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PREFACE

This Memorandum derives from RAND's continuing interest in

statistics and data analysis. It will be useful to computer-model

builders and others who, on the basis of grouped data, wish to test

the hypothesis that some event time is described by an exponential

distribution.

The study was suggested by a RAND colleague who wanted to

determine whether a given empirical diRtr!iutlon intended fnr '2

in the SAMSOM computer model could be more simply described by an

exponential distribution.
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SUMMARY

This expository Memorandum treats the problem of testing grouped

data for fit to an exponential distribution, provides a JOSS computer

program to implement an appropriate test, and gives examples showing

how to use thi6 program. The Memorandum also contains a brief dis-

cussion of testing nongrour-I data for exponentiality and of testing

grouped :_ta for fit to certain nonexponential distributions.

This is not a mathematical treatise. No proofs are given. Even

so, if a reader finds a particular discussion too mathematical for his

tastes, he can skip over it and not miss the essential parts of this

Memorandum.

+JOSS is the trademark and service mark of The RAND Corporation
for its computer program and services using that program.

__________
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i. INTRODUCTION

Certain event times (such as the time-to-failure of some types

of equipment, the length of telephone calls, the time between the

emission of a-particles from a radioactive source, etc.) are thought

to be described by an exponential distribution. This Memorandum

discusses thr "chi-square minimum" procedure for testinf; the hypothe-

sis of exponentiality when the data are event frequencies in intervals

of the time axis. That is, the individual event times are not avail-

able, only the number of events observed in each of a set of mutually

exclusive intervals--where these intervals taken together cover the

entire nonnegative time axis. Data arise in this form, for example,

when, rather than recording individual occurrence times, only the

number of occurrences in certain time periods (days, hours, minutes,

etc.) are noted. There is, however, no requirement that the various

periods be of equal length.

To be explicit about the problem, let k-i nonnegative numbers,

T1 < ... < Tk-l, be given. These numbers divide the nonnegative time

axis into k mutually exclusive and exhaustive intervals:

0 < t < Ti, T1 < t < T2 , ... , Tk 2 - t < Tkl, t > Tk_

The data are the number of events observed in each interval: fl in

0 < t < Ti, f2 in T1  t < T2 , ... , fk in t > T. This Memorandum dis-

cusses the chi-square minimum test of the hypothesis that these data are

The intervals need not be closed on the left and open on the
right as given here. There must, however, be no overlap among the
intervals, and every point of the nonnegative time axis must be in
some interval.

". ..



consistent with an exponential distribution and provides a JOSS com-

puter program to implement this test. Worked examples are given. In

addition, there is a brief discussion of the modified chi-square

winimum test of exponentiality for grouped data, of tests of exponen-

tiality for nongrouped data, and of tests of fit of grouped data to

other distributions than the exponential.
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2. THE CHI-SQUARE AND CHI-SQUARE MINIMUM TESTS

For convenience in the sutsequent discussion, denote the interval

0 < t < T 1 by 11, ... ,the interval T,_, , t , Tj 'y Ij, ... , and the

interval t > Tk-i by 1k' Recall that the data ivailable are the num-

ber of observations in intervai lI, J=l, .. , k. Denote by n the
k

total number of observations, 'fi"
1

2.1 THE CHI-SQUARE TEST OF , COMPTFTE,'Y

SPECrFIED HYPOTHESIS

Consider first the situation in which one wishes to test the

hypothesis H that the data come from a completely specified prob-

ability distribution function. That is, the pr-hability content pj

of the interval I is calculable under the hypothesized d! tribution.

A measure of the discrýpancy between the sample and the hypothesized

distribution is the chi-square expression

2 k (2
x = j X (fj-n, )] (2.1)

J=l

The asymptotic distribution of X2 is the chi-square distribution with
2

k-i degrees of freedom. Thus one rejects the hypothesis H if x is

larger than the critical value of chi-square for k-i degrees of free-

dom at the significance level being used. This assumes that n is
2

sufficiently large so that the distribution of X is essentially at

tA general reference for this section is Cramdr (1951), Chap. 30.
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its asymptotic distribution. Some authors suggest that the expected

frequencies, np1 , be 10 or more; others say at least 5--combining

intervals, if necessary, to achieve this condition. Cochran (1954)

suggests that these rules are far too conservative and that expecta-

tions as low as one may be used in the tails of a unimodal distribution.

