parallel to the speed axis. Project
point 0.5 V max. on it. This gives point A. Draw a horizontal line
through this point. Through the point B draw a line parallel to
speed axis until it intersects the horizontal line passing through
W. Through the point C thus obtdined draw a vertical line until
it intersects line AB. Since WC is the horsepower required to fly
at a speed equal to 0.5 V max,, point D represents a plot of it
drawn at the proper point of the polar curve. Repeating this
consicruction for several points and joining all these points by a
smooth line we obtain the horsepower required plotted against the
corresponding lift and, by virtue of construction, also the known speec.
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HORSEPOWER REQUIRED AT ALTITUDE

To obtain the curve of horsepower required at any altitude, it
is sufficient to shift the sea level curve to the right by the
amount equal to the distance (1) which is measured between the speed
axis and the ordinate axis at the height corresponding to the chosen
altitude. Figure 7 shows this construction for an altitude of 20,000
ft.

HORSEPOWER AVAILAZLE AT SEAR LEVEL

To construct the curves for horsepower available at sea level,
we introduce three new constructional curves giving the v.riation of
thrust horsepower against the ratio of V/V max.

On page 144, Fig. 96, of Diehl's "Engineering Aerodynamics," we
fina the three general curves giving the necessary relationship. In
the lower left part of the diagram we incorporate these three curves.

The scale of propeller efficiencies is used now as the scale of
THP/THPO, while the scale of V/V max., is assumed to be plotted on
the axis of altitudes (Fig. 8). In this construction we make use of
the

the three curves shall be used. The construction will be illustrated

[yl

line (2) from Fig. 1. The power plant used determines whica of

for one point and must be similarly repeated for the rest of the points
cerresponéing to fractions of V/V max. Figure 5 shows the construction
for point of V equal to 0.5 V max., See also Table 1,

Having chosen one of the THP/’.L‘HPO curves we project the corre-
sponding point on the line (2). The point at intersection projected
on the HP scale gives the horsepower available at this particular
speed. Drawing line (4) unitl it intersects the horizontal through

t the point on the polar ccrresponding to the speed chosen, we obtain
point B of the horsepower available curve at sea level. Repeating

. this construction for several more points and joining them with a
smooth curve, we obtain the curve of horsepower available. The
curves of horsepower available and horsepower required will intersect
at point B of Fig. 2, corresponding to the maximum speed when the

{ horsepower available is equal to the horsepcower required.

87




TABLE 1. VARIATION OF THP WITH V/V MAX RATIO

Ratio of THP/THP Max. '
R.P.M, Max.

v/ -
max. 1800 2100 2400 i
1.2 1.035 1.015 0.995
1.1 1.025 1.015 1.005 E
1.0 1.00 1.00 1.00
0.9 0.96 0.97 0.975 o
0.8 0.908 0.925 0.94
0.7 0.85 0.865 0.885 o
0.6 0.78 0.80 0.82
0.5 0.70 0.72 0.74 ..
0.4 0.60 0.617 0.635
0.3 0.488 0.495 0.515

HORSEPOWER AVAILABLE AT ALTITUDE, UNSUPERCHARGED -

To obtain the horsepower at altitude, we will incorporate a
curve giving the variation of the horsepower with altitude. Since
our construction will be made assuming that the speed of the airplane
remains constant, we can make use of the data given in Table 10,
page 139, of Diehl's "Engineering Aerodynamics". See also Table 2.

TABLE 2. VARIATION OF THP WITH ALTITULE

Altitude THP/THPO
Sea level 1.000
5,000 ft 0.820
10,000 ft 0.667
15,000 ft 0.532
20,000 ft 0,425
30,000 ft 0.261
32,000 ft 0.234
88
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Figure 9 illustrates the construction of the point corresponding
to an altitude of 10,000 ft. Inasmuch as the transformation of the
polar for any altitude is made by an imaginary shift of the origin
of the coordinates along a 45~deg line it is sufficient to locate the
point B on the horizontal passing through the 10,000-ft point on
the axis of altitude so that a line drawn through it and inclined
45 deg will cross the axis of horsepower giving the magnitude CO
equal to 0.667 CA; that is, if the point A corresponds to 1000 HP,
the value read at C must be 567 HP. Having the curve of variation of
horsepower with altitude it is sufficient to slide the curve of horse-
power available at sea level parallel to itself by the amount and

along the direction (1) corresponding to the desired altitude as shown
in Fig. 9.

