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PREFACE

This Memorandum derives from RAND's continuing interest in
statistics and data analysis. It will be useful to computer-model
builders and others who, on the basis of grouped data, wish to test
the hypothesis that some event time is described by an exponential
distribution.

The study was suggested by a RAND colleague who wanted to
determine whether a given empirical distribution intended for use
in the SAMSOM computer model could be more simply described by an

exponential distribution.
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SUMMARY

This expository Memorandum treats the problem of testing grouped
data for fit to an exponential distribution, provides a .JOSS+ computer
program to implement an appropriate test, and gives examples showing
how to use this program., The Memorandum also contains a brief dis-
cugsion of testing nongroured data for exponentiality and of testing
grouped cuta for fit to certalin nonexponential distributions.

This is not a mathematical treatise. No proofs are given. Even
so, if a reader finds a particular discussion too mathematical for his
tastes, he can skip over it and not miss the essential parts of this

Memorandum,

+JOSS is the trademark and service mark of The RAND Corporation

for its computer program and services using that program.

o ——— = —————
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1. INTRODUCTION

Certaln event times (such as the time-to-failure of some types
of equipment, the length of telephone calls, the time between the
emission of a-particles from a radiocactive source, etc.) are thought
to be described by an exponential distribution. This Memorandum
discusses the "chi-square minimum" procedure for testing the hypothe-
sis of exponentiality when the data are event frequencies in intervals
of the time axis. That is, the individual event times are not avail-
able, only the number of events observed in each of a set of mutually
exclusive intervals~-where these intervals taken together cover the
entire nonnegative time axis. Data arise in this form, for example,
when, rather than recording individual occurrence times, only the
number of occurrences in certain time periods (days, hours, minutes,
etc.) are noted. There is, however, no requirement that the various
periods be of equal length,

To be explicit about the problem, let k-1 nonnegative numbers,

T, < «v. < T

1 be given. These numbers divide the nonnegative time

k~1°

axis into k mutually exclusive and exhaustive intervals:+

0 <t < Tl' Tl <t < T2. ceey Tk-2 <t < Tk-l’ t i-Tk-l .
The data are the number of events observed in each interval: f1 in
0 <t< Tl, f2 InT, <t <Tyy +vu,y fk in t 1_Tk. This Memorandum dis-

cusses the chi-square minimum test of the hypothesis that these data are

+The intervals need not be closed on the left and open on the
right as given here. There must, however, be no overlap among the
intervals, and every point of the nonnegative time axis must be in
some interval.




consistent with an exponential distribution and provides a JOSS com-
puter program to implement this test, Worked examples are givea, In
addition, there is a brief discussion of the modified chi-square
rinimum test of exponentiality for grouped data, of tests of exponen-~
tiality for nongrouped data, and of tests of fit of grouped data to

other distributions than the exponential,.
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2. THE CHI-SQUARE AND CHI-SGUARE MINIMUM TESTS

For convenience in the sutsequent discussion, denote the interval

1-1 ct< Tj by Ij’

0 <t < Tl by Il, +sey the interval T ., and the

interval t > T by 1 Recail that the data available are the num-

k-1 k’
ber of observations ’j in intervai Ij’ j=1, .., k. Denote by n the
k
total number of observations, Lfi.

1

2.1 THE CHI-SQUARE TEST OF s COMEIETELY
SPECIFIED HYPOTHESIS

Consider first the situation in which one wishes to test the
hypothesis H that the data come from a completely specified prob-
ability distribution function. That is, the pr-hability content pj
of the interval Ij is calculable under the hypothesized dI tribution.
A measure of the discrrpancy between the sample and the hypothesized
distribution is the chi-square expression

k
X = jZlufj—n.j)z/(npj)] (2.1)

The asymptctic distribution of x2 is the chi-square distribution with
k-1 degrees of freedom. Thus one rejects the hypothesis H if x2 is
larger than the critical value of chi-square for k-1 degrees of free-

dom at the significance level being used. This assumes that n is

sufficiently large so that the distribution of x2 is essentially at

+A general reference for this section is Cramér (1951), Chap. 30.
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its asymptotic distribution. Some authors suggest that the expected
frequencies, npj, be 10 or more; others say at least 5--combining
intervals, if necessary, to achieve this condition. Cochran (1954)
suggests that these rules are far too conservative and that expecta-
tions as low as one may be used in the tails of a unimodal distribution.
Suppose one wants to test the hypothesis that the data--intervals
Ij containing fj observations, j=1, ..., k~-are consistent with the
exponential distribution with occurrence rate p. This distribution

has density function

p exp(-pt) s £20
f(e) = (2.2)
0 , t -0

so that, writing To = ) and T, = + », one has

k
Ty
Py = / p exp(-pt) dt
Tj—l
= exp(—ij_l) - exp(-ij), for =1, ..., k . (2.3)

These probabilities pj must be substituted in Eq. (2.1) to calculate
2
X .