Suppose one wants to test the hypothesis that the data--intervals

I containing f observations, J-1, ... , k--are consistent with the

exponential distribution with occurrence rate p. This distribution

has density function

p exp(-pt) ,t > 0

f(t) = (2.2)) 0 ,t - 0

so that, writing To - 0 and Tk a + -, one has

P = fTj p exp(-pt) dt

- exp(-pT Jl) - exp(-pT1 ), for J-l, ... , k . (2.3)

These probabilities p1 must be substituted in Eq. (2.1) to calculate

2
X•

The situation discussed in the preceding prragraph is not the

one of primary interest in this study. The concern here is with

testing the hypothesis that the data come from some exponential dis-

tribution, and not that they come from a given exponential distribu-

tion. Section 2.' discusses the latter situation, first in general

terms, and then specializes to the case of the exponential distribu-

tion.
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2.2 THE CHI-SQUARA" MINIMUM METHOD

As before, K intervals, 1f, ... ' Ik, are given that are mutually

exclusive and exhaustive for the random variable under study. Data

consist of the number of observations fl, ... ' fk' respectively, in

these intervals. The hypothesis to be tested is that the data come

from a probability distribution that assigns probability content

P (al, ... , as) to the interval I The function PJ(r'11 ... ' , s ) is

of known form, but involves s(, k-1) unknown parameters, aI, ... , (i.

These parameters are associated with the hypothesized distribution

function. If al, ... , a were known, then it would only be necessary

to calculate the probabilities p1 (aI, ... , as), substitute them for

pj in Eq. (2.1), and follow the procedure of the preceding subsection.

When a1 , ... , a are unknown, the following procedure--called the chi-S

square minimum method--can be used. Choose the values al, ... , as

that minimize the expression

k
2 l . 1aj[(f-npj(a,, ... Is)) 2 /(np1 (al, ... , a) . (2.4)

The minimizing values, a', ... , a', say, are called the chi-square

minimum estimates of al, ... , a. The asymptotic distribution of
s

X2(a, , a;), the minimum value of x2(al, ... , a ), is the chi-

square distribution with k-s-i degrees of freedom. The estimates

at, ... , a'I and X2 (aj, ... , a;) can be found by a numerical minimizing

technique or by solving for al, ... , as the system of equations that

result from equating to zero the partial derivative of Eq. (2.4) with

respect to ai, i-1, ... , a. This system of equations is
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k f-npj(a . + (f -np1 (al ...(a ap (al, ... I a)p (ol31 a 2 -oa
• I, 2npji(all .,:;s

i = 1, .... , s • (2.5)

For the exponential distribution there is only one parameter

(i.e., s - 1) and it has previously been denoted p. The probability

content of the interval IP Pi(p), previously given in Eq. (2.3),

is

P (p) - exp(-pT1 J_ - exp(-pTj) , for J-l, ... , k

The derivative of p (p) with respect to p is given by

dp1(p) = Tj exp(-pTj) - T_ 1 exp(-pT _) , for J-l, ... , k (2.6)

[Since Tk = + -, the terms exp(-pTk) and Tk exp(-pTk) must be taken to

be zero.]

In the exponential case, the equations shown in (2.5) reduce

to a single equation. A JOSS program has been written to solve this

equation for its root p' and to calculate X2 (p'). The program is

listed in the Appendix, and details of the program are discussed in

Sec. 4. Input requirements are given, and sample problems are worked

in Sec. 5.

2.3 SOME SHORTCOMINGS OF CHI-SiUARE PROCEDURES

Cochran (1954) points out that chi-square tests are not directed

against any specific alternative to the null hypothesis, that is, to

detect any particular pattern of deviations (fi-npi) that may hold if
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the null hypothesis is false. A consequence is that chi-square tests

are often insensitive and do not indicate significant results when

the null hypothesis is actually false.

Berkson (1966) makes a suggestion along the lines of overcoming

the insensitivity to the pattern of deviations. He recommends that one

compute many tests with different interval widths. The context of

Berkson's remark is one in which the statistician has the interval width

at his disposal. In the situation considered here the intervals are

given, so that one only has the option uf combining adjacent intervals to

make wider (but fewer) intervals--not of considering intervals shorter

than those given. Nonetheless, if a particular chi-square test fails

to reject the null hypothesis, combining the data into different classes

and making further chi-square tests may indicate whether the failure

is due to a particular pattern of discrepancy between observation and

hypothesis to which the chi-square test is insensitive, or whether the

observations really conform to the hypothesis.

Epstein (1960) remarks that "the chi-square goodness of fit test

has several drawbacks. Among them are its large sample character and

dependence upon the choice of the number and position of the intervals

into which the time axis is divided." An illustration of this latter

point is given here in Sec. 5, Example 2.