Horsepower average
» at 10,000 ft

Horsepower average
at sea level

@ A
P

Q v Vori.a'ion ?f thp
69 with altitude
<

@ Log hp

C log D

log W
Log L

S6- 14-48-4)

FIGURE 9. Determinaiio.: of Horsepower Available
at Altitude, Unsupercharged

HORSEPOWER AVAILABLE AT ALTITUDE WITH SUPERCHARGED ENGINE

Most of the present supercharged power plant installations are
made so that the original s=a level power is retained up to a certain
fixed altitude, above which the power decreases at the normal rate.
On our diagram this can be expressed by drawing instead of the previously
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drawn horsepower variation curve a new curve consisting of two
branches: a vertical straight line from point A up to the horizontal
passing through the altitude up to which the sea level power is
preserved and a curve from point C which is obtained by shifting
horizontally the o0ld curve until points B and C coincide. In Fig. 10
the power was assumed to be retained up to an altitude of 10,000 ft.
As the altitude performance on the polar diagram is obtained by an
imaginary shift of the origin of coordinates along a 45-deg line,

to obtain the horsepower available at 10,000 ft, we must shift the
curve of horsepower available at sea level to the right along a
45~deg line by the amount equal to the segment (1).

Horsepower
average 2= Horsepower
at 10,000 ft 8|3 -
- at 10,000 ft
Horsepower Horsepcwer+
overu|ge | A required
ot sec leve at sea level E D
B C

w
@ 24

\5_9 Vfo;:‘otion V moximum
of thp R t 10,000 ft
@PV with altitude he o
P 40) A Log hp F °9 hp
Log [)) Log D

So- 14-08-44

FIGURE 10. Determination of Horsepower FIGURE 11, Determination of Performance
Available at Altitude, Super- at Altitude
charged

PERFORMANCE AT ALTITUDE

To obtain the speed and¢ corresponding horsepower required and
available at altitude, we must bear in mind thet by virtue of
construction that instead of a horizontal line passing through W
(as it was done in Fig. 6) it is necessary tc use another horizontal
line such that if WB is parallel te the altituvde axis, the segment
B must be equal tc the segment OA wherc A is the desired altitude.
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Figure 11 illustrates this for an angle of attack corresponding to

the maximum speed &t 10,000 ft. Since the point of intersection

of horsepower required and available curves corresponds to the max-
imum speed, project point E on line BC and OF. Segment OF gives

the magnitudes of horsepcwer required and available, since in this

case they are equal. Crawing line CD parallel to speed axis, we

obtain the magnitude of the maximum speed given by the segment CD

and point D permits us to interpolate the angle of attack corresponding
to the maximum speed at 10,000 ft.

COMPLETE PERFORMANCE PREDICTTION WITH THE ARID OF LOGARITHMIC POLAR
DIAGRAM

From the foregoing we are now able to obtain the complete data
on theoretical performance of a new design. We can ascertain the
maximum and stalling speeds for any altitude at which the plane
is capable of flying. By joining the points of maximum speeds
plotted on the corresronding horizontal lines and noting the inter-
section of this new curve with the line tangent to the polar and
parallel to the speed axis (line used to obtain the minimum power
required for flight), we can determine the absolute ceiling.

To obtain the best speeds for climbing and to determine the
excess horsepower, we can make use of the following observztion.
From the analyses of a number of airplanes it can be found that the
best speed at which to climb at sea level is usually equal to 0.58
V max. At the ceiling, the planes would fly at a speed corresponding
to the mini.num power necessary to maintain flight. If we join
by a straight line the point corresponding to the speed cqual to
0,58 V max., on the horsepower-required curve at sea level with
the point of minimum power necessary to fly at the ceiling, the
points of intersection of this line with horsepower-required Curves
will define, within the accuracy ¢t practical rvquirements, the bost
specds for ciimbing. Xnowing thuese speeds, we can obtain the coxcess

horsepower available for climb.
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We can resort now to standard analytical methods and obtain the
curve of rate of climb and time to climb to different altitudes.
Figure 12 shows an example of the use of logarithmic polar as it is
employed in routine practice.

CONCLUSIONS

The particular advantages afforded by the method described in
the article, in addition to those already mentioned, consist of
compactness of the record and a ready means of estimating slight
changes of design. In many instances lack of time does not allow
an elaborate revision of a performance estimate and in such a case
the logarithmic polar diagram furnishes an easy and rapid estimate of
the effect of changes in weight, parasite resistance, etc. To
the trained eye the graphical picture of the polar gives other valuable
information such as the general efficiency of the design, the approach
to irefficient gross flying weight condition, and such.
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The purpose of this paper is to arouse an interest in a meth-
odology which is further enhdanced by the graphical display capa-
bility available in today's Computers with all its potential prob-
lem solving flexibility, The examples treated in this paper are not
the stereocyped problems forming the usual subject of textbooks on
graphical wethods and, in that sensz2, should prove of greater in-
terest to the reader,
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