The situation discussed in the preceding poragraph is not the
one of primary interest in this study., The concern here is with
testing the hypothesis that the data come from some exponential dis-
tribution, and not that they come from a given exponential distribu-
tion. Section 2.? discusses the latter situation, first in general

terms, and then specializes to the case of the exponential distribu-

tion.




2.2 THE CHI-SQUARE MINIMUM METHOD

As before, K intervals, Il' cessy Ik' are given that are mutually
exclusive and exhaustive for the random variable under study. Data
consist of the number of observations fl‘ ceey fk’ respectively, in
these intervals. The hypothesis to be tested is that the data come
from a probability distribution that assigns probability content

PJ(al. ceny as) to the interval I,., The function pj(ul, ceey as) is

3

of known form, but involves s(< k-1) unknown parameters, %,, see, % .
1 s

These parameters are associated with the hypothesized distribution

function, If o,, ..., @¢_ were known, then it would only be necessary

1 s

to calculate the probabilities pj(al, caey as), substitute them for

pj in Eq. (2.1), and follow the procedure of the preceding subsection.

When a., ..., & are unknown, the following procedure--called the chi-

1 s

square minimum method--can be used. Choose the values Bry eees O

that minimize the expression
k

2
x“(ags weey @) =jgl[(fj—npj(a], as))2,(npj(al, ceera)dl L (2.4)

The minimizing values, ai, cees a;, say, are called the chi-square
minimum estimates of Gpe seey Oe The asymptotic distribution of
xz(ai, vees u;), the minimum value of xz(ul, sy us), is the chi-
square distribution with k-s-1 degrees of freedom. The estimates

ai. cess a; and xz(ai, coey a;) can be found by a numerical minimizing
technique or by solving for Bys eoes O the system of equations that
result from equating to zero the partial derivative of Eq. (2.4) with

respect to Ly i=1, ..., 8. This system of equations 1is

B S
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2
k fj:h?j(al' ceny as) (fj-npj(al, cosy as)) apj(al, cees as)

ani(al, ceey as) 30Li

i=1, ..., 8.

For the exponential distribution there is only one parameter
(i.e., 8 = 1) and it has previously been denoted p. The probability
content of the interval Ij' pj(p), previously given in Eq. (2.3),

is
pj(p) - exp(-ij_l) - exp(-ij) , for j=1, ..., k

The derivative of pj(p) with reapect to o is given by

dp, (o)

—~%5——-= Tj exp(—pTJ) - Tj-l exp(-ij_l) y for 3=1, ..., k

[Since Tk = + », the terms exp(*ka) and T exp(—ka) must be taken

k
be zero.]

In the exponential case, the equations shown in (2.5) reduce
to a single equation. A JOSS program has been written to solve this

equation for its root p' and to calculate xz(p'). The program is

listed in the Appendix, and details of the program are discussed in

=0,

to

Sec. 4. Input requirements are given, and sample problems are worked

in Sec. 5.

2.3 SOME SHORTCOMINGS OF CHI-SQUARE PROCEDURES

Cochran (1954) points out that chi-square tests are not directed

against any specific alternative to the null hypothesis, that is, to

detect any particular pattern of deviations (fi-npi) that may hold 1

f

(2.9)

(2.6)
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the null hypothesis is false. A consequence is that chi-square tests
are often insensitive and do not indicate significant results when
the null hypothesis is actually false.

Berkson (1966) makes a suggestion along the lines of overcoming
the insensitivity to the pattern of deviations., He recommends that one
compute many tests with different interval widths, The context of
Berkson's remark is one in which the statistician has the interval width
at his disposal., In the situation considered here the intervals are
given, so that one only has the option of combining adjacent intervals to
make wider (but fewer) intervals--not of considering intervals shorter
than those given. Nonetheless, if a particular chi-square test fails
to reject the null hypothesis, combining the data into different classes
and making further chi-square tests may indicate whether the failure
is due to a particular pattern of discrepancy between observation and
hypothesis to which the chi-square test is insensitive, or whether the
observations really conform to the hypothesis,

Epstein (1960) remarks that '"the chi-square goodness of fit test
has several drawbacks. Among them are its large sample character and
dependence upon the choice of the number and position of the intervals
into which the time axis is divided." An illustration of this latter
point is given here in Sec., 5, Example 2,

In ghort, chi-square tests tend to have low power, i.e., relatively
low probability of rejecting a null hypothesis when it is false, and
are sensitive to the arrangement of the data into groups.