In short, chi-square tests tend to have low power, i.e., relatively

low probability of rejecting a null hypothesis when it is false, and

are sensitive to the arrangement of the data into groups.

Section 7 discusses tests of exponentiality against specified

alternatives when the individual observations--not merely grouped

data--are available.

S. . II
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3. THE MODIFIED CHI-SQUARE MINIMUM METHOD

There is another general approach to testing goodness of fit, a

method closely related to the chi-square minimum method, which deserves

mention here. This is the so-called "modified chi-square minimum"

method (Cramdr, 1951, Chap. 30). Cramdr states that the system of

equations (2.5) is often difficult to solve, and that it can be shown

that the influence of the second term in the square brackets in Eq.

(2.5) becomes negligible as n becomes large. Neglecting this second
k

term and invoking the condition I p (a1l ... , as) = 1 for each pos-
j-l

sible s-tuple (a.1, ... , at) yields the system of equations

k f p (a• "", s)LP1  a_(W "... as) -0 ,-, ... s . (3.1)
jil j i (l .,a Ia

It can be shown that the solution of Eqs. (3.1), say, a*, ... , a*

exists and is unique and that the asymptotic distribution of

X (a*, ... , a*) is the same as that of X 2 ... , a,) discussed in

Sec. 2, namely, the chi-square distribution with k-s-l degrees of

freedom.

Cramdr does not remark on the relative speeds of convergence of

the modified chi-square minimum and the chi-square minimum to the

limiting distribution (nor am I aware of any other investigation of

this question), so there is no reason, on this basis, to prefer one

method to the other. If, as Cramdr suggests, Eqs. (3.1) are easier

to solve than Eqs. (2.5), then this might make the modified chi-square

minimum method preferable. It must be remembered, however, that the

first printing in America of Cramfr's book appeared in 1946 and there
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was a printing in Sweden in 1945. This Was weZZ before the computer

era. It is difficult to see where, with the aid of a computer, Eqs.

(3.1) would be substantially easier to solve than Eqs. (2.5). Both

systems require the probability content of the intervals and the par-

tial derivatives of these probabilities with respect to the parameters.

Eqs. (2.5) do involve a few more arithmetic operations, but not

dramatically more.

3. 1 APPLICATION TO TESTING FOR EXPONENTIALITY

The following is an adaptation to the exponential distribution

of a discussion by Cramdr (1951, pp. 437-438) for the normal distribution.

As before, the data are frequencies fi in the interval [Ti_ ,Ti) d

i-l, ... , k. If the hypothesis of exponentiality is true, the prob-

ability p corresponding to the i-th class is

Pi _ T p exp (-px)dx . (3.2)

Ti-1

(It turns out to be convenient to ignore the fact that this integral

can be expressed in a closed form. Cf. Eq. (2.3).] The derivative

of pi with respect to p , needed in Eq. (3.1), is

dpi rTi
- = (l-px) exp (-px)dx . (3.3)

T i-1

An approximate solution to Eq. (3.1) can be given (1) if it is possible

tIt is hoped that no reader will consider the foregoing discussion

as a criticism of Cramdr's monumental work. We could hardly have
expected Cramdr, in the early forties, to have anticipated the power
of modern computer technology.
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to arrange the grouping so that there are no observations in the last

interval (i.e., fk ' 0). and (2) if each interval but the last is suf-

ficiently short so that each integral in Eqs. (3.2) and (3.3) can be

approximated by the value of the integrand at the midpoint, &i. of the

corresponding interval times the length of that interval. One has

f A
I~ L p .!! T T MP exp (-p%) 0 . (3.4)

Simple algebra yields as an approximate solution to Eq. (3.4)

S- n/j f i . (3.5)

This is the estimate for the rate parameter of an exponential distribu-

tion calculated from a grouped sample according to the usual rule that

all sample values in a certain class are treated as though they were

at the midpoint of the class interval. Cf. the discussion accompanying

Eq. (4.3).

If the conditions in the sentence following Eq. (3.3) are satis-

fied, then substituting 0 from Eq. (3.5) into Ec,. (2.1) will yield a
2

fairly reasonable approximation to the value of x that would be

obtained by either the chi-square minimum or the modified chi-square

minimum method.

An illustration of the above approximation is given in Example 4

of Sec. 5.
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4. JOSS NUMERICAL PROCEDURES FOR THE CHI-SQUARE
MINIMUM TEST OF EXPONENTIALITY

The chi-square minimum procedure requires finding the root, say p',

of the equation

I -npp(p) (fI-npI(p))1 2- 0 . (4.1)

J P1 p 2np2 ( J)

The expressions pj(o) and dp,(o)Ido are given by Eqs. (2.3) and (2.6),

respectively.