Section 7 discusses tests of exponentiality against specified
alternatives when the individual observations--not merely grouped

data--are available,
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3, THE MODIFIED CHI-SQUARE MINIMUM METHOD

There is another general approach to testing goodness of fit, a
method closely related to the chi-square minimum method, which deserves
mention here. This is the so-called "modified chi-square minimum"
method (Cramér, 1951, Chap. 30). Cramér states that the system of
equations (2.5) is often difficult to solve, and that it can be shown
that the influence of the second term in the square brackets in Eq.
(2.5) becomes negligible as n becomes large. Neglecting this second
term and invoking the condition E pj(al, ceny as) = ] for each pos-
sible s-tuple (al, ceey as) yielg;lthe system of equations

k f apj(ul, ceey us)

. au = o [ 1-1. eoey B . (3.1)

jgl ‘;;(3—1-' seer o) 1

It can be shown that the solution of Eqs, (3.1), say, a{, ceay ¥,

8
exists and is unique and that the asymptotic distribution of
xz(af, evey u:) is the game as that of xz(ai, csey a;) discussed in
Sec. 2, namely, the chi-square distribution with k-s~1 degrees of
freedom,

Cramér does not remark on the relative speeds of convergence of
the modified chi-square minimum and the chi-square minimum to the
limiting distribution (nor am I aware of any other investigation of
this question), so there is no reason, on this basis, to prefer one
method to the other. 1f, as Cramér suggests, Eqs. (3.1) are easier
to solve than Eqs., (2.5), then this might make the modified chi-square

minimum method preferable., It must be remembered, however, that the

first printing in America of Cramér's book appeared in 1946 and there
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was a printing in Sweden in 1945, Thie was well before the computer
era., It is difficult to see where, with the aid of a computer, Eqs.
(3.1) would be substantially easier to solve than Eqs. (2.5). Both
systems require the probability content of the intervals and the par-
tial derivatives of these probabilities with respect to the parameters.
Eqs. (2.5) do involve a few more arithmetic operations, but not

dramatically more.+

3.1 APPLICATION TC TESTING FOR EXPONENTIALITY

The following is an adaptation to the exponential distribution

of a discussion by Cramér (1951, pp. 437-438) for the normal distribution.

As before, the data are frequencies f, in the interval [Ti-l'Ti) R

i
i=1, ..., k. If the hypothesis of exponentiality is true, the prob-

ability Py corresponding to the i-th class is

Ti
Py - J p exp (-px)dx . (3.2)

T

[It turns out to be convenient to ignore the fact that this integral
can be expressed in a closed form, Cf, Eq. (2.3).] The derivative

of p, with respect to p , needed in Eq. (3.1), is

dp1 T1
T J (1-px) exp (-px)dx . (3.3)
Tia1

An approximate solution to Eq. (3.1) can be given (1) 1if {t is possible

+It. is hoped that no reader will consider the foregoing discussion

as a criticigm of Cramér's monumental work. We could hardly have
expected Cramér, in the early forties, to have anticipated the power
of modern computer technology.




ey

~10-

to arrange the grouping so that there are no observations in the last
interval (i.e., fk = 0), and (2) if each interval but the last is suf-
ficiently short so that each integral in Eqs. (3.2) and (3.3) can be
approximated by the vaiue of the integrand at the midpoint, 51, of the

corresponding interval times the length of that interval. One has

.di __J. - - - -
) P i )'T:T)exp (_pg y (Tj Tj_l)(l ocj) exp ( pgj) 0. (3.4)

Simple algebra yields as an approximate solution to Eq. (3.4)

5 =n/) £484 (3.5)

This is the estimate for the rate parameter of an exponential distribu-
tion calculated from a grouped sample according to the usual rule that

all sample values in a certain class are treated as though they were

at the midpoint of the class interval, Cf, the discussion accompanying
Eq. (4.3).

If the conditions in the sentence following Eq. (3.3) are satis-
fied, then substituting § from Eq. (3.5) into Ev, (2.1) will yield a
fairly reasonable approximation to the value of x2 that would be
obtained by either the chi-square minimum or the modified chi-square
minimum method.

An 1llustration of the above approximation is given in Example 4

of Sec. 5.

e ———— e o . - - - L [
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4, J0OSS NUMERICAL PROCEDURES FOR THE CHI-SQUARE
MINI ITY

The chi-square minimum procedure requires finding the root, say p',

of the equation

2
k f£np (o) (fj-npj(o)) dpg(o)
Q

=0 . (4.1)

The expressions pj(p) and dpj(o)/dp are given by Eqs. (2.3) and (2.6),
respectively.

The root p' of Eq. (4.1) is obtained in our JOSS program by
Newton's method. Although Newton's method (also called the Newton-
Raphson method) is discussed in almost every numerical analysis text,*
a brief description of it follows. To solve the equation ¢$(X) = 0 by
Newton's method, select a starting value X and calculate a sequence

of values {xi} by the relation

Xy41 = ¥g - o(xi)/¢'(xi) s, 1 =0,1, 2, ... . (4.2)

A criterion that can be used to stop the iteration is to terminate at
that i* which yields |¢(xi*)| < ¢ for a suitably chosen (small) value
of €.