The root p' of Eq. (4.1) is obtained in our JOSS program by

Newton's method. Although Newton's inethod (also called the Newton-

Raphson method) is discussed in almost every numerical analysis text, t

a brief description of it follows. To solve the equation *(x) = 0 by

Newton's method, select a starting value x and calculate a sequenceo

of values (xiI by the relation

xi+1 = xi - ¢(xi)/¢'(xi) , i = 0, 1, 2, ... (4.2)

A criterion that can be used to stop the iteration is to terminate at

that i* which yields I1(xi*)I < c for a suitably chosen (small) value

of C.

This stopping rule, with c - 10-6, is used in our solution of

Eq. (4.2). A slight variant of Eq. (4.2) is used in our calculations.

Instead of the derivative *'(x), the approximating difference quotient

-4[f(x+d) - *(x)]/d, with d - 10- , is used. This is the version of

*See, for example, Ralston (1965), Sec. 8.4, especially p. 332.
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Newton's method given by Bryan and Paxson (1967, p. 5.19).

The right-hand side of Eq. (4.1), with (2.3) and (2.6) plugged

in, is denoted M(r) in the JOSS program (r for p). Newton's method

is applied to M(r) to yield the solution--which is denoted R in the

JOSS program. The starting value is taken to bet

n + Ti)/2 + f (4.3)

and this value is chosen for the following reason. If all the indi-

vidual occurrence times ti, ... , tn were available, one could calculate
n

the maximum likelihood estimate of p : n/It . In the absence of these1
data, all observations in an interval are treated as though they were

at the mid-point of the interval--save for the last interval in which

all observations are treated as if they were at the lower limit of

that interval. (The last interval is treated differently because

its upper limit is infinite.)

*tActually the program works with X a Ti /Tkl instead of Ti.

This is to avoid the possibility of dealing with very large negative
powers of e, i.e., very small numbers, in calculating the interval
probabilities (2.3). Once the minimizing rate parameter has been
calculated with the X's, it is only necessary to divide it by Tkl

to get the desired value--the minimizing rate parameter associated
with the T's. Of course, this is all internal to the program, and the
casual user need not even be aware of this detail.
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5. DESCRIPTION OF THE JOSS PROGRAM
AND WORKED EXAMPLES

5.1 PROGRAM DESCRIPTION

To use the program, enter it into JOSS and command JOSS to "Do

part 1.l' JOSS will request k, the number of intervals; T(M), ... ,

T(k-l), the boundaries between the intervals; and f(l), ... , 1(k), the

observed frequencies in the intervals. After a pause, during which

JOSS solves Eq. (4.1), the output appears. JOSS prints out the in-

terval numbers, the lower and upper boundaries of the intervals (the

upper boundary of the final interval, infinity, is denoted inf.), the

number of observations in each interval, and the "expected number" of

observations in each interval. These latter quantities are equal to

np (P'), where pj(p) is given by Eq. (2.3), and p' is the solution to

Eq. (4.1). These expected frequencies are rounded to two places in

the output, but not at all in the calculations. The total, n, of

observations is shown, as is the sum of the expected frequencies--

this solely as a check. The calculated value of chi-square (the value

of Eq. (2.1) with pj ,P p(P')) is shown, together with its degrees of

freedom.

tIn reading the following description of JOSS input requirements

and output format, the reader may want to look at samples of each in
Example 1 on p. 14.

tt The significance of th~s value for the indicated number of

degrees of freedom must be determined from a table of percentage
points of the chi-square distribution. Our JOSS program does not
have these percentage points built into it. This should cause no
hardship, however, as chi-square tables are widely available.
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The chi-square minimum estimate of the rate parameter p and of

its reciprocal, the mean, are also printed out. The latter values

correspond to the rate and mean of the exponential distribution of

"best" fit to the data--best in the sense of minimizing chi-square.