This stopping rule, with ¢ = 10-6, is used in our solution of
Eq. (4.2). A slight variant of Eq. (4.2) is used in our calculations.
Instead of the derivative ¢'(x), the approximating difference quotient

[¢(x+d) - ¢(x)]/d, with d = 10-4, is used. This is the version of

+See, for example, Ralston (1965), Sec. 8.4, especially p. 332.
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Newton's method given by Bryan and Paxson (1967, p. 5.19).

The right-hand side of Eq. (4.1), with (2.3) and (2.6) plugged
in, is denoted M(r) in the JOSS program (r for p). Newton's method
is applied to M(r) to yield the solution--which is denoted R in the
JOSS program. The starting value is taken to be+

k-1 -1
n 1§1fi(T1-1 +T)/2+ £, . (4.3)

and this value i1s chosen for the following reason. If all the indi-
vidual occurrence times tl, crey tn were :vailable, one could calculate
the maximum likelihood estimate of p : n/Zti. In the absence of these
data, all observations in an interval areltreated as though they were
at the mid-point of the interval--save for the last interval in which
all observations are treated as if they were at the lower limit of
that interval, (The last interval is treated differently because

its upper limit is infinite,)

Tk-l instead of Ti'
This is to avoid the possibility of dealing with very large negative
powers of e, i,e., very small numbers, in calculating the interval
probabilities (2.3). Once the minimizing rate parameter has been
calculated with the X's, it is only necessary to divide it by Tk—l

to get the desired value--the minimizing rate parameter associated
with the T's. Of course, this is all internal to the program, and the
casual user need not even be aware of this detail.

*Actually the program works with X, = Ti/
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5. DESCRIPTION QF THE JOSS PROGRAM
AND WORKED EXAMPLES

5.1 PROGRAM DESCRIPTION

To use the program, enter it into JOSS and command JOSS to 'Do
part 1."" Joss will request k, the number of intervals; T(1), ...,
T(k-1), the boundaries between the intervals; and f(1), ..., f(k), the
observed frequencies in the intervals. After a pause, during which
JOSS solves Eq. (4.1), the output appears. JOSS prints out the in-
terval numbers, the lower and upper boundaries of the intervals (the
upper boundary of the final interval, infinity, is denoted inf.), the
number of observations in each interval, and the "expected number" of
observations in each interval. These latter quantities are equal to

npj(o'), where p,(p) 1s given by Eq. (2.3), and p' is the solution to

3

Eq. (4.1). These expected frequencies are rounded to two places in
the output, but not at all in the calculations. The total, n, of
observations is shown, as is the sum of the expected frequencies--
this solely as a check. The calculated value of chi-square (the value
of Eq. (2.1) with pj = pj(o')) is shown, together with its degrees of

freedom.H

+In reading the following description of JOSS input requirements
and output format, the reader may want to look at samples of each in
Example 1 on p. l4.

H.The significance of th.s value for the indicated number of

degrees of freedom must be determined from a table of percentage
points of the chi-square distribution. Our JOSS program does not
have these percentage points built into it. This should cause no
hardship, however, as chi-square tables are widely available.
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The chi-square minimum estimate of the rate parameter p and of
its reciprocal, the mean, are also printed out. The latter values
correspond to the rate and mean of the exponential distribution of
"best" fit to the data--best in the sense of minimizing chi-square.
They are of dubious significance when the hypothesis of exponen-
tiality is rejected, for if a distribution of occurrence times is
nonexponential, then the occurrence rate 1s not constant, but varies

with time.*

5.2 WORKED EXAMPLES

Example 1: The data in Table 1 constitute unscheduled maintenance

net aircraft turnaround times for 237 sorties. After noting that

Table 1
NET TURNAROUND TIMES

Interval

(Hours) Frequency
0‘1 IR R RN R RN R NI N NN I A N AN N ) 9
1-2 Sso0cssvacsceassesrrsrerrcsns b 46
2‘3 R N R A N A N N N N N N RN 48
3-4 L A R N R N N N I N N N N A IS I S B Y Y'Y 23
4'5 Ses00estanseesesttesronrrassssnse 15
5-6 L N N N I R A A R N N A N N I I A N N I I A 24
6-7 Ces 00 s 000008000 s 0000800000000 8
7‘8 R R R N I N A A WA S I SR AN WA I ) 15
8“9 ® 005 2 00 2RSS P LSS0t OORRBAN s 7
9-10 Sesssoses 00 tss st sacnsssnessness 6
10-11 L R N N N N N N RN R RN NN NE] 5
11-12 L RN A R N RN NN N NN N “
more than 12 20 sssessnsatsressessnnas 29

TOtal .veevsees cevesssascsasrsenes 237

+If f(t) is the density function, and F(t) is the cumulative
distribution function, then r(t), the occurrence rate function, is
defined by r(t) = £(t)/[1-F(t)].
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there are 13 intervals, these data are entered into J0SS. Figure 1
is a reproduction of the JOSS interrogation (to the left of the aqual
sign) and the user response (to the right of the equal sign). The
JOSS output is given in Fig. 2, A computed chi-square value of

55.53 for 11 degrees of freedom is significant heyond the 0.1 percent
level, so the hypothesis of exponentiality for t .e turnaround time
data of Table 1 i{s decisively rejected. Since the hypothesis of
exponentiality is not supported, the estimates of the occurrence

rate and the mean should be ignored. (See the last remark in Sec.