They are of dubious significance when the hypothesis of exponen-

tiality is rejected, for if a distribution of occurrence times is

nonexponential, then the occurrence rate is not constant, but varies

with time.t

5.2 WORKED EXAMPLES

Example 1: The data in Table 1 constitute unscheduled maintenance

net aircraft turnaround times for 237 sorties. After noting that

Table 1

NET TURNAROUND TIMES
Interval
(Hours) Frequency

0-1 .................................. 9
1-2 ................................... 46
2-3 .. ................................. 48
3-4 .. ................................. 23
4-5 ................................... 15
5-6 .. ................................. 24
6-7 ..................................... 8

7-8 ................................... 15
8-9 .............................. o... 7
9-10 .................................. 4
10-11 ................................. 5
11-12 ............................... 4
more than 12 ......................... 29

Total ......... ..................... 237

tIf f(t) is the density function, and F(t) is the cumulative

distribution function, then r(t), the occurrence rate function, is
defined by r(t) - f(t)/[1-F(t)].
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there are 13 intervals, these data are entered into JOSS. Figure 1

is a reproduction of the JOSS interrogation (to the left of the equal

sign) and the user response (to the right of the equal sign). The

JOSS output is given in Fig. 2. A computed chi-square value of

55.53 for 11 degrees of freedom is significant beyond the 0.1 percent

level, so the hypothesis of exponentialitv for t .e turnaround time

data of Table 1 is decisively tejected. Since the hypothesis of

expoaentiality is not supported, the estimates of the occurrence

rate and the mean should be ignored. (See the last remark in Sec.

5.1.)

k= 13

T() = 1
T(2) = 2
T(3) = 3
T(4) =4
T(5) = 5
T(6) = 6

T(7) = 7
T(8) = 8
T(9) = 9

T(10) = 10
T(11) ii

T(12) 12
f(1) 9
f(2) 46
f(3) 48
f(4) = 23
f(5) = 15
f(6) = 24
f(7) = 8
f(8) = 15
f(9) = 7

f(1o) =4
f(11) = 5
f(12) 4
f(13) 29

Fig. 1 -- Input to the JOSS programs (data from Table 1)
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Interval Lower Upper Observed Expected
number limit limit freq. freq.

1 .00 1.00 9 40.73
2 1.00 2.00 46 33.73
3 2.00 3.00 48 27.93
4 3,00 4.00 23 23.13
5 4.00 5.00 15 19.16
6 5,00 6.00 24 15.87
7 6.00 7.00 8 13.14
8 7.00 8.00 15 10.88
9 8.00 9.00 7 9.01

10 9.00 10.00 4 7.46

11 10.00 11.00 5 6.18
12 11.00 12.00 4 5.12
13 12,00 inf. 29 24.67

totals: 237 237.01

The value of chi-square is 55.53, There are 11 degrees of freedom.

The estimated occurrence rate is .188544.
The estimated mean (= reciprocal of the rate) is 5.30.

The preceding test of exponentiality used the chi-square minimum method.

Fig. 2 -- JOSS output (turnaround time data from Table 1)
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Example 2: For the data of Fxample 1, It is interesting to

illustrate the dependence (cited at the end of Sec. 2.3) of chi-

square tests upon the choice of the number and position of the inter-

vals into which the time axis is divided. The data in Table 2 are

the data of Table 1 arranged in three-hour intervals instead of one-

hour intervals.

Table 2

NET TURNAROUND TIMES

Interval
(Hours) Frequency

0-3 .................................. 103
3-6 .. ................................. 62
6-9 ................................. 30
9-12 .................................. 13
more than 12 .......................... 29

Total .............................. 237

The JOSS output for the chi-square minimum test of exponentiality

for the data of Table 2 is given in Fig. 3. The data now appear to

Interval Lower Upper Observed Expected
number limit limit freq. freq.

1 .00 3.00 103 101.12
2 3.00 6.00 62 57.97
3 6,00 9.00 30 33,24
4 9.00 12.00 13 19.06
5 12,30 info 29 25.61

totals: 237 237.00

The value of chi-square is 3.00. There are 3 degrees of freedom.

The estimated occurrence rate is .185418.
The estimated mean (= reciprocal of the rate) is 5.39.

The preceding test of exponentiality used the chi-square minimum method.

Fig. 3 -- JOSS output (turnaround time data from Table 2)
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be in good agreement with an exponential distribution! Since the

same data, differently grouped, were seen in Example I to be decid-

edly nonexponential, this shows how cautious one must be in accepting

a hypothesis of exponentiality based on a chi-square test merely

because that test faiZe to reject the hypothesis. Cf. Sec. 2.3.

Example 3: The data in Table 3 are times-to-failure of 118

AN/ARC-90 Radios, given by Allen and Sloan (1966).