5.1.)

k = 13
T(1) = 1
T(2) = 2
T(3) = 3
T(4) = 4
T(5) = 5
T(6) = 6
T(7) = 7
T(8) = 8
T(9) = 9

T(10) = 10

T(11) = 11

T(12) = 12
£(1) = 9
£(2) = ub
£(3) = u8
£(y) = 23
£(5) = 15
£(6) = 24
£(7) = 8
£(8) = 15
£(9) = 7

£(10) = 4

£(11) = 5
£(12) = &
£(13) = 29

Fig. 1 -- Input to the J0SS programs (data from Table 1)
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Interval Lower Upper Observed Expected

number limit 1limit freq. freq.
1 00 1.00 9 40,73
2 1,00 2,00 ub 33,73
3 2,00 3,00 ug 27,93
4 3,00 4,00 23 23,13
5 4,00 5,00 15 19,16
6 5,00 6,00 24 15,87
7 6,00 7.00 8 13,14
8 7.00 8,00 15 10.88
9 8,00 9,00 7 9,01
10 9,00 10,00 4 7.46
11 10,00 11,00 5 6,18
12 11,00 12,00 u 5,12
13 12,00 inf, 29 24,67
totals: 237 237,01

The value of chi-square is 55,53, There are 11 degrees of freedom,

The estimated occurrence rate is .1885u4,
The estimated mean (= reciprocal of the rate) is 5.30,

The preceding test of exponentiality used the chi-square minimum method.

Fig. 2 -- JOSS output (turnaround time data from Table 1)
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Example 2: For the data of Fxample 1, it is interesting to
illustrate the dependence (cited at the end of Sec. 2,3) of chi-
square tests upon the choice of the number and position of the inter-
vals into which the time axis 1s divided. The data in Table 2 are
the data of Table 1 arranged in three-hour intervals instead of one-

hour intervals.

Table 2

NET TURNAROUND TIMES

Interval

(Hours) Frequency
0"3 L R R N N R R N N N N I S A A A N A I A ) 103
3_6 ®ec0 s 0008000000008 00c000000000gse 62
6—9 LU B A B IR R B B B B B BB BN B BN Y B B BB B N 30
9“12 S a0 0P 00800000000 s 000000 00esRese 13
more than 12 .,...ceveuescnnnsnscensns 29

Total LR N N N N R R IR NN I WA NN N 237

The JOSS output for the chi-square minimum test of exponentiality

for the data of Table 2 is given in Fig. 3. The data now appear to

Interval Lower Upper Observed Expected

number limit  limit freq. freq,
1 «00 3,00 103 101.12
2 3,00 6,00 62 57,97
3 6,00 9,00 30 33,24
L 9.00 12,00 13 19,06
5 12,20 inf, 29 25,61
totals: 237 237,00
The value of chi-square is 3,00. There are 3 degrees of freedom,

The estimated occurrence rate is 185418,
The estimated mean (= reciprocal of the rate) is 5.39,

The preceding test of exponentiality used the chi-square minimum method.

Fig. 3 -~ JOSS output (turnaround time data from Table 2)
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be in good agreement with an exponential distribution!

Since the

same data, differently grouped, were seen in Example 1 to be decid-

edly nonexponential, this shows how cautious one must be in accepting

a hypothesis of exponentiality based on a chi-square test merely

because that test fails to reject the hypothesis,

Cf. Sec.

2.3,

Example 3: The data in Table 3 are times-to-failure of 118

AN/ARC~90 Radios, given by Allen and Sloan (1966).

The JOSS output for the chi-gsquare minimum test of exponentiality

is given in Fig. 4. The data seem to be in good agreement with an

exponential distribution. As a further check, all observations above

Table 3

TIMES-TO-FAILURE

Interval
(Hours)

0—20 ©000 0000000000000 000000000sestus
2&40 2SS 0000000000000 000 00000000000
4&60 @0 00D SRS RNIRNPIRICESaPORNOSRCOOENSENTDS
60-80 PSSP 000800000000 p000000P00000»

80-100 $%0s 0600080t ssetssssonastesete e

100-120 o000 0000r 0000 ssss0 0000000
120-140 Sesesecsstssstessrresssscnt
140-160 Se000c0000 0000000000000 sNDS
160-180 S 00000 C0 0000000000000t NIRLS
180-200 SesostseresrenssserPtPBRRR RN
200-220 Sevsesccesvsrtgansoveansasnsse
220-240 Sp oo et ePNeREoResRRROOVRERSL Y
240—260 0000 s0v0000es0a000sn 00000000
260-280 Se0a0ss00ts et eerrensstsettes
280-300 (AR N RN R NN ENE NN RN NN RN NN NN
300‘320 Cescovs0ssss000 000000000000l
320-340 ®es00s00000s00000000000000000e