The JOSS output for the chi-square minimum test of exponentiality

is given in Fig. 4. The data seem to be in good agreement with an

exponential distribution. As a further check, all observations above

Table 3

TIMES-TO-FAILURE

Interval
(Hours) Frequency

0-20 ............................ .... 19
20-40 ............................... 19
40-60 ............................... 21
60-80 ............................... 10
80-100 .............................. 13
100-120 ............................. 6
120-140 ............................. 7
140-160 ............................. 5
160-180 ............................. 4
180-200 ............................. 2
200-220 ............................. 3
220-240 ............................ 1
240-260 ..... ....................... 2
260-280 ..... ........................ 1
280-300 ........................... 1
300-320 .. o....... ..oo...........o...... 1
320-340 .. ......... ........ .. ..... 2
> 340 .......... ....... 1

Total .. o.............. o............ 118
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Interval Lower Upper Observed Expected
number limit limit freq. freq.

1 .00 20.00 19 23.10
2 20.00 40.00 19 18.58
3 40,00 60,00 21 14.94

4 60.00 80.00 10 12,02
5 6000 100.00 13 9166
6 100.00 120,00 6 7.77
7 120.00 140.00 7 6.25
8 140.00 160.00 5 5.03
9 160.00 180.00 4 4,04

10 180.00 200.00 2 3.25
11 200.00 220.00 3 2.62
12 220,00 240,00 1 2.10
13 240,00 260,00 2 1,69
14 260.00 280.00 1 1,36
15 280,00 300,00 1 1.09
16 300.00 320.00 1 .88
17 320,00 340.00 2 .71
18 340.00 inf, 1 2,91

totals: 118 118o00

The value of chi-square is 10,08, There are 16 degrees of freedom.

The estimated occurrence rate is .010892,
The estimated mean (= reciprocal of the rate) is 91.81.

The preceding test of exponentiality used the chi-square minimum method.

Fig. 4 -- JOSS output (times-to-failure data from Table 3)
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200 hours were combined into one class. The JOSS output resulting

from this accumulation is shown in Fig. 5. Again, good agreement

with the hypothesis of exponentiality is evident. The estimates of

the rates (and means) from the two different outputs differ somewhat

(as is to be expected), but not dramatically. There remains the

possibility of additional combinations of adjacent intervals to try

to achieve a significant departure from the exponential hypothesis

as discussed in Sec. 2.3. Further, the moral of Example 2 must not

be overlooked.

Example 4: To illustrate the approximation used with the modified

chi-square minimum method for testing exponentlality (discussed in

Sec. 3.1), consider the data of Table I, rearranged as follows. (It

is known that the longest time-to-failure to lilR hr..)

Table 4

TIMES-TO-FAILUNP

Interval
(Hours) Frequency

0-20 ........................... 19
20-40 ..... ...... . ....... 19
40-60 ............................... 21
60-80 ............................... 10
80-100 ........... ................... 13

100-120 ..........5.................. 6
120-140 ............................. 7
140-160 ............................. 5
160-180 ............................. 4
180-200 ......... *.................... 2
200-360 ............................. 12
> 360 .................. 0............. 0

Total ................. so............ 118

Applying Eq. (3.5) to the data of Table 4 yields 0 - 118/10,420 so .011324

and a calculated chi-square (from Eq. (2.1)) of 7.94. There are k - 12
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Interval Lower Upper Observed Expected
number limit limit freq. freq.

1 .00 20,00 19 23.91
2 20.00 40.00 19 19.07
3 40,00 60,00 21 15.20
4 60.00 80.00 10 12.12
5 80,00 100,00 13 9,67
6 100900 120,00 6 7,71
7 120.00 140.00 7 6o15
8 140.00 160.00 5 4.90
9 160.00 180,00 4 3.91

10 180,00 200,00 2 3.12
11 200.00 inf, 12 12.26

totals: 118 118.02

The value of chi-square is 5.65. There are 9 degrees of freedom.

The estimated occurrence rate is .011322.
The estimated mean (= reciprocal of the rate) is 88,32,

The preceding test of exponentiality used the chi-square minimum method.

Fig. 5 -- JOSS output (data from Table 3 with some combinations)

L - -- �-- ,.. . . ..... , 1 I .n.. . . I - I I I -- I -I - - 1
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intervals (the last interval must be counted, even though it has a

zero frequency), so this chi-square has 10 degrees of freedom. The

calculated chi-square is decidedly nonsignificant.

The data of Table 4 were also analyzed by the chi-square minimum
2

method and yielded an estimated rate of 0.011310 and a X of 7.94--

the same value calculated by the approximate method of Sec. 3.1.

This example illustrates that this approximation can be quite good.