> 340 ®00scsc0sse0seresstrnctornsens

Total [EERENENRENEENENE NN NN NEE NN XN NN

Frequency

HNENERENHWRR SO

118



-19=

Interval Lower Upper Observed Expected

number limit  limit freq. freq,
1 ,00 20,00 19 23,10
2 20,00 40,00 19 18,58
3 40,00 60,00 21 14,94
L 60,00 80,00 10 12,02
5 0,00 100,00 13 9,66
6 100,00 120,00 6 7.77
7 120,00 140,00 7 6425
8 140,00 160,00 5 5.03
9 160,00 180,00 L 4,04
10 180,00 200,00 2 3,25
11 200,00 220,00 3 2,62
12 220,00 240,00 1 2,10
13 240,00 260,00 2 1,69
14 260,00 280,00 1 1.36
15 280,00 300,00 1 1,09
16 300,00 320,00 1 «88
17 320,00 340,00 2 71
18 340,00 inf, 1 2,91
totals: 118 118,00

The value of chi-square is 10,08, There are 16 degrees of freedom,

The estimated occurrence rate is  .010892,
The estimated mean (= reciprocal of the rate) is 91,81,

The preceding test of exponentiality used the chi-square minimum method.

Fig. 4 -- JOSS output (times-to-failure data from Table 3)

e e
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200 hours were combined into one class. The JOSS output resulting
from this accumulation is shown in Fig. 5. Again, good agreement
with the hypothesis of exponentiality is evident. The estimates of
the rates (and means) from the two different outputs differ somewhat
(as 18 to be expected), but not dramatically, There remains the
possibility of additional combinations of adjacent intervals to try
to achieve a significant departure from the exponential hypothesis
as discussed in Sec, 2,3, Further, the moral of Example 2 must not
be overlooked,

Example 4: To {llustrate the approximation used with the modified
chi-square minimum method for testing sxponentiality (discussed in
Sec. 3.1), consider the data of Table 1, rearranged as follows. (It

is known that the longest time-to-fai{lure {a 138 hre.)

Table 4
TIMES=TO-FAILURE
Interval
(Hours) Frequency
0-20 S0 0000000000 EONRIOBOBONOEIOIEOEDLPOTOSIDY 19
20-40 P09 6080 COEPEEOBNRESINNNOSOISIOSEOROIOSENDNPOETESEY 19
40-60 00 00BN ENOREBARORORNOOEEOSIESEPINOIOEOIEEDTOSEEDN 21

60-80 (AN RN RN NN RN NNNNNE NN NN NN NN NN N 10
80-100 S0 0000020000000 00 0080800 RONISDL 13
100-120 9880000000000 00000c0s00s0sSsS
120-140 0080 00e0 PGP PIPREORIISIONIIRORROOISS
140-160 A N NN NN NN RN NN NN NN
160-180 2809000000800 0000c0vses00sTe
180-200 000800504800 0800000 0000000000

200-360 0P 2000020000000t 000000000 1

> 360 S0 et 0000000000000 000000 RBION

(=3 S S IR RV RN

TOtBl 2600000000 RNROIOEIERBRRIROES 118

Applying Eq. (3.5) to the data of Table 4 yields p = 118/10,420 = ,011324

and a calculated chi-square (from Eq. (2.1)) of 7.94., There are k = 12




Interval Lower
number limit

200
20,00
40,00
60,00
80,00

100,00
120,00
140,00
160,00
180,00
200,00

RO WO~ £ W

o

Upper
limit

20,00
L0,00
60,00
80,00
100,00
120,00
140,00
160,00
180,00
200,00
inf,

totals:

The value of chi-square is

-2]=

Observed
freqo

19
19
21
10
13

6

7
5
y
2
12

118

Expected
freq,

23,91
19,07
15,20
12.12
9,67
7.71
6,15
4,90
3.91
3012
12.26

118,02

5,65, There are

The estimated occurrence rate is 201

The estimated mean (= reciprocal of the rate) is

1322,

9 degrees of freedom,

The preceding test of exponentiality used the chi~square minimum method,

Fig.

> == J0SS output (data from Table 3 with some combinations)



=22~

intervals (the last interval must be counted, even though it has a
zero frequency), so this chi-square has 10 degrees of freedom. The
calculated chi-square is decidedly nonsignificant.

The data of Table 4 were also analyzed by the chi-square minimum
method and yielded an estimated rate of 0.011310 and a X2 of 7.94~--
the same value calculated by the approximate method of Sec. 3.1,
This example illustrates that this approximation can be quite good.
The discusaion of Example 2 concerning the conclusion to draw from

the analysis is pertinent to this example as well,
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6. TESTING GROUPED DATA FOR FIT TO OTHER
DIS XPONENTI

This study was undertaken in response to a request, and because
the exponential is an important, widely used distribution. It turns
out, however, that of all the commonly congidered event~time distribu-
tions, it is simplest to test grouped data for fit to the exponential
distribution., This stems from two reasons. First, the probability
content of the intervals and the derivative of this probability with
regpect to the parameter can be given in a closed form expression,

No table look-up or numerical approximation is needed. Second, only
one parameter is involved, so that the chi-square expression needs

to be minimized as a function of only one variable--the rate parameter.
One-dimensional minimization procedures are, of course, easier to
implement than multi-dimensional procedures.

Some distributions commonly used to describe event-times are
ligted below along with a brief discussion of the problems involved
in testing grouped data for fit to each one. In each case, I denotes

the interval L < t < U,

(1) The Weibull Distribution. The Weibull distribution has

density

1

£(t) = 2at® " exp (=2t%) , >0 . (6.1)

The probability content of the interval I, as a function of the param—

eters ) and a, is
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pI(X,u) = exp(-AL%) - exp(-AaU%) . (6.2)

The partial derivatives of this probability with respect to A and a are

ap,(2,a)

——%;———-- v® exp(-kUa) -1° exp(-ALa) (6.3)
and

apI(k,u) a a a o

———— = \U (logU) exp(-AU") - AL (logL) exp{(-AL”) . (6.4)

da

For the Weibull, Eqs. (2.5) become two (nonlinear) equations in the
two unknowns X and a. One method of solving this pair of equations is
with a two-dimensional analog of the Newton-Raphson method. See Ralston
(1965, Sec. 8.8).

Thus, for the Weibull, the probability content of the intervals
and the derivatives of this probability with respect to the parameters
all can be given as closed form expressions. However, there is a two-

dimensional minimization problem to solve.

(11) The Gamma Distribution. The gamma distribution has density

£(e) = %% e yra) , 0. (6.5)

The probability content of the interval I, as a function of the param-

eters A and a, 1is

AU
pr(h,a) = Iulz

-l =2/ 0)] dz (6.6)

a quantity related to the incomplete gamma function. This function ia

. o A ——— < i
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well tabulated and good algorithms exist for computing it. The partial

derivatives of this probability with respect to X and a are

3p, (A,0) _ - _
—1-5—)\—— = 1 [Ua e AW L e )‘L] /T(a) (6.7)

and

321;2:11 = IAU{zu-l e Z(r'(a) - T(a)log z]/Fz(a)} dz . (6.8)

AL
The partial derivative in Eq. (6.8) is a fairly complicated quantity
to calculate and this suggests that rather than trying to solve the
pair of equations corresponding to Eqs. (2.5), it may be preferable
to attempt a direct numerical minimization of the chi-square expression
(2.4). See, for example, Wilde (1964).
Thus, for the gamma distrubution, one is faced with complicated

expressions to evaluate--or rather, approximate, and a two-dimensional

minimization problem.

(i11i) The Truncated Normal Distribution. The truncated normal

distribution is the ordinary normal distribution truncated on the left
at zero so that it is the distribution function of a nonnegative random

variable. 1Its density is given by

£(t) = (a0) " 2(2m)7¥ expl-(t-w)%/(202)] , t > 0 (6.9)
where a, a function of u and g, is given by

a=1-d(u/o) , (6.10)
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with ¢(x) being the cumulative distribution function for the standard

normal distribution

X L 2
o(x) = [ (2m)7 % exp(-t°/2) dt . (6.11)

The probability content of the interval I, as a func:ion of the param-

eters p and o is
pI(u.o) = [¢((U-p) /o) - &((L-u)/o)]/a . (6.12)

Interested readers are invited to calculate the partial derivatives
of pI(u,o) with respect to u and ¢ and to determine whether the pair of
equations corresponding to (2.5) should be solved, or whether a direct
numerical minimization of Eq. (2.4) is preferable here. The same might

be done for the lognormal distribution,

(iv) The Lognormal Distribution. The lognormal distribution has

density function

£(t) = (to) 1(2m ™% expl«logt -uf/(26%)] , £ > 0 . (6.13)

The probability content of the interval I, as a function of the param-

eters u and o, 1is

Py (u,0) = ¢(logU-u)/o) - ¢(logL-u)o) . (6.14)
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7. TESTING NONGROUPED DATA FOR EXPONENTIALITY

1f one has individual event times tl’ ey tn’ the chi-square
minimum method discussed here is not the best for testing whether
these data conform to an exponential distribution, Reasons for this
have already been discussed in Sec. 2,3, 1In particular, the chi-
square procedure tests the hypothesis of exponentiality against 1in
unrestricted alternative. One may want to test for exponentiality
against some specified alternative. Epstein (1960) discusses a num-
ber of procedures for this., Some subsequent papers are Proschan and
Pyke (1964), Jackson (1967), and Barlow (1968).