The discussion of Example 2 concerning the conclusion to draw from

the analysis is pertinent to this example as well.

ii -- . . .-- m- -
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6. TESTING GROUPED DATA FOR FIT TO OTHER
DISTRIBUTIONS THAN THE EXPONENTIAL

This study was undertaken in response to a request, and because

the exponential is an important, widely used distribution. It turns

out, however, that of all the commonly considered event-time distribu-

tions, it is simplest to test grouped data for fit to the exponential

distribution. This stems from two reasons. First, the probability

content of the intervals and the derivative of this probability with

respect to the parameter can be given in a closed form expression.

No table look-up or numerical approximation is needed. Second, only

one parameter is involved, so that the chi-square expression needs

to be minimized as a function of only one variable--the rate parameter.

One-dimensional minimization procedures are, of course, easier to

implement than multi-dimensional procedures.

Some distributions commonly used to describe event-times are

listed below along with a brief discussion of the problems involved

in testing grouped data for fit to each one. In each case, I denotes

the interval L < t < U.

(i) The Weibull Distribution. The Weibull distribution has

density

f(t) - Xata- 1 exp (-Xta) , t > 0 . (6.1)

The probability content of the interval I, as a function of the param-

eters X and a, is
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p c) - ep-L)expxp(-IU) . (6.2)

The partial derivatives of this probability with respect to X and a are

___ _ 10.0 a a
P am - U exp(-XUO) - Lm exp(-XL ) (6.3)

and

a 00 XUam(logU) exp(-XUa) - ALa(logL) exp(-ALO) . (6.4)

For the Weibull, Eqs. (2.5) become two (nonlinear) equations in the

two unknowns X and a. One method of solving this pair of equations is

with a two-dimensional analog of the Newton-Raphson method. See Ralston

(1965, Sec. 8.8).

Thus, for the Weibull, the probability content of the intervals

and the derivatives of this probability with respect to the parameters

all can be given as closed form expressions. However, there is a two-

dimensional minimization problem to solve.

(ii) The Gamma Distribution. The gamma distribution has density

f(t) - Xt-i e-Xt P/(a) , t >0. (6.5)

The probability content of the interval I, as a function of the param-

eters A and a, is

p -(,m) f A [zm- Z e-z/r(a)] dz (6.6)

XL

a quantity related to the incomplete gamma function. This function is
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well tabulated and good algorithms exist for computing it. The partial

derivatives of this probability with respect to X and a are

pi (X,a) . e- U L e-L] Ma) (6.7)

and

3pl(A,a) XU2
= f ALz ( eZ[r'(a) - r(a)log z]/r2(a)) dz . (6.8)

AL

The partial derivative in Eq. (6.8) is a fairly complicated quantity

to calculate and this suggests that rather than trying to solve the

pair of equations corresponding to Eqs. (2.5), it may be preferable

to attempt a direct numerical minimization of the chi-square expression

(2.4). See, for example, Wilde (1964).

Thus, for the gamma distrubution, one is faced with complicated

expressions to evaluate--or rather, approximate, and a two-dimensional

minimization problem.

(iii) The Truncated Normal Distribution. The truncated normal

distribution is the ordinary normal distribution truncated on the left

at zero so that it is the distribution function of a nonnegative random

variable. Its density is given by

f(t) = (ao)- (2w)-• exp[-(t-_1) 2 /(2o 2 )] , t > 0 (6.9)

where a, a function of P and a, is given by

a = 1 - 0(-u/o) (6.10)
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with P(x) being the cumulative distribution function for the standard

normal distribution

X2

O(x) - f (21T)- exp(-t 2/2) dt . (6.11)

The probability content of the interval I, as a function of the param-

eters w and a is

pz(ua) - [D((U-ji)/o) - P((L-w)/o)]/a . (6.12)

Interested readers are invited to calculate the partial derivatives

of pl(w,o) with respect to V and a and to determine whether the pair of

equations corresponding to (2.5) should be solved, or whether a direct

numerical minimization of Eq. (2.4) is preferable here. The same might

be done for the lognormal distribution.

(iv) The Lognormal Distribution. The lognormal distribution has

density function

f(t) - (to) -(2r)-• exp[l-logt -p?/(2o 2 )] , t > 0 (6.13)

The probability content of the interval I, as a function of the param-

eters w and a, is

PI (i'o) = ((logU-l)/o) - *((logL-o)/a) (6.14)
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7. TESTING NONGROUPED DATA FOR EXPONENTIALITY

If one has individual event times tl, ... , tn, the chi-square

minimum method discussed here is not the best for testing whether

these data conform to an exponential distribution. Reasons for this

have already been discussed in Sec. 2.3. In particular, the chi-

square procedure tests the hypothesis of exponentiality against an

unrestricted alternative. One may want to test for exponentiality

against some specified alternative. Epstein (1960) discusses a num-

ber of procedures for this. Some subsequent papers are Proschan and

Pyke (1964), Jackson (1967), and Barlow (1968).

A very simple, though qualitative, test of exponentiality is the

following graphical procedure. Since the survival probability func-

tion for the exponential distribution with rate p is exp(-pt), plot-

ting the observed failures ti against the negative of the logarithm

of the empirical survival probability function should yield pretty

close to a straight line if the hypothesis of exponentiality holds.

Actually, Epstein recommends plotting ti against -log( n---- -log n+1)

- n-il n--lI
because the expected value of F(ti) is n-i+1-. (Here P denotes then+l"

survival probability function and ti the i-th ordered observation.]

This procedure is valid even for censored samples (in which only the

first r event times out of the n times being observed are available)

and for truncated samples (in which observation ceases at a pre-

determined time T).

Epstein, incidentally, makes a misleading statement in connection

with the chi-square test of exponentiality. He states that one should

use "the best estimate" of the parameter in our expression (2.1) and
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that the result is then distributed as chi-square with k-i degrees of

freedom. Although Epstein does not statr what he means by "best," it

is known that if one uses in (2.1) the maximum likelihood estimate of

the parameter based on the individual observations, then the limiting

distribution, under suitable regularity conditions, lies between (in

the sense of stochastic crdering) the chi-square distributions with k-i

and k-2 degrees of freedom.

This follows from a result of Chernoff and Lehmann (1954) to the

following effect:

If individual observations t, ... ,I t are available and

if one substitutes into Eq. (2.4) the maximum likelihood

estimates &1, ... , &s of al, ... , as, then under suitable

regularity conditions the asymptotic distribution of

S2(a,, ... , &s) lies (in the sense of stochastic ordering)

between the chi-square distributions with k-i and k-s-i

degrees of freedom.

For the exponential distribution there is one parameter, i.e., s - 1.

Thus, if one follows Epstein's advice (interpreting his "best"

to mean maximum likelihood), he will reject the null hypothesis of

exponentiality (when it is actually true) less often than he should.

That is, one may think he has a test with probability of type I error

equal to, say, 0.05, but it is really smaller.
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Appendix

JOSS PROGRAM LISTING

1.1 Demand k.
1.2 Do part 2 for j=1(1)(k-1).
1.3 Set T(O)=O.
1.4 Do part 3 for j=1(1)k.
1.5 To part 4,

2.1 Demand T(j).

3.1 Demand f(j).

4.1 Set D=sum[j=1(1)(k-1): f(j).(X(j-1)+X(j))/2] + f(k)*X(k-1).
4o2 Do part 5 for r=n/D.

5.0 Set R=t(r).
5.1 Page.
5.2 Type form 1 if $=1,
5.3 Type form 2 if $=2.
5.4 Do part 6 for i=1(1)(k-1).
5.5 Type k,T(k-1),f(k),v(k,R) in form 4.
5.6 Line.
5.7 Type n,sum[i=1(1)k:v(i,R)] in form 5,
5.71 Line.
5.8 Type G(R),(k-2) in form 8.
5.81 Line.
5.9 Type R/T(k-1) in form 6,
5,91 Type T(k-l)/R in form 7.
5.92 Line.
5.93 Type form 9.

6,1 Line if $=3.
6.2 Type i,TQi-1),T(i),fWi),v(i,R) in form 3.

Form 1:
Interval Lower Upper Observed Expected

Form 2:
number limit limit freq. freq.

Form 3:

Form 4:
inf.

Form 5:
totals: ...

Form 6:
The estimated occurrence rate is

Form 7:
The estimated mean ( reciprocal of the rate) is
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Form 8:
The value of chi.-squar'e is .,. There are __degrees of freedom.

Form 9:
The preceding test of exponentiality used the chi-square minimum method.

1(r): r-M(r)'/m(r)

X(i)s T(i)/T(k-1)
d: 10*(-L4)

e(i,r): exp(-r-x(i))
h(i,r): f(i)/p(i,r) - n

m(r): £14(r+d)-M~r))/d
n: sumEJi1(1)k: f(j))

p(i. r)% Ei=k: e(k-±,r); e(i-l,r)-e(i,r)]

t~r): CIM(r)j<10*(-6): r; tIr)
v(i,r): ip(I00.n-p(i,r)+.5 )/10O
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