A very simple, though qualitative, test of exponentiality is the
foliowing graphical procedure, Since the survival probability func-
tion for the exponential distribution with rate p is exp(-pt), plot-

ting the observed failures t, against the negative of the logarithm

i
of the empirical survival probability function should yield pretty

close to a straight line if the hypothesis of exponentiality holds.

n-1i+1 n+l
Actually, Epstein recommends plotting ti against -log(—n—_ﬁ— = log (h—-f:f_l-)
n-i+1

because the expected value of ?(ti) is [Here F denotes the

n+l °

survival probability function and t, the i-th ordered observation.]

i
This procedure is valid even for censored samples (in which only the
first r event times out of the n times being observed are available)
and for truncated samples (in which observation ceases at a pre-
determined time T),

Epstein, incidentally, makes a misleading statement in connection

with the chi-square test of exponentiality, He states that one should

use "the best estimate" of the parameter in our expression (2.1) and




o
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that the result is then distributed as chi-square with k-1 degrees of
freedom. Although Epstein does not statr what he means by "best," it
is known that if one uses in (2,1) the maximum likelihood estimate of
the parameter based on the individual observations, then the limiting
distribution, under suitable regularity conditions, lies between (in
the sense of stochastic crdering) the chi-square distributions with k-1
and k-2 degrees of freedom,

This follows from a result of Chernoff and Lehmann (1954) to the

following effect:

If individual observations tis oo t are available and
if one substitutes into Eq. (2.4) the maximum likelihood
estimates &1, ceey &s of Gys sees Oy then under suitable
regularity conditions the asymptotic distribution of
xz(ﬂl, cees &s) lies (in the sense of stochastic ordering)
between the chi-gsquare distributions with k-1 and k-s-1

degrees of freedom,

For the exponential distribution there is one parameter, i.e., 8 = 1.
Thus, 1f one follows Epstein's advice (interpreting his "best"
to mean maximum likelihood), he will reject the null hypothesis of
exponentiality (when it is actually true) less often than he should.
That is, one may think he has a test with probability of type I error

eéqual to, say, 0.05, but it is really smaller.

o DR s e S IS LI W S W e

adihau ok




«29a

Appendix

JOSS PROGRAM

LISTING

1.1 Demand k.

1,2 Do part 2 for j=1(1)(k-1),
1.3 Set T(0)=0,

1.4 Do part 3 for j=1(1)k,

1,5 To part 4,

2.1 Demand T(j).

3.1 Demand £(j).

Set D=sum{j=1(1)(k=1): £(3)*(X(3-1)+X(3))/2] + f(k)*X(k-1),

L.1

4,2 Do part 5 for r=n/D,

5.0 Set R=t(r),

5.1 Page.

5.2 Type form 1 if $=1,

5.3 Type form 2 if $=2,

5.4 Do part 6 for i=1(1)(k=-1).

5.5 Type k,T(k=1),f(k),v(k,R) in Form u,
5.6 Line,

5.7 Type nysum[i=1(1)k:v(i,R)] in form 5,
5,71 Line,

5.8 Type G(R),(k~2) in form 8,

5.81 Line,

5.9 Type R/T(k-1) in form 6,
5,91 Type T(k-1)/R in form 7,
5.92 Line,

5,93 Type form 9.

601 Line if $=3,
6,2

Type i,T(i=1),T(i),f(i),v(i,R) in
Form 1:
Interval Lower Upper Observed
Form 2:
number limit limit freq.
Form 3:
Form g

— o inf,
Form 5:

totals:

Form 6:

The estimated occurrence rate is —

Form 73

form 3,

Expected

freq.

The estimated mean (= reciprocal of the rate) is o »

= g
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Form 83

The value of chi-square is o__o There are degrees of freedom.
Form St

The preceding

G(r)s
I(r):
M(r):
X(i)s
de
e(i,r)s
hii,r):
m(r):
n:
p(i,r)s
q(i,r):
t(r):
v(i,r):

et . o

test of exponentiality used the chi~square minimum method.

sum[i=1(1)k: ((£(i)=nep(i,r))#*2)/(nep(i,r))]
r-M(r)/m(r)

sumfi=1(1)kt [h(i,r)+h{i,r)*2/(2°n)]eq(i,r)]
T(1)/T(k~1)

10% (=)

exp(=rex(i))

£(1)/p(i,r) = n

(M(r+d)-M(r)1/d

sum[4=1(1)k: £(3j)]

[izk: e(k-1,r); e(i-1,r)~e(i,r)]

[izk: =X(k=1)ce(k=1,r); X(i)ee(i,r)=X(i=1)ee(i~1,r)]
[[M(r)]<10%(~6): r; t(I(r))]

ip(100enep(i,r)+.5)/100
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